TC7116ARCPL [MICROCHIP]

1-CH 13-BIT DUAL-SLOPE ADC, PDIP40, PLASTIC, DIP-40;
TC7116ARCPL
型号: TC7116ARCPL
厂家: MICROCHIP    MICROCHIP
描述:

1-CH 13-BIT DUAL-SLOPE ADC, PDIP40, PLASTIC, DIP-40

转换器
文件: 总24页 (文件大小:410K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC7116/A/TC7117/A  
3-1/2 Digit Analog-to-Digital Converters with Hold  
Features:  
General Description:  
• Low Temperature Drift Internal Reference:  
- TC7116/TC7117 80 ppm/°C, Typ.  
- TC7116A/TC7117A 20 ppm/°C, Typ.  
• Display Hold Function  
The TC7116A/TC7117A are 3-1/2 digit CMOS Analog-  
to-Digital Converters (ADCs) containing all the active  
components necessary to construct a 0.05% resolution  
measurement system. Seven-segment decoders,  
polarity and digit drivers, voltage reference, and clock  
circuit are integrated on-chip. The TC7116A drives  
Liquid Crystal Displays (LCDs) and includes a back-  
plane driver. The TC7117A drives common anode Light  
Emitting Diode (LED) displays directly with an 8mA  
drive current per segment.  
• Directly Drives LCD or LED Display  
• Zero Reading with Zero Input  
• Low Noise for Stable Display:  
- 2V or 200mV Full Scale Range (FSR)  
• Auto-Zero Cycle Eliminates Need for Zero  
• Adjustment Potentiometer  
These devices incorporate a display hold (HLDR)  
function. The displayed reading remains indefinitely, as  
long as HLDR is held high. Conversions continue, but  
output data display latches are not updated. The refer-  
ence low input (VREF-) is not available, as it is with the  
TC7106/7107. VREF- is tied internally to analog  
common in the TC7116A/7117A devices.  
• True Polarity Indication for Precision Null  
Applications  
• Convenient 9V Battery Operation:  
(TC7116/TC7116A)  
• High-Impedance CMOS Differential Inputs: 1012Ω  
• Low-Power Operation: 10mW  
The TC7116A/7117A reduces linearity error to less  
than 1 count. Rollover error (the difference in readings  
for equal magnitude but opposite polarity input signals)  
is below ±1 count. High-impedance differential inputs  
offer 1pA leakage current and a 1012Ω input imped-  
ance. The 15μVP-P noise performance enables a “rock  
solid” reading. The auto-zero cycle ensures a zero  
display reading with a 0V input.  
Applications:  
• Thermometry  
• Bridge Readouts: Strain Gauges, Load Cells,  
Null Detectors  
• Digital Meters: Voltage/Current/Ohms/Power, pH  
• Digital Scales, Process Monitors  
• Portable Instrumentation  
The TC7116A and TC7117A feature a precision, low  
drift internal reference, and are functionally identical to  
the TC7116/TC7117. A low drift external reference is  
not normally required with the TC7116A/TC7117A.  
Device Selection Table  
Package Code  
Package  
Temperature Range  
CPL  
IJL  
40-Pin PDIP  
40-Pin CERDIP  
44-Pin PQFP  
44-Pin PLCC  
0°C to +70°C  
-25°C to +85°C  
0°C to +70°C  
0°C to +70°C  
CKW  
CLW  
© 2006 Microchip Technology Inc.  
DS21457C-page 1  
TC7116/A/TC7117/A  
Package Type  
40-Pin PDIP  
40-Pin CERDIP  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
HLDR  
OSC1  
OSC2  
OSC3  
TEST  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
HLDR  
OSC1  
OSC2  
OSC3  
TEST  
1
2
D
1
D
1
C
1
3
C
1
3
B
1
4
B
1
4
A
1
5
1's  
V
+
A
1
5
1's  
V
+
REF  
REF  
F
1
6
V+  
C
F
1
6
V+  
C
1
G
1
+
-
7
G
+
-
7
REF  
REF  
E
1
C
8
E
1
C
8
REF  
REF  
TC7116CPL  
TC7116ACPL  
TC7117CPL  
TC7117ACPL  
TC7116IJL  
TC7116AIJL  
TC7117IJL  
TC7117AIJL  
9
D
2
COMMON  
9
D
2
COMMON  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
C
2
V
V
+
-
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
C
2
V
V
+
-
IN  
IN  
B
2
B
2
IN  
IN  
10's  
10's  
A
2
29 C  
AZ  
A
2
29 C  
AZ  
F
2
28  
27  
26  
25  
24  
23  
22  
21  
V
V
F
2
28  
V
BUFF  
BUFF  
E
2
E
2
27  
V
INT  
INT  
D
3
V-  
G
26  
D
3
V-  
B
3
B
3
25  
24  
23  
22  
21  
G
2
2
100's  
100's  
F
C
F
3
C
A
3
3
3
100's  
100's  
A
E
E
3
3
3
3
AB  
G
1000's  
AB  
G
1000's  
4
3
4
3
POL  
(Minus Sign)  
BP/GND  
(TC7116/7117)  
POL  
(Minus Sign)  
BP/GND  
(TC7116/7117)  
(TC7116A/TC7117A)  
(TC7116A/TC7117A)  
44-Pin PLCC  
44-Pin PQFP  
6
5
4
3
2
1
44 43 42 41 40  
44 43 42 41 40 39 38 37 36 35 34  
33  
1
2
3
4
5
6
7
NC  
NC  
NC  
F
G
E
7
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
V+  
C
1
32 G  
3
3
3
+
-
8
REF  
1
C
31  
30 A  
TEST  
OSC3  
NC  
C
9
REF  
1
D
10  
11  
12  
13  
14  
15  
16  
17  
COMMON  
2
2
29  
28  
27  
26  
25  
24  
23  
G
3
C
V
+
TC7116CKW  
TC7116ACKW  
TC7117CKW  
TC7117ACKW  
IN  
TC7116CLW  
TC7116ACLW  
TC7117CLW  
TC7117ACLW  
BP/  
GND  
OSC2  
OSC1  
NC  
NC  
B2  
POL  
V
-
IN  
AB  
4
HLDR 8  
D
A
2
C
AZ  
E
3
9
1
1
F
2
V
V
BUFF  
INT  
F
3
10  
11  
C
B
E
2
B
3
D
3
1
V-  
25 26 27 28  
19 20 21 22  
12 13 14 15 16 17 18  
18 19 20 21 22 23 24  
Note 1: NC = No internal connection.  
2: Pins 9, 25, 40 and 56 are connected to the die substrate. The potential at these pins is approximately V+. No  
external connections should be made.  
DS21457C-page 2  
© 2006 Microchip Technology Inc.  
TC7116/A/TC7117/A  
Typical Application  
TC7116/A  
TC7117/A  
Display  
Hold  
0.1μF  
LCD Display (TC7116/7116A)  
or Common Anode LED Display  
(TC7117/7117A)  
33  
1
34  
C
HLDR  
-
+ C  
REF  
REF  
1MΩ  
31  
Segment  
Drive  
2–19  
22–25  
+
V
+
IN  
IN  
Analog  
Input  
0.01μF  
20  
POL  
30  
32  
V
-
Backplane Drive  
Minus Sign  
21  
35  
BP/GND  
V+  
ANALOG  
COMMON  
24kΩ  
28  
V
BUFF  
+
47kΩ  
V
9V  
36  
26  
REF  
0.47μF  
29  
V
+
REF  
1kΩ  
C
AZ  
100mV  
0.22μF  
27  
V
INT  
V-  
OSC2 OSC3 OSC1  
39 38  
To Analog  
Common (Pin 32)  
C
40  
OSC  
R
OSC  
100pF  
3 Conversions Per Second  
100kΩ  
© 2006 Microchip Technology Inc.  
DS21457C-page 3  
TC7116/A/TC7117/A  
*Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to  
the device. These are stress ratings only and functional  
operation of the device at these or any other conditions  
above those indicated in the operation sections of the  
specifications is not implied. Exposure to Absolute  
Maximum Rating conditions for extended periods may  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings*  
Supply Voltage:  
TC7116/TC7116A (V+ to V-) ...........................15V  
TC7117/TC7117A (V+ to GND).......................+6V  
V- to GND.........................................................-9V  
Analog Input Voltage (Either Input) (Note 1)... V+ to V-  
Reference Input Voltage (Either Input)............ V+ to V-  
Clock Input:  
TC7116/TC7116A............................... TEST to V+  
TC7117/TC7117A.................................GND to V+  
Package Power Dissipation; TA 70°C (Note 2)  
40-Pin CDIP................................................2.29W  
40-Pin PDIP ................................................1.23W  
44-Pin PLCC...............................................1.23W  
44-Pin PQFP...............................................1.00W  
Operating Temperature:  
C (Commercial) Device................... 0°C to +70°C  
I (Commercial) Device.................... 0°C to +70°C  
Storage Temperature..........................-65°C to +150°C  
TABLE 1-1:  
TC7116/A AND TC7117/A ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise noted, specifications apply to both the TC7116/A and TC7117/A at T = 25°C,  
A
f
= 48kHz. Parts are tested in the circuit of the Typical Operating Circuit.  
CLOCK  
Symbol  
Parameter  
Zero Input Reading  
Min  
Typ  
Max  
Unit  
Test Conditions  
= 0V  
Z
±0  
Digital  
V
IN  
IR  
Reading Full Scale = 200mV  
Ratiometric Reading  
999  
-1  
999/1000  
±0.2  
1000  
+1  
Digital  
Reading  
V
V
= V  
REF  
IN  
= 100mV  
REF  
R/O  
Rollover Error (Difference in Reading  
for Equal Positive and Negative  
Readings Near Full Scale)  
Counts  
V
- = + V + 200mV  
IN IN  
or 2V  
Linearity (Maximum Deviation from  
Best Straight Line Fit)  
-1  
±0.2  
50  
+1  
Counts Full Scale = 200mV or 2V  
CMRR  
Common Mode Rejection Ratio  
(Note 3)  
μV/V  
μV  
V
= ±1V, V = 0V  
CM IN  
Full Scale = 200mV  
V = 0V  
IN  
e
Noise (Peak to Peak 95% of Time)  
15  
N
Full Scale = 200mV  
I
Leakage Current at Input  
Zero Reading Drift  
1
10  
1
pA  
V
V
= 0V  
= 0V  
L
IN  
0.2  
μV/°C  
IN  
“C” Device = 0°C to +70°C  
1.0  
2
μV/°C “I” Device = -25°C to +85°C  
Note 1: Input voltages may exceed the supply voltages provided the input current is limited to ±100μA.  
2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.  
3: Refer to “Differential Input” discussion.  
4: Backplane drive is in phase with segment drive for “OFF” segment, 180° out of phase for “ON” segment. Frequency is  
20 times conversion rate. Average DC component is less than 50mV.  
5: The TC7116/TC7116A logic inputs have an internal pull-down resistor connected from HLDR, Pin 1 to TEST, Pin 37. The  
TC7117/TC7117A logic inputs have an internal pull-down resistor connected from HLDR, Pin 1 to GND, Pin 21.  
DS21457C-page 4  
© 2006 Microchip Technology Inc.  
TC7116/A/TC7117/A  
TABLE 1-1:  
TC7116/A AND TC7117/A ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise noted, specifications apply to both the TC7116/A and TC7117/A at T = 25°C,  
A
f
= 48kHz. Parts are tested in the circuit of the Typical Operating Circuit.  
CLOCK  
Symbol  
TC  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
Scale Factor Temperature Coefficient  
1
5
ppm/°C  
V
= 199mV,  
IN  
SF  
“C” Device = 0°C to +70°C  
(Ext. Ref = 0ppm°C)  
30  
70  
20  
ppm/°C “I” Device = -25°C to +85°C  
Input Resistance, Pin 1  
kΩ  
V
(Note 5)  
V
V
V
Pin 1  
Pin 1  
Pin 1  
Test + 1.5  
GND + 1.5  
TC7116/A Only  
TC7117/A Only  
Both  
IL,  
IL,  
IH,  
V
+
V - 1.5  
V
I
Supply Current (Does not Include LED  
Current for TC7117/A)  
0.8  
1.8  
mA  
V
= 0V  
IN  
DD  
V
Analog Common Voltage  
(with Respect to Positive Supply)  
2.4  
3.05  
3.35  
V
25kΩ Between Common  
and Positive Supply  
C
V
Temperature Coefficient of Analog  
Common (with Respect to Positive  
Supply)  
20  
80  
50  
“C” Device: 0°C to +70°C  
CTC  
ppm/°C TC7116A/TC7117A  
ppm/°C TC7116/TC7117  
V
V
TC7116/TC7117A ONLY Peak to Peak  
Segment Drive Voltage  
4
4
5
6
V
V+ to V- = 9V  
(Note 4)  
SD  
TC7116A/TC7116A ONLY Peak to  
Peak  
5
6
V
V+ to V- = 9V  
(Note 4)  
BD  
Backplane Drive Voltage  
TC7117/TC7117A ONLY  
Segment Sinking Current  
(Except Pin 19)  
5
8
mA  
mA  
V+ = 5.0V  
Segment Voltage = 3V  
TC7117/TC7117A ONLY  
10  
16  
V+ = 5.0V  
Segment Sinking Current (Pin 19 Only)  
Segment Voltage = 3V  
Note 1: Input voltages may exceed the supply voltages provided the input current is limited to ±100μA.  
2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.  
3: Refer to “Differential Input” discussion.  
4: Backplane drive is in phase with segment drive for “OFF” segment, 180° out of phase for “ON” segment. Frequency is  
20 times conversion rate. Average DC component is less than 50mV.  
5: The TC7116/TC7116A logic inputs have an internal pull-down resistor connected from HLDR, Pin 1 to TEST, Pin 37. The  
TC7117/TC7117A logic inputs have an internal pull-down resistor connected from HLDR, Pin 1 to GND, Pin 21.  
© 2006 Microchip Technology Inc.  
DS21457C-page 5  
TC7116/A/TC7117/A  
2.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
PIN FUNCTION TABLE  
Pin Number  
(40-Pin PDIP)  
(40-Pin CERDIP)  
Pin Number  
Symbol  
Description  
(44-Pin PQFP)  
1
2
8
HLDR  
Hold pin, Logic 1 holds present display reading.  
Activates the D section of the units display.  
Activates the C section of the units display.  
Activates the B section of the units display.  
Activates the A section of the units display.  
Activates the F section of the units display.  
Activates the G section of the units display.  
Activates the E section of the units display.  
Activates the D section of the tens display.  
Activates the C section of the tens display.  
Activates the B section of the tens display.  
Activates the A section of the tens display.  
Activates the F section of the tens display.  
Activates the E section of the tens display.  
Activates the D section of the hundreds display.  
Activates the B section of the hundreds display.  
Activates the F section of the hundreds display.  
Activates the E section of the hundreds display.  
Activates both halves of the 1 in the thousands display.  
Activates the negative polarity display.  
9
D
C
1
1
1
1
1
3
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
4
B
A
F
5
6
7
G
1
8
E
1
9
D
C
2
2
2
2
2
2
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
B
A
F
E
D
3
3
3
3
B
F
E
AB  
4
POL  
BP/  
GND  
LCD backplane drive output (TC7116/TC7116A). Digital ground  
(TC7117/TC7117A).  
22  
23  
24  
25  
26  
27  
29  
30  
31  
32  
34  
35  
G
Activates the G section of the hundreds display.  
Activates the A section of the hundreds display.  
Activates the C section of the hundreds display.  
Activates the G section of the tens display.  
Negative power supply voltage.  
3
3
3
A
C
G
2
V-  
V
Integrator output. Connection point for integration capacitor.  
See Section 4.3 “Integrating Capacitor”, Integrating Capacitor for more  
details.  
INT  
28  
29  
36  
37  
V
Integration resistor connection. Use a 47kΩ resistor for a 200mV full scale range  
and a 470kΩ resistor for 2V full scale range.  
BUFF  
C
The size of the auto-zero capacitor influences system noise. Use a 0.47μF  
capacitor for 200mV full scale, and a 0.047μF capacitor for 2V full scale.  
See Section 4.1 “Auto-Zero Capacitor”, Auto-Zero Capacitor for more details.  
AZ  
30  
31  
32  
38  
39  
40  
V
-
The analog LOW input is connected to this pin.  
IN  
V
+
The analog HIGH input signal is connected to this pin.  
IN  
COMMON This pin is primarily used to set the Analog Common mode voltage for battery  
operation, or in systems where the input signal is referenced to the power sup-  
ply. It also acts as a reference voltage source. See Section 3.1.6 “Analog Com-  
mon”, Analog Common for more details.  
33  
41  
C
-
See Pin 34.  
REF  
DS21457C-page 6  
© 2006 Microchip Technology Inc.  
TC7116/A/TC7117/A  
TABLE 2-1:  
PIN FUNCTION TABLE (CONTINUED)  
Pin Number  
(40-Pin PDIP)  
(40-Pin CERDIP)  
Pin Number  
Symbol  
Description  
(44-Pin PQFP)  
34  
42  
C
+
A 0.1μF capacitor is used in most applications. If a large Common mode voltage  
REF  
exists (for example, the V - pin is not at analog common), and a 200mV scale is  
IN  
used, a 1μF capacitor is recommended and will hold the rollover error to  
0.5 count.  
35  
36  
43  
44  
V+  
Positive Power Supply Voltage.  
V
+
The analog input required to generate a full scale output (1999 counts). Place  
100mV between Pins 32 and 36 for 199.9mV full scale. Place 1V between  
Pins 35 and 36 for 2V full scale. See Section 4.6 “Reference Voltage”, Refer-  
ence Voltage.  
REF  
37  
3
TEST  
Lamp test. When pulled HIGH (to V+), all segments will be turned on and the dis-  
play should read -1888. It may also be used as a negative supply for externally  
generated decimal points. See Section 3.1.7 “Test”, TEST for additional infor-  
mation.  
38  
39  
40  
4
6
7
OSC3  
OSC2  
OSC1  
See Pin 40.  
See Pin 40.  
Pins 40, 39, 38 make up the oscillator section. For a 48kHz clock (3 readings per  
section), connect Pin 40 to the junction of a 100kΩ resistor and a 100pF capaci-  
tor. The 100kΩ resistor is tied to Pin 39 and the 100pF capacitor is tied to Pin 38.  
© 2006 Microchip Technology Inc.  
DS21457C-page 7  
TC7116/A/TC7117/A  
Since the comparator is included in the loop, AZ  
accuracy is limited only by system noise. The offset  
referred to the input is less than 10μV.  
3.0  
DETAILED DESCRIPTION  
(All Pin Designations Refer to 40-Pin PDIP.)  
3.1.2  
SIGNAL INTEGRATE PHASE  
3.1  
Analog Section  
The auto-zero loop is opened, the internal short is  
removed, and the internal high and low inputs are  
connected to the external pins. The converter then inte-  
grates the differential voltages between VIN+ and VIN-  
for a fixed time. This differential voltage can be within a  
wide Common mode range: 1V of either supply. How-  
ever, if the input signal has no return with respect to the  
converter power supply, VIN- can be tied to analog  
common to establish the correct Common mode  
voltage. At the end of this phase, the polarity of the  
integrated signal is determined.  
Figure 3-1 shows the block diagram of the analog sec-  
tion for the TC7116/TC7116A and TC7117/TC7117A.  
Each measurement cycle is divided into three phases:  
(1) Auto-Zero (AZ), (2) Signal Integrate (INT), and  
(3) Reference Integrate (REF), or De-integrate (DE).  
3.1.1  
AUTO-ZERO PHASE  
High and low inputs are disconnected from the pins and  
internally shorted to analog common. The reference  
capacitor is charged to the reference voltage. A feed-  
back loop is closed around the system to charge the  
auto-zero capacitor (CAZ) to compensate for offset volt-  
ages in the buffer amplifier, integrator, and comparator.  
C
C
V
AZ  
INT  
R
C
INT  
V+  
35  
REF  
C
+
V
+
C
-
V
BUFF  
REF  
REF  
INT  
REF  
Auto-Zero  
29  
34  
36  
33  
28  
27  
V+  
+
Integrator  
AZ  
10μA  
Low  
Temp.  
Drift  
+
+
To  
Digital  
Section  
31  
V
IN  
+
DE  
(–)  
DE  
(+)  
INT  
AZ  
Zener  
V
AZ  
+
REF  
Comparator  
DE (+)  
32  
30  
DE (–)  
TC7116  
TC7116A  
TC7117  
Analog  
Common  
V+ -3V  
AZ & DE ( )  
V
IN  
-
TC7117A  
26  
INT  
V-  
FIGURE 3-1:  
Analog Section of TC7116/TC7116A and TC7117/TC7117A  
3.1.3  
REFERENCE INTEGRATE PHASE  
3.1.4  
REFERENCE  
The final phase is reference integrate, or de-integrate.  
Input low is internally connected to analog common  
and input high is connected across the previously  
charged reference capacitor. Circuitry within the chip  
ensures that the capacitor will be connected with the  
correct polarity to cause the integrator output to return  
to zero. The time required for the output to return to  
zero is proportional to the input signal. The digital  
reading displayed is:  
The positive reference voltage (VREF+) is referred to  
analog common.  
EQUATION 3-1:  
VIN  
1000 =  
VREF  
DS21457C-page 8  
© 2006 Microchip Technology Inc.  
TC7116/A/TC7117/A  
Analog common is also used as VIN- return during  
auto-zero and de-integrate. If VIN- is different from ana-  
log common, a Common mode voltage exists in the  
system and is taken care of by the excellent CMRR of  
the converter. However, in some applications, VIN- will  
be set at a fixed, known voltage (power supply common  
for instance). In this application, analog common  
should be tied to the same point, thus removing the  
Common mode voltage from the converter. The same  
holds true for the reference voltage; if it can be conve-  
niently referenced to analog common, it should be. This  
removes the Common mode voltage from the  
reference system.  
3.1.5  
DIFFERENTIAL INPUT  
This input can accept differential voltages anywhere  
within the Common mode range of the input amplifier  
or, specifically, from 1V below the positive supply to 1V  
above the negative supply. In this range, the system  
has a CMRR of 86dB, typical. However, since the inte-  
grator also swings with the Common mode voltage,  
care must be exercised to ensure that the integrator  
output does not saturate. A worst-case condition would  
be a large, positive Common mode voltage with a near  
full scale negative differential input voltage. The nega-  
tive input signal drives the integrator positive, when  
most of its swing has been used up by the positive  
Common mode voltage. For these critical applications,  
the integrator swing can be reduced to less than the  
recommended 2V full scale swing with little loss of  
accuracy. The integrator output can swing within 0.3V  
of either supply without loss of linearity.  
Within the IC, analog common is tied to an N-channel  
FET, that can sink 30mA or more of current to hold the  
voltage 3V below the positive supply (when a load is  
trying to pull the analog common line positive). How-  
ever, there is only 10μA of source current, so analog  
common may easily be tied to a more negative voltage,  
thus overriding the internal reference.  
3.1.6  
ANALOG COMMON  
This pin is included primarily to set the Common mode  
voltage for battery operation (TC7116/TC7116A), or for  
any system where the input signals are floating, with  
respect to the power supply. The analog common pin  
sets a voltage approximately 2.8V more negative than  
the positive supply. This is selected to give a minimum  
end of life battery voltage of about 6V. However, analog  
common has some attributes of a reference voltage.  
When the total supply voltage is large enough to cause  
the Zener to regulate (>7V), the analog common volt-  
age will have a low voltage coefficient (0.001%), low  
output impedance (15Ω), and a temperature coeffi-  
cient of less than 20ppm/°C, typically, and 50 ppm max-  
imum. The TC7116/TC7117 temperature coefficients  
are typically 80ppm/°C.  
3.1.7  
TEST  
The TEST pin serves two functions. On the TC7117/  
TC7117A, it is coupled to the internally generated digi-  
tal supply through a 500Ω resistor. Thus, it can be used  
as a negative supply for externally generated segment  
drivers, such as decimal points, or any other presenta-  
tion the user may want to include on the LCD.  
(Figure 3-3 and Figure 3-4 show such an application.)  
No more than a 1mA load should be applied.  
The second function is a “lamp test.” When TEST is  
pulled HIGH (to V+), all segments will be turned ON  
and the display should read -1888. The TEST pin will  
sink about 10mA under these conditions.  
An external reference may be used, if necessary, as  
shown in Figure 3-2.  
V+  
V+  
TC7116  
TC7116A  
4049  
V+  
BP  
To LCD  
Decimal  
Point  
V+  
21  
37  
6.8kΩ  
TC7116  
TC7116A  
TC7117  
GND  
TEST  
To LCD  
Backplane  
TC7117A  
20kΩ  
FIGURE 3-3:  
Simple Inverter for Fixed  
V
+
REF  
Decimal Point  
1.2V REF  
COMMON  
FIGURE 3-2:  
Reference  
Using an External  
© 2006 Microchip Technology Inc.  
DS21457C-page 9  
TC7116/A/TC7117/A  
large P-channel source follower. This supply is made  
stiff to absorb the relative large capacitive currents  
when the backplane (BP) voltage is switched. The BP  
frequency is the clock frequency 4800. For 3 readings  
per second, this is a 60Hz square wave with a nominal  
amplitude of 5V. The segments are driven at the same  
frequency and amplitude, and are in phase with BP  
when OFF, but out of phase when ON. In all cases,  
negligible DC voltage exists across the segments.  
V+  
V+  
BP  
TC7116  
TC7116A  
To LCD  
Decimal  
Point  
Decimal  
Point  
Select  
Figure is the digital section of the TC7117/TC7117A. It  
is identical to the TC7116/TC7116A, except that the  
regulated supply and BP drive have been eliminated,  
and the segment drive is typically 8mA. The 1000’s out-  
put (Pin 19) sinks current from two LED segments, and  
has a 16mA drive capability. The TC7117/TC7117A are  
designed to drive common anode LED displays.  
4030  
GND  
TEST  
FIGURE 3-4:  
Decimal Point Drive  
Exclusive “OR” Gate for  
In both devices, the polarity indication is ON for analog  
inputs. If VIN- and VIN+ are reversed, this indication can  
be reversed also, if desired.  
3.2  
Digital Section  
Figure 3-5 and Figure show the digital section for  
TC7116/TC7116A and TC7117/TC7117A, respectively.  
For the TC7116/TC7116A (Figure 3-5), an internal dig-  
ital ground is generated from a 6V Zener diode and a  
TC7116  
TC7116A  
Backplane  
21  
LCD Phase Driver  
Typical Segment Output  
V+  
7-Segment  
Decode  
7-Segment  
Decode  
7-Segment  
Decode  
÷
200  
0.5mA  
Segment  
Output  
Latch  
Tens  
2mA  
Internal Digital Ground  
Thousands  
Units  
Hundreds  
To Switch Drivers  
From Comparator Output  
35  
37  
V+  
~70kΩ  
= 1V  
Clock  
6.2V  
÷
4
Logic Control  
TEST  
V-  
V
500Ω  
TH  
26  
Internal Digital Ground  
40  
39  
38  
1
OSC1  
OSC2  
OSC3  
HLDR  
FIGURE 3-5:  
TC7116/TC7116A Digital Section  
DS21457C-page 10  
© 2006 Microchip Technology Inc.  
TC7116/A/TC7117/A  
To achieve maximum rejection of 60Hz pickup, the sig-  
nal integrate cycle should be a multiple of 60Hz. Oscil-  
lator frequencies of 240kHz, 120kHz, 80kHz, 60kHz,  
48kHz, 40kHz, etc. should be selected. For 50Hz rejec-  
tion, oscillator frequencies of 200kHz, 100kHz,  
66-2/3kHz, 50kHz, 40kHz, etc. would be suitable. Note  
that 40kHz (2.5 readings per second) will reject both  
50Hz and 60Hz.  
3.2.1  
SYSTEM TIMING  
The clocking method used for the TC7116/TC7116A  
and TC7117/TC7117A is shown in Figure . Three  
clocking methods may be used:  
1. An external oscillator connected to Pin 40.  
2. A crystal between Pins 39 and 40.  
3. An RC network using all three pins.  
The oscillator frequency is ÷4 before it clocks the  
decade counters. It is then further divided to form the  
three convert cycle phases: Signal Integrate (1000  
counts), Reference De-integrate (0 to 2000 counts),  
and Auto-Zero (1000 to 3000 counts). For signals less  
than full scale, auto-zero gets the unused portion of ref-  
erence de-integrate. This makes a complete measure  
cycle of 4000 (16,000 clock pulses), independent of  
input voltage. For 3 readings per second, an oscillator  
frequency of 48kHz would be used.  
3.2.2  
HOLD READING INPUT  
When HLDR is at a logic HIGH, the latch will not be  
updated. Analog-to-Digital conversions will continue,  
but will not be updated until HLDR is returned to LOW.  
To continuously update the display, connect to TEST  
(TC7116/TC7116A) or GROUND (TC7117/TC7117A),  
or disconnect. This input is CMOS compatible with  
70kΩ typical resistance to TEST (TC7116/TC7116A) or  
GROUND (TC7117/TC7117A).  
TC7117  
TC7117A  
Typical Segment Output  
V+  
7-Segment 7-Segment  
Decode  
7-Segment  
Decode  
0.5mA  
Decode  
To  
Segment  
8mA  
Latch  
Digital Ground  
Internal Digital Ground  
Thousands  
Units  
Hundreds  
Tens  
To Switch Drivers  
From Comparator Output  
V+  
35  
37  
V+  
TEST  
Clock  
÷
4
Control Logic  
500Ω  
21  
Digital  
GND  
40  
39  
OSC2  
38  
1
~70kΩ  
OSC1  
OSC3  
HLDR  
FIGURE 3-6:  
TC7117/TC7117A Digital Section  
© 2006 Microchip Technology Inc.  
DS21457C-page 11  
TC7116/A/TC7117/A  
4.5  
Oscillator Components  
4.0  
COMPONENT VALUE  
SELECTION  
For all frequency ranges, a 100kΩ resistor is recom-  
mended; the capacitor is selected from the equation:  
4.1  
Auto-Zero Capacitor  
EQUATION 4-1:  
The size of the auto-zero capacitor has some influence  
on system noise. For 200mV full scale, where noise is  
very important, a 0.47μF capacitor is recommended.  
On the 2V scale, a 0.047μF capacitor increases the  
speed of recovery from overload and is adequate for  
noise on this scale.  
0.45  
RC  
f = -------  
For a 48kHz clock (3 readings per second), C = 100pF.  
4.6  
Reference Voltage  
4.2  
Reference Capacitor  
To generate full scale output (2000 counts), the analog  
input requirement is VIN = 2VREF. Thus, for the 200mV  
and 2V scale, VREF should equal 100mV and 1V,  
respectively. In many applications, where the ADC is  
connected to a transducer, a scale factor exists  
between the input voltage and the digital reading. For  
instance, in a measuring system, the designer might like  
to have a full scale reading when the voltage from the  
transducer is 700mV. Instead of dividing the input down  
to 200mV, the designer should use the input voltage  
directly and select VREF = 350mV. Suitable values for  
integrating resistor and capacitor would be 120kW and  
0.22μF. This makes the system slightly quieter and also  
avoids a divider network on the input. The TC7117/  
TC7117A, with ±5V supplies, can accept input signals  
up to ±4V. Another advantage of this system is when a  
digital reading of zero is desired for VIN 0. Tempera-  
ture and weighing systems with a variable tare are  
examples. This offset reading can be conveniently gen-  
erated by connecting the voltage transducer between  
VIN+ and analog common, and the variable (or fixed)  
offset voltage between analog common and VIN-.  
A 0.1μF capacitor is acceptable in most applications.  
However, where a large Common mode voltage exists  
(i.e., the VIN- pin is not at analog common), and a  
200mV scale is used, a larger value is required to pre-  
vent rollover error. Generally, 1μF will hold the rollover  
error to 0.5 count in this instance.  
4.3  
Integrating Capacitor  
The integrating capacitor should be selected to give the  
maximum voltage swing that ensures tolerance buildup  
will not saturate the integrator swing (approximately  
0.3V from either supply). In the TC7116/TC7116A or  
the TC7117/TC7117A, when the analog common is  
used as a reference, a nominal ±2V full scale integrator  
swing is acceptable. For the TC7117/TC7117A, with  
±5V supplies and analog common tied to supply  
ground, a ±3.5V to ±4V swing is nominal. For 3 read-  
ings per second (48kHz clock), nominal values for CINT  
are 0.22μ1F and 0.10μF, respectively. If different oscil-  
lator frequencies are used, these values should be  
changed in inverse proportion to maintain the output  
swing. The integrating capacitor must have low dielec-  
tric absorption to prevent rollover errors. Polypropylene  
capacitors are recommended for this application.  
4.4  
Integrating Resistor  
Both the buffer amplifier and the integrator have a class  
A output stage with 100μA of quiescent current. They  
can supply 20μA of drive current with negligible non-  
linearity. The integrating resistor should be large  
enough to remain in this very linear region over the  
input voltage range, but small enough that undue leak-  
age requirements are not placed on the PC board. For  
2V full scale, 470kΩ is near optimum and, similarly,  
47kΩ for 200mV full scale.  
DS21457C-page 12  
© 2006 Microchip Technology Inc.  
TC7116/A/TC7117/A  
5.0  
TC7117/TC7117A POWER  
SUPPLIES  
The TC7117/TC7117A are designed to operate from  
±5V supplies. However, if a negative supply is not avail-  
able, it can be generated with a TC7660 DC-to-DC con-  
verter and two capacitors. Figure 5-1 shows this  
application.  
In selected applications, a negative supply is not  
required. The conditions for using a single +5V supply  
are:  
1. The input signal can be referenced to the center  
of the Common mode range of the converter.  
2. The signal is less than ±1.5V.  
3. An external reference is used.  
+5V  
35  
V+  
36  
V
+
REF  
LED  
Drive  
32  
31  
COM  
TC7117  
TC7117A  
+
V
+
-
IN  
V
IN  
30  
21  
V
IN  
8
2
4
GND  
+
V-  
TC7660  
10μF  
26  
5
(-5V)  
3
+
10μF  
FIGURE 5-1:  
Negative Power Supply  
Generation with TC7660  
© 2006 Microchip Technology Inc.  
DS21457C-page 13  
TC7116/A/TC7117/A  
Reduced power dissipation is very easy to obtain.  
Figure 6-2 shows two ways: either a 5.1Ω, 1/4W resis-  
tor, or a 1A diode placed in series with the display (but  
not in series with the TC7117/TC7117A). The resistor  
reduces the TC7117/TC7117A’s output voltage (when  
all 24 segments are ON) to Point C of Figure 6-1. When  
segments turn off, the output voltage will increase. The  
diode, however, will result in a relatively steady output  
voltage, around Point B.  
6.0  
TYPICAL APPLICATIONS  
The TC7117/TC7117A sink the LED display current,  
causing heat to build up in the IC package. If the inter-  
nal voltage reference is used, the changing chip tem-  
perature can cause the display to change reading. By  
reducing the LED common anode voltage, the TC7117/  
TC7117A package power dissipation is reduced.  
Figure 6-1 is a curve tracer display showing the rela-  
tionship between output current and output voltage for  
typical TC7117CPL/TC7117ACPL devices. Since a  
typical LED has 1.8V across it at 8mA and its common  
anode is connected to +5V, the TC7117/TC7117A out-  
put is at 3.2V (Point A, Figure 6-1). Maximum power  
dissipation is 8.1mA x 3.2V x 24 segments = 622mW.  
In addition to limiting maximum power dissipation, the  
resistor reduces change in power dissipation as the  
display changes. The effect is caused by the fact that,  
as fewer segments are ON, each ON output drops  
more voltage and current. For the best-case of six  
segments (a “111” display) to worst-case (a “1888”  
display), the resistor circuit will change about 230mW,  
while a circuit without the resistor will change about  
470mW. Therefore, the resistor will reduce the effect of  
display dissipation on reference voltage drift by about  
50%.  
However, notice that once the TC7117/TC7117A’s out-  
put voltage is above 2V, the LED current is essentially  
constant as output voltage increases. Reducing the  
output voltage by 0.7V (Point B Figure 6-1) results in  
7.7mA of LED current, only a 5% reduction. Maximum  
power dissipation is now only 7.7mA x 2.5V x 24 =  
462mW, a reduction of 26%. An output voltage reduc-  
tion of 1V (Point C) reduces LED current by 10%  
(7.3mA), but power dissipation by 38% (7.3mA x 2.2V  
x 24 = 385mW).  
The change in LED brightness caused by the resistor is  
almost unnoticeable as more segments turn off. If  
display brightness remaining steady is very important  
to the designer, a diode may be used instead of the  
resistor.  
In  
-5V  
+5V  
+
10.000  
1MΩ  
TP3  
24kΩ  
1kΩ  
150kΩ  
9.000  
A
B
0.47  
μF  
8.000  
C
0.22  
μF  
100  
pF  
0.01  
μF  
TP5  
7.000  
TP2  
TP1  
0.1  
μF  
Display  
100  
kΩ  
47  
kΩ  
6.000  
2.00  
2.50  
3.00  
3.50  
4.00  
40  
1
35  
30  
TP  
4
21  
TC7117  
TC7117A  
Output Vo ltage (V)  
10  
20  
Display  
FIGURE 6-1:  
vs. Output Voltage  
TC7117/TC7117A Output  
1.5W, 1/4Ω  
1N4001  
FIGURE 6-2:  
Diode or Resistor Limits  
Package Power Dissipation  
DS21457C-page 14  
© 2006 Microchip Technology Inc.  
TC7116/A/TC7117/A  
Set V  
REF  
= 100mV  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
100kΩ  
100pF  
22kΩ  
1MΩ  
0.1pF  
1kΩ  
+
In  
0.01μF  
TC7116  
TC7116A  
+
0.47μF  
47kΩ  
9V  
0.22μF  
To Display  
To Backplane  
FIGURE 6-3:  
TC7116/TC7117A Using the Internal Reference (200 mV Full Scale, 3 Readings Per  
Second – RPS)  
Set V  
REF  
= 100mV  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
100kΩ  
100pF  
22kΩ  
1MΩ  
+5V  
1kΩ  
0.1pF  
+
In  
0.01μF  
TC7117  
TC7117A  
0.47μF  
47kΩ  
0.22μF  
-5V  
To Display  
FIGURE 6-4:  
TC7117/TC7117A Internal Reference (200 mV Full Scale, 3 RPS, VIN- Tied to GND for  
Single Ended Inputs  
© 2006 Microchip Technology Inc.  
DS21457C-page 15  
TC7116/A/TC7117/A  
V+  
40  
35  
To Logic V  
CC  
To Logic  
GND  
TC7116  
TC7116A  
26  
V-  
O/R  
U/R  
20  
21  
CD4023  
or 74C10  
CD4077 O/R = Over Range  
U/R = Under Range  
FIGURE 6-5:  
Circuit for Developing Under Range and Over Range Signals From TC7116/TC7117A  
Outputs  
40  
100kΩ  
Set V  
REF  
= 100mV  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
100pF  
10kΩ  
10kΩ  
V+  
1kΩ  
0.1pF  
+
1.2V  
In  
0.01μF  
47kΩ  
1MΩ  
TC7117  
TC7117A  
0.47μF  
0.22μF  
To Display  
FIGURE 6-6:  
TC7117/TC7117A With A 1.2 External Bandgap Reference (VIN- Tied to Common)  
DS21457C-page 16  
© 2006 Microchip Technology Inc.  
TC7116/A/TC7117/A  
Set V  
= 1V  
REF  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
100kΩ  
100pF  
24kΩ  
1MΩ  
V+  
0.1μF  
25kΩ  
+
TC7116  
TC7116A  
TC7117  
In  
0.01μF  
470kΩ  
0.047μF  
TC7117A  
0.22μF  
V-  
To Display  
FIGURE 6-7:  
Recommended Component Values for 2V Full Scale (TC7116/TC7116A and TC7117/  
TC7117A)  
40  
100kΩ  
Set V  
REF  
= 100mV  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
100pF  
10kΩ  
10kΩ  
V+  
1kΩ  
0.1pF  
+
1.2V  
In  
0.01μF  
47kΩ  
1MΩ  
TC7117  
TC7117A  
0.47μF  
0.22μF  
To Display  
FIGURE 6-8:  
TC7117/TC7117A Operated From Single +5V Supply (An External Reference Must be  
Used in This Application)  
© 2006 Microchip Technology Inc.  
DS21457C-page 17  
TC7116/A/TC7117/A  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
Package marking data not available at this time.  
7.2  
Taping Form  
Component Taping Orientation for 44-Pin PLCC Devices  
User Direction of Feed  
Pin 1  
W
P
Standard Reel Component Orientation  
for 713 Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
44-Pin PLCC  
32 mm  
24 mm  
500  
13 in  
Note: Drawing does not represent total number of pins.  
Component Taping Orientation for 44-Pin PQFP Devices  
User Direction of Feed  
Pin 1  
W
P
Standard Reel Component Orientation  
for 713 Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
44-Pin PQFP  
24 mm  
16 mm  
500  
13 in  
Note: Drawing does not represent total number of pins.  
DS21457C-page 18  
© 2006 Microchip Technology Inc.  
TC7116/A/TC7117/A  
7.3  
Package Dimensions  
40-Pin PDIP (Wide)  
Pin 1  
.555 (14.10)  
.530 (13.46)  
2.065 (52.45)  
2.027 (51.49)  
.610 (15.49)  
.590 (14.99)  
.200 (5.08)  
.140 (3.56)  
.040 (1.02)  
.020 (0.51)  
.015 (0.38)  
.008 (0.20)  
.150 (3.81)  
.115 (2.92)  
3° Min.  
.700 (17.78)  
.610 (15.50)  
.110 (2.79)  
.090 (2.29)  
.070 (1.78)  
.045 (1.14)  
.022 (0.56)  
.015 (0.38)  
Dimensions: inches (mm)  
40-Pin CERDIP (Wide)  
Pin 1  
.540 (13.72)  
.510 (12.95)  
.098 (2.49) Max.  
.030 (0.76) Min.  
2.070 (52.58)  
2.030 (51.56)  
.620 (15.75)  
.590 (15.00)  
.060 (1.52)  
.020 (0.51)  
.210 (5.33)  
.170 (4.32)  
.015 (0.38)  
.008 (0.20)  
3° Min.  
.150 (3.81)  
Min.  
.200 (5.08)  
.125 (3.18)  
.700 (17.78)  
.620 (15.75)  
.020 (0.51)  
.016 (0.41)  
.110 (2.79)  
.090 (2.29)  
.065 (1.65)  
.045 (1.14)  
Dimensions: inches (mm)  
© 2006 Microchip Technology Inc.  
DS21457C-page 19  
TC7116/A/TC7117/A  
7.3  
Package Dimensions (Continued)  
W
P
Standard Reel Component Orientation  
for 713 Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
44-Pin PLCC  
32 mm  
24 mm  
500  
13 in  
Note: Drawing does not represent total number of pins.  
Dimensions: inches (mm)  
44-Pin PQFP  
7° Max.  
.009 (0.23)  
.005 (0.13)  
Pin 1  
.041 (1.03)  
.026 (0.65)  
.018 (0.45)  
.012 (0.30)  
.398 (10.10)  
.390 (9.90)  
.557 (14.15)  
.537 (13.65)  
.031 (0.80) Typ.  
.010 (0.25) Typ.  
.398 (10.10)  
.390 (9.90)  
.083 (2.10)  
.075 (1.90)  
.557 (14.15)  
.537 (13.65)  
.096 (2.45) Max.  
Dimensions: inches (mm)  
DS21457C-page 20  
© 2006 Microchip Technology Inc.  
TC7116/A/TC7117/A  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART CODE  
6 = LCD  
7 = LED  
TC711X X X XXX  
}
A or blank*  
R (reversed pins) or blank (CPL pkg only)  
* "A" parts have an improved reference TC  
Package Code (see Device Selection Table)  
© 2006 Microchip Technology Inc.  
DS21457C-page 21  
TC7116/A/TC7117/A  
NOTES:  
DS21457C-page 22  
© 2006 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi,  
MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM,  
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select  
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,  
WiperLock and ZENA are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
© 2006 Microchip Technology Inc.  
DS21457C-page 23  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenzhen  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
02/16/06  
DS21457C-page 24  
© 2006 Microchip Technology Inc.  

相关型号:

TC7116CKW

3-1/2 Digit Analog-to-Digital Converters with Hold
MICROCHIP

TC7116CKW

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS WITH HOLD
TELCOM

TC7116CKW713

1-CH DUAL-SLOPE ADC, PARALLEL ACCESS, PQFP44, PLASTIC, QFP-44
MICROCHIP

TC7116CKW723

1-CH 13-BIT DUAL-SLOPE ADC, PQFP44, PLASTIC, QFP-44
MICROCHIP

TC7116CKWRT

1-CH DUAL-SLOPE ADC, ACCESS, PQFP44, PLASTIC, QFP-44
MICROCHIP

TC7116CLW

3-1/2 Digit Analog-to-Digital Converters with Hold
MICROCHIP

TC7116CLW

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS WITH HOLD
TELCOM

TC7116CLWRT

暂无描述
MICROCHIP

TC7116CLWTR

1-CH DUAL-SLOPE ADC, PQCC44, PLASTIC, LCC-44
MICROCHIP

TC7116CPL

3-1/2 Digit Analog-to-Digital Converters with Hold
MICROCHIP

TC7116CPL

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS WITH HOLD
TELCOM

TC7116IJL

3-1/2 Digit Analog-to-Digital Converters with Hold
MICROCHIP