TC7126ARCLW [MICROCHIP]

1-CH DUAL-SLOPE ADC, PQCC44, REVERSE, PLASTIC, LCC-44;
TC7126ARCLW
型号: TC7126ARCLW
厂家: MICROCHIP    MICROCHIP
描述:

1-CH DUAL-SLOPE ADC, PQCC44, REVERSE, PLASTIC, LCC-44

转换器
文件: 总22页 (文件大小:553K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC7126/A  
3-1/2 Digit Analog-to-Digital Converters  
Features  
General Description  
• Internal Reference with Low Temperature Drift  
- TC7126: 80ppm/°C Typical  
The TC7126A is a 3-1/2 digit CMOS analog-to-digital  
converter (ADC) containing all the active components  
necessary to construct a 0.05% resolution measure-  
ment system. Seven-segment decoders, digit and  
polarity drivers, voltage reference, and clock circuit are  
integrated on-chip. The TC7126A directly drives a liq-  
uid crystal display (LCD), and includes a backplane  
driver.  
- TC7126A: 35ppm/°C Typical  
• Zero Reading with Zero Input  
• Low Noise: 15µV  
P-P  
• High Resolution: 0.05%  
• Low Input Leakage Current: 1pA Typ., 10pA Max.  
• Precision Null Detectors with True Polarity at Zero  
• High-Impedance Differential Input  
A low cost, high resolution indicating meter requires  
only a display, four resistors, and four capacitors. The  
TC7126A's extremely low power drain and 9V battery  
operation make it ideal for portable applications.  
• Convenient 9V Battery Operation with Low Power  
Dissipation: 500µW Typ., 900µW Max.  
The TC7126A reduces linearity error to less than 1  
count. Rollover error (the difference in readings for  
equal magnitude, but opposite polarity input signals) is  
below ±1 count. High-impedance differential inputs  
Applications  
• Thermometry  
• Bridge Readouts: Strain Gauges, Load Cells,  
Null Detectors  
12  
offer 1pA leakage current and a 10 input imped-  
ance. The 15µV  
noise performance ensures a "rock  
P-P  
• Digital Meters and Panel Meters:  
- Voltage/Current/Ohms/Power, pH  
• Digital Scales, Process Monitors  
solid" reading, and the auto-zero cycle ensures a zero  
display reading with a 0V input.  
The TC7126A features a precision, low drift internal  
voltage reference and is functionally identical to the  
TC7126. A low drift external reference is not normally  
required with the TC7126A.  
Device Selection Table  
Package  
Code  
Temperature  
Range  
Package  
CPL  
IPL  
40-Pin PDIP  
0°C to +70°C  
40-Pin PDIP (TC7126 Only) -25°C to +85°C  
CKW  
CLW  
44-Pin PQFP  
44-Pin PLCC  
0°C to +70°C  
0°C to +70°C  
2002 Microchip Technology Inc.  
DS21458B-page 1  
TC7126/A  
Package Type  
44-Pin PLCC  
44-Pin PQFP  
6
5
4
3
2
1
44 43 42 41 40  
44 43 42 41 40 39 38 37 36 35 34  
NC  
NC  
33 NC  
1
2
3
4
V
-
F
G
E
7
8
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
REF  
1
32 G  
2
C
+
1
REF  
C
31  
30  
29  
TEST  
OSC3  
3
C
-
9
1
REF  
A
ANALOG  
COMMON  
3
D
10  
2
G
NC  
OSC2  
OSC1  
5
6
3
V
+
TC7126CKW  
TC7126ACKW  
C
11  
12  
13  
14  
15  
16  
17  
IN  
TC7126CLW  
TC7126ACLW  
2
28 BP  
NC  
NC  
27 POL  
7
B
2
V
-
IN  
AB  
26  
V+  
8
4
A
2
C
AZ  
D
1
25 E  
24 F  
9
3
F
2
V
BUFF  
INT  
C
1
10  
11  
3
E
2
V
B
1
B
3
23  
D
3
V-  
25 26 27 28  
18 19 20 21 22 23 24  
19 20 21 22  
12 13 14 15 16 17 18  
40-Pin PDIP (Normal)  
44-Pin PDIP (Reverse)  
OSC1  
OSC2  
OSC3  
TEST  
1
2
40 OSC1  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
V+  
V+  
Normal Pin  
Reverse Pin  
Configuration  
D
1
D
1
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
OSC2  
Configuration  
C
1
C
1
3
3
OSC3  
TEST  
B
1
4
4
B
1
V
+
A
1
A
1
5
5
1's  
V
V
+
REF  
1's  
REF  
REF  
V
-
REF  
F
1
F
1
6
6
-
C
+
-
G
1
G
1
7
C
C
+
7
REF  
REF  
TC7126CPL  
TC7126ACPL  
TC7126IPL  
TC7126RCPL  
TC7126ARCPL  
TC7126RIPL  
C
E
1
E
1
-
8
8
REF  
REF  
ANALOG  
COMMON  
ANALOG  
COMMON  
9
9
D
C
B
D
C
B
2
2
2
TC7126AIPL  
TC7126ARIPL  
V
+
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
V
+
IN  
2
IN  
V
-
V
-
IN  
2
2
2
2
IN  
10's  
10's  
C
A
C
V
A
AZ  
AZ  
V
F
F
BUFF  
2
2
BUFF  
INT  
V
E
E
V
INT  
2
2
D
V-  
G
V-  
D
3
3
B
B
G
2
3
3
2
100's  
100's  
C
3
F
E
F
E
C
A
3
3
3
100's  
100's  
A
3
3
3
4
3
G
3
AB  
AB  
1000's  
G
1000's  
4
3
BP  
(Backplane)  
POL  
(Minus Sign)  
POL  
(Minus Sign)  
BP  
(Backplane)  
NC = No Internal Connection  
DS21458B-page 2  
2002 Microchip Technology Inc.  
TC7126/A  
Typical Application  
0.1µF  
33  
TC7126  
TC7126A  
34  
LCD  
C
REF  
+
C
REF  
-
1MΩ  
31  
Segment  
Drive  
2–19  
+
V
+
IN  
22–25  
Analog  
Input  
0.01µF  
20  
30  
32  
POL  
BP  
V
-
IN  
Minus Sign  
21  
Backplane  
ANALOG  
COMMON  
1
V+  
28  
V
BUFF  
240kΩ  
+
9V  
0.33  
180kΩ  
0.15µF  
36  
µF  
V
+
REF  
29  
10kΩ  
C
AZ  
35  
26  
V
-
REF  
27  
V
INT  
V-  
1 Conversion/Sec  
OSC2 OSC3 OSC1  
C
OSC  
39  
38  
40  
To Analog Common (Pin 32)  
50pF  
R
OSC  
560kΩ  
Note: Pin numbers refer to 40-pin DIP.  
2002 Microchip Technology Inc.  
DS21458B-page 3  
TC7126/A  
Functional Block Diagram  
DS21458B-page 4  
2002 Microchip Technology Inc.  
TC7126/A  
*Stresses above those listed under "Absolute Maximum  
Ratings" may cause permanent damage to the device. These  
are stress ratings only and functional operation of the device  
at these or any other conditions above those indicated in the  
operation sections of the specifications is not implied.  
Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings*  
Supply Voltage (V+ to V-)....................................... 15V  
Analog Input Voltage (either Input) (Note 1) ... V+ to V-  
Reference Input Voltage (either Input) ............ V+ to V-  
Clock Input ................................................... Test to V+  
Package Power Dissipation (T 70°C) (Note 2):  
A
44-Pin PQFP...............................................1.00W  
40-Pin PLCC...............................................1.23W  
44-Pin PDIP ................................................1.23W  
Operating Temperature Range:  
C (Commercial) Devices.................. 0°C to +70°C  
I (Industrial) Devices .................... -25°C to +85°C  
Storage Temperature Range.............. -65°C to +150°C  
TC7126/A ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: VS = +9V, fCLK – 16kHz, and TA = +25°C, unless otherwise noted.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
Input  
ZIR  
Zero Input Reading  
-000.0  
±000.0  
+000.0  
Digital  
VIN = 0V  
Reading  
Full Scale = 200mV  
ZRD  
NL  
Zero Reading Drift  
0.2  
1
µV/°C  
VIN = 0V, 0°C TA +70°C  
VIN = VREF, VREF = 100mV  
Ratiometric Reading  
999  
999/1000  
1000  
Digital  
Reading  
Linearity Error  
-1  
±0.2  
1
Count  
Full Scale = 200mV or 2V  
Max Deviation From Best Fit  
Straight Line  
Rollover Error  
-1  
±0.2  
15  
1
1
Count  
µVP-P  
pA  
VIN- = VIN+ 200mV  
VIN = 0V, Full Scale = 200mV  
VIN = 0V  
eN  
Noise  
10  
IL  
Input Leakage Current  
Common Mode Rejection Ratio  
CMRR  
50  
µV/V  
VCM = ±1V, VIN = 0V  
Full Scale = 200mV  
Scale Factor Temperature  
Coefficient  
1
5
ppm/°C  
VIN = 199mV, 0°C TA +70°C  
Ext. Ref. Temp Coeff. = 0ppm/°C  
Analog Common  
VCTC Analog Common Temperature  
80  
35  
35  
250kBetween Common and V+  
0°C TA +70°C ("C" Devices)  
TC7126  
Coefficient  
ppm/°C  
ppm/°C  
ppm/°C  
75  
100  
TC7126A  
-25°C TA +85°C ("I" Device)  
(TC7126A)  
VC  
Analog Common Voltage  
2.7  
3.05  
3.35  
V
250kBetween Common and V+  
Note 1: Input voltages may exceed the supply voltages, provided the input current is limited to ±100µA.  
2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.  
3: Refer to “Differential Input” discussion.  
4: Backplane drive is in phase with segment drive for “OFF” segment, 180° out of phase for “ON” segment. Frequency is  
20 times conversion rate. Average DC component is less than 50mV.  
5: See “Typical Application”.  
6: During Auto-Zero phase, current is 10-20µA higher. A 48kHz ocillator increases current by 8µA (Typical). Common  
current is not included.  
2002 Microchip Technology Inc.  
DS21458B-page 5  
TC7126/A  
TC7126/A ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: VS = +9V, fCLK – 16kHz, and TA = +25°C, unless otherwise noted.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
LCD Drive  
VSD  
VBD  
LCD Segment Drive Voltage  
LCD Backplane Drive Voltage  
4
4
5
5
6
6
VP-P  
VP-P  
V+ to V- = 9V  
V+ to V- = 9V  
Power Supply  
IS Power Supply Current  
55  
100  
µA  
VIN = 0V, V+ to V- = 9V (Note 6)  
Note 1: Input voltages may exceed the supply voltages, provided the input current is limited to ±100µA.  
2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.  
3: Refer to “Differential Input” discussion.  
4: Backplane drive is in phase with segment drive for “OFF” segment, 180° out of phase for “ON” segment. Frequency is  
20 times conversion rate. Average DC component is less than 50mV.  
5: See “Typical Application”.  
6: During Auto-Zero phase, current is 10-20µA higher. A 48kHz ocillator increases current by 8µA (Typical). Common  
current is not included.  
DS21458B-page 6  
2002 Microchip Technology Inc.  
TC7126/A  
2.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
PIN FUNCTION TABLE  
Pin Number  
(40-Pin PDIP)  
Normal  
(Reversed)  
Symbol  
Description  
1
(40)  
(39)  
(38)  
(37)  
(36)  
(35)  
(34)  
(33)  
(32)  
(31)  
(30)  
(29)  
(28)  
(27)  
(26)  
(25)  
(24)  
(23)  
(22)  
(21)  
(20)  
(19)  
(18)  
(17)  
(16)  
(15)  
(14)  
V+  
D1  
C1  
B1  
Positive supply voltage.  
2
Activates the D section of the units display.  
Activates the C section of the units display.  
Activates the B section of the units display.  
Activates the A section of the units display.  
Activates the F section of the units display.  
Activates the G section of the units display.  
Activates the E section of the units display.  
Activates the D section of the tens display.  
Activates the C section of the tens display.  
Activates the B section of the tens display.  
Activates the A section of the tens display.  
Activates the F section of the tens display.  
Activates the E section of the tens display.  
Activates the D section of the hundreds display.  
Activates the B section of the hundreds display.  
Activates the F section of the hundreds display.  
Activates the E section of the hundreds display.  
Activates both halves of the 1 in the thousands display.  
Activates the negative polarity display.  
3
4
5
A1  
6
F1  
7
G1  
E1  
8
9
D2  
C2  
B2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
A2  
F2  
E2  
D3  
B3  
F3  
E3  
AB4  
POL  
BP  
G3  
A3  
LCD Backplane drive output (TC7106A). Digital Ground (TC7107A).  
Activates the G section of the hundreds display.  
Activates the A section of the hundreds display.  
Activates the C section of the hundreds display.  
Activates the G section of the tens display.  
C3  
G2  
V-  
Negative power supply voltage.  
VINT  
The integrating capacitor should be selected to give the maximum voltage swing that  
ensures component tolerance buildup will not allow the integrator output to saturate.  
When analog common is used as a reference and the conversion rate is 3 readings  
per second, a 0.047µF capacitor may be used. The capacitor must have a low  
dielectric constant to prevent rollover errors. See Section 6.3, Integrating Capacitor  
for additional details.  
28  
29  
(13)  
(12)  
VBUFF  
CAZ  
Integration resistor connection. Use a 180kresistor for a 200mV full-scale range  
and a 1.8Mresistor for a 2V full scale range.  
The size of the auto-zero capacitor influences system noise. Use a 0.33µF capacitor  
for 200mV full scale, and a 0.033µF capacitor for 2V full scale. See Section 6.1,  
Auto-Zero Capacitor for additional details.  
30  
31  
32  
(11)  
(10)  
(9)  
VIN  
VIN  
-
The analog LOW input is connected to this pin.  
+
The analog HIGH input signal is connected to this pin.  
ANALOG This pin is primarily used to set the Analog Common mode voltage for battery opera-  
COMMON tion, or in systems where the input signal is referenced to the power supply. It also  
acts as a reference voltage source. See Section 7.3, Analog Common for additional  
details.  
33  
(8)  
CREF  
-
See Pin 34.  
2002 Microchip Technology Inc.  
DS21458B-page 7  
TC7126/A  
TABLE 2-1:  
PIN FUNCTION TABLE (CONTINUED)  
Pin Number  
(40-Pin PDIP)  
Normal  
(Reversed)  
Symbol  
Description  
34  
(7)  
CREF  
+
A 0.1µF capacitor is used in most applications. If a large Common mode voltage  
exists (for example, the VIN- pin is not at analog common) and a 200mV scale is  
used, a 1µF capacitor is recommended and will hold the rollover error to 0.5 count.  
35  
36  
(6)  
(5)  
VREF  
VREF  
-
See Pin 36.  
+
The analog input required to generate a full scale output (1999 counts). Place 100mV  
between Pins 35 and 36 for 199.9mV full scale. Place 1V between Pins 35 and 36 for  
2V full scale. See Section 6.6, Reference Voltage for additional information.  
37  
(4)  
TEST  
Lamp test. When pulled HIGH (to V+), all segments will be turned on and the display  
should read -1888. It may also be used as a negative supply for externally  
generated decimal points. See Section 7.4, TEST for additional information.  
38  
39  
40  
(3)  
(2)  
(1)  
OSC3  
OSC2  
OSC1  
See Pin 40.  
See Pin 40.  
Pins 40, 39 and 38 make up the oscillator section. For a 48kHz clock (3 readings,  
39 per second), connect Pin 40 to the junction of a 180kresistor and a 50pF  
capacitor. The 180kresistor is tied to Pin 39 and the 50pF capacitor is tied to  
Pin 38.  
DS21458B-page 8  
2002 Microchip Technology Inc.  
TC7126/A  
A simple mathematical equation relates the input sig-  
nal, reference voltage and integration time:  
3.0  
DETAILED DESCRIPTION  
(All Pin Designations Refer to 40-Pin PDIP.)  
EQUATION 3-1:  
3.1  
Dual Slope Conversion Principles  
T
0
V T  
SI  
1
RC  
R
RI  
V
(t)d =  
t
IN  
RC  
The TC7126A is a dual slope, integrating analog-to-  
digital converter. An understanding of the dual slope  
conversion technique will aid in following the detailed  
TC7126/A operation theory.  
Where:  
V
= Reference voltage  
R
T
T
= Signal integration time (fixed)  
SI  
RI  
The conventional dual slope converter measurement  
cycle has two distinct phases:  
= Reference voltage integration time (variable)  
For a constant V  
:
• Input Signal Integration  
IN  
• Reference Voltage Integration (De-integration)  
EQUATION 3-2:  
The input signal being converted is integrated for a fixed  
T
RI  
R-------  
time period (T ). Time is measured by counting clock  
V
= V  
SI  
IN  
T
SI  
pulses. An opposite polarity constant reference voltage  
is then integrated until the integrator output voltage  
returns to zero. The reference integration time is directly  
The dual slope converter accuracy is unrelated to the  
integrating resistor and capacitor values, as long as  
they are stable during a measurement cycle. Noise  
immunity is an inherent benefit. Noise spikes are inte-  
grated or averaged to zero during integration periods.  
Integrating ADCs are immune to the large conversion  
errors that plague successive approximation converters  
in high noise environments. Interfering signals with fre-  
quency components at multiples of the averaging period  
will be attenuated. Integrating ADCs commonly operate  
with the signal integration period set to a multiple of the  
50Hz/60Hz power line period (see Figure 3-2).  
proportional to the input signal (T ) (see Figure 3-1).  
RI  
FIGURE 3-1:  
BASIC DUAL SLOPE  
CONVERTER  
Analog  
Input  
Signal  
Integrator  
Comparator  
+
+
Switch  
Driver  
Clock  
FIGURE 3-2:  
NORMAL MODE  
REJECTION OF DUAL  
SLOPE CONVERTER  
Phase  
REF  
Control  
Logic  
Control  
Voltage  
Polarity Control  
30  
20  
10  
Counter  
Display  
V
V
V  
IN  
IN  
REF  
1.2 V  
REF  
Fixed Variable  
Signal Reference  
Integrate Integrate  
Time Time  
In a simple dual slope converter, a complete conver-  
sion requires the integrator output to “ramp-up” and  
“ramp-down.”  
t = Measurement Period  
0
0.1/t  
1/t  
10/t  
Input Frequency  
2002 Microchip Technology Inc.  
DS21458B-page 9  
TC7126/A  
4.3  
Reference Integrate Phase  
4.0  
ANALOG SECTION  
The third phase is reference integrate or de-integrate.  
- is internally connected to analog common and V  
In addition to the basic integrate and de-integrate dual  
slope cycles discussed above, the TC7126A design  
incorporates an auto-zero cycle. This cycle removes  
buffer amplifier, integrator and comparator offset volt-  
age error terms from the conversion. A true digital zero  
reading results without external adjusting potentiome-  
ters. A complete conversion consists of three phases:  
V
+
IN  
IN  
is connected across the previously charged reference  
capacitor. Circuitry within the chip ensures that the  
capacitor will be connected with the correct polarity to  
cause the integrator output to return to zero. The time  
required for the output to return to zero is proportional to  
the input signal and is between 0 and 2000 counts. The  
digital reading displayed is:  
1. Auto-Zero phase  
2. Signal Integrate phase  
3. Reference Integrate phase  
EQUATION 4-2:  
V
IN  
1000  
4.1  
Auto-Zero Phase  
V
REF  
During the auto-zero phase, the differential input signal  
is disconnected from the circuit by opening internal  
analog gates. The internal nodes are shorted to analog  
common (ground) to establish a zero input condition.  
Additional analog gates close a feedback loop around  
the integrator and comparator. This loop permits com-  
parator offset voltage error compensation. The voltage  
5.0  
DIGITAL SECTION  
The TC7126A contains all the segment drivers neces-  
sary to directly drive a 3-1/2 digit LCD, including an  
LCD backplane driver. The backplane frequency is the  
external clock frequency divided by 800. For 3 conver-  
sions per second, the backplane frequency is 60Hz  
with a 5V nominal amplitude. When a segment driver is  
in phase with the backplane signal, the segment is  
OFF. An out of phase segment drive signal causes the  
segment to be ON (visible). This AC drive configuration  
results in negligible DC voltage across each LCD seg-  
ment, ensuring long LCD life. The polarity segment  
level established on C compensates for device offset  
AZ  
voltages. The auto-zero phase residual is typically  
10µV to 15µV. The auto-zero cycle length is 1000 to  
3000 clock periods.  
4.2  
Signal Integrate Phase  
The auto-zero loop is entered and the internal differen-  
tial inputs connect to V + and V -. The differential  
driver is ON for negative analog inputs. If V + and V  
are reversed, this indicator reverses.  
-
IN  
IN  
IN  
IN  
input signal is integrated for a fixed time period. The  
TC7126/A signal integration period is 1000 clock  
periods or counts. The externally set clock frequency is  
divided by four before clocking the internal counters.  
The integration time period is:  
On the TC7126A, when the TEST pin is pulled to V+, all  
segments are turned ON and the display reads -1888.  
During this mode, LCD segments have a constant DC  
voltage impressed.  
Note: Do not leave the display in this mode for  
more than several minutes. LCDs may be  
destroyed if operated with DC levels for  
extended periods.  
EQUATION 4-1:  
4
T
=
x 1000  
SI  
F
OSC  
Where: F  
= external clock frequency.  
OSC  
The display font and segment drive assignment are  
shown in Figure 5-1.  
The differential input voltage must be within the device  
Common mode range when the converter and mea-  
sured system share the same power supply common  
(ground). If the converter and measured system do not  
FIGURE 5-1:  
DISPLAY FONT AND  
SEGMENT ASSIGNMENT  
share the same power supply common, V - should be  
tied to analog common.  
IN  
Display Font  
Polarity is determined at the end of signal integrate  
phase. The sign bit is a true polarity indication, in that  
signals less than 1LSB are correctly determined. This  
allows precision null detection limited only by device  
noise and auto-zero residual offsets.  
1000's 100's  
10's  
1's  
DS21458B-page 10  
2002 Microchip Technology Inc.  
TC7126/A  
5.1  
System Timing  
6.3  
Integrating Capacitor (CINT  
)
The oscillator frequency is divided by four prior to  
clocking the internal decade counters. The four-phase  
measurement cycle takes a total of 4000 counts  
(16,000 clock pulses). The 4000-count cycle is inde-  
pendent of input signal magnitude.  
C
should be selected to maximize integrator output  
INT  
voltage swing without causing output saturation. Due to  
the TC7126A's superior analog common temperature  
coefficient specification, analog common will normally  
supply the differential voltage reference. For this case,  
a
2V full scale integrator output swing is satisfactory.  
Each phase of the measurement cycle has the following  
length:  
For 3 readings per second (F = 48kHz), a 0.047µF  
value is suggested. For 1 reading per second, 0.15µF  
is recommended. If a different oscillator frequency is  
OSC  
1. Auto-Zero Phase: 1000 to 3000 counts  
(4000 to 12,000 clock pulses).  
used, C  
must be changed in inverse proportion to  
INT  
maintain the nominal 2V integrator swing.  
For signals less than full scale, the auto-zero  
phase is assigned the unused reference integrate  
time period.  
An exact expression for C  
is:  
INT  
EQUATION 6-1:  
2. Signal Integrate: 1000 counts  
(4000 clock pulses).  
1
V
R
FS  
(4000)  
F
This time period is fixed. The integration period is:  
OSC  
INT  
C
=
INT  
V
INT  
EQUATION 5-1:  
Where:  
F
1
T
= 4000  
SI  
F
= Clock frequency at Pin 38  
= Full scale input voltage  
OSC  
OSC  
V
FS  
Where: F  
is the externally set clock frequency.  
OSC  
R
= Integrating resistor  
INT  
V
= Desired full scale integrator output swing  
INT  
3. Reference Integrate: 0 to 2000 counts  
(0 to 8000 clock pulses).  
At 3 readings per second, a 750resistor should be  
placed in series with C . This increases accuracy by  
The TC7126A is a drop-in replacement for the TC7126  
and ICL7126, which offer a greatly improved internal  
reference temperature coefficient. No external compo-  
nent value changes are required to upgrade existing  
designs.  
INT  
compensating for comparator delay. C  
must have  
INT  
low dielectric absorption to minimize rollover error. A  
polypropylene capacitor is recommended.  
6.4  
Integrating Resistor (RINT)  
6.0  
6.1  
COMPONENT VALUE  
SELECTION  
The input buffer amplifier and integrator are designed  
with Class A output stages. The output stage idling cur-  
rent is 6µA. The integrator and buffer can supply 1µA  
Auto-Zero Capacitor (CAZ)  
drive current with negligible linearity errors. R is cho-  
INT  
sen to remain in the output stage linear drive region, but  
not so large that PC board leakage currents induce  
The C capacitor size has some influence on system  
AZ  
noise. A 0.47µF capacitor is recommended for 200mV  
full scale applications where 1LSB is 100µV. A 0.033µF  
capacitor is adequate for 2.0V full scale applications. A  
mylar type dielectric capacitor is adequate.  
errors. For a 200mV full scale, R  
is 180k. A 2V full  
INT  
scale requires 1.8M.  
Nominal Full Scale Voltage  
Component  
Value  
6.2  
Reference Voltage Capacitor (CREF)  
200mV  
2V  
The reference voltage, used to ramp the integrator out-  
put voltage back to zero during the reference integrate  
C
0.33µF  
180kΩ  
0.033µF  
1.8MΩ  
AZ  
R
INT  
phase, is stored on C  
. A 0.1µF capacitor is accept-  
REF  
C
0.047µF  
0.047µF  
INT  
able when V  
- is tied to analog common. If a large  
REF  
Common mode voltage exists (V  
- – analog com-  
Note:  
FOSC = 48kHz (3 readings per sec).  
REF  
mon) and the application requires a 200mV full scale,  
increase C to 1µF. Rollover error will be held to less  
REF  
than 0.5 count. A Mylar type dielectric capacitor is  
adequate.  
2002 Microchip Technology Inc.  
DS21458B-page 11  
TC7126/A  
6.5  
Oscillator Components  
7.0  
DEVICE PIN FUNCTIONAL  
DESCRIPTION  
C
should be 50pF; R  
is selected from the  
OSC  
OSC  
equation:  
(Pin Numbers Refer to the 40-Pin PDIP.)  
EQUATION 6-2:  
7.1  
Differential Signal Inputs  
VIN+ (Pin 31), VIN- (Pin 30)  
0.45  
RC  
F
=
OSC  
The TC7126A is designed with true differential inputs  
and accepts input signals within the input stage  
Common mode voltage range (V ). Typical range is  
V+ 1V to V- + 1V. Common mode voltages are  
removed from the system when the TC7126A operates  
from a battery or floating power source (isolated from  
For a 48kHz clock (3 conversions per second),  
R = 180k.  
CM  
Note that F  
is 44 to generate the TC7126A's inter-  
OSC  
nal clock. The backplane drive signal is derived by  
dividing F by 800.  
OSC  
measured system), and V - is connected to analog  
IN  
To achieve maximum rejection of 60Hz noise pickup,  
the signal integrate period should be a multiple of  
60Hz. Oscillator frequencies of 24kHz, 12kHz, 80kHz,  
60kHz, 40kHz, etc. should be selected. For 50Hz rejec-  
tion, oscillator frequencies of 20kHz, 100kHz,  
66-2/3kHz, 50kHz, 40kHz, etc. would be suitable. Note  
that 40kHz (2.5 readings per second) will reject both  
50Hz and 60Hz.  
common (V  
) (see Figure 7-2).  
COM  
In systems where Common mode voltages exist, the  
TC7126A's 86 dB Common mode rejection ratio mini-  
mizes error. Common mode voltages do, however,  
affect the integrator output level. A worst case condition  
exists if a large positive V  
a full scale negative differential signal. The negative  
signal drives the integrator output positive along with  
exists in conjunction with  
CM  
V
(see Figure 7-1). For such applications, the inte-  
CM  
6.6  
Reference Voltage Selection  
grator output swing can be reduced below the recom-  
mended 2V full scale swing. The integrator output  
will swing within 0.3V of V+ or V- without increased  
linearity error.  
A full scale reading (2000 counts) requires the input  
signal be twice the reference voltage.  
Required Full Scale Voltage*  
V
REF  
FIGURE 7-1:  
COMMON MODE  
VOLTAGE REDUCES  
AVAILABLEINTEGRATOR  
20mV  
2V  
100mV  
1V  
Note:  
VFS = 2VREF.  
SWING (V  
V )  
COM  
IN  
In some applications, a scale factor other than unity  
may exist between a transducer output voltage and the  
required digital reading. Assume, for example, a pres-  
C
I
Input  
Buffer  
R
I
+
+
2
+
sure transducer output for 2000lb/in is 400mV. Rather  
V
I
than dividing the input voltage by two, the reference  
voltage should be set to 200mV. This permits the trans-  
ducer input to be used directly.  
V
IN  
Integrator  
– V  
t
I
The differential reference can also be used where a  
V
=
V
I
[
CM  
IN  
[
R
C
V
I
I
digital zero reading is required when V is not equal to  
CM  
IN  
Where:  
4000  
zero. This is common in temperature measuring instru-  
mentation. A compensating offset voltage can be  
t = Integration time =  
I
F
OSC  
C = Integration capacitor  
I
applied between analog common and V -. The trans-  
IN  
R = Integration resistor  
I
ducer output is connected between V + and analog  
IN  
common.  
DS21458B-page 12  
2002 Microchip Technology Inc.  
TC7126/A  
The TC7126A offers a significantly improved analog  
common temperature coefficient. This potential pro-  
vides a very stable voltage, suitable for use as a refer-  
ence. The temperature coefficient of analog common is  
typically 35ppm/°C for the TC7126A and 80 ppm/°C for  
the TC7126.  
7.2  
Differential Reference  
VREF+ (Pin 36), VREF- (Pin 35)  
The reference voltage can be generated anywhere  
within the V+ to V- power supply range.  
To prevent rollover type errors being induced by large  
Common mode voltages, C  
should be large com-  
REF  
pared to stray node capacitance.  
FIGURE 7-2:  
COMMON MODE VOLTAGE REMOVED IN BATTERY OPERATION WITH  
= ANALOG COMMON  
V
IN  
Segment  
Drive  
LCD  
Measured  
System  
V
C
V
INT  
POL BP  
OSC1  
BUFF  
AZ  
V
+
IN  
TC7126A  
V+  
OSC3  
V
-
IN  
V-  
OSC2  
V-  
GND  
ANALOG  
COMMON  
V
- V +  
REF REF  
V+  
V+  
V-  
GND  
Power  
Source  
+
9V  
With sufficiently high total supply voltage (V+ V- > 7V),  
analog common is a very stable potential with excellent  
temperature stability (typically 35ppm/°C). This poten-  
tial can be used to generate the TC7126A's reference  
voltage. An external voltage reference will be unneces-  
sary in most cases because of the 35ppm/°C tempera-  
ture coefficient. See Section 7.5, TC7126A Internal  
Voltage Reference discussion.  
7.3  
Analog Common (Pin 32)  
The analog common pin is set at a voltage potential  
approximately 3V below V+. The potential is between  
2.7V and 3.35V below V+. Analog common is tied inter-  
nally to an N-channel FET capable of sinking 100µA.  
This FET will hold the common line at 3V should an  
external load attempt to pull the common line toward  
V+. Analog common source current is limited to 1µA.  
Therefore, analog common is easily pulled to a more  
negative voltage (i.e., below V+ 3V).  
7.4  
TEST (Pin 37)  
The TEST pin potential is 5V less than V+. TEST may  
be used as the negative power supply connection for  
external CMOS logic. The TEST pin is tied to the inter-  
nally generated negative logic supply through a 500Ω  
resistor. The TEST pin load should be no more than  
1mA. See Section 5.0, Digital Section for additional  
information on using TEST as a negative digital logic  
supply.  
The TC7126A connects the internal V + and V -  
IN  
IN  
inputs to analog common during the auto-zero phase.  
During the reference integrate phase, V - is con-  
IN  
nected to analog common. If V - is not externally con-  
IN  
nected to analog common, a Common mode voltage  
exists, but is rejected by the converter's 86dB Com-  
mon mode rejection ratio. In battery operation, analog  
common and V - are usually connected, removing  
IN  
If TEST is pulled HIGH (to V+), all segments plus the  
minus sign will be activated. DO NOT OPERATE IN  
THIS MODE FOR MORE THAN SEVERAL MINUTES.  
With TEST = V+, the LCD segments are impressed  
with a DC voltage which will destroy the LCD.  
Common mode voltage concerns. In systems where  
V - is connected to power supply ground or to a given  
IN  
voltage, analog common should be connected to V -.  
IN  
The analog common pin serves to set the analog sec-  
tion reference, or common point. The TC7126A is spe-  
cifically designed to operate from a battery, or in any  
measurement system where input signals are not refer-  
enced (float) with respect to the TC7126A's power  
source. The analog common potential of V+ 3V gives  
a 7V end of battery life voltage. The common potential  
has a 0.001%/% voltage coefficient and a 15output  
impedance.  
2002 Microchip Technology Inc.  
DS21458B-page 13  
TC7126/A  
7.5  
TC7126A Internal Voltage  
Reference  
8.0  
8.1  
TYPICAL APPLICATIONS  
Liquid Crystal Display Sources  
The TC7126A's analog common voltage temperature  
stability has been significantly improved (Figure 7-3).  
The "A" version of the industry standard TC7126  
device allows users to upgrade old systems and design  
new systems, without external voltage references.  
External R and C values do not need to be changed.  
Figure 7-4 shows analog common supplying the  
necessary voltage reference for the TC7126A.  
Several manufacturers supply standard LCDs to inter-  
face with the TC7126A, 3-1/2 digit analog-to-digital  
converter.  
Representative  
Part Numbers*  
Manufacturer  
Address/Phone  
Crystaloid  
Electronics  
5282 Hudson Dr.  
Hudson, OH 44236  
216-655-2429  
C5335, H5535,  
T5135, SX440  
FIGURE 7-3:  
ANALOG COMMON TEMP.  
COEFFICIENT  
AND  
720 Palomar Ave.  
Sunnyvale, CA 94086  
408-523-8200  
FE 0801  
FE 0203  
200  
180  
VGI, Inc.  
Hamlin, Inc.  
1800 Vernon St., Ste. 2 LD-B709BZ  
Roseville, CA 95678  
916-783-7878  
LD-H7992AZ  
No  
Maximum  
Specified  
160  
140  
120  
100  
612 E. Lake St.  
Lake Mills,  
3902, 3933,  
3903  
Typical  
WI 53551  
414-648-2361  
No  
Maximum  
Note:  
Contact LCD manufacturer for full product listing/  
specifications.  
Maximum  
Specified  
80  
60  
40  
20  
Typical  
8.2  
Decimal Point and Annunciator  
Drive  
Typical  
The TEST pin is connected to the internally generated  
digital logic supply ground through a 500resistor. The  
TEST pin may be used as the negative supply for exter-  
nal CMOS gate segment drivers. LCD annunciators for  
decimal points, low battery indication, or function indi-  
cation may be added, without adding an additional sup-  
ply. No more than 1mA should be supplied by the TEST  
pin; its potential is approximately 5V below V+ (see  
Figure 8-1).  
TC7126A  
ICL7126  
ICL7136  
0
FIGURE 7-4:  
TC7126A INTERNAL  
VOLTAGE REFERENCE  
CONNECTION  
9V  
+
FIGURE 8-1:  
DECIMAL POINT AND  
ANNUNCIATOR DRIVES  
26  
V-  
1
240kΩ  
Simple Inverter for Fixed Decimal Point  
or Display Annunciator  
V+  
V+  
V+  
TC7126A  
4049  
36  
V
+
-
TC7126A  
BP  
10kΩ  
REF  
To LCD  
Decimal  
Point  
21  
37  
V
REF  
GND  
35  
TEST  
V
To  
REF  
Backplane  
32  
Multiple Decimal Point or  
Annunciator Driver  
ANALOG  
COMMON  
V+  
SET V  
= 1/2 V  
V+  
REF  
REF  
BP  
To LCD  
Decimal  
Point  
To LCD  
Decimal  
Point  
TC7126A  
4030  
GND  
TEST  
DS21458B-page 14  
2002 Microchip Technology Inc.  
TC7126/A  
EQUATION 8-1:  
Displayed (Reading) =  
8.3  
Flat Package  
R
The TC7126 is available in an epoxy 64-pin formed  
lead package. A test socket for the TC7126ACBQ  
device is available:  
UNKNOWN  
x 1000  
R
STANDARD  
Part Number:  
Manufacturer:  
Distribution:  
IC 51-42  
Yamaichi  
Nepenthe Distribution  
2471 East Bayshore, Ste. 520  
Palo Alto, CA 94043  
(650) 856-9332  
The display will over range for R  
2 x  
UNKNOWN  
R
(see Figure 8-2).  
STANDARD  
FIGURE 8-2:  
LOW PARTS COUNT  
RATIOMETRIC  
RESISTANCE  
MEASUREMENT  
8.4  
Ratiometric Resistance  
Measurements  
V+  
V
V
+
-
REF  
The TC7126As true differential input and differential  
reference make ratiometric reading possible. In a ratio-  
metric operation, an unknown resistance is measured  
with respect to a known standard resistance. No  
accurately defined reference voltage is needed.  
R
REF  
STANDARD  
LCD  
V
+
IN  
TC7126A  
R
UNKNOWN  
The unknown resistance is put in series with a known  
standard and a current passed through the pair. The  
voltage developed across the unknown is applied to the  
input and the voltage across the known resistor is  
applied to the reference input. If the unknown equals  
the standard, the display will read 1000. The displayed  
reading can be determined from the following  
expression:  
V
-
IN  
ANALOG  
COMMON  
FIGURE 8-3:  
3-1/2 DIGIT TRUE RMS AC DMM  
9V  
+
26  
V-  
1N4148  
1µF  
200mV  
27  
1
1MΩ  
10MΩ  
1
2
3
4
5
6
7
14  
13  
12  
V+  
V
IN  
29  
240kΩ  
10kΩ  
TC7126A  
9MΩ  
C1  
2V  
0.02µF  
36  
35  
AD636  
11  
10  
9
V
V
+
-
REF  
REF  
28  
40  
47kΩ  
1Ω  
6.8µF  
C2  
900kΩ  
90kΩ  
10kΩ  
+
32  
31  
ANALOG  
COMMON  
20V  
10%  
1M10%  
8
V
+
IN  
0.01  
µF  
2.2  
µF  
30  
26  
20kΩ  
38  
39  
V
+
200V  
OUT  
10%  
V-  
BP  
Segment  
Drive  
C1 = 3pF to 10pF, Variable  
C2 = 132pF, Variable  
COM  
LCD  
2002 Microchip Technology Inc.  
DS21458B-page 15  
TC7126/A  
FIGURE 8-4:  
INTEGRATED CIRCUIT TEMPERATURE SENSOR  
9V  
2
Constant 5V  
V+  
V+  
V
V
+
REF  
51kΩ  
51kΩ  
6
5
3
TC7126A  
V
OUT  
50kΩ  
50kΩ  
R
4
R
5
R
R
-
2
REF  
8
2
3
ADJ  
NC  
1
1/2  
LM358  
V
V
+
-
REF02  
IN  
TEMP  
+
4
Temperature  
Dependent Output  
IN  
V
=
OUT  
1.86V @  
+25°C  
COMMON  
V-  
1
GND  
4
FIGURE 8-5:  
TEMPERATURE SENSOR  
FIGURE 8-6:  
POSITIVE TEMPERATURE  
COEFFICIENT RESISTOR  
TEMPERATURE SENSOR  
+
9V  
9V  
+
160kΩ  
300kΩ  
300kΩ  
V+  
V-  
5.6kΩ  
160kΩ  
V
V
-
IN  
V+  
V-  
R
20kΩ  
V
IN  
-
1
1N4148  
R
50kΩ  
1N4148  
Sensor  
1
+
IN  
TC7126A  
TC7126A  
V
V
V
+
IN  
R
2
V
V
+
REF  
0.7%/°C  
R
2
R
3
50kΩ  
+
-
REF  
REF  
PTC  
20kΩ  
-
REF  
COMMON  
COMMON  
DS21458B-page 16  
2002 Microchip Technology Inc.  
TC7126/A  
9.0  
9.1  
PACKAGING INFORMATION  
Package Marking Information  
Package marking data not available at this time.  
9.2  
Taping Form  
Component Taping Orientation for 44-Pin PLCC Devices  
User Direction of Feed  
PIN 1  
W
P
Standard Reel Component Orientation  
for TR Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
44-Pin PLCC  
32 mm  
24 mm  
500  
13 in  
Note: Drawing does not represent total number of pins.  
Component Taping Orientation for 44-Pin PQFP Devices  
User Direction of Feed  
PIN 1  
W
P
Standard Reel Component Orientation  
for TR Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
44-Pin PQFP  
24 mm  
16 mm  
500  
13 in  
Note: Drawing does not represent total number of pins.  
2002 Microchip Technology Inc.  
DS21458B-page 17  
TC7126/A  
9.3  
Package Dimensions  
40-Pin PDIP (Wide)  
PIN 1  
.555 (14.10)  
.530 (13.46)  
2.065 (52.45)  
2.027 (51.49)  
.610 (15.49)  
.590 (14.99)  
.200 (5.08)  
.140 (3.56)  
.040 (1.02)  
.020 (0.51)  
.015 (0.38)  
.008 (0.20)  
.150 (3.81)  
.115 (2.92)  
3° MIN.  
.700 (17.78)  
.610 (15.50)  
.110 (2.79)  
.090 (2.29)  
.070 (1.78)  
.045 (1.14)  
.022 (0.56)  
.015 (0.38)  
Dimensions: inches (mm)  
44-Pin PLCC  
PIN 1  
.021 (0.53)  
.013 (0.33)  
.050 (1.27) TYP.  
.695 (17.65)  
.685 (17.40)  
.630 (16.00)  
.591 (15.00)  
.656 (16.66)  
.650 (16.51)  
.032 (0.81)  
.026 (0.66)  
.020 (0.51) MIN.  
.656 (16.66)  
.650 (16.51)  
.120 (3.05)  
.090 (2.29)  
.695 (17.65)  
.685 (17.40)  
.180 (4.57)  
.165 (4.19)  
Dimensions: inches (mm)  
DS21458B-page 18  
2002 Microchip Technology Inc.  
TC7126/A  
9.3  
Package Dimensions (Continued)  
44-Pin PQFP  
7° MAX.  
.009 (0.23)  
.005 (0.13)  
PIN 1  
.041 (1.03)  
.026 (0.65)  
.018 (0.45)  
.012 (0.30)  
.398 (10.10)  
.390 (9.90)  
.557 (14.15)  
.537 (13.65)  
.031 (0.80) TYP.  
.010 (0.25) TYP.  
.398 (10.10)  
.390 (9.90)  
.083 (2.10)  
.075 (1.90)  
.557 (14.15)  
.537 (13.65)  
.096 (2.45) MAX.  
Dimensions: inches (mm)  
2002 Microchip Technology Inc.  
DS21458B-page 19  
TC7126/A  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART CODE  
TC7126X X XXX  
A or blank*  
R (reversed pins) or blank (CPL pkg only)  
* "A" parts have an improved reference TC  
Package Code (see Device Selection Table)  
SALES AND SUPPORT  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
DS21458B-page 20  
2002 Microchip Technology Inc.  
TC7126/A  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchips products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,  
PICSTART, PRO MATE, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip Tech-  
nology Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode  
and Total Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2002 Microchip Technology Inc.  
DS21458B-page 21  
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
China - Beijing  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Korea  
Rocky Mountain  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Bei Hai Wan Tai Bldg.  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423 Fax: 972-818-2924  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
China - Chengdu  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Chengdu 610016, China  
Tel: 86-28-6766200 Fax: 86-28-6766599  
China - Fuzhou  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
Tel: 86-591-7503506 Fax: 86-591-7503521  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-2350361 Fax: 86-755-2366086  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
EUROPE  
Denmark  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
Microchip Technology SARL  
Parc dActivite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
Hong Kong  
Italy  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
Microchip Technology Inc.  
India Liaison Office  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, OShaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
03/01/02  
DS21458B-page 22  
2002 Microchip Technology Inc.  

相关型号:

TC7126ARCPL

3-1/2 Digit Analog-to-Digital Converters
MICROCHIP

TC7126ARIPL

3-1/2 Digit Analog-to-Digital Converters
MICROCHIP

TC7126CKW

3-1/2 Digit Analog-to-Digital Converters
MICROCHIP

TC7126CKW

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS
TELCOM

TC7126CLW

3-1/2 Digit Analog-to-Digital Converters
MICROCHIP

TC7126CLW

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS
TELCOM

TC7126CLW713

1-CH DUAL-SLOPE ADC, PQCC44, PLASTIC, LCC-44
MICROCHIP

TC7126CPL

3-1/2 Digit Analog-to-Digital Converters
MICROCHIP

TC7126CPL

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS
TELCOM

TC7126IPL

3-1/2 Digit Analog-to-Digital Converters
MICROCHIP

TC7126IPL

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS
TELCOM

TC7126RCPL

3-1/2 Digit Analog-to-Digital Converters
MICROCHIP