TC7660IOA713 [MICROCHIP]

Charge Pump DC-to-DC Voltage Converter; 电荷泵DC - DC电压转换器
TC7660IOA713
型号: TC7660IOA713
厂家: MICROCHIP    MICROCHIP
描述:

Charge Pump DC-to-DC Voltage Converter
电荷泵DC - DC电压转换器

转换器 泵
文件: 总18页 (文件大小:386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC7660  
M
Charge Pump DC-to-DC Voltage Converter  
Features  
Package Types  
• Wide Input Voltage Range: +1.5V to +10V  
• Efficient Voltage Conversion (99.9%, typ)  
• Excellent Power Efficiency (98%, typ)  
• Low Power Consumption: 80 µA (typ) @ V = 5V  
• Low Cost and Easy to Use  
- Only Two External Capacitors Required  
• Available in 8-Pin Small Outline (SOIC), 8-Pin  
PDIP and 8-Pin CERDIP Packages  
PDIP/CERDIP/SOIC  
V+  
NC  
1
2
3
4
8
7
6
5
IN  
CAP+  
GND  
OSC  
TC7660  
LOW  
VOLTAGE (LV)  
CAP-  
VOUT  
• Improved ESD Protection (3 kV HBM)  
• No External Diode Required for High-Voltage  
Operation  
General Description  
The TC7660 is a pin-compatible replacement for the  
industry standard 7660 charge pump voltage  
converter. It converts a +1.5V to +10V input to a  
corresponding -1.5V to -10V output using only two low  
cost capacitors, eliminating inductors and their  
associated cost, size and electromagnetic interference  
(EMI).  
Applications  
• RS-232 Negative Power Supply  
• Simple Conversion of +5V to ±5V Supplies  
• Voltage Multiplication V  
• Negative Supplies for Data Acquisition Systems  
and Instrumentation  
+
= ± n V  
OUT  
The on-board oscillator operates at  
a nominal  
frequency of 10 kHz. Operation below 10 kHz (for  
lower supply current applications) is possible by  
connecting an external capacitor from OSC to ground.  
The TC7660 is available in 8-Pin PDIP, 8-Pin Small  
Outline (SOIC) and 8-Pin CERDIP packages in  
commercial and extended temperature ranges.  
Functional Block Diagram  
+
+
V CAP  
8
2
Voltage  
Level  
7
6
RC  
4
5
OSC  
LV  
÷
2
CAP-  
Oscillator  
Translator  
V
OUT  
n
t
e
r
n
a
l
Voltage  
Regulator  
Logic  
Network  
TC7660  
3
GND  
2002 Microchip Technology Inc.  
DS21465B-page 1  
TC7660  
1.0 ELECTRICAL  
* Notice: Stresses above those listed under "Maximum Rat-  
ings" may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational sections of this specification is not intended. Expo-  
sure to maximum rating conditions for extended periods may  
affect device reliability.  
CHARACTERISTICS  
Absolute Maximum Ratings*  
Supply Voltage .............................................................+10.5V  
LV and OSC Inputs Voltage: (Note 1)  
.............................................. -0.3V to VSS for V+ < 5.5V  
.....................................(V+ – 5.5V) to (V+) for V+ > 5.5V  
Current into LV .........................................20 µA for V+ > 3.5V  
IS  
Output Short Duration (VSUPPLY 5.5V)...............Continuous  
Package Power Dissipation: (TA 70°C)  
1
2
3
4
8
7
6
5
V+  
IL  
COSC  
8-Pin CERDIP ....................................................800 mW  
8-Pin PDIP .........................................................730 mW  
8-Pin SOIC.........................................................470 mW  
(+5V)  
+
TC7660  
C1  
10 µF  
RL  
Operating Temperature Range:  
C Suffix.......................................................0°C to +70°C  
I Suffix .....................................................-25°C to +85°C  
E Suffix....................................................-40°C to +85°C  
M Suffix .................................................-55°C to +125°C  
VOUT  
C2  
10 µF  
+
Storage Temperature Range.........................-65°C to +160°C  
ESD protection on all pins (HBM) .................................3 kV  
Maximum Junction Temperature.................................. 150°C  
FIGURE 1-1:  
TC7660 Test Circuit.  
ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise noted, specifications measured over operating temperature range with V+ = 5V,  
C
OSC = 0, refer to test circuit in Figure 1-1.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
µA RL = ∞  
Conditions  
+
Supply Current  
3.0  
1.5  
80  
70  
104  
150  
180  
10  
3.5  
100  
120  
130  
150  
300  
I
V
V
+
Supply Voltage Range, High  
Supply Voltage Range, Low  
Output Source Resistance  
V
V
Min TA Max, RL = 10 k, LV Open  
Min TA Max, RL = 10 k, LV to GND  
IOUT=20 mA, TA = +25°C  
H
+
L
R
OUT  
IOUT=20 mA, TA +70°C (C Device)  
IOUT=20 mA, TA +85°C (E and I Device)  
IOUT=20 mA, TA +125°C (M Device)  
V+ = 2V, IOUT = 3 mA, LV to GND  
0°C TA +70°C  
160  
600  
V+ = 2V, IOUT = 3 mA, LV to GND  
-55°C TA +125°C (M Device)  
Oscillator Frequency  
Power Efficiency  
10  
98  
kHz Pin 7 open  
f
P
OSC  
95  
%
RL = 5 kΩ  
EFF  
Voltage Conversion Efficiency  
Oscillator Impedance  
97  
99.9  
1.0  
100  
%
RL = ∞  
V
OUTEFF  
MV+ = 2V  
kV+ = 5V  
Z
OSC  
Note 1: Destructive latch-up may occur if voltages greater than V+ or less than GND are supplied to any input pin.  
DS21465B-page 2  
2002 Microchip Technology Inc.  
TC7660  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, C = C = 10 µF, ESR = ESR = 1 , T = 25°C. See Figure 1-1.  
1
2
C1  
C2  
A
12  
100  
98  
96  
10  
I
= 1 mA  
OUT  
OUT  
94  
92  
8
6
I
= 15 mA  
90  
88  
86  
84  
82  
SUPPLY VOLTAGE RANGE  
4
2
+
V
= +5V  
80  
100  
0
1k  
10k  
-55 -25  
0
+25 +50 +75 +100 +125  
OSCILLATOR FREQUENCY (Hz)  
TEMPERATURE (
°
C)  
FIGURE 2-1:  
Operating Voltage vs.  
FIGURE 2-4:  
Power Conversion  
Temperature.  
Efficiency vs. Oscillator Frequency.  
500  
10k  
I
= 1 mA  
OUT  
450  
400  
1k  
200  
150  
100  
50  
+
V
V
= +2V  
= +5V  
100Ω  
10Ω  
+
0
0
1
2
3
4
5
6
7
8
-55 -25  
0
+25 +50 +75 +100 +125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
FIGURE 2-2:  
Output Source Resistance  
FIGURE 2-5:  
Output Source Resistance  
vs. Supply Voltage.  
vs. Temperature.  
20  
+
10k  
+
V
= +5V  
V
= +5V  
18  
16  
14  
1k  
100  
10  
12  
10  
8
6
1
10  
100  
1000  
10k  
-55 -25  
0
+25 +50 +75 +100 +125  
OSCILLATOR CAPACITANCE (pF)  
TEMPERATURE (°C)  
FIGURE 2-3:  
Frequency of Oscillation vs.  
FIGURE 2-6:  
Unloaded Oscillator  
Oscillator Capacitance.  
Frequency vs. Temperature.  
2002 Microchip Technology Inc.  
DS21465B-page 3  
TC7660  
Note: Unless otherwise indicated, C = C = 10 µF, ESR = ESR = 1 , T = 25°C. See Figure 1-1.  
1
2
C1  
C2  
A
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
5
4
+
V
= +5V  
3
2
1
0
-1  
-2  
-3  
-4  
-8  
SLOPE 55Ω  
-9  
LV OPEN  
-10  
-5  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
0
10 20 30 40 50 60 70  
LOAD CURRENT (mA)  
80  
FIGURE 2-7:  
Output Voltage vs. Output  
FIGURE 2-10:  
Output Voltage vs. Load  
Current.  
Current.  
100  
90  
100  
90  
100  
90  
20  
+
V
= 2V  
18  
16  
80  
80  
80  
70  
60  
50  
70  
60  
50  
70  
60  
50  
14  
12  
10  
40  
30  
20  
10  
40  
30  
20  
40  
30  
20  
10  
8
6
4
2
0
10  
+
V
= +5V  
50  
0
0
10  
20  
30  
40  
60  
0
1.5  
3.0  
4.5  
6.0  
7.5 9.0  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
FIGURE 2-8:  
Supply Current and Power  
FIGURE 2-11:  
Supply Current and Power  
Conversion Efficiency vs. Load Current.  
Conversion Efficiency vs. Load Current.  
2
+
V
= +2V  
1
0
-1  
SLOPE 150Ω  
-2  
0
1
2
3
4
5
6
7
8
LOAD CURRENT (mA)  
FIGURE 2-9:  
Output Voltage vs. Load  
Current.  
DS21465B-page 4  
2002 Microchip Technology Inc.  
TC7660  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin No.  
Symbol  
Description  
1
2
3
4
5
6
7
8
NC  
CAP+  
GND  
CAP-  
VOUT  
LV  
No connection  
Charge pump capacitor positive terminal  
Ground terminal  
Charge pump capacitor negative terminal  
Output voltage  
Low voltage pin. Connect to GND for V+ < 3.5V  
OSC  
V+  
Oscillator control input. Bypass with an external capacitor to slow the oscillator  
Power supply positive voltage input  
+
3.1  
Charge Pump Capacitor (CAP )  
3.5  
Low Voltage Pin (LV)  
Positive connection for the charge pump capacitor, or  
flying capacitor, used to transfer charge from the input  
source to the output. In the voltage-inverting configura-  
tion, the charge pump capacitor is charged to the input  
voltage during the first half of the switching cycle. Dur-  
ing the second half of the switching cycle, the charge  
pump capacitor is inverted and charge is transferred to  
the output capacitor and load.  
The low voltage pin ensures proper operation of the  
internal oscillator for input voltages below 3.5V. The low  
voltage pin should be connected to ground (GND) for  
input voltages below 3.5V. Otherwise, the low voltage  
pin should be allowed to float.  
3.6  
Oscillator Control Input (OSC)  
The oscillator control input can be utilized to slow down  
or speed up the operation of the TC7660. Refer to  
Section 5.4, “Changing the TC7660 Oscillator  
Frequency”, for details on altering the oscillator  
frequency.  
It is recommended that a low ESR (equivalent series  
resistance) capacitor be used. Additionally, larger  
values will lower the output resistance.  
3.2  
Ground (GND)  
+
3.7  
Power Supply (V )  
Input and output zero volt reference.  
Positive power supply input voltage connection. It is  
recommended that a low ESR (equivalent series resis-  
tance) capacitor be used to bypass the power supply  
input to ground (GND).  
-
3.3  
Charge Pump Capacitor (CAP )  
Negative connection for the charge pump capacitor, or  
flying capacitor, used to transfer charge from the input  
to the output. Proper orientation is imperative when  
using a polarized capacitor.  
3.4  
Output Voltage (V  
)
OUT  
Negative connection for the charge pump output  
capacitor. In the voltage-inverting configuration, the  
charge pump output capacitor supplies the output load  
during the first half of the switching cycle. During the  
second half of the switching cycle, charge is restored to  
the charge pump output capacitor.  
It is recommended that a low ESR (equivalent series  
resistance) capacitor be used. Additionally, larger  
values will lower the output ripple.  
2002 Microchip Technology Inc.  
DS21465B-page 5  
TC7660  
EQUATION  
4.0  
DETAILED DESCRIPTION  
1
-----------------------------  
ROUT  
=
+ 8RSW + 4ESRC1 + ESRC2  
4.1  
Theory of Operation  
f
PUMP × C1  
The TC7660 charge pump converter inverts the voltage  
+
applied to the V pin. The conversion consists of a two-  
Where:  
phase operation (Figure 4-1). During the first phase,  
switches S and S are open and switches S and S  
fOSC  
----------  
2
fPUMP  
=
2
4
1
3
+
are closed. C charges to the voltage applied to the V  
1
RSW = on-resistance of the switches  
ESRC1 = equivalent series resistance of C  
ESRC2 = equivalent series resistance of C  
pin, with the load current being supplied from C . Dur-  
2
ing the second phase, switches S and S are closed  
1
2
2
4
and switches S and S are open. Charge is trans-  
1
3
ferred from C to C , with the load current being  
1
2
supplied from C .  
1
4.2  
Switched Capacitor Inverter  
Power Losses  
S
S
2
1
+
V
The overall power loss of a switched capacitor inverter  
is affected by four factors:  
+
C
1
1. Losses from power consumed by the internal  
oscillator, switch drive, etc. These losses will  
vary with input voltage, temperature and  
oscillator frequency.  
+
C
2
GND  
S
S
3
4
V
= -V  
IN  
2. Conduction losses in the non-ideal switches.  
OUT  
3. Losses due to the non-ideal nature of the  
external capacitors.  
4. Losses that occur during charge transfer from  
C to C when a voltage difference between the  
1
2
capacitors exists.  
FIGURE 4-1:  
Ideal Switched Capacitor  
Figure 4-3 depicts the non-ideal elements associated  
with the switched capacitor inverter power loss.  
Inverter.  
In this manner, the TC7660 performs a voltage inver-  
sion, but does not provide regulation. The average out-  
put voltage will drop in a linear manner with respect to  
load current. The equivalent circuit of the charge pump  
inverter can be modeled as an ideal voltage source in  
series with a resistor, as shown in Figure 4-2.  
S
S
2
1
R
R
SW  
SW  
+
+
+
+
-
V
I
DD  
C
C
2
1
I
LOAD  
OUT  
ESR  
ESR  
S
R
OUT  
C1  
3
C2  
4
V
OUT  
S
-
R
SW  
R
SW  
+
V
+
FIGURE 4-3:  
Capacitor Inverter.  
The power loss is calculated using the following  
equation:  
Non-Ideal Switched  
FIGURE 4-2:  
Switched Capacitor Inverter  
Equivalent Circuit Model.  
The value of the series resistor (R  
) is a function of  
OUT  
the switching frequency, capacitance and equivalent  
EQUATION  
series resistance (ESR) of C and C and the on-resis-  
1
2
PLOSS = I2OUT × ROUT + IDD × V+  
tance of switches S , S , S and S . A close  
1
OUT  
2
3
4
approximation for R  
equation:  
is given in the following  
DS21465B-page 6  
2002 Microchip Technology Inc.  
TC7660  
5.2  
Paralleling Devices  
5.0  
5.1  
APPLICATIONS INFORMATION  
To reduce the value of R  
, multiple TC7660 voltage  
OUT  
Simple Negative Voltage  
Converter  
converters can be connected in parallel (Figure 5-2).  
The output resistance will be reduced by approximately  
a factor of n, where n is the number of devices  
connected in parallel.  
Figure 5-1 shows typical connections to provide a  
negative supply where a positive supply is available. A  
similar scheme may be employed for supply voltages  
anywhere in the operating range of +1.5V to +10V,  
keeping in mind that pin 6 (LV) is tied to the supply  
negative (GND) only for supply voltages below 3.5V.  
EQUATION  
R
OUT (of TC7660)  
---------------------------------------------------  
=
ROUT  
n (number of devices)  
V+  
While each device requires its own pump capacitor  
(C ), all devices may share one reservoir capacitor  
1
1
2
3
4
8
7
6
5
(C ). To preserve ripple performance, the value of C  
2
2
VOUT  
C2  
10 µF  
*
should be scaled according to the number of devices  
connected in parallel.  
+
TC7660  
C1  
10 µF  
+
5.3  
Cascading Devices  
* VOUT = -V+ for 1.5V V+ 10V  
A larger negative multiplication of the initial supply volt-  
age can be obtained by cascading multiple TC7660  
devices. The output voltage and the output resistance  
will both increase by approximately a factor of n, where  
n is the number of devices cascaded.  
FIGURE 5-1:  
Simple Negative Converter.  
The output characteristics of the circuit in Figure 5-1  
are those of a nearly ideal voltage source in series with  
a 70resistor. Thus, for a load current of -10 mA and  
a supply voltage of +5V, the output voltage would be  
-4.3V.  
EQUATION  
VOUT = –n(V+)  
ROUT = n × ROUT (of TC7660)  
+
V
8
7
6
5
1
2
3
4
1
2
3
4
8
7
6
5
+
TC7660  
R
C
L
1
+
TC7660  
C
1
“1”  
“n”  
C
2
+
FIGURE 5-2:  
Paralleling Devices Lowers Output Impedance.  
+
V
8
7
6
5
1
2
3
4
8
1
2
3
4
+
TC7660  
10 µF  
7
6
5
+
TC7660  
10 µF  
+
“1”  
VOUT  
10 µF  
*
“n”  
+
10 µF  
+
* V  
= -n V for 1.5V V+ 10V  
OUT  
FIGURE 5-3:  
Increased Output Voltage By Cascading Devices.  
2002 Microchip Technology Inc.  
DS21465B-page 7  
TC7660  
5.4  
Changing the TC7660 Oscillator  
5.5  
Positive Voltage Multiplication  
Frequency  
Positive voltage multiplication can be obtained by  
employing two external diodes (Figure 5-6). Refer to  
the theory of operation of the TC7660 (Section 4.1).  
The operating frequency of the TC7660 can be  
changed in order to optimize the system performance.  
The frequency can be increased by over-driving the  
OSC input (Figure 5-4). Any CMOS logic gate can be  
utilized in conjunction with a 1 kseries resistor. The  
resistor is required to prevent device latch-up. While  
TTL level signals can be utilized, an additional 10 kΩ  
During the half cycle when switch S is closed, capaci-  
2
tor C of Figure 5-6 is charged up to a voltage of  
1
F1  
+
V - V , where V is the forward voltage drop of diode  
F1  
D . During the next half cycle, switch S is closed, shift-  
1
1
+
ing the reference of capacitor C from GND to V . The  
1
+
energy in capacitor C is transferred to capacitor C  
pull-up resistor to V is required. Transitions occur on  
1
2
through diode D , producing an output voltage of  
the rising edge of the clock input. The resultant output  
voltage ripple frequency is one half the clock input.  
Higher clock frequencies allow for the use of smaller  
pump and reservoir capacitors for a given output volt-  
age ripple and droop. Additionally, this allows the  
TC7660 to be synchronized to an external clock, elimi-  
nating undesirable beat frequencies.  
2
approximately:  
EQUATION  
VOUT = 2 × V+ (VF1 + VF2  
)
where:  
At light loads, lowering the oscillator frequency can  
increase the efficiency of the TC7660 (Figure 5-5). By  
lowering the oscillator frequency, the switching losses  
are reduced. Refer to Figure 2-3 to determine the typi-  
cal operating frequency based on the value of the  
external capacitor. At lower operating frequencies, it  
may be necessary to increase the values of the pump  
and reservoir capacitors in order to maintain the  
desired output voltage ripple and output impedance.  
V
is the forward voltage drop of diode D  
1
F1  
and  
V
is the forward voltage drop of diode D .  
F2  
2
+
V
1
2
3
4
8
V
=
7
6
5
OUT  
+
D
1
TC7660  
(2 V ) - (2 V )  
D
F
2
+
V
+
V
+
+
1
2
3
4
8
7
6
5
C
C
2
1
1 kΩ  
CMOS  
GATE  
+
TC7660  
10 µF  
FIGURE 5-6:  
Positive Voltage Multiplier.  
V
“1”  
OUT  
5.6  
Combined Negative Voltage  
Conversion and Positive Supply  
Multiplication  
10 µF  
+
FIGURE 5-4:  
External Clocking.  
Simultaneous voltage inversion and positive voltage  
multiplication can be obtained (Figure 5-7). Capacitors  
C and C perform the voltage inversion, while capaci-  
+
V
1
3
tors C and C , plus the two diodes, perform the posi-  
8
7
1
2
4
C
OSC  
tive voltage multiplication. Capacitors C and C are  
1
3
2
4
2
the pump capacitors, while capacitors C and C are  
+
TC7660  
the reservoir capacitors for their respective functions.  
Both functions utilize the same switches of the TC7660.  
As a result, if either output is loaded, both outputs will  
drop towards GND.  
C
3
4
6
5
1
V
OUT  
C
2
+
FIGURE 5-5:  
Lowering Oscillator  
Frequency.  
DS21465B-page 8  
2002 Microchip Technology Inc.  
TC7660  
V+  
VOUT  
= -V+  
8
7
6
5
1
2
3
4
C3  
+
TC7660  
D1  
D2  
VOUT  
=
+
(2 V+) - (2 VF)  
C1  
+
+
C2  
C4  
FIGURE 5-7:  
Combined Negative  
Converter And Positive Multiplier.  
5.7  
Efficient Positive Voltage  
Multiplication/Conversion  
Since the switches that allow the charge pumping  
operation are bidirectional, the charge transfer can be  
performed backwards as easily as forwards.  
Figure 5-8 shows a TC7660 transforming -5V to +5V  
(or +5V to +10V, etc.). The only problem here is that the  
internal clock and switch-drive section will not operate  
until some positive voltage has been generated. An ini-  
tial inefficient pump, as shown in Figure 5-7, could be  
used to start this circuit up, after which it will bypass the  
other (D and D in Figure 5-7 would never turn on), or  
1
2
else the diode and resistor shown dotted in Figure 5-8  
can be used to "force" the internal regulator on.  
VOUT = -V-  
1
2
3
4
8
7
6
5
+
10 µF  
1 MΩ  
+
C1  
TC7660  
10 µF  
V- input  
FIGURE 5-8:  
Positive Voltage  
Conversion.  
2002 Microchip Technology Inc.  
DS21465B-page 9  
TC7660  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead PDIP (300 mil)  
Example:  
TC7660  
XXXXXXXX  
XXXXXNNN  
CPA061  
YYWW  
0221  
8-Lead CERDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
TC7660  
MJA061  
YYWW  
0221  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
XXXXYYWW  
NNN  
TC7660  
COA0221  
061  
Legend: XX...X Customer specific information*  
YY  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
WW  
NNN  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard marking consists of Microchip part number, year code, week code, traceability code (facility  
code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please  
check with your Microchip Sales Office.  
DS21465B-page 10  
2002 Microchip Technology Inc.  
TC7660  
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
A
A2  
A1  
E
E1  
D
L
c
B1  
B
Number of Pins  
Pitch  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
8
.100  
.155  
.130  
2.54  
3.94  
3.30  
.140  
.170  
.145  
3.56  
2.92  
4.32  
3.68  
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
2002 Microchip Technology Inc.  
DS21465B-page 11  
TC7660  
8-Lead Ceramic Dual In-line – 300 mil (CERDIP)  
Packaging diagram not available at this time.  
DS21465B-page 12  
2002 Microchip Technology Inc.  
TC7660  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
A
A2  
A1  
E
E1  
D
Number of Pins  
Pitch  
Overall Height  
8
.050  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
1.27  
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
Molded Package Thickness  
Standoff  
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
Chamfer Distance  
Foot Length  
Foot Angle  
h
L
φ
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
2002 Microchip Technology Inc.  
DS21465B-page 13  
TC7660  
NOTES:  
DS21465B-page 14  
2002 Microchip Technology Inc.  
TC7660  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
a)  
b)  
c)  
d)  
e)  
f)  
TC7660COA: Commercial Temp., SOIC  
Temperature Package  
Range  
package.  
TC7660COA713:Tape and Reel, Commercial  
Temp., SOIC package.  
TC7660CPA: Commercial Temp., PDIP  
package.  
Device:  
TC7660: DC-to-DC Voltage Converter  
TC7660EOA: Extended Temp., SOIC  
package.  
Temperature Range:  
C
E
I
=
=
=
=
0°C to +70°C  
TC7660EOA713:Tape and Reel, Extended  
Temp., SOIC package.  
-40°C to +85°C  
-25°C to +85°C (CERDIP only)  
-55°C to +125°C (CERDIP only)  
TC7660EPA: Extended Temp., PDIP  
package.  
M
g)  
h)  
TC7660IJA: Industrial Temp., CERDIP  
package  
Package:  
PA  
JA  
=
=
=
Plastic DIP, (300 mil body), 8-lead  
Ceramic DIP, (300 mil body), 8-lead  
SOIC (Narrow), 8-lead  
TC7660MJA: Military Temp., CERDIP  
package.  
OA  
OA713 = SOIC (Narrow), 8-lead (Tape and Reel)  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
DS21465B-page15  
TC7660  
NOTES:  
DS21465B-page 16  
2002 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-  
edge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, KEELOQ,  
MPLAB, PIC, PICmicro, PICSTART and PRO MATE are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense,  
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,  
ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,  
MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select  
Mode and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
®
PICmicro 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2002 Microchip Technology Inc.  
DS21465B - page 17  
M
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
China - Beijing  
Rocky Mountain  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-4338  
Bei Hai Wan Tai Bldg.  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Atlanta  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
Singapore  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
Tel: 770-640-0034 Fax: 770-640-0307  
China - Chengdu  
#07-02 Prime Centre  
Boston  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401-2402, 24th Floor,  
Singapore, 188980  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Ming Xing Financial Tower  
Microchip Technology (Barbados) Inc.,  
Taiwan Branch  
No. 88 TIDU Street  
Chicago  
Chengdu 610016, China  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
11F-3, No. 207  
Tel: 86-28-86766200 Fax: 86-28-86766599  
Tung Hua North Road  
Taipei, 105, Taiwan  
China - Fuzhou  
Tel: 630-285-0071 Fax: 630-285-0075  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
EUROPE  
Austria  
No. 71 Wusi Road  
Tel: 972-818-7423 Fax: 972-818-2924  
Fuzhou 350001, China  
Microchip Technology Austria GmbH  
Durisolstrasse 2  
Detroit  
Tel: 86-591-7503506 Fax: 86-591-7503521  
Tri-Atria Office Building  
China - Shanghai  
A-4600 Wels  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Austria  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Kokomo  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
China - Shenzhen  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Los Angeles  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 15-16, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
France  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Tel: 949-263-1888 Fax: 949-263-1338  
San Jose  
Shenzhen 518001, China  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 86-755-82350361 Fax: 86-755-82366086  
Batiment A - ler Etage  
China - Hong Kong SAR  
91300 Massy, France  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Tel: 408-436-7950 Fax: 408-436-7955  
Germany  
Toronto  
Microchip Technology GmbH  
Steinheilstrasse 10  
Kwai Fong, N.T., Hong Kong  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
Tel: 852-2401-1200 Fax: 852-2401-3431  
D-85737 Ismaning, Germany  
India  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Microchip Technology Inc.  
India Liaison Office  
Italy  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
United Kingdom  
Microchip Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
11/15/02  
DS21465B-page 18  
2002 Microchip Technology Inc.  

相关型号:

TC7660IPA

Charge Pump DC-to-DC Voltage Converter
MICROCHIP

TC7660MJA

CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER
TELCOM

TC7660MJA

CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER
MICROCHIP

TC7660MJAG

SWITCHED CAPACITOR REGULATOR, 10 kHz SWITCHING FREQ-MAX, CDIP8, CERDIP-8
MICROCHIP

TC7660MOA

Charge Pump DC-to-DC Voltage Converter
MICROCHIP

TC7660MOA713

Charge Pump DC-to-DC Voltage Converter
MICROCHIP

TC7660MPA

Charge Pump DC-to-DC Voltage Converter
MICROCHIP

TC7660S

SUPER CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER
TELCOM

TC7660S

SUPER CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER
MICROCHIP

TC7660SCOA

SUPER CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER
TELCOM

TC7660SCOA

SUPER CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER
MICROCHIP

TC7660SCOA713

SWITCHED CAPACITOR REGULATOR, 45 kHz SWITCHING FREQ-MAX, PDSO8, SOIC-8
MICROCHIP