TCA7660 [MICROCHIP]

HIGH FREQUENCY 7660 DC-TO-DC VOLTAGE CONVERTER; 高频7660的DC- DC电压转换器
TCA7660
型号: TCA7660
厂家: MICROCHIP    MICROCHIP
描述:

HIGH FREQUENCY 7660 DC-TO-DC VOLTAGE CONVERTER
高频7660的DC- DC电压转换器

转换器
文件: 总8页 (文件大小:78K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION  
KIT  
AVAILABLE  
TC7660H  
HIGH FREQUENCY 7660 DC-TO-DC VOLTAGE CONVERTER  
GENERAL DESCRIPTION  
FEATURES  
The TC7660H is a pin-compatible, high frequency up-  
grade to the Industry standard TC7660 charge pump volt-  
age converter. It converts a +1.5V to +10V input to a  
corresponding – 1.5V to – 10V output using only two low-  
cost capacitors, eliminating inductors and their associated  
cost, size and EMI.  
The TC7660H operates at a frequency of 120kHz  
(versus 10kHz for the TC7660), allowing the use of 1.0µF  
external capacitors. Oscillator frequency can be reduced  
(for lower supply current applications) by connecting an  
external capacitor from OSC to ground.  
Pin Compatible with 7660, High Frequency  
Performance DC-to-DC Converter  
Low Cost, Two Low Value External Capacitors  
Required ........................................................ (1.0µF)  
Converts +5V Logic Supply to ±5V System  
Wide Input Voltage Range ....................1.5V to 10V  
Voltage Conversion ........................................ 99.7%  
Power Efficiency ................................................ 85%  
Available in 8-Pin SOIC and 8-Pin PDIP Packages  
The TC7660H is available in 8-pin DIP and small  
outline (SOIC) packages in commercial and extended  
temperature ranges.  
PIN CONFIGURATION (DIP and SOIC)  
+
NC  
8
1
2
3
4
V
+
ORDERING INFORMATION  
CAP  
OSC  
7
6
5
TC7660HCPA  
TC7660HEPA  
Temperature  
LOW  
VOLTAGE (LV)  
V
GND  
CAP  
Part No.  
Package  
Range  
OUT  
TC7660HCOA  
TC7660HCPA  
TC7660HEOA  
TC7660HEPA  
TC7660EV  
8-Pin SOIC  
0°C to +70°C  
0°C to +70°C  
8-Pin Plastic DIP  
8-Pin SOIC  
+
V
NC  
1
2
3
4
8
7
6
5
– 40°C to +85°C  
– 40°C to +85°C  
OSC  
+
8-Pin Plastic DIP  
CAP  
LOW  
VOLTAGE (LV)  
V
TC7660HCOA  
TC7660HEOA  
Evaluation Kit for  
Charge Pump Family  
GND  
CAP  
OUT  
NC = NO INTERNAL CONNECTION  
FUNCTIONAL BLOCK DIAGRAM  
+
+
V
CAP  
2
8
VOLTAGE–  
LEVEL  
TRANSLATOR  
7
RC  
OSCILLATOR  
4
÷ 2  
OSC  
CAP  
6
LV  
5
V
OUT  
INTERNAL  
VOLTAGE  
REGULATOR  
LOGIC  
NETWORK  
TC7660H  
3
GND  
TC7660H-2 10/1/96  
© 2001 Microchip Technology Inc. DS21466A  
HIGH FREQUENCY 7660 DC-TO-DC  
VOLTAGE CONVERTER  
TC7660H  
Operating Temperature Range  
ABSOLUTE MAXIMUM RATINGS*  
C Suffix .................................................. 0°C to +70°C  
E Suffix ............................................ 40°C to +85°C  
Storage Temperature Range ............... – 65°C to +150°C  
Lead Temperature (Soldering, 10 sec) ................. +300°C  
Supply Voltage ...................................................... +10.5V  
LV and OSC Inputs  
Voltage (Note 1) ........................ – 0.3V to (V+ + 0.3V)  
for V+ < 5.5V  
*Static-sensitive device. Unused devices must be stored in conductive  
material. Protect devices from static discharge and static fields. Stresses  
above those listed under "Absolute Maximum Ratings" may cause perma-  
nent damage to the device. These are stress ratings only and functional  
operation of the device at these or any other conditions above those  
indicated in the operation sections of the specifications is not implied.  
Exposuretoabsolutemaximumratingconditionsforextendedperiodsmay  
affect device reliability.  
(V+ – 5.5V) to (V+ + 0.3V)  
for V+ > 5.5V  
Current Into LV (Note 1) ..................... 20µA for V+ > 3.5V  
Output Short Duration (VSUPPLY 5.5V) .........Continuous  
Power Dissipation (TA 70°C) (Note 2)  
SOIC ...............................................................470mW  
Plastic DIP ......................................................730mW  
ELECTRICAL CHARACTERISTICS: Over Operating Temperature Range with V+= 5V, CI = C2 = 1µF, COSC = 0,  
Test Circuit (Figure 1), unless otherwise indicated.  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
I+  
VH+  
Supply Current  
RL = ∞  
Min TA Max,  
3
0.46  
1.0  
10  
mA  
V
Supply Voltage Range, High  
RL = 5k, LV Open  
VL+  
Supply Voltage Range, Low  
Output Source Resistance  
Min TA Max,  
RL = 5k, LV to GND  
1.5  
3.5  
V
ROUT  
IOUT = 20mA, TA = 25°C  
55  
80  
95  
IOUT = 20mA, 0°C TA +70°C  
(C Device)  
I
OUT = 20mA, – 40°C TA +85°C  
110  
250  
(E Device)  
V+ = 2V, IOUT = 3mA, LV to GND  
150  
0°C TA +70°C  
FOSC  
PEFF  
VEFF  
Oscillator Frequency  
Power Efficiency  
81  
99  
120  
85  
kHz  
%
IOUT = 10mA, Min TA Max  
RL = ∞  
Voltage Efficiency  
99.7  
%
NOTES: 1. Connecting any input terminal to voltages greater than V+ or less than GND may cause destructive latch-up. It is recommended that no  
inputs from sources operating from external supplies be applied prior to "power up" of the TC7660H.  
2. Derate linearly above 50°C by 5.5mW/°C.  
TC7660H-2 10/1/96  
© 2001 Microchip Technology Inc. DS21466A  
2
HIGH FREQUENCY 7660 DC-TO-DC  
VOLTAGE CONVERTER  
TC7660H  
To improve low-voltage operation, the LV pin should be  
connected to GND. For supply voltages greater than 3.5V,  
the LV terminal must be left open to ensure latch-up-  
proof operation and prevent device damage.  
I
S
1
2
3
4
8
7
6
5
+
V
(+5V)  
Theoretical Power Efficiency Considerations  
In theory, a capacitative charge pump can approach  
100% efficiency if certain conditions are met:  
+
C
TC7660H  
1
1.0 µF  
(1) The drive circuitry consumes minimal power.  
(2) The output switches have extremely low ON  
resistance and virtually no offset.  
C
1.0 µF  
2
(3) The impedances of the pump and reservoir  
capacitors are negligible at the pump frequency.  
R
L
+
The TC7660H approaches these conditions for nega-  
tive voltage multiplication if large values of C1 and C2 are  
used. Energy is lost only in the transfer of charge  
between capacitors if a change in voltage occurs. The  
energy lost is defined by:  
Figure 1. TC7660H Test Circuit  
Detailed Description  
2
E = 1/2 C1 (V12 – V2 )  
The TC7660H contains all the necessary circuitry to  
implement a voltage inverter, with the exception of two  
external capacitors, which may be inexpensive 1.0µF  
non-polarized capacitors. Operation is best understood by  
considering Figure 2, which shows an idealized voltage  
inverter. Capacitor C1 is charged to a voltage, V+, for the half  
cycle when switches S1 and S3 are closed. (Note: Switches  
S2 andS4 areopenduringthishalfcycle.)Duringthesecond  
half cycle of operation, switches S2 and S4 are closed, with  
S1 and S3 open, thereby shifting capacitor C1 negatively by  
V+ volts. Charge is then transferred from C1 to C2, such that  
the voltage on C2 is exactly V+, assuming ideal switches and  
no load on C2.  
V1 and V2 are the voltages on C1 during the pump and  
transfer cycles. If the impedances of C1 and C2 are relatively  
high at the pump frequency (refer to Figure 1), compared to  
the value of RL, there will be a substantial difference in  
voltages V1 and V2. Therefore, it is not only desirable to  
make C2 as large as possible to eliminate output voltage  
ripple, but also to employ a correspondingly large value for  
C1 in order to achieve maximum efficiency of operation.  
Do's and Don'ts  
• Do not exceed maximum supply voltages.  
• Do not connect LV terminal to GND for supply voltages  
greater than 3.5V.  
S
S
2
1
+
• Do not short circuit the output to V+ supply for voltages  
above 5.5V for extended periods; however, transient  
conditions including start-up are okay.  
V
• When using polarized capacitors in the inverting mode,  
the + terminal of C1 must be connected to pin 2 of the  
TC7660H and the + terminal of C2 must be connected  
to GND Pin 3.  
C
2
GND  
S
S
4
3
V
OUT  
= V  
IN  
Figure 2. Idealized Charge Pump Inverter  
© 2001 Microchip Technology Inc. DS21466A  
TC7660H-2 10/1/96  
3
HIGH FREQUENCY 7660 DC-TO-DC  
VOLTAGE CONVERTER  
TC7660H  
+
Simple Negative Voltage Converter  
V
Figure 3 shows typical connections to provide a nega-  
tive supply where a positive supply is available. A similar  
scheme may be employed for supply voltages anywhere in  
the operating range of +1.5V to +10V, keeping in mind that  
pin6(LV)istiedtothesupplynegative(GND)onlyforsupply  
voltages below 3.5V.  
1
2
3
4
8
7
6
5
V
*
OUT  
C
+
1
C
2
1.0 µF  
TC7660H  
1.0 µF  
+
The output characteristics of the circuit in Figure 3 are  
those of a nearly ideal voltage source in series with 70.  
Thus, for a load current of – 10 mA and a supply voltage of  
+5V, the output voltage would be – 4.3V.  
+
+
*
NOTES: 1. V  
OUT  
= n V for 1.5V  
V
10V  
Figure 3. Simple Negative Converter  
The dynamic output impedance of the TC7660H is due,  
primarily, to capacitive reactance of the charge transfer  
capacitor (C1). Since this capacitor is connected to the  
output for only 1/2 of the cycle, the equation is:  
Paralleling Devices  
Any number of TC7660H voltage converters may be  
paralleled to reduce output resistance (Figure 4). The reser-  
voir capacitor, C2, serves all devices, while each device  
requires its own pump capacitor, C1. The resultant output  
resistance would be approximately:  
2
XC =  
= 2.12Ω,  
2πf C1  
where f = 150kHz and C1 = 1.0µF.  
R
OUT (of TC7660H)  
ROUT  
=
n (number of devices)  
+
V
1
8
7
6
5
2
1
2
3
4
8
7
6
5
+
TC7660H  
"1"  
3
4
1.0 µF  
+
TC7660H  
"n"  
1.0 µF  
V
*
OUT  
1.0 µF  
+
*
1. V  
NOTES:  
+
+
= n V for 1.5V  
V
10V  
OUT  
Figure 4. Increased Output Voltage by Cascading Devices  
Cascading Devices  
Changing the TC7660H Oscillator Frequency  
The TC7660H may be cascaded as shown in (Figure 4)  
to produce larger negative multiplication of the initial supply  
voltage. However, due to the finite efficiency of each device,  
the practical limit is probably 10 devices for light loads. The  
output voltage is defined by:  
Itmaybedesirableinsomeapplications(duetonoiseor  
other considerations) to increase or decease the oscillator  
frequency. This can be achieved by overdriving the oscilla-  
tor from an external clock, as shown in Figure 6. In order to  
prevent possible device latch-up, a 1kresistor must be  
used in series with the clock output. In a situation where the  
designer has generated the external clock frequency using  
TTLlogic, theadditionofa10kpull-upresistortoV+ supply  
is required. Note that the pump frequency with external  
clocking, as with internal clocking, will be 1/2 of the clock  
frequency. Output transitions occur on the positive-going  
edge of the clock.  
VOUT = – n (VIN)  
where n is an integer representing the number of devices  
cascaded. The resulting output resistance would be ap-  
proximately the weighted sum of the individual TC7660H  
ROUT values.  
TC7660H-2 10/1/96  
© 2001 Microchip Technology Inc. DS21466A  
4
HIGH FREQUENCY 7660 DC-TO-DC  
VOLTAGE CONVERTER  
TC7660H  
+
V
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
TC7660H  
"1"  
R
C
L
1
TC7660H  
"n"  
C
1
R
L
C
2
+
Figure 5. Paralleling Devices Lowers Output Impedance  
Combined Negative Voltage Conversion  
and Positive Supply Multiplication  
+
+
V
V
1
2
3
4
8
7
1 kΩ  
Figure 8 combines the functions shown in Figures 3 and  
8 to provide negative voltage conversion and positive volt-  
age multiplication simultaneously. This approach would be,  
for example, suitable for generating +9V and 5V from an  
existing +5V supply. In this instance, capacitors C1 and C3  
perform the pump and reservoir functions, respectively, for  
the generation of the negative voltage, while capacitors C2  
and C4 are pump and reservoir, respectively, for the multi-  
pliedpositivevoltage. Thereisapenaltyinthisconfiguration  
which combines both functions, however, in that the source  
impedances of the generated supplies will be somewhat  
higher due to the finite impedance of the common charge  
pump driver at pin 2 of the device.  
CMOS  
GATE  
+
6
5
1.0 µF  
TC7660H  
V
OUT  
1.0 µF  
+
Figure 6. External Clocking  
Positive Voltage Multiplication  
The TC7660H may be employed to achieve positive  
voltage multiplication using the circuit shown in Figure 7. In  
this application, the pump inverter switches of the TC7660H  
are used to charge C1 to a voltage level of V+ VF (where V+  
is the supply voltage and VF is the forward voltage drop of  
diode D1). On the transfer cycle, the voltage on C1 plus the  
supply voltage (V+) is applied through diode D2 to capacitor  
C2. The voltage thus created on C2 becomes (2 V+) (2 VF),  
or twice the supply voltage minus the combined forward  
voltage drops of diodes D1 and D2.  
+
V
V
=
OUT  
+
(V V )  
F
1
2
3
4
8
7
6
5
The source impedance of the output (VOUT) will depend  
on the output current, but for V+ = 5V and an output current  
of 10mA, it will be approximately 60.  
C
3
+
D
D
1
TC7660H  
+
V
=
OUT  
+
+
C
(2 V ) (2 V )  
+
F
V
2
1
+
1
2
3
4
8
7
6
5
C
2
C
4
D
1
V
=
OUT  
D
+
2
(2 V ) (2 V )  
TC7660H  
F
+
+
C
C
2
1
Figure 8. Combined Negative Converter and Positive Multiplier  
Figure 7. Positive Voltage Multiplier  
© 2001 Microchip Technology Inc. DS21466A  
TC7660H-2 10/1/96  
5
HIGH FREQUENCY 7660 DC-TO-DC  
VOLTAGE CONVERTER  
TC7660H  
Efficient Positive Voltage Multiplication/  
Conversion  
V
= V  
OUT  
Since the switches that allow the charge pumping op-  
eration are bidirectional, the charge transfer can be per-  
formed backwards as easily as forwards. Figure 9 shows a  
TC7660H transforming 5V to +5V (or +5V to +10V, etc.).  
The only problem here is that the internal clock and switch-  
drive section will not operate until some positive voltage has  
been generated. An initial inefficient pump, as shown in  
Figure 9, could be used to start this circuit up, after which it  
will bypass the diode and resistor shown dotted in  
Figure 9.  
1
2
3
4
8
7
6
5
+
1.0 µF  
1 MΩ  
+
C
1
TC7660H  
1.0 µF  
V
INPUT  
Figure 9. Positive Voltage Conversion  
TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 1)  
Output Source Resistance vs. Supply Voltage  
Output Source Resistance vs. Temperature  
500  
10k  
T
= +25°C  
I
= 1 mA  
A
OUT  
450  
400  
1k  
100Ω  
10Ω  
200  
150  
100  
50  
+
V
V
= +2V  
= +5V  
+
0
55 25  
0
+25 +50 +75 +100 +125  
0
1
2
3
4
5
6
7
8
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Output Voltage vs. Output Current  
C C =1µF  
Output Voltage vs. Load Current  
I
2
5
4
0
1  
2  
3  
4  
5  
6  
7  
T
= +25°C  
A
+
V
= +5V  
3
2
1
0
1  
2  
3  
4  
8  
T
= +25°C  
SLOPE 55Ω  
A
9  
LV OPEN  
10  
5  
0
10 20 30 40 50 60 70  
LOAD CURRENT (mA)  
80  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
TC7660H-2 10/1/96  
© 2001 Microchip Technology Inc. DS21466A  
6
HIGH FREQUENCY 7660 DC-TO-DC  
VOLTAGE CONVERTER  
TC7660H  
PACKAGE DIMENSIONS  
8-Pin Plastic DIP  
PIN 1  
.260 (6.60)  
.240 (6.10)  
.045 (1.14)  
.030 (0.76)  
.070 (1.78)  
.040 (1.02)  
.310 (7.87)  
.290 (7.37)  
.400 (10.16)  
.348 (8.84)  
.200 (5.08)  
.140 (3.56)  
.040 (1.02)  
.020 (0.51)  
.015 (0.38)  
.008 (0.20)  
3° MIN.  
.150 (3.81)  
.115 (2.92)  
.400 (10.16)  
.310 (7.87)  
.110 (2.79)  
.090 (2.29)  
.022 (0.56)  
.015 (0.38)  
8-Pin SOIC  
.157 (3.99)  
.150 (3.81)  
.244 (6.20)  
.228 (5.79)  
.050 (1.27) TYP.  
.197 (5.00)  
.189 (4.80)  
.069 (1.75)  
.053 (1.35)  
.010 (0.25)  
.007 (0.18)  
8° MAX.  
.020 (0.51)  
.013 (0.33)  
.010 (0.25)  
.004 (0.10)  
.050 (1.27)  
.016 (0.40)  
Dimensions: inches (mm)  
© 2001 Microchip Technology Inc. DS21466A  
TC7660H-2 10/1/96  
7
WORLDWIDE  
SALES AND  
S
ERVICE  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
AMERICAS  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
ASIA/PACIFIC (continued)  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Singapore, 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Rocky Mountain  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Tel: 408-436-7950 Fax: 408-436-7955  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Toronto  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
Austin  
Analog Product Sales  
8303 MoPac Expressway North  
Suite A-201  
ASIA/PACIFIC  
China - Beijing  
Microchip Technology Beijing Office  
Unit 915  
New China Hong Kong Manhattan Bldg.  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
EUROPE  
Australia  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Austin, TX 78759  
Tel: 512-345-2030 Fax: 512-345-6085  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Boston  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
China - Shanghai  
Microchip Technology Shanghai Office  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Boston  
Analog Product Sales  
Unit A-8-1 Millbrook Tarry Condominium  
97 Lowell Road  
Concord, MA 01742  
France  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Arizona Microchip Technology SARL  
Parc díActivite du Moulin de Massy  
43 Rue du Saule Trapu  
Hong Kong  
Microchip Asia Pacific  
RM 2101, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Tel: 978-371-6400 Fax: 978-371-0050  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423 Fax: 972-818-2924  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
India  
Microchip Technology Inc.  
India Liaison Office  
Divyasree Chambers  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
1 Floor, Wing A (A3/A4)  
No. 11, OíShaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Dayton  
Germany  
Analog Product Sales  
Lochhamer Strasse 13  
D-82152 Martinsried, Germany  
Tel: 49-89-895650-0 Fax: 49-89-895650-22  
Two Prestige Place, Suite 130  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Japan  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Italy  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Los Angeles  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 949-263-1888 Fax: 949-263-1338  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Mountain View  
Analog Product Sales  
1300 Terra Bella Avenue  
Mountain View, CA 94043-1836  
Tel: 650-968-9241 Fax: 650-967-1590  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
01/09/01  
All rights reserved.  
©
2001 Microchip Technology Incorporated. Printed in the USA. 1/01  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by  
updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual  
property rights arising from such use or otherwise. Use of Microchipís products as critical components in life support systems is not authorized except with  
express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellec-  
tual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights  
reserved. All other trademarks mentioned herein are the property of their respective companies.  
TC7660H-2 10/1/96  
© 2001 Microchip Technology Inc. DS21466A  
8

相关型号:

TCA771

TRANSISTOR ARRAY WITH 5 NPN TRANSISTORS
INFINEON

TCA785

Phase Control IC
INFINEON

TCA785_05

Phase Control IC
INFINEON

TCA830

MONOLITHISH INTEGRIERTE SCHALTUNG MONOLITHIC INTEGRATED CIRCUIT
VISHAY

TCA830A

MONOLITHISH INTEGRIERTE SCHALTUNG MONOLITHIC INTEGRATED CIRCUIT
VISHAY

TCA8418

I2C CONTROLLED KEYPAD SCAN IC WITH INTEGRATED ESD PROTECTION
TI

TCA8418E

I2C CONTROLLED KEYPAD SCAN IC WITH INTEGRATED ESD PROTECTION
TI

TCA8418EYFPR

具有中断、复位和 80 键支持的 18 位 1.65 至 3.6V 1MHz I2C/SMBus 键盘扫描仪 | YFP | 25 | -40 to 85
TI

TCA8418RTWR

I2C CONTROLLED KEYPAD SCAN IC WITH INTEGRATED ESD PROTECTION
TI

TCA8418YFPR

I2C CONTROLLED KEYPAD SCAN IC WITH INTEGRATED ESD PROTECTION
TI

TCA8424

Check for Samples: TCA8424
TI

TCA871

TRANSISTOR ARRAY WITH 5 NPN TRANSISTORS
INFINEON