VSC8512XJG-02 [MICROCHIP]

Ethernet Transceiver;
VSC8512XJG-02
型号: VSC8512XJG-02
厂家: MICROCHIP    MICROCHIP
描述:

Ethernet Transceiver

以太网:16GBASE-T 电信 电信集成电路
文件: 总141页 (文件大小:1080K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VSC8512-02 Datasheet  
12-Port 10/100/1000BASE-T PHY with SGMII and QSGMII  
MAC  
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of  
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the  
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have  
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any  
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all  
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not  
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to  
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi  
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely  
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP  
rights, whether with regard to such information itself or anything described by such information. Information provided in this  
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this  
document or to any products and services at any time without notice.  
Microsemi Headquarters  
One Enterprise, Aliso Viejo,  
CA 92656 USA  
Within the USA: +1 (800) 713-4113  
Outside the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
Fax: +1 (949) 215-4996  
Email: sales.support@microsemi.com  
www.microsemi.com  
About Microsemi  
©2018 Microsemi, a wholly owned  
subsidiary of Microchip Technology Inc. All  
rights reserved. Microsemi and the  
Microsemi logo are registered trademarks of  
Microsemi Corporation. All other trademarks  
and service marks are the property of their  
respective owners.  
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of  
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.  
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and  
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's  
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication  
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and  
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.  
VMDS-10396. 4.3 11/18  
Contents  
1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1  
1.2  
1.3  
1.4  
1.5  
Revision 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Revision 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Revision 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Revision 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Revision 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1  
Register and Bit Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3.1  
Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.2  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
4 Functional Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4.1  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4.2  
SerDes MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4.2.1  
4.2.2  
4.2.3  
SerDes MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
SGMII MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
QSGMII MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.3  
SerDes Media Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
QSGMII to 1000BASE-X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
QSGMII to 100BASE-FX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
QSGMII to SGMII Protocol Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Unidirectional Transport for Fiber Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.4  
4.5  
PHY Addressing and Port Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.4.1  
4.4.2  
PHY Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SerDes Port Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Cat5 Twisted Pair Media Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.5.1  
4.5.2  
4.5.3  
4.5.4  
4.5.5  
4.5.6  
4.5.7  
Voltage-Mode Line Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Cat5 Autonegotiation and Parallel Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1000BASE-T Forced Mode Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Automatic Crossover and Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Manual HP Auto-MDIX Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Link Speed Downshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Energy Efficient Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.6  
4.7  
Automatic Media-Sense Interface Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.7.1  
4.7.2  
4.7.3  
Configuring the REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Single-Ended REFCLK Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Differential REFCLK Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.8  
Ethernet Inline Powered Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
IEEE 802.3af PoE Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.9  
4.10  
ActiPHY Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.10.1 Low Power State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.10.2 Link Partner Wake-Up State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.10.3 Normal Operating State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.11  
Media Recovered Clock Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.11.1 Clock Selection Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.11.2 Clock Output Squelch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
iii  
4.12  
4.13  
Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.12.1 SMI Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.12.2 SMI Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.13.1 LED Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.13.2 Extended LED Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.13.3 LED Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.13.4 Basic Serial LED Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.13.5 Enhanced Serial LED Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.13.6 LED Port Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.14  
4.15  
Fast Link Failure Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Integrated I2C Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.15.1 Read/Write Access Using the I2C MUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
4.16  
4.17  
GPIO Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Testing Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.17.1 Ethernet Packet Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.17.2 CRC Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.17.3 Far-End Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.17.4 Near-End Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.17.5 Connector Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.17.6 SerDes Loopbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4.17.7 VeriPHY Cable Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.17.8 JTAG Boundary Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
4.17.9 JTAG Instruction Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4.17.10 Boundary Scan Register Cell Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
4.17.11 JTAG Boundary Scan Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
4.18  
4.19  
100FX Halt Code Transmission and Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
5 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.1  
IEEE Standard and Main Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
5.1.8  
5.1.9  
Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Mode Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Device Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Autonegotiation Advertisement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Link Partner Autonegotiation Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Autonegotiation Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Transmit Autonegotiation Next Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Autonegotiation Link Partner Next Page Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
1000BASE-T Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
5.1.10 1000BASE-T Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
5.1.11 MMD Access Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
5.1.12 MMD Address or Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
5.1.13 1000BASE-T Status Extension 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
5.1.14 100BASE-TX Status Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
5.1.15 1000BASE-T Status Extension 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
5.1.16 Bypass Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
5.1.17 Error Counter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
5.1.18 Error Counter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
5.1.19 Error Counter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
5.1.20 Extended Control and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
5.2  
Extended PHY Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
Extended PHY Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Interrupt Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Interrupt Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Device Auxiliary Control and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
LED Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
iv  
5.2.6  
5.2.7  
LED Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Extended Page Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
5.3  
Extended Page 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
SerDes Media Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Cu Media CRC Good Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Extended Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
ActiPHY Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
PoE and Miscellaneous Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
VeriPHY Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
VeriPHY Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
VeriPHY Control 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Ethernet Packet Generator Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
5.3.10 Ethernet Packet Generator Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
5.4  
5.5  
Extended Page 2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
5.4.1  
5.4.2  
Cu PMD Transmit Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
EEE Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Extended Page 3 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
5.5.1  
5.5.2  
5.5.3  
5.5.4  
5.5.5  
5.5.6  
5.5.7  
5.5.8  
5.5.9  
MAC SerDes PCS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
MAC SerDes PCS Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
MAC SerDes Clause 37 Advertised Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
MAC SerDes Clause 37 Link Partner Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
MAC SerDes Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Media SerDes Transmit Good Packet Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Media SerDes Transmit CRC Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Media SerDes PCS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Media SerDes PCS Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
5.5.10 Media SerDes Clause 37 Advertised Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
5.5.11 Media SerDes Clause 37 Link Partner Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
5.5.12 Media SerDes Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
5.5.13 Fiber Media CRC Good Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
5.5.14 Fiber Media CRC Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
5.6  
General Purpose Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
5.6.1  
5.6.2  
5.6.3  
5.6.4  
5.6.5  
5.6.6  
5.6.7  
5.6.8  
5.6.9  
SIGDET/LED vs. GPIO Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
COMA_MODE and CLK_SQUELCH_IN Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
GPIO Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
GPIO Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
GPIO Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Global Command and SerDes Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
MAC Mode and Fast Link Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
I2C MUX Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
I2C MUX Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
5.6.10 I2C MUX Data Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
5.6.11 Recovered Clock 0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
5.6.12 Recovered Clock 1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
5.6.13 Enhanced LED Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
5.6.14 Global Interrupt Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
5.7  
Clause 45 Registers to Support Energy Efficient Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
5.7.1  
5.7.2  
5.7.3  
5.7.4  
5.7.5  
PCS Status 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
EEE Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
EEE Wake Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
EEE Advertisement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
EEE Link Partner Advertisement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
6 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
6.1  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
6.1.1  
6.1.2  
VDD_IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Internal Pull-Up or Pull-Down Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
v
6.1.3  
6.1.4  
6.1.5  
6.1.6  
Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Enhanced SerDes Interface (QSGMII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
SerDes Interface (SGMII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
6.2  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.5  
6.2.6  
6.2.7  
6.2.8  
6.2.9  
Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Recovered Clock Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
SerDes Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
SerDes Driver Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
SerDes Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
SerDes Receiver Jitter Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Enhanced SerDes Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Enhanced SerDes Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Enhanced Serial LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
6.2.10 Enhanced SerDes Driver Jitter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
6.2.11 Enhanced SerDes Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
6.2.12 Enhanced SerDes Receiver Jitter Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
6.2.13 JTAG Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
6.2.14 Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
6.2.15 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
6.2.16 Serial LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
6.2.17 Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
6.3  
6.4  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Stress Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
7 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
7.1  
Pin Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
7.2  
Pins by Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
7.2.7  
7.2.8  
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
LED and Multi/General Purpose Input and Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
MAC SerDes/QSGMII Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
No Connect and Reserved Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Serial Management Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Twisted Pair Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
7.3  
7.4  
Pins by Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Pins by Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
8 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
8.1  
8.2  
8.3  
Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Thermal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Moisture Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
9 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
10BASE-T mode unable to re-establish link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Link status for 100BASE-FX operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Software script for link performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
10BASE-T signal amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Clause 45 register 7.60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Clause 45 register 3.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Clause 45 register 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Clause 45 register address post-increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
10 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
vi  
Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
QSGMII Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
SGMII Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
SerDes MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
SGMII MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
QSGMII MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Cat5 Media Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Low Power Idle Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Automatic Media-Sense Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.5 V CMOS Single-Ended REFCLK Input Resistor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.3 V CMOS Single-Ended REFCLK Input Resistor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
AC-Coupling Required for REFCLK Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Inline Powered Ethernet Switch Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
ActiPHY State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SMI Read Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SMI Write Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
MDINT Configured as an Open-Drain (Active-Low) Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
MDINT Configured as an Open-Source (Active-High) Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
I2C MUX with SFP Control and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
I2C MUX Read and Write Register Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Far-End Loopback Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Near-End Loopback Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Connector Loopback Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Data Loops of the SerDes Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Test Access Port and Boundary Scan Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Register Space Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
SGMII DC Transmit Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
SGMII DC Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
SGMII DC Driver Output Impedance Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
SGMII DC Input Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
QSGMII Transient Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Enhanced Serial LED Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
JTAG Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Test Circuit for TDO Disable Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
SMI Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Serial LED Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Pin Diagram, Left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Pin Diagram, Right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 34  
Figure 35  
Figure 36  
Figure 37  
Figure 38  
Figure 39  
Figure 40  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
vii  
Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
PHY Address Range Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SerDes Port Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Supported MDI Pair Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
AMS Media Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
REFCLK Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
LED Mode and Function Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Extended LED Mode and Function Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
LED Serial Stream Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
IDCODE JTAG Device Identification Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
USERCODE JTAG Device Identification Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
JTAG Interface Instruction Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
IEEE 802.3 Standard Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Main Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Mode Control, Address 0 (0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Mode Status, Address 1 (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Identifier 1, Address 2 (0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Identifier 2, Address 3 (0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Device Autonegotiation Advertisement, Address 4 (0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Autonegotiation Link Partner Ability, Address 5 (0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Autonegotiation Expansion, Address 6 (0x06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Autonegotiation Next Page Transmit, Address 7 (0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Autonegotiation LP Next Page Receive, Address 8 (0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
1000BASE-T Control, Address 9 (0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
1000BASE-T Status, Address 10 (0x0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
MMD EEE Access, Address 13 (0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
MMD Address or Data Register, Address 14 (0x0E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
1000BASE-T Status Extension 1, Address 15 (0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
100BASE-TX Status Extension, Address 16 (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
1000BASE-T Status Extension 2, Address 17 (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Bypass Control, Address 18 (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Extended Control and Status, Address 19 (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Extended Control and Status, Address 20 (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Extended Control and Status, Address 21 (0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Extended Control and Status, Address 22 (0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Extended PHY Control 1, Address 23 (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Extended PHY Control 2, Address 24 (0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Interrupt Mask, Address 25 (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Interrupt Status, Address 26 (0x1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Auxiliary Control and Status, Address 28 (0x1C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
LED Mode Select, Address 29 (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
LED Behavior, Address 30 (0x1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Extended/GPIO Page Access, Address 31 (0x1F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Extended Registers Page 1 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
SerDes Media Control, Address 16E1 (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Cu Media CRC Good Counter, Address 18E1 (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Extended Mode Control, Address 19E1 (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Extended PHY Control 3, Address 20E1 (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Extended PHY Control 4, Address 23E1 (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
VeriPHY Control 1, Address 24E1 (0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
VeriPHY Control 2, Address 25E1 (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
VeriPHY Control 3, Address 26E1 (0x1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
VeriPHY Control 3 Fault Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
Table 17  
Table 18  
Table 19  
Table 20  
Table 21  
Table 22  
Table 23  
Table 24  
Table 25  
Table 26  
Table 27  
Table 28  
Table 29  
Table 30  
Table 31  
Table 32  
Table 33  
Table 34  
Table 35  
Table 36  
Table 37  
Table 38  
Table 39  
Table 40  
Table 41  
Table 42  
Table 43  
Table 44  
Table 45  
Table 46  
Table 47  
Table 48  
Table 49  
Table 50  
Table 51  
Table 52  
Table 53  
Table 54  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
viii  
Table 55  
Table 56  
Table 57  
Table 58  
Table 59  
Table 60  
Table 61  
Table 62  
Table 63  
Table 64  
Table 65  
Table 66  
Table 67  
Table 68  
Table 69  
Table 70  
Table 71  
Table 72  
Table 73  
Table 74  
Table 75  
Table 76  
Table 77  
Table 78  
Table 79  
Table 80  
Table 81  
Table 82  
Table 83  
Table 84  
Table 85  
Table 86  
Table 87  
Table 88  
Table 89  
Table 90  
Table 91  
Table 92  
Table 93  
Table 94  
Table 95  
Table 96  
Table 97  
Table 98  
Table 99  
Table 100  
Table 101  
Table 102  
Table 103  
Table 104  
Table 105  
Table 106  
Table 107  
Table 108  
Table 109  
Table 110  
Table 111  
Table 112  
Table 113  
EPG Control 1, Address 29E1 (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
EPG Control 2, Address 30E1 (0x1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Extended Registers Page 2 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Cu PMD Transmit Control, Address 16E2 (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
EEE Control, Address 17E2 (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Extended Registers Page 3 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
MAC SerDes PCS Control, Address 16E3 (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
MAC SerDes PCS Status, Address 17E3 (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
MAC SerDes Cl37 Advertised Ability, Address 18E3 (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
MAC SerDes Cl37 LP Ability, Address 19E3 (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
MAC SerDes Status, Address 20E3 (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Media SerDes Tx Good Packet Counter, Address 21E3 (0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Media SerDes Tx CRC Error Counter, Address 22E3 (0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Media SerDes PCS Control, Address 23E3 (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Media SerDes PCS Status, Address 24E3 (0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Media SerDes Cl37 Advertised Ability, Address 25E3 (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
MAC SerDes Cl37 LP Ability, Address 26E3 (0x1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Media SerDes Status, Address 27E3 (0x1B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Fiber Media CRC Good Counter, Address 28E3 (0x1C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Fiber Media CRC Error Counter, Address 29E3 (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
General Purpose Registers Page Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
SIGDET/LED vs. GPIO Control, Address 13G (0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
COMA_MODE and CLK_SQUELCH_IN Control, Address 14G (0x0E) . . . . . . . . . . . . . . . . . . . . . 72  
GPIO Input, Address 15G (0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
GPIO Output, Address 16G (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
GPIO Input/Output Configuration, Address 17G (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Global Command and SerDes Configuration, Address 18G (0x12) . . . . . . . . . . . . . . . . . . . . . . . . 73  
MAC Mode and Fast Link Configuration, Address 19G (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
I2C MUX Control 1, Address 20G (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
I2C MUX Interface Status and Control, Address 21G (0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
I2C MUX Data Read/Write, Address 22G (0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Recovered Clock 0 Control, Address 23G (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Recovered Clock 1 Control, Address 24G (0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Enhanced LED Control, Address 25G (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Global Interrupt Status, Address 29G (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Clause 45 Registers Page Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
PCS Status 1, Address 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
EEE Capability, Address 3.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
EEE Wake Error Counter, Address 3.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
EEE Advertisement, Address 7.60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
EEE Advertisement, Address 7.61 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
VDD_IO DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Internal Pull-Up or Pull-Down Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Reference Clock DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Enhanced SerDes Driver DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Enhanced SerDes Receiver DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
SerDes Driver DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
SerDes Receiver DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
QSGMII to 1000BASE-T Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
QSGMII to 1000BASE-X Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
QSGMII to 100BASE-FX Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
SGMII to 1000BASE-T Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Reference Clock AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Recovered Clock AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
SerDes Output AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
SerDes Driver Jitter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
SerDes Input AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
SerDes Receiver Jitter Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Enhanced SerDes Outputs AC Specifications, SGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
ix  
Table 114  
Table 115  
Table 116  
Table 117  
Table 118  
Table 119  
Table 120  
Table 121  
Table 122  
Table 123  
Table 124  
Table 125  
Table 126  
Table 127  
Table 128  
Table 129  
Table 130  
Table 131  
Table 132  
Table 133  
Table 134  
Table 135  
Table 136  
Enhanced SerDes Outputs AC Specifications, QSGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Enhanced Serial LEDs AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Enhanced SerDes Driver Jitter Characteristics, QSGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Enhanced SerDes Input AC Specifications, SGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Enhanced SerDes Inputs AC Specifications, QSGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Enhanced SerDes Receiver Jitter Tolerance, QSGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
JTAG Interface AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
SMI Interface AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
NRESET Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Serial LEDs AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Stress Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Pin Type Symbol Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
LED, Multipurpose, and GPIO Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
MAC SerDes Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
No Connect and Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Serial Management Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Twisted Pair Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Thermal Resistances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
x
Revision History  
1
Revision History  
The revision history describes the changes that were implemented in the document. The changes are  
listed by revision, starting with the most current publication.  
1.1  
1.2  
Revision 4.3  
Revision 4.3 of this datasheet was published in September 2014. In revision 4.3 of the document, the  
package drawing was updated to reflect two top views, which represent one of two packages customers  
can expect to receive. The maximum package height was changed to 2.44 mm. For more information,  
see Figure 40, page 127.  
Revision 4.2  
Revision 4.2 of this datasheet was published in May 2014. The following is a summary of the changes  
made to the datasheet:  
Information about the device SerDes MAC and the device media interface was updated. Neither the  
integrated SerDes media access controller (MAC) or the enhanced SerDes media interface of the  
device include internal AC-decoupling capacitors; external capacitors must be used.  
Information about AC-coupling, which is required when using a differential reference clock  
(REFCLK) input, was added.  
Information about the typical input impedance for a differential REFCLK signal (RI) was added.  
The order of the information in the Pins by Function section was changed to match the alphabetical  
sort in the Pins spreadsheet attached to this document.  
“LED and Multipurpose Pins,” in the Pins by Function section, was changed to “LED and  
Multi/General Purpose Input and Output Pins” to more accurately describe the functionality of the  
pins.  
The names of pins V3 and W3 were changed. The name of V3 was changed to  
PHY0_LED0/BASIC_SLED_DATA to accurately reflect its function as a source of basic serial LED  
data. The name of W3 was changed to PHY8_LED1/GPIO_13 to accurately reflect that it does not  
provide basic serial LED data.  
The description of the following pins was changed from “Reserved” to “No Connect”: AA23, AA24,  
AA25, AA26, AB23, AB24, AB25, AB26, AC23, AC24, AC25, AC26, AD24, AD25, AD26, AE25, C5,  
R23, R24, R25, R26, T23, T24, T25, T26, U23, U24, U25, U26, V23, V24, V25, V26, W23, W24,  
W25, W26, Y23, Y24, Y25, Y26. This change does not effect the functionality of these pins or the  
device.  
Information about pin C18 was corrected. C18 must not be left floating/unconnected. It should be  
connected to VDD_IO for correct functioning of fiber media ports.  
1.3  
1.4  
Revision 4.1  
Revision 4.1 of this datasheet was published in January 2013. In revision 4.1 of the document, the  
VSC8512-03 part number was added to reflect the availability of a device with an extended operating  
temperature range of –40 °C ambient to 125 °C junction.  
Revision 4.0  
Revision 4.0 of this datasheet was published in October 2012. In revision 4.0 of the document, errata  
items, which were previously published in the VSC8512-02 Errata revision 1.0 as open issues, are now  
reconciled in the datasheet. Now that the information is available in the datasheet, the previously  
published errata document no longer applies, and it has been removed from the Microsemi Web site.  
1.5  
Revision 2.0  
Revision 2.0 of this datasheet was published in September 2012. This was the first publication of the  
document.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
1
Introduction  
2
Introduction  
This document consists of descriptions and specifications for both functional and physical aspects of the  
VSC8512-02 12-port 10/100/1000BASE-T PHY device with four dual media ports for the Ethernet market  
segment.  
In addition to datasheets, the Microsemi Web site offers an extensive library of documentation, support  
files, and application materials specific to each device. The address of the Microsemi Web site is  
www.microsemi.com.  
2.1  
Register and Bit Conventions  
This document refers to registers by their address and bit number in decimal notation. A range of bits is  
indicated with a colon. For example, a reference to address 26, bits 15 through 14 is shown as 26.15:14.  
A register with an E and a number attached (example 27E1) means it is a register contained within  
extended register page number 1. A register with a G attached (example 13G) means it is a GPIO page  
register.  
Bit numbering follows the IEEE standard with bit 15 being the most significant bit and bit 0 being the least  
significant bit.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
2
Overview  
3
Overview  
The VSC8512-02 is a low-power 12-port Gigabit Ethernet transceiver with four SerDes interfaces for  
quad-port dual media capability. It also includes an integrated quad port I2C multiplexer (MUX) to control  
SFPs or PoE modules. It has a low electromagnetic interference (EMI) line driver and integrated line side  
termination resistors that conserve both power and printed circuit board (PCB) space.  
Microsemi’s mixed signal and digital signal processing (DSP) architecture is a key operational feature of  
the VSC8512-02, assuring robust performance even under less-than-favorable environmental  
conditions. It supports both half-duplex and full duplex 10BASE-T, 100BASE-TX, and 1000BASE-T  
communication speeds over Category 5 (Cat5) unshielded twisted pair (UTP) cable at distances greater  
than 100 m, displaying excellent tolerance to NEXT, FEXT, echo, and other types of ambient  
environmental and system electronic noise. This device also supports four dual media ports and can  
support up to four 100BASE-FX, 1000BASE-X, and/or triple-speed copper SFPs on ports 8 through 11 of  
the VSC8512-02.  
The following illustrations show a high-level, general view of typical VSC8512-02 applications.  
Figure 1 • QSGMII Application Diagram  
QSGMII  
1.0 V  
2.5 V  
QSGMII Ethernet MAC  
QSGMII Ethernet MAC  
12× RJ-45  
and Magnetics  
VSC8512  
8 ports copper media  
4 ports dual media  
(copper or fiber)  
SerDes  
QSGMII MAC interface  
4 SFPs  
QSGMII Ethernet MAC  
SCL/SDA  
Figure 2 • SGMII Application Diagram  
1.0 V  
2.5 V  
SGMII  
VSC8512  
12 ports copper media  
SGMII MAC interface  
12× SGMII Ethernet  
MACs  
12× RJ-45  
and Magnetics  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
3
Overview  
3.1  
Key Features  
This section lists the main features and benefits of the VSC8512-02 device.  
Low Power  
Low power consumption of approximately 425 mW per port in 1000BASE-T mode, 200 mW per port  
in 100BASE-TX mode, 225 mW per port in 10BASE-T mode, and less than 115 mW per port in  
100BASE-FX and 1000BASE-X modes  
ActiPHY™ link down power savings  
PerfectReach™ smart cable reach algorithm  
IEEE 802.3az Energy Efficient Ethernet idle power savings  
Wide Range of Support  
Compliant with IEEE 802.3 (10BASE-T, 100BASE-TX, 1000BASE-T, 100BASE-FX, and  
1000BASE-X) specifications  
Support for IEEE 802.3ah unidirectional transport for 100BASE-FX and 1000BASE-X fiber media  
Support for >16 kB jumbo frames in all speeds with programmable synchronization FIFOs  
Supports Cisco SGMII v1.9, Cisco QSGMII v1.3 and 1000BASE-X MACs, IEEE 1149.1 JTAG  
boundary scan, and IEEE 1149.6 AC-JTAG  
Support for applications that need to meet 2 kV CDE, IEC 61000-4-2 at 8 kV  
Available in a low-cost, 672-pin BGA package with a 27 mm × 27 mm body size for low-power,  
fanless applications  
Flexibility  
VeriPHY® cable diagnostics suite provides extensive network cable information such as cable  
length, termination status, and open/short fault location  
Patented, low EMI line driver with integrated line side termination resistors  
Two programmable direct-drive LEDs per port with adjustable brightness levels using register  
controls; bi-color LED support using both LED pins  
Serial LED interface option  
Extensive test features including near end, far end, copper media connector, SerDes MAC/media  
loopback, and Ethernet packet generator with CRC error counter to decrease time-to-market  
3.2  
Block Diagram  
The following illustration shows the primary functional blocks of the VSC8512-02 device.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
4
Overview  
Figure 3 • Block Diagram  
P[11:0]_D0P  
P[11:0]_D0N  
P[11:0]_D1P  
P[11:0]_D1N  
P[11:0]_D2P  
P[11:0]_D2N  
P[11:0]_D3P  
P[11:0]_D3N  
10/100/  
1000BASE-T  
PCS  
10/100/  
1000BASE-T  
PMA  
MDI  
Twisted Pair  
Interface  
RCVRD_CLK0  
RCVRD_CLK1  
FAST_LINK_STATUS  
CLK_SQUELCH_IN  
Sync  
Ethernet  
SERDES[7:0]_TXP  
SERDES[7:0]_TXN  
(1)  
1000BASE-X  
PCS  
1000BASE-X  
PMA  
SERDES[7:0]_RXP  
SERDES[7:0]_RXN  
SERDES[7:0]_TXP  
SERDES[7:0]_TXN  
SERDES_E[3:0]_TXP  
SERDES_E[3:0]_TXN  
SERDES[7:0]_RXP  
SERDES[7:0]_RXN  
MDI  
SerDes  
Interface  
and  
SERDES_E[3:0]_RXP  
SERDES_E[3:0]_RXN  
100BASE-FX  
PCS  
100BASE-FX  
PMA  
SFP[3:0]_SD  
I2C Mux  
SFP_SERIALDATA  
SFP_SERIALCLK[3:0]  
10/100/1000BASE-T SFP Data Path  
REFCLK_P  
REFCLK_N  
COMA_MODE  
NRESET  
Management  
and  
Control Interface  
(MIIM)  
REFCLK_SEL[2:0]  
REF_FILT_[2:0]  
REF_REXT_[2:0]  
SERDES_REXT_[1:0]  
PLL and Analog  
LED Interface  
JTAG  
MDC  
MDIO  
MDINT  
PHY[11:0]_LED[1:0]  
1. Pin shared with PHY4_LED1  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
5
Functional Descriptions  
4
Functional Descriptions  
This section provides detailed information about the functionality of the VSC8512-02 device, available  
configurations, operational features, and testing functionality. It includes descriptions of the various  
device interfaces and their configuration. With the information in this section, the device setup  
parameters can be determined for configuring the VSC8512-02 part for use in a particular application.  
4.1  
Operating Modes  
The following table lists the operating modes of the VSC8512-02 device.  
Table 1 •  
Operating Modes  
Operating Mode  
Supported Media  
Notes  
SerDes MAC-to-Cat5 Link  
Partner  
1000BASE-T only  
See Figure 2, page 3.  
SGMII MAC-to-Cat5 Link  
Partner  
10/100/1000BASE-T  
10/100/1000BASE-T  
See Figure 2, page 3.  
See Figure 1, page 3.  
QSGMII MAC-to-Cat5 Link  
Partner  
QSGMII MAC-to-1000BASE-X 1000BASE-X  
Link Partner  
See Figure 1, page 3. Ports 8–11  
only.  
QSGMII MAC-to-100BASE-FX 100BASE-FX  
Link Partner  
See Figure 1, page 3. Ports 8–11  
only.  
QSGMII MAC-to-  
SFP/Fiber (1000BASE-X, See Figure 1, page 3. Ports 8–11  
SGMII/1000BASE-X  
10/100/1000BASE-T Cu  
SFP)  
only (SGMII/1000BASE-X protocol  
transfer).  
QSGMII MAC-to-AMS and  
1000BASE-X SerDes  
1000BASE-X,  
10/100/1000BASE-T  
See Figure 1, page 3.  
QSGMII MAC-to-AMS and  
100BASE-FX SerDes  
100BASE-FX,  
10/100/1000BASE-T  
See Figure 1, page 3.  
QSGMII MAC-to-AMS and  
SGMII/1000BASE-X  
SFP/Fiber (1000BASE-X, See Figure 1, page 3.  
10/100/1000BASE-T,  
1000BASE-X,  
SGMII/1000BASE-X protocol  
transfer on ports 8–11 when  
configured for SerDes media  
operation.  
10/100/1000BASE-T Cu  
SFP)  
4.2  
SerDes MAC Interface  
The VSC8512-02 SerDes MAC interface performs data serialization and deserialization functions using  
an integrated SerDes block. The interface operates in the following modes: 1000BASE-X mode, SGMII  
mode, and QSGMII mode. The SerDes and Enhanced SerDes blocks include integrated termination  
resistors. Register 19G is a global register and only needs to be set once to configure the device. The  
other register bits are configured on a per-port basis and the operation either needs to be repeated for  
each port, or a broadcast write needs to be used by setting register 22, bit 0 to configure all the ports  
simultaneously.  
4.2.1  
SerDes MAC  
When connected to a SerDes MAC compliant to 1000BASE-X, the VSC8512-02 device provides data  
throughput at a rate of 1000 Mbps only; 10 Mbps and 100 Mbps rates are not supported. To configure the  
device for SerDes MAC mode, set register 19G, bits 15:14 = 01, and register 23, bit 12 = 1. The device  
also supports 1000BASE-X Clause 37 MAC-side autonegotiation, and is enabled through register 16E3,  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
6
Functional Descriptions  
bit 7. To configure the rest of the device for 1000 Mbps only operation, select 1000BASE-T only by  
disabling the 10BASE-T/100BASE-TX advertisements in register 4.  
Figure 4 • SerDes MAC Interface  
0.1 µF  
0.1 µF  
TxP  
TxN  
RxP  
100 Ω  
RxN  
SerDes MAC  
PHY Port_n  
TxP  
100 Ω  
TxN  
0.1 µF  
0.1 µF  
RxP  
RxN  
100 Ω  
4.2.2  
SGMII MAC  
When configured to detect and switch between 10BASE-T, 100BASE-T, and 1000BASE-T data rates, the  
VSC8512-02 device can be connected to an SGMII-compatible MAC. To configure the device for SGMII  
MAC mode, set register 19G, bits 15:14 = 01 and register 23, bit 12 = 0. This device also supports SGMII  
MAC-side autonegotiation and is enabled through register 16E3, bit 7.  
Figure 5 • SGMII MAC Interface  
0.1 µF  
0.1 µF  
TxP  
RxP  
100 Ω  
RxN  
TxN  
SGMII MAC  
PHY Port_n  
TxP  
100 Ω  
TxN  
0.1 µF  
0.1 µF  
RxP  
RxN  
100 Ω  
4.2.3  
QSGMII MAC  
The VSC8512-02 device supports a QSGMII MAC to convey four ports of network data and port speed  
between 10BASE-T, 100BASE-T, and 1000BASE-T data rates and operates in both half-duplex and full-  
duplex at all port speeds. The MAC interface protocol for each port within QSGMII can either be  
1000BASE-X or SGMII, if the QSGMII MAC that the VSC8512-02 is connecting to supports this  
functionality. To configure the device for QSGMII MAC mode, set register 19G, bits 15:14 = 00 or 10. This  
device also supports SGMII MAC-side autonegotiation on each individual port and is enabled through  
register 16E3, bit 7, of that port.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
7
Functional Descriptions  
Figure 6 • QSGMII MAC Interface  
0.1 µF  
SERDES_E_RxP  
100 Ω  
TxP  
PHY  
Port_n  
PHY  
Port_n-1  
TxN  
0.1 µF  
0.1 µF  
SERDES_E_RxN  
QSGMII MAC  
PHY  
Port_n-2  
SERDES_E_TxP  
RxP  
PHY  
Port_n-3  
100 Ω  
100 Ω  
RxN  
0.1 µF  
SERDES_E_TxN  
4.3  
SerDes Media Interface  
The VSC8512-02 device SerDes media interface performs data serialization and deserialization  
functions using an integrated SerDes block in the SerDes media interface. The interface operates at  
1.25 Gbps speed, providing full-duplex and half-duplex for 10/100/1000 Mbps bandwidth that can  
connect directly to 100BASE-FX/1000BASE-X-compliant optical devices as well as to  
10/100/1000BASE-T copper SFP devices. The interface also provides support for unidirectional  
transport as defined in IEEE 802.3-2008, Clause 66. The interface has the following SerDes operating  
modes:  
QSGMII to 1000BASE-X  
QSGMII to 100BASE-FX  
QSGMII to SGMII/1000BASE-X SGMII/1000BASE-X protocol transfer  
The SerDes media block includes an integrated termination resistor.  
A software reset through register 0, bit 15 is required when changing operating modes between  
100BASE-FX and 1000BASE-X.  
4.3.1  
QSGMII to 1000BASE-X  
The 1000BASE-X SerDes media in QSGMII mode supports IEEE 802.3 Clause 36 and Clause 37, which  
describe 1000BASE-X fiber autonegotiation. In this mode, control and status of the SerDes media is  
displayed in the VSC8512-02 device registers 0 through 15 in a manner similar to what is described in  
IEEE 802.3 Clause 28. In this mode, connected copper SFPs can only operate at 1000BASE-T speed. A  
link in this mode is established using autonegotiation (enabled or disabled) between the PHY and the link  
partner. To configure the PHY in this mode, set register 23, bits 10:8 = 010. To configure 1000BASE-X  
autonegotiation for this mode, set register 0, bit 12. Setting this mode and configurations can be  
performed individually on each of the four ports. Ethernet packet generator (EPG), cyclical redundancy  
check (CRC) counters, and loopback modes are supported in 1000BASE-X mode.  
4.3.2  
4.3.3  
QSGMII to 100BASE-FX  
The VSC8512-02 supports 100BASE-FX communication speed for connecting to fiber modules such as  
GBICs and SFPs. This capability is facilitated by using the connections on the SerDes pins when  
connected to a MAC through QSGMII only. Ethernet packet generator (EPG), cyclical redundancy check  
(CRC) counters, and loopback modes are supported in the 100BASE-FX mode. Setting this mode and  
configurations can be performed individually on each of the four ports. To configure the PHY in this  
mode, set register 23, bits 10:8 = 011.  
QSGMII to SGMII Protocol Conversion  
QSGMII to SGMII (protocol transfer) mode is a feature that links a fiber module or triple speed  
10/100/1000-T copper SFP to the QSGMII MAC through the VSC8512-02 device. SGMII can be  
converted to QSGMII with protocol conversion using this mode.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
8
Functional Descriptions  
To configure the PHY in this mode, set register 23, bits 10:8 = 001. To establish the link, assert the  
SFP[3:0]_SD pins.  
All relevant LED modes are supported except for collision, duplex, and autonegotiation fault. The triple-  
speed copper SFP’s link status and data type plugged into the port can be indicated by the PHY’s LEDs.  
Setting this particular mode and configuration can be performed individually on each of the four ports  
within a QSGMII grouping.  
4.3.4  
Unidirectional Transport for Fiber Media  
The VSC8512-02 device supports 802.3ah for unidirectional transport across its 1000BASE-X and  
100BASE-FX fiber media. This feature enables transmission across fiber media, regardless of whether  
the PHY has determined that a valid link has been established (register 1, bit 2). The only valid operating  
modes for unidirectional fiber mode are 100BASE-FX or 1000BASE-X fiber media.  
To enable this feature, set register 0, bit 5 to 1. For status of the unidirectional ability, read register 1,  
bit 7.  
Note: Automatic media-sensing does not work with this feature. In addition, because unidirectional fiber media  
must have autonegotiation disabled, SGMII autonegotiation must also be disabled (register 16E3, bit 7 =  
0).  
4.4  
PHY Addressing and Port Mapping  
This section contains information about PHY addressing and port mapping.  
4.4.1  
PHY Addressing  
The VSC8512-02 includes two external PHY address pins to allow control of multiple PHY devices on a  
system board that are sharing a common management bus. Based on the settings of these two address  
control pins, the internal PHYs in the VSC8512-02 device take on the address ranges as shown in the  
following table.  
Table 2 •  
PHY Address Range Selection  
PHYADD4  
PHYADD3  
Internal PHY Addresses  
0
0
1
1
0
1
0
1
0–11  
12–23  
4–15  
20–31  
4.4.2  
SerDes Port Mapping  
The VSC8512-02 includes eight 1.25 GHz SerDes macros and four 5 GHz enhanced SerDes macros.  
Depending on the configuration, some of the SerDes macros are configured as either  
1000BASE-X/100BASE-FX SerDes media interfaces or SGMII MAC interfaces. Also, based on  
configuration, the enhanced SerDes macros are configured as either QSGMII MAC interfaces or SGMII  
MAC interfaces. The following table shows the different operating modes based on the settings of  
register 19G, bits 15:14.  
Table 3 •  
Operating Modes  
Mode  
19G[15:14] Operating Mode  
Mode 0 00  
Mode 1 01  
Mode 2 10  
QSGMII to CAT5 mode  
SGMII to CAT5 mode  
QSGMII to CAT5 and fiber media mode  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
9
Functional Descriptions  
The following table shows the SerDes port mapping in the modes of operation shown in the previous  
table.  
Table 4 •  
SerDes Port Mapping  
Interface Pins  
Mode 0  
Mode 1  
SGMII0  
SGMII0  
Mode 2  
SERDES_E0_TXP, SERDES_E0_TXN  
SERDES_E0_RXP, SERDES_E0_RXN  
SERDES_E1_TXP, SERDES_E1_TXN QSGMII0 SGMII3  
SERDES_E1_RXP, SERDES_E1_RXN QSGMII0 SGMII3  
SERDES_E2_TXP, SERDES_E2_TXN QSGMII1 SGMII6  
SERDES_E2_RXP, SERDES_E2_RXN QSGMII1 SGMII6  
SERDES_E3_TXP, SERDES_E3_TXN QSGMII2 SGMII9  
SERDES_E3_RXP, SERDES_E3_RXN QSGMII2 SGMII9  
QSGMII0  
QSGMII0  
QSGMII1  
QSGMII1  
QSGMII2  
QSGMII2  
SERDES0_TXP, SERDES0_TXN  
SERDES0_RXP, SERDES0_RXN  
SERDES1_TXP, SERDES1_TXN  
SERDES1_RXP, SERDES1_RXN  
SERDES2_TXP, SERDES2_TXN  
SERDES2_RXP, SERDES2_RXN  
SERDES3_TXP, SERDES3_TXN  
SERDES3_RXP, SERDES3_RXN  
SERDES4_TXP, SERDES4_TXN  
SERDES4_RXP, SERDES4_RXN  
SERDES5_TXP, SERDES5_TXN  
SERDES5_RXP, SERDES5_RXN  
SERDES6_TXP, SERDES6_TXN  
SERDES6_RXP, SERDES6_RXN  
SERDES7_TXP, SERDES7_TXN  
SERDES7_RXP, SERDES7_RXN  
SGMII1  
SGMII1  
SGMII2  
SGMII2  
SGMII4  
SGMII4  
SGMII5  
SGMII5  
SGMII7  
SGMII7  
SGMII8  
SGMII8  
SGMII10  
SGMII10  
SGMII11  
SGMII11  
FIBER11  
FIBER11  
FIBER10  
FIBER10  
FIBER9  
FIBER9  
FIBER8  
FIBER8  
4.5  
Cat5 Twisted Pair Media Interface  
The VSC8512-02 twisted pair interface is compliant with IEEE 802.3-2008 and the IEEE 802.3az  
standard for Energy Efficient Ethernet.  
4.5.1  
Voltage-Mode Line Driver  
Unlike many other gigabit PHYs, the VSC8512-02 uses a patented voltage-mode line driver that allows it  
to fully integrate the series termination resistors, which are required to connect the PHY’s Cat5 interface  
to an external 1:1 transformer. Also, the interface does not require the user to place an external voltage  
on the center tap of the magnetic. The following illustration shows the connections.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
10  
Functional Descriptions  
Figure 7 • Cat5 Media Interface  
PHY Port_n  
RJ-45  
Transformer  
TXVPA_n  
1
2
3
6
4
5
7
8
A+  
A–  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
TXVNA_n  
TXVPB_n  
TXVNB_n  
B+  
B–  
C+  
C–  
D+  
D–  
TXVPC_n  
TXVNC_n  
TXVPD_n  
TXVND_n  
75  
75 Ω  
75 Ω  
75 Ω  
1000 pF,  
2 kV  
4.5.2  
Cat5 Autonegotiation and Parallel Detection  
The VSC8512-02 supports twisted pair autonegotiation, as defined by IEEE 802.3-2008 Clause 28 and  
IEEE 802.3az. The autonegotiation process evaluates the advertised capabilities of the local PHY and its  
link partner to determine the best possible operating mode. In particular, autonegotiation can determine  
speed, duplex configuration, and master or slave operating modes for 1000BASE-TX. Autonegotiation  
also enables a connected MAC to communicate with its link partner MAC through the VSC8512-02 using  
optional next pages, which set attributes that may not otherwise be defined by the IEEE standard.  
If the Cat5 link partner does not support autonegotiation, the VSC8512-02 automatically uses parallel  
detection to select the appropriate link speed.  
Autonegotiation is disabled by clearing register 0, bit 12. If autonegotiation is disabled, the state of  
register bits 0.6, 0.13, and 0.8 determine the device operating speed and duplex mode. Note that while  
10BASE-T and 100BASE-T do not require autonegotiation, Clause 40 has defined 1000BASE-T to  
require autonegotiation.  
4.5.3  
4.5.4  
1000BASE-T Forced Mode Support  
VSC8512-02 provides support for a 1000BASE-T forced test mode. In this mode, the PHY can be forced  
into 1000BASE-T mode and does not require manual setting of master/slave at the two ends of the link.  
This mode is for test purposes only, and should not be used in normal operation. To configure a PHY in  
this mode, set register 17E2, bit 5 = 1 and register 0, bits 6 and 13 = 10.  
Automatic Crossover and Polarity Detection  
For trouble-free configuration and management of Ethernet links, the VSC8512-02 includes a robust  
automatic crossover detection feature for all three speeds on the twisted-pair interface (10BASE-T,  
100BASE-T, and 1000BASE-T). Known as HP Auto-MDIX, the function is fully compliant with Clause 40  
of IEEE 802.3-2008.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
11  
Functional Descriptions  
Additionally, the device detects and corrects polarity errors on all MDI pairs — a useful capability that  
exceeds the requirements of the standard.  
Both HP Auto-MDIX detection and polarity correction are enabled in the device by default. Default  
settings can be changed using device register bits 18.5:4. Status bits for each of these functions are  
located in register 28.  
Note: The VSC8512-02 can be configured to perform HP Auto-MDIX, even when autonegotiation is disabled  
and the link is forced into 10/100 speeds. To enable this feature, set register 18.7 to 0. To disable the  
feature, set register 0.12 to 0.  
The HP Auto-MDIX algorithm successfully detects, corrects, and operates with any of the MDI wiring pair  
combinations listed in the following table.  
Table 5 •  
Supported MDI Pair Combinations  
1, 2  
A
3, 6  
B
4, 5  
C
7, 8  
D
Mode  
Normal MDI  
B
A
D
C
Normal MDI-X  
A
B
D
C
Normal MDI with pair swap on C and D pair  
Normal MDI-X with pair swap on C and D pair  
B
A
C
D
4.5.5  
4.5.6  
Manual HP Auto-MDIX Setting  
As an alternative to HP Auto-MDIX detection, the PHY can be forced to be MDI or MDI-X using  
register 19E1, bits 3:2. Setting these bits to 10 forces MDI and setting 11 forces MDI-X. Leaving the  
bits 00 enables the HP Auto-MDIX setting to be based on register 18, bits 7 and 5.  
Link Speed Downshift  
For operation in cabling environments that are incompatible with 1000BASE-T, the VSC8512-02 provides  
an automatic link speed downshift option. When enabled, the device automatically changes its  
1000BASE-T autonegotiation advertisement to the next slower speed after a set number of failed  
attempts at 1000BASE-T. No reset is required to get out of this state if a subsequent link partner with  
1000BASE-T support is connected. This feature is useful in setting up in networks using older cable  
installations that include only pairs A and B, and not pairs C and D.  
To configure and monitor link speed downshifting, set register 20E1, bits 4:1. For more information, see  
Table 49, page 59.  
4.5.7  
Energy Efficient Ethernet  
The VSC8512-02 supports the IEEE 802.3az Energy Efficient Ethernet standard that is currently in  
development. This new standard provides a method for reducing power consumption on an Ethernet link  
during times of low utilization. It uses low power idles (LPI) to achieve this objective.  
Figure 8 • Low Power Idle Operation  
Active  
Low-Power Idle  
Active  
Quiet  
Quiet  
Quiet  
Ts  
Tq  
Tr  
Using LPI, the usage model for the link is to transmit data as fast as possible and then return to a low  
power idle state. Energy is saved on the link by cycling between active and low power idle states. During  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
12  
Functional Descriptions  
LPI, power is reduced by turning off unused circuits and using this method, energy use scales with  
bandwidth utilization.  
The VSC8512-02 uses LPI to optimize power dissipation in 100BASE-TX and 1000BASE-T modes of  
operation. In addition, the IEEE 802.3az standard defines a 10BASE-Te mode that reduces transmit  
signal amplitude from 5 Vp-p to ~3.3 Vp-p. This mode reduces power consumption in 10 Mbps link speed  
and fully interoperates with legacy 10BASE-T compliant PHYs over 100 m Cat5 cable or better.  
To configure the VSC8512-02 in 10BASE-Te mode, set register 17E2.15 to 1 for each port. Additional  
Energy Efficient Ethernet features are controlled through Clause 45 registers. For more information, see  
Clause 45 Registers to Support Energy Efficient Ethernet, page 79.  
4.6  
Automatic Media-Sense Interface Mode  
Automatic media-sense (AMS) mode automatically sets the media interface to Cat5 mode or SerDes  
mode. The active media mode chosen is based on the automatic media-sense preferences set in the  
device register 23, bit 11. The following illustration shows a block diagram of AMS functionality on ports 8  
through 11 of the VSC8512-02 device.  
Figure 9 • Automatic Media-Sense Block Diagram  
PHY port_n  
Cat5  
MAC  
SGMII /  
Serial MAC  
Auto Sense  
Logic  
TD  
RD  
SerDes  
SIGDET  
Fiber Optic  
Module  
When both SerDes and Cat5 media interfaces attempt to establish a link, the preferred media interface  
overrides a link-up of the non-preferred media interface. For example, if the preference is set for SerDes  
mode and Cat5 media establishes a link, then Cat5 becomes the active media interface. However, after  
the SerDes media interface establishes a link, the Cat5 interface drops its link because the preference  
was set for SerDes mode. In this scenario, the SerDes preference determines the active media source  
until the SerDes link is lost. Also, Cat5 media cannot link up unless there is no SerDes media link  
established. The following table shows the possible link conditions based on preference settings.  
Table 6 •  
AMS Media Preferences  
Cat5 Linked,  
SerDes Linked,  
Both Cat5 and  
Preference Cat5 Linked,  
SerDes Linked,  
SerDes Attempts to Cat5 Attempts to SerDesAttempt to  
Setting  
SerDes  
Cat5  
Fiber Not Linked Cat5 Not Linked Link  
Link  
Link  
Cat5  
Cat5  
SerDes  
SerDes  
SerDes  
Cat5  
SerDes  
Cat5  
SerDes  
Cat5  
The status of the media mode selected by the AMS can be read from device register 20E1, bits 7:6. It  
indicates whether copper media, SerDes media, or no media is selected. Each PHY has four automatic  
media-sense modes. The difference between the modes is based on the SerDes media modes:  
QSGMII MAC to AMS and 1000BASE-X SerDes  
QSGMII MAC to AMS and 100BASE-FX SerDes  
QSGMII MAC to AMS and SGMII (protocol transfer)  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
13  
Functional Descriptions  
For more information about SerDes media mode functionality with AMS enabled, see SerDes Media  
Interface, page 8.  
4.7  
Reference Clock  
The device reference clock can be a 25 MHz, 125 MHz, or 156.25 MHz clock signal. It can be either a  
differential reference clock or a single-ended clock. However, 25 MHz single-ended operation is not  
recommended when using QSGMII due to the jitter specification requirements of this interface. For more  
information, see Reference Clock, page 82.  
4.7.1  
Configuring the REFCLK  
There are three REFCLK_SEL pins to configure the REFCLK speed. The following table shows the  
functionality and associated REFCLK frequency.  
Table 7 •  
REFCLK Frequency Selection  
REFCLK_SEL2 REFCLK_SEL1 REFCLK_SEL0 REFCLK Frequency  
0
0
1
0
0
0
0
1
0
125 MHz  
156.25 MHz  
25 MHz  
4.7.2  
Single-Ended REFCLK Input  
To use a single-ended REFCLK, an external resistor network is required. The purpose of the network is  
to limit the amplitude and to adjust the center of the swing. The configurations for a single-ended  
REFCLK are shown in the following illustrations.  
Figure 10 • 2.5 V CMOS Single-Ended REFCLK Input Resistor Network  
220 Ω  
REFCLK_P  
REFCLK_N  
2.5 V  
CMOS  
VDD_A  
910 Ω  
VSS  
Figure 11 • 3.3 V CMOS Single-Ended REFCLK Input Resistor Network  
270 Ω  
REFCLK_P  
REFCLK_N  
3.3 V  
CMOS  
VDD_A  
430 Ω  
VSS  
4.7.3  
Differential REFCLK Input  
AC-coupling is required when using a differential REFCLK. Differential clocks must be capacitively  
coupled and LVDS-compliant. The following illustration shows the configuration.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
14  
Functional Descriptions  
Figure 12 • AC-Coupling Required for REFCLK Input  
REFCLK_P  
PHY Equivalent  
Termination Circuit  
0.1 µF  
50 Ω  
50 Ω  
VTT (Internal Voltage)  
REFCLK_N  
0.1 µF  
4.8  
Ethernet Inline Powered Devices  
The VSC8512-02 can detect legacy inline powered devices in Ethernet network applications. Inline  
powered detection capability is useful in systems that enable IP phones and other devices (such as  
wireless access points) to receive power directly from their Ethernet cable, similar to office digital phones  
receiving power from a private branch exchange (PBX) office switch over telephone cabling. This type of  
setup eliminates the need for an external power supply and enables the inline powered device to remain  
active during a power outage, assuming that the Ethernet switch is connected to an uninterrupted power  
supply, battery, back-up power generator, or other uninterruptable power source.  
For more information about legacy inline powered device detection, visit the Cisco Web site at  
www.cisco.com. The following illustration shows an example of an inline powered Ethernet switch  
application.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
15  
Functional Descriptions  
Figure 13 • Inline Powered Ethernet Switch Diagram  
Gigabit Switch  
Processor  
Control  
SMI  
SGMII  
Interface  
Inline,  
Power-Over-Ethernet  
(PoE)  
PHY_port0  
PHY_port1  
PHY_portn  
Power Supply  
Transformer  
Transformer  
Transformer  
RJ-45  
I/F  
RJ-45  
I/F  
RJ-45  
I/F  
Cat5  
Link  
Partner  
Link  
Partner  
Link  
Partner  
The following procedure describes the process that an Ethernet switch must perform to process inline  
power requests made by a link partner (LP) that is, in turn, capable of receiving inline power:  
1. Enable the inline powered device detection mode on each VSC8512-02 PHY using its serial  
management interface. Set register bit 23E1.10 to 1.  
2. Ensure that the VSC8512-02 autonegotiation enable bit (register 0.12) is also set to 1. In the  
application, the device sends a special fast link pulse (FLP) signal to the LP. Reading register  
bit 23E1.9:8 returns 00 during the search for devices that require power over Ethernet (PoE).  
3. The VSC8512-02 PHY monitors its inputs for the FLP signal looped back by the LP. An LP capable  
of receiving PoE loops back the FLP pulses when the LP is in a powered down state. This is  
reported when VSC8512-02 register bit 23E1.9:8 reads back 01. It can also be verified as an inline  
power detection interrupt by reading VSC8512-02 register bit 26.9, which should be a 1, and which  
is subsequently cleared and the interrupt de-asserted after the read. If an LP device does not loop  
back the FLP after a specific time, VSC8512-02 register bit 23E1.9:8 automatically resets to 10.  
4. If the VSC8512-02 PHY reports that the LP requires PoE, the Ethernet switch must enable inline  
power on this port, externally of the PHY.  
5. The PHY automatically disables inline powered device detection if the VSC8512-02 register  
bits 23E1.9:8 automatically resets to 10, and then automatically changes to its normal  
autonegotiation process. A link is then auto-negotiated and established when the link status bit is set  
(register bit 1.2 is set to 1).  
6. In the event of a link failure (indicated when VSC8512-02 register bit 1.2 reads 0), the inline power  
should be disabled to the inline powered device external to the PHY. The VSC8512-02 PHY disables  
its normal autonegotiation process and re-enables its inline powered device detection mode.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
16  
Functional Descriptions  
4.9  
IEEE 802.3af PoE Support  
The VSC8512-02 is compatible with switch designs that are intended for use in systems that supply  
power to data terminal equipment (DTE) by means of the MDI or twisted pair cable, as described in  
IEEE 802.3af Clause 33.  
4.10 ActiPHY Power Management  
In addition to the IEEE-specified power-down control bit (device register bit 0.11), the device also  
includes an ActiPHY power management mode for each PHY. This mode enables support for power-  
sensitive applications. It utilizes a signal-detect function that monitors the media interface for the  
presence of a link to determine when to automatically power-down the PHY. The PHY wakes up at a  
programmable interval and attempts to wake up the link partner PHY by sending a burst of FLP over  
copper media.  
The ActiPHY power management mode in the VSC8512-02 is enabled on a per-port basis during normal  
operation at any time by setting register bit 28.6 to 1.  
The following operating states are possible when ActiPHY mode is enabled:  
Low power state  
LP wake-up state  
Normal operating state (link-up state)  
The VSC8512-02 switches between the low power state and LP wake-up state at a programmable rate  
(the default is two seconds) until signal energy has been detected on the media interface pins. When  
signal energy is detected, the PHY enters the normal operating state. If the PHY is in its normal operating  
state and the link fails, the PHY returns to the low power state after the expiration of the link status time-  
out timer. After reset, the PHY enters the low power state.  
When autonegotiation is enabled in the PHY, the ActiPHY state machine operates as described. If  
autonegotiation is disabled and the link is forced to use 10BASE-T or 100BASE-TX modes while the  
PHY is in its low power state, the PHY continues to transition between the low power and LP wake-up  
states until signal energy is detected on the media pins. At that time, the PHY transitions to the normal  
operating state and stays in that state even when the link is dropped. If autonegotiation is disabled while  
the PHY is in the normal operation state, the PHY stays in that state when the link is dropped and does  
not transition back to the low power state.  
The following illustration shows the relationship between ActiPHY states and timers.  
Figure 14 • ActiPHY State Diagram  
Low Power State  
Signal Energy Detected on  
Media  
FLP Burst or  
Clause 37 Restart  
Signal Sent  
Sleep Timer Expires  
Timeout Timer Expires and  
Auto-negotiation Enabled  
Normal  
Operation State  
LP Wake-up  
State  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
17  
Functional Descriptions  
4.10.1 Low Power State  
In the low power state, all major digital blocks are powered down. However, the following functionality is  
provided:  
SMI interface (MDC, MDIO, and MDINT pins)  
CLKOUT  
In this state, the PHY monitors the media interface pins for signal energy. The PHY comes out of low  
power state and transitions to the normal operating state when signal energy is detected on the media.  
This happens when the PHY is connected to one of the following:  
Autonegotiation-capable link partner  
Another PHY in enhanced ActiPHY LP wake-up state  
In the absence of signal energy on the media pins, the PHY periodically transitions from low-power state  
to LP wake-up state, based on the programmable sleep timer (register bits 20E1.14:13). The actual sleep  
time duration is randomized from –80 ms to 60 ms to avoid two linked PHYs in ActiPHY mode entering a  
lock-up state during operation.  
4.10.2 Link Partner Wake-Up State  
In the link partner wake-up state, the PHY attempts to wake up the link partner. Up to three complete FLP  
bursts are sent on alternating pairs A and B of the Cat5 media for a duration based on the wake-up timer,  
which is set using register bits 20E1.12:11.  
In this state, the following functionality is provided:  
SMI interface (MDC, MDIO, and MDINT pins)  
CLKOUT  
After sending signal energy on the relevant media, the PHY returns to the low power state.  
4.10.3 Normal Operating State  
In the normal operating state, the PHY establishes a link with a link partner. When the media is  
unplugged or the link partner is powered down, the PHY waits for the duration of the programmable link  
status time-out timer, which is set using register bit 28.7 and bit 28.2. It then enters the low power state.  
4.11  
Media Recovered Clock Outputs  
For Synchronous Ethernet applications, the VSC8512-02 includes two recovered clock output pins,  
RCVRD_CLK0 and RCVRD_CLK1, that are controlled by registers 23G and 24G, respectively. These  
pins are synchronized to the clock of the active media link.  
To enable recovered clock output, set register 23G or 24G, bit 15, to 1. By default, the recovered clock  
output pins are disabled and held low, including when NRESET is asserted. Registers 23G and 24G also  
control the PHY port for clock output, the clock source, the clock frequency (either 25 MHz or 125 MHz),  
and squelch conditions.  
4.11.1 Clock Selection Settings  
On each pin, the recovered clock supports the following sources, as set by registers 23G or 24G, bits 2:0:  
Fiber SerDes media  
Copper media  
Copper transmitter TCLK output (RCVRD_CLK0 only)  
Note: When using the automatic media-sense feature, the recovered clock output cannot automatically change  
between each active media. Changing the media source must be managed through the recovered clock  
register settings.  
Note: The 10BASE-T mode and 1000BASE-T master mode are not effective for Synchronous Ethernet clock  
recovery. For 10BASE-T mode, the receiver does not produce a reliable continuous clock source. For  
1000BASE-T master mode, the clock is based on the VSC8512-02 REFCLK input, which is a local clock.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
18  
Functional Descriptions  
4.11.2 Clock Output Squelch  
Under certain conditions, the PHY outputs a clock based on the REFCLK pin, such as when there is no  
link present or during autonegotiation. To prevent an undesirable clock from appearing on the recovered  
clock pins, the VSC8512-02 squelches, or inhibits, the clock output based on any of the following criteria:  
No link is detected (the link status register 1, bit 2 = 0).  
The link is found to be unstable using the fast link failure detection feature (FAST_LINK_STATUS pin  
is asserted high when enabled).  
The active link is in 10BASE-T or in 1000BASE-T master mode. These modes produce unreliable  
recovered clock sources.  
CLK_SQUELCH_IN is enabled to squelch the clock.  
Use registers 23G or 24G, bits 5:4 to configure the clock squelch criteria. These registers can also  
disable the squelch feature. The CLK_SQUELCH_IN pin functionality is controlled by register bit 14G.14.  
When this bit is set to 1, the CLK_SQUELCH_IN pin also controls the squelching of the clock. When  
enabled, both RCVRD_CLK0 and RCVRD_CLK1 are squelched when the CLK_SQUELCH_IN pin is  
high.  
4.12 Serial Management Interface  
The VSC8512-02 device includes an IEEE 802.3-compliant serial management interface (SMI) that is  
affected by use of its MDC and MDIO pins. The SMI provides access to device control and status  
registers. The register set that controls the SMI consists of 32 16-bit registers, including all required  
IEEE-specified registers. Also, there are additional pages of registers accessible using device  
register 31.  
Energy Efficient Ethernet control registers are available through the SMI using Clause 45 registers and  
Clause 22 register access in registers 13 through 14. For more information, see Table 27, page 46 and  
Table 90, page 79.  
The SMI is a synchronous serial interface with input data to the VSC8512-02 on the MDIO pin that is  
clocked on the rising edge of the MDC pin. The output data is sent on the MDIO pin on the rising edge of  
the MDC signal. The interface can be clocked at a rate from 0 MHz to 12.5 MHz, depending on the total  
load on MDIO. An external 2-kpull-up resistor is required on the MDIO pin.  
4.12.1 SMI Frames  
Data is transferred over the SMI using 32-bit frames with an optional, arbitrary-length preamble. Before  
the first frame can be sent, at least two clock pulses on MDC must be provided with the MDIO signal at  
logic one to initialize the SMI state machine. The following illustrations show the SMI frame format for  
read and write operations.  
Figure 15 • SMI Read Frame  
Station manager drives MDIO  
PHY drives MDIO  
MDC  
MDIO  
Z
Z
1
0
1
1
0
A4 A3 A2 A1 A0 R4 R3 R2 R1 R0  
Z
0
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Z
Z
Preamble  
(optional)  
Register Data  
from PHY  
Register Address  
to PHY  
Idle  
SFD Read  
PHY Address  
TA  
Idle  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
19  
Functional Descriptions  
Figure 16 • SMI Write Frame  
Station manager drives MDIO (PHY tri-states MDIO during the entire sequence)  
MDC  
MDIO  
Z
Z
1
0
1
0
1
A4 A3 A2 A1 A0 R4 R3 R2 R1 R0  
1
0
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Z
Z
Preamble  
(optional)  
Register Data  
from PHY  
Register Address  
to PHY  
Idle  
SFD Write  
PHY Address  
TA  
Idle  
The following list provides additional information about the terms used in the SMI read and write timing  
diagrams.  
4.12.1.1 Idle  
During idle, the MDIO node goes to a high-impedance state. This allows an external pull-up resistor to  
pull the MDIO node up to a logical 1 state. Because the idle mode should not contain any transitions on  
MDIO, the number of bits is undefined during idle.  
4.12.1.2 Preamble  
By default, preambles are not expected or required. The preamble is a string of ones. If it exists, the  
preamble must be at least one bit; otherwise, it can be of an arbitrary length.  
4.12.1.3 Start of Frame (SFD)  
A pattern of 01 indicates the start of frame. If the pattern is not 01, all following bits are ignored until the  
next preamble pattern is detected.  
4.12.1.4 Read or Write Opcode  
A pattern of 10 indicates a read. A 01 pattern indicates a write. If the bits are not either 01 or 10, all  
following bits are ignored until the next preamble pattern is detected.  
4.12.1.5 PHY Address  
The particular VSC8512-02 responds to a message frame only when the received PHY address matches  
its physical address. The physical address is 5 bits long (4:0).  
4.12.1.6 Register Address  
The next five bits are the register address.  
4.12.1.7 Turnaround  
The two bits used to avoid signal contention when a read operation is performed on the MDIO are called  
the turnaround (TA) bits. During read operations, the VSC8512-02 drives the second TA bit, a logical 0.  
4.12.1.8 Data  
The 16-bits read from or written to the device are considered the data or data stream. When data is read  
from a PHY, it is valid at the output from one rising edge of MDC to the next rising edge of MDC. When  
data is written to the PHY, it must be valid around the rising edge of MDC.  
4.12.1.9 Idle  
The sequence is repeated.  
4.12.2 SMI Interrupt  
The SMI includes an output interrupt signal, MDINT, for signaling the station manager when certain  
events occur in the VSC8512-02.  
The MDINT pin can be configured for open-drain (active-low) by tying the pin to a pull-up resistor and to  
VDDIO. The following illustration shows this configuration.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
20  
Functional Descriptions  
Figure 17 • MDINT Configured as an Open-Drain (Active-Low) Pin  
External Pull-up  
Resistor at the  
VDDIO  
Station Manager  
for Open-drain  
(Active-low Mode)  
PHY_n  
Interrupt Pin Enable  
MDINT  
MDINT  
(to the Station  
Manager)  
(Register 25.15)  
Interrupt Pin Status  
(Register 26.15)  
Alternatively, the MDINT pin can be configured for open-source (active-high) by tying the pin to a pull-  
down resistor and to VSS. The following illustration shows this configuration.  
Figure 18 • MDINT Configured as an Open-Source (Active-High) Pin  
VDDIO  
Interrupt Pin Enable  
(Register 25.15)  
MDINT  
(to the Station  
Manager)  
MDINT  
Interrupt Pin Status  
(Register 26.15)  
External Pull-down  
at the Station  
PHY_n  
Manager  
For Open-source  
(Active-high Mode)  
When a PHY generates an interrupt, the MDINT pin is asserted (driven high or low, depending on resistor  
connection) if the interrupt pin enable bit (MII register 25.15) is set.  
4.13 LED Interface  
The VSC8512-02 outputs two LED signals per port, LED0 and LED1, through direct-drive signal outputs,  
or four LED signals per port (LED0, LED1, LED2, and LED3) through an enhanced serial LED mode. For  
more information, see Enhanced Serial LED Mode, page 25. The polarity of the LED outputs is  
programmable and can be changed through register 17E2.13:10. The default polarity is active low.  
Basic serial LED mode is also supported, in which all possible signals that can be displayed on LEDs are  
sent out on the serial LED stream for further processing by an external programmable device. For more  
information, see “Basic Serial LED Mode,” .  
The PHY[11:8]_LED1 pins are multipurpose pins and can be configured to serve as LED input pins. For  
more information, see Table 76, page 71.  
4.13.1 LED Modes  
Each LED pin can be configured to display different status information that can be selected by setting the  
LED mode in register 29. The modes listed in the following table are equivalent to the setting used in  
register 29 to configure each LED pin. The default LED state is active low and can be changed by  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
21  
Functional Descriptions  
modifying the value in register 17E2, bits 13:10. The blink/pulse-stretch is dependent on the LED  
behavior setting in register 30.  
Table 8 •  
LED Mode and Function Summary  
Mode Function Name  
LED State and Description  
0
1
2
3
4
Link/Activity  
1 = No link in any speed on any media interface.  
0 = Valid link at any speed on any media interface.  
Blink or pulse-stretch = Valid link at any speed on any media  
interface with activity present.  
Link1000/Activity  
Link100/Activity  
Link10/Activity  
1 = No link in 1000BASE-T or 1000BASE-X.  
0 = Valid 1000BASE-T or 1000BASE-X.  
Blink or pulse-stretch = Valid 1000BASE-T or 1000BASE-X link  
with activity present.  
1 = No link in 100BASE-TX or 100BASE-FX.  
0 = Valid 100BASE-TX or 100BASE-FX.  
Blink or pulse-stretch = Valid 100BASE-TX or 100BASE-FX link  
with activity present.  
1 = No link in 10BASE-T.  
0 = Valid 10BASE-T link.  
Blink or pulse-stretch = Valid 10BASE-T link with activity  
present.  
Link100/1000/Activity  
1 = No link in 100BASE-TX, 100BASE-FX, 1000BASE-X, or  
1000BASE-T.  
0 = Valid 100BASE-TX, 100BASE-FX, 1000BASE-X, or  
1000BASE-T link.  
Blink or pulse-stretch = Valid 100BASE-TX, 100BASE-FX,  
1000BASE-X, or 1000BASE-T link with activity present.  
5
6
7
8
Link10/1000/Activity  
Link10/100/Activity  
1 = No link in 10BASE-T, 1000BASE-X, or 1000BASE-T.  
0 = Valid 10BASE-T, 1000BASE-X, or 1000BASE-T link.  
Blink or pulse-stretch = Valid 10BASE-T, 1000BASE-X, or  
1000BASE-T link with activity present.  
1 = No link in 10BASE-T, 100BASE-FX, or 100BASE-TX.  
0 = Valid 10BASE-T 100BASE-FX, or 100BASE-TX, link.  
Blink or pulse-stretch = Valid 10BASE-T, 100BASE-FX, or  
100BASE-TX link with activity present.  
Link100BASE-FX/1000 1 = No link in 100BASE-FX or 1000BASE-X.  
BASE-X/Activity  
0 = Valid 100BASE-FX or 1000BASE-X link.  
Blink or pulse-stretch = Valid 100BASE-FX or 1000BASE-X link  
with activity present.  
Duplex/Collision  
1 = Link established in half-duplex mode, or no link established.  
0 = Link established in full-duplex mode.  
Blink or pulse-stretch = Link established in half-duplex mode but  
collisions are present.  
9
Collision  
Activity  
1 = No collision detected.  
Blink or pulse-stretch = Collision detected.  
10  
1 = No activity present.  
Blink or pulse-stretch = Activity present (becomes TX activity  
present if register bit 30.14 is set to 1).  
11  
100BASE-FX/1000BAS 1 = No 100BASE-FX or 1000BASE-X activity present.  
E-X Fiber Activity  
Blink or pulse-stretch = 100BASE-FX or 1000BASE-X activity  
present (becomes RX activity present if register bit 30.14 is set  
to 1).  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
22  
Functional Descriptions  
Table 8 •  
LED Mode and Function Summary (continued)  
Mode Function Name  
LED State and Description  
12  
Autonegotiation Fault  
1 = No autonegotiation fault present.  
0 = Autonegotiation fault occurred.  
13  
Serial Mode  
Serial stream = See Basic Serial LED Mode, page 24. Only  
relevant on PHY port 0 and reserved in others.  
14  
15  
Force LED Off  
Force LED On  
1 = De-asserts the LED(1)  
0 = Asserts the LED(1)  
.
.
1. Setting this mode suppresses LED blinking after reset.  
4.13.2 Extended LED Modes  
In addition to the LED modes in register 29, there are also additional LED modes that are enabled on  
PHY[11:8]_LED1 whenever the corresponding register 19E1, bits 15 to 12 are set to 1. Each of these bits  
enables extended modes on a specific LED pin and these extended modes are shown in the following  
table. For example, LED0 = mode 17 means that register 19E1 bit 12 = 1 and register 29 bits 3 to 0 =  
0001.  
Table 9 •  
Extended LED Mode and Function Summary  
Mode Function Name  
LED State and Description  
16  
17  
18  
19  
Link1000BASE-X Activity 1 = No link in 1000BASE-X.  
0 = Valid 1000BASE-X link.  
Link100BASE-FX Activity 1 = No link in 100BASE-FX.  
0 = Valid 100BASE-FX link.  
1000BASE-X Activity  
1 = No 1000BASE-X activity present.  
Blink or pulse-stretch = 1000BASE-X activity present.  
100BASE-FX Activity  
1 = No 100BASE-FX activity present.  
Blink or pulse-stretch = 100BASE-FX activity present.  
20  
21  
22  
Force LED Off  
Force LED On  
Fast Link Fail  
1 = De-asserts the LED.  
0 = Asserts the LED. LED pulsing is disabled in this mode.  
1 = Enable Fast Link Fail on LED0 pin  
0 = Disable  
4.13.3 LED Behavior  
Several LED behaviors can be programmed into the VSC8512-02. Use the settings in register 30 and  
19E1 to program LED behavior, which includes the following:  
4.13.3.1 LED Combine  
Enables an LED to display the status for a combination of primary and secondary modes. This can be  
enabled or disabled for each LED pin. For example, a copper link running in 1000BASE-T mode and  
activity present can be displayed with one LED by configuring an LED pin to Link1000/Activity mode. The  
LED asserts when linked to a 1000BASE-T partner and also blinks or performs pulse-stretch when  
activity is either transmitted by the PHY or received by the Link Partner. When disabled, the combine  
feature only provides status of the selected primary function. In this example, only Link1000 asserts the  
LED, and the secondary mode, activity, does not display if the combine feature is disabled.  
4.13.3.2 LED Blink or Pulse-Stretch  
This behavior is used for activity and collision indication. This can be uniquely configured for each LED  
pin. Activity and collision events can occur randomly and intermittently throughout the link-up period.  
Blink is a 50% duty cycle oscillation of asserting and de-asserting an LED pin. Pulse-stretch guarantees  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
23  
Functional Descriptions  
that an LED is asserted and de-asserted for a specific period of time when activity is either present or not  
present. These rates can also be configured using a register setting.  
4.13.3.3 Rate of LED Blink or Pulse-Stretch  
This behavior controls the LED blink rate or pulse-stretch length when blink/pulse-stretch is enabled on  
an LED pin. The blink rate, which alternates between a high and low voltage level at a 50% duty cycle,  
can be set to 2.5 Hz, 5 Hz, 10 Hz, or 20 Hz. For pulse-stretch, the rate can be set to 50 ms, 100 ms,  
200 ms, or 400 ms. The blink rate selection for PHY0 globally sets the rate used for all LED pins on all  
PHY ports.  
4.13.3.4 LED Pulsing Enable  
To provide additional power savings, the LEDs (when asserted) can be pulsed at 5 kHz, 20% duty cycle.  
4.13.3.5 LED Blink After Reset  
The LEDs will blink for one second after power-up and after any time all resets have been de-asserted.  
This can be disabled through register 19E1, bit 11 = 0.  
4.13.3.6 Fiber LED Disable  
This bit controls whether the LEDs indicate the fiber and copper status (default) or the copper status only.  
4.13.3.7 Pulse Programmable Control  
These bits add the ability to width and frequency of LED pulses. This feature facilities power reduction  
options.  
4.13.3.8 Fast Link Failure  
For more information about this feature, see Fast Link Failure Indication, page 25.  
4.13.4 Basic Serial LED Mode  
Optionally, the VSC8512-02 can be configured so that access to all its LED signals is available through  
two pins. This option is enabled by setting LED0 on PHY0 to serial LED mode. When serial LED mode is  
enabled on PHY0, the PHY0_LED0 pin becomes the basic serial data pin, and the PHY0_LED1 pin  
becomes the serial clock pin. All other LED pins can still be configured normally. The serial LED mode  
clocks the 144 LED status bits on the rising edge of the serial clock.  
The LED behavior settings can also be used in serial LED mode. The controls are used on a per-PHY  
basis, where the LED combine and LED blink or pulse-stretch setting of LED0_n for each PHY is used to  
control the behavior of each bit of the serial LED stream for each corresponding PHY. To configure LED  
behavior, set device register 30.  
The serial bitstream outputs, 1 through 144, of each LED signal are shown in the following table  
beginning with PHY port 0 and ending with PHY port 11. The individual signals can be clocked in the  
order shown.  
Table 10 • LED Serial Stream Order  
PHY0  
PHY1  
PHYx  
PHY11  
Bit 1. Link/Activity  
Bit 2. Link1000/Activity  
Bit 3. Link100/Activity  
Bit 4. Link10/Activity  
Bit 5. Fiber Link/Activity  
Bit 6. Duplex/Collision  
Bit 7. Collision  
Bit 13. Link/Activity  
Bit 14. Link1000/Activity  
Bit 15. Link100/Activity  
Bit 16. Link10/Activity  
Bit 17. Fiber Link/Activity  
Bit 18. Duplex/Collision  
Bit 19. Collision  
Bit [X]. Link/Activity  
Bit [X]. Link1000/Activity  
Bit [X]. Link100/Activity  
Bit [X]. Link10/Activity  
Bit [X]. Fiber Link/Activity  
Bit [X]. Duplex/Collision  
Bit [X]. Collision  
Bit 133. Link/Activity  
Bit 134. Link1000/Activity  
Bit 135. Link100/Activity  
Bit 136. Link10/Activity  
Bit 137. Fiber Link/Activity  
Bit 138. Duplex/Collision  
Bit 139. Collision  
Bit 8. Activity  
Bit 20. Activity  
Bit [X]. Activity  
Bit 140. Activity  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
24  
Functional Descriptions  
Table 10 • LED Serial Stream Order (continued)  
PHY0  
PHY1  
PHYx  
PHY11  
Bit 9. Fiber Activity  
Bit 10. TX Activity  
Bit 11. RX Activity  
Bit 21. Fiber Activity  
Bit 22. TX Activity  
Bit 23. RX Activity  
Bit [X]. Fiber Activity  
Bit [X]. TX Activity  
Bit [X]. RX Activity  
Bit 141. Fiber Activity  
Bit 142. TX Activity  
Bit 143. RX Activity  
Bit 144. Autonegotiation Fault  
Bit 12. Autonegotiation  
Fault  
Bit 24. Autonegotiation  
Fault  
Bit [X]. Autonegotiation  
Fault  
4.13.5 Enhanced Serial LED Mode  
VSC8512-02 can be configured to output up to four LED signals per port on a serial stream that can be  
de-serialized externally to drive LEDs on the system board. This functionality is controlled by setting  
register 25G, bits 7:1. In this mode, the serial LED_DATA is shifted out on the falling edge of LED_CLK  
and is latched in the external serial to parallel converter on the rising edge of LED_CLK. The falling edge  
of LED_LD signal can be used to shift the data from the shift register in the converter to the parallel  
output drive register. If a separate parallel output drive register is not used in the external serial to parallel  
converter, then the LEDs will blink at a high frequency as the data bits are being shifted through which  
may be undesirable. The LED_PULSE signal provides a 5 kHz pulse stream whose duty cycle can be  
modulated to turn on/off LEDs at a high rate. This signal can be tied to the output enable signal of the  
serial to parallel converter to provide the LED dimming functionality to save energy.  
4.13.6 LED Port Swapping  
For additional hardware configurations, the VSC8512-02 can have its LED port order swapped. This is a  
useful feature to help simplify PCB layout design. Register 25G bit 0 controls the LED port swapping  
mode.  
4.14 Fast Link Failure Indication  
To aid Synchronous Ethernet applications, the VSC8512-02 can indicate the onset of a link failure in less  
than 1 ms. By comparison, the IEEE 802.3 standard establishes a delay of up to 750 ms before  
indicating that a 1000BASE-T link is no longer present. A fast link failure indication is critical to support  
ports used in a synchronization timing link application. The fast link failure indication works for all copper  
and fiber media speeds. The FAST_LINK_STATUS pin provides the external hardware notification of this  
event.  
Note: For all links except 1000BASE-T, the fast link failure indication matches the link status register  
(address 1, bit 2). For 1000BASE-T links, the link failure is based on a circuit that analyzes the integrity of  
the link, and at the indication of failure, will assert.  
4.15 Integrated I2C Multiplexer  
The VSC8512-02 includes an integrated quad I2C multiplexer (MUX), eliminating the need for an  
external two-wire serial device for the control and status of SFP or PoE modules. There are five I2C  
controller pins: four clocks and one shared data pin. Each SFP or PoE connects to the corresponding  
SFP_SERIALCLK0 or PHY[5:7]_LED1 pins (configured as SFP_SERIALCLK[3:0], respectively), and  
shares the SFP_SERIALDATA device pin (configured as I2C_SDA), as shown in the following  
illustration. For SFP modules, VSC8512-02 can also provide control for the MODULE_DETECT and  
TX_DIS module pins using the multipurpose LED/GPIO pins.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
25  
Functional Descriptions  
Figure 19 • I2C MUX with SFP Control and Status  
SDA  
SCL  
SFP0  
SFP1  
SFP2  
SFP3  
Management  
Interface  
SDA  
SCL  
MDC  
MDIO  
Integrated I2C  
Mux  
SDA  
SCL  
I2C_SCL_0  
I2C_SCL_1  
I2C_SCL_2  
I2C_SCL_3  
I2C_SDA  
SDA  
SCL  
PHY  
4.15.1 Read/Write Access Using the I2C MUX  
Using the integrated I2C MUX, the VSC8512-02 device can read and write to an SFP or PoE module  
through the SCL and SDA pins. If the ability is required to write to the slave I2C device, refer to the  
device’s specific datasheet for more information.  
Note: The VSC8512-02 device does not automatically increment the I2C address. Each desired address must  
be intentionally set.  
Main control of the integrated I2C MUX is available through register 20G. The I2C MUX pins are enabled  
or disabled using register 20G bits 3:0. Register 20G bits 15:9 set the I2C device address (the default is  
0xA0). Using register 20G bits 5:4, the two-wire serial frequency can be changed from 100 kHz to other  
speeds, such as 50 kHz, 100 kHz (the default), 400 kHz, and 2 MHz. Registers 21G and 22G provide  
status and control of the read/write process. The following illustration shows the read and write register  
flow.  
Figure 20 • I2C MUX Read and Write Register Flow  
Start  
21G.15 = 0  
Wait for  
Ready  
21G.9 = 1  
Read Data = 22G.15:8  
21G.15 = 1  
Read or Write  
Read SFP Data  
21G.15 = 1  
21G.11:10 = PHY port to Write  
21G.7:0 = Address to Write  
21G.8 = 1  
Write  
SFP  
Data  
Wait for  
Ready  
22G.7:0 = Data to Write  
21G.15 = 0  
21G.11:10 = PHY port to Read  
21G.7:0 = Address to Read  
21G.8 = 1  
21G.9 = 1  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
26  
Functional Descriptions  
To read a value from a specific address of the I2C slave device:  
1. Read the VSC8512-02 device register 21G bit 15, and ensure that it is set.  
2. Write the PHY port address to be read to register 21G bits 11:10.  
3. Write the I2C address to be read to register 21G bits 7:0.  
4. Set both register 21G bits 8 and 9 to 1.  
5. When register 21G bit 15 changes to 1, read the 8-bit data value found at register 22G bits 15:8.  
This is the contents of the address just read by the PHY.  
To write a value to a specific address of the I2C slave device:  
1. Read the VSC8512-02 device register 21G bit 15 and ensure that it is set.  
2. Write the PHY port address to be written to register 21G bits 11:10.  
3. Write the address to be written to register 21G bits 7:0.  
4. Set register 21 bit 8 to 0.  
5. Set register 22G bits 7:0 with the 8-bit value to be written to the slave device.  
6. Set register 21G bit 9 to 1.  
To avoid collisions during read and write transactions on the I2C serial bus, always wait until register 21G  
bit 15 changes to 1 before performing another I2C read or write operation.  
4.16 GPIO Pins  
The VSC8512-02 provides 30 multiplexed multipurpose pins. For more information about the available  
GPIO pins, see LED and Multi/General Purpose Input and Output Pins, page 101, and for information  
about configuring them, see General Purpose Registers, page 70.  
4.17 Testing Features  
The VSC8512-02 device includes several testing features designed to facilitate performing system-level  
debugging and in-system production testing. This section describes the available features.  
4.17.1 Ethernet Packet Generator  
The Ethernet packet generator (EPG) can be used at each of the 10/100/1000BASE-T speed settings for  
copper Cat5 media and fiber media to isolate problems between the MAC and the VSC8512-02, or  
between a locally connected PHY and its remote link partner. Enabling the EPG feature effectively  
disables all MAC interface transmit pins and selects the EPG as the source for all data transmitted onto  
the twisted pair interface. This feature is not used when the SerDes media is set to pass-through mode.  
Important The EPG is intended for use with laboratory or in-system testing equipment only. Do not use  
the EPG testing feature when the VSC8512-02 is connected to a live network.  
To enable the VSC8512-02 EPG feature, set the device register bit 29E1.15 to 1.  
When the EPG is enabled, packet loss occurs during transmission of packets from the MAC to the PHY.  
However, the PHY receive output pins to the MAC are still active when the EPG is enabled. If it is  
necessary to disable the MAC receive pins as well, set the register bit 0.10 to 1.  
When the device register bit 29E1.14 is set to 1, the PHY begins transmitting Ethernet packets based on  
the settings in registers 29E1 and 30E1. These registers set:  
Source and destination addresses for each packet  
Packet size  
Inter-packet gap  
FCS state  
Transmit duration  
Payload pattern  
If register bit 29E1.13 is set to 0, register bit 29E1.14 is cleared automatically after 30,000,000 packets  
are transmitted.  
4.17.2 CRC Counters  
Two sets of cyclical redundancy check (CRC) counters are available in all PHYs in VSC8512-02 to  
monitor traffic on the copper and SerDes interfaces.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
27  
Functional Descriptions  
The device CRC counters operate in 100BASE-FX/1000BASE-X over SerDes mode and  
10/100/1000BASE-T mode as follows:  
After receiving a packet on the media interface, register bit 15 in register 18E1 or register 28E3 is set  
and cleared after being read.  
The packet then is counted by either the good CRC counter or the bad CRC counter.  
Both CRC counters are also automatically cleared when read.  
The good CRC counter’s highest value is 9,999 packets. After this value is reached, the counter clears  
on the 10,000th packet and continues to count additional packets beyond that value. The bad CRC  
counter stops counting when it reaches its maximum counter limit of 255 packets.  
4.17.2.1 Copper Interface CRC Counters  
Two separate CRC counters are available and reside between the copper interface PCSs and SerDes  
MAC interface. There is a 14-bit good CRC counter available through register bits 18E1.13:0 and a  
separate 8-bit bad CRC counter available in register bits 23E1.7:0.  
4.17.2.2 SerDes Interface CRC Counters  
Two separate CRC counters are available and reside between the SerDes media interface PCSs and  
SerDes MAC interface. There is a 14-bit good CRC counter available through register bits 28E3.13:0 and  
a separate 8-bit bad CRC counter available in register bits 29E3.7:0.  
4.17.3 Far-End Loopback  
The far-end loopback testing feature is enabled by setting register bit 23.3 to 1. When enabled, it forces  
incoming data from a link partner on the current media interface, into the MAC interface of the PHY, to be  
retransmitted back to the link partner on the media interface as shown in the following illustration. In  
addition, the incoming data also appears on the receive data pins of the MAC interface. Data present on  
the transmit data pins of the MAC interface is ignored when using this testing feature.  
Figure 21 • Far-End Loopback Diagram  
PHY_port_n  
RX  
RXD  
TXD  
Link Partner  
MAC  
TX  
Cat5  
4.17.4 Near-End Loopback  
When the near-end loopback testing feature is enabled, transmitted data (TXD) is looped back in the  
PCS block onto the receive data signals (RXD), as shown in the following illustration. When using this  
testing feature, no data is transmitted over the network. To enable near-end loopback, set the device  
register bit 0.14 to 1.  
Figure 22 • Near-End Loopback Diagram  
PHY_port_n  
RX  
RXD  
TXD  
Link Partner  
MAC  
TX  
Cat5  
4.17.5 Connector Loopback  
The connector loopback testing feature allows the twisted pair interface to be looped back externally.  
When using this feature, the PHY must be connected to a loopback connector or a loopback cable.  
Pair A should be connected to pair B, and pair C to pair D, as shown in the following illustration. The  
connector loopback feature functions at all available interface speeds.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
28  
Functional Descriptions  
Figure 23 • Connector Loopback Diagram  
A
B
RXD  
TXD  
Cat5  
PHY_port_n  
MAC  
C
D
When using the connector loopback testing feature, the device autonegotiation, speed, and duplex  
configuration is set using device registers 0, 4, and 9. For 1000BASE-T connector loopback, the  
following additional writes are required. Execute the additional writes in the following order:  
1. Enable the 1000BASE-T connector loopback. Set register bit 24.0 to 1.  
2. Disable pair swap correction. Set register bit 18.5 to 1.  
4.17.6 SerDes Loopbacks  
For test purposes, the SerDes and enhanced SerDes macro interfaces provide several data loops. The  
following illustration shows the SerDes loopbacks.  
Figure 24 • Data Loops of the SerDes Macro  
n bit IF  
n bit IF  
SLIVER  
Digital interface, configuration, and control logic  
including synchronous Ethernet clock tree  
D Q  
Facility Loop  
HS-ref. clock  
HS-ref. clock  
RC-PLL  
DES  
SER  
n:1  
1:n  
Equipment-Loop  
Input-Loop  
OB  
Analog Service Modules  
IB  
(BIAS, clk tree buffers, ESD  
protection,  
)
Pad-Loop  
RX  
TX  
4.17.6.1 SGMII Mode  
When the MAC interface is configured in SGMII mode, write the following 16-bit value to register 18G:  
Bits 15:12 0x9  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
29  
Functional Descriptions  
Bits 11:8: Port address (0x0 to 0xb)  
Bits 7:4: Loopback type  
Bits 3:0: 0x2  
where loopback type is:  
0x0: No loopback  
0x1: Pad loopback  
0x2: Input loopback  
0x4: Facility loopback  
0x8: Equipment loopback  
4.17.6.2 QSGMII Mode  
When the MAC interface is configured in QSGMII mode, the configuration command is the same as  
SGMII mode, except that the port addresses (bits 11:8) are:  
0xC: Enhanced SerDes macro for ports 0–3  
0xD: Enhanced SerDes macro for ports 4–7  
0xE: Enhanced SerDes macro for ports 8-11  
Note: Loopback configuration affects all four ports associated with a QSGMII. Individual port loopback within a  
QSGMII is not possible.  
4.17.6.3 Fiber Media Port Mode  
When the SerDes is configured as a fiber media port, write the following 16-bit value to register 18G:  
Bits 15:12: 0x8  
Bits 11:8: Port address  
Bits 7:4: Loopback type  
Bits 3:0: 0x2  
where port address is:  
0x1: Fiber8 port  
0x2: Fiber9 port  
0x4: Fiber10 port  
0x8: Fiber11 port  
Port addresses for fiber media SerDes can be OR’ed together to address multiple ports using a single  
command. Bit 18G.15 will be cleared when the internal configuration is complete.  
4.17.6.4 Facility Loop  
The recovered and de-multiplexer deserializer data output is looped back to the serializer data input and  
replaces the data delivered by the digital core. This test loop provides the possibility to test the complete  
analog macro data path from outside including input buffer, clock and data recovery, serialization and  
output buffer. The data received by the input buffer must be transmitted by the output buffer after some  
delay.  
Additional configuration of the SerDes and Enhanced SerDes macros is required for facility loopback  
mode. When entering facility loopback mode, the set = 1 option should be run; when exiting facility  
loopback mode, the set = 0 option should be run.  
For SerDes macro configurations, the following software script must be executed after running the  
command to enable/disable facility loopback mode.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
30  
Functional Descriptions  
PhyWrite(PhyBaseAddr, 31, 0x0010);  
PhyWrite(PhyBaseAddr, 18, 0x8s03);  
// where "s" is the physical address of the SerDes macro  
PhyWrite(PhyBaseAddr, 18, 0xd7d3);  
PhyWrite(PhyBaseAddr, 18, 0x8007);  
tmp1 = PhyRead(PhyBaseAddr, 18);  
tmp2 = tmp1 & 0x0ff0;  
if (set)  
tmp3 = tmp2 | 0x0010;  
else  
tmp3 = tmp2 & 0x0fe0;  
tmp4 = tmp3 | 0x8006;  
PhyWrite(PhyBaseAddr, 18, tmp4);  
if (SGMII)  
PhyWrite(PhyBaseAddr, 18, 0x9p40);  
// where "p" is the logical address of the SGMII interface  
else  
PhyWrite(PhyBaseAddr, 18, 0x8p40);  
// where "p" is the logical address of the Fiber media interface  
PhyBaseAddr is the base address of the internal PHYs and is equal to 0, 12, 4, or 20 based on the value  
of the PHYADDR4 and PHYADDR3 pins. For more information, see Table 2, page 9.  
The value of s is 0–7 and corresponds to the physical address of the SerDes macro. For SerDes SGMII  
MAC interface configuration, the value of p is 1, 2, 4, 5, 7, 8, 10, or 11 and is the logical address of the  
SGMII lane that corresponds to the SerDes macro with physical address s. For SerDes Fiber Media  
interface configuration, the value of p is 8–11 and is the logical address of the Fiber Media lane that  
corresponds to the SerDes macro with physical address s. For more information about address mapping,  
see Table 4, page 10.  
For Enhanced SerDes macro configurations, the following software script must be executed after running  
the command to enable/disable facility loopback mode.  
PhyWrite(PhyBaseAddr, 31, 0x0010);  
PhyWrite(PhyBaseAddr, 18, 0x8s13);  
// where "s" is the physical address of the SerDes macro  
PhyWrite(PhyBaseAddr, 18, 0xd7d3);  
PhyWrite(PhyBaseAddr, 18, 0x8007);  
tmp1 = PhyRead(PhyBaseAddr, 18);  
tmp2 = tmp1 & 0x0ff0;  
if (set)  
tmp3 = tmp2 | 0x0100;  
else  
tmp3 = tmp2 & 0x0ef0;  
tmp4 = tmp3 | 0x8006;  
PhyWrite(PhyBaseAddr, 18, tmp4);  
PhyWrite(PhyBaseAddr, 18, 0x9p40);  
// where "p" is the logical address of the SGMII or QSGMII interface  
PhyBaseAddr is the base address of the internal PHYs and is equal to 0, 12, 4, or 20 based on the value  
of the PHYADD4 and PHYADD3 pins. For more information, see Table 2, page 9.  
The value of s is 0–3 and corresponds to the physical address of the enhanced SerDes macro. For  
enhanced SerDes SGMII MAC interface configuration, the value of p is 0, 3, 6, or 9 and is the logical  
address of the SGMII lane that corresponds to the enhanced SerDes macro with physical address s. For  
enhanced SerDes QSGMII MAC interface configuration, the value of p is 0–2 and is the logical address  
of the QSGMII lane that corresponds to the enhanced SerDes macro with physical address s. For more  
information about address mapping, see Table 4, page 10.  
4.17.6.4.1 Equipment Loop  
The 1-bit data stream at the serializer output is looped back to the deserializer and replaces the received  
data stream from the input buffer. This test loop provides the possibility to verify the digital data path  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
31  
Functional Descriptions  
internally. The transmit data goes through the serialization, the clock and data recovery and  
deserialization before the data is fed back to the digital core.  
4.17.6.4.2 Input Loop  
The received 1-bit data stream of the input buffer is looped back asynchronously to the output buffer. This  
test loop provides the possibility to the test only the analog parts of the SGMII interface because only the  
input and output buffer are part of this loop.  
4.17.6.4.3 Pad Loop  
The 1-bit data stream at the output buffer output is looped back to the input buffer input and added to the  
differential pad signal. Therefore, the input pad should not be driven when the output loop is activated.  
The test loop provides a means to test the complete SGMII macro data path, including the input and  
output buffers.  
4.17.7 VeriPHY Cable Diagnostics  
The VSC8512-02 includes a comprehensive suite of cable diagnostic functions that are available using  
SMI reads and writes. These functions enable a variety of cable operating conditions and status to be  
accessed and checked. The VeriPHY suite has the ability to identify the cable length and operating  
conditions and to isolate a variety of common faults that can occur on the Cat5 twisted pair cabling.  
Note: If a link is established on the twisted pair interface in the 1000BASE-T mode, VeriPHY can run without  
disrupting the link or disrupting any data transfer. However, if a link is established in 100BASE-TX or  
10BASE-T, VeriPHY causes the link to drop while the diagnostics are running. After diagnostics are  
finished, the link is re-established.  
The following diagnostic functions are part of the VeriPHY suite:  
Detecting coupling between cable pairs  
Detecting cable pair termination  
Determining cable length  
4.17.7.1 Coupling Between Cable Pairs  
Shorted wires, improper termination, or high crosstalk resulting from an incorrect wire map can cause  
error conditions, such as anomalous coupling between cable pairs. These conditions can prevent the  
device from establishing a link in any speed.  
4.17.7.2 Cable Pair Termination  
Proper termination of Cat5 cable requires a 100 differential impedance between the positive and  
negative cable terminals. IEEE 802.3 allows for a termination of 115 maximum and 85 minimum. If  
the termination falls outside of this range, it is reported by the VeriPHY diagnostics as an anomalous  
termination. The diagnostics can also determine the presence of an open or shorted cable pair.  
4.17.7.3 Cable Length  
When the Cat5 cable in an installation is properly terminated, VeriPHY reports the approximate cable  
length in meters.  
4.17.7.4 Mean Square Error Noise  
The average absolute error can be read out when either a 100BASE-TX or 1000BASE-T link is  
established. In the case of 1000BASE-T link, there are four average absolute error terms, one for each  
twisted-pair over which signal is received. Use the following script to read average absolute error for  
100BASE-TX:  
PhyWrite( <phy>, 31, 0x52b5 );  
PhyWrite( <phy>, 16, 0xa3c0 );  
PhyRead( <phy>, 16 );  
tmp17 = PhyRead( <phy>, 17 );  
tmp18 = PhyRead( <phy>, 18 );  
mse = (tmp18 << 4) | (tmp17 >> 12);  
PhyWrite( <phy>, 31, 0 );  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
32  
Functional Descriptions  
The returned average absolute error is in units of 1/2048 and can be found in the mse variable.  
PhyWrite( <phy>, 31, 0x52b5 );  
PhyWrite( <phy>, 16, 0xa3c0 );  
PhyRead( <phy>, 16 );  
tmp17 = PhyRead( <phy>, 17 );  
tmp18 = PhyRead( <phy>, 18 );  
mseA = (tmp18 << 4) | (tmp17 >> 12);  
mseB = tmp17 & 0x0fff;  
PhyWrite( <phy>, 16, 0xa3c2 );  
PhyRead( <phy>, 16 );  
tmp17 = PhyRead( <phy>, 17 );  
tmp18 = PhyRead( <phy>, 18 );  
mseC = (tmp18 << 4) | (tmp17 >> 12);  
mseD = tmp17 & 0x0fff;  
PhyWrite( <phy>, 31, 0 );  
The returned average absolute error is in units of 1/2048 and can be found in the mseA, mseB, mseC,  
and mseD variables for each twisted pair.  
4.17.8 JTAG Boundary Scan  
The VSC8512-02 supports the test access port (TAP) and boundary scan architecture described in  
IEEE 1149.1. The device includes an IEEE 1149.1-compliant test interface, referred to as a JTAG TAP  
interface.  
The JTAG boundary scan logic on the VSC8512-02, accessed using its TAP interface, consists of a  
boundary scan register and other logic control blocks. The TAP controller includes all IEEE-required  
signals (TMS, TCK, TDI, and TDO), in addition to the optional asynchronous reset signal NTRST. The  
following illustration shows the TAP and boundary scan architecture.  
Figure 25 • Test Access Port and Boundary Scan Architecture  
Boundary Scan  
Register  
Device Identification  
Register  
Bypass Register  
TDO  
MUX,  
DFF  
Control  
Instruction Register,  
Instruction Decode  
Control  
TDI  
TMS  
Control  
Select  
Test Access Port  
Controller  
NTRST  
TCK  
TDO Enable  
After a TAP reset, the device identification register is serially connected between TDI and TDO by  
default. The TAP instruction register is loaded either from a shift register when a new instruction is shifted  
in, or, if there is no new instruction in the shift register, a default value of 6’b100100 (IDCODE) is loaded.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
33  
Functional Descriptions  
Using this method, there is always a valid code in the instruction register, and the problem of toggling  
instruction bits during a shift is avoided. Unused codes are mapped to the BYPASS instruction.  
4.17.9 JTAG Instruction Codes  
The VSC8512-02 supports the following instruction codes:  
4.17.9.1 EXTEST  
Allows tests of the off-chip circuitry and board-level interconnections by sampling input pins and loading  
data onto output pins. Outputs are driven by the contents of the boundary-scan cells, which have to be  
updated with valid values, with the PRELOAD instruction, prior to the EXTEST instruction.  
4.17.9.2 SAMPLE/PRELOAD  
Allows a snapshot of inputs and outputs during normal system operation to be taken and examined. It  
also allows data values to be loaded into the boundary-scan cells prior to the selection of other boundary-  
scan test instructions.  
4.17.9.3 IDCODE  
Provides the version number (bits 31:28), device family ID (bits 27:12), and the manufacturer identity  
(bits 11:1) to be serially read from the device.  
The following table provides information about the meaning of IDCODE binary values stored in the  
device JTAG registers.  
Table 11 • IDCODE JTAG Device Identification Register Descriptions  
Description Device Version Family ID  
Bit field 31–28 27–12  
Manufacturing Identity  
LSB  
11–1  
0
1
Binary value 0000  
1011 0000 0000 0001 000 0111 0100  
4.17.9.4 USERCODE  
Provides the version number (bits 31:28), part number (bits 27:12), and the manufacturer identity  
(bits 11:1) to be serially read from the device. The following table provides information about the meaning  
of USERCODE binary values stored in the device JTAG registers.  
Table 12 • USERCODE JTAG Device Identification Register Descriptions  
Description Device Version Model Number  
Bit field 31–28 27–12  
Binary value 0010  
Manufacturing Identity  
LSB  
11–1  
0
1
1000 0101 0001 0010 000 0111 0100  
4.17.9.5 CLAMP  
Allows the state of the signals driven from the component pins to be determined from the boundary scan  
register while the bypass register is selected as the serial path between TDI and TDO. While the CLAMP  
instruction is selected, the signals driven from the component pins do not change.  
4.17.9.6 HIGHZ  
Places the component in a state in which all of its system logic outputs are placed in a high-impedance  
state. In this state, an in-circuit test system can drive signals onto the connections normally driven by a  
component output without incurring a risk of damage to the component. This makes it possible to use a  
board where not all of the components are compatible with the IEEE 1149.1 standard.  
4.17.9.7 BYPASS  
The bypass register contains a single shift-register stage and is used to provide a minimum-length serial  
path (one TCK clock period) between TDI and TDO to bypass the device when no test operation is  
required.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
34  
Functional Descriptions  
The following table provides information about the location and IEEE compliance of the JTAG instruction  
codes used in the VSC8512-02. Instructions not explicitly listed in the table are reserved. For more  
information about these IEEE specifications, visit the IEEE Web site at www.IEEE.org.  
Table 13 • JTAG Interface Instruction Codes  
Register  
Instruction  
Code  
Selected Register  
Width  
IEEE 1149.1 IEEE 1149.6  
Mandatory  
EXTEST  
6'b000000 Boundary-Scan  
161  
SAMPLE/PREL 6'b000001 Boundary-Scan  
OAD  
161  
Mandatory  
IDCODE  
USERCODE  
CLAMP  
6'b100100 Device Identification  
6'b100101 Device Identification  
6'b000010 Bypass Register  
6'b000101 Bypass Register  
6'b111111 Bypass Register  
32  
32  
1
Optional  
Optional  
Optional  
Optional  
Mandatory  
Mandatory  
HIGHZ  
1
BYPASS  
1
EXTEST_PULS 6'b000011 Boundary-Scan Register 161  
E
EXTEST_TRAI 6'b000100 Boundary-Scan Register 161  
N
Mandatory  
4.17.10 Boundary Scan Register Cell Order  
All inputs and outputs are observed in the boundary scan register cells. All outputs are additionally driven  
by the contents of boundary scan register cells. Bidirectional pins have all three related boundary scan  
register cells: input, output, and control.  
The complete boundary scan cell order is available as a BSDL file format on the Microsemi Web site at  
www.microsemi.com.  
4.17.11 JTAG Boundary Scan Interface  
The IEEE 1149.6 AC-JTAG solution integrated on all SerDes ports of the VSC8512-02 extends the  
capability of IEEE 1149.1 boundary scan for robust board-level testing. This interface is backward-  
compatible to the IEEE 1149.1 standard.  
4.18 100FX Halt Code Transmission and Reception  
The VSC8512-02 device supports transmission and reception of halt code words in 100BASE-FX mode.  
There are three separate scripts provided to initiate transmission of halt code words, stop transmission of  
halt code words and detect reception of halt code words. Use the following scripts to implement each of  
these functions:  
Sending the HALT codeword:  
PhyWrite( <phy>, 31, 0x52b5 );  
PhyWrite( <phy>, 16, 0xac82 );  
reg18 = PhyRead( <phy>, 18 );  
reg18 = (reg18 & 0xf0) | 0x0c;  
PhyWrite( <phy>, 18, reg18 );  
PhyWrite( <phy>, 17, 0xe739 );  
PhyWrite( <phy>, 16, 0x8c82 );  
PhyWrite< <phy>, 16, 0xbe80 );  
reg17 = PhyRead( <phy>, 17 );  
reg18 = PhyRead( <phy>, 18 );  
reg17 = reg17 | 0x0040;  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
35  
Functional Descriptions  
PhyWrite( <phy>, 18, reg18 );  
PhyWrite( <phy>, 17, reg17 );  
PhyWrite( <phy>, 16, 0x9e80 );  
PhyWrite( <phy>, 31, 0 );  
Stop sending the HALT codeword:  
PhyWrite( <phy>, 31, 0x52b5 );  
PhyWrite< <phy>, 16, 0xbe80 );  
reg17 = PhyRead( <phy>, 17 );  
reg18 = PhyRead( <phy>, 18 );  
reg17 = reg17 & ~0x0040;  
PhyWrite( <phy>, 18, reg18 );  
PhyWrite( <phy>, 17, reg17 );  
PhyWrite( <phy>, 16, 0x9e80 );  
PhyWrite( <phy>, 31, 0 );  
Detecting if the HALT codeword is being sent by the link partner:  
long patternset[5] = {  
0xce739,  
0xe739c,  
0x739ce,  
0x39ce7,  
0x9ce73  
};  
Turning on the pattern checker:  
PhyWrite( <phy>, 31, 0x52b5 );  
PhyWrite( <phy>, 16, 0xbe80 );  
reg18 = PhyRead( <phy>, 18 );  
reg17 = PhyRead( <phy>, 17 );  
reg17 = reg17 | 4;  
PhyWrite( <phy>, 18, reg18 );  
PhyWrite( <phy>, 17, reg17 );  
PhyWrite( <phy>, 16, 0x9e80 );  
Sweeping through all 5 pattern shifts looking for a match:  
for (i = 0, matchfailed = 1; i < 5 && matchfailed; ++i) {  
PhyWrite( <phy>, 16, 0xac84 );  
reg18 = PhyRead( <phy>, 18 );  
reg18 = (reg18 & 0xf0) | (patternset[i] >> 16)  
PhyWrite( <phy>, 18, reg18 );  
PhyWrite( <phy>, 17, patternset[i] & 0xffff );  
PhyWrite( <phy>, 16, 0x8c84 );  
PhyWrite( <phy>, 16, 0xbe84 ); // Dummy read to clear latched mismatch  
PhyWrite( <phy>, 16, 0xbe84 ); // Read pattern check failure status  
matchfailed = PhyRead( <phy>, 17 ) & 1; // Extract pattern check failure status  
}
Turning off the pattern checker:  
PhyWrite( <phy>, 16, 0xbe80 );  
reg18 = PhyRead( <phy>, 18 );  
reg17 = PhyRead( <phy>, 17 );  
reg17 = reg17 & ~4;  
PhyWrite( <phy>, 18, reg18 );  
PhyWrite( <phy>, 17, reg17 );  
PhyWrite( <phy>, 16, 0x9e80 );  
PhyWrite( <phy>, 31, 0 );  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
36  
Functional Descriptions  
HALT_codeword_detected = !matchfailed;  
4.19 Configuration  
The VSC8512-02 can be configured by setting internal memory registers using the management  
interface.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
37  
Registers  
5
Registers  
This section provides information about how to configure the VSC8512-02 using its internal memory  
registers and the management interface.  
The VSC8512-02 uses several different types of registers:  
IEEE Clause 22 device registers with addresses from 0 to 31  
Three pages of extended registers with addresses from 16E1–30E1, 16E2–30E2, and 16E3–30E3  
General-purpose registers with addresses from 0G to 30G  
IEEE Clause 45 devices registers accessible through the Clause 22 registers 13 and 14 to support  
IEEE 802.3az Energy Efficient Ethernet registers  
The following illustration shows the relationship between the device registers and their address spaces.  
Figure 26 • Register Space Diagram  
0
1
2
3
.
0G  
1G  
2G  
3G  
.
.
.
Clause 45  
Registers  
IEEE 802.3  
Standard  
.
Registers  
.
13  
14  
15  
.
.
15G  
General Purpose  
Registers  
16  
17  
18  
19  
.
.
.
16E1  
17E1  
18E1  
19E1  
.
.
.
16E2  
17E2  
18E2  
19E2  
.
.
.
16E3  
17E3  
18E3  
19E3  
.
.
.
16G  
17G  
18G  
19G  
.
.
.
Extended  
Registers 1  
Extended  
Registers 2  
Extended  
Registers 3  
Main Registers  
.
.
.
.
.
.
.
.
.
.
30  
30E1  
30E2  
30E3  
30G  
31  
0x0000  
0x0010  
0x0001  
0x0002  
0x0003  
Reserved Registers—For main registers 16–31, extended registers 16E1–30E1, 16E2–30E2,  
16E3–30E3, and general purpose registers 0G–30G, any bits marked as Reserved should be  
processed as read-only and their states as undefined.  
Reserved Bits—In writing to registers with reserved bits, use a read-modify-then-write technique,  
where the entire register is read but only the intended bits to be changed are modified. Reserved bits  
cannot be changed and their read state cannot be considered static or unchanging.  
5.1  
IEEE Standard and Main Registers  
In the VSC8512-02, the page space of the standard registers consists of the IEEE standard registers and  
the Microsemi standard registers. The following table lists the names of the registers associated with the  
addresses as dictated by the IEEE standard.  
Table 14 • IEEE 802.3 Standard Registers  
Address Name  
0
1
2
3
4
5
6
Mode Control  
Mode Status  
PHY Identifier 1  
PHY Identifier 2  
Autonegotiation Advertisement  
Autonegotiation Link Partner Ability  
Autonegotiation Expansion  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
38  
Registers  
Table 14 • IEEE 802.3 Standard Registers (continued)  
Address Name  
7
Autonegotiation Next-Page Transmit  
Autonegotiation Link Partner Next-Page Receive  
1000BASE-T Control  
8
9
10  
1000BASE-T Status  
11–12  
13  
Reserved  
Clause 45 access registers from IEEE 802.3  
Table 22-6 and 22.24.3.11-12 and Annex 22D  
14  
15  
Clause 45 access registers from IEEE 802.3  
Table 22-6 and 22.24.3.11-12 and Annex 22D  
1000BASE-T Status Extension 1  
The following table lists the names of the registers in the main page space of the device. These registers  
are accessible only when register address 31 is set to 0x0000.  
Table 15 • Main Registers  
Address Name  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
100BASE-TX Status Extension 1  
1000BASE-T Status Extension 2  
Bypass Control  
Error Counter 1  
Error Counter 2  
Error Counter 3  
Extended Control and Status  
Extended PHY Control 1  
Extended PHY Control 2  
Interrupt Mask  
Interrupt Status  
Reserved  
Auxiliary Control and Status  
LED Mode Select  
LED Behavior  
Extended Register Page Access  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
39  
Registers  
5.1.1  
Mode Control  
The device register at memory address 0 controls several aspects of VSC8512-02 functionality. The  
following table shows the available bit settings in this register and what they control.  
Table 16 • Mode Control, Address 0 (0x00)  
Bit  
Name  
Access Description  
R/W Self-clearing. Restores all serial  
Default  
15  
Software reset  
0
management interface (SMI) registers to  
default state, except for sticky and  
super-sticky bits.  
1: Reset asserted.  
0: Reset de-asserted. Wait [X] after setting  
this bit to initiate another SMI register  
access.  
14  
Loopback  
R/W  
1: Loopback enabled.  
0: Loopback disabled.  
When loop back is enabled, the device  
functions at the current speed setting and  
with the current duplex mode setting (bits 6,  
8, and 13 of this register).  
0
0
13  
12  
Forced speed selection R/W  
LSB  
Least significant bit. MSB is bit 6.  
00: 10 Mbps.  
01: 100 Mbps.  
10: 1000 Mbps.  
11: Reserved.  
Autonegotiation enable R/W  
1: Autonegotiation enabled.  
0: Autonegotiation disabled.  
1
0
11  
10  
Power-down  
Isolate  
R/W  
R/W  
1: Power-down enabled.  
1: Disable MAC interface outputs and ignore 0  
MAC interface inputs.  
9
8
Restart autonegotiation R/W  
Self-clearing bit.  
1: Restart autonegotiation on media  
interface.  
0
Duplex  
R/W  
R/W  
1: Full-duplex.  
0: Half-duplex.  
0
7
6
Collision test enable  
1: Collision test enabled.  
0
Forced speed selection R/W  
MSB  
Most significant bit. LSB is bit 13.  
00: 10 Mbps.  
10  
01: 100 Mbps.  
10: 1000 Mbps.  
11: Reserved.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
40  
Registers  
Table 16 • Mode Control, Address 0 (0x00) (continued)  
Bit  
Name  
Access Description  
R/W When bit 0.12 = 1 or bit 0.8 = 0, this bit is  
Default  
5
Unidirectional enable  
0
ignored. When bit 0.12 = 0 and bit 0.8 = 1,  
the behavior is as follows:  
1: Enable transmit from media independent  
interface regardless of whether the PHY has  
determined that a valid link has been  
established.  
0: Enable transmit from media independent  
interface only when the PHY has determined  
that a valid link has been established  
Note: This bit is only applicable in  
100BASE-FX and  
1000BASE-X fiber media  
modes for ports 8-11.  
4:0  
Reserved  
RO  
Reserved.  
00000  
5.1.2  
Mode Status  
The register at address 1 in the device main registers space allows you to read the currently enabled  
mode setting. The following table shows possible readouts of this register.  
Table 17 • Mode Status, Address 1 (0x01)  
Bit Name  
Access Description  
Default  
15 100BASE-T4 capability  
RO  
1: 100BASE-T4 capable.  
0
1
1
1
1
0
0
1
14 100BASE-TX FDX capability RO  
13 100BASE-TX HDX capability RO  
1: 100BASE-TX FDX capable.  
1: 100BASE-TX HDX capable.  
1: 10BASE-T FDX capable.  
1: 10BASE-T HDX capable.  
1: 100BASE-T2 FDX capable.  
1: 100BASE-T2 HDX capable.  
12 10BASE-T FDX capability  
11 10BASE-T HDX capability  
RO  
RO  
10 100BASE-T2 FDX capability RO  
9
8
100BASE-T2 HDX capability RO  
Extended status enable  
RO  
1: Extended status information present in  
register 15.  
7
Unidirectional ability  
RO  
1: PHY able to transmit from media  
independent interface regardless of  
whether the PHY has determined that a  
valid link has been established.  
0: PHY able to transmit from media  
independent interface only when the PHY  
has determined that a valid link has been  
established.  
1
Note: This bit is only applicable to  
100BASE-FX and  
1000BASE-X fiber media  
modes.  
6
5
Preamble suppression  
capability  
RO  
RO  
1: MF preamble can be suppressed.  
0: MF required.  
1
0
Autonegotiation complete  
1: Autonegotiation complete.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
41  
Registers  
Table 17 • Mode Status, Address 1 (0x01) (continued)  
Bit Name  
Remote fault  
Access Description  
Default  
4
RO  
Latches high.  
0
1: Far-end fault detected.  
3
2
Autonegotiation capability  
Link status  
RO  
RO  
1: Autonegotiation capable.  
1
0
Latches low.  
1: Link is up.  
1
0
Jabber detect  
RO  
RO  
Latches high.  
1: Jabber condition detected.  
0
1
Extended capability  
1: Extended register capable.  
5.1.3  
Device Identification  
All 16 bits in both register 2 and register 3 in the VSC8512-02 are used to provide information associated  
with aspects of the device identification. The following tables list the expected readouts.  
Table 18 • Identifier 1, Address 2 (0x02)  
Bit Name  
Access Description  
RO OUI most significant bits (3:18)  
Default  
15:0 Organizationally unique identifier  
(OUI)  
0×0007  
Table 19 • Identifier 2, Address 3 (0x03)  
Bit  
Name  
Access Description  
Default  
15:10 OUI  
RO  
RO  
OUI least significant bits (19:24)  
VSC8512-02 (0x2e)  
000001  
101110  
9:4  
3:0  
Microsemi model  
number  
Device revision number RO  
0011  
5.1.4  
Autonegotiation Advertisement  
The bits in address 4 in the main registers space control the VSC8512-02 ability to notify other devices of  
the status of its autonegotiation feature. The following table shows the available settings and readouts.  
Table 20 • Device Autonegotiation Advertisement, Address 4 (0x04)  
Bit Name  
Access Description  
Default  
15 Next page transmission request R/W  
1: Request enabled  
0
0
0
0
0
0
0
1
1
1
1
14 Reserved  
RO  
Reserved  
13 Transmit remote fault  
12 Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1: Enabled  
Reserved  
11 Advertise asymmetric pause  
10 Advertise symmetric pause  
1: Advertises asymmetric pause  
1: Advertises symmetric pause  
1: Advertises 100BASE-T4  
1: Advertise 100BASE-TX FDX  
1: Advertises 100BASE-TX HDX  
1: Advertises 10BASE-T FDX  
1: Advertises 10BASE-T HDX  
9
8
7
6
5
Advertise100BASE-T4  
Advertise100BASE-TX FDX  
Advertise100BASE-TX HDX  
Advertise10BASE-T FDX  
Advertise10BASE-T HDX  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
42  
Registers  
Table 20 • Device Autonegotiation Advertisement, Address 4 (0x04) (continued)  
Bit Name  
Access Description  
Default  
4:0 Advertise selector  
R/W  
00001  
5.1.5  
Link Partner Autonegotiation Capability  
The bits in main register 5 can be used to determine if the Cat5 link partner (LP) used with the  
VSC8512-02 is compatible with the autonegotiation functionality.  
Table 21 • Autonegotiation Link Partner Ability, Address 5 (0x05)  
Bit Name  
Access Description  
Default  
15 LP next page transmission request RO  
1: Requested  
0
14 LP acknowledge  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
1: Acknowledge  
0
13 LP remote fault  
1: Remote fault  
0
12 Reserved  
Reserved  
0
11 LP advertise asymmetric pause  
10 LP advertise symmetric pause  
1: Capable of asymmetric pause  
1: Capable of symmetric pause  
1: Capable of 100BASE-T4  
1: Capable of 100BASE-TX FDX  
1: Capable of 100BASE-TX HDX  
1: Capable of 10BASE-T FDX  
1: Capable of 10BASE-T HDX  
0
0
9
8
7
6
5
LP advertise 100BASE-T4  
0
LP advertise 100BASE-TX FDX  
LP advertise 100BASE-TX HDX  
LP advertise 10BASE-T FDX  
LP advertise 10BASE-T HDX  
0
0
0
0
4:0 LP advertise selector  
00000  
5.1.6  
Autonegotiation Expansion  
The bits in main register 6 work together with those in register 5 to indicate the status of the LP  
autonegotiation functioning. The following table shows the available settings and readouts.  
Table 22 • Autonegotiation Expansion, Address 6 (0x06)  
Bit  
Name  
Access Description  
Default  
All zeros  
0
15:5 Reserved  
RO  
RO  
Reserved.  
4
Parallel detection fault  
LP next page capable  
This bit latches high.  
1: Parallel detection fault.  
3
2
1
RO  
1: LP is next page capable.  
0
1
0
Local PHY next page capable RO  
Page received RO  
1: Local PHY is next page capable.  
This bit latches low.  
1: New page is received.  
0
LP is autonegotiation capable RO  
1: LP is capable of autonegotiation.  
0
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
43  
Registers  
5.1.7  
Transmit Autonegotiation Next Page  
The settings in register 7 in the main registers space provide information about the number of pages in  
an autonegotiation sequence. The following table shows the settings available.  
Table 23 • Autonegotiation Next Page Transmit, Address 7 (0x07)  
Bit  
15  
14  
13  
Name  
Access Description  
Default  
Next page  
Reserved  
Message page  
R/W  
RO  
1: More pages follow  
0
0
1
Reserved  
R/W  
1: Message page  
0: Unformatted page  
12  
11  
Acknowledge 2  
Toggle  
R/W  
RO  
1: Complies with request  
0: Cannot comply with request  
0
1: Previous transmitted LCW = 0  
0: Previous transmitted LCW = 1  
0
10:0 Message/unformatted code R/W  
00000000001  
5.1.8  
Autonegotiation Link Partner Next Page Receive  
The bits in register 8 of the main register space work together with register 7 to determine certain aspects  
of the LP autonegotiation. The following table shows the possible readouts.  
Table 24 • Autonegotiation LP Next Page Receive, Address 8 (0x08)  
Bit  
15  
14  
13  
Name  
Access Description  
Default  
LP next page  
Acknowledge  
LP message page  
RO  
RO  
RO  
1: More pages follow  
0
0
0
1: LP acknowledge  
1: Message page  
0: Unformatted page  
12  
11  
LP acknowledge 2  
LP toggle  
RO  
RO  
1: LP complies with request  
0
0
1: Previous transmitted LCW = 0  
0: Previous transmitted LCW = 1  
10:0 LP message/unformatted code RO  
All zeros  
5.1.9  
1000BASE-T Control  
The VSC8512-02’s 1000BASE-T functionality is controlled by the bits in register 9 of the main register  
space. The following table shows the settings and readouts available.  
Table 25 • 1000BASE-T Control, Address 9 (0x09)  
Bit  
Name  
Access Description  
Default  
15:13 Transmitter test  
mode  
R/W  
000: Normal.  
000  
001: Mode 1: Transmit waveform test.  
010: Mode 2: Transmit jitter test as master.  
011: Mode 3: Transmit jitter test as slave.  
100: Mode 4: Transmitter distortion test.  
101–111: Reserved  
12  
Master/slavemanual R/W  
configuration  
1: Master/slave manual configuration enabled.  
0
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
44  
Registers  
Table 25 • 1000BASE-T Control, Address 9 (0x09) (continued)  
Bit  
Name  
Access Description  
Default  
11  
Master/slave value R/W  
This register is only valid when bit 9.12 is set to  
1.  
0
1: Configure PHY as master during negotiation.  
0: Configure PHY as slave during negotiation.  
10  
9
Port type  
R/W  
R/W  
1: Multi-port device.  
0: Single-port device.  
1
1000BASE-T FDX  
capability  
1: PHY is 1000BASE-T FDX capable.  
1: PHY is 1000BASE-T HDX capable.  
Reserved.  
1
8
1000BASE-T HDX R/W  
capability  
1
7:0  
Reserved  
R/W  
0x00  
Note: Transmitter test mode (bits 15:13) operates in the manner described in IEEE 802.3 section 40.6.1.1.2.  
When using any of the transmitter test modes, the automatic media-sense feature must be disabled. For  
more information, see Extended PHY Control 2, page 51.  
5.1.10 1000BASE-T Status  
The bits in register 10 of the main register space can be read to obtain the status of the 1000BASE-T  
communications enabled in the device. The following table shows the readouts.  
Table 26 • 1000BASE-T Status, Address 10 (0x0A)  
Bit Name  
Access Description  
Default  
15 Master/slave  
RO  
RO  
This bit latches high.  
1: Master/slave configuration fault detected.  
0: No master/slave configuration fault detected.  
0
configuration fault  
14 Master/slave  
configuration  
resolution  
1: Local PHY configuration resolved to master.  
0: Local PHY configuration resolved to slave.  
1
13 Local receiver status RO  
1: Local receiver is operating normally.  
1: Remote receiver OK.  
0
0
12 Remote receiver  
status  
RO  
RO  
RO  
11 LP 1000BASE-T  
FDX capability  
1: LP 1000BASE-T FDX capable.  
1: LP 1000BASE-T HDX capable.  
0
0
10 LP 1000BASE-T  
HDX capability  
9:8 Reserved  
RO  
RO  
Reserved.  
00  
7:0 Idle error count  
Self-clearing register.  
0x00  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
45  
Registers  
5.1.11 MMD Access Control Register  
The bits in register 13 of the main register space are a window to the EEE registers as defined in  
IEEE 802.3az Clause 45.  
Table 27 • MMD EEE Access, Address 13 (0x0D)  
Bit  
Name  
Access Description  
15:14 Function R/W  
00: Address  
01: Data, no post increment  
10: Data, post increment for read and write  
11: Data, post increment for write only  
13:5  
4:0  
Reserved R/W  
DVAD R/W  
Reserved  
Device address as defined in IEEE 802.3az table 45-1  
5.1.12 MMD Address or Data Register  
The bits in register 14 of the main register space are a window to the EEE registers as defined in  
IEEE 802.3az Clause 45.  
Table 28 • MMD Address or Data Register, Address 14 (0x0E)  
Bit  
Name  
Access Description  
15:0 Register Address/Data R/W  
If register 13.15:14 = 2'b00, address of register of the  
device that is specified by 13.4:0. Otherwise, the data to  
be written to or read from the register.  
5.1.13 1000BASE-T Status Extension 1  
Register 15 provides additional information about the operation of the device 1000BASE-T  
communications. The following table shows the readouts available.  
Table 29 • 1000BASE-T Status Extension 1, Address 15 (0x0F)  
Bit  
15  
14  
13  
12  
Name  
Access Description  
Default  
1000BASE-X FDX capability RO  
1000BASE-X HDX capability RO  
1000BASE-T FDX capability RO  
1000BASE-T HDX capability RO  
1: PHY is 1000BASE-X FDX capable  
1: PHY is 1000BASE-X HDX capable  
1: PHY is 1000BASE-T FDX capable  
1: PHY is 1000BASE-T HDX capable  
Reserved  
0
0
1
1
11:0 Reserved  
RO  
0x000  
5.1.14 100BASE-TX Status Extension  
Register 16 in the main registers page space of the VSC8512-02 provides additional information about  
the status of the device’s 100BASE-TX operation.  
Table 30 • 100BASE-TX Status Extension, Address 16 (0x10)  
Bit Name  
Access Description  
Default  
15 100BASE-TX Descrambler  
14 100BASE-TX lock error  
RO  
RO  
1: Descrambler locked.  
0
0
Self-clearing bit.  
1: Lock error detected.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
46  
Registers  
Table 30 • 100BASE-TX Status Extension, Address 16 (0x10) (continued)  
Bit Name  
Access Description  
Default  
13 100BASE-TX disconnect state  
RO  
Self-clearing bit.  
0
1: PHY 100BASE-TX link disconnect  
detected.  
12 100BASE-TX current link status RO  
1: PHY 100BASE-TX link active.  
0
0
11 100BASE-TX receive error  
RO  
RO  
RO  
Self-clearing bit.  
1: Receive error detected.  
10 100BASE-TX transmit error  
Self-clearing bit.  
1: Transmit error detected.  
0
0
9
8
100BASE-TX SSD error  
100BASE-TX ESD error  
Self-clearing bit.  
1: Start-of-stream delimiter error  
detected.  
RO  
RO  
Self-clearing bit.  
1: End-of-stream delimiter error  
detected.  
0
7:0 Reserved  
Reserved  
5.1.15 1000BASE-T Status Extension 2  
The second status extension register is at address 17 in the device main registers space. It provides  
information about another set of parameters associated with 1000BASE-T communications. For  
information about the first status extension register, see Table 29, page 46.  
Table 31 • 1000BASE-T Status Extension 2, Address 17 (0x11)  
Bit Name  
Access Description  
Default  
15 1000BASE-T descrambler  
14 1000BASE-T lock error  
RO  
RO  
1: Descrambler locked.  
0
0
Self-clearing bit.  
1: Lock error detected.  
13 1000BASE-T disconnect state  
RO  
Self-clearing bit.  
0
1: PHY 1000BASE-T link disconnect  
detected.  
12 1000BASE-T current link status RO  
1: PHY 1000BASE-T link active.  
0
0
11 1000BASE-T receive error  
RO  
RO  
RO  
Self-clearing bit.  
1: Receive error detected.  
10 1000BASE-T transmit error  
Self-clearing bit.  
1: Transmit error detected.  
0
0
9
8
1000BASE-T SSD error  
1000BASE-T ESD error  
Self-clearing bit.  
1: Start-of-stream delimiter error  
detected.  
RO  
Self-clearing bit.  
0
1: End-of-stream delimiter error  
detected.  
7
6
5
1000BASE-T carrier extension  
error  
RO  
RO  
RO  
Self-clearing bit.  
1: Carrier extension error detected.  
0
0
0
Non-compliant BCM5400  
detected  
1: Non-compliant BCM5400 link  
partner detected.  
MDI crossover error  
1: MDI crossover error was detected.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
47  
Registers  
Table 31 • 1000BASE-T Status Extension 2, Address 17 (0x11) (continued)  
Bit Name  
Access Description  
RO Reserved  
Default  
4:0 Reserved  
5.1.16 Bypass Control  
The bits in this register control aspects of functionality in effect when the device is disabled for the  
purpose of traffic bypass. The following table shows the settings available.  
Table 32 • Bypass Control, Address 18 (0x12)  
Bit Name  
Access Description  
Default  
15 Transmit disable  
14 4B5B encoder/decoder  
13 Scrambler  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
1: PHY transmitter disabled.  
0
0
0
0
0
0
0
1: Bypass 4B/5B encoder/decoder.  
1: Bypass scrambler.  
12 De-scrambler  
11 PCS receive  
10 PCS transmit  
1: Bypass de-scrambler.  
1: Bypass PCS receiver.  
1: Bypass PSC transmit.  
1: Bypass Link Fail Inhibit (LFI) timer.  
Reserved.  
9
8
7
LFI timer  
Reserved  
HP Auto-MDIX at forced  
10/100  
R/W  
Sticky bit.  
1
0
0
1: Disable HP Auto-MDIX at forced 10/100  
speeds.  
6
5
Non-compliant BCM5400 R/W  
detect disable  
Sticky bit.  
1: Disable non-compliant BCM5400  
detection.  
Disable pair swap  
correction (HP Auto-MDIX  
when autonegotiation  
enabled)  
R/W  
Sticky bit.  
1: Disable the automatic pair swap correction.  
4
3
Disable polarity correction R/W  
Sticky bit.  
0
1
1: Disable polarity inversion correction on  
each subchannel.  
Parallel detect control  
R/W  
Sticky bit.  
1: Do not ignore advertised ability.  
0: Ignore advertised ability.  
2
1
Pulse shaping filter  
R/W  
R/W  
1: Disable pulse shaping filter  
0
0
Disable automatic  
1000BASE-T next page  
exchange  
Sticky bit.  
1: Disable automatic 1000BASE-T next page  
exchanges.  
0
Reserved  
RO  
Reserved.  
Note: If bit 18.1 is set to 1 in this register, automatic exchange of next pages is disabled, and control is returned  
to the user through the SMI after the base page is exchanged. The user then must send the correct  
sequence of next pages to the link partner, determine the common capabilities, and force the device into  
the correct configuration following the successful exchange of pages.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
48  
Registers  
5.1.17 Error Counter 1  
The bits in register 19 provide an error counter. The following table shows the settings available.  
Table 33 • Extended Control and Status, Address 19 (0x13)  
Bit  
15:8 Reserved  
7:0 100/1000BASE-TX  
receive error counter  
Name  
Access Description  
Default  
RO  
RO  
Reserved.  
8-bit counter that saturates when it reaches  
255. These bits are self-clearing when read.  
0x00  
5.1.18 Error Counter 2  
The bits in register 20 provide an error counter. The following table shows the settings available.  
Table 34 • Extended Control and Status, Address 20 (0x14)  
Bit  
15:8 Reserved  
7:0 100/1000BASE-TX  
false carrier counter  
Name  
Access Description  
Default  
RO  
RO  
Reserved.  
8-bit counter that saturates when it reaches  
255. These bits are self-clearing when read.  
0x00  
5.1.19 Error Counter 3  
The bits in register 21 provide an error counter. The following table shows the settings available.  
Table 35 • Extended Control and Status, Address 21 (0x15)  
Bit  
15:8 Reserved  
7:0 Copper media link  
disconnect counter  
Name  
Access Description  
Default  
RO  
RO  
Reserved.  
8-bit counter that saturates when it reaches 255. 0x00  
These bits are self-clearing when read.  
5.1.20 Extended Control and Status  
The bits in register 22 provide additional device control and readouts. The following table shows the  
settings available.  
Table 36 • Extended Control and Status, Address 22 (0x16)  
Bit  
Name  
Access Description  
Default  
15  
Force 10BASE-T link high R/W  
Sticky bit.  
0
1: Bypass link integrity test.  
0: Enable link integrity test.  
14  
13  
12  
Jabber detect disable  
Disable 10BASE-T echo  
Disable SQE mode  
R/W  
R/W  
R/W  
Sticky bit.  
1: Disable jabber detect.  
0
1
1
Sticky bit.  
1: Disable 10BASE-T echo.  
Sticky bit.  
1: Disable SQE mode.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
49  
Registers  
Table 36 • Extended Control and Status, Address 22 (0x16) (continued)  
Bit  
Name  
Access Description  
Default  
11:10 10BASE-T squelch control R/W  
Sticky bit.  
00  
00: Normal squelch.  
01: Low squelch.  
10: High squelch.  
11: Reserved.  
9
8
7
Sticky reset enable  
EOF Error  
R/W  
RO  
Super-sticky bit.  
1: Enabled.  
1
0
0
0
This bit is self-clearing.  
1: EOF error detected.  
10BASE-T disconnect state RO  
This bit is self-clearing.  
1: 10BASE-T link disconnect detected.  
6
10BASE-T link status  
Reserved  
RO  
RO  
1: 10BASE-T link active.  
Reserved.  
5:1  
0
SMI broadcast write  
R/W  
Sticky bit.  
0
1: Enabled.  
The following information applies to the extended control and status bits:  
When bit 22.15 is set, the link integrity state machine is bypassed and the PHY is forced into a link  
pass status.  
When bits 22.11:10 are set to 00, the squelch threshold levels are based on the IEEE standard for  
10BASE-T. When set to 01, the squelch level is decreased, which can improve the bit error rate  
performance on long loops. When set to 10, the squelch level is increased and can improve the bit  
error rate in high-noise environments.  
When bit 22.9 is set, all sticky register bits retain their values during a software reset. Clearing this  
bit causes all sticky register bits to change to their default values upon software reset. Super-sticky  
bits retain their values upon software reset regardless of the setting of bit 22.9.  
When bit 22.0 is set, if a write to any PHY register (registers 0–31, including extended registers), the  
same write is broadcast to all PHYs. For example, if bit 22.0 is set to 1 and a write to PHY0 is  
executed (register 0 is set to 0x1040), all PHYs’ register 0s are set to 0x1040. Disabling this bit  
restores normal PHY write operation. Reads are still possible when this bit is set, but the value that  
is read corresponds only to the particular PHY being addressed.  
5.2  
Extended PHY Control 1  
The following table shows the settings available.  
Table 37 • Extended PHY Control 1, Address 23 (0x17)  
Bit  
Name  
Access Description  
Default  
110  
15:13 Reserved  
RO  
Reserved.  
12  
11  
MAC interface  
mode  
R/W  
Super-sticky bit.  
0: SGMII  
1: 1000BASE-X  
0
Note: Register 19G.15:14 = 01 for this  
selection to be valid.  
AMS preference R/W  
Super-sticky bit.  
0
1: Cat5 copper preferred  
0: SerDes fiber/SFP preferred  
Note: Register 19G.15:14 = 10 for this  
selection to be valid.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
50  
Registers  
Table 37 • Extended PHY Control 1, Address 23 (0x17) (continued)  
Bit  
Name  
Access Description  
Default  
10:8  
Media operating R/W  
mode  
Super-sticky bits.  
000: Cat5 copper only.  
000  
001: SerDes fiber/SFP protocol transfer mode only.  
010: 1000BASE-X fiber/SFP media only with  
autonegotiation performed by the PHY.  
011: 100BASE-FX fiber/SFP on the fiber media pins  
only.  
101: Automatic media-sense (AMS) with Cat5  
media or SerDes fiber/SFP protocol transfer mode.  
110: AMS with Cat5 media or 1000BASE-X  
fiber/SFP media with autonegotiation performed by  
PHY.  
111: AMS with Cat5 media or 100BASE-FX  
fiber/SFP media.  
100: AMS.  
Note: Register 19G.15:14 = 10 for the any of  
the fiber media selections to be valid.  
7:6  
Force AMS  
override  
R/W  
RO  
00: Normal AMS selection  
00  
01: Force AMS to select SerDes media only  
10: Force AMS to select copper media only  
11: Reserved  
Note: Register 19G.15:14 = 10 for this  
selection to be valid.  
5:4  
3
Reserved  
Reserved.  
Far-endloopback R/W  
mode  
1: Enabled.  
0
2:0  
Reserved  
RO  
Reserved.  
Note: After configuring bits 13:8 of the extended PHY control register set 1, a software reset (register 0, bit 15)  
must be written to change the device operating mode. On read, these bits only indicate the actual  
operating mode and not the pending operating mode setting before a software reset has taken place.  
5.2.1  
Extended PHY Control 2  
The second set of extended controls is located in register 24 in the main register space for the device.  
The following table shows the settings and readouts available.  
Table 38 • Extended PHY Control 2, Address 24 (0x18)  
Bit  
Name  
Access Description  
Default  
15:13 100BASE-TX edge rate R/W  
control  
Sticky bit.  
000  
011: +5 Edge rate (slowest).  
010: +4 Edge rate.  
001: +3 Edge rate.  
000: +2 Edge rate.  
111: +1 Edge rate.  
110: Default edge rate.  
101: –1 Edge rate.  
100: –2 Edge rate (fastest).  
12  
PICMG 2.16 reduced  
power mode  
R/W  
RO  
Sticky bit.  
1: Enabled.  
0
11:6  
Reserved  
Reserved.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
51  
Registers  
Table 38 • Extended PHY Control 2, Address 24 (0x18) (continued)  
Bit  
Name  
Access Description  
Default  
5:4  
Jumbo packet mode  
R/W  
Sticky bit.  
00  
00: Normal IEEE 1.5 kB packet length.  
01: 9 kB jumbo packet length (12 kB with  
60 ppm or better reference clock).  
10: 12 kB jumbo packet length (16 kB with  
70 ppm or better reference clock).  
11: Reserved.  
3:1  
0
Reserved  
RO  
Reserved.  
1000BASE-Tconnector R/W  
loopback  
1: Enabled.  
0
Note: When bits 5:4 are set to jumbo packet mode, the default maximum packet values are based on 100 ppm  
driven reference clock to the device. Controlling the ppm offset between the MAC and the PHY as  
specified in the bit description results in a higher jumbo packet length.  
5.2.2  
Interrupt Mask  
These bits control the device interrupt mask. The following table shows the settings available.  
Table 39 • Interrupt Mask, Address 25 (0x19)  
Bit Name  
Access Description  
Default  
15 MDINT interrupt status enable  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Sticky bit.  
1: Enabled.  
0
14 Speed state change mask  
13 Link state change mask  
12 FDX state change mask  
11 Autonegotiation error mask  
10 Autonegotiation complete mask  
Sticky bit.  
1: Enabled.  
0
0
0
0
0
0
0
0
0
0
0
0
Sticky bit.  
1: Enabled.  
Sticky bit.  
1: Enabled.  
Sticky bit.  
1: Enabled.  
Sticky bit.  
1: Enabled.  
9
8
7
6
5
4
3
Inline powered device (PoE) detect mask R/W  
Sticky bit.  
1: Enabled.  
Symbol error interrupt mask  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Sticky bit.  
1: Enabled.  
Fast link failure interrupt mask  
TX FIFO over/underflow interrupt mask  
RX FIFO over/underflow interrupt mask  
AMS media changed mask  
Sticky bit.  
1: Enabled.  
Sticky bit.  
1: Enabled.  
Sticky bit.  
1: Enabled.  
Sticky bit.  
1: Enabled.  
False-carrier interrupt mask  
Sticky bit.  
1: Enabled.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
52  
Registers  
Table 39 • Interrupt Mask, Address 25 (0x19) (continued)  
Bit Name Access Description  
Default  
2
1
0
Link speed downshift detect mask  
R/W  
R/W  
R/W  
Sticky bit.  
1: Enabled.  
0
Master/Slave resolution error mask  
RX_ER interrupt mask  
Sticky bit.  
1: Enabled.  
0
0
Sticky bit.  
1: Enabled.  
Note: When bit 25.15 is set, the MDINT pin is enabled. When enabled, the state of this pin reflects the state of  
bit 26.15. Clearing this bit only inhibits the MDINT pin from being asserted. Also, before enabling this bit,  
read register 26 to clear any previously inactive interrupts pending that will cause bit 25.15 to be set.  
5.2.3  
Interrupt Status  
The status of interrupts already written to the device are available for reading from register 26 in the main  
registers space. The following table shows the expected readouts.  
Table 40 • Interrupt Status, Address 26 (0x1A)  
Bit Name  
Access Description  
Default  
15 Interrupt status  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Self-clearing bit.  
1: Interrupt pending.  
0
14 Speed state change status  
13 Link state change status  
12 FDX state change status  
11 Autonegotiation error status  
10 Autonegotiation complete status  
Self-clearing bit.  
1: Interrupt pending.  
0
0
0
0
0
0
0
0
0
0
0
0
0
Self-clearing bit.  
1: Interrupt pending.  
Self-clearing bit.  
1: Interrupt pending.  
Self-clearing bit.  
1: Interrupt pending.  
Self-clearing bit.  
1: Interrupt pending.  
9
8
7
6
5
4
3
2
Inline powered device detect status  
Symbol error status  
Self-clearing bit.  
1: Interrupt pending.  
Self-clearing bit.  
1: Interrupt pending.  
Fast link failure detect status  
Self-clearing bit.  
1: Interrupt pending.  
TX FIFO over/underflow detect status RO  
RX FIFO over/underflow detect status RO  
Self-clearing bit.  
1: Interrupt pending.  
Self-clearing bit.  
1: Interrupt pending.  
AMS media changed mask  
RO  
RO  
RO  
Self-clearing bit.  
1: Interrupt pending.  
False-carrier interrupt status  
Link speed downshift detect status  
Self-clearing bit.  
1: Interrupt pending.  
Self-clearing bit.  
1: Interrupt pending.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
53  
Registers  
Table 40 • Interrupt Status, Address 26 (0x1A) (continued)  
Bit Name Access Description  
Default  
1
Master/Slave resolution error status  
RO  
Self-clearing bit.  
0
1: Interrupt pending.  
0
RX_ER interrupt status  
RO  
Self-clearing bit.  
0
1: Interrupt pending.  
The following information applies to the interrupt status bits:  
All set bits in this register are cleared after being read (self-clearing). If bit 26.15 is set, the cause of  
the interrupt can be read by reading bits 26.14:0.  
For bits 26.14 and 26.12, bit 0.12 must be set for this interrupt to assert.  
For bit 26.2, bits 4.8:5 must be set for this interrupt to assert.  
For bit 26.0, this interrupt will not occur when RX_ER is used for carrier-extension decoding of a link  
partner’s data transmission.  
5.2.4  
Device Auxiliary Control and Status  
Register 28 provides control and status information for several device functions not controlled or  
monitored by other device registers. The following table shows the settings available and the expected  
readouts.  
Table 41 • Auxiliary Control and Status, Address 28 (0x1C)  
Bit Name  
Access Description  
Default  
15 Autonegotiation complete RO  
Duplicate of bit 1.5.  
0
0
0
14 Autonegotiation disabled  
RO  
RO  
Inverted duplicate of bit 0.12.  
13 HP Auto-MDIX crossover  
indication  
1: HP Auto-MDIX crossover performed  
internally.  
12 CD pair swap  
RO  
RO  
RO  
RO  
RO  
1: CD pairs are swapped.  
1: Polarity swap on pair A.  
1: Polarity swap on pair B.  
1: Polarity swap on pair C.  
1: Polarity swap on pair D.  
0
0
0
0
0
0
11 A polarity inversion  
10 B polarity inversion  
9
8
7
C polarity inversion  
D polarity inversion  
ActiPHY link status time-out R/W  
control [1]  
Sticky bit. Bits 7 and 2 are part of the  
ActiPHY Link Status time-out control. Bit 7 is  
the MSB.  
00: 1 second.  
01: 2 seconds.  
10: 3 seconds.  
11: 4 seconds.  
6
5
ActiPHY mode enable  
FDX status  
R/W  
RO  
RO  
Sticky bit.  
1: Enabled.  
0
1: Full-duplex.  
0: Half-duplex.  
00  
0
4:3 Speed status  
00: Speed is 10BASE-T.  
01: Speed is 100BASE-TX or 100BASE-FX.  
10: Speed is 1000BASE-T or 1000BASE-X.  
11: Reserved.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
54  
Registers  
Table 41 • Auxiliary Control and Status, Address 28 (0x1C) (continued)  
Bit Name  
ActiPHY link status time-out R/W  
control [0]  
Access Description  
Default  
2
Sticky bit. Bits 7 and 2 are part of the  
ActiPHY Link Status time-out control. Bit 7 is  
the MSB.  
1
00: 1 second.  
01: 2 seconds.  
10: 3 seconds.  
11: 4 seconds.  
1:0 Media mode status  
RO  
00: No media selected.  
01: Copper media selected.  
10: SerDes media selected.  
11: Reserved.  
00  
5.2.5  
LED Mode Select  
The device LED outputs are controlled using the bits in register 29 of the main register space. The  
following table shows the information needed to access the functionality of each of the outputs. For more  
information about LED modes, see Table 8, page 22. For information about enabling the extended LED  
mode bits in Register 19E1 bits 13 to 12, see Table 9, page 23.  
Table 42 • LED Mode Select, Address 29 (0x1D)  
Bit  
Name  
Access Description  
Default  
15:12 LED3 mode select R/W  
Sticky bit. Select from LED modes 0–15. 1000  
11:8  
7:4  
LED2 mode select R/W  
LED1 mode select R/W  
LED0 mode select R/W  
Sticky bit. Select from LED modes 0–15. 0000  
Sticky bit. Select from LED modes 0–15. 0010  
Sticky bit. Select from LED modes 0–15. 0001  
3:0  
5.2.6  
LED Behavior  
The bits in register 30 control and enable you to read the status of the pulse or blink rate of the device  
LEDs. The following table shows the settings you can write to the register or read from the register.  
Table 43 • LED Behavior, Address 30 (0x1E)  
Bit  
15:13 Reserved  
12 LED pulsing enable R/W  
Name  
Access Description  
Default  
RO  
Reserved.  
Sticky bit.  
0
0: Normal operation.  
1: LEDs pulse with a 5 kHz, programmable duty  
cycle when active.  
11:10 LED blink/pulse-  
stretch rate  
R/W  
Sticky bit.  
01  
00: 2.5 Hz blink rate/400 ms pulse-stretch.  
01: 5 Hz blink rate/200 ms pulse-stretch.  
10: 10 Hz blink rate/100 ms pulse-stretch.  
11: 20 Hz blink rate/50 ms pulse-stretch. The  
blink rate selection for PHY0 globally sets the  
rate used for all LED pins on all PHY ports.  
9:7  
6
Reserved  
RO  
Reserved.  
LED1 pulse-  
R/W  
Sticky bit.  
0
stretch/blink select  
1: Pulse-stretch.  
0: Blink.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
55  
Registers  
Table 43 • LED Behavior, Address 30 (0x1E) (continued)  
Bit  
Name  
Access Description  
Default  
5
LED0 pulse-  
R/W  
Sticky bit.  
0
stretch/blink select  
1: Pulse-stretch.  
0: Blink.  
4:2  
1
Reserved  
RO  
Reserved.  
LED1 combine  
feature disable  
R/W  
Sticky bit.  
0: Combine enabled (link/activity,  
duplex/collision).  
0
0
1: Disable combination (link only, duplex only).  
0
LED0 combine  
feature disable  
R/W  
Sticky bit.  
0: Combine enabled (link/activity,  
duplex/collision).  
1: Disable combination (link only, duplex only).  
Note: Bits 30.11:10 are active only in port 0 and affect the behavior of LEDs for all the ports.  
5.2.7  
Extended Page Access  
To provide functionality beyond the IEEE 802.3-specified registers and main device registers, the  
VSC8512-02 includes an extended set of registers that provide an additional 15 register spaces.  
The register at address 31 controls the access to the extended registers for the VSC8512-02. Accessing  
the GPIO page register space is similar to accessing the extended page registers. The following table  
shows the settings available.  
Table 44 • Extended/GPIO Page Access, Address 31 (0x1F)  
Bit  
Name  
Access Description  
Default  
15:0 Extended/GPIO page R/W  
register access  
0x0000: Register 16–30 accesses main register 0x0000  
space. Writing 0x0000 to register 31 restores the  
main register access.  
0x0001: Register 16–30 accesses extended  
register space 1  
0x0002: Register 16–30 accesses extended  
register space 2  
0x0003: Register 16–30 accesses extended  
register space 3  
0x0010: Register 0–30 accesses GPIO register  
space  
5.3  
Extended Page 1 Registers  
To access the extended page 1 registers (16E1–30E1), enable extended register access by writing  
0x0001 to register 31. Writing 0x0000 to register 31 restores the main register access.  
When extended page 1 register access is enabled, reads and writes to registers 16–30 affect the  
extended registers 16E1–30E1 instead of those same registers in the IEEE-specified register space.  
Registers 0–15 are not affected by the state of the extended page register access.  
Table 45 • Extended Registers Page 1 Space  
Address  
16E1  
Name  
SerDes Media Control  
Reserved  
17E1  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
56  
Registers  
Table 45 • Extended Registers Page 1 Space (continued)  
Address  
18E1  
Name  
Cu Media CRC Good Counter  
19E1  
Extended Mode Control (SerDes loopback and SIGDET  
control)  
20E1  
Extended PHY Control 3 (ActiPHY)  
21E1–22E1 Reserved  
23E1  
24E1  
25E1  
26E1  
Extended PHY Control 4 (PoE and CRC error counter)  
VeriPHY 1  
VeriPHY 2  
VeriPHY 3  
27E1–28E1 Reserved  
29E1  
30E1  
Ethernet Packet Generator (EPG) Control 1  
EPG Control 2  
5.3.1  
SerDes Media Control  
Register 16E1 controls some functions of the SerDes media interface on ports 8-11. These settings are  
only valid for those ports. The following table shows the setting available in this register.  
Table 46 • SerDes Media Control, Address 16E1 (0x10)  
Bit Name Access Description  
Default  
15:14 Transmit remote fault  
R/W  
RO  
Remote fault indication sent to link partner  
(LP)  
00  
13:12 Link partner (LP)  
remote fault  
Remote fault bits sent by LP during  
autonegotiation  
00  
1
11:10 Reserved  
RO  
Reserved  
9
Allow 1000BASE-X  
link-up  
R/W  
Sticky bit.  
1: Allow 1000BASE-X fiber media link-up  
capability  
0: Suppress 1000BASE-X fiber media link-up  
capability  
8
Allow 100BASE-FX  
link-up  
R/W  
RO  
Sticky bit.  
1
0
1: Allow 100BASE-FX fiber media link-up  
capability  
0: Suppress 100BASE-FX fiber media link-up  
capability  
7
6
Reserved  
Reserved  
Far end fault detected RO  
in 100BASE-FX  
Self-clearing bit.  
1: Far end fault in 100BASE-FX detected  
5:0  
Reserved  
RO  
Reserved  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
57  
Registers  
5.3.2  
Cu Media CRC Good Counter  
Register 18E1 makes it possible to read the contents of the CRC good counter for packets that are  
received on the Cu media interface; the number of CRC routines that have executed successfully. The  
following table shows the expected readouts.  
Table 47 • Cu Media CRC Good Counter, Address 18E1 (0x12)  
Bit  
Name  
Access Description  
Default  
15  
Packet since last read  
RO  
Self-clearing bit.  
0
1: Packet received since last read.  
14  
Reserved  
RO  
RO  
Reserved.  
13:0 Cu Media CRC good counter  
contents  
Self-clearing counter containing the 0x0000  
number of packets with valid CRCs  
modulo 10,000. This counter does  
not saturate and will roll over to 0 on  
the next good packet received after  
9,999.  
5.3.3  
Extended Mode Control  
Register 19E1 controls the extended LED and other chip modes. The following table shows the settings  
available.  
Table 48 • Extended Mode Control, Address 19E1 (0x13)  
Bit  
15  
14  
13  
12  
11  
Name  
Access Description  
Default  
LED3 Extended Mode  
LED2 Extended Mode  
LED1 Extended Mode  
LED0 Extended Mode  
R/W  
R/W  
R/W  
R/W  
R/W  
1: See Extended LED Modes, page 23.  
0
0
0
0
0
1: See Extended LED Modes, page 23.  
1: See Extended LED Modes, page 23.  
1: See Extended LED Modes, page 23.  
LED Reset Blink  
Suppress  
1: Blink LEDs after COMA_MODE is  
deasserted.  
0: Suppress LED blink after COMA_MODE  
is deasserted.  
10:4  
3:2  
Reserved  
RO  
Reserved  
0
Force MDI crossover  
R/W  
00: Normal HP Auto-MDIX operation.  
01: Reserved.  
00  
10: Copper media forced to MDI.  
11: Copper media forced MDI-X.  
1
0
Reserved  
RO  
Reserved  
SFP[3:0]_SD pin polarity R/W  
1: Active low.  
0: Active high.  
0
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
58  
Registers  
5.3.4  
ActiPHY Control  
Register 20E1 controls the device ActiPHY sleep timer, its wake-up timer, the frequency of the CLKOUT  
signal, and its link speed downshifting feature. The following table shows the settings available.  
Table 49 • Extended PHY Control 3, Address 20E1 (0x14)  
Bit  
Name  
Access Description  
Default  
15  
Disable carrier  
extension  
R/W  
1: Disable carrier extension in SGMII-  
1000BASE-T copper links.  
1
14:13 ActiPHY sleep timer  
R/W  
Sticky bit.  
01  
00: 1 second.  
01: 2 seconds.  
10: 3 seconds.  
11: 4 seconds.  
12:11 ActiPHY wake-up  
timer  
R/W  
RO  
Sticky bit.  
00  
00: 160 ms.  
01: 400 ms.  
10: 800 ms.  
11: 2 seconds.  
10  
9
Reserved  
Reserved  
PHY address reversal R/W  
1: Enabled  
Address  
00  
8
Reserved  
RO  
RO  
Valid only on PHY0.  
7:6  
Media mode status  
00: No media selected.  
01: Copper media selected.  
10: SerDes media selected.  
11: Reserved.  
5
Enable 10BASE-T no R/W  
preamble mode  
Sticky bit.  
0
1: 10BASE-T will assert RX_DV indication  
when data is presented to the receiver even  
without a preamble preceding it.  
4
Enable link speed  
auto-downshift feature  
R/W  
R/W  
Sticky bit.  
0
1: Enable auto link speed downshift from  
1000BASE-T.  
3:2  
Link speed auto  
downshift control  
Sticky bit.  
01  
00: Downshift after 2 failed 1000BASE-T  
autonegotiation attempts.  
01: Downshift after 3 failed 1000BASE-T  
autonegotiation attempts.  
10: Downshift after 4 failed 1000BASE-T  
autonegotiation attempts.  
11: Downshift after 5 failed 1000BASE-T  
autonegotiation attempts.  
1
0
Link speed auto  
downshift status  
RO  
RO  
0: No downshift.  
1: Downshift is required or has occurred.  
0
Reserved  
Reserved  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
59  
Registers  
5.3.5  
PoE and Miscellaneous Functionality  
The register at address 23E1 controls various aspects of inline powering and the CRC error counter in  
the VSC8512-02.  
Table 50 • Extended PHY Control 4, Address 23E1 (0x17)  
Bit  
Name  
Access Description  
Default  
15:11 PHY address  
RO  
PHY address; latched on reset.  
10  
Inline powered device  
R/W  
Sticky bit.  
0
detection  
1: Enabled.  
9:8  
Inline powered device  
detection status  
RO  
RO  
Only valid when bit 10 is set.  
00: Searching for devices.  
01: Device found; requires inline power.  
10: Device found; does not require inline  
power.  
00  
11: Reserved.  
7:0  
Cu Media CRC error  
counter  
Self-clearing bit.  
0x00  
RC error counter for packets received on the  
Cu media interface. The value saturates at  
0xFF and subsequently clears when read  
and restarts count.  
5.3.6  
VeriPHY Control 1  
Register 24E1 in the extended register space provides control over the device VeriPHY diagnostics  
features. There are three separate VeriPHY control registers. The following table shows the settings  
available and describes the expected readouts.  
Table 51 • VeriPHY Control 1, Address 24E1 (0x18)  
Bit  
Name  
Access Description  
Default  
15  
VeriPHY trigger  
R/W  
RO  
Self-clearing bit.  
0
1: Triggers the VeriPHY algorithm and clears  
when VeriPHY has completed. Settings in  
registers 24E–26E become valid after this bit  
clears.  
14  
VeriPHY valid  
1: VeriPHY results in registers 24E–26E are  
valid.  
0
13:8 Pair A (1, 2) distance RO  
Loop length or distance to anomaly for pair A (1, 0x00  
2).  
7:6  
5:0  
Reserved  
RO  
Reserved.  
Pair B (3, 6) distance RO  
Loop length or distance to anomaly for pair B (3, 0x00  
6).  
Note: The resolution of the 6-bit length field is 3 meters.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
60  
Registers  
5.3.7  
VeriPHY Control 2  
The register at address 25E1 consists of the second of the three device registers that provide control  
over VeriPHY diagnostics features. The following table shows the expected readouts.  
Table 52 • VeriPHY Control 2, Address 25E1 (0x19)  
Bit  
Name  
Access Description  
RO Reserved  
Pair C (4, 5) distance RO  
Default  
15:14 Reserved  
13:8  
Loop length or distance to anomaly for pair C 0x00  
(4, 5)  
7:6  
5:0  
Reserved  
RO  
Reserved  
Pair D (7, 8) distance RO  
Loop length or distance to anomaly for pair D 0x00  
(7, 8)  
Note: The resolution of the 6-bit length field is 3 meters.  
5.3.8  
VeriPHY Control 3  
The register at address 26E1 consists of the third of the three device registers that provide control over  
VeriPHY diagnostics features. Specifically, this register provides information about the termination status  
(fault condition) for all four link partner pairs. The following table shows the expected readouts.  
Table 53 • VeriPHY Control 3, Address 26E1 (0x1A)  
Bit  
Name  
Access Description  
Default  
0x00  
15:12 Pair A (1, 2) termination status RO  
Termination fault for pair A (1, 2)  
Termination fault for pair B (3, 4)  
Termination fault for pair C (4, 5)  
Termination fault for pair D (7, 8)  
11:8  
7:4  
Pair B (3, 6) termination status RO  
Pair C (4, 5) termination status RO  
Pair D (7, 8) termination status RO  
0x00  
0x00  
3:0  
0x00  
The following table shows the meanings for the various fault codes.  
Table 54 • VeriPHY Control 3 Fault Codes  
Code Denotes  
0000 Correctly terminated pair  
0001 Open pair  
0010 Shorted pair  
0100 Abnormal termination  
1000 Cross-pair short to pair A  
1001 Cross-pair short to pair B  
1010 Cross-pair short to pair C  
1011 Cross-pair short to pair D  
1100 Abnormal cross-pair coupling with pair A  
1101 Abnormal cross-pair coupling with pair B  
1110 Abnormal cross-pair coupling with pair C  
1111 Abnormal cross-pair coupling with pair D  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
61  
Registers  
5.3.9  
Ethernet Packet Generator Control 1  
The EPG control register provides access to and control of various aspects of the EPG testing feature.  
There are two separate EPG control registers. The following table shows the settings available in the first  
register.  
Table 55 • EPG Control 1, Address 29E1 (0x1D)  
Bit  
15  
14  
13  
Name  
Access Description  
Default  
EPG enable  
EPG run or stop  
R/W  
R/W  
1: Enable EPG  
1: Run EPG  
0
0
0
Transmission duration R/W  
1: Continuous (sends in 10,000-packet  
increments)  
0: Send 30,000,000 packets and stop  
12:11 Packet length  
R/W  
00: 125 bytes  
0
01: 64 bytes  
10: 1518 bytes  
11: 10,000 bytes (jumbo packet)  
10  
9:6  
5:2  
1
Inter-packet gap  
Destination address  
Source address  
Payload type  
R/W  
R/W  
R/W  
R/W  
R/W  
1: 8,192 ns  
0: 96 ns  
0
Lowest nibble of the 6-byte destination  
address  
0001  
0000  
0
Lowest nibble of the 6-byte destination  
address  
1: Randomly generated payload pattern  
0: Fixed based on payload pattern  
0
Bad frame check  
sequence (FCS)  
generation  
1: Generate packets with bad FCS  
0: Generate packets with good FCS  
0
The following information applies to the EPG control number 1:  
Do not run the EPG when the VSC8512-02 is connected to a live network.  
Bit 29E1.13 (continuous EPG mode control): When enabled, this mode causes the device to send  
continuous packets. When disabled, the device continues to send packets only until it reaches the  
next 10,000-packet increment mark. It then ceases to send packets.  
The 6-byte destination address in bits 9:6 is assigned one of 16 addresses in the range of 0xFF FF  
FF FF FF F0 through 0xFF FF FF FF FF FF.  
The 6-byte source address in bits 5:2 is assigned one of 16 addresses in the range of 0xFF FF FF  
FF FF F0 through 0xFF FF FF FF FF FF.  
If any of bits 13:0 are changed while the EPG is running (bit 14 is set to 1), bit 14 must be cleared  
and then set back to 1 for the change to take effect and to restart the EPG.  
5.3.10 Ethernet Packet Generator Control 2  
Register 30E1 consists of the second set of bits that provide access to and control over the various  
aspects of the EPG testing feature. The following table shows the settings available.  
Table 56 • EPG Control 2, Address 30E1 (0x1E)  
Bit  
Name  
Access Description  
Data pattern repeated in the payload of packets 0x00  
generated by the EPG  
Default  
15:0 EPG packet payload R/W  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
62  
Registers  
Note: If any of bits 15:0 in this register are changed while the EPG is running (bit 14 of register 29E1 is set to  
1), that bit (29E1.14) must first be cleared and then set back to 1 for the change to take effect and to  
restart the EPG.  
5.4  
Extended Page 2 Registers  
To access the extended page 2 registers (16E2–30E2), enable extended register access by writing  
0x0002 to register 31. For more information, see Table 44, page 56.  
When extended page 2 register access is enabled, reads and writes to registers 16–30 affect the  
extended registers 16E2–30E2 instead of those same registers in the IEEE-specified register space.  
Registers 0–15 are not affected by the state of the extended page register access.  
Writing 0x0000 to register 31 restores the main register access.  
The following table lists the addresses and register names in the extended register page 2 space. These  
registers are accessible only when the device register 31 is set to 0x0002.  
Table 57 • Extended Registers Page 2 Space  
Address  
16E2  
Name  
Cu PMD Transmit Control  
EEE Control  
17E2  
18E2–30E2 Reserved  
5.4.1  
Cu PMD Transmit Control  
The register at address 16E2 consists of the bits that provide control over the amplitude settings for the  
transmit side Cu PMD interface. These bits provide the ability to make small adjustments in the signal  
amplitude to compensate for minor variations in the magnetics from different vendors. Extreme caution  
must be exercised when changing these settings from the default values as they have a direct impact on  
the signal quality. Changing these settings also affects the linearity and harmonic distortion of the  
transmitted signals. Contact Microsemi for further help with changing these values.  
Table 58 • Cu PMD Transmit Control, Address 16E2 (0x10)  
Bit  
Name  
Access Description  
Default  
15:12 1000BASE-T signal R/W  
amplitude trim  
Change 1000BASE-T 0000  
signal amplitude  
11:8  
100BASE-TX signal R/W  
amplitude trim  
Change 100BASE-TX 0010  
signal amplitude  
7:4  
10BASE-T signal  
amplitude trim  
R/W  
Change 10BASE-T  
signal amplitude  
1111  
3:0  
10BASE-Te signal  
amplitude trim  
R/W  
Change 10BASE-Te 0000  
signal amplitude  
5.4.2  
EEE Control  
The register at address 17E2 consists of the bits that provide additional control over the chip behavior in  
Energy Efficient Ethernet (IEEE 802.3az) mode for debug and to allow interoperation with legacy MACs  
that do not support IEEE 802.3az.  
Table 59 • EEE Control, Address 17E2 (0x11)  
Bit  
Name  
Access Description  
R/W Enable Energy Efficient (IEEE 802.3az)  
10BASE-Te operating mode.  
Default  
15  
Enable 10BASE-Te  
0
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
63  
Registers  
Table 59 • EEE Control, Address 17E2 (0x11) (continued)  
Bit  
Name  
Access Description  
Default  
14  
Enable LED in fiber  
unidirectional mode  
R/W  
1: Enable LED functions in fiber unidirectional  
mode.  
0
13:10 Invert LED polarity  
R/W  
Invert polarity of LED[3:0] signals. Default is to 0000  
drive an active low signal on the LED pins. This  
also applies to enhanced serial LED mode. For  
more information, see Enhanced Serial LED  
Mode, page 25.  
9:6  
5
Reserved  
R/O  
Reserved.  
Enable 1000BASE-T R/W  
force mode  
1: Enable 1000BASE-T force mode to allow  
PHY to link up in 1000BASE-T mode without  
forcing master/slave when register 0, bits 6 and  
13 are set to 2'b10.  
0
0
4
Force transmit LPI  
R/W  
1: Enable the EPG to transmit LPI on the MDI  
instead of normal idles when receiving normal  
idles from the MAC.  
0: Transmit idles being received from the MAC.  
3
2
1
0
Inhibit 100BASE-TX R/W  
transmit EEE LPI  
1: Disable transmission of EEE LPI on transmit 0  
path MDI in 100BASE-TX mode when receiving  
LPI from MAC.  
Inhibit 100BASE-TX R/W  
receive EEE LPI  
1: Disable transmission of EEE LPI on receive  
path MAC interface in 100BASE-TX mode  
when receiving LPI from the MDI.  
0
Inhibit 1000BASE-T R/W  
transmit EEE LPI  
1: Disable transmission of EEE LPI on transmit 0  
path MDI in 1000BASE-T mode when receiving  
LPI from MAC.  
Inhibit 1000BASE-T R/W  
receive EEE LPI  
1: Disable transmission of EEE LPI on receive  
path MAC interface in 1000BASE-T mode when  
receiving LPI from the MDI.  
0
5.5  
Extended Page 3 Registers  
To access the extended page 3 registers (16E3–30E3), enable extended register access by writing  
0x0003 to register 31. For more information, see Table 44, page 56.  
When extended page 3 register access is enabled, reads and writes to registers 16–30 affect the  
extended registers 16E3–30E3 instead of those same registers in the IEEE-specified register space.  
Registers 0–15 are not affected by the state of the extended page register access.  
Writing 0x0000 to register 31 restores the main register access.  
The following table lists the addresses and register names in the extended register page 3 space. These  
registers are accessible only when the device register 31 is set to 0x0003.  
Table 60 • Extended Registers Page 3 Space  
Address  
16E3  
Name  
MAC SerDes PCS Control  
MAC SerDes PCS Status  
MAC SerDes Clause 37 Advertised Ability  
MAC SerDes Clause 37 Link Partner Ability  
MAC SerDes Status  
17E3  
18E3  
19E3  
20E3  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
64  
Registers  
Table 60 • Extended Registers Page 3 Space (continued)  
Address  
21E3  
22E3  
23E3  
24E3  
25E3  
26E3  
27E3  
28E3  
29E3  
30E3  
Name  
Media SerDes Transmit Good Packet Counter  
Media SerDes Transmit CRC Error Counter  
Media SerDes PCS Control  
Media SerDes PCS Status  
Media SerDes Clause 37 Advertised Ability  
Media SerDes Clause 37 Link Partner Ability  
Media SerDes status  
Fiber Media CRC Good Counter  
Fiber Media CRC Error Counter  
Reserved  
5.5.1  
MAC SerDes PCS Control  
The register at address 16E3 consists of the bits that provide access to and control over MAC SerDes  
PCS block. The following table shows the settings available.  
Table 61 • MAC SerDes PCS Control, Address 16E3 (0x10)  
Bit  
Name  
Access Description  
Default  
15  
MAC interface disable  
R/W  
R/W  
Sticky bit.  
1: 1000BASE-X MAC interface disable  
when media link down.  
0
14  
13  
MAC interface restart  
Sticky bit.  
0
0
1: 1000BASE-X MAC interface restart on  
media link change.  
MAC interface PD enable R/W  
Sticky bit.  
1: MAC interface autonegotiation parallel  
detect enable.  
12  
11  
MAC interface  
autonegotiation restart  
R/W  
R/W  
R/W  
Self-clearing bit.  
1: Restart MAC interface autonegotiation.  
0
Force advertised ability  
1: Force 16-bit advertised ability from  
register 18E3.  
0
10:8 SGMII preamble control  
000 = No effect on the start of packet.  
001 = If both the first two nibbles of the  
10/100 packet are not 0x5, a byte of 0x55  
must be prefixed to the output, otherwise  
there will be no effect on the start of packet.  
010 = If both the first two nibbles of the  
10/100 packet are not 0x5, a byte of 0x55  
must be prefixed to the output. An  
additional byte of 0x55 must be prefixed to  
the output if the next two nibbles are also  
not 0x5.  
001  
011–111 = Reserved.  
7
6
MAC SerDes  
autonegotiation enable  
R/W  
1: MAC SerDes ANEG enable.  
0
SerDes polarity at input of R/W  
MAC  
1: Invert polarity of signal received at input 0  
of MAC.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
65  
Registers  
Table 61 • MAC SerDes PCS Control, Address 16E3 (0x10) (continued)  
Bit  
Name  
Access Description  
Default  
5
SerDes polarity at output of R/W  
MAC  
1: Invert polarity of signal at output of MAC.  
4
3
Fast link status enable  
R/W  
1: Use fast link fail indication as link status 0  
indication to MAC SerDes  
0: Use normal link status indication to MAC  
SerDes  
Unidirectional enable  
R/W  
1: Enable transmit on MAC interface  
regardless of whether the PHY has  
determined that a valid link has been  
established.  
0
0: Enable transmit on MAC interface only  
when the PHY has determined that a valid  
link has been established.  
2:0  
Reserved  
RO  
Reserved.  
5.5.2  
MAC SerDes PCS Status  
The register at address 17E3 consists of the bits that provide status from the MAC SerDes PCS block.  
The following table shows the settings available.  
Table 62 • MAC SerDes PCS Status, Address 17E3 (0x11)  
Bit  
Name  
Access Description  
15:13 Reserved  
RO  
RO  
RO  
Reserved  
12  
11  
SGMII alignment error  
1: SGMII alignment error occurred  
MAC interface LP  
1: MAC interface link partner autonegotiation restart  
request occurred  
autonegotiation restart  
10  
Reserved  
RO  
RO  
Reserved  
9:8  
MAC remote fault  
01, 10, and 11: Remote fault detected from MAC  
00: No remote fault detected from MAC  
7
6
Asymmetric pause  
advertisement  
RO  
RO  
RO  
1: Asymmetric pause advertised by MAC  
Symmetric pause  
advertisement  
1: Symmetric pause advertised by MAC  
5
4
3
Full duplex advertisement  
1: Full duplex advertised by MAC  
1: Half duplex advertised by MAC  
Half duplex advertisement RO  
MAC interface LP  
autonegotiation capable  
RO  
1: MAC interface link partner autonegotiation  
capable  
2
1
MAC interface link status  
RO  
RO  
1: MAC interface link status connected  
MAC interface  
1: MAC interface autonegotiation complete  
autonegotiation complete  
0
MAC interface PCS signal RO  
detect  
1: MAC interface PCS signal detect present  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
66  
Registers  
5.5.3  
MAC SerDes Clause 37 Advertised Ability  
The register at address 18E3 consists of the bits that provide access to and control over MAC SerDes  
Clause 37 advertised ability. The following table shows the settings available.  
Table 63 • MAC SerDes Cl37 Advertised Ability, Address 18E3 (0x12)  
Bit Name Access Description  
Default  
15:0 MAC SerDes  
advertised ability  
R/W  
Current configuration code word being advertised 0x0000  
(this register is read/write if 16E3.11 = 1)  
5.5.4  
5.5.5  
MAC SerDes Clause 37 Link Partner Ability  
The register at address 19E3 consists of the bits that provide status of the MAC SerDes link partner’s  
Clause 37 advertised ability. The following table shows the settings available.  
Table 64 • MAC SerDes Cl37 LP Ability, Address 19E3 (0x13)  
Bit  
Name  
Access Description  
15:0 MAC SerDes LP ability RO  
Last configuration code word received from link partner  
MAC SerDes Status  
The register at address 20E3 consists of the bits that provide access to MAC SerDes status. The  
following table shows the settings available.  
Table 65 • MAC SerDes Status, Address 20E3 (0x14)  
Bit  
Name  
Access Description  
15  
K28.5 comma realignment RO  
Self-clearing bit.  
1: a K28.5 comma re-alignment has occurred  
14  
SerDes signal detect  
RO  
RO  
Self-clearing bit. Sticky bit.  
1: SerDes signal detection occurred  
13:0 Reserved  
Reserved  
5.5.6  
Media SerDes Transmit Good Packet Counter  
The register at address 21E3 consists of the bits that provide status of the media SerDes transmit good  
packet counter. The following table shows the settings available.  
Table 66 • Media SerDes Tx Good Packet Counter, Address 21E3 (0x15)  
Bit  
15  
14  
Name  
Access Description  
Tx good packet counter active RO  
1: Transmit good packet counter active  
Reserved  
Reserved  
RO  
RO  
13:0 Tx good packet count  
Transmit good packet count modulo 10000  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
67  
Registers  
5.5.7  
Media SerDes Transmit CRC Error Counter  
The register at address 22E3 consists of the bits that provide status of the media SerDes transmit packet  
count that had a CRC error. The following table shows the settings available.  
Table 67 • Media SerDes Tx CRC Error Counter, Address 22E3 (0x16)  
Bit  
15:8 Reserved  
7:0 Tx CRC packet count RO  
Name  
Access Description  
RO  
Reserved  
Transmit CRC packet count (saturates at 255)  
5.5.8  
Media SerDes PCS Control  
The register at address 23E3 consists of the bits that provide access to and control over Media SerDes  
PCS control. The following table shows the settings available.  
Table 68 • Media SerDes PCS Control, Address 23E3 (0x17)  
Bit  
Name  
Access Description  
Default  
15:14 Reserved  
RO  
Reserved  
13  
Media interface  
R/W  
Sticky bit.  
0
autonegotiation parallel-  
detection  
1: SerDes media autonegotiation parallel  
detect enabled  
12  
11  
Reserved  
RO  
Reserved  
Force advertised ability R/W  
1: Force 16-bit advertised ability from  
register 25E3.15:0  
0
10:0  
Reserved RO  
Reserved  
5.5.9  
Media SerDes PCS Status  
The register at address 24E3 consists of the bits that provide status of the Media SerDes PCS block. The  
following table shows the settings available.  
Table 69 • Media SerDes PCS Status, Address 24E3 (0x18)  
Bit  
Name  
Access Description  
15:12 Reserved  
RO  
RO  
Reserved  
11  
Media interface link partner  
1: Media interface link partner  
autonegotiation restart request  
occurred  
autonegotiation restart  
10  
Reserved  
RO  
RO  
Reserved  
9:8  
Remote fault detected  
01, 10, 11: Remote fault detected from  
link partner  
7
6
5
4
Link partner asymmetric pause  
Link partner symmetric pause  
RO  
RO  
RO  
RO  
1: Asymmetric pause advertised by  
link partner  
1: Symmetric pause advertised by link  
partner  
Link partner full duplex  
advertisement  
1: Full duplex advertised by link  
partner  
Link partner half duplex  
advertisement  
1: Half duplex advertised by link  
partner  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
68  
Registers  
Table 69 • Media SerDes PCS Status, Address 24E3 (0x18) (continued)  
Bit  
Name  
Access Description  
3
Link partner autonegotiation  
capable  
RO  
1: Media interface link partner  
autonegotiation capable  
2
1
Media interface link status  
RO  
1: Media interface link status  
Media interface autonegotiation RO  
complete  
1: Media interface autonegotiation  
complete  
0
Media interface signal detect  
RO  
1: Media interface signal detect  
5.5.10 Media SerDes Clause 37 Advertised Ability  
The register at address 25E3 consists of the bits that provide access to and control over Media SerDes  
Clause 37 advertised ability. The following table shows the settings available.  
Table 70 • Media SerDes Cl37 Advertised Ability, Address 25E3 (0x19)  
Bit  
Name  
Access Description  
Default  
15:0 Media SerDes advertised R/W  
ability  
Current configuration code word being  
advertised. This register is read/write if  
23E3.11 = 1.  
0x0000  
5.5.11 Media SerDes Clause 37 Link Partner Ability  
The register at address 26E3 consists of the bits that provide status of the media SerDes link partner’s  
Clause 37 advertised ability. The following table shows the settings available.  
Table 71 • MAC SerDes Cl37 LP Ability, Address 26E3 (0x1A)  
Bit  
Name  
Access Description  
15:0 Media SerDes LP ability RO  
Last configuration code word received from  
link partner  
5.5.12 Media SerDes Status  
The register at address 27E3 consists of the bits that provide access to Media SerDes status. The  
following table shows the settings available.  
Table 72 • Media SerDes Status, Address 27E3 (0x1B)  
Bit  
Name  
Access Description  
15  
K28.5 comma realignment RO  
Self-clearing bit.  
1: K28.5 comma re-alignment has occurred  
14  
Signal detect  
RO  
RO  
Self-clearing bit. Sticky bit.  
1: SerDes media signal detect  
13:0 Reserved  
Reserved  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
69  
Registers  
5.5.13 Fiber Media CRC Good Counter  
Register 28E3 makes it possible to read the contents of the CRC good counter for packets that are  
received on the Fiber media interface; the number of CRC routines that have executed successfully. The  
following table shows the expected readouts.  
Table 73 • Fiber Media CRC Good Counter, Address 28E3 (0x1C)  
Bit  
Name  
Access Description  
Default  
15  
Packet since last read RO  
Self-clearing bit.  
0
1: Packet received since last read.  
14  
Reserved  
RO  
Reserved.  
13:0 Fiber media CRC good RO  
counter contents  
Self-clearing bit. Counter containing the  
number of packets with valid CRCs. This  
counter does not saturate and will roll over.  
0x000  
5.5.14 Fiber Media CRC Error Counter  
Register 29E3 makes it possible to read the contents of the CRC error counter for packets that are  
received on the Fiber media interface. The following table shows the expected readouts.  
Table 74 • Fiber Media CRC Error Counter, Address 29E3 (0x1D)  
Bit  
15:8 Reserved  
7:0 Fiber Media CRC error counter RO  
Name  
Access Description  
Default  
RO Reserved.  
Self-clearing bit. CRC error counter for 0x00  
packets received on the Fiber media  
interface. The value saturates at 0xFF  
and subsequently clears when read  
and restarts count.  
5.6  
General Purpose Registers  
Accessing the General Purpose register space is similar to accessing the extended page registers. Set  
register 31 to 0x0010. This sets all 32 registers to the general purpose register space.  
To restore main register page access, write 0x0000 to register 31.  
The following table lists the addresses and register names in the general purpose register page space.  
These registers are accessible only when the device register 31 is set to 0x0010.  
Table 75 • General Purpose Registers Page Space  
Address Name  
0G–12G Reserved  
13G  
14G  
15G  
16G  
17G  
18G  
19G  
20G  
SIGDET/LED vs. GPIO Control  
COMA_MODE and CLK_SQUELCH_IN Control  
GPIO Input  
GPIO Output  
GPIO Output Enable  
Global Command and SerDes Configuration  
MAC Mode and Fast Link Configuration  
I2C MUX Control 1  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
70  
Registers  
Table 75 • General Purpose Registers Page Space (continued)  
Address Name  
21G  
22G  
23G  
24G  
25G  
I2C MUX Control 2  
I2C MUX Data Read/Write  
Recovered Clock 0 Control  
Recovered Clock 1 Control  
Enhanced LED Control  
26G–28G Reserved  
29G  
30G  
Global Interrupt Status  
Reserved  
5.6.1  
SIGDET/LED vs. GPIO Control  
The SIGDET/LED control register configures the multipurpose pins to be either signal detect pins for  
each fiber media port, or to be general purpose I/O pins. It also controls LED1 pins for PHYs 8, 9, 10, and  
11 to be either LED1 pins or GPIO pins. The following table shows the values that can be written.  
Table 76 • SIGDET/LED vs. GPIO Control, Address 13G (0x0D)  
Bit  
Name  
Access Description  
Default  
15:14 GPIO_16 control R/W  
13:12 GPIO_15 control R/W  
11:10 GPIO_14 control R/W  
00: LED1 operation for PHY11  
01, 10: Reserved  
11: GPIO controlled by MII registers 15G–17G  
00  
00: LED1 operation for PHY10  
01, 10: Reserved  
11: GPIO controlled by MII registers 15G–17G  
00  
00  
00  
00  
00  
00  
00  
00: LED1 operation for PHY9  
01, 10: Reserved  
11: GPIO controlled by MII registers 15G–17G  
9:8  
7:6  
5:4  
3:2  
1:0  
GPIO_13 control R/W  
SFP3_SD control R/W  
SFP2_SD control R/W  
SFP1_SD control R/W  
SFP0_SD control R/W  
00: LED1 operation for PHY8  
01, 10: Reserved  
11: GPIO controlled by MII registers 15G–17G  
00: SIGDET operation  
01, 10: Reserved  
11: GPIO controlled by MII registers 15G–17G  
00: SIGDET operation  
01, 10: Reserved  
11: GPIO controlled by MII registers 15G–17G  
00: SIGDET operation  
01, 10: Reserved  
11: GPIO controlled by MII registers 15G–17G  
00: SIGDET operation  
01, 10: Reserved  
11: GPIO controlled by MII registers 15G–17G  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
71  
Registers  
5.6.2  
COMA_MODE and CLK_SQUELCH_IN Control  
Register 14G configures the functionality of the COMA_MODE and CLK_SQUELCH_IN input pins.  
Table 77 • COMA_MODE and CLK_SQUELCH_IN Control, Address 14G (0x0E)  
Bit  
15  
14  
Name  
Access Description  
Default  
Reserved  
RO  
Reserved  
Clock squelch input enable R/W  
Configure PHY4_LED1 pin as  
CLK_SQUELCH_IN and enable clock  
squelch control from that pin  
0
13  
12  
COMA_MODE output  
enable (active low)  
R/W  
1: COMA_MODE pin is an input  
0: COMA_MODE pin is an output  
1
0
COMA_MODE output data R/W  
Value to output on the COMA_MODE pin  
when it is configured as an output  
11  
10  
COMA_MODE input data RO  
Tri-state enable for I2C bus R/W  
Data read from the COMA_MODE pin  
1: Tri-state I2C bus output signals instead 0  
of driving them high. This allows those  
signals to be pulled above VDDIO using  
an external pull-up resistor.  
0: Drive I2C bus output signals to high and  
low values as appropriate  
9
Tri-state enable for LEDs R/W  
1: Tri-state LED output signals instead of  
driving them high. This allows those  
signals to be pulled above VDDIO using  
an external pull-up resistor.  
0
0: Drive LED bus output signals to high  
and low values as appropriate.  
8:0  
Reserved  
RO  
Reserved.  
0
5.6.3  
5.6.4  
GPIO Input  
The input register contains information about the input to the device GPIO pins. Read from this register to  
access the data on the device GPIO pins. The following table shows the readout you can expect.  
Table 78 • GPIO Input, Address 15G (0x0F)  
Bit  
15:8 Reserved  
7:0 GPIO input RO  
Name  
Access Description  
Default  
RO  
Reserved  
Data read from the SFP[3:0]_SD and  
GPIO[16:13] pins  
GPIO Output  
The output register allows you to access and control the output from the device GPIO pins. The following  
table shows the values you can write.  
Table 79 • GPIO Output, Address 16G (0x10)  
Bit  
15:8 Reserved  
7:0 GPIO output R/W  
Name  
Access Description  
Default  
RO Reserved  
Data written to the SFP[3:0]_SD and 0x00  
GPIO[16:13] pins  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
72  
Registers  
5.6.5  
GPIO Pin Configuration  
Register 17G in the GPIO register space controls whether a particular GPIO pin functions as an input or  
an output. The following table shows the settings available.  
Table 80 • GPIO Input/Output Configuration, Address 17G (0x11)  
Bit  
Name  
Access Description  
Default  
15:8 Reserved  
RO  
Reserved  
7:0  
SFP[3:0]_SD and GPIO[16:13] pin R/W  
input or output enable  
1: Pin is configured as an output.  
0: Pin is configured as an input.  
0x00  
5.6.6  
Global Command and SerDes Configuration  
Register 18G is a command window. Bit 15 tells the internal processor to execute the command. When  
bit 15 is cleared the command has completed. Software needs to wait until bit 15 = 0 before proceeding  
with the next PHY register access. The following table lists the values to write to register 18G to execute  
the various commands.  
Table 81 • Global Command and SerDes Configuration, Address 18G (0x12)  
Command  
Value  
Enable 12 PHYs MAC SGMII  
0x80B0  
0x80A0  
0x8F81(1)  
0x8F91(1)  
Enable 12 PHYs MAC QSGMII  
Enable 4 PHYs (PHY8 to PHY11) media 1000BASE-X  
Enable 4 PHYs (PHY8 to PHY11) media 100BASE-FX  
1. The “F” in the command has a bit representing each of the four PHYs. To exclude a PHY from the  
configuration, set its bit to 0. For example, the configuration of PHY 3 and PHY 2 to 1000BASE-X  
would be 1100 or a “C” and the command would be 0x8CC1.  
5.6.7  
MAC Mode and Fast Link Configuration  
Register 19G controls the MAC interface mode and the selection of the source PHY for the fast link  
failure indication. The following table shows the settings available for the FAST_LINK_STATUS pin.  
Table 82 • MAC Mode and Fast Link Configuration, Address 19G (0x13)  
Bit Name Access Description  
Default  
15:14 MAC interface mode select R/W  
for all PHYs in the  
Select MAC interface mode  
00: QSGMII to CAT5 mode  
01: SGMII to CAT5 mode  
10: QSGMII to CAT5 and Fiber mode  
11: Reserved  
00  
VSC8512-02  
13:4  
Reserved  
RO  
Reserved  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
73  
Registers  
Table 82 • MAC Mode and Fast Link Configuration, Address 19G (0x13) (continued)  
Bit  
Name  
Access Description  
Default  
3:0  
Fast link failure port setting R/W  
0000: PHY0  
0xF  
0001: PHY1  
0010: PHY2  
0011: PHY3  
0100: PHY4  
0101: PHY5  
0110: PHY6  
0111: PHY7  
1000: PHY8  
1001: PHY9  
1010: PHY10  
1011: PHY11  
1100–1111: Output disabled  
5.6.8  
I2C MUX Control 1  
The following table shows the settings available to control the integrated I2C MUX.  
Table 83 • I2C MUX Control 1, Address 20G (0x14)  
Bit  
Name  
Access Description  
Default  
15:9 I2C device address  
R/W  
Top 7 bits of the 8-bit address sent out on the 0xA0  
two wire serial stream. The bottom bit is the  
read/write signal, which is controlled by  
register 21G, bit 8. SFPs use 0xA0.  
8:6  
5:4  
Reserved  
RO  
Reserved.  
I2C SCL clock frequency R/W  
00: 50 kHz  
01: 100 kHz  
10: 400 kHz  
11: 2 MHz  
01  
3
2
1
0
I2C MUX port 3 enable  
I2C MUX port 2 enable  
I2C MUX port 1 enable  
I2C MUX port 0 enable  
R/W  
R/W  
R/W  
R/W  
1: Enabled.  
0: I2C disabled. Becomes PHY5_LED1 pin.  
0
0
0
0
1: Enabled.  
0: I2C disabled. Becomes PHY6_LED1 pin.  
1: Enabled.  
0: I2C disabled. Becomes PHY7_LED1 pin.  
0: SFP_SERIALCLK0  
1: ESLED_CLK  
5.6.9  
I2C MUX Control 2  
Register 21G is used to control the I2C MUX for status and control of I2C slave devices.  
Table 84 • I2C MUX Interface Status and Control, Address 21G (0x15)  
Bit  
Name  
Access Description  
Default  
15  
I2C MUX ready  
RO  
RO  
R/W  
1: I2C MUX is ready for read or write.  
14:12 Reserved  
Reserved  
11:10 PHY port Address  
Specific VSC8512-02 PHY port being  
addressed.  
00  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
74  
Registers  
Table 84 • I2C MUX Interface Status and Control, Address 21G (0x15) (continued)  
Bit  
Name  
Access Description  
Default  
9
Enable I2C MUX access R/W  
Self-clearing bit.  
0
1: Execute read or write through the I2C  
MUX based on the settings of register bit  
21G.8.  
8
I2C MUX read or write R/W  
1: Read from I2C MUX.  
0: Write to I2C MUX.  
1
7:0  
I2C MUX address  
R/W  
Sets the address of the I2C MUX used to  
direct read or write operations.  
0x00  
5.6.10 I2C MUX Data Read/Write  
Register 22G in the extended register space enables access to the I2C MUX.  
Table 85 • I2C MUX Data Read/Write, Address 22G (0x16)  
Bit  
Name  
Access Description  
Default  
15:8 I2C MUX read data RO  
Eight-bit data read from I2C MUX; requires  
setting both register 21G.9 and 21G.8 to 1.  
7:0  
I2C MUX write data R/W  
Eight-bit data to be written to I2C MUX.  
0x00  
5.6.11 Recovered Clock 0 Control  
Register 23G in the extended register space controls the functionality of the recovered clock 0 output  
signal.  
Table 86 • Recovered Clock 0 Control, Address 23G (0x17)  
Bit  
Name  
Access Description  
Default  
15  
Enable  
R/W  
1: Enable recovered clock 0 output  
0
RCVRD_CLK[0]  
0: Disable recovered clock 0 output  
14:11 Clock source  
select  
R/W  
Select bits for source PHY for recovered clock:  
0000: PHY0  
0000  
0001: PHY1  
0010: PHY2  
0011: PHY3  
0100: PHY4  
0101: PHY5  
0110: PHY6  
0111: PHY7  
1000: PHY8  
1001: PHY9  
1010: PHY10  
1011: PHY11  
1100–1111: Reserved  
10:8  
7:6  
Clock frequency R/W  
select  
Select output clock frequency:  
000: 25 MHz output clock  
001: 125 MHz output clock  
010: 31.25 MHz output clock  
011–111: Reserved  
000  
Reserved  
RO  
Reserved.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
75  
Registers  
Table 86 • Recovered Clock 0 Control, Address 23G (0x17) (continued)  
Bit  
Name  
Access Description  
R/W Select clock squelch level  
Default  
5:4  
Clock squelch  
level  
00: Automatically squelch clock to low when the link  
is not up, is unstable, is up in a mode that does not  
support the generation of a recovered clock  
(1000BASE-T master or 10BASE-T), or is up in EEE  
mode (100BASE-TX or 1000BASE-T slave).  
01: Same as 00 except that the clock is also  
generated in 1000BASE-T master and 10BASE-T  
link-up modes. This mode also generates a  
recovered clock output in EEE mode during  
reception of LP_IDLE.  
10: Squelch only when the link is not up.  
11: Disable clock squelch.  
Note: A clock from the SerDes or Cu PHY  
will be output on the recovered clock  
output in this mode when the link is  
down.  
3
Reserved  
RO  
Reserved.  
2:0  
Clock selection R/W  
for specified PHY  
000: Serial media recovered clock (only valid for  
PHYs 8, 9, 10, and 11 that support dual-media  
functionality)  
000  
001: Copper PHY recovered clock  
010: Copper PHY transmitter TCLK  
011–111: Reserved  
5.6.12 Recovered Clock 1 Control  
Register 24G in the extended register space controls the functionality of the recovered clock 1 output  
signal.  
Table 87 • Recovered Clock 1 Control, Address 24G (0x18)  
Bit  
Name  
Access Description  
Default  
15  
Enable  
R/W  
Enable recovered clock 1 output  
0
RCVRD_CLK[1]  
14:11 Clock source  
select  
R/W  
Select bits for source PHY for recovered clock:  
0000: PHY0  
0000  
0001: PHY1  
0010: PHY2  
0011: PHY3  
0100: PHY4  
0101: PHY5  
0110: PHY6  
0111: PHY7  
1000: PHY8  
1001: PHY9  
1010: PHY10  
1011: PHY11  
1100–1111: Reserved  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
76  
Registers  
Table 87 • Recovered Clock 1 Control, Address 24G (0x18) (continued)  
Bit  
Name  
Access Description  
Default  
10:8  
Clock frequency  
select  
R/W  
Select output clock frequency:  
000  
000: 25 MHz output clock  
001: 125 MHz output clock  
010: 31.25 MHz output clock  
011–111: Reserved  
7:6  
5:4  
Reserved  
RO  
Reserved.  
Clock squelch  
level  
R/W  
Select clock squelch level:  
00: Automatically squelch clock to low when the  
link is not up, is unstable, is up in a mode that does  
not support the generation of a recovered clock  
(1000BASE-T master or 10BASE-T), or is up in  
EEE mode (100BASE-TX or 1000BASE-T slave).  
01: Same as 00 except that the clock is also  
generated in 1000BASE-T master and 10BASE-T  
link-up modes. This mode also generates a  
recovered clock output in EEE mode during  
reception of LP_IDLE  
10: Squelch only when the link is not up  
11: Disable clock squelch.  
Note: A clock from the SerDes or Cu PHY  
will be output on the recovered clock  
output in this mode when the link is  
down.  
3
Reserved  
RO  
Reserved  
2:0  
Clock selection for R/W  
specified PHY  
000: Serial media recovered clock (only valid for  
PHYs 8, 9, 10, and 11 that support dual-media  
functionality).  
000  
001: Copper PHY recovered clock  
010–111: Reserved.  
5.6.13 Enhanced LED Control  
The following table contains the bits to control advanced functionality of the parallel and serial LED  
signals.  
Table 88 • Enhanced LED Control, Address 25G (0x19)  
Bit  
Name  
Access Description  
Default  
15:8 LED pulsing duty cycle R/W  
control  
Programmable control for LED pulsing duty  
cycle when bit 30.12 is set to 1. Valid settings  
are between 0 and 198. A setting of 0  
corresponds to a 0.5% duty cycle and 198  
corresponds to a 99.5% duty cycle.  
Intermediate values change the duty cycle in  
0.5% increments  
00  
7
Serial LED output 2  
enable  
R/W  
Enable the serial LED output functionality for  
GPIO_5, GPIO_6, GPIO_7, and GPIO_8 pins  
1: Pins function as serial LED outputs  
0: Pins retain their normal function  
0
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
77  
Registers  
Table 88 • Enhanced LED Control, Address 25G (0x19) (continued)  
Bit  
Name  
Access Description  
R/W Enable the serial LED output functionality for  
Default  
6
Serial LED output 1  
enable  
0
GPIO_[3:0] pins  
1: Pins function as serial LED outputs  
0: Pins retain their normal function  
5:3  
Serial LED frame rate R/W  
selection  
Select frame rate of serial LED stream  
000: 2500 Hz frame rate  
001: 1000 Hz frame rate  
010: 500 Hz frame rate  
011: 250 Hz frame rate  
100: 200 Hz frame rate  
101: 125 Hz frame rate  
110: 40 Hz frame rate  
111: Output basic serial LED stream.  
See Table 10, page 24.  
2:1  
Serial LED select  
LED port swapping  
R/W  
R/W  
Select which LEDs from each PHY to enable on 00  
the serial stream  
00: Enable all 4 LEDs of each PHY  
01: Enable LEDs 2, 1 and 0 of each PHY  
10: Enable LEDs 1 and 0 of each PHY  
11: Enable LED 0 of each PHY  
0
See LED Port Swapping, page 25.  
5.6.14 Global Interrupt Status  
The following table contains the interrupt status from the various sources to indicate which one caused  
that last interrupt on the pin.  
Table 89 • Global Interrupt Status, Address 29G (0x1D)  
Bit  
Name  
Access Description  
15:12 Reserved  
RO  
RO  
Reserved  
11  
10  
9
PHY11 interrupt source(1)  
PHY11 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
PHY10 interrupt source(1)  
PHY9 interrupt source(1)  
PHY8 interrupt source(1)  
PHY7 interrupt source(1)  
PHY6 interrupt source(1)  
RO  
RO  
RO  
RO  
RO  
PHY10 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
PHY9 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
8
PHY8 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
7
PHY7 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
6
PHY6 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
78  
Registers  
Table 89 • Global Interrupt Status, Address 29G (0x1D) (continued)  
Bit  
Name  
Access Description  
5
PHY5 interrupt source(1)  
RO  
RO  
RO  
RO  
RO  
RO  
PHY5 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
4
3
2
1
0
PHY4 interrupt source(1)  
PHY3 interrupt source(1)  
PHY2 interrupt source(1)  
PHY1 interrupt source(1)  
PHY0 interrupt source(1)  
PHY4 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
PHY3 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
PHY2 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
PHY1 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
PHY0 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
1. This bit is set to 1 when the corresponding PHY’s Interrupt Status register 26 (0x1A) is read.  
5.7  
Clause 45 Registers to Support Energy Efficient Ethernet  
This section describes the Clause 45 registers that are required to support Energy Efficient Ethernet.  
Access to these registers is through the IEEE standard registers 13 and 14 (MMD access control and  
MMD data or address registers) as described in section 4.2.11 and 4.2.12.  
The following table lists the addresses and register names in the Clause 45 register page space.  
Table 90 • Clause 45 Registers Page Space  
Address Name  
3.1  
PCS Status 1  
3.20  
3.22  
7.60  
7.61  
EEE Capability  
EEE Wake Error Counter  
EEE Advertisement  
EEE Link Partner Advertisement  
5.7.1  
PCS Status 1  
The bits in the PCS Status 1 register provide a status of the EEE operation from the PCS for the link that  
is currently active.  
Table 91 • PCS Status 1, Address 3.1  
Bit  
15:12 Reserved  
11 Tx LPI received  
Name  
Access Description  
RO Reserved  
RO/LH 1: Tx PCS has received LPI  
0: LPI not received  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
79  
Registers  
Table 91 • PCS Status 1, Address 3.1 (continued)  
Bit  
Name  
Access Description  
10  
Rx LPI received  
RO/LH 1: Rx PCS has received LPI  
0: LPI not received  
9
8
Tx LPI indication  
Rx LPI indication  
Reserved  
RO  
RO  
RO  
1: Tx PCS is currently receiving LPI  
0: PCS is not currently receiving LPI  
1: Rx PCS is currently receiving LPI  
0: PCS is not currently receiving LPI  
7:3  
2
Reserved  
PCS receive link status RO  
1: PCS receive link up  
0: PCS receive link down  
1:0  
Reserved RO  
Reserved  
5.7.2  
EEE Capability  
This register is used to indicate the capability of the PCS to support EEE functions for each PHY type.  
The following table shows the bit assignments for the EEE capability register.  
Table 92 • EEE Capability, Address 3.20  
Bit  
Name  
Access Description  
15:3 Reserved  
RO  
1000BASE-T EEE RO  
Reserved  
2
1
0
1: EEE is supported for 1000BASE-T  
0: EEE is not supported for 1000BASE-T  
100BASE-TX  
EEE  
RO  
RO  
1: EEE is supported for 100BASE-TX  
0: EEE is not supported for 100BASE-TX  
Reserved  
Reserved  
5.7.3  
5.7.4  
EEE Wake Error Counter  
This register is used by PHY types that support EEE to count wake time faults where the PHY fails to  
complete its normal wake sequence within the time required for the specific PHY type. The definition of  
the fault event to be counted is defined for each PHY and can occur during a refresh or a wakeup as  
defined by the PHY. This 16-bit counter is reset to all zeros when the EEE wake error counter is read or  
when the PHY undergoes hardware or software reset.  
Table 93 • EEE Wake Error Counter, Address 3.22  
Bit  
Name  
Access Description  
15:0 Wake error counter RO  
Count of wake time faults for a PHY  
EEE Advertisement  
This register defines the EEE advertisement that is sent in the unformatted next page following a EEE  
technology message code. The following table shows the bit assignments for the EEE advertisement  
register.  
Table 94 • EEE Advertisement, Address 7.60  
Bit  
Name  
Access Description  
RO Reserved  
Default  
15:3 Reserved  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
80  
Registers  
Table 94 • EEE Advertisement, Address 7.60 (continued)  
Bit  
Name  
Access Description  
Default  
2
1000BASE-T EEE R/W  
1: Advertise that the 1000BASE-T has EEE  
0
capability  
0: Do not advertise that the 1000BASE-T has EEE  
capability  
1
0
100BASE-TX  
EEE  
R/W  
RO  
1: Advertise that the 100BASE-TX has EEE  
capability  
0: Do not advertise that the 100BASE-TX has EEE  
capability  
0
Reserved  
Reserved  
5.7.5  
EEE Link Partner Advertisement  
All the bits in the EEE LP Advertisement register are read only. A write to the EEE LP advertisement  
register has no effect. When the AN process has been completed, this register will reflect the contents of  
the link partner’s EEE advertisement register. The following table shows the bit assignments for the EEE  
advertisement register.  
Table 95 • EEE Advertisement, Address 7.61  
Bit  
Name  
Access Description  
15:3 Reserved  
RO  
1000BASE-T EEE RO  
Reserved  
2
1
0
1: Link partner is advertising EEE capability for 1000BASE-T  
0: Link partner is not advertising EEE capability for  
1000BASE-T  
100BASE-TX  
EEE  
RO  
RO  
1: Link partner is advertising EEE capability for 100BASE-TX  
0: Link partner is not advertising EEE capability for  
100BASE-TX  
Reserved  
Reserved  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
81  
Electrical Specifications  
6
Electrical Specifications  
This section provides the DC characteristics, AC characteristics, recommended operating conditions,  
and stress ratings for the VSC8512-02 device.  
6.1  
DC Characteristics  
This section contains the DC specifications for the VSC8512-02 device.  
6.1.1  
VDD_IO  
The following table shows the DC specifications for the pins referenced to VDD_IO. The specifications  
listed in the following table are valid only when VDD = 1.0 V, VDD_VS = 1.0 V, VDD_AL = 1.0 V, or  
VDD_AH = 2.5 V.  
Table 96 • VDD_IO DC Characteristics  
Parameter  
Symbol  
VOH  
Minimum Maximum Unit Condition  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input leakage current  
2.0  
2.8  
0.4  
3.0  
0.7  
32  
32  
6
V
IOH = –1.0 mA  
IOL = 1.0 mA  
VOL  
–0.3  
1.85  
–0.3  
–32  
–32  
V
VIH  
V
VIL  
V
IILEAK  
µA  
µA  
mA  
Internal resistor included  
Internal resistor included  
Output leakage current IOLEAK  
Output low current drive IOL  
strength  
Output high current drive IOH  
strength  
–6  
mA  
6.1.2  
Internal Pull-Up or Pull-Down Resistors  
Internal pull-up or pull-down resistors are specified in the following table. For more information about  
signals with internal pull-up or pull-down resistors, see Pins by Function, page 100Pins by Function,  
page 72.  
All internal pull-up resistors are connected to their respective I/O supply.  
Table 97 • Internal Pull-Up or Pull-Down Resistors  
Parameter  
Symbol Minimum Typical Maximum Unit  
Internal pull-up resistor, GPIO pins  
Internal pull-up resistor, all other pins  
Internal pull-down resistor  
RPU  
RPU  
RPD  
33  
96  
96  
53  
90  
kΩ  
kΩ  
kΩ  
120  
120  
144  
144  
6.1.3  
Reference Clock  
The following table shows the DC specifications for a differential reference clock input signal.  
Table 98 • Reference Clock DC Characteristics  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Input voltage range  
VIP,VIN  
–25  
1260  
mV  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
82  
Electrical Specifications  
Table 98 • Reference Clock DC Characteristics (continued)  
Parameter  
Symbol  
Minimum  
150(1)  
0
Typical  
Maximum  
1000  
Unit  
mV  
mV  
Input differential voltage  
VID  
Input common-mode voltage VICM  
Differential input impedance RI  
1200(2)  
100  
1. To meet jitter specifications, the minimum input differential voltage must be 400 mV. When using a single-  
ended clock input, the REFCLK_P low voltage must be less than VDDA – 200 mV, and the high voltage  
level must be greater than VDDA + 200 mV.  
2. The maximum common-mode voltage is provided without a differential signal. The common-mode voltage  
is only limited by the maximum and minimum input voltage range and by the differential amplitude of the  
input signal.  
6.1.4  
Enhanced SerDes Interface (QSGMII)  
All DC specifications for the enhanced SerDes interface are compliant with QSGMII Specification  
Revision 1.3 and meet or exceed the requirements in the standard. They are also compliant with OIF-  
CEI-02.0 requirements where applicable.  
The enhanced SerDes interface supports the following operating modes: SGMII, QSGMII, and SFP. The  
values in the following table apply to the modes specified in the condition column.  
Table 99 • Enhanced SerDes Driver DC Specifications  
Parameter  
Symbol Minimum Maximum Unit Condition  
Output differential peak voltage,  
SFP and QSGMII modes  
|VODp  
|
250  
400  
mV VDD_VS = 1.0 V  
RL = 100 ±1%  
maximum drive  
Output differential peak voltage,  
SGMII mode(1)  
|VODp  
RO  
|
150  
40  
400  
140  
mV VDD_VS = 1.0 V  
RL = 100 ±1%  
DC output impedance,  
single-ended, SGMII mode  
VC = 1.0 V  
See Figure 29,  
page 85  
RO mismatch between A and B,  
SGMII mode(2)  
RO  
10  
%
VC = 1.0 V  
See Figure 29,  
page 85  
Change in |VOD| between 0 and 1, ∆|VOD  
|
25  
25  
40  
mV  
RL = 100 ±1%  
SGMII mode  
Change in VOS between 0 and 1, VOS  
SGMII mode  
mV RL = 100 ±1%  
Output current, drivers shorted to |IOSA|,  
mA  
ground, SGMII and QSGMII  
modes  
|IOSB  
|
Output current, drivers shorted  
together, SGMII and QSGMII  
modes  
|IOSAB  
|
12  
mA  
1. Voltage is adjustable in 64 steps.  
2. Matching of reflection coefficients. For more information about test methods, see IEEE Std 1596.3-1996.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
83  
Electrical Specifications  
The following table lists the DC specifications for the enhanced SerDes receiver.  
Table 100 • Enhanced SerDes Receiver DC Specifications  
Parameter  
Symbol Minimum Typical Maximum Unit  
(1)  
Input voltage range, VIA or VIB  
VI  
–0.25  
100  
0
1.2  
V
Input differential peak-to-peak voltage  
Input common-mode voltage  
|VID|  
VICM  
RI  
1600  
1200  
120  
mV  
mV  
Receiver differential input impedance  
80  
100  
1. QSGMII DC input sensitivity is less than 400 mV.  
6.1.5  
SerDes Interface (SGMII)  
The SerDes output drivers are designed to operate in SGMII/LVDS mode. The SGMII/LVDS mode meets  
or exceeds the DC requirements of Serial-GMII Specification Revision 1.9 (ENG-46158), unless  
otherwise noted. The following table lists the DC specifications for the SGMII driver. The values are valid  
for all configurations, unless stated otherwise.  
Table 101 • SerDes Driver DC Specifications  
Parameter  
Symbol Minimum Maximum Unit Condition  
Output high voltage, VOA or VOB  
Output low voltage, VOA or VOB  
VOH  
VOL  
1250  
mV RL = 100 ±1%  
mV RL = 100 ±1%  
0
Output differential peak voltage(1) |VOD  
|
150  
400  
400  
580  
140  
mV VDD_VS = 1.0 V  
RL = 100 ±1%  
Output differential peak voltage,  
SGMII mode(1)  
|VOD  
VOS  
RO  
|
150  
420  
40  
mV VDD_VS = 1.0 V  
RL = 100 ±1%  
Output offset voltage(2)  
mV VDD_VS = 1.0 V  
RL = 100 ±1%  
DC output impedance,  
VC = 1.0 V  
See Figure 29,  
page 85  
single-ended, SGMII mode  
RO mismatch between A and B,  
SGMII mode(3)  
RO  
10  
%
VC = 1.0 V  
See Figure 29,  
page 85  
Change in |VOD| between 0 and 1, ∆|VOD  
|
25  
25  
40  
12  
mV  
RL = 100 ±1%  
SGMII mode  
Change in VOS between 0 and 1, VOS  
SGMII mode  
mV RL = 100 ±1%  
Output current, driver shorted to  
GND, SGMII mode  
|IOSA|,  
|IOSB  
mA  
mA  
|
Output current, drivers shorted  
together, SGMII mode  
|IOSAB|  
1. Voltage is adjustable in 14 steps.  
2. Requires AC-coupling for SGMII compliance.  
3. Matching of reflection coefficients. For more information about test methods, see IEEE Std 1596.3-1996.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
84  
Electrical Specifications  
Figure 27 • SGMII DC Transmit Test Circuit  
VOA  
VOD = VOA – VOB  
100 ±1%  
VOS = ½ (VOA + VOB  
)
VOB  
Figure 28 • SGMII DC Definitions  
VOA  
VOB  
GND  
VOD  
0 V differential  
|VOD  
|
|VOD  
|
0 V differential  
VOS  
VOS  
GND  
|VOD| = | |VOAH – VOBL| – |VOBH – VOAL| |  
VOS = | ½(VOAH + VOBL) – ½(VOAL + VOBH) |  
Figure 29 • SGMII DC Driver Output Impedance Test Circuit  
VOA  
50 ±0.1%  
+
0 and 1  
VC  
VOB  
50 ±0.1%  
The following table lists the DC specifications for the SGMII receivers.  
Table 102 • SerDes Receiver DC Specifications  
Parameter  
Symbol Minimum Maximum Unit Condition  
Input voltage range, VIA or VIB  
VI  
–25  
100  
1250  
2000  
mV  
mV  
Input differential peak-to-peak  
voltage  
|VID|  
Input common-mode voltage(1) VICM  
0
VDD_A  
mV Without any  
(2)  
differential signal  
(internally  
AC-coupled)  
Receiver differential input  
impedance  
RI  
80  
25  
120  
Input differential hysteresis,  
SGMII mode  
VHYST  
mV  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
85  
Electrical Specifications  
1. SGMII compliancy requires external AC-coupling. When interfacing with specific Microsemi devices, DC-  
coupling is possible. For more information, contact your local Microsemi sales representative.  
2. The maximum common-mode voltage is provided without a differential signal, because the input is  
internally AC-coupled. The common-mode voltage is only limited by the maximum and minimum input  
voltage range and the input signal’s differential amplitude.  
Figure 30 • SGMII DC Input Definitions  
VIA  
VID = VIA – VIB  
VIC = ½ (VIA + VIB)  
VIB  
6.1.6  
Current Consumption  
Current consumption is determined under the following operating conditions:  
QSGMII to 1000BASE-T mode  
QSGMII to 1000BASE-X dual media mode  
QSGMII to 100BASE-FX dual media mode  
SGMII to 1000BASE-T mode  
The typical current consumption values in QSGMII to 1000BASE-T mode are based on nominal voltages  
with the MAC interface operating in QSGMII mode, and all media side ports operating in 1000BASE-T  
with full-duplex enabled. Data traffic is a 64-bit random data pattern at 100% utilization.  
Table 103 • QSGMII to 1000BASE-T Current Consumption  
Parameter  
Symbol Typical Maximum Unit  
Worst-case power consumption PD  
6.75  
W
A
A
A
A
A
A
Current with VDD at 1.0 V  
IVDD  
IVDD_A  
1.15  
0.18  
Current with VDD_A at 1.0 V  
Current with VDD_AH at 2.5 V  
Current with VDD_AL at 1.0 V  
Current with VDD_IO at 2.5 V  
Current with VDD_VS at 1.0 V  
IVDD_AH 1.37  
IVDD_AL 0.19  
IVDD_IO 0.06  
IVDD_VS 0.09  
The typical current consumption values in QSGMII to 1000BASE-X dual media mode are based on  
nominal voltages with the MAC interface operating in QSGMII mode, 8 media side ports operating in  
1000BASE-T with full-duplex enabled and 4 dual media ports operating in 1000BASE-X mode. Data  
traffic is a 64-bit random data pattern at 100% utilization.  
Table 104 • QSGMII to 1000BASE-X Current Consumption  
Parameter  
Symbol Typical Maximum Unit  
Worst-case power consumption PD  
5.25  
W
A
A
A
A
A
Current with VDD at 1.0 V  
Current with VDD_A at 1.0 V  
Current with VDD_AH at 2.5 V  
Current with VDD_AL at 1.0 V  
Current with VDD_IO at 2.5 V  
IVDD  
IVDD_A  
0.95  
0.2  
IVDD_AH 0.93  
IVDD_AL 0.16  
IVDD_IO 0.06  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
86  
Electrical Specifications  
Table 104 • QSGMII to 1000BASE-X Current Consumption (continued)  
Parameter  
Current with VDD_VS at 1.0 V  
Symbol Typical Maximum Unit  
IVDD_VS 0.13  
A
The typical current consumption values in QSGMII to 100BASE-FX dual media mode are based on  
nominal voltages with the MAC interface operating in QSGMII mode, 8 media side ports operating in  
1000BASE-T with full-duplex enabled, and 4 dual media ports operating in 100BASE-FX mode. Data  
traffic is a 64-bit random data pattern at 100% utilization.  
Table 105 • QSGMII to 100BASE-FX Current Consumption  
Parameter  
Symbol Typical Maximum Unit  
Worst-case power consumption PD  
5.25  
W
A
A
A
A
A
A
Current with VDD at 1.0 V  
IVDD  
IVDD_A  
0.95  
0.2  
Current with VDD_A at 1.0 V  
Current with VDD_AH at 2.5 V  
Current with VDD_AL at 1.0 V  
Current with VDD_IO at 2.5 V  
Current with VDD_VS at 1.0 V  
IVDD_AH 0.93  
IVDD_AL 0.16  
IVDD_IO 0.06  
IVDD_VS 0.13  
The typical current consumption values in SGMII to 1000BASE-T mode are based on nominal voltages  
with the MAC interface operating in SGMII mode and all media side ports operating in 1000BASE-T with  
full-duplex enabled. Data traffic is a 64-bit random data pattern at 100% utilization.  
Table 106 • SGMII to 1000BASE-T Current Consumption  
Parameter  
Symbol Typical Maximum Unit  
Worst-case power consumption PD  
6.85  
W
A
A
A
A
A
A
Current with VDD at 1.0 V  
IVDD  
IVDD_A  
1.18  
0.25  
Current with VDD_A at 1.0 V  
Current with VDD_AH at 2.5 V  
Current with VDD_AL at 1.0 V  
Current with VDD_IO at 2.5 V  
Current with VDD_VS at 1.0 V  
IVDD_AH 1.37  
IVDD_AL 0.19  
IVDD_IO 0.06  
IVDD_VS 0.19  
6.2  
AC Characteristics  
This section provides the AC specifications for the VSC8512-02 device.  
6.2.1  
Reference Clock  
To meet QSGMII jitter generation requirements, Microsemi requires the use of a differential reference  
clock source. Use of a 25 MHz single-ended reference clock is not recommended. However, to  
implement a QSGMII chip interconnect using a 25 MHz single-ended reference clock and achieve error-  
free data transfer on that interface, use an Ethernet switch with higher jitter tolerance than specified in  
the standard, such as Microsemi VSC742x family of products. For more information about QSGMII  
interoperability when using a 25 MHz single-ended reference clock, contact your Microsemi  
representative.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
87  
Electrical Specifications  
The following table shows the AC specifications for a differential reference clock input. Performance is  
guaranteed for 156.25 MHz and 125 MHz differential clocks only, however 25 MHz and single-ended  
clocks are also supported.  
Table 107 • Reference Clock AC Characteristics  
Parameter  
Symbol Minimum Typical Maximum Unit Condition  
Reference clock frequency,  
REFCLK_SEL[2:0] = 100  
ƒ
ƒ
ƒ
–100 ppm 25.00  
100 ppm  
MHz  
MHz  
MHz  
Reference clock frequency,  
REFCLK_SEL[2:0] = 000  
–100 ppm 125.00 100 ppm  
–100 ppm 156.25 100 ppm  
Reference clock frequency,  
REFCLK_SEL[2:0] = 001  
Duty cycle  
DC  
40  
50  
60  
%
Rise time and fall time  
tR, tF  
1.5  
ns  
20% to 80%  
threshold  
REFCLK input RMS jitter,  
bandwidth from 12 kHz to  
500 kHz  
20  
4
ps  
ps  
ps  
ps  
dB  
dB  
REFCLK input RMS jitter,  
bandwidth from 500 kHz to  
15 MHz  
REFCLK input RMS jitter,  
bandwidth from 15 MHz to  
40 MHz  
20  
100  
0.3  
3
REFCLK input RMS jitter,  
bandwidth from 40 MHz to  
80 MHz  
Jitter gain from REFCLK to  
SerDes output, bandwidth  
from 0 MHz to 0.1 MHz  
Jitter gain from REFCLK to  
SerDes output, bandwidth  
from 0.1 MHz to 7 MHz  
Jitter gain from REFCLK to  
SerDes output, bandwidth  
greater than 7 MHz  
3 –20 × log dB  
(ƒ/7 MHz)  
6.2.2  
Recovered Clock Outputs  
The following table shows the AC specifications for the RCVRD_CLK1 and RCVRD_CLK0 outputs.  
Table 108 • Recovered Clock AC Characteristics  
Parameter  
Symbol  
Minimum Typical Maximum Unit Condition  
Recovered clock  
frequency, registers 23G  
or 24G bits 10:8 = 001  
ƒ
125.00  
31.25  
MHz  
Recovered clock  
ƒ
MHz  
frequency, registers 23G  
or 24G bits 10:8 = 010  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
88  
Electrical Specifications  
Table 108 • Recovered Clock AC Characteristics (continued)  
Parameter  
Symbol  
Minimum Typical Maximum Unit Condition  
Recovered clock  
frequency, registers 23G  
or 24G bits 10:8 = 000  
ƒ
25.00  
50  
MHz  
Duty cycle  
DC  
40  
60  
%
Clock rise and fall time, tR, tF  
20% to 80%  
1.5  
ns  
Measured at 50%  
threshold  
Peak-to-peak jitter,  
copper media interface  
JPPCLK_C  
200  
200  
ps  
ps  
Jitter bandwidth  
from 12 kHz to  
10 MHz  
u
Peak-to-peak jitter, fiber JPPCLK_Fi  
media interface  
Jitter bandwidth  
from 10 kHz to  
80 MHz  
6.2.3  
SerDes Outputs  
The values listed in the following table are valid for all configurations, unless otherwise noted.  
Table 109 • SerDes Output AC Specifications  
Parameter  
OD ringing compared to VS,  
Symbol Minimum  
Maximum Unit Condition  
V
VRING  
±10  
200  
30  
%
RL = 100 ±1%  
SGMII mode  
VOD rise time and fall time,  
SGMII mode  
tR, tF  
100  
ps  
20% to 80% of VS  
RL = 100 ±1%  
Differential peak-to-peak output VOD  
voltage  
mV  
dB  
dB  
dB  
ps  
Tx disabled  
Differential output return loss, RLO_DIFF 10  
50 MHz to 625 MHz  
RL = 100 ±1%  
RL = 100 ±1%  
Differential output return loss, RLO_DIFF 10–10 × log  
625 MHz to 1250 MHz  
(ƒ/625 MHz)  
Common-mode return loss,  
50 MHz to 625 MHz  
RLOCM  
tSKEW  
6
Intrapair skew, SGMII mode  
20  
6.2.4  
SerDes Driver Jitter  
The following table lists the jitter characteristics for the SerDes output driver.  
Table 110 • SerDes Driver Jitter Characteristics  
Parameter  
Symbol Maximum Unit Condition  
Total jitter  
TJO  
192  
80  
ps  
ps  
Measured according to IEEE 802.3.38.5.  
Measured according to IEEE 802.3.38.5.  
Deterministic jitter DJO  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
89  
Electrical Specifications  
6.2.5  
SerDes Inputs  
The following table lists the AC specifications for the SerDes inputs.  
Table 111 • SerDes Input AC Specifications  
Parameter  
Maximum  
Unit Condition  
dB RL = 100 ±1%  
Differential input return loss, 10  
50 MHz to 625 MHz  
Differential input return loss, 10–10 × log (ƒ/625 MHz) dB  
625 MHz to 1250 MHz  
RL = 100 ±1%  
6.2.6  
SerDes Receiver Jitter Tolerance  
The following table lists jitter tolerances for the SerDes receiver.  
Table 112 • SerDes Receiver Jitter Tolerance  
Parameter  
Symbol Minimum Unit Condition  
Total jitter tolerance, greater than 637 kHz, TJTI  
SFP mode  
600  
370  
1.4  
ps  
ps  
ns  
ns  
ns  
Measured according to  
IEEE 802.3 38.6.8  
Deterministic jitter tolerance, greater than DJTI  
637 kHz, SFP mode  
Measured according to  
IEEE 802.3 38.6.8  
Cycle distortion jitter tolerance, 100BASE- JTCD  
FX mode  
Measured according to  
ISO/IEC 9314-3:1990  
Data-dependent jitter tolerance, 100BASE- DDJ  
FX mode  
2.2  
Measured according to  
ISO/IEC 9314-3:1990  
Random peak-to-peak jitter tolerance,  
100BASE-FX mode  
RJT  
2.27  
Measured according to  
ISO/IEC 9314-3:1990  
6.2.7  
Enhanced SerDes Interface  
All AC specifications for the enhanced SerDes interface are compliant with QSGMII Specification  
Revision 1.3 and meet or exceed the requirements in the standard. They are also compliant with the OIF-  
CEI-02.0 requirements where applicable.  
The enhanced SerDes interface supports the following modes of operation: SGMII, QSGMII, and SFP.  
The values in the tables in the following sections apply to the modes listed in the condition column and  
are based on the test circuit shown in Figure 27, page 85. The transmit and receive eye specifications  
relate to the eye diagrams shown in the following illustration, with the compliance load as defined in the  
test circuit.  
Figure 31 • QSGMII Transient Parameters  
Transmitter Eye Mask  
Receiver Eye Mask  
T_Y2  
T_Y1  
0
R_Y2  
R_Y1  
0
–T_Y1  
–T_Y2  
–R_Y1  
–R_Y2  
0
T_X1  
T_X2  
1–T_X2 1–T_X1  
1.0  
0
R_X1  
0.5  
1–R_X1  
1.0  
Time (UI)  
Time (UI)  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
90  
Electrical Specifications  
6.2.8  
Enhanced SerDes Outputs  
The following table provides the AC specifications for the enhanced SerDes outputs in SGMII mode.  
Table 113 • Enhanced SerDes Outputs AC Specifications, SGMII Mode  
Parameter  
Symbol Minimum  
Maximum Unit Condition  
Unit interval, 1.25G mode  
VOD ringing compared to VS  
VOD rise time and fall time  
UI  
800 ps  
VRING  
±10  
200  
%
RL = 100 ±1%  
tR, tF  
100  
ps  
20% to 80% of VS  
RL = 100 ±1%  
Differential peak-to-peak output VOD  
voltage  
30  
mV Tx disabled  
Differential output return loss, RLO_DIFF 10  
dB  
dB  
dB  
ps  
RL = 100 ±1%  
RL = 100 ±1%  
50 MHz to 625 MHz  
Differential output return loss, RLO_DIFF 10–10 × log  
625 MHz to 1250 MHz  
(ƒ/625 MHz)  
Common-mode return loss,  
50 MHz to 625 MHz  
RLOCM  
tSKEW  
6
Intrapair skew  
20  
The following table provides the AC specifications for the enhanced SerDes outputs in QSGMII mode.  
Table 114 • Enhanced SerDes Outputs AC Specifications, QSGMII Mode  
Parameter  
Symbol Minimum  
Maximum Unit Condition  
Unit interval, 5G  
UI  
200 ps  
VOD rise time and fall time tR, tF  
30  
96  
30  
ps  
20% to 80% of VS  
RL = 100 ±1%  
Differential peak-to-peak  
output voltage  
VOD  
mV Tx disabled  
Differential output return  
loss, 100 MHz to 2.5 GHz  
RLO_DIFF  
8
dB  
dB  
RL = 100 ±1%  
RL = 100 ±1%  
Differential output return  
loss, 2.5 GHz to 5 GHz  
RLO_DIFF 8 dB – 16.6 log  
(ƒ/2.5 GHz)  
Eye mask X1  
Eye mask X2  
Eye mask Y1  
Eye mask Y2  
T_X1  
T_X2  
0.15  
0.4  
UI  
UI  
T_Y1  
T_Y2  
200  
mV  
mV  
450  
6.2.9  
Enhanced Serial LEDs  
This section contains the AC specifications for the enhanced serial LEDs. The duty cycle of the  
LED_PULSE signal is programmable and can be varied from 0.5% to 99.5%.  
Table 115 • Enhanced Serial LEDs AC Characteristics  
Parameter  
Symbol Minimum Maximum Unit  
LED_CLK cycle time  
tCYC  
255  
257  
ns  
µs  
Pause between LED_DATA bit sequences tPAUSE  
387.712  
24987  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
91  
Electrical Specifications  
Table 115 • Enhanced Serial LEDs AC Characteristics (continued)  
Parameter  
Symbol Minimum Maximum Unit  
LED_CLK to LED_DATA  
LED_CLK to LED_LD  
LED_LD pulse width  
LED_PULSE cycle time  
tCO  
127  
255  
127  
199  
129  
257  
129  
201  
ns  
ns  
ns  
µs  
tCL  
tLW  
tPULSE  
Figure 32 • Enhanced Serial LED Timing  
tcyc  
tpause  
LED_CLK  
tcl  
tco  
Bit 1  
LED_DATA  
Bit 2  
Bit X  
Bit 1  
Bit 2  
tlw  
LED_LD  
tpulse  
LED_PULSE  
6.2.10 Enhanced SerDes Driver Jitter Characteristics  
The following table lists the jitter characteristics for the enhanced SerDes driver in QSGMII mode. For  
information about jitter characteristics for the enhanced SerDes driver in SGMII mode, see Table 110,  
page 89.  
Table 116 • Enhanced SerDes Driver Jitter Characteristics, QSGMII Mode  
Parameter  
Symbol Maximum Unit Condition  
Total output jitter  
TJO  
60  
ps  
Measured according to  
IEEE 802.3.38.5.  
Deterministic output jitter  
DJO  
10  
ps  
Measured according to  
IEEE 802.3.38.5.  
6.2.11 Enhanced SerDes Inputs  
The following table lists the AC specifications for the enhanced SerDes inputs in SGMII mode.  
Table 117 • Enhanced SerDes Input AC Specifications, SGMII Mode  
Parameter  
Symbol Minimum Unit Condition  
Unit interval, 1.25G  
UI  
ps  
800 ps  
Differential input return loss,  
50 MHz to 625 MHz  
RLI_DIFF 10  
dB  
RL = 100 ±1%  
Common-mode input return loss, RLICM  
50 MHz to 625 MHz  
6
dB  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
92  
Electrical Specifications  
The following table lists the AC specifications for the enhanced SerDes inputs in QSGMII mode.  
Table 118 • Enhanced SerDes Inputs AC Specifications, QSGMII Mode  
Parameter  
Symbol Minimum  
Maximum Unit Condition  
Unit interval, 5G  
UI  
200 ps  
Differential input return loss, RLI_DIFF  
100 MHz to 2.5 GHz  
8
dB  
dB  
dB  
RL = 100 ±1%  
Differential input return loss, RLI_DIFF 8 dB – 16.6 log  
2.5 GHz to 5 GHz  
RL = 100 ±1%  
(ƒ/2.5 GHz)  
Common-mode input return RLICM  
loss, 100 MHz to 2.5 GHz  
6
Eye mask X1  
Eye mask Y1  
Eye mask Y2  
R_X1  
R_Y1  
R_Y2  
0.3  
50  
UI  
mV  
mV  
450  
6.2.12 Enhanced SerDes Receiver Jitter Tolerance  
The following table lists the jitter tolerance for the enhanced SerDes receiver in QSGMII mode. For  
information about jitter tolerance for the enhanced SerDes receiver in SGMII mode, see Table 112,  
page 90.  
Table 119 • Enhanced SerDes Receiver Jitter Tolerance, QSGMII Mode  
Parameter  
Symbol Maximum Unit Condition  
Bounded high-probability jitter(1)  
BHPJ  
90  
ps  
92 ps peak-to-peak random  
jitter and 38 ps sinusoidal jitter  
(SJHF).  
Sinusoidal jitter, maximum  
Sinusoidal jitter, high frequency  
Total jitter tolerance  
SJMAX  
SJHF  
TJTI  
1000  
10  
ps  
ps  
ps  
120  
92 ps peak-to-peak random  
jitter and 38 ps sinusoidal jitter  
(SJHF).  
1. This is the sum of uncorrelated bounded high probability jitter (0.15 UI), and correlated bounded high  
probability jitter (0.30 UI). Uncorrelated bounded high probability jitter is distribution where the value of the  
jitter shows no correlation to any signal level being transmitted, formally defined as deterministic jitter (DJ).  
Correlated bounded high probability jitter is jitter distribution where the value of the jitter shows a strong  
correlation to the signal level being transmitted.  
6.2.13 JTAG Interface  
This section provides the AC specifications for the JTAG interface. The specifications meet or exceed the  
requirements of IEEE 1149.1-2001. The JTAG receive signal requirements are requested at the pin of  
the device. The JTAG_TRST signal is asynchronous to the clock, and does not have a setup or hold time  
requirement.  
Table 120 • JTAG Interface AC Specifications  
Parameter  
Symbol Minimum Maximum Unit Condition  
TCK frequency  
TCK cycle time  
TCK high time  
ƒ
10  
MHz  
ns  
tC  
100  
40  
tW(CH)  
ns  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
93  
Electrical Specifications  
Table 120 • JTAG Interface AC Specifications (continued)  
Parameter  
Symbol Minimum Maximum Unit Condition  
TCK low time  
tW(CL)  
tSU  
40  
10  
10  
ns  
ns  
ns  
ns  
ns  
Setup time to TCK rising  
Hold time from TCK rising tH  
TDO valid after TCK falling tV(C)  
28  
30  
CL = 10 pF  
CL = 0 pF  
TDO hold time from TCK  
falling  
tH(TDO)  
0
TDO disable time(1)  
tDIS  
ns  
ns  
See Figure 34, page 94.  
nTRST time low  
tW(TL)  
30  
1. The pin begins to float when a 300 mV change from the actual VOH/VOL level occurs.  
Figure 33 • JTAG Interface Timing Diagram  
tC  
TCK  
tW(CH)  
tW(CL)  
TDI  
TMS  
tSU  
tH  
tV(C)  
TDO  
See definition.  
tH(TDO)  
tDIS  
nTRST  
tW(TL)  
Figure 34 • Test Circuit for TDO Disable Time  
3.3 V  
500 Ω  
From output under test  
5 pF  
500 Ω  
6.2.14 Serial Management Interface  
This section contains the AC specifications for the serial management interface (SMI).  
Table 121 • SMI Interface AC Characteristics  
Parameter  
Symbol Minimum Typical Maximum Unit Condition  
ƒCLK 0.488 20.83 MHz  
MDC frequency(1)  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
94  
Electrical Specifications  
Table 121 • SMI Interface AC Characteristics (continued)  
Parameter  
Symbol Minimum Typical Maximum Unit Condition  
MDC cycle time  
MDC time high  
MDC time low  
tCYC  
tWH  
tWL  
48  
20  
20  
10  
2048  
ns  
ns  
ns  
ns  
CL = 50 pF  
CL = 50 pF  
MDIO setup time to MDC tSU  
on write  
MDIO hold time to MDC  
on write  
tH  
tR  
tR  
10  
ns  
ns  
ns  
MDC rise time,  
MDC = 0: 1 MHz  
100  
MDC rise time,  
MDC = 1 MHz:  
ƒCLK maximum  
tCYC  
×
10%(1)  
MDC fall time,  
MDC = 0: 1 MHz  
tF  
tF  
100  
ns  
ns  
MDC fall time,  
MDC = 1 MHz:  
ƒCLK maximum  
tCYC  
×
10%(1)  
MDC to MDIO valid  
tCO  
10  
300  
ns  
Time-dependant  
on the value of  
the external pull-  
up resistor on the  
MDIO pin  
1. For ƒCLK greater than 1 MHz, the minimum rise time and fall time is in relation to the frequency of the MDC  
clock period. For example, if ƒCLK is 2 MHz, the minimum clock rise time and fall time is 50 ns.  
Figure 35 • SMI Interface Timing  
tWH  
tWL  
MDC  
tCYC  
tSU  
tH  
MDIO  
(write)  
Data  
tCO  
MDIO  
(read)  
Data  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
95  
Electrical Specifications  
6.2.15 Reset Timing  
This section contains the AC specifications that apply to device reset functionality. The signal applied to  
the NRESET input must comply with the specifications listed in the following table.  
Table 122 • NRESET Timing Specifications  
Parameter  
Symbol Minimum Maximum Unit  
NRESET assertion time after power supplies tW  
and clock stabilize  
2
ms  
Recovery time from reset inactive to device tREC  
fully active  
105  
ms  
NRESET pulse width  
tW(RL)  
tWAIT  
100  
105  
ns  
Wait time between NRESET de-assert and  
access of the SMI interface  
ms  
Figure 36 • Reset Timing  
tcyc  
tpause  
LED_CLK  
tco  
LED_DATA  
Bit 1  
Bit 2  
Bit X  
Bit 1  
6.2.16 Serial LEDs  
This section contains the AC specifications for the serial LEDs.  
Table 123 • Serial LEDs AC Characteristics  
Parameter  
Symbol Minimum Maximum Unit  
LED_CLK cycle time  
tCYC  
1
µs  
ms  
ns  
Pause between LED bit sequences tPAUSE  
LED_CLK to LED_DATA tCO  
25  
1
Figure 37 • Serial LED Timing  
tcyc  
tpause  
LED_CLK  
tco  
LED_DATA  
Bit 1  
Bit 2  
Bit X  
Bit 1  
6.2.17 Power Supply Sequencing  
During power on and off, VDD_A and VDD_VS must never be more than 300 mV above VDD. VDD_VS must  
be powered, even if the associated interface is not used. These power supplies must not remain at  
ground or left floating.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
96  
Electrical Specifications  
There are no sequencing requirements for VDD_AL, VDD_AH, or VDD_IO. These power supplies can  
remain at ground or left floating if not used.  
The NRESET and JTAG_nTRST inputs must be held low until all power supply voltages  
have reached their recommended operating condition values.  
6.3  
Operating Conditions  
The following table shows the recommended operating conditions for the device.  
Table 124 • Recommended Operating Conditions  
Parameter  
Symbol Minimum Typical Maximum Unit  
Power supply voltage for VDD  
Power supply voltage for VDD_A  
Power supply voltage for VDD_AH  
Power supply voltage for VDD_AL  
Power supply voltage for VDD_IO  
Power supply voltage for VDD_VS  
VSC8512-02 operating temperature(1)  
VSC8512-03 operating temperature(1)  
VDD  
0.95  
0.95  
1.00  
1.00  
2.50  
1.00  
2.50  
1.00  
1.05  
1.05  
2.62  
1.05  
2.62  
1.05  
125  
V
V
V
V
V
V
VDD_A  
VDD_AH 2.38  
VDD_AL 0.95  
VDD_IO  
2.38  
VDD_VS 0.95  
T
T
0
°C  
°C  
–40  
125  
1. Minimum specification is ambient temperature, and the maximum is junction temperature.  
6.4  
Stress Ratings  
This section contains the stress ratings for the VSC8512-02 device.  
Warning Stresses listed in the following table may be applied to devices one at a time without causing  
permanent damage. Functionality at or exceeding the values listed is not implied. Exposure to these  
values for extended periods may affect device reliability.  
Table 125 • Stress Ratings  
Parameter  
Symbol  
VDD  
Minimum Maximum Unit  
Power supply voltage for core supply  
–0.3  
–0.3  
1.10  
1.32  
V
V
Power supply voltage for SerDes and Enhanced  
SerDes interfaces  
VDD_VS  
Power supply voltage for analog circuits in twisted pair VDD_AL  
interface  
–0.3  
–0.3  
–0.3  
1.10  
2.75  
2.75  
V
V
V
Power supply voltage for analog circuits in twisted pair VDD_AH  
interface  
Power supply voltage for MIIM, PI, and miscellaneous VDD_IO  
I/O  
Input voltage for GPIO and logic input pins  
3.3  
V
Storage temperature  
TS  
–55  
125  
250  
1750  
°C  
V
Electrostatic discharge voltage, charged device model VESD_CDM –250  
Electrostatic discharge voltage, human body model VESD_HBM –1750  
V
Warning This device can be damaged by electrostatic discharge (ESD) voltage. Microsemi  
recommends that all integrated circuits be handled with appropriate precautions. Failure to observe  
proper handling and installation procedures may adversely affect reliability of the device.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
97  
Electrical Specifications  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
98  
Pin Descriptions  
7
Pin Descriptions  
The VSC8512-02 device has 672 pins, which are described in this section.  
The pin information is also provided as an attached Microsoft Excel file, so that you can copy it  
electronically. In Adobe Reader, double-click the attachment icon.  
7.1  
Pin Diagrams  
The following illustrations show the pin diagrams for the VSC8512-02 device.  
Figure 38 • Pin Diagram, Left  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
A
B
P8_D0P  
P8_D1P  
P8_D2P  
P8_D3P  
P7_D0P  
P7_D1P  
P7_D2P  
P7_D3P  
P6_D0P  
P6_D1P  
P6_D2P  
P6_D3P  
VSS_1  
P9_D3P  
P9_D2P  
P9_D1P  
P9_D0P  
P10_D3P  
P10_D2P  
P10_D1P  
P10_D0P  
P11_D3P  
P11_D2P  
P11_D1P  
P8_D0N  
P9_D3N  
P9_D2N  
P9_D1N  
P9_D0N  
P10_D3N  
P10_D2N  
P10_D1N  
P10_D0N  
P11_D3N  
P11_D2N  
P11_D1N  
P11_D0N  
MDINT  
P8_D1N  
P8_D2N  
NRESET  
P8_D3N  
P7_D0N  
VSS  
P7_D1N  
P7_D2N  
P7_D3N  
P6_D0N  
P6_D1N  
P6_D2N  
P6_D3N  
COMA_MODE  
NO CONNECT  
RESERVED_3  
RESERVED_29  
RESERVED_4  
REFCLK_SEL0  
REFCLK_SEL1  
C
PHYADD3 PHYADD4  
RESERVED_205  
RESERVED_216  
RESERVED_218  
RESERVED_206 RESERVED_207 RESERVED_208 RESERVED_209 RESERVED_248  
RESERVED_211 RESERVED_13  
D
VDD_AH_1 VDD_AH_2  
VDD_AH_4  
REF_REXT_1  
VDD_AH_10 VDD_AH_11  
VDD_AH_20 VDD_AH_21  
E
VDD_AH_7 VDD_AH_8 VDD_IO_1 VDD_IO_2 VDD_AH_9 VDD_AL_1 VDD_AL_2  
RESERVED_219  
RESERVED_247  
RESERVED_246  
VDD_AH_17 VDD_AH_18  
VDD_AH_19  
VDD_3  
F
VDD_IO_5 VDD_AH_3  
VDD_AL_5 VDD_AL_6  
RESERVED_15  
VDD_AL_10  
VDD_AL_9  
G
VSS_3  
VSS_7  
VSS_4  
VDD_1  
VDD_2  
VDD_4  
VDD_5  
RESERVED_14  
H
J
VSS_8  
VDD_11  
VDD_12  
VDD_13  
VDD_14  
VDD_15  
VDD_16  
VDD_17  
RESERVED_240 RESERVED_241 RESERVED_242 RESERVED_243 RESERVED_244 RESERVED_245  
VDD_AH_27 VDD_AH_28 VDD_AL_13 VDD_AL_14 VDD_AL_15  
REF_REXT_2  
VDD_AL_19 VDD_AL_20 VDD_AL_21  
VSS_11  
K
VSS_12  
VSS_27  
VSS_41  
VSS_56  
VSS_72  
VSS_86  
VSS_98  
VSS_112  
VDD_51  
VDD_67  
REFCLK_P  
REFCLK_N  
VSS_131  
VSS_13  
VSS_28  
VSS_42  
VSS_57  
VSS_73  
VSS_87  
VSS_99  
VSS_113  
VDD_52  
VSS_14  
VSS_29  
VSS_43  
VSS_58  
VSS_74  
VSS_88  
VSS_100  
VSS_114  
VDD_53  
VSS_15  
VSS_30  
VSS_44  
VSS_59  
VSS_75  
VSS_89  
VSS_101  
VSS_115  
VDD_54  
VSS_16  
VSS_31  
VSS_45  
VSS_60  
VSS_76  
VSS_90  
VSS_102  
VSS_116  
VDD_55  
VDD_71  
VSS_126  
VSS_145  
VSS_135  
VSS_17  
VSS_32  
VSS_46  
VSS_61  
VSS_77  
VSS_91  
VSS_103  
VSS_117  
VDD_56  
REF_FILT_2  
L
VSS_25  
VSS_26  
VDD_25  
VDD_29  
VDD_33  
VDD_26  
VDD_30  
VDD_34  
VDD_38  
VDD_42  
VDD_46  
VSS_111  
VDD_50  
VDD_AH_31 VDD_AH_32 VDD_AH_33  
M
N
P
VSS_53  
VSS_71  
VSS_54  
VSS_55  
RESERVED_24  
P11_D0P  
VDD_IO_7 VDD_37  
VDD_IO_8 VDD_41  
FAST_LINK_STATUS  
SFP3_SD  
/
GPIO_29  
PHY11_LED0  
R
PHY10_LED0  
T
PHY9_LED0 PHY8_LED0 PHY7_LED0 VDD_IO_9 VDD_45  
VDD_IO_10  
U
PHY6_LED0 PHY5_LED0 PHY4_LED0 PHY3_LED0  
VSS_110  
VDD_49  
PHY0_LED0  
/ BASIC_SLED_DATA  
PHY11_LED1  
/ GPIO_16  
VDD_IO_11  
VDD_IO_12  
VDD_IO_13  
VDD_IO_14  
VDD_IO_15  
V
PHY2_LED0 PHY1_LED0  
PHY10_LED1  
/
GPIO_15  
PHY9_LED1  
/
GPIO_14  
PHY8_LED1  
/
GPIO_13  
PHY7_LED1 / SFP_SERIALCLK1  
W
Y
VDD_65  
VDD_66  
VDD_68  
VDD_69  
VDD_70  
VDD_72  
PHY6_LED1  
/ SFP_SERIALCLK2 PHY5_LED1 / SFP_SERIALCLK3 PHY4_LED1 / CLK_SQUELCH_IN PHY3_LED1 / ESLED1_PULSE  
SERDES7_TXP  
SERDES6_TXP  
SERDES_E3_TXP  
SERDES5_TXP  
SERDES4_TXP  
SERDES_E2_TXP  
PH Y0_LED 1 / ESLED 1_CLK / BASIC_SLED _CLK  
PHY2_LED1  
/ ESLED1_DO PHY1_LED1 / ESLED1_LD  
SFP2_SD  
/
GPIO_4  
SERDES7_TXN  
SERDES6_TXN  
SERDES_E3_TXN  
SERDES5_TXN  
SERDES4_TXN  
SERDES_E2_TXN  
AA  
AB  
AC  
AD  
SFP1_SD  
/
ESLED0_PULSE  
/
GPIO_3  
SFP0_SD  
/
ESLED0_DO  
/
GPIO_2  
SFP_SERIALCLK0  
/
ESLED0_CLK  
SFP_SERIALDATA  
/ ESLED0_LD  
VSS_129  
VSS_130  
VSS_132  
VSS_133  
VSS_134  
VSS_136  
RESERVED_27 RESERVED_28  
RESERVED_25 RESERVED_26  
RCVRD_CLK0  
VDD_IO_16 VDD_IO_17  
VDD_IO_18  
VSS_148  
VDD_A_1 VDD_A_2 VDD_A_3 VDD_A_4 VDD_A_5 VDD_A_6 VDD_A_7 VDD_A_8  
RCVRD_CLK1  
VSS_149 VDD_VS_1 VDD_VS_2 VDD_VS_3 VDD_VS_4 VDD_VS_5 VDD_VS_6 VDD_VS_7 VDD_VS_8  
SERDES7_RXP  
SERDES6_RXP  
RESERVED_22  
SERDES_E3_RXP  
SERDES5_RXP  
SERDES4_RXP  
SERDES_E2_RXP  
SERDES_E2_RXN  
VDD_IO_19  
MDIO  
AE VSS_151  
VSS_163  
MDC  
VSS_152  
VSS_158  
VSS_153  
VSS_159  
SERDES7_RXN SERDES6_RXN RESERVED_23 SERDES_E3_RXN SERDES5_RXN SERDES4_RXN  
VDD_IO_20  
AF  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
99  
Pin Descriptions  
Figure 39 • Pin Diagram, Right  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
P5_D0P  
P5_D1P  
P5_D2P  
P5_D3P  
P4_D0P  
P4_D1P  
P4_D2P  
P4_D3P  
P3_D0P  
P3_D1P  
P3_D2P  
P3_D3P  
A
B
P5_D0N  
P5_D1N  
P5_D2N  
P5_D3N  
P4_D0N  
P4_D1N  
P4_D2N  
P4_D3N  
P3_D0N  
P3_D1N  
P3_D2N  
P3_D3N  
P2_D0N  
P2_D1N  
P2_D2N  
P2_D3N  
P1_D0N  
P1_D1N  
P1_D2N  
P1_D3N  
P0_D0N  
P0_D1N  
P0_D2N  
VSS_2  
P2_D0P  
P2_D1P  
P2_D2P  
P2_D3P  
P1_D0P  
P1_D1P  
P1_D2P  
P1_D3P  
P0_D0P  
P0_D1P  
P0_D2P  
REFCLK_SEL2  
RESERVED_8  
RESERVED_7  
RESERVED_6  
RESERVED_5 RESERVED_201 RESERVED_202 RESERVED_203 THERMDC_VSS  
RESERVED_204  
THERMDA  
C
RESERVED_12 RESERVED_212  
RESERVED_213 RESERVED_214 RESERVED_215  
JTAG_TRST  
VDD_AH_5 JTAG_CLK JTAG_DI  
JTAG_DO JTAG_TMS  
VDD_AH_14  
D
RESERVED_217  
REF_FILT_1 VDD_AH_12 VDD_AH_13  
VDD_AH_15 VDD_AH_16  
VDD_AL_3 VDD_AL_4  
VDD_AL_7 VDD_AL_8  
VDD_AL_11 VDD_AL_12  
VDD_IO_3 VDD_IO_4  
VDD_AH_6 VDD_IO_6  
E
RESERVED_220  
RESERVED_221  
VDD_AH_22 VDD_AH_23  
VDD_AH_24  
VDD_8  
VDD_AH_25 VDD_AH_26  
F
RESERVED_223  
RESERVED_10  
VDD_6  
VDD_7  
VDD_9  
VDD_10  
VDD_24  
VSS_5  
VSS_9  
VSS_6  
G
RESERVED_225  
RESERVED_11  
VDD_18  
VDD_19  
VDD_20  
VDD_21  
VDD_22  
VDD_23  
VSS_10  
H
J
RESERVED_232 RESERVED_233 RESERVED_234 RESERVED_235 RESERVED_236 RESERVED_237  
VDD_AL_16 VDD_AL_17 VDD_AL_18 VDD_AH_29 VDD_AH_30  
REF_REXT_0  
VDD_AL_22 VDD_AL_23 VDD_AL_24  
VSS_24  
VSS_18  
VSS_33  
VSS_47  
VSS_62  
VSS_78  
VSS_92  
VSS_104  
VSS_118  
VDD_57  
VSS_19  
VSS_34  
VSS_48  
VSS_63  
VSS_79  
VSS_93  
VSS_105  
VSS_119  
VDD_58  
VSS_20  
VSS_35  
VSS_49  
VSS_64  
VSS_80  
VSS_94  
VSS_106  
VSS_120  
VDD_59  
VDD_75  
VSS_127  
VSS_146  
VSS_139  
VSS_21  
VSS_36  
VSS_50  
VSS_65  
VSS_81  
VSS_95  
VSS_107  
VSS_121  
VDD_60  
VSS_22  
VSS_37  
VSS_51  
VSS_66  
VSS_82  
VSS_96  
VSS_108  
VSS_122  
VDD_61  
VSS_23  
VSS_38  
VSS_52  
VSS_67  
VSS_83  
VSS_97  
VSS_109  
VSS_123  
VDD_62  
K
REF_FILT_0  
VDD_27  
VDD_31  
VDD_35  
VDD_39  
VDD_43  
VDD_47  
VSS_124  
VDD_63  
VDD_79  
VSS_128  
VSS_147  
VSS_143  
VDD_28  
VDD_32  
VDD_36  
VDD_40  
VDD_44  
VDD_48  
VSS_125  
VDD_64  
VSS_39  
VSS_40  
L
VDD_AH_34 VDD_AH_35 VDD_AH_36  
M
N
P
VSS_68  
VSS_69  
VSS_70  
VDD_IODDR_1  
VSS_84  
VSS_85  
P0_D3N  
P0_D3P  
VDD_IODDR_2  
VDD_IODDR_3  
VDD_IODDR_4  
VDD_IODDR_5  
VDD_IODDR_6  
VDD_IODDR_7  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
R
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
VDD_IODDR_11  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
VDD_IODDR_12  
VDD_IODDR_14  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
VDD_IODDR_13  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
T
U
V
VDD_73  
VDD_74  
VDD_76  
VDD_77  
VDD_78  
VDD_80  
W
Y
SERDES3_TXP  
SERDES2_TXP  
SERDES_E1_TXP  
SERDES1_TXP  
SERDES0_TXP  
SERDES_E0_TXP  
SERDES3_TXN SERDES2_TXN  
SERDES_E1_TXN  
SERDES1_TXN  
SERDES0_TXN  
SERDES_E0_TXN VDD_IODDR_8  
AA  
AB  
AC  
AD  
VDD_IODDR_9  
VSS_137  
VSS_138  
VSS_140  
VSS_141  
VSS_142  
VSS_144  
VDD_IODDR_10  
VDD_A_9 VDD_A_10 VDD_A_11 VDD_A_12 VDD_A_13 VDD_A_14 VDD_A_15 VDD_A_16  
VDD_VS_10 VDD_VS_11 VDD_VS_12 VDD_VS_13 VDD_VS_14 VDD_VS_15 VDD_VS_16  
VDD_VS_9  
VSS_150  
SERDES3_RXP  
SERDES2_RXP  
SERDES_E1_RXP  
SERDES1_RXP  
SERDES0_RXP  
SERDES_E0_RXP  
SERDES_E0_RXN  
SERDES_REXT_0  
VSS_154  
VSS_160  
VSS_155  
VSS_161  
VSS_156  
VSS_162  
VSS_157 AE  
SERDES3_RXN SERDES2_RXN  
SERDES_E1_RXN SERDES1_RXN SERDES0_RXN  
SERDES_REXT_1  
AF  
7.2  
Pins by Function  
This section contains the functional pin descriptions for the VSC8512-02 device. The following table lists  
the definitions for the pin type symbols.  
Table 126 • Pin Type Symbol Definitions  
Symbol Pin Type  
Description  
3V  
3.3 V-tolerant pin.  
Analog bias pin.  
ABIAS  
ADIFF  
I
Analog bias  
Analog differential Analog differential signal pair.  
Input  
Input without on-chip pull-up or pull-down resistor.  
I/O  
Bidirectional  
No connect  
Output  
Bidirectional input or output signal.  
No connect pins must be left floating.  
Output signal.  
NC  
O
OD  
OS  
PD  
Open drain  
Open source  
Pull-down  
Open drain output.  
Open source output.  
On-chip pull-down resistor to VSS.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
100  
Pin Descriptions  
Table 126 • Pin Type Symbol Definitions (continued)  
Symbol Pin Type  
Description  
PU  
ST  
Pull-up  
On-chip pull-up resistor to VDD_IO.  
Input has Schmitt-trigger circuitry.  
Schmitt-trigger  
7.2.1  
JTAG Pins  
The following table shows the functional pins for the JTAG interface.  
Table 127 • JTAG Pins  
Name  
Pin  
Type  
Description  
JTAG_CLK  
JTAG_DI  
JTAG_DO  
JTAG_TMS  
D17  
D18  
D19  
D20  
I, PU, ST, 3V JTAG clock pin  
I, PU, ST, 3V JTAG data input pin  
O
JTAG data output pin  
I, PU, ST, 3V JTAG test mode select pin  
I, PU, ST, 3V JTAG reset pin  
JTAG_TRST D21  
7.2.2  
LED and Multi/General Purpose Input and Output Pins  
The following table lists the descriptions for the multifunction LED pins, the multipurpose pins, and the  
general purpose input/output (GPIO) pins. For more information about configuring these pins, see LED  
Interface, page 21, and Table 93, page 80.  
Table 128 • LED, Multipurpose, and GPIO Pins  
Name  
Pin  
Type  
Description  
PHY[1:11]_LED0  
V2, V1, U4,  
U3, U2, U1,  
T4, T3, T2,  
R4  
I/O, PU, 3V  
LED direct-drive output  
PHY0_LED0 / BASIC_SLED_DATA V3  
I/O, PU, 3V  
I/O, PU, 3V  
LED direct-drive output  
Basic serial LED data  
PHY0_LED1 / ESLED1_CLK /  
BASIC_SLED_CLK  
AA3  
LED direct-drive output  
Enhanced serial LED clock  
Basic serial LED clock  
PHY1_LED1 / ESLED1_LD  
AA2  
AA1  
Y4  
I/O, PU, 3V  
I/O, PU, 3V  
I/O, PU, 3V  
I/O, PU, 3V  
I/O, PU, 3V  
I/O, PU, 3V  
I/O, PU, 3V  
LED direct-drive output  
Enhanced serial LED load  
PHY2_LED1 / ESLED1_DO  
LED direct-drive output  
Enhanced serial LED data  
PHY3_LED1 / ESLED1_PULSE  
PHY4_LED1 / CLK_SQUELCH_IN  
PHY5_LED1 / SFP_SERIALCLK3  
PHY6_LED1 / SFP_SERIALCLK2  
PHY7_LED1 / SFP_SERIALCLK1  
LED direct-drive output  
Enhanced serial LED pulse  
Y3  
LED direct-drive output  
Clock squelch input  
Y2  
LED direct-drive output  
SFP serial clock  
Y1  
LED direct-drive output  
SFP serial clock  
W4  
LED direct-drive output  
SFP serial clock  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
101  
Pin Descriptions  
Table 128 • LED, Multipurpose, and GPIO Pins (continued)  
Name  
Pin  
Type  
Description  
PHY8_LED1 / GPIO_13  
W3  
I/O, PU, 3V  
LED direct-drive output  
General purpose I/O  
PHY9_LED1 / GPIO_14  
PHY10_LED1 / GPIO_15  
PHY11_LED1 / GPIO_16  
W2  
W1  
V4  
I/O, PU, 3V  
I/O, PU, 3V  
I/O, PU, 3V  
I/O, PU, 3V  
I/O, PU, 3V  
I/O, PU, 3V  
LED direct-drive output  
General purpose I/O  
LED direct-drive output  
General purpose I/O  
LED direct-drive output  
General purpose I/O  
SFP_SERIALCLK0 / ESLED0_CLK AB4  
SFP serial clock  
Enhanced serial LED clock  
SFP_SERIALDATA / ESLED0_LD  
SFP0_SD / ESLED0_DO / GPIO_2  
AB3  
AB2  
SFP serial data  
Enhanced serial LED load  
SFP Signal Detect  
Enhanced serial LED data  
General purpose I/O  
SFP1_SD / ESLED0_PULSE /  
GPIO_3  
AB1  
I/O, PU, 3V  
SFP Signal Detect  
Enhanced serial LED pulse  
General purpose I/O  
SFP2_SD / GPIO_4  
SFP3_SD / GPIO_29  
AA4  
R3  
I/O, PU, 3V  
I/O, PU, 3V  
SFP Signal Detect  
General purpose I/O  
SFP Signal Detect  
General purpose I/O  
7.2.3  
MAC SerDes/QSGMII Interface Pins  
The following table shows the functional pins for the MAC SerDes/QSGMII interface.  
Table 129 • MAC SerDes Interface Pins  
Name  
Pin  
Type  
Description  
SERDES_E[0:3]_RXN AF21, AF17, AF13, AF9  
SERDES_E[0:3]_RXP AE21, AE17, AE13, AE9  
SERDES_E[0:3]_TXN AA21, AA17, AA13, AA9  
SERDES_E[0:3]_TXP Y21, Y17, Y13, Y9  
SERDES_REXT_[0:1] AE22, AF22  
ADIFF Enhanced SerDes receive  
negative polarity pins  
ADIFF Enhanced SerDes receive  
positive polarity pins  
ADIFF Enhanced SerDes transmit  
negative polarity pins  
ADIFF Enhanced SerDes transmit  
positive polarity pins  
ABIAS SerDes bias pins  
SERDES[0:7]_RXN  
SERDES[0:7]_RXP  
SERDES[0:7]_TXN  
SERDES[0:7]_TXP  
AF19, AF18, AF15, AF14,  
AF11, AF10, AF7, AF6  
ADIFF SerDes receive negative  
polarity pins  
AE19, AE18, AE15, AE14,  
AE11, AE10, AE7, AE6  
ADIFF SerDes receive positive  
polarity pins  
AA19, AA18, AA15, AA14,  
AA11, AA10, AA7, AA6  
ADIFF SerDes transmit negative  
polarity pins  
Y19, Y18, Y15, Y14,  
Y11, Y10, Y7, Y6  
ADIFF SerDes transmit positive  
polarity pins  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
102  
Pin Descriptions  
7.2.4  
Miscellaneous Pins  
The following table shows the miscellaneous pins.  
Table 130 • Miscellaneous Pins  
Name  
Pin  
Type  
I/O  
Description  
FAST_LINK_STATUS  
PHYADD[3:4]  
RCVRD_CLK[0:1]  
R1  
Fast link failure indication.  
PHY address range select.  
C7, C8  
AE2, AD3  
I, PD  
O
Recovered clock frequency select.  
These pins are not active when  
NRESET is asserted. Clock outputs  
can be enabled or disabled using  
registers 23G and 24G. When  
disabled, the pin is held low.  
000: 25 MHz output clock  
001: 125 MHz output clock  
010: 31.25 MHz output clock  
REFCLK_N  
REFCLK_P  
AA8  
Y8  
I, ADIFF Reference clock input. The input can  
be either differential or single-ended.  
In differential mode, REFCLK_P is the  
true part of the differential signal, and  
REFCLK_N is the complement part of  
the differential signal. In single-ended  
mode, REFCLK_P is used as single-  
ended LVTTL input, and the  
REFCLK_N should be pulled to  
VDD_A. Required applied frequency  
depends on REFCLK_SEL[2:0] input  
state.  
REFCLK_SEL[0:2]  
C12, C13, C14  
I, PD  
Reference clock frequency select.  
0: Connect to pull-down or leave  
floating.  
1: Connect to pull-up to VDD_IO.  
000: 125 MHz (default).  
001: 156.25 MHz.  
100: 25 MHz.  
RESERVED_5  
C18  
I/O  
Connect to VDD_IO for correct  
functioning of fiber media ports.  
THERMDA  
C23  
C22  
A
A
Thermal diode anode.  
Thermal diode cathode.  
THERMDC_VSS  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
103  
Pin Descriptions  
7.2.5  
No Connect and Reserved Pins  
The following table lists the reserved pins. Not all of the pins are labeled “reserved,” but all pins listed  
should not be connected.  
Table 131 • No Connect and Reserved  
Name  
Pin  
Type Description  
NO CONNECT  
AA23, AA24, AA25, AA26, AB23, AB24,  
AB25, AB26, AC23, AC24, AC25, AC26,  
AD24, AD25, AD26, AE25, C5, R23, R24,  
R25, R26, T23, T24, T25, T26, U23, U24,  
U25, U26, V23, V24, V25, V26, W23, W24,  
W25, W26, Y23, Y24, Y25, Y26  
NC  
Reserved. Leave  
unconnected.  
RESERVED_[3:4]  
RESERVED_[6:8]  
RESERVED_[10:15]  
RESERVED_[22:29]  
C9, C11  
NC  
NC  
NC  
NC  
NC  
Reserved. Leave  
unconnected.  
C17, C16, C15  
Reserved. Leave  
unconnected.  
G23, H23, D14, D13, H4, G4  
AE8, AF8, P4, AD1, AD2, AC1, AC2, C10  
Reserved. Leave  
unconnected.  
Reserved. Leave  
unconnected.  
RESERVED_[201:209] C19, C20, C21, C24, D3, D6, D7, D8, D9  
Reserved. Leave  
unconnected.  
RESERVED_[211:221] D12, D15, D22, D23, D24, E3, E24, F3, F13, NC  
F14, F24  
Reserved. Leave  
unconnected.  
RESERVED_223  
G14  
NC  
NC  
NC  
NC  
Reserved. Leave  
unconnected.  
RESERVED_225  
H14  
Reserved. Leave  
unconnected.  
RESERVED_[232:237] J14, J15, J16, J17, J18, J19  
Reserved. Leave  
unconnected.  
RESERVED_[240:248] J8, J9, J10, J11, J12, J13, H13, G13, D10  
Reserved. Leave  
unconnected.0  
7.2.6  
Power Supply Pins  
The following table lists the power supply pins. All power supply pins must be connected to their  
respective voltage input, even though certain pin functions may not be used for a specific application.  
Table 132 • Power Supply Pins  
Name  
Pin  
Type Description  
VDD_[1:80]  
G6, G7, G8, G11, G12, G15, G16, G19, G20, 1.0V Connect to 1.0 V  
G21, H6, H7, H8, H9, H10, H11, H12, H15,  
H16, H17, H18, H19, H20, H21, L6, L7, L20,  
L21, M6, M7, M20, M21, N6, N7, N20, N21,  
P6, P7, P20, P21, R6, R7, R20, R21, T6, T7,  
T20, T21, V6, V7, V8, V9, V10, V11, V12,  
V13, V14, V15, V16, V17, V18, V19, V20,  
V21, W6, W7, W8, W9, W10, W11, W12,  
W13, W14, W15, W16, W17, W18, W19,  
W20, W21  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
104  
Pin Descriptions  
Table 132 • Power Supply Pins (continued)  
Name  
Pin  
Type Description  
VDD_A_[1:16]  
AC6, AC7, AC8, AC9, AC10, AC11, AC12,  
AC13, AC14, AC15, AC16, AC17, AC18,  
AC19, AC20, AC21  
1.0V Analog SerDes 1.0 V  
VDD_AH_[1:36]  
D4, D5, D11, D16, E4, E5, E8, E11, E12,  
E15, E16, E19, E22, E23, F4, F5, F7, F8,  
F11, F12, F15, F16, F19, F20, F22, F23, J3,  
J4, J23, J24, M3, M4, M5, M22, M23, M24  
2.5V Analog 2.5 V  
VDD_AL_[1:24]  
VDD_IO_[1:20]  
E9, E10, E17, E18, F9, F10, F17, F18, G9, 1.0V Analog 1.0 V  
G10, G17, G18, J5, J6, J7, J20, J21, J22,  
K5, K6, K7, K20, K21, K22  
E6, E7, E20, E21, F6, F21, P5, R5, T5, U5, 2.5V Connect to 2.5 V  
V5, W5, Y5, AA5, AB5, AC4, AC5, AD4,  
AE3, AF2  
VDD_IODDR_[1:14] P22, R22, T22, U22, V22, W22, Y22, AA22, 0V  
Ground  
AB22, AC22, AD23, AE24, AF25, AF24  
VDD_VS_[1:16]  
AD6, AD7, AD8, AD9, AD10, AD11, AD12,  
AD13, AD14, AD15, AD16, AD17, AD18,  
AD19, AD20, AD21  
1.0V Analog SerDes 1.0 V  
VSS  
C6  
0V  
0V  
Ground  
Ground  
VSS_[1:163]  
B1, B26, G3, G5, G22, G24, H3, H5, H22,  
H24, K3, K8, K9, K10, K11, K12, K13, K14,  
K15, K16, K17, K18, K19, K24, L3, L5, L8,  
L9, L10, L11, L12, L13, L14, L15, L16, L17,  
L18, L19, L22, L24, M8, M9, M10, M11, M12,  
M13, M14, M15, M16, M17, M18, M19, N3,  
N4, N5, N8, N9, N10, N11, N12, N13, N14,  
N15, N16, N17, N18, N19, N22, N23, N24,  
P3, P8, P9, P10, P11, P12, P13, P14, P15,  
P16, P17, P18, P19, P23, P24, R8, R9, R10,  
R11, R12, R13, R14, R15, R16, R17, R18,  
R19, T8, T9, T10, T11, T12, T13, T14, T15,  
T16, T17, T18, T19, U6, U7, U8, U9, U10,  
U11, U12, U13, U14, U15, U16, U17, U18,  
U19, U20, U21, Y12, Y16, Y20, AB6, AB7,  
AB8, AB9, AB10, AB11, AB12, AB13, AB14,  
AB15, AB16, AB17, AB18, AB19, AB20,  
AB21, AA12, AA16, AA20, AC3, AD5, AD22,  
AE1, AE5, AE12, AE16, AE20, AE23, AE26,  
AF5, AF12, AF16, AF20, AF23, AE4  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
105  
Pin Descriptions  
7.2.7  
Serial Management Interface Pins  
The following table shows the functional pins for the serial management interface.  
Table 133 • Serial Management Interface Pins  
Name  
Pin  
Type  
Description  
COMA_MOD C3  
E
I/O, PU, ST, 3V When this pin is asserted high, all PHYs are held in a  
powered down state. When this pin is deasserted low, all  
PHYs are powered up and resume normal operation.  
This signal is also used to synchronize the operation of  
multiple chips on the same PCB to provide visual  
synchronization for LEDs driven from the separate chips.  
MDC  
AF4  
I
Management data clock pin.  
Management interrupt signal.  
Management data input/output pin.  
Device reset pin, active low.  
MDINT  
MDIO  
R2  
I/O, OS, OD  
I/O, OD  
I, PD, ST, 3V  
AF3  
C4  
nRESET  
7.2.8  
Twisted Pair Interface Pins  
The following table shows the functional pins for the twisted pair interface.  
Table 134 • Twisted Pair Interface Pins  
Name  
Pin  
Type  
Description  
P0_D[0:3]N  
P0_D[0:3]P  
P[0:11]_D0N  
L25, M25, N25, P25 ADIFF Connects to RJ45 Pin 2 through a magnetic.  
L26, M26, N26, P26 ADIFF Connects to RJ45 Pin 1 through a magnetic.  
L25, G25, C25, B22, ADIFF Connects to RJ45 Pin 2 through a magnetic.  
B18, B14, B10, B6,  
B2, F2, K2, P2  
P[0:11]_D0P  
P[0:11]_D1N  
P[0:11]_D1P  
P[0:11]_D2N  
P[0:11]_D2P  
P[0:11]_D3N  
P[0:11}_D3P  
L26, G26, C26, A22, ADIFF Connects to RJ45 Pin 1 through a magnetic.  
A18, A14, A10, A6,  
A2, F1, K1, P1  
M25, H25, D25, B23, ADIFF Connects to RJ45 Pin 6 through a magnetic.  
B19, B15, B11, B7,  
B3, E2, J2, N2  
M26, H26, D26, A23, ADIFF Connects to RJ45 Pin 3 through a magnetic.  
A19, A15, A11, A7,  
A3, E1, J1, N1  
N25, J25, E25, B24, ADIFF Connects to RJ45 Pin 5 through a magnetic.  
B20, B16, B12, B8,  
B4, D2, H2, M2  
N26 J26, E26, A24, ADIFF Connects to RJ45 Pin 4 through a magnetic.  
A20, A16, A12, A8,  
A4, D1, H1, M1  
P25, K25, F25, B25, ADIFF Connect to RJ45 pin 8 through a magnetic.  
B21, B17, B13, B9,  
B5, C2, G2, L2  
P26, K26, F26, A25, ADIFF Connects to RJ45 pin 7 through a magnetic.  
A21, A17, A13, A9,  
A5, C1, G1, L1  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
106  
Pin Descriptions  
Table 134 • Twisted Pair Interface Pins (continued)  
Name Pin Type Description  
REF_FILT_[2:0] 18, 148, 193  
ABIAS Copper media reference filter pins. Connect  
each of these pins to one external 1 µF  
capacitor each and then all going to ground.  
REF_REXT_[2:0] 19, 149, 194  
ABIAS Copper media reference external pins.  
Connect each of these pins to one external  
2.0 k(1%) resistor each and then all going to  
ground.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
107  
12-Port 10/100/1000BASE-T PHY with QSGMII MAC  
7.3  
Pins by Number  
This section provides a numeric list of the VSC8512-02 pins.  
AA13 SERDES_E2_TXN  
AA14 SERDES3_TXN  
AA15 SERDES2_TXN  
AA16 VSS_146  
A2  
P8_D0P  
P8_D1P  
P8_D2P  
P8_D3P  
P7_D0P  
P7_D1P  
P7_D2P  
P7_D3P  
P6_D0P  
P6_D1P  
P6_D2P  
P6_D3P  
P5_D0P  
P5_D1P  
P5_D2P  
P5_D3P  
P4_D0P  
P4_D1P  
P4_D2P  
P4_D3P  
P3_D0P  
P3_D1P  
P3_D2P  
P3_D3P  
PHY2_LED1 / ESLED1_DO  
A3  
AA17 SERDES_E1_TXN  
AA18 SERDES1_TXN  
AA19 SERDES0_TXN  
AA20 VSS_147  
A4  
A5  
A6  
A7  
AA21 SERDES_E0_TXN  
AA22 VDD_IODDR_8  
AA23 NO CONNECT  
AA24 NO CONNECT  
AA25 NO CONNECT  
AA26 NO CONNECT  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
SFP1_SD / ESLED0_PULSE /  
AB1  
AB2  
AB3  
AB4  
AB5  
AB6  
AB7  
AB8  
AB9  
SFP0_SD / ESLED0_DO / GPIO_2  
SFP_SERIALDATA / ESLED0_LD  
SFP_SERIALCLK0 / ESLED0_CLK  
VDD_IO_15  
VSS_129  
VSS_130  
VSS_131  
VSS_132  
AB10 VSS_133  
AB11 VSS_134  
AB12 VSS_135  
AB13 VSS_136  
AB14 VSS_137  
AB15 VSS_138  
AB16 VSS_139  
AB17 VSS_140  
AB18 VSS_141  
AB19 VSS_142  
AB20 VSS_143  
AB21 VSS_144  
AB22 VDD_IODDR_9  
AB23 NO CONNECT  
AB24 NO CONNECT  
PHY1_LED1 / ESLED1_LD  
PHY0_LED1 / ESLED1_CLK / BASIC_SLED_CLK  
SFP2_SD / GPIO_4  
VDD_IO_14  
SERDES7_TXN  
SERDES6_TXN  
REFCLK_N  
SERDES_E3_TXN  
AA10 SERDES5_TXN  
AA11 SERDES4_TXN  
AA12 VSS_145  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
108  
Pins by number (continued)  
AB25 NO CONNECT  
AB26 NO CONNECT  
AD11 VDD_VS_6  
AD12 VDD_VS_7  
AD13 VDD_VS_8  
AD14 VDD_VS_9  
AD15 VDD_VS_10  
AD16 VDD_VS_11  
AD17 VDD_VS_12  
AD18 VDD_VS_13  
AD19 VDD_VS_14  
AD20 VDD_VS_15  
AD21 VDD_VS_16  
AD22 VSS_150  
AC1  
AC2  
AC3  
AC4  
AC5  
AC6  
AC7  
AC8  
AC9  
RESERVED_27  
RESERVED_28  
VSS_148  
VDD_IO_16  
VDD_IO_17  
VDD_A_1  
VDD_A_2  
VDD_A_3  
VDD_A_4  
AC10 VDD_A_5  
AC11 VDD_A_6  
AD23 VDD_IODDR_11  
AD24 NO CONNECT  
AD25 NO CONNECT  
AD26 NO CONNECT  
AC12 VDD_A_7  
AC13 VDD_A_8  
AC14 VDD_A_9  
AC15 VDD_A_10  
AC16 VDD_A_11  
AC17 VDD_A_12  
AC18 VDD_A_13  
AC19 VDD_A_14  
AC20 VDD_A_15  
AC21 VDD_A_16  
AC22 VDD_IODDR_10  
AC23 NO CONNECT  
AC24 NO CONNECT  
AC25 NO CONNECT  
AC26 NO CONNECT  
AD1 RESERVED_25  
AD2 RESERVED_26  
AD3 RCVRD_CLK1  
AD4 VDD_IO_18  
AD5 VSS_149  
AE1  
AE2  
AE3  
AE4  
AE5  
AE6  
AE7  
AE8  
AE9  
VSS_151  
RCVRD_CLK0  
VDD_IO_19  
VSS_163  
VSS_152  
SERDES7_RXP  
SERDES6_RXP  
RESERVED_22  
SERDES_E3_RXP  
AE10 SERDES5_RXP  
AE11 SERDES4_RXP  
AE12 VSS_153  
AE13 SERDES_E2_RXP  
AE14 SERDES3_RXP  
AE15 SERDES2_RXP  
AE16 VSS_154  
AE17 SERDES_E1_RXP  
AE18 SERDES1_RXP  
AE19 SERDES0_RXP  
AE20 VSS_155  
AD6 VDD_VS_1  
AD7 VDD_VS_2  
AD8 VDD_VS_3  
AD9 VDD_VS_4  
AD10 VDD_VS_5  
AE21 SERDES_E0_RXP  
AE22 SERDES_REXT_0  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
109  
Pins by number (continued)  
AE23 VSS_156  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
C1  
P6_D1N  
AE24 VDD_IODDR_12  
AE25 NO CONNECT  
AE26 VSS_157  
P6_D2N  
P6_D3N  
P5_D0N  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
VDD_IO_20  
MDIO  
P5_D1N  
P5_D2N  
MDC  
P5_D3N  
VSS_158  
P4_D0N  
SERDES7_RXN  
SERDES6_RXN  
RESERVED_23  
SERDES_E3_RXN  
P4_D1N  
P4_D2N  
P4_D3N  
P3_D0N  
AF10 SERDES5_RXN  
AF11 SERDES4_RXN  
AF12 VSS_159  
P3_D1N  
P3_D2N  
P3_D3N  
AF13 SERDES_E2_RXN  
AF14 SERDES3_RXN  
AF15 SERDES2_RXN  
AF16 VSS_160  
VSS_2  
P9_D3P  
C2  
P9_D3N  
C3  
COMA_MODE  
NRESET  
AF17 SERDES_E1_RXN  
AF18 SERDES1_RXN  
AF19 SERDES0_RXN  
AF20 VSS_161  
C4  
C5  
NO CONNECT  
VSS  
C6  
C7  
PHYADD3  
PHYADD4  
RESERVED_3  
RESERVED_29  
RESERVED_4  
REFCLK_SEL0  
REFCLK_SEL1  
REFCLK_SEL2  
RESERVED_8  
RESERVED_7  
RESERVED_6  
RESERVED_5  
RESERVED_201  
RESERVED_202  
RESERVED_203  
THERMDC_VSS  
AF21 SERDES_E0_RXN  
AF22 SERDES_REXT_1  
AF23 VSS_162  
C8  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
AF24 VDD_IODDR_14  
AF25 VDD_IODDR_13  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
VSS_1  
P8_D0N  
P8_D1N  
P8_D2N  
P8_D3N  
P7_D0N  
P7_D1N  
P7_D2N  
P7_D3N  
P6_D0N  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
110  
Pins by number (continued)  
C23  
C24  
C25  
C26  
D1  
THERMDA  
E9  
VDD_AL_1  
VDD_AL_2  
VDD_AH_10  
VDD_AH_11  
REF_REXT_1  
REF_FILT_1  
VDD_AH_12  
VDD_AH_13  
VDD_AL_3  
VDD_AL_4  
VDD_AH_14  
VDD_IO_3  
RESERVED_204  
P2_D0N  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
F1  
P2_D0P  
P9_D2P  
D2  
P9_D2N  
D3  
RESERVED_205  
VDD_AH_1  
VDD_AH_2  
RESERVED_206  
RESERVED_207  
RESERVED_208  
RESERVED_209  
RESERVED_248  
VDD_AH_4  
RESERVED_211  
RESERVED_13  
RESERVED_12  
RESERVED_212  
VDD_AH_5  
JTAG_CLK  
D4  
D5  
D6  
D7  
D8  
D9  
VDD_IO_4  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
E1  
VDD_AH_15  
VDD_AH_16  
RESERVED_217  
P2_D2N  
P2_D2P  
P9_D0P  
F2  
P9_D0N  
F3  
RESERVED_218  
VDD_AH_17  
VDD_AH_18  
VDD_IO_5  
JTAG_DI  
F4  
JTAG_DO  
F5  
JTAG_TMS  
F6  
JTAG_TRST  
RESERVED_213  
RESERVED_214  
RESERVED_215  
P2_D1N  
F7  
VDD_AH_3  
VDD_AH_19  
VDD_AL_5  
VDD_AL_6  
VDD_AH_20  
VDD_AH_21  
RESERVED_219  
RESERVED_220  
VDD_AH_22  
VDD_AH_23  
VDD_AL_7  
VDD_AL_8  
VDD_AH_24  
VDD_AH_6  
F8  
F9  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
P2_D1P  
P9_D1P  
E2  
P9_D1N  
E3  
RESERVED_216  
VDD_AH_7  
VDD_AH_8  
VDD_IO_1  
E4  
E5  
E6  
E7  
VDD_IO_2  
E8  
VDD_AH_9  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
111  
Pins by number (continued)  
F21  
F22  
F23  
F24  
F25  
F26  
G1  
VDD_IO_6  
H7  
VDD_12  
VDD_AH_25  
VDD_AH_26  
RESERVED_221  
P2_D3N  
H8  
VDD_13  
H9  
VDD_14  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
J1  
VDD_15  
VDD_16  
P2_D3P  
VDD_17  
P10_D3P  
P10_D3N  
VSS_3  
RESERVED_246  
RESERVED_225  
VDD_18  
G2  
G3  
G4  
RESERVED_15  
VSS_4  
VDD_19  
G5  
VDD_20  
G6  
VDD_1  
VDD_21  
G7  
VDD_2  
VDD_22  
G8  
VDD_3  
VDD_23  
G9  
VDD_AL_9  
VDD_AL_10  
VDD_4  
VDD_24  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
G25  
G26  
H1  
VSS_9  
RESERVED_11  
VSS_10  
VDD_5  
RESERVED_247  
RESERVED_223  
VDD_6  
P1_D1N  
P1_D1P  
P10_D1P  
VDD_7  
J2  
P10_D1N  
VDD_AL_11  
VDD_AL_12  
VDD_8  
J3  
VDD_AH_27  
VDD_AH_28  
VDD_AL_13  
VDD_AL_14  
VDD_AL_15  
RESERVED_240  
RESERVED_241  
RESERVED_242  
RESERVED_243  
RESERVED_244  
RESERVED_245  
RESERVED_232  
RESERVED_233  
RESERVED_234  
RESERVED_235  
RESERVED_236  
J4  
J5  
VDD_9  
J6  
VDD_10  
J7  
VSS_5  
J8  
RESERVED_10  
VSS_6  
J9  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
P1_D0N  
P1_D0P  
P10_D2P  
P10_D2N  
VSS_7  
H2  
H3  
H4  
RESERVED_14  
VSS_8  
H5  
H6  
VDD_11  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
112  
Pins by number (continued)  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
K1  
RESERVED_237  
L5  
VSS_26  
VDD_25  
VDD_26  
VSS_27  
VSS_28  
VSS_29  
VSS_30  
VSS_31  
VSS_32  
VSS_33  
VSS_34  
VSS_35  
VSS_36  
VSS_37  
VSS_38  
VDD_27  
VDD_28  
VSS_39  
REF_FILT_0  
VSS_40  
P0_D0N  
P0_D0P  
VDD_AL_16  
VDD_AL_17  
VDD_AL_18  
VDD_AH_29  
VDD_AH_30  
P1_D2N  
L6  
L7  
L8  
L9  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L25  
L26  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
P1_D2P  
P10_D0P  
P10_D0N  
VSS_11  
K2  
K3  
K4  
REF_REXT_2  
VDD_AL_19  
VDD_AL_20  
VDD_AL_21  
VSS_12  
K5  
K6  
K7  
K8  
K9  
VSS_13  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
K25  
K26  
L1  
VSS_14  
VSS_15  
VSS_16  
VSS_17  
VSS_18  
VSS_19  
P11_D2P  
P11_D2N  
VDD_AH_31  
VDD_AH_32  
VDD_AH_33  
VDD_29  
VDD_30  
VSS_41  
VSS_42  
VSS_20  
VSS_21  
VSS_22  
VSS_23  
VDD_AL_22  
VDD_AL_23  
VDD_AL_24  
REF_REXT_0  
VSS_24  
M10 VSS_43  
M11 VSS_44  
M12 VSS_45  
M13 VSS_46  
M14 VSS_47  
M15 VSS_48  
M16 VSS_49  
P1_D3N  
P1_D3P  
P11_D3P  
P11_D3N  
VSS_25  
L2  
L3  
L4  
REF_FILT_2  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
113  
Pins by number (continued)  
M17 VSS_50  
M18 VSS_51  
M19 VSS_52  
M20 VDD_31  
M21 VDD_32  
P3  
VSS_71  
P4  
RESERVED_24  
VDD_IO_7  
VDD_37  
P5  
P6  
P7  
VDD_38  
M22 VDD_AH_34  
M23 VDD_AH_35  
M24 VDD_AH_36  
M25 P0_D1N  
P8  
VSS_72  
P9  
VSS_73  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
R1  
VSS_74  
VSS_75  
M26 P0_D1P  
VSS_76  
N1  
P11_D1P  
P11_D1N  
VSS_53  
VSS_54  
VSS_55  
VDD_33  
VDD_34  
VSS_56  
VSS_57  
VSS_58  
VSS_59  
VSS_60  
VSS_61  
VSS_62  
VSS_63  
VSS_64  
VSS_65  
VSS_66  
VSS_67  
VDD_35  
VDD_36  
VSS_68  
VSS_69  
VSS_70  
P0_D2N  
P0_D2P  
P11_D0P  
P11_D0N  
VSS_77  
N2  
VSS_78  
N3  
VSS_79  
N4  
VSS_80  
N5  
VSS_81  
N6  
VSS_82  
N7  
VSS_83  
N8  
VDD_39  
N9  
VDD_40  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
N25  
N26  
P1  
VDD_IODDR_1  
VSS_84  
VSS_85  
P0_D3N  
P0_D3P  
FAST_LINK_STATUS  
MDINT  
R2  
R3  
SFP3_SD / GPIO_29  
PHY11_LED0  
VDD_IO_8  
VDD_41  
R4  
R5  
R6  
R7  
VDD_42  
R8  
VSS_86  
R9  
VSS_87  
R10  
R11  
R12  
R13  
R14  
VSS_88  
VSS_89  
VSS_90  
VSS_91  
P2  
VSS_92  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
114  
Pins by number (continued)  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
T1  
VSS_93  
VSS_94  
VSS_95  
VSS_96  
VSS_97  
VDD_43  
VDD_44  
U1  
PHY6_LED0  
PHY5_LED0  
PHY4_LED0  
PHY3_LED0  
VDD_IO_10  
VSS_110  
U2  
U3  
U4  
U5  
U6  
U7  
VSS_111  
VDD_IODDR_2  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
PHY10_LED0  
PHY9_LED0  
PHY8_LED0  
PHY7_LED0  
VDD_IO_9  
VDD_45  
U8  
VSS_112  
U9  
VSS_113  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
U23  
U24  
U25  
U26  
V1  
VSS_114  
VSS_115  
VSS_116  
VSS_117  
T2  
VSS_118  
T3  
VSS_119  
T4  
VSS_120  
T5  
VSS_121  
T6  
VSS_122  
T7  
VDD_46  
VSS_123  
T8  
VSS_98  
VSS_124  
T9  
VSS_99  
VSS_125  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
T25  
T26  
VSS_100  
VDD_IODDR_4  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
PHY2_LED0  
PHY1_LED0  
PHY0_LED0 / BASIC_SLED_DATA  
PHY11_LED1 / GPIO_16  
VDD_IO_11  
VDD_49  
VSS_101  
VSS_102  
VSS_103  
VSS_104  
VSS_105  
VSS_106  
V2  
VSS_107  
V3  
VSS_108  
V4  
VSS_109  
V5  
VDD_47  
V6  
VDD_48  
V7  
VDD_50  
VDD_IODDR_3  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
V8  
VDD_51  
V9  
VDD_52  
V10  
V11  
V12  
VDD_53  
VDD_54  
VDD_55  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
115  
Pins by number (continued)  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
V23  
V24  
V25  
V26  
W1  
VDD_56  
VDD_57  
VDD_58  
VDD_59  
VDD_60  
VDD_61  
VDD_62  
VDD_63  
VDD_64  
W25 NO CONNECT  
W26 NO CONNECT  
PHY6_LED1 / SFP_SERIALCLK2  
Y1  
PHY5_LED1 / SFP_SERIALCLK3  
PHY4_LED1 / CLK_SQUELCH_IN  
PHY3_LED1 / ESLED1_PULSE  
VDD_IO_13  
Y2  
Y3  
Y4  
Y5  
Y6  
SERDES7_TXP  
SERDES6_TXP  
REFCLK_P  
Y7  
VDD_IODDR_5  
NO CONNECT  
Y8  
Y9  
SERDES_E3_TXP  
SERDES5_TXP  
SERDES4_TXP  
VSS_126  
NO CONNECT  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
NO CONNECT  
NO CONNECT  
PHY10_LED1 / GPIO_15  
PHY9_LED1 / GPIO_14  
PHY8_LED1 / GPIO_13  
PHY7_LED1 / SFP_SERIALCLK1  
VDD_IO_12  
SERDES_E2_TXP  
SERDES3_TXP  
SERDES2_TXP  
VSS_127  
W2  
W3  
W4  
W5  
SERDES_E1_TXP  
SERDES1_TXP  
SERDES0_TXP  
VSS_128  
W6  
VDD_65  
W7  
VDD_66  
W8  
VDD_67  
W9  
VDD_68  
SERDES_E0_TXP  
VDD_IODDR_7  
NO CONNECT  
W10 VDD_69  
W11 VDD_70  
W12 VDD_71  
W13 VDD_72  
W14 VDD_73  
W15 VDD_74  
W16 VDD_75  
W17 VDD_76  
W18 VDD_77  
W19 VDD_78  
W20 VDD_79  
W21 VDD_80  
W22 VDD_IODDR_6  
W23 NO CONNECT  
W24 NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
116  
12-Port 10/100/1000BASE-T PHY with QSGMII MAC  
7.4  
Pins by Name  
This section provides an alphabetical list of the VSC8512-02 pins.  
NO CONNECT  
NO CONNECT  
U24  
U25  
U26  
V23  
V24  
V25  
V26  
W23  
W24  
W25  
W26  
Y23  
Y24  
Y25  
Y26  
C4  
NO CONNECT  
C3  
COMA_MODE  
NO CONNECT  
FAST_LINK_STATUS  
JTAG_CLK  
R1  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NRESET  
D17  
D18  
D19  
D20  
D21  
AF4  
JTAG_DI  
JTAG_DO  
JTAG_TMS  
JTAG_TRST  
MDC  
MDINT  
R2  
MDIO  
AF3  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
AA23  
AA24  
AA25  
AA26  
AB23  
AB24  
AB25  
AB26  
AC23  
AC24  
AC25  
AC26  
AD24  
AD25  
AD26  
AE25  
C5  
P0_D0N  
L25  
L26  
M25  
M26  
N25  
N26  
P25  
P26  
G25  
G26  
H25  
H26  
J25  
J26  
K25  
K26  
K2  
P0_D0P  
P0_D1N  
P0_D1P  
P0_D2N  
P0_D2P  
P0_D3N  
P0_D3P  
P1_D0N  
P1_D0P  
P1_D1N  
P1_D1P  
P1_D2N  
P1_D2P  
R23  
P1_D3N  
R24  
P1_D3P  
R25  
P10_D0N  
P10_D0P  
R26  
K1  
T23  
P10_D1N  
P10_D1P  
J2  
T24  
J1  
T25  
P10_D2N  
P10_D2P  
H2  
T26  
H1  
U23  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
117  
Pins by name (continued)  
P10_D3N  
P10_D3P  
P11_D0N  
P11_D0P  
P11_D1N  
P11_D1P  
P11_D2N  
P11_D2P  
P11_D3N  
P11_D3P  
P2_D0N  
P2_D0P  
P2_D1N  
P2_D1P  
P2_D2N  
P2_D2P  
P2_D3N  
P2_D3P  
P3_D0N  
P3_D0P  
P3_D1N  
P3_D1P  
P3_D2N  
P3_D2P  
P3_D3N  
P3_D3P  
P4_D0N  
P4_D0P  
P4_D1N  
P4_D1P  
P4_D2N  
P4_D2P  
P4_D3N  
P4_D3P  
P5_D0N  
P5_D0P  
P5_D1N  
P5_D1P  
G2  
P5_D2N  
B16  
A16  
B17  
A17  
B10  
A10  
B11  
A11  
B12  
A12  
B13  
A13  
B6  
G1  
P5_D2P  
P2  
P5_D3N  
P1  
P5_D3P  
N2  
P6_D0N  
N1  
P6_D0P  
M2  
P6_D1N  
M1  
P6_D1P  
L2  
P6_D2N  
L1  
P6_D2P  
C25  
C26  
D25  
D26  
E25  
E26  
F25  
F26  
B22  
A22  
B23  
A23  
B24  
A24  
B25  
A25  
B18  
A18  
B19  
A19  
B20  
A20  
B21  
A21  
B14  
A14  
B15  
A15  
P6_D3N  
P6_D3P  
P7_D0N  
P7_D0P  
A6  
P7_D1N  
B7  
P7_D1P  
A7  
P7_D2N  
B8  
P7_D2P  
A8  
P7_D3N  
B9  
P7_D3P  
A9  
P8_D0N  
B2  
P8_D0P  
A2  
P8_D1N  
B3  
P8_D1P  
A3  
P8_D2N  
B4  
P8_D2P  
A4  
P8_D3N  
B5  
P8_D3P  
A5  
P9_D0N  
F2  
P9_D0P  
F1  
P9_D1N  
E2  
P9_D1P  
E1  
P9_D2N  
D2  
D1  
C2  
P9_D2P  
P9_D3N  
P9_D3P  
C1  
PHY0_LED0 / BASIC_SLED_DATA  
PHY0_LED1 / ESLED1_CLK / BASIC_SLED_CLK  
V3  
AA3  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
118  
Pins by name (continued)  
PHY1_LED0  
V2  
RESERVED_4  
C11  
C18  
C17  
C16  
C15  
G23  
H23  
D14  
D13  
H4  
PHY1_LED1 / ESLED1_LD  
PHY10_LED0  
AA2  
T1  
RESERVED_5  
RESERVED_6  
PHY10_LED1 / GPIO_15  
PHY11_LED0  
W1  
R4  
RESERVED_7  
RESERVED_8  
PHY11_LED1 / GPIO_16  
PHY2_LED0  
V4  
RESERVED_10  
RESERVED_11  
RESERVED_12  
RESERVED_13  
RESERVED_14  
RESERVED_15  
RESERVED_22  
RESERVED_23  
RESERVED_24  
RESERVED_25  
RESERVED_26  
RESERVED_27  
RESERVED_28  
RESERVED_29  
RESERVED_211  
RESERVED_212  
RESERVED_213  
RESERVED_214  
RESERVED_215  
RESERVED_216  
RESERVED_217  
RESERVED_218  
RESERVED_219  
RESERVED_220  
RESERVED_221  
RESERVED_223  
RESERVED_225  
RESERVED_232  
RESERVED_233  
RESERVED_234  
RESERVED_235  
RESERVED_236  
RESERVED_237  
V1  
PHY2_LED1 / ESLED1_DO  
PHY3_LED0  
AA1  
U4  
PHY3_LED1 / ESLED1_PULSE  
PHY4_LED0  
Y4  
U3  
G4  
PHY4_LED1 / CLK_SQUELCH_IN  
PHY5_LED0  
Y3  
AE8  
AF8  
P4  
U2  
PHY5_LED1 / SFP_SERIALCLK3  
PHY6_LED0  
Y2  
U1  
AD1  
AD2  
AC1  
AC2  
C10  
D12  
D15  
D22  
D23  
D24  
E3  
PHY6_LED1 / SFP_SERIALCLK2  
PHY7_LED0  
Y1  
T4  
PHY7_LED1 / SFP_SERIALCLK1  
PHY8_LED0  
W4  
T3  
PHY8_LED1 / GPIO_13  
PHY9_LED0  
W3  
T2  
PHY9_LED1 / GPIO_14  
PHYADD3  
W2  
C7  
PHYADD4  
C8  
RCVRD_CLK0  
AE2  
AD3  
L23  
E14  
L4  
RCVRD_CLK1  
E24  
F3  
REF_FILT_0  
REF_FILT_1  
F13  
F14  
F24  
G14  
H14  
J14  
J15  
J16  
J17  
J18  
J19  
REF_FILT_2  
REF_REXT_0  
K23  
E13  
K4  
REF_REXT_1  
REF_REXT_2  
REFCLK_N  
AA8  
Y8  
REFCLK_P  
REFCLK_SEL0  
C12  
C13  
C14  
C9  
REFCLK_SEL1  
REFCLK_SEL2  
RESERVED_3  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
119  
Pins by name (continued)  
RESERVED_240  
RESERVED_241  
RESERVED_242  
RESERVED_243  
RESERVED_244  
RESERVED_245  
RESERVED_246  
RESERVED_247  
RESERVED_248  
RESERVED_201  
RESERVED_202  
RESERVED_203  
RESERVED_204  
RESERVED_205  
RESERVED_206  
RESERVED_207  
RESERVED_208  
RESERVED_209  
SERDES_E0_RXN  
SERDES_E0_RXP  
SERDES_E0_TXN  
SERDES_E0_TXP  
SERDES_E1_RXN  
SERDES_E1_RXP  
SERDES_E1_TXN  
SERDES_E1_TXP  
SERDES_E2_RXN  
SERDES_E2_RXP  
SERDES_E2_TXN  
SERDES_E2_TXP  
SERDES_E3_RXN  
SERDES_E3_RXP  
SERDES_E3_TXN  
SERDES_E3_TXP  
SERDES_REXT_0  
SERDES_REXT_1  
SERDES0_RXN  
J8  
SERDES0_TXN  
AA19  
Y19  
J9  
SERDES0_TXP  
J10  
SERDES1_RXN  
SERDES1_RXP  
AF18  
AE18  
AA18  
Y18  
J11  
J12  
SERDES1_TXN  
J13  
SERDES1_TXP  
H13  
G13  
D10  
C19  
C20  
C21  
C24  
D3  
SERDES2_RXN  
SERDES2_RXP  
AF15  
AE15  
AA15  
Y15  
SERDES2_TXN  
SERDES2_TXP  
SERDES3_RXN  
SERDES3_RXP  
AF14  
AE14  
AA14  
Y14  
SERDES3_TXN  
SERDES3_TXP  
D6  
SERDES4_RXN  
SERDES4_RXP  
AF11  
AE11  
AA11  
Y11  
D7  
D8  
SERDES4_TXN  
D9  
SERDES4_TXP  
AF21  
AE21  
AA21  
Y21  
AF17  
AE17  
AA17  
Y17  
AF13  
AE13  
AA13  
Y13  
AF9  
AE9  
AA9  
Y9  
SERDES5_RXN  
SERDES5_RXP  
AF10  
AE10  
AA10  
Y10  
SERDES5_TXN  
SERDES5_TXP  
SERDES6_RXN  
SERDES6_RXP  
AF7  
AE7  
SERDES6_TXN  
AA7  
Y7  
SERDES6_TXP  
SERDES7_RXN  
SERDES7_RXP  
AF6  
AE6  
SERDES7_TXN  
AA6  
Y6  
SERDES7_TXP  
SFP_SERIALCLK0 / ESLED0_CLK  
SFP_SERIALDATA / ESLED0_LD  
SFP0_SD / ESLED0_DO / GPIO_2  
SFP1_SD / ESLED0_PULSE / GPIO_3  
SFP2_SD / GPIO_4  
SFP3_SD / GPIO_29  
THERMDA  
AB4  
AB3  
AB2  
AB1  
AA4  
R3  
AE22  
AF22  
AF19  
AE19  
C23  
C22  
SERDES0_RXP  
THERMDC_VSS  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
120  
Pins by name (continued)  
VDD_1  
G6  
VDD_39  
VDD_40  
VDD_41  
VDD_42  
VDD_43  
VDD_44  
VDD_45  
VDD_46  
VDD_47  
VDD_48  
VDD_49  
VDD_50  
VDD_51  
VDD_52  
VDD_53  
VDD_54  
VDD_55  
VDD_56  
VDD_57  
VDD_58  
VDD_59  
VDD_60  
VDD_61  
VDD_62  
VDD_63  
VDD_64  
VDD_65  
VDD_66  
VDD_67  
VDD_68  
VDD_69  
VDD_70  
VDD_71  
VDD_72  
VDD_73  
VDD_74  
VDD_75  
VDD_76  
P20  
P21  
R6  
VDD_2  
G7  
VDD_3  
G8  
VDD_4  
G11  
G12  
G15  
G16  
G19  
G20  
G21  
H6  
R7  
VDD_5  
R20  
R21  
T6  
VDD_6  
VDD_7  
VDD_8  
T7  
VDD_9  
T20  
T21  
V6  
VDD_10  
VDD_11  
VDD_12  
VDD_13  
VDD_14  
VDD_15  
VDD_16  
VDD_17  
VDD_18  
VDD_19  
VDD_20  
VDD_21  
VDD_22  
VDD_23  
VDD_24  
VDD_25  
VDD_26  
VDD_27  
VDD_28  
VDD_29  
VDD_30  
VDD_31  
VDD_32  
VDD_33  
VDD_34  
VDD_35  
VDD_36  
VDD_37  
VDD_38  
H7  
V7  
H8  
V8  
H9  
V9  
H10  
H11  
H12  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
L6  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
W6  
L7  
L20  
L21  
M6  
W7  
W8  
M7  
W9  
M20  
M21  
N6  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
N7  
N20  
N21  
P6  
P7  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
121  
Pins by name (continued)  
VDD_77  
W18  
W19  
W20  
W21  
AC6  
AC7  
AC8  
AC9  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
D4  
VDD_AH_19  
VDD_AH_20  
VDD_AH_21  
VDD_AH_22  
VDD_AH_23  
VDD_AH_24  
VDD_AH_25  
VDD_AH_26  
VDD_AH_27  
VDD_AH_28  
VDD_AH_29  
VDD_AH_30  
VDD_AH_31  
VDD_AH_32  
VDD_AH_33  
VDD_AH_34  
VDD_AH_35  
VDD_AH_36  
VDD_AL_1  
F8  
VDD_78  
F11  
F12  
F15  
F16  
F19  
F22  
F23  
J3  
VDD_79  
VDD_80  
VDD_A_1  
VDD_A_2  
VDD_A_3  
VDD_A_4  
VDD_A_5  
VDD_A_6  
J4  
VDD_A_7  
J23  
J24  
M3  
VDD_A_8  
VDD_A_9  
VDD_A_10  
VDD_A_11  
VDD_A_12  
VDD_A_13  
VDD_A_14  
VDD_A_15  
VDD_A_16  
VDD_AH_1  
VDD_AH_2  
VDD_AH_3  
VDD_AH_4  
VDD_AH_5  
VDD_AH_6  
VDD_AH_7  
VDD_AH_8  
VDD_AH_9  
VDD_AH_10  
VDD_AH_11  
VDD_AH_12  
VDD_AH_13  
VDD_AH_14  
VDD_AH_15  
VDD_AH_16  
VDD_AH_17  
VDD_AH_18  
M4  
M5  
M22  
M23  
M24  
E9  
VDD_AL_2  
E10  
E17  
E18  
F9  
VDD_AL_3  
D5  
VDD_AL_4  
F7  
VDD_AL_5  
D11  
D16  
F20  
VDD_AL_6  
F10  
F17  
F18  
G9  
VDD_AL_7  
VDD_AL_8  
E4  
VDD_AL_9  
E5  
VDD_AL_10  
VDD_AL_11  
VDD_AL_12  
VDD_AL_13  
VDD_AL_14  
VDD_AL_15  
VDD_AL_16  
VDD_AL_17  
VDD_AL_18  
VDD_AL_19  
VDD_AL_20  
G10  
G17  
G18  
J5  
E8  
E11  
E12  
E15  
E16  
E19  
E22  
E23  
F4  
J6  
J7  
J20  
J21  
J22  
K5  
F5  
K6  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
122  
Pins by name (continued)  
VDD_AL_21  
VDD_AL_22  
VDD_AL_23  
VDD_AL_24  
VDD_IO_1  
K7  
VDD_VS_1  
VDD_VS_2  
VDD_VS_3  
VDD_VS_4  
VDD_VS_5  
VDD_VS_6  
VDD_VS_7  
VDD_VS_8  
VDD_VS_9  
VDD_VS_10  
VDD_VS_11  
VDD_VS_12  
VDD_VS_13  
VDD_VS_14  
VDD_VS_15  
VDD_VS_16  
VSS  
AD6  
AD7  
AD8  
AD9  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
C6  
K20  
K21  
K22  
E6  
VDD_IO_2  
E7  
VDD_IO_3  
E20  
E21  
F6  
VDD_IO_4  
VDD_IO_5  
VDD_IO_6  
F21  
P5  
VDD_IO_7  
VDD_IO_8  
R5  
VDD_IO_9  
T5  
VDD_IO_10  
VDD_IO_11  
VDD_IO_12  
VDD_IO_13  
VDD_IO_14  
VDD_IO_15  
VDD_IO_16  
VDD_IO_17  
VDD_IO_18  
VDD_IO_19  
VDD_IO_20  
VDD_IODDR_1  
VDD_IODDR_2  
VDD_IODDR_3  
VDD_IODDR_4  
VDD_IODDR_5  
VDD_IODDR_6  
VDD_IODDR_7  
VDD_IODDR_8  
VDD_IODDR_9  
VDD_IODDR_10  
VDD_IODDR_11  
VDD_IODDR_12  
VDD_IODDR_13  
VDD_IODDR_14  
U5  
V5  
W5  
Y5  
AA5  
AB5  
AC4  
AC5  
AD4  
AE3  
AF2  
P22  
R22  
T22  
U22  
V22  
W22  
Y22  
AA22  
AB22  
AC22  
AD23  
AE24  
AF25  
AF24  
VSS_1  
B1  
VSS_2  
B26  
G3  
VSS_3  
VSS_4  
G5  
VSS_5  
G22  
G24  
H3  
VSS_6  
VSS_7  
VSS_8  
H5  
VSS_9  
H22  
H24  
K3  
VSS_10  
VSS_11  
VSS_12  
K8  
VSS_13  
K9  
VSS_14  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
VSS_15  
VSS_16  
VSS_17  
VSS_18  
VSS_19  
VSS_20  
VSS_21  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
123  
Pins by name (continued)  
VSS_22  
VSS_23  
VSS_24  
VSS_25  
VSS_26  
VSS_27  
VSS_28  
VSS_29  
VSS_30  
VSS_31  
VSS_32  
VSS_33  
VSS_34  
VSS_35  
VSS_36  
VSS_37  
VSS_38  
VSS_39  
VSS_40  
VSS_41  
VSS_42  
VSS_43  
VSS_44  
VSS_45  
VSS_46  
VSS_47  
VSS_48  
VSS_49  
VSS_50  
VSS_51  
VSS_52  
VSS_53  
VSS_54  
VSS_55  
VSS_56  
VSS_57  
VSS_58  
VSS_59  
K18  
K19  
K24  
L3  
VSS_60  
VSS_61  
VSS_62  
VSS_63  
VSS_64  
VSS_65  
VSS_66  
VSS_67  
VSS_68  
VSS_69  
VSS_70  
VSS_71  
VSS_72  
VSS_73  
VSS_74  
VSS_75  
VSS_76  
VSS_77  
VSS_78  
VSS_79  
VSS_80  
VSS_81  
VSS_82  
VSS_83  
VSS_84  
VSS_85  
VSS_86  
VSS_87  
VSS_88  
VSS_89  
VSS_90  
VSS_91  
VSS_92  
VSS_93  
VSS_94  
VSS_95  
VSS_96  
VSS_97  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N22  
N23  
N24  
P3  
L5  
L8  
L9  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L22  
L24  
M8  
P8  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P23  
P24  
R8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
N3  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
N4  
N5  
N8  
N9  
N10  
N11  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
124  
Pins by name (continued)  
VSS_98  
T8  
VSS_146  
VSS_147  
VSS_148  
VSS_149  
VSS_150  
VSS_151  
VSS_152  
VSS_153  
VSS_154  
VSS_155  
VSS_156  
VSS_157  
VSS_158  
VSS_159  
VSS_160  
VSS_161  
VSS_162  
VSS_163  
VSS_100  
VSS_101  
VSS_102  
VSS_103  
VSS_104  
VSS_105  
VSS_106  
VSS_107  
VSS_108  
VSS_109  
AA16  
AA20  
AC3  
AD5  
AD22  
AE1  
VSS_99  
T9  
VSS_110  
VSS_111  
VSS_112  
VSS_113  
VSS_114  
VSS_115  
VSS_116  
VSS_117  
VSS_118  
VSS_119  
VSS_120  
VSS_121  
VSS_122  
VSS_123  
VSS_124  
VSS_125  
VSS_126  
VSS_127  
VSS_128  
VSS_129  
VSS_130  
VSS_131  
VSS_132  
VSS_133  
VSS_134  
VSS_135  
VSS_136  
VSS_137  
VSS_138  
VSS_139  
VSS_140  
VSS_141  
VSS_142  
VSS_143  
VSS_144  
VSS_145  
U6  
U7  
U8  
U9  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
Y12  
AE5  
AE12  
AE16  
AE20  
AE23  
AE26  
AF5  
AF12  
AF16  
AF20  
AF23  
AE4  
T10  
Y16  
T11  
Y20  
T12  
AB6  
AB7  
AB8  
AB9  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AA12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
125  
Package Information  
8
Package Information  
VSC8512XJG-02 and VSC8512XJG-03 are packaged in a lead-free (Pb-free), 672-pin, thermally  
enhanced, plastic ball grid array (BGA) with a 27 mm × 27 mm body size, 1 mm pin pitch, and 2.44 mm  
maximum height.  
Lead-free products from Microsemi comply with the temperatures and profiles defined in the joint IPC  
and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard.  
This section provides the package drawing, thermal specifications, and moisture sensitivity rating for the  
device.  
8.1  
Package Drawing  
The following illustration shows the package drawing for the device. The drawing contains two top views,  
a bottom view, a side view, a detail view, dimensions, tolerances, and notes. The top views reflect one of  
two packages customers can expect to receive.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
126  
Package Information  
Figure 40 • Package Drawing  
Top View 1  
Bottom View  
Pin A1 corner  
Pin A1 corner  
Ø 1.00 (3×) REF  
1
2
3
4
5
6
7
8
9 1012121314151617181920212223242526  
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
A
B
A
B
C
C
D
D
E
F
E
F
e
G
G
H
H
J
J
K
K
L
L
M
N
M
N
P
P
R
R
T
T
U
U
V
V
W
Y
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
AA  
AB  
AC  
AD  
AE  
AF  
e
4.00 Ref,  
45° (4×)  
Y
E1  
E
Y
Ø 19.00 – 20.00  
24.00  
X
X
0.20 (4×)  
Top View 2  
Side View  
Pin A1 corner  
1.17 Ref  
30°  
Detail A  
R0.25 Typ  
1
2
3
4
5
6
7
8
9 1012121314151617181920212223242526  
A
B
C
D
E
F
0.56 Ref  
2.  
3.  
Ø b  
G
H
J
K
L
M
N
Seating plane  
Ø 0.10 M  
Ø 0.25 M  
Z
Z
X
Y
P
R
T
U
V
W
Y
Detail A  
AA  
AB  
AC  
AD  
AE  
AF  
0.35 Z  
0.20 Z  
0.25 C  
1.65 Ref,  
45° (4×)  
Y
Ø 2.5  
Ø 19.80  
25.70  
Z
A1  
A
X
Dimensions and Tolerances  
Reference Minimum Nominal Maximum  
Notes  
2.44  
0.60  
A
A1  
D
2.10  
0.40  
2.23  
0.50  
1. All dimensions and tolerances are in millimeters (mm).  
2. Primary datum Z and seating plane are defined by the spherical  
crowns of the solder balls.  
27.00  
27.00  
25.00  
25.00  
1.00  
E
3. Dimension is measured at the maximum solder ball diameter,  
parallel to primary datum C.  
D1  
E1  
e
4. Radial true position is represented by typical values.  
5. Top view 1 and top view 2 reflect one of two packages customers  
can expect to receive.  
3.  
0.70  
b
0.50  
0.60  
8.2  
Thermal Specifications  
Thermal specifications for this device are based on the JEDEC JESD51 family of documents. These  
documents are available on the JEDEC Web site at www.jedec.org. The thermal specifications are  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
127  
Package Information  
modeled using a four-layer test board with two signal layers, a power plane, and a ground plane (2s2p  
PCB). For more information about the thermal measurement method used for this device, see the  
JESD51-1 standard.  
Table 135 • Thermal Resistances  
Symbol  
θJCtop  
θJB  
°C/W  
3.27  
6.03  
12.14  
9.42  
8
Parameter  
Die junction to package case top  
Die junction to printed circuit board  
Die junction to ambient  
θJA  
θ
JMA at 1 m/s  
JMA at 2 m/s  
Die junction to moving air measured at an air speed of 1 m/s  
Die junction to moving air measured at an air speed of 2 m/s  
θ
To achieve results similar to the modeled thermal measurements, the guidelines for board design  
described in the JESD51 family of publications must be applied. For information about applications using  
BGA packages, see the following:  
JESD51-2A, Integrated Circuits Thermal Test Method Environmental Conditions, Natural Convection  
(Still Air)  
JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions, Forced Convection  
(Moving Air)  
JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions, Junction-to-Board  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
8.3  
Moisture Sensitivity  
This device is rated moisture sensitivity level 4 as specified in the joint IPC and JEDEC standard  
IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
128  
Design Considerations  
9
Design Considerations  
This section provides information about the design considerations for the VSC8512-02 device.  
9.1  
10BASE-T mode unable to re-establish link  
10BASE-T mode is unable to re-establish link with the following devices if the link drops while sending  
data: SparX-III™ and Caracal™ family of switches, VSC8512-02, VSC8522-02, VSC8522-12, VSC8504,  
VSC8552, VSC8572, and VSC8574. No issue is observed for other link partner devices. The probability  
of this error occurring is low except in a test environment.  
The workaround is to contact Microsemi for the current API software release.  
This item was previously published in the VSC8512-02 Errata revision 1.0 as EA100054.  
9.2  
Link status for 100BASE-FX operation  
SerDes media link status bit in register 24E3, bit 2 only reflects the status when the media type is  
1000BASE-X. This bit is always 0 when the media type is 100BASE-FX.  
The workaround is to verify that register 28, bits 1:0 media operating mode status is 10 for fiber media,  
register 28, bits 4:3 speed status is 01 for 100BASE-FX, and register 16, bit 12 link status is 1 for  
100BASE-FX mode.  
This item was previously published in the VSC8512-02 Errata revision 1.0 as EA100055.  
9.3  
9.4  
Software script for link performance  
Software script is required for improved link performance. PHY ports may exhibit suboptimal  
performance. Contact Microsemi for a script to be applied during system initialization.  
This item was previously published in the VSC8512-02 Errata revision 1.0 as EA100034.  
10BASE-T signal amplitude  
10BASE-T signal amplitude can be lower than the minimum specified in IEEE 802.3 paragraph  
14.3.1.2.1 (2.2 V) at low supply voltages. This issue is not estimated to present any system level impact.  
Performance is not impaired with cables up to 130 m with various link partners.  
This item was previously published in the VSC8512-02 Errata revision 1.0 as EA100036.  
9.5  
9.6  
Clause 45 register 7.60  
Clause 45, register 7.60, bit 10 reads back as a logic 1. This is a reserved bit in the standard and should  
be ignored by software.  
This item was previously published in the VSC8512-02 Errata revision 1.0 as EA100037.  
Clause 45 register 3.22  
Clause 45, register 3.22 is cleared upon read only when extended page access register (register 31) is  
set to 0. This register cannot be read when page access register is set to a value other than 0.  
The workaround is to set the extended page access register to 0 before accessing clause 45, register  
3.22.  
This item was previously published in the VSC8512-02 Errata revision 1.0 as EA100038.  
9.7  
Clause 45 register 3.1  
Clause 45, register 3.1, Rx and Tx LPI received bits are cleared upon read only when extended page  
access register (register 31) is set to 0.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
129  
Design Considerations  
The workaround is to set the extended page access register to 0 before accessing clause 45, register  
3.1.  
This item was previously published in the VSC8512-02 Errata revision 1.0 as EA100039.  
9.8  
Clause 45 register address post-increment  
Clause 45 register address post-increment only works when reading registers and only when the  
extended page access register (register 31) is set to 0. The estimated impact is low, as there are very few  
Clause 45 registers in a Gigabit PHY, and they can be addressed individually.  
The workaround is to access Clause 45 registers individually.  
This item was previously published in the VSC8512-02 Errata revision 1.0 as EA100040.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
130  
Ordering Information  
10 Ordering Information  
The VSC8512 device is offered with two operating temperature ranges. The range for VSC8512-02 is  
0 °C ambient to 125 °C junction, and the range for VSC8512-03 is  
–40 °C ambient to 125 °C junction.  
VSC8512XJG-02 and VSC8512XJG-03 are packaged in a lead-free (Pb-free), 672-pin, thermally  
enhanced, plastic ball grid array (BGA) with a 27 mm × 27 mm body size, 1 mm pin pitch, and 2.44 mm  
maximum height.  
Lead-free products from Microsemi comply with the temperatures and profiles defined in the joint IPC  
and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard.  
The following table lists the ordering information for the device.  
Table 136 • Ordering Information  
Part Order Number Description  
VSC8512XJG-02  
Lead-free, 672-pin, thermally enhanced, plastic BGA with a  
27 mm × 27 mm body size, 1 mm pin pitch, and 2.44 mm maximum height.  
The operating temperature is 0 °C ambient to 125 °C junction.  
VSC8512XJG-03  
Lead-free, 672-pin, thermally enhanced, plastic BGA with a  
27 mm × 27 mm body size, 1 mm pin pitch, and 2.44 mm maximum height.  
The operating temperature is –40 °C ambient to 125 °C junction.  
VMDS-10396 VSC8512-02 Datasheet Revision 4.3  
131  

相关型号:

VSC8522XJQ-02

Ethernet Transceiver
MICROCHIP

VSC8522XJQ-04

Ethernet Transceiver
MICROCHIP

VSC852TP

Digital Time Switch, PBGA440, 35 X 35 MM, BGA-440
VITESSE

VSC852TV

Digital Time Switch, PBGA440, 35 X 35 MM, TBGA-440
VITESSE

VSC8538XHJ

Octal Port 10/100/1000BASE-T PHY
VITESSE

VSC8552XKS-01

Ethernet Transceiver
MICROCHIP

VSC8552XKS-02

Ethernet Transceiver
MICROCHIP

VSC8552XKS-04

Ethernet Transceiver
MICROCHIP

VSC8552XKS-05

Ethernet Transceiver
MICROCHIP

VSC8558

Octal Port 10/100/1000BASE-T and 1000BASE-X PHY
VITESSE

VSC8558HJ

Ethernet Transceiver, 8-Trnsvr, PBGA444,
MICROSEMI

VSC8558XHJ

Ethernet Transceiver, 8-Trnsvr, PBGA444,
MICROSEMI