ZL40264LDF1 [MICROCHIP]

Clock Driver;
ZL40264LDF1
型号: ZL40264LDF1
厂家: MICROCHIP    MICROCHIP
描述:

Clock Driver

驱动 逻辑集成电路
文件: 总26页 (文件大小:916K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
ZL40264  
Four output ultra-low additive phase noise PCIe Gen 1 to 5,  
and UPI/QPI fanout buffer  
Ordering Information  
Features  
ZL40264LDG1  
ZL40264LDF1  
20 pin QFN  
20 pin QFN  
Trays  
Tape and Reel  
One differential input which accepts any  
differential format.  
Package size: 4 x 4 mm  
Four differential HCSL outputs  
-40 C to +85 C  
Ultra-low additive jitter: 32fs (in 12kHz to 20MHz  
integration band at 400MHz clock frequency)  
Applications  
Supports clock frequencies from 0 to 400MHz  
PCI Express generation 1/2/3/4/5 clock distribution  
UPI/QPI clock distribution  
Supports 2.5V or 3.3V power supplies for HCSL  
outputs  
Low jitter clock trees  
Embedded Low Drop Out (LDO) Voltage regulator  
Logic translation  
provides superior Power Supply Noise Rejection  
Clock and data signal restoration  
High performance microprocessor clock distribution  
Test Equipment  
Maximum output to output skew of 50ps  
Individual Output Enable pin for each differential  
pair.  
Transfers Spread-Spectrum without attenuation  
OE[3:0]_b  
OUT0_p  
OUT0_n  
OUT1_p  
OUT1_n  
IN_p  
IN_n  
OUT2_p  
OUT2_n  
ZL40264  
OUT3_p  
OUT3_n  
Figure 1. Functional Block Diagram  
ZL40264  
June 2019  
1
© 2019 Microsemi Corporation  
 
 
 
Data Sheet  
ZL40264  
Table of Contents  
Features.....................................................................................................................................1  
Applications................................................................................................................................1  
Table of Contents ......................................................................................................................2  
Pin Diagram ...............................................................................................................................5  
Pin Descriptions.........................................................................................................................6  
Functional Description ...............................................................................................................7  
Clock Inputs ...............................................................................................................................7  
Clock Outputs ..........................................................................................................................10  
Termination of unused outputs ................................................................................................11  
Power Consumption ................................................................................................................11  
Power Supply Filtering.............................................................................................................11  
Power Supplies and Power-up Sequence...............................................................................12  
Device Control .........................................................................................................................12  
Typical phase noise performance............................................................................................13  
AC and DC Electrical Characteristics......................................................................................14  
Absolute Maximum Ratings.....................................................................................................14  
Recommended Operating Conditions .....................................................................................14  
Package Outline ......................................................................................................................24  
Change history:........................................................................................................................25  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
2
 
Data Sheet  
ZL40264  
List of Figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Figure 18.  
Figure 19.  
Functional Block Diagram........................................................................................................................................... 1  
Pin Diagram ................................................................................................................................................................ 5  
Input driven by source terminated HCSL..................................................................................................................... 7  
Input driven by receiver terminated HCSL .................................................................................................................. 8  
Input driven by AC coupled LVPECL output................................................................................................................. 8  
Input driven by AC coupled LVDS ................................................................................................................................ 8  
Input driven by a single ended output ........................................................................................................................ 9  
Source terminated HCSL ........................................................................................................................................... 10  
Receiver terminated HCSL......................................................................................................................................... 10  
Power Supply Filtering .............................................................................................................................................. 12  
100MHz HCSL Phase Noise ...................................................................................................................................... 13  
133MHz HCSL Phase Noise ....................................................................................................................................... 13  
400MHz HCSL Phase Noise ....................................................................................................................................... 13  
Single-Ended Measurement Points for Absolute Cross Point and Swing .................................................................. 21  
Single-Ended Measurement Points for Delta Cross Point ......................................................................................... 21  
Single-Ended Measurement Points for Rise and Fall Time Matching ....................................................................... 21  
Differential Measurement Points for Rise and Fall Time .......................................................................................... 22  
Differential Measurement Points for Ringback ........................................................................................................ 22  
Test Circuit ................................................................................................................................................................ 22  
ZL40264  
June 2019  
3
© 2019 Microsemi Corporation  
Data Sheet  
ZL40264  
List of Tables  
Table 1 Pin Descriptions................................................................................................................................................................................. 6  
Table 2 Absolute Maximum Ratings*........................................................................................................................................................... 14  
Table 3 Recommended Operating Conditions* ............................................................................................................................................ 14  
Table 4 Current consumption ....................................................................................................................................................................... 15  
Table 5 Input Characteristics* ...................................................................................................................................................................... 15  
Table 6 Power Supply Rejection Ratio for VDD = VDDO = 3.3V* .................................................................................................................. 15  
Table 7 Power Supply Rejection Ratio for VDD = VDDO = 2.5V* .................................................................................................................. 16  
Table 8 HCSL Outputs for VDDO = 3.3V* ...................................................................................................................................................... 17  
Table 9 HCSL (PCIe) Jitter Performance for VDDO = 3.3V............................................................................................................................. 18  
Table 10 HCSL Outputs for VDDO = 2.5V* .................................................................................................................................................... 19  
Table 11 HCSL (PCIe) Jitter Performance for VDDO = 2.5V ........................................................................................................................... 20  
Table 12 4x4mm QFN Package Thermal Properties ..................................................................................................................................... 23  
ZL40264  
June 2019  
4
© 2019 Microsemi Corporation  
Data Sheet  
ZL40264  
Pin Diagram  
The device is packaged in a 4x4mm 20-pin QFN.  
Pin#1  
Corner  
20  
19  
18  
17  
16  
1
2
3
4
5
15  
14  
13  
12  
11  
VDD  
GND  
VDDO  
GND  
OE3_b  
OE1_b  
OUT1_p  
OUT1_n  
Exposed GND Pad 2.125 x 2.125 mm  
OUT3_n  
OUT3_p  
6
7
8
9
10  
Figure 2. Pin Diagram  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
5
Data Sheet  
ZL40264  
Pin Descriptions  
All device inputs and outputs are HCSL unless described otherwise. The I/O column uses the following symbols: I –  
input, IPU input with 300kinternal pull-up resistor, IPD input with 300kinternal pull-down resistor, IAPU input with  
31kinternal pull-up resistor, IAPD input with 30kinternal pull-down resistor, IAPU/APD input biased to VDD/2 with  
60kinternal pull-up and pull-down resistors (30 kequivalent), O output, I/O Input/Output pin, NC-No connect  
pin, P power supply pin.  
Table 1 Pin Descriptions  
#
Name  
I/O  
Description  
Input Reference  
IAPD  
IAPU/APD  
IAPD  
IN_p  
IN_n  
20  
19  
Input Differential or Single Ended Reference  
Input frequency range 0Hz to 400MHz.  
IAPU/APD  
Non-inverting inputs (_p) are pulled down with internal 30kpull-down resistors.  
Inverting inputs (_n) are pulled up and pulled down with 60kinternal resistors (30k  
equivalent) to keep inverting input voltages at VDD/2 when inverting inputs are left  
floating (device fed with a single ended reference).  
Output Clocks  
O
Ultra-Low Additive Jitter Differential HCSL Outputs 0 to 3  
17  
16  
12  
11  
9
8
5
4
OUT0_p  
OUT0_n  
OUT1_p  
OUT1_n  
OUT2_p  
OUT2_n  
OUT3_p  
OUT3_n  
Output frequency range 0 to 400MHz  
Control  
IPD  
18  
13  
10  
3
OE0_b  
OE1_b  
OE2_b  
OE3_b  
Output Enable. Logic level on these pins enables/disables corresponding outputs.  
OEn_b  
OUTn_p/n  
Active  
0
1
High-Z (outputs p/n will be low/low because of 50Ω shunt  
resistorssee recommended output termination)  
Power and Ground  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
6
Data Sheet  
ZL40264  
1
VDD  
P
Positive Supply Voltage. Connect to 3.3V or 2.5V supply.  
6
15  
VDDO  
GND  
P
P
P
Positive Supply Voltage for Differential Outputs Connect 3.3V or 2.5V power  
supply. VDDO does not have to be connected to the same voltage level as VDD.  
2
7
14  
Ground Connect to the ground  
Ground. Connect to the ground  
E-Pad  
GND  
Functional Description  
The ZL40264 is an ultra-low additive jitter, low power 1 to 4 HCSL fanout buffer.  
The device operates from 2.5V+/-5% or 3.3V+/-5% supply. Its operation is guaranteed over the industrial temperature  
range -40°C to +85°C.  
Clock Inputs  
The following blocks diagram shows how to terminate different signals fed to the ZL40264 inputs.  
Figure 3 and Figure 4 show how to terminate the input when driven from an HCSL driver.  
The input buffer in ZL40264 in a native HCSL receiver so other differential formats need to be AC coupled as shown  
in Figure 5 and Figure 6 for LVPECL and LVDS signals respectively.  
Figure 7 shows how to terminate a single ended output such as LVCMOS. Ideally, resistors R1 and R2 should be  
100each and Ro + Rs should be 50so that the transmission line is terminated at both ends with characteristic  
impedance. If the driving strength of the output driver is not sufficient to drive low impedance, the value of series  
resistor RS should be increased. This will reduce the voltage swing at the input but this should be fine as long as the  
input voltage swing requirement is not violated (Table 5). The source resistors of Rs = 270could be used for  
standard LVCMOS driver. This will provide 516mV of voltage swing for 3.3V LVCMOS driver with load current of  
(3.3V/2) *(1/(270+ 50)) = 5.16mA.  
For optimum performance both differential input pins (_p and _n) need to be DC biased to the same voltage. Hence,  
the ratio R1/R2 should be equal to the ratio R3/R4.  
VDD  
ꢂꢂ   
Z0 = 50   
ꢂꢂ   
Z0 = 50   
MSCC Device  
HCSL Output  
ꢀꢁ   
ꢀꢁ   
Figure 3. Input driven by source terminated HCSL  
ZL40264  
June 2019  
7
© 2019 Microsemi Corporation  
 
Data Sheet  
ZL40264  
VDD  
ꢂꢂ   
ꢂꢂ   
Z0 = 50   
Z0 = 50   
MSCC Device  
HCSL Output  
ꢀꢁ   
ꢀꢁ   
Figure 4. Input driven by receiver terminated HCSL  
VDD  
VDD  
VDD  
R1  
R2  
VDD  
R1  
R2  
10 nF  
10 nF  
Z0 = 50   
Z0 = 50   
LVPECL  
ꢃꢁꢁ   
ꢃꢁꢁ   
MSCC Device  
R1  
R2  
VDD  
3.3V  
2.5V  
442   
332   
56   
59   
Figure 5. Input driven by AC coupled LVPECL output  
VDD  
VDD  
VDD  
R1  
R1  
VDD  
10 nF  
10 nF  
Z0 = 50   
Zꢅ ꢀꢁ   
ꢄꢁꢁ   
LVDS  
MSCC Device  
VDD  
R1  
R2  
R2  
R2  
20 k  2.55 k  
20 k  3.48 k  
3.3V  
2.5V  
Figure 6. Input driven by AC coupled LVDS  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
8
Data Sheet  
ZL40264  
Vdd  
Vdd  
Vdd  
Vdd  
Optional AC coupling  
capacitor  
R3  
R1  
R2  
0.1 µF  
Rs  
Ro  
Z0 = 50   
Ro + Rs= Z0  
VDD  
R3  
R4  
R1  
R2  
442   
332   
56   
59   
1.27 k  
1.78 k  
3.3V  
2.5V  
10 k  
10 k  
MSCC Device  
0.1 µF  
R4  
R1/R2 =R3/R4  
Rs = ꢃꢆꢁ ꢀfor standard LVCMOS output  
Figure 7. Input driven by a single ended output  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
9
Data Sheet  
ZL40264  
Clock Outputs  
Differential HCSL outputs should be terminated as shown in Figure 8 or Figure 9.  
VDD  
ꢂꢂ   
Z0 = 50   
ꢂꢂ   
Z0 = 50   
HCSL Input  
MSCC Device  
ꢀꢁ   
ꢀꢁ   
Figure 8. Source terminated HCSL  
VDD  
ꢂꢂ   
ꢂꢂ   
Z0 = 50   
Z0 = 50   
HCSL Input  
MSCC Device  
ꢀꢁ   
ꢀꢁ   
Figure 9. Receiver terminated HCSL  
ZL40264  
June 2019  
10  
© 2019 Microsemi Corporation  
 
 
Data Sheet  
ZL40264  
Termination of unused outputs  
Unused outputs should be left unconnected.  
Power Consumption  
The device total power consumption can be calculated as:  
PT = PS + PC + PO_DIFF  
Where:  
Core power consumed by the input  
buffer. The static current (IS) is  
specified in Table 4.  
PS = VDD IS  
PC = VDDO IDD_CM  
Common output power shared  
among four outputs. The current  
IDD_CM is specified in Table 4.  
PO_DIF = VDDOIDD_HCSL N  
Output power where output current  
per output (IDD_HCSL) is specified in  
Table 4.  
N is number of enabled outputs.  
Power dissipated inside the device can be calculated by subtracting power dissipated in termination/biasing resistors  
from the power consumption:  
PD = PT N PHCSL  
Where:  
PHCSL = (VSW / 50)2 (50+ 33)  
VSW is voltage swing of HCSL output. 50is  
termination resistance and 33is series resistance  
of the HCSL output.  
Power Supply Filtering  
Each power pin (VDD and VDDO) should be decoupled with 0.1µF capacitor with minimum equivalent series  
resistance (ESR) and minimum series inductance (ESL). For example, 0402 X5R Ceramic Capacitors with 6.3V  
minimum rating could be used. These capacitors should be placed as close as possible to the power pins. To reduce  
the power noise from adjacent digital components on the board each power supply could optionally be further  
insulated with low resistance ferrite bead with 10µF and 1µF capacitors. Following figure shows the standard and  
optional decoupling method.  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
11  
Data Sheet  
ZL40264  
Standard Decoupling  
Optional Decoupling  
VDDO  
VDDO  
0.1uF  
0.1uF  
VDDO  
0.1uF  
VDDO  
VDD  
0.1uF  
0.1uF  
Board Supply  
10uF  
Ferrite Bead  
1uF  
VDD  
Board Supply  
1uF  
0.1uF  
Figure 10.  
Power Supply Filtering  
Power Supplies and Power-up Sequence  
The device has two different power supplies: VDD and VDDO which should always be connected to the same voltage  
supply. Voltages supported by each of these power supplies are specified in Table 3.  
VDD and VDDO should always be turned on and off at the same time.  
Device Control  
ZL40264 outputs are controlled via OE[3:0]_b pins. When an OE_b pin is low the corresponding outputs will be active  
and when this pin is high the output will be high-Z. When the output driver is in high-Z mode, the output pins will be  
pulled low via external 50HCSL termination resistors.  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
12  
Data Sheet  
ZL40264  
Typical phase noise performance  
The following plots show typical phase noise performance for 100 MHz, 133 MHz and 400 MHz clocks respectively.  
Figure 11.  
100MHz HCSL Phase Noise  
Figure 12.  
133MHz HCSL Phase Noise  
Figure 13.  
400MHz HCSL Phase Noise  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
13  
Data Sheet  
ZL40264  
AC and DC Electrical Characteristics  
Absolute Maximum Ratings  
Table 2 Absolute Maximum Ratings*  
Parameter  
Supply voltage (3.3V)  
Sym.  
VDD /VDDO  
VDD /VDDO  
TST  
Min.  
-0.5  
-0.5  
-55  
Typ.  
Max.  
4.6  
Units  
V
Notes  
1
2
3
Supply voltage (2.5V)  
Storage temperature  
3.5  
V
125  
°C  
* Exceeding these values may cause permanent damage  
* Functional operation under these conditions is not implied  
* Voltages are with respect to ground (GND) unless otherwise stated  
Recommended Operating Conditions  
Table 3 Recommended Operating Conditions*  
Characteristics  
Sym.  
VDD /VDDO  
VDD /VDDO  
TA  
Min.  
3.135  
2.375  
-40  
Typ.  
3.30  
2.50  
25  
Max.  
3.465  
2.625  
85  
Units Notes  
1
2
5
6
Supply voltage 3.3V  
Supply voltage 2.5V  
V
V
Operating temperature  
Input voltage  
°C  
V
VDD-IN  
- 0.3  
VDD + 0.3  
* Voltages are with respect to ground (GND) unless otherwise stated  
* The device core supports two power supply modes (3.3V and 2.5V)  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
14  
Data Sheet  
ZL40264  
Table 4 Current consumption  
Characteristics  
Core device current  
Sym.  
Is_3.3V  
Min.  
Typ.  
49  
Max.  
53  
Units  
mA  
Notes  
VDD= 3.3V+5%  
VDD = 2.5V+5%  
VDDO= 3.3V+5%  
VDDO= 2.5V+5%  
VDDO= 3.3V+5%  
VDDO= 2.5V+5%  
1
2
3
Is_2.5V  
48  
53  
mA  
IDD_CM_3.3V  
IDD_CM_2.5V  
IDD_HCSL_3.3V  
IDD_HCSL_2.5V  
5.24  
4.72  
14.92  
14.61  
5.82  
5.32  
17.18  
16.62  
mA  
Common output current  
mA  
mA  
Current dissipation per HCSL output  
mA  
Table 5 Input Characteristics*  
Characteristics  
Sym.  
Min.  
Typ.  
Max.  
Units  
Notes  
CMOS high-level input voltage for control inputs  
CMOS high-level input voltage for control inputs  
CMOS low-level input voltage for control inputs  
VCIH_3.3V  
0.7 *  
VDD  
V
1a  
VDD = 3.3V  
VCIH_2.5V  
0.8 *  
VDD  
V
1b  
2
VDD = 2.5V  
VCIL  
IIL  
0.32 * VDD  
50  
V
CMOS input leakage current for control inputs (includes current due  
to pull down resistors)  
-25  
µA  
VI = VDD or 0  
V
3
4
Differential input common mode voltage for IN_p/n  
Differential input voltage for IN_p/n  
VCM  
VID  
0.1  
0.2  
0.8  
V
V
VDD + 0.3  
5
Differential input leakage current for IN_p/n (includes  
current due to pull-up and pull-down resistors)  
IIL  
-150  
150  
µA  
VI = 2V or 0V  
6
7
8
9
VSI  
VSIC  
VSID  
-0.3  
0.1  
0.3  
2.7  
0.8  
1.3  
V
V
VDD = 3.3V  
or 2.5V  
Single ended input voltage for IN_p  
VDD = 3.3V  
or 2.5V  
Single ended input common mode voltage IN_p  
Single ended input voltage swing for IN_p  
V
VDD = 3.3V  
or 2.5V  
10 Input frequency (differential)  
11 Input duty cycle  
fIN  
dc  
0
400  
MHz  
35%  
0.6  
65%  
13 Input slew rate  
slew  
RPU/RPD  
RPD  
2
V/ns  
kΩ  
14 Input pull-up/ pull-down resistance  
15 Input pull-down resistance for IN_p  
16 Control input (OE_b) pull-down resistance  
60  
30  
kΩ  
RPDOE  
300  
kΩ  
* Values are over Recommended Operating Conditions  
* Values are over all two power supply modes (VDD = 3.3V and VDD = 2.5V)  
(1) low frequency only  
Table 6 Power Supply Rejection Ratio for VDD = VDDO = 3.3V*  
Characteristics  
Sym.  
Min.  
Typ.  
Max.  
Units  
Notes  
-80.7  
fIN = 100 MHz  
fIN = 133 MHz  
fIN = 400 MHz  
1
PSRR for HCSL output  
PSRRHCSL  
-76.4  
-66.5  
dBc  
* Values are over Recommended Operating Conditions  
* Noise injected to VDD/VDDO power supply with frequency 100 kHz and amplitude 100 mVpp  
* PSRR is measured as amplitude of 100 kHz spur in dBc on the output clock phase noise plot  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
15  
Data Sheet  
ZL40264  
Table 7 Power Supply Rejection Ratio for VDD = VDDO = 2.5V*  
Characteristics  
Sym.  
Min.  
Typ.  
Max.  
Units  
Notes  
-73.5  
fIN = 100 MHz  
fIN = 133 MHz  
fIN = 400 MHz  
3
PSRR for HCSL output  
PSRRHCSL  
-69.8  
-61.2  
dBc  
* Values are over Recommended Operating Conditions  
* Noise injected to VDD/VDDO power supply with frequency 100 kHz and amplitude 100 mVpp  
* PSRR is measured as amplitude of 100 kHz spur in dBc on the output clock phase noise plot  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
16  
Data Sheet  
ZL40264  
Table 8 HCSL Outputs for VDDO = 3.3V*  
Parameter  
Sym.  
Rise_rate  
Fall_rate  
VIH  
Min.  
1.3  
Typ.  
1.7  
Max.  
2
Units  
V/ns  
V/ns  
V
Notes  
(2), (3)  
1
2
3
4
5
6
7
8
9
Rising edge rate  
Falling edge rate  
1.3  
1.7  
2
(2), (3)  
Differential High Voltage  
0.6  
0.9  
(2)  
Differential Low Voltage  
VIL  
-0.9  
0.6  
-0.6  
0.85  
0.01  
0.38  
0.061  
0.809  
V
(2)  
Single ended high voltage  
Single ended low voltage  
VSIH  
0.74  
0
V
DC Measurement  
DC Measurement  
(1), (4), (5)  
(1), (4), (9)  
(2), (11)  
VSIL  
-0.01  
0.26  
0.039  
0.534  
4.6  
V
Absolute Crossing Voltage  
Variation of VCROSS over all rising clock edges  
Ring back voltage margin  
VCROSS  
∆VCROSS  
VRB  
0.32  
0.050  
0.674  
V
V
V
10 Time before VRB is allowed  
11 Cycle-to-cycle additive jitter  
tSTABLE  
ns  
(2), (11)  
6.5  
8.1  
ps  
peak to  
peak  
TJCC  
(2)  
12 Absolute Maximum voltage  
VMAX  
VMIN  
0.92  
(1), (7)  
(1), (8)  
(2)  
13 Absolute Minimum voltage  
-0.05  
48  
14 Output Duty-Cycle (when input has 50% duty-cycle)  
15 Rising to falling edge matching  
Duty_cycle  
r/f match  
50  
52  
15  
51  
%
%
(1), (12)  
49  
49  
0
50  
50  
DC Measurement  
(1), (13)  
16 Clock Source DC impedance (CK)  
17 Clock Source DC impedance (CK#)  
ZC-DC_CK  
51  
DC Measurement  
(1), (13)  
ZC-DC_CK#  
18 Output frequency  
FMAX  
tOOSK  
tDOOSK  
tIOD  
400  
50  
129  
1
MHz  
ps  
19 Output to output skew  
20 Device to device output skew  
21 Input to output delay  
22 Output enable time  
23 Output disable time  
ps  
0.75  
0.84  
ns  
tEN  
3
cycles  
cycles  
tDIS  
3
* Values are over Recommended Operating Conditions  
(1) Measurement taken from single ended waveform  
(2) Measurement taken from differential waveform.  
(3) Measured from -150 mV to +150 mV on the differential waveform (derived from CK minus CK#) The signal must be monotonic through the  
measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing. See Figure 17  
(4) Measured at crossing point where the instantaneous voltage value of the rising edge of CK equals the falling edge of CK# . See Figure 14  
(5) Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this  
measurement. See Figure 14.  
(6) This requirement, from PCI Express Base Specification, Revision 4.0 is applicable only to clock generators and not to buffers. A clock buffer is a transparent  
device whose output clock period follows the input clock period.  
(7) Defined as the maximum instantaneous voltage including overshoot. See Figure 14.  
(8) Defined as the minimum instantaneous voltage including undershoot. See Figure 14.  
(9) Defined as the total variation of all crossing voltages of Rising CK and Falling CK# This is the maximum allowed variance in VCROSS for any particular  
system. See Figure 15.  
(10) The PPM requirement from PCIe Express Base Specification, Revision 4.0 is related to clock generation devices. This requirement is not applicable to buffers  
because buffer’s output frequency accuracy is identical to the frequency accuracy of the source driving the buffer.  
(11) TSTABLE is the time the differential clock must maintain a minimum ±150 mV differential voltage after20 rising/falling edges before it is allowed to droop  
back into the VRB ±100 mV differential range. See Figure 18.  
(12) Matching applies to rising edge rate for CKx and falling edge rate for CK#x. It is measured using a ±75 mV window centered on the median cros point where  
CKx rising meets CK#x falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The  
Rise Edge Rate of CKx should be compared to the Fall Edge Rate of CK#x the maximum allowed difference should not exceed 20% of the slowest edge rate.  
See Figure 16.  
(13) Clock DC impedance tolerance depends only on the tolerance of external 50shunt resistors used in HCSL. The test used resistors with +/-1% tolerance.  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
17  
Data Sheet  
ZL40264  
Table 9 HCSL (PCIe) Jitter Performance for VDDO = 3.3V  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Notes  
1
2
Additive Jitter as per PCIe 1.0 (1.5MHz to 22MHz)  
TjPCIe_1.0  
1.2  
1.45  
ps pk-pk  
Input clock: 100 MHz  
Additive Jitter as per PCIe 2.0 high band (1.5MHz to  
50MHz)  
TjPCIe_2.0_high  
134  
163  
fs RMS  
Input clock: 100 MHz  
Additive Jitter as per PCIe 2.0 low band (10kHz to  
1.5MHz)  
3
4
5
TjPCIe_2.0_low  
TjPCIe_2.0_mid  
TjPCIe_3.0  
31  
105  
33  
48  
130  
41  
fs RMS  
fs RMS  
fs RMS  
Input clock: 100 MHz  
Input clock: 100 MHz  
Input clock: 100 MHz  
Additive Jitter as per PCIe 2.0 mid band (5MHz to 16MHz)  
Additive Jitter as per PCIe 3.0 (PLL_BW = 2 to 5MHz,  
CDR = 10MHz)  
Additive Jitter as per PCIe 4.0 (PLL_BW = 2 to 5MHz,  
CDR = 10MHz)  
6
TjPCIe_4.0  
33  
13  
41  
16  
fs RMS  
fs RMS  
Input clock: 100 MHz  
Input clock: 100 MHz  
Additive Jitter as per PCIe 5.0 (PLL_BW = 0.5 to 1.8MHz,  
CDR for 32 GT/s CC)  
7
8
TjPCIe_5.0  
TjQPI  
Additive jitter as per Intel QPI 9.6Gbps  
61  
87  
75  
106  
68  
fs RMS  
fs RMS  
fs RMS  
fs RMS  
fs RMS  
fs RMS  
fs RMS  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Input clock: 100 MHz  
Input clock: 100 MHz  
Input clock: 133 MHz  
Input clock: 400 MHz  
Input clock: 100 MHz  
Input clock: 133 MHz  
Input clock: 400 MHz  
Input clock: 100 MHz  
Input clock: 133 MHz  
Input clock: 400 MHz  
9
Additive RMS jitter in 1MHz to 20MHz band  
Tj_1M_20M  
Tj_12k_20M  
NF  
56  
26  
34  
91  
112  
75  
10 Additive RMS jitter in 12kHz to 20MHz band  
60  
32  
48  
-161  
-162  
-160  
-159  
-161  
-157  
11 Noise floor  
* Values are over Recommended Operating Conditions  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
18  
Data Sheet  
ZL40264  
Table 10 HCSL Outputs for VDDO = 2.5V*  
Parameter  
Sym.  
Rise_rate  
Fall_rate  
VIH  
Min.  
1.3  
Typ.  
1.6  
Max.  
1.9  
Units  
V/ns  
V/ns  
V
Notes  
(2), (3)  
1
2
3
4
5
6
7
8
9
Rising edge rate  
Falling edge rate  
1.3  
1.6  
1.9  
(2), (3)  
Differential High Voltage  
0.6  
0.9  
(2)  
Differential Low Voltage  
VIL  
-0.9  
0.58  
-0.01  
0.25  
0.04  
0.514  
4.6  
-0.6  
0.84  
0.01  
0.37  
0.06  
0.791  
V
(2)  
Single ended high voltage  
Single ended low voltage  
VSIH  
0.71  
0
V
DC Measurement  
DC Measurement  
(1), (4), (5)  
(1), (4), (9)  
(2), (11)  
VSIL  
V
Absolute Crossing Voltage  
Variation of VCROSS over all rising clock edges  
Ring back voltage margin  
VCROSS  
∆VCROSS  
VRB  
0.31  
0.05  
0.660  
V
V
V
10 Time before VRB is allowed  
11 Additive Cycle-to-cycle jitter  
tSTABLE  
ns  
(2), (11)  
5.5  
7.1  
ps  
peak to  
peak  
TJCC  
(2)  
12 Absolute Maximum voltage  
VMAX  
VMIN  
0.90  
(1), (7)  
(1), (8)  
(2)  
13 Absolute Minimum voltage  
-0.05  
48  
14 Output Duty-Cycle (when input has 50% duty-cycle)  
15 Rising to falling edge matching  
Duty_cycle  
r/f match  
50  
52  
15  
51  
%
%
(1), (12)  
49  
49  
0
50  
50  
DC Measurement  
(1), (13)  
16 Clock Source DC impedance (CK)  
17 Clock Source DC impedance (CK#)  
ZC-DC_CK  
51  
DC Measurement  
(1), (13)  
ZC-DC_CK#  
18 Output frequency  
FMAX  
tOOSK  
tDOOSK  
tIOD  
400  
50  
129  
1
MHz  
ps  
19 Output to output skew  
20 Device to device output skew  
21 Input to output delay  
22 Output enable time  
23 Output disable time  
ps  
0.75  
0.85  
ns  
tEN  
3
cycles  
cycles  
tDIS  
3
* Values are over Recommended Operating Conditions  
(1) Measurement taken from single ended waveform  
(2) Measurement taken from differential waveform.  
(3) Measured from -150 mV to +150 mV on the differential waveform (derived from CK minus CK#) The signal must be monotonic through the  
measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing. See Figure 17  
(4) Measured at crossing point where the instantaneous voltage value of the rising edge of CK equals the falling edge of CK# . See Figure 14  
(5) Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this  
measurement. See Figure 14.  
(6) This requirement, from PCI Express Base Specification, Revision 4.0 is applicable only to clock generators and not to buffers. A clock buffer is a transparent  
device whose output clock period follows the input clock period.  
(7) Defined as the maximum instantaneous voltage including overshoot. See Figure 14.  
(8) Defined as the minimum instantaneous voltage including undershoot. See Figure 14.  
(9) Defined as the total variation of all crossing voltages of Rising CK and Falling CK# This is the maximum allowed variance in VCROSS for any particular  
system. See Figure 15.  
(10) The PPM requirement from PCIe Express Base Specification, Revision 4.0 is related to clock generation devices. This requirement is not applicable to buffers  
because buffer’s output frequency accuracy is identical to the frequency accuracy of the source driving the buffer.  
(11) TSTABLE is the time the differential clock must maintain a minimum ±150 mV differential voltage after20 rising/falling edges before it is allowed to droop  
back into the VRB ±100 mV differential range. See Figure 18.  
(12) Matching applies to rising edge rate for CKx and falling edge rate for CK#x. It is measured using a ±75 mV window centered on the median cros point where  
CKx rising meets CK#x falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The  
Rise Edge Rate of CKx should be compared to the Fall Edge Rate of CK#x the maximum allowed difference should not exceed 20% of the slowest edge rate.  
See Figure 16.  
(13) Clock DC impedance tolerance depends only on the tolerance of external 50shunt resistors used in HCSL. The test used resistors with +/-1% tolerance.  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
19  
Data Sheet  
ZL40264  
Table 11 HCSL (PCIe) Jitter Performance for VDDO = 2.5V  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Notes  
1
2
Additive Jitter as per PCIe 1.0 (1.5MHz to 22MHz)  
TjPCIe_1.0  
1.03  
1.27  
ps pk-pk  
Input clock: 100MHz  
Additive Jitter as per PCIe 2.0 high band (1.5MHz to  
50MHz)  
TjPCIe_2.0_high  
TjPCIe_2.0_low  
TjPCIe_2.0_mid  
TjPCIe_3.0  
115  
28  
91  
29  
29  
11  
143  
46  
fs RMS  
fs RMS  
fs RMS  
fs RMS  
fs RMS  
fs RMS  
Input clock: 100MHz  
Input clock: 100MHz  
Input clock: 100MHz  
Input clock: 100MHz  
Input clock: 100MHz  
Input clock: 100MHz  
Additive Jitter as per PCIe 2.0 low band (10kHz to  
1.5MHz)  
3
4
5
6
Additive Jitter as per PCIe 2.0 mid band (5MHz to  
16MHz)  
113  
36  
Additive Jitter as per PCIe 3.0 (PLL_BW = 2 to 5MHz,  
CDR = 10MHz)  
Additive Jitter as per PCIe 4.0 (PLL_BW = 2 to 5MHz,  
CDR = 10MHz)  
TjPCIe_4.0  
36  
Additive Jitter as per PCIe 5.0 (PLL_BW = 0.5 to  
1.8MHz, CDR for 32 GT/s CC)  
7
8
TjPCIe_4.0  
TjQPI  
14  
Additive jitter as per Intel QPI 9.6Gbps  
53  
75  
67  
94  
fs RMS  
fs RMS  
fs RMS  
fs RMS  
fs RMS  
fs RMS  
fs RMS  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Input clock: 100MHz  
Input clock: 100 MHz  
Input clock: 133 MHz  
Input clock: 400 MHz  
Input clock: 100 MHz  
Input clock: 133 MHz  
Input clock: 400 MHz  
Input clock: 100 MHz  
Input clock: 133 MHz  
Input clock: 400 MHz  
9
Additive RMS jitter in 1MHz to 20MHz band  
Tj_1M_20M  
Tj_12k_20M  
NF  
51  
64  
26  
33  
79  
99  
10 Additive RMS jitter in 12kHz to 20MHz band  
55  
68  
32  
47  
-162  
-163  
-160  
-159  
-161  
-158  
11 Noise floor  
* Values are over Recommended Operating Conditions  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
20  
Data Sheet  
ZL40264  
Vmax = 1.15V  
OUTx_n  
Vcross_max = 550mV  
Vcross_min = 250mV  
OUTx_p  
Vmax = -0.3V  
Figure 14.  
Single-Ended Measurement Points for Absolute Cross Point and Swing  
OUTx_n  
Vcross_delta = 250mV  
OUTx_p  
Figure 15.  
Single-Ended Measurement Points for Delta Cross Point  
tfall  
OUTx_n  
Vcross_median + 75mV  
Vcross_median  
Vcross_median  
Vcross_median 75mV  
OUTx_p  
trise  
Rise/fall match = MIN[|trise tfall|/trise,|trise tfall|/tfall]*100%  
Figure 16.  
Single-Ended Measurement Points for Rise and Fall Time Matching  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
21  
Data Sheet  
ZL40264  
OUTx_p -OUTx_n  
slew_rise = 0.3V/trise_edge_rate [V/ns]  
slew_fall = 0.3V/tfall_edge_rate [V/ns]  
Figure 17.  
Differential Measurement Points for Rise and Fall Time  
OUTx_p - OUTx_n  
Figure 18.  
Differential Measurement Points for Ringback  
15 dB loss at 4 GHz  
Refclk Margins  
CK  
DUT  
CK#  
Differential PCB trace  
ZDIFF = ꢄꢁꢁ ±10%  
2 pF 5%  
2 pF 5%  
Figure 19.  
Test Circuit  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
22  
Data Sheet  
ZL40264  
Table 12 4x4mm QFN Package Thermal Properties  
Parameter  
Maximum Ambient Temperature  
Symbol  
Conditions  
Value  
Units  
TA  
TJMAX  
85  
125  
34  
28.9  
27.0  
15.4  
25.9  
8.1  
C  
C  
Maximum Junction Temperature  
still air  
1m/s airflow  
2.5m/s airflow  
Junction to Ambient Thermal Resistance(1)  
JA  
C/W  
Junction to Board Thermal Resistance  
Junction to Case Thermal Resistance  
Junction to Pad Thermal Resistance(2)  
JB  
JC  
JP  
C/W  
C/W  
C/W  
Still air  
Still air  
Junction to Top-Center Thermal Characterization Parameter  
1.0  
C/W  
JT  
(1)  
(2)  
Theta-JA (JA) is the thermal resistance from junction to ambient when the package is mounted on a 4-layer JEDEC standard test board and dissipating  
maximum power  
Theta-JP (JP) is the thermal resistance from junction to the center exposed pad on the bottom of the package)  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
23  
Data Sheet  
ZL40264  
Package Outline  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
24  
Data Sheet  
ZL40264  
Change history:  
June 2019 revision-Initial release  
ZL40264  
June 2019  
© 2019 Microsemi Corporation  
25  
Data Sheet  
ZL40264  
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and  
system solutions for aerospace & defense, communications, data center and industrial markets.  
Products include high-performance and radiation-hardened analog mixed-signal integrated  
circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization  
devices and precise time solutions, setting the world's standard for time; voice processing  
devices; RF solutions; discrete components; enterprise storage and communication solutions,  
security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-  
Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is  
headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally.  
Learn more at www.microsemi.com.  
Microsemi Corporate Headquarters  
One Enterprise, Aliso Viejo,  
CA 92656 USA  
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or  
the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability  
whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and  
any other products sold by Microsemi have been subject to limited testing and should not be used in  
conjunction with mission-critical equipment or applications. Any performance specifications are believed to  
be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of  
the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data  
and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to  
independently determine suitability of any products and to test and verify the same. The information  
provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk  
associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly,  
to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself  
Within the USA: +1 (800) 713-4113  
Outside the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
Fax: +1 (949) 215-4996  
E-mail: sales.support@microsemi.com  
©
2019 Microsemi Corporation. All or anything described by such information. Information provided in this document is proprietary to  
rights reserved. Microsemi and the Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to  
Microsemi logo are trademarks of any products and services at any time without notice.  
Microsemi Corporation. All other  
trademarks and service marks are the  
property of their respective owners.  
ZL40264  
June 2019  
26  
© 2019 Microsemi Corporation  

相关型号:

ZL40264LDG1

Clock Driver
MICROCHIP

ZL40272

Low-Skew, Low Additive Jitter, 12 Output HCSL/LVDS/ LVPECL Fanout Buffer with Per-Output Enable Control
MICROCHIP

ZL40272LDF1

Low-Skew, Low Additive Jitter, 12 Output HCSL/LVDS/ LVPECL Fanout Buffer with Per-Output Enable Control
MICROCHIP

ZL40272LDG1

Low-Skew, Low Additive Jitter, 12 Output HCSL/LVDS/ LVPECL Fanout Buffer with Per-Output Enable Control
MICROCHIP

ZL40293LDF1

Low Skew Clock Driver, 4000/14000/40000 Series, 40 True Output(s), 0 Inverted Output(s), CMOS
MICROCHIP

ZL40510

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK

ZL40510LCE

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK

ZL40510LCF

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK

ZL40510LDE

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK

ZL40510LDF

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK

ZL40510LDG

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK

ZL40510_06

Dual Output DVD and CD 4 Channel Laser Diode Drivers
ZARLINK