HAL401 [MICRONAS]

Linear Hall-Effect Sensor IC; 线性霍尔效应传感器IC
HAL401
型号: HAL401
厂家: MICRONAS    MICRONAS
描述:

Linear Hall-Effect Sensor IC
线性霍尔效应传感器IC

传感器
文件: 总20页 (文件大小:1349K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Hardware  
Documentation  
Data Sheet  
HAL® 401  
Linear Hall-Effect Sensor IC  
Edition Dec. 8, 2008  
DSH000018_002EN  
HAL401  
DATA SHEET  
Copyright, Warranty, and Limitation of Liability  
Micronas Trademarks  
– HAL  
Theinformationanddatacontainedinthisdocumentare  
believed to be accurate and reliable. The software and  
proprietary information contained therein may be pro-  
tectedbycopyright, patent, trademarkand/orotherintel-  
lectual property rights of Micronas. All rights not ex-  
pressly granted remain reserved by Micronas.  
Micronas Patents  
ChopperedOffsetCompensationprotectedbyMicronas  
patents no. US5260614A, US5406202A, EP052523B1,  
and EP0548391B1.  
Micronas assumes no liability for errors and gives no  
warrantyrepresentationorguaranteeregardingthesuit-  
ability of its products for any particular purpose due to  
these specifications.  
Third-Party Trademarks  
All other brand and product names or company names  
may be trademarks of their respective companies.  
Bythispublication, Micronasdoesnotassumeresponsi-  
bility for patent infringements or other rights of third par-  
ties which may result from its use. Commercial condi-  
tions, product availability and delivery are exclusively  
subject to the respective order confirmation.  
Any information and data which may be provided in the  
document can and do vary in different applications, and  
actual performance may vary over time.  
Alloperatingparametersmustbevalidatedforeachcus-  
tomer application by customers technical experts. Any  
new issue of this document invalidates previous issues.  
Micronas reserves the right to review this document and  
to make changes to the documents content at any time  
without obligation to notify any person or entity of such  
revision or changes. For further advice please contact  
us directly.  
Do not use our products in life-supporting systems, avi-  
ation and aerospace applications! Unless explicitly  
agreed to otherwise in writing between the parties, Mi-  
cronas products are not designed, intended or autho-  
rizedforuseascomponentsinsystemsintendedforsur-  
gical implants into the body, or other applications  
intended to support or sustain life, or for any other ap-  
plication in which the failure of the product could create  
a situation where personal injury or death could occur.  
No part of this publication may be reproduced, photoco-  
pied, stored on a retrieval system or transmitted without  
the express written consent of Micronas.  
2
Micronas  
DATA SHEET  
HAL401  
Contents  
Page  
Section  
Title  
4
4
4
4
4
5
1.  
Introduction  
1.1.  
1.2.  
1.3.  
1.4.  
1.5.  
Features  
Marking Code  
Operating Junction Temperature Range  
Hall Sensor Package Codes  
Solderability and Welding  
6
2.  
Functional Description  
7
3.  
Specifications  
7
3.1.  
3.2.  
3.3.  
3.4.  
3.4.1.  
3.5.  
3.6.  
Outline Dimensions  
8
Dimensions of Sensitive Area  
Positions of Sensitive Area  
Absolute Maximum Ratings  
Storage and Shelf Life  
Recommended Operating Conditions  
Characteristics  
8
8
8
9
10  
18  
18  
18  
18  
4.  
Application Notes  
Ambient Temperature  
EMC and ESD  
4.1.  
4.2.  
4.3.  
Application Circuit  
20  
5.  
Data Sheet History  
Micronas  
3
HAL401  
DATA SHEET  
Linear Hall Effect Sensor IC  
in CMOS technology  
1.2. Marking Code  
Type  
Temperature Range  
Release Notes: Revision bars indicate significant  
changes to the previous edition.  
A
K
HAL401  
401A  
401K  
1. Introduction  
The HAL401 is a Linear Hall Effect Sensors produced in  
CMOS technology. The sensor includes a temperature-  
compensated Hall plate with choppered offset com-  
pensation, two linear output stages, and protection de-  
vices (see Fig. 2–1).  
1.3. Operating Junction Temperature Range  
The Hall sensors from Micronas are specified to the chip  
temperature (junction temperature T ).  
J
The output voltage is proportional to the magnetic flux  
density through the hall plate. The choppered offset  
compensation leads to stable magnetic characteristics  
over supply voltage and temperature.  
A: T = –40 °C to +170 °C  
J
K: T = –40 °C to +140 °C  
J
The HAL401 can be used for magnetic field measure-  
ments, current measurements, and detection of any me-  
chanical movement. Very accurate angle measure-  
ments or distance measurements can also be done. The  
sensor is very robust and can be used in electrical and  
mechanical hostile environments.  
Note: Due to power dissipation, there is a difference be-  
tween the ambient temperature (T ) and junction  
A
temperature. Please refer to section 4.1. on page  
18 for details.  
1.4. Hall Sensor Package Codes  
The sensor is designed for industrial and automotive ap-  
plications and operates in the ambient temperature  
range from –40 °C up to 150 °C and is available in the  
SMD-package SOT89B-1.  
HALXXXPA-T  
Temperature Range: A or K  
Package: SF for SOT89B-1  
Type: 401  
1.1. Features:  
– switching offset compensation at 147 kHz  
– low magnetic offset  
Example: HAL401SF-K  
Type: 401  
Package: SOT89B-1  
– extremely sensitive  
Temperature Range: T = –40 °C to +140 °C  
J
– operates from 4.8 to 12 V supply voltage  
Hall sensors are available in a wide variety of packaging  
versions and quantities. For more detailed information,  
please refer to the brochure: “Hall Sensors: Ordering  
Codes, Packaging, Handling”.  
– wide temperature range T = –40 °C to +150 °C  
A
– overvoltage protection  
– reverse voltage protection of V -pin  
DD  
– differential output  
– accurate absolute measurements of DC and low fre-  
quency magnetic fields  
– on-chip temperature compensation  
4
Micronas  
 
DATA SHEET  
HAL401  
1.5. Solderability and Welding  
Soldering  
During soldering reflow processing and manual rework-  
ing, acomponentbodytemperatureof260°Cshouldnot  
be exceeded.  
Welding  
Deviceterminalsshouldbecompatiblewithlaserandre-  
sistance welding. Please note that the success of the  
welding process is subject to different welding parame-  
ters which will vary according to the welding technique  
used. A very close control of the welding parameters is  
absolutely necessary in order to reach satisfying results.  
Micronas, therefore, does not give any implied or ex-  
press warranty as to the ability to weld the component.  
V
DD  
1
2
3
OUT1  
OUT2  
4
GND  
Fig. 1–1: Pin configuration  
Micronas  
5
HAL401  
DATA SHEET  
2. Functional Description  
External filtering or integrating measurement can be  
done to eliminate the AC component of the signal. Re-  
sultingly, the influence of mechanical stress and temper-  
ature cycling is suppressed. No adjustment of magnetic  
offset is needed.  
GND  
4
Chopper  
Oscillator  
The sensitivity is stabilized over a wide range of temper-  
ature and supply voltage due to internal voltage regula-  
tion and circuits for temperature compensation.  
Temp.  
Dependent  
Bias  
Offset  
Compensation;  
Hallplate  
Switching  
Matrix  
Offset Compensation (see Fig. 2–2)  
The Hall Offset Voltage is the residual voltage measured  
in absence of a magnetic field (zero-field residual volt-  
age). This voltage is caused by mechanical stress and  
can be modeled by a displacement of the connections  
for voltage measurement and/or current supply.  
Protection  
Device  
V
OUT1  
2
OUT2  
3
DD  
1
Compensation of this kind of offset is done by cyclic  
commutating the connections for current flow and volt-  
age measurement.  
Fig. 2–1: Block diagram of the HAL401 (top view)  
– First cycle:  
The Linear Hall Sensor measures constant and low fre-  
quency magnetic flux densities accurately. The differen-  
The hall supply current flows between points 4 and 2.  
In the absence of a magnetic field, V is the Hall Off-  
set Voltage (+V ). In case of a magnetic field, V is  
the sum of the Hall voltage (V ) and V  
13  
tial output voltage V  
(difference of the voltages on  
OUTDIF  
Offs  
13  
pin2andpin3)isproportionaltothemagneticfluxdensi-  
ty passing vertically through the sensitive area of the  
.
H
Offs  
V
13  
= V + V  
H Offs  
chip. The common mode voltage V  
(average of the  
CM  
– Second cycle:  
The hall supply current flows between points 1 and 3.  
voltages on pin 2 and pin 3) of the differential output am-  
plifier is a constant 2.2 V.  
In the absence of a magnetic field, V is the Hall Off-  
24  
set Voltage with negative polarity (–V ). In case of  
The differential output voltage consists of two compo-  
nents due to the switching offset compensation tech-  
nique. The average of the differential output voltage rep-  
resents the magnetic flux density. This component is  
overlaid by a differential AC signal at a typical frequency  
of 147 kHz. The AC signal represents the internal offset  
voltages of amplifiers and hall plates that are influenced  
by mechanical stress and temperature cycling.  
Offs  
a magnetic field, V is the difference of the Hall volt-  
24  
age (V ) and V  
.
H
Offs  
= V – V  
H Offs  
V
24  
In the first cycle, the output shows the sum of the Hall  
voltage and the offset; in the second, the difference of  
both. The difference of the mean values of V  
and  
OUT1  
V
(V  
) is equivalent to V  
.
OUT2  
OUTDIF  
Hall  
V
for Bu0 mT  
V
OUT1  
Note: The numbers do not  
represent pin numbers.  
I
C
1
V
OUTDIF/2  
V
CM  
2
1
V
V
Offs  
OUTDIF  
4
V
V
OUTAC  
OUTDIF/2  
V
Offs  
I
C
2
3
4
V
OUT2  
1/f = 6.7 μs  
CH  
3
V
V
t
a) Offset Voltage  
Fig. 2–2: Hall Offset Compensation  
b) Switched Current Supply  
c) Output Voltage  
6
Micronas  
 
DATA SHEET  
HAL401  
3. Specifications  
3.1. Outline Dimensions  
Fig. 3–1:  
SOT89B-1: Plastic Small Outline Transistor package, 4 leads  
Weight approximately 0.034 g  
Micronas  
7
 
HAL401  
DATA SHEET  
3.2. Dimensions of Sensitive Area  
0.37 mm x 0.17 mm  
3.3. Position of Sensitive Area  
SOT89B-1  
y
0.95 mm nominal  
3.4. Absolute Maximum Ratings  
Stresses beyond those listed in the “Absolute Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only. Functional operation of the device at these conditions is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods will affect device reliability.  
This device contains circuitry to protect the inputs and outputs against damage due to high static voltages or electric  
fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than absolute  
maximum-rated voltages to this circuit.  
All voltages listed are referenced to ground (GND).  
Symbol  
Parameter  
Pin No.  
1
Min.  
–12  
–0.3  
–5  
Max.  
12  
Unit  
V
V
DD  
V
O
Supply Voltage  
Output Voltage  
2, 3  
2, 3  
12  
V
I
O
Continuous Output Current  
Junction Temperature Range  
Ambient Temperature  
5
mA  
°C  
T
–40  
170  
J
T
A
at V = 5 V  
150  
125  
°C  
°C  
DD  
at V = 12 V  
DD  
3.4.1. Storage and Shelf Life  
The permissible storage time (shelf life) of the sensors is unlimited, provided the sensors are stored at a maximum of  
30 °C and a maximum of 85% relative humidity. At these conditions, no Dry Pack is required.  
Solderability is guaranteed for one year from the date code on the package.  
8
Micronas  
DATA SHEET  
HAL401  
3.5. Recommended Operating Conditions  
Functional operation of the device beyond those indicated in the “Recommended Operating Conditions” of this specifi-  
cation is not implied, may result in unpredictable behavior of the device and may reduce reliability and lifetime.  
All voltages listed are referenced to ground (GND).  
Symbol  
Parameter  
Pin No.  
2, 3  
2, 3  
2, 3  
1
Min.  
–2.25  
–1  
Max.  
2.25  
1
Unit  
mA  
mA  
nF  
Remarks  
T = 25 °C  
I
O
I
O
Continuous Output Current  
Continuous Output Current  
Load Capacitance  
J
T = 170 °C  
J
C
1
L
V
DD  
Supply Voltage  
4.8  
12  
V
see Fig. 3–2  
B
Magnetic Field Range  
–50  
50  
mT  
V
DD  
power dissipation limit  
12 V  
11.5 V  
8.0 V  
6.8 V  
4.8 V  
4.5 V  
min. V  
DD  
for specified  
sensitivity  
–40 °C  
150 °C T  
A
25 °C  
125 °C  
Fig. 3–2: Recommended Operating Supply Voltage  
Micronas  
9
HAL401  
DATA SHEET  
3.6. Characteristics at T = –40 °C to +170 °C , V = 4.8 V to 12 V, GND = 0 V  
J
DD  
at Recommended Operation Conditions (Fig. 3–2 for T and V ) as not otherwise specified in the columnConditions”.  
A
DD  
Typical characteristics for T = 25 °C, V = 6.8 V and –50 mT < B < 50 mT  
J
DD  
Symbol  
Parameter  
Pin No.  
Min.  
11  
Typ.  
14.5  
14.5  
Max.  
17.1  
18.5  
Unit  
mA  
mA  
Conditions  
T = 25 °C, I  
I
I
Supply Current  
1
1
= 0 mA  
OUT1,2  
DD  
DD  
J
Supply Current over  
Temperature Range  
9
I
I
I
= 0 mA  
OUT1,2  
OUT1,2  
OUT1,2  
V
CM  
Common Mode Output Voltage  
2, 3  
2, 3  
2.1  
2.2  
0
2.3  
2.5  
V
= 0 mA,  
= 0 mA,  
V
CM  
= (V  
+ V  
) / 2  
OUT1  
OUT2  
CMRR  
Common Mode Rejection Ratio  
–2.5  
mV/V  
CMRR is limited by the influ-  
ence of power dissipation.  
S
Differential Magnetic Sensitivity  
2–3  
2–3  
2–3  
42  
48.5  
46.5  
–0.2  
0
55  
55  
1.5  
25  
mV/mT  
mV/mT  
mT  
–50 mT < B < 50 mT  
T = 25 °C  
J
B
S
B
Differential Magnetic Sensitivity  
over Temperature Range  
37.5  
–1.5  
–25  
–50 mT < B < 50 mT  
B
Magnetic Offset  
over Temperature  
B = 0 mT, I  
B = 0 mT, I  
= 0 mA  
offset  
OUT1,2  
ΔB  
ΔT  
/
Magnetic Offset Change  
Bandwidth (–3 dB)  
μT/K  
= 0 mA  
OFFSET  
OUT1,2  
1)  
BW  
2–3  
2–3  
10  
2
kHz  
%
without external Filter  
NL  
Non-Linearity  
0.5  
–50 mT < B < 50 mT  
dif  
of Differential Output  
NL  
Non-Linearity  
2, 3  
2
%
single  
of Single Ended Output  
f
Chopper Frequency over Temp.  
2, 3  
2, 3  
147  
0.6  
kHz  
V
CH  
V
Peak-to-Peak  
1.3  
OUTACpp  
AC Output Voltage  
n
Magnetic RMS Differential  
Broadband Noise  
2–3  
2–3  
2–3  
2, 3  
2, 3  
10  
μT  
Hz  
Hz  
Ω
BW = 10 Hz to 10 kHz  
B = 0 mT  
meff  
f
f
Corner Frequency  
of 1/f Noise  
10  
Cflicker  
Corner Frequency  
of 1/f Noise  
100  
30  
B = 50 mT  
Cflicker  
R
R
R
Output Impedance  
50  
150  
200  
I
v
2.5 mA,  
OUT  
OUT  
thJSB  
OUT1,2  
T = 25 °C, V = 6.8 V  
J
DD  
Output Impedance  
over Temperature  
30  
Ω
I
v
2.5 mA  
OUT1,2  
Thermal Resistance Junction to  
Substrate Backside  
150  
K/W  
Fiberglass Substrate  
30 mm x 10 mm x 1.5 mm  
pad size (see Fig. 3–3)  
case  
SOT89B-1  
1)  
with external 2 pole filter (f  
= 5 kHz), V  
is reduced to less than 1 mV by limiting the bandwith  
OUTAC  
3db  
10  
Micronas  
DATA SHEET  
HAL401  
1.80  
1.05  
1.45  
2.90  
1.05  
0.50  
1.50  
Fig. 3–3: Recommended footprint SOT89B,  
Dimensions in mm  
Note: All dimensions are for reference only. The pad  
size may vary depending on the requirements of  
the soldering process.  
Micronas  
11  
HAL401  
DATA SHEET  
V
5
V
0.05  
T
A
= 25 °C  
B = 0 mT  
T = –40 °C  
V
= 6.8 V  
0.04  
0.03  
0.02  
0.01  
0.00  
DD  
V
OUT1  
V
OUT2  
A
V
OFFS  
4
3
2
1
0
T = 25 °C  
A
V
OUT1  
V
OUT2  
T = 125 °C  
A
T = 150 °C  
A
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–150 –100 –50  
0
50  
100 150  
2
4
6
8
10  
12  
14 V  
mT  
B
V
DD  
Fig. 3–4: Typical output voltages  
Fig. 3–6: Typical differential output offset  
versus magnetic flux density  
voltage versus supply voltage  
mT  
2.0  
mT  
2.0  
B = 0 mT  
T = –40 °C  
B = 0 mT  
1.5  
1.0  
1.5  
A
B
OFFS  
B
OFFS  
V
DD  
V
DD  
V
DD  
= 4.8 V  
= 6.0 V  
= 12 V  
T = 25 °C  
A
1.0  
0.5  
T = 125 °C  
A
T = 150 °C  
A
0.5  
0.0  
0.0  
–0.5  
–1.0  
–1.5  
–2  
–0.5  
–1.0  
–1.5  
–2  
2
4
6
8
10  
12  
14 V  
–50 –25  
0
25 50 75 100 125 150 °C  
V
DD  
T
A
Fig. 3–5: Typical magnetic offset of  
differential output versus supply voltage  
Fig. 3–7: Typical magnetic offset of differential  
output versus ambient temperature  
12  
Micronas  
DATA SHEET  
HAL401  
mV/mT  
60  
mV/mT  
60  
B = ±50 mT  
B = ±50 mT  
55  
55  
S
B
S
B
50  
45  
40  
35  
30  
25  
20  
15  
50  
45  
40  
35  
30  
25  
20  
15  
T = –40 °C  
A
V
DD  
V
DD  
V
DD  
= 4.8 V  
T = 25 °C  
A
= 6.0 V  
= 12 V  
T = 125 °C  
A
T = 150 °C  
A
2
4
6
8
10  
12  
14 V  
–50 –25  
0
25 50 75 100 125 150 °C  
V
DD  
T
A
Fig. 3–8: Typical differential magnetic  
Fig. 3–10: Typical differential magnetic  
sensitivity versus supply voltage  
sensitivity versus ambient temperature  
%
%
1.5  
1.5  
T = 25 °C  
A
V
DD  
= 6.8 V  
1.0  
0.5  
1.0  
0.5  
NL  
NL  
dif  
dif  
0.0  
0.0  
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
V
V
V
= 4.8 V  
T = –40 °C  
A
DD  
DD  
DD  
= 6.0 V  
= 12 V  
T = 25 °C  
A
T = 125 °C  
A
T = 150 °C  
A
–80 –60 –40 –20  
0
20 40 60 80 mT  
–80 –60 –40 –20  
0
20 40 60 80 mT  
B
B
Fig. 3–9: Typical non-linearity of differential  
Fig. 3–11: Typicalnon-linearityofdifferential  
output versus magnetic flux density  
output versus magnetic flux density  
Micronas  
13  
HAL401  
DATA SHEET  
%
3
%
3
T = 25 °C  
A
V
DD  
= 6.0 V  
2
2
1
NL  
NL  
single  
single  
1
0
0
–1  
–2  
–3  
–1  
–2  
–3  
V
V
= 4.8 V  
DD  
T = –40 °C  
A
= 12 V  
DD  
T = 25 °C  
A
T = 125 °C  
A
T = 150 °C  
A
–80 –60 –40 –20  
0
20 40 60 80 mT  
–80 –60 –40 –20  
0
20 40 60 80 mT  
B
B
Fig. 3–12: Typical single-ended non-linearity  
Fig. 3–14: Typical non-linearity of single-  
versus magnetic flux density  
ended output versus magnetic flux density  
kHz  
200  
kHz  
200  
180  
180  
f
f
CH  
CH  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
T = –40 °C  
A
60  
60  
T = 25 °C  
A
V
DD  
V
DD  
V
DD  
= 4.8 V  
= 6.0 V  
= 12 V  
T = 125 °C  
A
40  
40  
T = 150 °C  
A
20  
20  
0
0
2
4
6
8
10  
12  
14 V  
–50 –25  
0
25 50 75 100 125 150  
°C  
V
DD  
T
A
Fig. 3–13: Typical chopper frequency  
Fig. 3–15: Typical chopper frequency  
versus supply voltage  
versus ambient temperature  
14  
Micronas  
DATA SHEET  
HAL401  
V
V
2.4  
2.25  
2.24  
2.23  
2.22  
2.21  
2.20  
2.19  
2.18  
2.17  
2.16  
2.15  
2.2  
V
CM  
V
CM  
2.0  
1.8  
1.6  
1.4  
1.2  
1
V
= 4.8 V  
= 12 V  
DD  
V
DD  
T = –40 °C  
A
T = 25 °C  
A
T = 150 °C  
A
2
4
6
8
10  
12  
14 V  
–50 –25  
0
25 50 75 100 125 150  
°C  
V
DD  
T
A
Fig. 3–16: Typical common mode output  
Fig. 3–18: Typical common mode output  
voltage versus supply voltage  
voltage versus ambient temperature  
mV  
mV  
1000  
1000  
T = 25 °C  
A
V
V
V
V
OUT1pp,  
OUT2pp  
OUT1pp,  
OUT2pp  
800  
600  
400  
200  
0
800  
600  
400  
200  
0
V
V
V
= 4.8 V  
= 6.0 V  
= 12 V  
DD  
DD  
DD  
2
4
6
8
10  
12  
14 V  
–50 –25  
0
25 50 75 100 125 150 °C  
V
DD  
T
A
Fig. 3–17: Typical output AC voltage  
Fig. 3–19: Typical output AC voltage  
versus supply voltage  
versus ambient temperature  
Micronas  
15  
HAL401  
DATA SHEET  
mA  
25  
mA  
20  
I
= 0 mA  
I
= 0 mA  
OUT1,2  
OUT1,2  
20  
I
I
DD  
DD  
15  
10  
15  
10  
5
5
0
–5  
T = –40 °C  
A
–10  
–15  
–20  
–25  
T = 25 °C  
A
T = –40 °C  
A
T = 125 °C  
A
T = 25 °C  
A
T = 150 °C  
A
T = 125 °C  
A
T = 150 °C  
A
0
–15 –10  
–5  
0
5
10  
15 V  
2
3
4
5
6
7
8 V  
V
DD  
V
DD  
Fig. 3–20: Typical supply current  
Fig. 3–22: Typical supply current  
versus supply voltage  
versus supply voltage  
mA  
20  
mA  
25  
B = 0 mT  
B = 0 mT  
I
I
DD  
DD  
20  
15  
10  
5
15  
10  
5
V
V
= 4.8 V  
= 12 V  
DD  
DD  
V
DD  
V
DD  
V
DD  
= 4.8 V  
= 6.0 V  
= 12 V  
0
0
–50 –25  
0
25 50 75 100 125 150 °C  
–6  
–4  
–2  
0
2
4
6 mA  
T
A
I
OUT1,2  
Fig. 3–21: Typical supply current  
Fig. 3–23: Typical supply current  
versus temperature  
versus output current  
16  
Micronas  
DATA SHEET  
HAL401  
dBTrms  
Ǹ
Hz  
Ω
200  
–100  
–110  
–120  
–130  
–140  
–150  
B = 0 mT  
= 4.8 V  
T = 25 °C  
A
180  
V
DD  
V
DD  
V
DD  
R
n
meff  
OUT  
160  
140  
120  
100  
80  
= 6.0 V  
= 12 V  
B = 0 mT  
B = 65 mT  
60  
40  
83 nT  
20  
Ǹ
Hz  
0
–50 –25  
0
25 50 75 100 125 150 °C  
0.1 1  
10 100 1k 10k 100k 1M Hz  
T
A
f
Fig. 3–24: Typical dynamic differential  
Fig. 3–26: Typical magnetic noise spectrum  
output resistance versus temperature  
dB  
20  
T
A
= 25 °C  
0 dB = 42.5 mV/mT  
10  
0
s
B
–10  
–20  
–30  
–40  
10  
100  
1 k  
10 k 100 k  
f
B
Fig. 3–25: Typical magnetic frequency  
response  
Micronas  
17  
HAL401  
DATA SHEET  
4. Application Notes  
4.3. Application Circuit  
Mechanical stress on the device surface (caused by the  
package of the sensor module or overmolding) can influ-  
ence the sensor performance.  
The normal integrating characteristics of a voltmeter is  
sufficient for signal filtering.  
V
DD  
The parameter V  
(see Fig. 2–2) increases with  
OUTACpp  
external mechanical stress. This can cause linearity er-  
rors at the limits of the recommended operation condi-  
tions.  
4.7n  
1
47 n  
330 p  
V
DD  
Oscillo-  
scope  
HAL401  
OUT1  
2
Ch1  
4.1. Ambient Temperature  
3.3 k  
6.8 n  
3.3 k  
1 k  
1 k  
3
Due to internal power dissipation, the temperature on  
OUT2  
Ch2  
the silicon chip (junction temperature T ) is higher than  
the temperature outside the package (ambient tempera-  
J
47 n  
330 p  
ture T ).  
A
GND  
4
T = T + ΔT  
J
A
Do not connect OUT1 or OUT2 to Ground.  
Atstaticconditionsandcontinuousoperation, thefollow-  
ing equation applies:  
Fig. 4–1: Filtering of output signals  
ΔT = I * V * R  
thJSB  
DD  
DD  
Display the difference between channel 1 and channel  
2 to show the Hall voltage. Capacitors 4.7 nF and 330 pF  
for electromagnetic immunity are recommended.  
For all sensors, the junction temperature range T is  
J
specified. The maximum ambient temperature T  
can be calculated as:  
Amax  
V
DD  
T
Amax  
= T  
ΔT  
Jmax  
1
For typical values, use the typical parameters. For worst  
V
DD  
case calculation, use the max. parameters for I and  
DD  
Voltage  
Meter  
R , and the max. value for V from the application.  
HAL401  
OUT1  
th  
DD  
2
3
High  
4.2. EMC and ESD  
OUT2  
Low  
Please contact Micronas for detailed information on  
EMC and ESD results.  
GND  
4
Do not connect OUT1 or OUT2 to Ground.  
Fig. 4–2: Flux density measurement with voltmeter  
18  
Micronas  
 
DATA SHEET  
HAL401  
V
CC  
V
DD  
1.33 C  
4.7n  
1
330 p  
V
DD  
R+ΔR  
HAL401  
OUT1  
0.75 R  
ADC  
1.5 R  
R
2
0.22 R  
CMOS  
OPV  
+
3
OUT2  
330 p  
4.4 C  
3 C  
R–ΔR  
GND  
4
Do not connect OUT1 or OUT2 to Ground.  
Fig. 4–3: Differential HAL401 output to single-ended output  
R = 10 kΩ, C = 7.5 nF, ΔR for offset adjustment, BW = 1.3 kHz  
–3dB  
VCCy6 V  
V
DD  
2.2 n  
4.7 n  
1
330 p  
V
DD  
4.7 k  
HAL401  
OUT1  
1 n  
2
4.7 k  
4.7 k  
4.7 k  
CMOS  
OPV  
+
3
4.7 k  
3.0 k  
8.2 n  
CMOS  
OPV  
+
OUT2  
OUT  
4.7 k  
330 p  
4.7 n  
GND  
4
Do not connect OUT1 or OUT2 to Ground.  
VEEx*6 V  
Fig. 4–4: Differential HAL401 output to single-ended output (referenced to ground), filter – BW  
= 14.7 kHz  
–3dB  
Micronas  
19  
HAL401  
DATA SHEET  
5. Data Sheet History  
1. Final Data Sheet: “HAL401 Linear Hall Effect Sen-  
sor IC”, June 26, 2002, 6251-470-1DS.  
First release of the final data sheet.  
2. Final Data Sheet: “HAL401 Linear Hall Effect Sen-  
sor IC”, Sept. 14, 2004, 6251-470-2DS.  
Second release of the final data sheet.  
Major changes:  
– new package diagram for SOT89-1  
3. Final Data Sheet: “HAL401 Linear Hall Effect Sen-  
sor IC”, Dec. 8, 2008, DSH000018_002EN  
Third release of the final data sheet.  
Major changes:  
– Section 1.5. “Solderability and Welding” updated  
– package diagrams updated  
– Fig. 3–3: “Recommended footprint SOT89B” added  
Micronas GmbH  
Hans-Bunte-Strasse 19 · D-79108 Freiburg · P.O. Box 840 · D-79008 Freiburg, Germany  
Tel. +49-761-517-0 · Fax +49-761-517-2174 · E-mail: docservice@micronas.com · Internet: www.micronas.com  
20  
Micronas  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY