EDBA164B4PK-1DATF-D [MICRON]

216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM Features;
EDBA164B4PK-1DATF-D
型号: EDBA164B4PK-1DATF-D
厂家: MICRON TECHNOLOGY    MICRON TECHNOLOGY
描述:

216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM Features

动态存储器 双倍数据速率 光电二极管
文件: 总152页 (文件大小:2119K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Features  
LPDDR2 SDRAM  
EDB8164B4PR, EDB8164B4PK, EDB8164B4PT, EDBA164B2PR  
Options  
Marking  
Features  
• Ultra-low-voltage core and I/O power supplies  
• Frequency range  
– 533 MHz (data rate: 1066 Mb/s/pin)  
• 4n prefetch DDR architecture  
• 8 internal banks for concurrent operation  
• Multiplexed, double data rate, command/address  
inputs; commands entered on each CK_t/CK_c  
edge  
• Bidirectional/differential data strobe per byte of  
data (DQS_t/DQS_c)  
• Programmable READ and WRITE latencies (RL/WL)  
• Burst length: 4, 8, and 16  
• Per-bank refresh for concurrent operation  
• Auto temperature-compensated self refresh  
(ATCSR) by built-in temperature sensor  
• Partial-array self refresh (PASR)  
• Deep power-down mode (DPD)  
• Selectable output drive strength (DS)  
• Clock-stop capability  
• Density/Page Size  
– 8Gb/2-CS – dual die  
– 16Gb/4-CS – quad die  
• Organization  
81  
A1  
– x64  
64  
B
• VDD1/VDD2/VDDQ: 1.8V/1.2V/1.2V  
• Revision  
– Dual die  
4
2
– Quad die  
• FBGA “green” package  
– 12mm x 12mm x 0.8mm, 216-ball  
PoP FBGA package, dual die  
– 12mm x 12mm x 0.8mm, 216-ball  
PoP FBGA package, dual die  
– 12mm x 12mm x 1.0mm, 216-ball  
PoP FBGA package, quad die  
– 14mm x 14mm x 0.7mm, 220-ball  
PoP FBGA package, dual die  
• Timing – cycle time  
– 1.875ns @ RL = 8  
PR  
PT  
PR  
PK  
-1D  
• Lead-free (RoHS-compliant) and halogen-free  
packaging  
• Special options  
– Non-Automotive  
blank  
• Operating temperature range  
– From –30°C to +85°C  
– From –40°C to +85°C  
– From –40°C to +105°C  
blank  
IT  
AT  
Table 1: Key Timing Parameters  
Speed  
Grade  
Clock Rate Data Rate  
(MHz)  
(Mb/s/pin)  
RL  
WL  
1D  
533  
1066  
8
4
Table 2: S4 Configuration Addressing  
Architecture  
128 Meg x 64  
256 Meg x 64  
Die configuration  
Row addressing  
Column addressing  
Number of die  
Die per rank  
16 Meg x 32 x 8 banks x 2 channel  
32 Meg x 32 x 8 banks x 2 channel  
16K A[13:0]  
16K A[13:0]  
1K A[9:0]  
1K A[9:0]  
2
1
1
4
2
2
Ranks per channel  
1. A channel is a complete LPDRAM interface, including command/address and data pins.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
1
Products and specifications discussed herein are subject to change by Micron without notice.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Features  
Figure 1: LPDDR2 Part Numbering  
-
D
E
D
B
81 64  
B
4
PR -1D  
IT  
F
Micron Technology  
Packing Media  
D = Dry Pack (Tray)  
R = Tape and Reel  
Type  
D = Packaged device  
Environment Code  
F = Lead-free (RoHS-compliant)  
and halogen-free  
Product Family  
B = Mobile LPDDR2 SDRAM  
Operating Temperature  
Density/Chip Select  
81 = 8Gb/2-CS  
A1 = 16Gb/4-CS (2-CS/channel)  
Blank = –30°C to +85°C  
IT = –40°C to +85°C  
AT = –40°C to +105°C  
Organization  
64 = x64  
Special options  
Blank = Non-Automotive  
Power Supply Interface  
B = VDD1 = 1.8V, VDD2 = VDDQ = 1.2V,  
Speed  
1D = 1066 Mb/s  
S4B device, HSUL  
Package  
PR = BGA for Pop  
PT = BGA for Pop  
PK = BGA for Pop  
Revision  
FBGA Part Marking Decoder  
Due to space limitations, FBGA-packaged components have an abbreviated part marking that is different from the  
part number. Micron’s FBGA part marking decoder is available at www.micron.com/decoder.  
Table 3: Package Codes and Descriptions  
Package  
Code  
Ball  
Count  
# Chan-  
nels  
Die per  
Package  
Solder Ball  
Composition  
# Ranks  
Size (mm)  
PR  
PT  
PR  
PK  
216  
216  
216  
220  
1
1
2
1
2
2
2
2
12mm x 12mm x 0.80mm, 0.40 pitch  
12mm x 12mm x 0.80mm, 0.40 pitch  
12mm x 12mm x 1.00mm, 0.40 pitch  
14mm x 14mm x 0.70mm, 0.50 pitch  
DDP  
DDP  
QDP  
DDP  
SAC302  
SAC302  
SAC302  
SAC302  
1. DDP = dual-die package, QDP = quad-die package  
Notes:  
2. Solder ball material: SAC302 (96.8% Sn, 3% Ag, 0.2% Cu).  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
2
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Features  
Contents  
LPDDR2 Array Configuration ............................................................................................................................ 9  
General Notes .............................................................................................................................................. 9  
I
DD Specifications ........................................................................................................................................... 10  
Package Block Diagrams ................................................................................................................................. 16  
Package Dimensions ....................................................................................................................................... 18  
Ball Assignments ............................................................................................................................................ 21  
Ball Descriptions ............................................................................................................................................ 24  
Functional Description ................................................................................................................................... 25  
Simplified State Diagram ................................................................................................................................ 26  
Power-Up and Initialization ............................................................................................................................ 28  
Voltage Ramp and Device Initialization ....................................................................................................... 28  
Initialization After RESET (Without Voltage Ramp) ...................................................................................... 30  
Power-Off Sequence ....................................................................................................................................... 30  
Uncontrolled Power-Off Sequence .............................................................................................................. 31  
Mode Register Definition ................................................................................................................................ 31  
Mode Register Assignments and Definitions ................................................................................................ 31  
Commands and Timing .................................................................................................................................. 42  
ACTIVATE Command ..................................................................................................................................... 43  
8-Bank Device Operation ............................................................................................................................ 44  
Read and Write Access Modes ......................................................................................................................... 45  
Burst READ Command ................................................................................................................................... 45  
READs Interrupted by a READ ..................................................................................................................... 52  
Burst WRITE Command .................................................................................................................................. 52  
WRITEs Interrupted by a WRITE ................................................................................................................. 55  
BURST TERMINATE Command ...................................................................................................................... 55  
Write Data Mask ............................................................................................................................................. 57  
PRECHARGE Command ................................................................................................................................. 58  
READ Burst Followed by PRECHARGE ......................................................................................................... 59  
WRITE Burst Followed by PRECHARGE ....................................................................................................... 60  
Auto Precharge operation ........................................................................................................................... 61  
READ Burst with Auto Precharge ................................................................................................................. 61  
WRITE Burst with Auto Precharge ............................................................................................................... 62  
REFRESH Command ...................................................................................................................................... 64  
REFRESH Requirements ............................................................................................................................. 66  
SELF REFRESH Operation ............................................................................................................................... 73  
Partial-Array Self Refresh – Bank Masking .................................................................................................... 75  
Partial-Array Self Refresh – Segment Masking .............................................................................................. 75  
MODE REGISTER READ ................................................................................................................................. 76  
Temperature Sensor ................................................................................................................................... 78  
DQ Calibration ........................................................................................................................................... 80  
MODE REGISTER WRITE Command ............................................................................................................... 82  
MRW RESET Command .............................................................................................................................. 82  
MRW ZQ Calibration Commands ................................................................................................................ 83  
ZQ External Resistor Value, Tolerance, and Capacitive Loading ..................................................................... 85  
Power-Down .................................................................................................................................................. 85  
Deep Power-Down ......................................................................................................................................... 92  
Input Clock Frequency Changes and Stop Events ............................................................................................. 93  
Input Clock Frequency Changes and Clock Stop with CKE LOW ................................................................... 93  
Input Clock Frequency Changes and Clock Stop with CKE HIGH .................................................................. 94  
NO OPERATION Command ............................................................................................................................ 94  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
3
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Features  
Truth Tables ................................................................................................................................................... 94  
Absolute Maximum Ratings ........................................................................................................................... 102  
Input/Output Capacitance ............................................................................................................................. 102  
Electrical Specifications – IDD Specifications and Conditions ........................................................................... 103  
AC and DC Operating Conditions ................................................................................................................... 106  
AC and DC Logic Input Measurement Levels for Single-Ended Signals ............................................................. 107  
VREF Tolerances ......................................................................................................................................... 108  
Input Signal .............................................................................................................................................. 110  
AC and DC Logic Input Measurement Levels for Differential Signals ................................................................ 112  
Single-Ended Requirements for Differential Signals .................................................................................... 113  
Differential Input Crosspoint Voltage ......................................................................................................... 115  
Input Slew Rate ......................................................................................................................................... 116  
Output Characteristics and Operating Conditions ........................................................................................... 116  
Single-Ended Output Slew Rate .................................................................................................................. 117  
Differential Output Slew Rate ..................................................................................................................... 118  
HSUL_12 Driver Output Timing Reference Load ......................................................................................... 120  
Output Driver Impedance .............................................................................................................................. 121  
Output Driver Impedance Characteristics with ZQ Calibration .................................................................... 122  
Output Driver Temperature and Voltage Sensitivity ..................................................................................... 123  
Output Impedance Characteristics Without ZQ Calibration ......................................................................... 123  
Clock Specification ........................................................................................................................................ 126  
tCK(abs), tCH(abs), and tCL(abs) ................................................................................................................ 128  
Clock Period Jitter .......................................................................................................................................... 128  
Clock Period Jitter Effects on Core Timing Parameters ................................................................................. 128  
Cycle Time Derating for Core Timing Parameters ........................................................................................ 129  
Clock Cycle Derating for Core Timing Parameters ....................................................................................... 129  
Clock Jitter Effects on Command/Address Timing Parameters ..................................................................... 129  
Clock Jitter Effects on READ Timing Parameters .......................................................................................... 129  
Clock Jitter Effects on WRITE Timing Parameters ........................................................................................ 130  
Refresh Requirements Parameters .................................................................................................................. 131  
AC Timing ..................................................................................................................................................... 131  
CA and CS_n Setup, Hold, and Derating .......................................................................................................... 137  
Data Setup, Hold, and Slew Rate Derating ....................................................................................................... 145  
Revision History ............................................................................................................................................ 152  
Rev. F – 08/16 ............................................................................................................................................ 152  
Rev. E – 05/16 ............................................................................................................................................ 152  
Rev. D – 03/16 ............................................................................................................................................ 152  
Rev. C – 02/16 ............................................................................................................................................ 152  
Rev. B – 01/15 ............................................................................................................................................ 152  
Rev. A – 09/14 ............................................................................................................................................ 152  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
4
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Features  
List of Figures  
Figure 1: LPDDR2 Part Numbering ................................................................................................................... 2  
Figure 2: Dual Die Single Rank, Dual Channel Package Block Diagram ............................................................. 16  
Figure 3: Quad Die Dual Rank, Dual Channel Package Block Diagram ............................................................. 17  
Figure 4: 216-Ball FBGA (12mm x 12mm x 0.8mm) – EDB8164B4PR, EDB8164B4PT ......................................... 18  
Figure 5: 216-Ball FBGA (12mm x 12mm x 1.0mm) – EDBA164B2PR ................................................................ 19  
Figure 6: 220-Ball FBGA (14mm x 14mm x 0.7mm) – EDB8164B4PK ................................................................ 20  
Figure 7: 216-Ball Dual-Channel FBGA – 2 x 4Gb Die ...................................................................................... 21  
Figure 8: 220-Ball Dual-Channel FBGA – 2 x 4Gb Die ...................................................................................... 22  
Figure 9: 216-Ball Dual-Channel FBGA – 4 x 4Gb Die ...................................................................................... 23  
Figure 10: Functional Block Diagram ............................................................................................................. 26  
Figure 11: Simplified State Diagram ............................................................................................................... 27  
Figure 12: Voltage Ramp and Initialization Sequence ...................................................................................... 30  
Figure 13: Command and Input Setup and Hold ............................................................................................. 43  
Figure 14: CKE Input Setup and Hold ............................................................................................................. 43  
Figure 15: ACTIVATE Command .................................................................................................................... 44  
Figure 16: tFAW Timing (8-Bank Devices) ....................................................................................................... 45  
Figure 17: READ Output Timing – tDQSCK (MAX) ........................................................................................... 46  
Figure 18: READ Output Timing – tDQSCK (MIN) ........................................................................................... 46  
Figure 19: Burst READ – RL = 5, BL = 4, tDQSCK > tCK ..................................................................................... 47  
Figure 20: Burst READ – RL = 3, BL = 8, tDQSCK < tCK ..................................................................................... 47  
Figure 21: tDQSCKDL Timing ........................................................................................................................ 48  
Figure 22: tDQSCKDM Timing ....................................................................................................................... 49  
Figure 23: tDQSCKDS Timing ......................................................................................................................... 50  
Figure 24: Burst READ Followed by Burst WRITE – RL = 3, WL = 1, BL = 4 ......................................................... 51  
Figure 25: Seamless Burst READ – RL = 3, BL = 4, tCCD = 2 .............................................................................. 51  
Figure 26: READ Burst Interrupt Example – RL = 3, BL = 8, tCCD = 2 ................................................................. 52  
Figure 27: Data Input (WRITE) Timing ........................................................................................................... 53  
Figure 28: Burst WRITE – WL = 1, BL = 4 ......................................................................................................... 53  
Figure 29: Burst WRITE Followed by Burst READ – RL = 3, WL = 1, BL = 4 ......................................................... 54  
t
Figure 30: Seamless Burst WRITE – WL = 1, BL = 4, CCD = 2 ............................................................................ 54  
t
Figure 31: WRITE Burst Interrupt Timing – WL = 1, BL = 8, CCD = 2 ................................................................ 55  
Figure 32: Burst WRITE Truncated by BST – WL = 1, BL = 16 ............................................................................ 56  
Figure 33: Burst READ Truncated by BST – RL = 3, BL = 16 ............................................................................... 57  
Figure 34: Data Mask Timing ......................................................................................................................... 57  
Figure 35: Write Data Mask – Second Data Bit Masked .................................................................................... 58  
Figure 36: READ Burst Followed by PRECHARGE – RL = 3, BL = 8, RU(tRTP(MIN)/tCK) = 2 ................................ 59  
Figure 37: READ Burst Followed by PRECHARGE – RL = 3, BL = 4, RU(tRTP(MIN)/tCK) = 3 ................................ 60  
Figure 38: WRITE Burst Followed by PRECHARGE – WL = 1, BL = 4 .................................................................. 61  
Figure 39: READ Burst with Auto Precharge – RL = 3, BL = 4, RU(tRTP(MIN)/tCK) = 2 ........................................ 62  
Figure 40: WRITE Burst with Auto Precharge – WL = 1, BL = 4 .......................................................................... 63  
Figure 41: tSRF Definition .............................................................................................................................. 67  
Figure 42: Regular Distributed Refresh Pattern ............................................................................................... 69  
Figure 43: Supported Transition from Repetitive REFRESH Burst .................................................................... 70  
Figure 44: Nonsupported Transition from Repetitive REFRESH Burst .............................................................. 71  
Figure 45: Recommended Self Refresh Entry and Exit ..................................................................................... 72  
Figure 46: All-Bank REFRESH Operation ........................................................................................................ 73  
Figure 47: Per-Bank REFRESH Operation ....................................................................................................... 73  
Figure 48: SELF REFRESH Operation .............................................................................................................. 74  
Figure 49: MRR Timing – RL = 3, tMRR = 2 ...................................................................................................... 76  
Figure 50: READ to MRR Timing – RL = 3, tMRR = 2 ......................................................................................... 77  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
5
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Features  
Figure 51: Burst WRITE Followed by MRR – RL = 3, WL = 1, BL = 4 ................................................................... 78  
Figure 52: Temperature Sensor Timing ........................................................................................................... 80  
Figure 53: MR32 and MR40 DQ Calibration Timing – RL = 3, tMRR = 2 ............................................................. 81  
t
Figure 54: MODE REGISTER WRITE Timing – RL = 3, MRW = 5 ....................................................................... 82  
Figure 55: ZQ Timings ................................................................................................................................... 84  
Figure 56: Power-Down Entry and Exit Timing ................................................................................................ 86  
Figure 57: CKE Intensive Environment ........................................................................................................... 86  
Figure 58: REFRESH-to-REFRESH Timing in CKE Intensive Environments ...................................................... 86  
Figure 59: READ to Power-Down Entry ........................................................................................................... 87  
Figure 60: READ with Auto Precharge to Power-Down Entry ............................................................................ 88  
Figure 61: WRITE to Power-Down Entry ......................................................................................................... 89  
Figure 62: WRITE with Auto Precharge to Power-Down Entry .......................................................................... 90  
Figure 63: REFRESH Command to Power-Down Entry .................................................................................... 91  
Figure 64: ACTIVATE Command to Power-Down Entry ................................................................................... 91  
Figure 65: PRECHARGE Command to Power-Down Entry ............................................................................... 91  
Figure 66: MRR Command to Power-Down Entry ........................................................................................... 92  
Figure 67: MRW Command to Power-Down Entry .......................................................................................... 92  
Figure 68: Deep Power-Down Entry and Exit Timing ....................................................................................... 93  
Figure 69: VREF DC Tolerance and VREF AC Noise Limits ................................................................................. 108  
Figure 70: LPDDR2-466 to LPDDR2-1066 Input Signal ................................................................................... 110  
Figure 71: LPDDR2-200 to LPDDR2-400 Input Signal ..................................................................................... 111  
Figure 72: Differential AC Swing Time and tDVAC .......................................................................................... 112  
Figure 73: Single-Ended Requirements for Differential Signals ....................................................................... 114  
Figure 74: VIX Definition ............................................................................................................................... 115  
Figure 75: Differential Input Slew Rate Definition for CK_t, CK_c, DQS_t, and DQS_c ...................................... 116  
Figure 76: Single-Ended Output Slew Rate Definition ..................................................................................... 118  
Figure 77: Differential Output Slew Rate Definition ........................................................................................ 119  
Figure 78: Overshoot and Undershoot Definition ........................................................................................... 120  
Figure 79: HSUL_12 Driver Output Reference Load for Timing and Slew Rate ................................................. 121  
Figure 80: Output Driver ............................................................................................................................... 122  
Figure 81: Output Impedance = 240 Ohms, I-V Curves After ZQRESET ............................................................ 125  
Figure 82: Output Impedance = 240 Ohms, I-V Curves After Calibration ......................................................... 126  
Figure 83: Typical Slew Rate and tVAC – tIS for CA and CS_n Relative to Clock ................................................. 141  
Figure 84: Typical Slew Rate – tIH for CA and CS_n Relative to Clock ............................................................... 142  
Figure 85: Tangent Line – tIS for CA and CS_n Relative to Clock ...................................................................... 143  
Figure 86: Tangent Line – tIH for CA and CS_n Relative to Clock ..................................................................... 144  
Figure 87: Typical Slew Rate and tVAC – tDS for DQ Relative to Strobe ............................................................. 148  
Figure 88: Typical Slew Rate – tDH for DQ Relative to Strobe ........................................................................... 149  
Figure 89: Tangent Line – tDS for DQ with Respect to Strobe .......................................................................... 150  
Figure 90: Tangent Line – tDH for DQ with Respect to Strobe .......................................................................... 151  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
6
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Features  
List of Tables  
Table 1: Key Timing Parameters ....................................................................................................................... 1  
Table 2: S4 Configuration Addressing ............................................................................................................... 1  
Table 3: Package Codes and Descriptions ......................................................................................................... 2  
Table 4: IDD Specifications – Dual Die, Dual Channel ...................................................................................... 10  
Table 5: IDD6 Full-Array Self Refresh Current at 45°C for Dual die product ........................................................ 12  
Table 6: IDD6 Partial-Array Self Refresh Current at 85°C for Dual die product .................................................... 12  
Table 7: IDD Specifications – Dual Die, Dual Channel ...................................................................................... 13  
Table 8: IDD6 Partial-Array Self Refresh Current at 105°C Dual die for Dual die prodct ....................................... 15  
Table 9: Ball/Pad Descriptions ....................................................................................................................... 24  
Table 10: Initialization Timing Parameters ...................................................................................................... 30  
Table 11: Power-Off Timing ............................................................................................................................ 31  
Table 12: Mode Register Assignments ............................................................................................................. 32  
Table 13: MR0 Device Information (MA[7:0] = 00h) ......................................................................................... 33  
Table 14: MR0 Op-Code Bit Definitions .......................................................................................................... 33  
Table 15: MR1 Device Feature 1 (MA[7:0] = 01h) .............................................................................................. 33  
Table 16: MR1 Op-Code Bit Definitions .......................................................................................................... 33  
Table 17: Burst Sequence by Burst Length (BL), Burst Type (BT), and Wrap Control (WC) ................................. 34  
Table 18: No-Wrap Restrictions ...................................................................................................................... 35  
Table 19: MR2 Device Feature 2 (MA[7:0] = 02h) .............................................................................................. 35  
Table 20: MR2 Op-Code Bit Definitions .......................................................................................................... 36  
Table 21: MR3 I/O Configuration 1 (MA[7:0] = 03h) ......................................................................................... 36  
Table 22: MR3 Op-Code Bit Definitions .......................................................................................................... 36  
Table 23: MR4 Device Temperature (MA[7:0] = 04h) ........................................................................................ 36  
Table 24: MR4 Op-Code Bit Definitions .......................................................................................................... 37  
Table 25: MR5 Basic Configuration 1 (MA[7:0] = 05h) ...................................................................................... 37  
Table 26: MR5 Op-Code Bit Definitions .......................................................................................................... 37  
Table 27: MR6 Basic Configuration 2 (MA[7:0] = 06h) ...................................................................................... 38  
Table 28: MR6 Op-Code Bit Definitions .......................................................................................................... 38  
Table 29: MR7 Basic Configuration 3 (MA[7:0] = 07h) ...................................................................................... 38  
Table 30: MR7 Op-Code Bit Definitions .......................................................................................................... 38  
Table 31: MR8 Basic Configuration 4 (MA[7:0] = 08h) ...................................................................................... 38  
Table 32: MR8 Op-Code Bit Definitions .......................................................................................................... 38  
Table 33: MR9 Test Mode (MA[7:0] = 09h) ....................................................................................................... 39  
Table 34: MR10 Calibration (MA[7:0] = 0Ah) ................................................................................................... 39  
Table 35: MR10 Op-Code Bit Definitions ........................................................................................................ 39  
Table 36: MR[11:15] Reserved (MA[7:0] = 0Bh–0Fh) ......................................................................................... 40  
Table 37: MR16 PASR Bank Mask (MA[7:0] = 010h) .......................................................................................... 40  
Table 38: MR16 Op-Code Bit Definitions ........................................................................................................ 40  
Table 39: MR16 Bank and OP corresponding table .......................................................................................... 40  
Table 40: MR17 PASR Segment Mask (MA[7:0] = 011h) .................................................................................... 41  
Table 41: MR17 PASR Segment Mask Definitions (1Gb - 8Gb only) ................................................................... 41  
Table 42: MR17 PASR Row Address Ranges in Masked Segments ...................................................................... 41  
Table 43: Reserved Mode Registers ................................................................................................................. 42  
Table 44: MR32 DQ Calibration Pattern A (MA[7:0] = 20H) ............................................................................... 42  
Table 45: MR40 DQ Calibration Pattern B (MA[7:0] = 28H) ............................................................................... 42  
Table 46: MR63 RESET (MA[7:0] = 3Fh) – MRW Only ....................................................................................... 42  
Table 47: Bank Selection for PRECHARGE by Address Bits ............................................................................... 59  
Table 48: PRECHARGE and Auto Precharge Clarification ................................................................................. 63  
Table 49: REFRESH Command Scheduling Separation Requirements .............................................................. 65  
Table 50: Bank and Segment Masking Example ............................................................................................... 75  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
7
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Features  
Table 51: Temperature Sensor Definitions and Operating Conditions .............................................................. 79  
Table 52: Data Calibration Pattern Description ............................................................................................... 82  
Table 53: Truth Table for MRR and MRW ........................................................................................................ 82  
Table 54: Command Truth Table .................................................................................................................... 94  
Table 55: CKE Truth Table .............................................................................................................................. 96  
Table 56: Current State Bank n to Command to Bank n Truth Table ................................................................. 97  
Table 57: Current State Bank n to Command to Bank m Truth Table ................................................................ 99  
Table 58: DM Truth Table .............................................................................................................................. 101  
Table 59: Absolute Maximum DC Ratings ...................................................................................................... 102  
Table 60: Input/Output Capacitance ............................................................................................................. 102  
Table 61: Switching for CA Input Signals ........................................................................................................ 103  
Table 62: Switching for IDD4R ......................................................................................................................... 103  
Table 63: Switching for IDD4W ........................................................................................................................ 104  
Table 64: IDD Specification Parameters and Operating Conditions .................................................................. 104  
Table 65: Recommended DC Operating Conditions ....................................................................................... 106  
Table 66: Input Leakage Current ................................................................................................................... 106  
Table 67: Operating Temperature Range ........................................................................................................ 107  
Table 68: Single-Ended AC and DC Input Levels for CA and CS_n Inputs ......................................................... 107  
Table 69: Single-Ended AC and DC Input Levels for CKE ................................................................................ 107  
Table 70: Single-Ended AC and DC Input Levels for DQ and DM ..................................................................... 108  
Table 71: Differential AC and DC Input Levels ................................................................................................ 112  
Table 72: CK_t/CK_c and DQS_t/DQS_c Time Requirements Before Ringback (tDVAC) ................................... 113  
Table 73: Single-Ended Levels for CK_t, CK_c, DQS_t, DQS_c ......................................................................... 114  
Table 74: Crosspoint Voltage for Differential Input Signals (CK_t, CK_c, DQS_t, DQS_c) .................................. 115  
Table 75: Differential Input Slew Rate Definition ............................................................................................ 116  
Table 76: Single-Ended AC and DC Output Levels .......................................................................................... 116  
Table 77: Differential AC and DC Output Levels ............................................................................................. 117  
Table 78: Single-Ended Output Slew Rate Definition ...................................................................................... 117  
Table 79: Single-Ended Output Slew Rate ...................................................................................................... 118  
Table 80: Differential Output Slew Rate Definition ......................................................................................... 119  
Table 81: Differential Output Slew Rate ......................................................................................................... 119  
Table 82: AC Overshoot/Undershoot Specification ......................................................................................... 120  
Table 83: Output Driver DC Electrical Characteristics with ZQ Calibration ...................................................... 122  
Table 84: Output Driver Sensitivity Definition ................................................................................................ 123  
Table 85: Output Driver Temperature and Voltage Sensitivity ......................................................................... 123  
Table 86: Output Driver DC Electrical Characteristics Without ZQ Calibration ................................................ 123  
Table 87: I-V Curves ..................................................................................................................................... 124  
Table 88: Definitions and Calculations .......................................................................................................... 127  
Table 89: tCK(abs), tCH(abs), and tCL(abs) Definitions ................................................................................... 128  
Table 90: Refresh Requirement Parameters (Per Density) ............................................................................... 131  
Table 91: AC Timing ..................................................................................................................................... 131  
Table 92: CA and CS_n Setup and Hold Base Values (>400 MHz, 1 V/ns Slew Rate) .......................................... 138  
Table 93: CA and CS_n Setup and Hold Base Values (<400 MHz, 1 V/ns Slew Rate) .......................................... 138  
t
Table 94: Derating Values for AC/DC-Based IS/tIH (AC220) ........................................................................... 139  
t
Table 95: Derating Values for AC/DC-Based IS/tIH (AC300) ........................................................................... 139  
t
Table 96: Required Time for Valid Transition – VAC > VIH(AC) and < VIL(AC) ....................................................... 139  
Table 97: Data Setup and Hold Base Values (>400 MHz, 1 V/ns Slew Rate) ....................................................... 145  
Table 98: Data Setup and Hold Base Values (<400 MHz, 1 V/ns Slew Rate) ....................................................... 146  
t
Table 99: Derating Values for AC/DC-Based DS/tDH (AC220) ........................................................................ 146  
t
Table 100: Derating Values for AC/DC-Based DS/tDH (AC300) ....................................................................... 147  
t
Table 101: Required Time for Valid Transition – VAC > VIH(AC) or < VIL(AC) ....................................................... 147  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
8
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
LPDDR2 Array Configuration  
LPDDR2 Array Configuration  
The 4Gb Mobile Low-Power DDR2 SDRAM (LPDDR2) is a high-speed CMOS, dynamic  
random-access memory containing 4,294,967,296-bits. The device is internally config-  
ured as an eight-bank DRAM. Each of the x16’s 536,870,912-bit banks is organized as  
16,384 rows by 2048 columns by 16 bits. Each of the x32’s 536,870,912-bit banks is or-  
ganized as 16,384 rows by 1024 columns by 32 bits.  
General Notes  
Throughout the data sheet, figures and text refer to DQs as “DQ.” DQ should be inter-  
preted as any or all DQ collectively, unless specifically stated otherwise.  
“DQS” and “CK” should be interpreted as DQS_t, DQS_c and CK_t, CK_c respectively,  
unless specifically stated otherwise. “BA” includes all BA pins used for a given density.  
Complete functionality may be described throughout the entire document. Any page or  
diagram may have been simplified to convey a topic and may not be inclusive of all re-  
quirements.  
Any specific requirement takes precedence over a general statement.  
Any functionality not specifically stated herein is considered undefined, illegal, is not  
supported, and will result in unknown operation.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
9
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
DD Specifications  
I
IDD Specifications  
Table 4: IDD Specifications – Dual Die, Dual Channel  
VDD2, VDDQ = 1.14–1.30V; VDD1 = 1.70–1.95V; TC = –40°C to +85°C  
Speed  
Symbol  
IDD01  
Supply  
VDD1  
1066  
16  
Unit Parameter/Condition  
mA All devices in operating one bank active-precharge  
Conditions for operating devices are:  
tCK = tCK(avg) MIN; tRC = tRC (MIN);  
IDD02  
VDDQVDDQ  
100  
CKE is HIGH; CS_n is HIGH between valid commands;  
CA bus inputs are SWITCHING;  
Data bus inputs are STABLE  
IDD2P1  
IDD2P2  
VDD1  
0.8  
1.8  
mA All devices in idle power-down standby current  
tCK = tCK(avg) MIN; CKE is LOW;  
CS_n is HIGH; All banks are idle;  
VDDQVDDQ  
CA bus inputs are SWITCHING;  
Data bus inputs are STABLE  
IDD2PS1  
IDD2PS2  
VDD1  
0.8  
1.8  
mA All devices in idle power-down standby current with clock  
stop  
VDDQVDDQ  
CK_t = LOW, CK_c = HIGH; CKE is LOW;  
CS_n is HIGH; All banks are idle;  
CA bus inputs are STABLE;  
Data bus inputs are STABLE  
IDD2N1  
IDD2N2  
VDD1  
1.2  
26  
mA All devices in idle non power-down standby current.  
tCK = tCK(avg) MIN; CKE is HIGH;  
CS_n is HIGH; All banks idle;  
VDDQVDDQ  
CA bus inputs are SWITCHING;  
Data bus inputs are STABLE  
IDD2NS1  
IDD2NS2  
VDD1  
1.2  
12  
mA All devices in idle non power-down standby current with  
clock stop  
VDDQVDDQ  
CK_t = LOW, CK_c = HIGH; CKE is HIGH;  
CS_n is HIGH; All banks are idle;  
CA bus inputs are STABLE;  
Data bus inputs are STABLE  
IDD3P1  
IDD3P2  
VDD1  
1.6  
10  
mA All devices in active power-down standby current  
tCK = tCK(avg) MIN; CKE is LOW;  
VDDQVDDQ  
CS_n is HIGH; One bank is active;  
CA bus inputs are SWITCHING;  
Data bus inputs are STABLE  
IDD3PS1  
IDD3PS2  
VDD1  
1.6  
10  
mA All devices in active power-down standby current with  
clock stop  
VDDQVDDQ  
CK_t = LOW, CK_c = HIGH; CKE is LOW;  
CS_n is HIGH; One bank is active;  
CA bus inputs are STABLE;  
Data bus inputs are STABLE  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
10  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
DD Specifications  
I
Table 4: IDD Specifications – Dual Die, Dual Channel (Continued)  
VDD2, VDDQ = 1.14–1.30V; VDD1 = 1.70–1.95V; TC = –40°C to +85°C  
Speed  
Symbol  
IDD3N1  
Supply  
VDD1  
1066  
2.4  
Unit Parameter/Condition  
mA All devices in active non power-down standby current  
tCK = tCK(avg) MIN; CKE is HIGH;  
IDD3N2  
VDDQVDDQ  
38  
CS_n is HIGH; One bank active;  
CA bus inputs are SWITCHING;  
Data bus inputs are STABLE  
IDD3NS1  
IDD3NS2  
VDD1  
2.4  
24  
mA All devices in active non power-down standby current  
with clock stop  
VDDQVDDQ  
CK_t = LOW, CK_c = HIGH; CKE is HIGH;  
CS_n is HIGH; One bank is active;  
CA bus inputs are STABLE;  
Data bus inputs are STABLE  
IDD4R1  
IDD4R2  
VDD1  
4
mA All devices in operating burst read  
tCK = tCK(avg) MIN;  
VDDQVDDQ  
840  
CS_n is HIGH between valid commands;  
One bank is active; BL = 4; RL = RL (MIN);  
CA bus inputs are SWITCHING;  
50% data change occurs at each burst transfer  
IDD4W1  
IDD4W2  
VDD1  
4
mA All devices in operating burst write  
tCK = tCK(avg) MIN;  
VDDQVDDQ  
300  
CS_n is HIGH between valid commands;  
One bank is active; BL = 4; WL = WL (MIN);  
CA bus inputs are SWITCHING;  
50% data change occurs at each burst transfer  
IDD51  
IDD52  
VDD1  
40  
mA All devices in all bank auto-refresh  
tCK = tCK(avg) MIN;  
VDDQVDDQ  
240  
CKE is HIGH between valid commands;  
tRC = tRFCab (MIN); Burst refresh;  
CA bus inputs are SWITCHING;  
Data bus inputs are STABLE  
IDD5AB1  
IDD5AB2  
VDD1  
8
mA All devices in all bank auto-refresh  
tCK = tCK(avg) MIN;  
VDDQVDDQ  
40  
CKE is HIGH between valid commands;  
tRC = tREFI;  
CA bus inputs are SWITCHING;  
Data bus inputs are STABLE  
IDD5PB1  
IDD5PB2  
VDD1  
8
mA All devices in per bank auto-refresh  
tCK = tCK(avg) MIN;  
VDDQVDDQ  
40  
CKE is HIGH between valid commands;  
tRC = tREFIpb;  
CA bus inputs are SWITCHING;  
Data bus inputs are STABLE  
1. Published IDD values are the maximum of the distribution of the arithmetic mean.  
2. IDD current specifications are tested after the device is properly initialized.  
Notes:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
11  
© 2014 Micron Technology, Inc. All rights reserved.  
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
DD Specifications  
I
3. VDD2 and VDDQ are connected internally in the package.  
4. The Quad die product IDD for each channel will be the sum of the IDD's for the state of  
operation for each rank (CS) in the channel.  
Table 5: IDD6 Full-Array Self Refresh Current at 45°C for Dual die product  
VDD2, VDDQ = 1.14–1.30V; VDD1 = 1.70–1.95V  
PASR  
Supply  
Value  
400  
Unit  
Parameters/Conditions  
Full array  
VDD1  
μA  
All devices in self refresh  
CK_t = LOW, CK_c = HIGH;  
CKE is LOW;  
CA bus inputs are STABLE;  
Data bus inputs are STABLE  
V
DDQVDDQ  
VDD1  
VDDQVDDQ  
VDD1  
VDDQVDDQ  
VDD1  
1600  
320  
1/2 array  
1/4 array  
1/8 array  
1000  
260  
600  
240  
VDDQVDDQ  
400  
1. IDD6 45°C is the typical of the distribution of the arithmetic mean, Quad die product will  
be double these values when all die are in self refresh mode.  
Note:  
Table 6: IDD6 Partial-Array Self Refresh Current at 85°C for Dual die product  
VDD2, VDDQ = 1.14–1.30V; VDD1 = 1.70–1.95V  
PASR  
Supply  
Value  
1800  
6400  
1300  
4400  
1100  
3400  
1000  
2800  
Unit  
Parameters/Conditions  
Full array  
VDD1  
μA  
All devices in self refresh  
CK_t = LOW, CK_c = HIGH;  
CKE is LOW;  
CA bus inputs are STABLE;  
Data bus inputs are STABLE  
V
DDQVDDQ  
VDD1  
VDDQVDDQ  
VDD1  
VDDQVDDQ  
VDD1  
1/2 array  
1/4 array  
1/8 array  
VDDQVDDQ  
1. IDD6 85°C is the maximum of the distribution of the arithmetic mean, Quad die product  
will be double these values when all die are in self refresh mode.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
12  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
DD Specifications  
I
Table 7: IDD Specifications – Dual Die, Dual Channel  
VDD2, VDDQ = 1.14–1.30V; VDD1 = 1.70–1.95V; TC = –40°C to +105°C  
Speed  
Symbol  
IDD01  
Supply  
VDD1  
1066  
16  
Unit  
Parameter/Condition  
mA  
All devices in operating one bank active-precharge  
Conditions for operating devices are:  
tCK = tCK(avg) MIN; tRC = tRC (MIN);  
CKE is HIGH; CS_n is HIGH between valid commands;  
CA bus inputs are SWITCHING;  
IDD02  
VDD2, VDDQ  
100  
Data bus inputs are STABLE  
IDD2P1  
IDD2P2  
VDD1  
0.8  
1.8  
mA  
mA  
All devices in idle power-down standby current  
tCK = tCK(avg) MIN; CKE is LOW;  
CS_n is HIGH; All banks are idle;  
CA bus inputs are SWITCHING;  
VDD2, VDDQ  
Data bus inputs are STABLE  
IDD2PS1  
IDD2PS2  
VDD1  
0.8  
1.8  
All devices in idle power-down standby current with  
clock stop  
VDD2, VDDQ  
CK_t = LOW, CK_c = HIGH; CKE is LOW;  
CS_n is HIGH; All banks are idle;  
CA bus inputs are STABLE;  
Data bus inputs are STABLE  
IDD2N1  
IDD2N2  
VDD1  
1.2  
30  
mA  
mA  
All devices in idle non power-down standby current.  
tCK = tCK(avg) MIN; CKE is HIGH;  
CS_n is HIGH; All banks idle;  
CA bus inputs are SWITCHING;  
Data bus inputs are STABLE  
VDD2, VDDQ  
IDD2NS1  
IDD2NS2  
VDD1  
1.2  
16  
All devices in idle non power-down standby current  
with clock stop  
VDD2, VDDQ  
CK_t = LOW, CK_c = HIGH; CKE is HIGH;  
CS_n is HIGH; All banks are idle;  
CA bus inputs are STABLE;  
Data bus inputs are STABLE  
IDD3P1  
IDD3P2  
VDD1  
1.8  
14  
mA  
mA  
All devices in active power-down standby current  
tCK = tCK(avg) MIN; CKE is LOW;  
CS_n is HIGH; One bank is active;  
CA bus inputs are SWITCHING;  
VDD2, VDDQ  
Data bus inputs are STABLE  
IDD3PS1  
IDD3PS2  
VDD1  
1.8  
14  
All devices in active power-down standby current with  
clock stop  
VDD2, VDDQ  
CK_t = LOW, CK_c = HIGH; CKE is LOW;  
CS_n is HIGH; One bank is active;  
CA bus inputs are STABLE;  
Data bus inputs are STABLE  
IDD3N1  
IDD3N2  
VDD1  
2.8  
44  
mA  
All devices in active non power-down standby current  
tCK = tCK(avg) MIN; CKE is HIGH;  
CS_n is HIGH; One bank active;  
VDD2, VDDQ  
CA bus inputs are SWITCHING;  
Data bus inputs are STABLE  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
13  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
DD Specifications  
I
Table 7: IDD Specifications – Dual Die, Dual Channel (Continued)  
VDD2, VDDQ = 1.14–1.30V; VDD1 = 1.70–1.95V; TC = –40°C to +105°C  
Speed  
Symbol  
IDD3NS1  
IDD3NS2  
Supply  
VDD1  
1066  
2.8  
Unit  
Parameter/Condition  
mA  
All devices in active non power-down standby current  
with clock stop  
CK_t = LOW, CK_c = HIGH; CKE is HIGH;  
CS_n is HIGH; One bank is active;  
CA bus inputs are STABLE;  
VDD2, VDDQ  
30  
Data bus inputs are STABLE  
IDD4R1  
IDD4R2  
VDD1  
4
mA  
mA  
mA  
mA  
mA  
All devices in operating burst read  
tCK = tCK(avg) MIN;  
CS_n is HIGH between valid commands;  
One bank is active; BL = 4; RL = RL (MIN);  
CA bus inputs are SWITCHING;  
VDD2, VDDQ  
840  
50% data change occurs at each burst transfer  
IDD4W1  
IDD4W2  
VDD1  
4
All devices in operating burst write  
tCK = tCK(avg) MIN;  
CS_n is HIGH between valid commands;  
One bank is active; BL = 4; WL = WL (MIN);  
CA bus inputs are SWITCHING;  
VDD2, VDDQ  
300  
50% data change occurs at each burst transfer  
IDD51  
IDD52  
VDD1  
40  
All devices in all bank auto-refresh  
tCK = tCK(avg) MIN;  
CKE is HIGH between valid commands;  
tRC = tRFCab (MIN); Burst refresh;  
CA bus inputs are SWITCHING;  
Data bus inputs are STABLE  
VDD2, VDDQ  
240  
IDD5AB1  
IDD5AB2  
VDD1  
12  
56  
All devices in all bank auto-refresh  
tCK = tCK(avg) MIN;  
CKE is HIGH between valid commands;  
tRC = tREFI;  
CA bus inputs are SWITCHING;  
Data bus inputs are STABLE  
VDD2, VDDQ  
IDD5PB1  
IDD5PB2  
VDD1  
12  
56  
All devices in per bank auto-refresh  
tCK = tCK(avg) MIN;  
CKE is HIGH between valid commands;  
tRC = tREFIpb;  
VDD2, VDDQ  
CA bus inputs are SWITCHING;  
Data bus inputs are STABLE  
1. Published IDD values are the maximum of the distribution of the arithmetic mean.  
2. IDD current specifications are tested after the device is properly initialized.  
3. VDD2 and VDDQ are connected internally in the package.  
Notes:  
4. The Quad die product IDD for each channel will be the sum of the IDD's for the state of  
operation for each rank (CS) in the channel.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
14  
© 2014 Micron Technology, Inc. All rights reserved.  
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
DD Specifications  
I
Table 8: IDD6 Partial-Array Self Refresh Current at 105°C Dual die for Dual die prodct  
VDD2, VDDQ = 1.14–1.30V; VDD1 = 1.70–1.95V  
PASR  
Supply  
Value  
4800  
28000  
3200  
15600  
2200  
9600  
1800  
6400  
Unit  
Parameters/Conditions  
Full array  
VDD1  
μA  
All devices in self refresh  
CK_t = LOW, CK_c = HIGH;  
CKE is LOW;  
CA bus inputs are STABLE;  
Data bus inputs are STABLE  
V
DDQVDDQ  
VDD1  
VDDQVDDQ  
VDD1  
VDDQVDDQ  
VDD1  
1/2 array  
1/4 array  
1/8 array  
VDDQVDDQ  
1. IDD6 105°C is the maximum of the distribution of the arithmetic mean, Quad die product  
will be double these values when all die are in self refresh mode.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
15  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Package Block Diagrams  
Package Block Diagrams  
Figure 2: Dual Die Single Rank, Dual Channel Package Block Diagram  
_A/B V _A/B _A, _B V _A/B  
V
V
DDQ  
DD2  
SS  
DD1  
V
_A, B  
V
_A, B  
REFCA  
REFDQ  
ZQ_A  
CS_n_A  
CKE_A  
CK_t_A  
CK_c_A  
LPDDR2  
Die 0  
DM[3:0]_A  
DDQ[31:0]_A,  
DQS[3:0]_t_A,  
DQS[3:0]_c_A  
CA[9:0]_A  
x32  
ZQ_B  
CS_n_B  
CKE_B  
CK_t_B  
CK_c_B  
LPDDR2  
Die 1  
DM[3:0]_B  
DQ[31:0]_B,  
DQS[3:0]_t_B,  
DQS[3:0]_c_B  
CA[9:0]_B  
x32  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
16  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Package Block Diagrams  
Figure 3: Quad Die Dual Rank, Dual Channel Package Block Diagram  
VDD1_A/B VDD2_A/B VDDQ_A, _B VSS_A/B  
VREFCA_A, B  
CS1_n_A  
CKE1_A  
VREFDQ_A, B  
ZQ_A  
CS0_n_A  
CKE0_A  
CK_t_A  
CK_c_A  
LPDDR2  
Die 0  
LPDDR2  
Die 2  
DM[3:0]_A  
CA[9:0]_A  
DQ[31:0]_A,  
DQS[3:0]_t_A,  
DQS[3:0]_c_A  
x32  
x32  
CS1_n_B  
CKE1_B  
ZQ_B  
CS0_n_B  
CKE0_B  
CK_t_B  
CK_c_B  
LPDDR2  
Die 1  
LPDDR2  
Die 3  
DM[3:0]_B  
CA[9:0]_B  
x32  
x32  
DQ[31:0]_B,  
DQS[3:0]_t_B,  
DQS[3:0]_c_B  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
17  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Package Dimensions  
Package Dimensions  
Figure 4: 216-Ball FBGA (12mm x 12mm x 0.8mm) – EDB8164B4PR, EDB8164B4PT  
12.00 0.10  
0.15 S  
B
Index mark  
0.15 S A  
S
0.20  
0.68 0.12  
S
S
0.08  
0.18 0.03  
216- 0.25 0.05  
M
S AB  
0.06  
B
A
Index mark  
0.4  
11.20  
1. All dimensions are in millimeters.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
18  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Package Dimensions  
Figure 5: 216-Ball FBGA (12mm x 12mm x 1.0mm) – EDBA164B2PR  
12.00 0.10  
Index mark  
0.15 S  
B
0.15 S A  
S
0.20  
0.88 0.12  
S
S
0.08  
0.18 0.03  
216- 0.25 0.05  
M
S AB  
0.06  
B
A
Index mark  
0.4  
11.20  
1. All dimensions are in millimeters.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
19  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Package Dimensions  
Figure 6: 220-Ball FBGA (14mm x 14mm x 0.7mm) – EDB8164B4PK  
14.0 0.1  
Index mark  
0.20  
S B  
0.20  
S A  
0.60 0.10  
0.10  
S
S
0.08  
S
0.25 0.05  
220- 0.325 0.05  
0.05 M  
S AB  
B
A
Index mark  
0.5  
13.0  
1. All dimensions are in millimeters.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
20  
 
Ball Assignments  
Figure 7: 216-Ball Dual-Channel FBGA – 2 x 4Gb Die  
ꢄꢇ  
ꢄꢄ  
ꢄꢃ  
ꢄꢈ  
ꢄꢋ  
ꢄꢉ  
ꢄꢅ  
ꢄꢊ  
ꢄꢌ  
ꢄꢆ  
ꢃꢇ  
ꢃꢄ  
ꢃꢃ  
ꢃꢈ  
'46ꢇBWB$ '4ꢊB$  
966  
ꢃꢋ  
ꢃꢉ  
ꢃꢅ  
ꢃꢊ  
ꢃꢌ  
966  
ꢃꢆ  
1&  
9''ꢄ  
$
%
&
'
(
)
*
+
-
1&  
966  
9''ꢃ  
'4ꢈꢇB$ '4ꢃꢆB$  
966  
'4ꢃꢅB$ '4ꢃꢉB$  
9''4 '4ꢃꢋB$  
966  
9''4  
'46ꢈBFB$  
966  
'4ꢄꢋB$ '4ꢄꢈB$  
966  
966  
9''ꢃ  
9''ꢃ  
'4ꢄꢄB$ '4ꢄꢇB$ '4ꢆB$ '46ꢄBWB$ '0ꢄB$  
9''4  
'4ꢅB$  
9''4  
'4ꢋB$  
'4ꢉB$  
'4ꢈB$  
'4ꢃB$  
966  
1&  
'4ꢈꢄB$  
9''4  
'4ꢃꢌB$ '4ꢃꢊB$  
'46ꢈBWB$ '0ꢈB$ '4ꢄꢉB$  
9''4  
95()'4B$  
'4ꢄꢃB$  
9''4  
'4ꢌB$ '46ꢄBFB$  
966  
'0ꢇB$ '46ꢇBFB$  
1&  
966  
9''ꢄ  
'4ꢄꢊB%  
'4ꢄꢅB%  
9''4  
9''ꢄ  
'4ꢄB$  
966  
9''ꢃ  
9''4  
'4ꢇB$  
9''4  
'4ꢄꢌB% '4ꢄꢆB%  
966  
'4ꢃꢇB%  
9''4  
'0ꢃB$  
'4ꢃꢄB%  
'46ꢃBWB$ '46ꢃBFB$  
'4ꢃꢃB% '4ꢃꢈB%  
966 9''4  
'46ꢃBFB% '46ꢃBWB%  
966  
'4ꢃꢈB$  
'4ꢃꢃB$  
9''4  
.
/
'4ꢃꢇB$ '4ꢃꢄB$  
'0ꢃB%  
'4ꢄB%  
'4ꢃB%  
966  
'4ꢇB%  
966  
'4ꢄꢆB$  
9''4  
966  
0
'4ꢄꢌB$  
1
3
9''ꢄ  
'4ꢄꢅB$ '4ꢄꢊB$  
9''ꢄ  
&$ꢇB%  
&$ꢄB%  
966  
9''ꢃ  
966  
1&  
95()'4B%  
5
9''ꢄ  
7
9''ꢃ  
9''ꢃ  
'4ꢈB%  
966  
8
9''4  
95()&$B% &$ꢃB%  
9
'4ꢋB%  
'4ꢅB%  
9''4  
966  
&$ꢋB%  
&6BQB%  
966  
&$ꢈB%  
1&  
:
<
'4ꢉB%  
'4ꢊB%  
1&  
$$  
$%  
$&  
'46ꢇBWB% '46ꢇBFB%  
&.(B%  
'0ꢇB%  
9''4  
966  
&.BWB% &.BFB%  
1&  
&$ꢊB%  
&$ꢌB%  
966  
'0ꢄB%  
&$ꢉB%  
&$ꢅB%  
1&  
$' '46ꢄBFB% '46ꢄBWB%  
$(  
$)  
$*  
$+  
$-  
'4ꢌB%  
'4ꢆB%  
966  
9''4  
&$ꢆB%  
=4B%  
966  
'4ꢄꢇB% '4ꢄꢄB%  
9''ꢃ  
9''ꢄ  
966  
966  
1&  
9''ꢄ  
966  
9''ꢃ  
'4ꢄꢃB%  
'4ꢄꢈB%  
9''4  
966  
'4ꢄꢋB%  
'4ꢄꢉB% '0ꢈB% '46ꢈBWB%  
9''4 966  
ꢅ ꢊ  
9''4  
'4ꢃꢅB% '4ꢃꢊB%  
9''4  
'4ꢈꢇB%  
966  
9''ꢃ  
9''ꢄ  
95()&$B$ &$ꢆB$  
966  
&$ꢌB$  
ꢄꢌ  
&$ꢊB$  
1&  
&$ꢅB$ &.BFB$  
&$ꢉB$ &.BWB$  
1&  
966  
ꢃꢃ  
&.(B$ &6BQB$  
&$ꢈB$  
&$ꢋB$  
ꢃꢉ  
&$ꢃB$  
1&  
&$ꢄB$  
&$ꢇB$  
ꢃꢊ  
'46ꢈBFB% '4ꢃꢋB% '4ꢃꢉB%  
ꢄꢇ  
966  
ꢄꢄ  
'4ꢃꢌB% '4ꢃꢆB% '4ꢈꢄB%  
ꢄꢃ ꢄꢈ ꢄꢋ  
966  
ꢄꢅ  
=4B$  
ꢄꢊ  
1&  
ꢃꢈ  
1&  
ꢃꢋ  
1&  
ꢄꢉ  
ꢄꢆ  
ꢃꢇ  
ꢃꢄ  
ꢃꢅ  
ꢃꢌ  
ꢃꢆ  
7RSꢀ9LHZꢀꢁEDOOꢀGRZQꢂ  
&KDQQHOꢀDꢀꢁB$ꢂ  
&KDQQHOꢀEꢀꢁB%ꢂ  
6XSSO\  
*URXQG  
 
 
Ball Assignments  
Figure 8: 220-Ball Dual-Channel FBGA – 2 x 4Gb Die  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
V
V
V
V
V
V
V
A
B
NC  
V
V
V
SS  
DQ29_B DQ28_B  
DQ25_B DQ24_B DQS3_c_B DM3_B DQ15_B  
V
DQ13_B DQ11_B  
DQ9_B DQS1_c_B DM1_B  
SS  
V
DQS0_c_B DQ7_B  
NC  
A
SS  
SS  
SS  
SS  
SS  
SS  
NC  
DQ16_A DQ17_A  
DD2  
SS  
DD2  
V
V
V
DQ12_B  
V
V
V
DQ6_B  
NC  
V
DD2  
DQ31_B DQ30_B  
V
DQ27_B DQ26_B  
V
DQS3_t_B  
V
DQ14_B  
DQ10_B DQ8_B DQS1_t_B  
REFDQ_B  
DM0_B DQS0_t_B  
V
DDQ  
B
DD1  
DDQ  
SS  
DDQ  
DDQ  
DD1  
DDQ  
DDQ  
DDQ  
DQ5_B  
DQ4_B  
C
C
V
DQ3_B  
D
DQ18_A  
V
DDQ  
D
DDQ  
V
DQ2_B  
DM2_B  
DQ1_B  
V
E
DQ20_A DQ19_A  
E
SS  
SS  
V
V
DQ21_A  
F
DQ0_B  
F
DDQ  
DDQ  
V
V
DQS2_t_B  
DQS2_c_B  
G
SS  
DQ22_A DQ23_A  
G
SS  
H
DQS2_t_A DQS2_c_A  
DM2_A DQ0_A  
DQ23_B  
H
V
J
V
DQ21_B DQ22_B  
J
SS  
SS  
V
V
DQ20_B  
K
DQ1_A  
K
DDQ  
DDQ  
V
V
L
DQ2_A  
DQ3_A  
DQ6_A  
DQ19_B DQ18_B  
L
SS  
SS  
V
DQ17_B  
M
N
DQ4_A  
V
M
N
DDQ  
DD2  
V
V
V
DQ5_A  
DQ16_B  
CA1_A  
DDQ  
SS  
SS  
V
NC  
CA0_A  
P
DQ7_A  
P
DDQ  
V
DQS0_c_A DQS0_t_A  
CA2_A  
V
R
R
SS  
SS  
V
CA3_A  
NC  
CA4_A  
T
DM0_A  
DDQ  
T
V
V
V
V
V
U
REFDQ_A  
CS0_n_A  
U
SS  
SS  
SS  
NC  
V
CKE0_A  
V
V
DD2  
DD1  
V
V
V
W
Y
DM1_A  
CK_c_A CK_t_A  
NC  
W
Y
SS  
SS  
DD2  
CA5_A  
DQS1_c_A DQS1_t_A  
V
V
V
AA  
AB  
AC  
AD  
AE  
AF  
AG  
DQ9_A DQ10_A  
REFCA _A CA6_A  
AA  
AB  
AC  
AD  
AE  
AF  
AG  
SS  
DD2  
V
V
CA7_A  
DQ8_A  
SS  
DDQ  
V
V
DQ11_A DQ12_A  
CA8_A  
CA9_A  
NC  
SS  
SS  
V
DQ13_A DQ14_A  
DD2  
V
DQ15_A  
V
SS  
ZQ_A  
DD1  
V
V
V
CA9_B  
CA8_B  
14  
V
V
REFCA_B  
V
V
V
V
DM3_A DQS3_t_A DQS3_c_A DQ25_A DQ27_A  
DQ29_A DQ31_A  
DD2  
NC  
CA7_B  
CA6_B  
15  
NC  
CK_t_B  
CK_c_B CKE0_B  
19 20  
NC  
CS0_n_B  
NC  
CA4_B  
NC  
CA3_B  
23  
CA2_B  
CA1_B  
24  
CA0_B  
DDQ  
DD1  
DD2  
DD2  
SS  
SS  
DDQ  
V
V
V
V
V
V
V
V
NC  
1
DQ24_A DQ26_A  
V
DQ28_A DQ30_A  
V
V
ZQ_B  
CA5_B  
16  
V
DDQ  
4
NC  
27  
DD2  
SS  
SS  
SS  
SS  
SS  
DD1  
SS  
SS  
SS  
SS  
2
3
5
6
7
8
9
10  
11  
12  
13  
17  
18  
21  
22  
25  
26  
Channel a (_A)  
Channel b (_B)  
Supply  
Ground  
Top View (ball down)  
 
Ball Assignments  
Figure 9: 216-Ball Dual-Channel FBGA – 4 x 4Gb Die  
ꢄꢇ  
ꢄꢄ  
ꢄꢃ  
ꢄꢈ  
ꢄꢋ  
ꢄꢉ  
ꢄꢅ  
ꢄꢊ  
ꢄꢌ  
ꢄꢆ  
ꢃꢇ  
ꢃꢄ  
ꢃꢃ  
ꢃꢈ  
'46ꢇBWB$ '4ꢊB$  
966  
ꢃꢋ  
ꢃꢉ  
ꢃꢅ  
ꢃꢊ  
ꢃꢌ  
966  
ꢃꢆ  
1&  
9''ꢄ  
$
%
&
'
(
)
*
+
-
1&  
966  
9''ꢃ  
'4ꢈꢇB$ '4ꢃꢆB$  
966  
'4ꢃꢅB$ '4ꢃꢉB$  
9''4 '4ꢃꢋB$  
966  
9''4  
'46ꢈBFB$  
966  
'4ꢄꢋB$ '4ꢄꢈB$  
966  
966  
9''ꢃ  
9''ꢃ  
'4ꢄꢄB$ '4ꢄꢇB$ '4ꢆB$ '46ꢄBWB$ '0ꢄB$  
9''4  
'4ꢅB$  
9''4  
'4ꢋB$  
'4ꢉB$  
'4ꢈB$  
'4ꢃB$  
966  
1&  
'4ꢈꢄB$  
9''4  
'4ꢃꢌB$ '4ꢃꢊB$  
'46ꢈBWB$ '0ꢈB$ '4ꢄꢉB$  
9''4  
95()'4B$  
'4ꢄꢃB$  
9''4  
'4ꢌB$ '46ꢄBFB$  
966  
'0ꢇB$ '46ꢇBFB$  
1&  
966  
9''ꢄ  
'4ꢄꢊB%  
'4ꢄꢅB%  
9''4  
9''ꢄ  
'4ꢄB$  
966  
9''ꢃ  
9''4  
'4ꢇB$  
9''4  
'4ꢄꢌB% '4ꢄꢆB%  
966  
'4ꢃꢇB%  
9''4  
'0ꢃB$  
'4ꢃꢄB%  
'46ꢃBWB$ '46ꢃBFB$  
'4ꢃꢃB% '4ꢃꢈB%  
966 9''4  
'46ꢃBFB% '46ꢃBWB%  
966  
'4ꢃꢈB$  
'4ꢃꢃB$  
9''4  
.
/
'4ꢃꢇB$ '4ꢃꢄB$  
'0ꢃB%  
'4ꢄB%  
'4ꢃB%  
966  
'4ꢇB%  
966  
'4ꢄꢆB$  
9''4  
966  
0
'4ꢄꢌB$  
1
3
9''ꢄ  
'4ꢄꢅB$ '4ꢄꢊB$  
9''ꢄ  
966  
9''ꢃ  
966  
1&  
95()'4B%  
5
9''ꢄ  
&$ꢇB%  
&$ꢄB%  
7
9''ꢃ  
9''ꢃ  
'4ꢈB%  
966  
8
9''4  
95()&$B% &$ꢃB%  
966 &$ꢈB%  
9
'4ꢋB%  
'4ꢅB%  
9''4  
:
<
'4ꢉB%  
'4ꢊB%  
&$ꢋB% &6ꢄBQB%  
&6ꢇBQB% &.(ꢄB%  
$$  
$%  
$&  
'46ꢇBWB% '46ꢇBFB%  
966  
&.(ꢇB%  
'0ꢇB%  
9''4  
966  
&.BWB% &.BFB%  
'0ꢄB%  
1&  
&$ꢊB%  
&$ꢌB%  
966  
&$ꢉB%  
&$ꢅB%  
1&  
$' '46ꢄBFB% '46ꢄBWB%  
$(  
$)  
$*  
$+  
$-  
'4ꢌB%  
'4ꢆB%  
966  
9''4  
&$ꢆB%  
=4B%  
966  
'4ꢄꢇB% '4ꢄꢄB%  
9''ꢃ  
9''ꢄ  
966  
966  
1&  
9''ꢄ  
966  
9''ꢃ  
'4ꢄꢃB%  
'4ꢄꢈB%  
9''4  
966  
'4ꢄꢋB%  
'4ꢄꢉB% '0ꢈB% '46ꢈBWB%  
9''4 966  
ꢅ ꢊ  
9''4  
'4ꢃꢅB% '4ꢃꢊB%  
9''4  
'4ꢈꢇB%  
966  
9''ꢃ  
9''ꢄ  
95()&$B$ &$ꢆB$  
966  
&$ꢌB$  
ꢄꢌ  
&$ꢊB$  
1&  
&$ꢅB$ &.BFB$  
&$ꢉB$ &.BWB$  
1&  
966  
ꢃꢃ  
&.(ꢇB$ &6ꢇBQB$ &$ꢈB$  
&.(ꢄB$ &6ꢄBQB$ &$ꢋB$  
&$ꢃB$  
1&  
&$ꢄB$  
&$ꢇB$  
ꢃꢊ  
'46ꢈBFB% '4ꢃꢋB% '4ꢃꢉB%  
ꢄꢇ  
966  
ꢄꢄ  
'4ꢃꢌB% '4ꢃꢆB% '4ꢈꢄB%  
ꢄꢃ ꢄꢈ ꢄꢋ  
966  
ꢄꢅ  
=4B$  
ꢄꢊ  
1&  
ꢄꢉ  
ꢄꢆ  
ꢃꢇ  
ꢃꢄ  
ꢃꢈ  
ꢃꢋ  
ꢃꢉ  
ꢃꢅ  
ꢃꢌ  
ꢃꢆ  
7RSꢀ9LHZꢀꢁEDOOꢀGRZQꢂ  
&KDQQHOꢀDꢀꢁB$ꢂ  
&KDQQHOꢀEꢀꢁB%ꢂ  
6XSSO\  
*URXQG  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Ball Descriptions  
Ball Descriptions  
The ball/pad description table below is a comprehensive list of signals for the device  
family. All signals listed may not be supported on this device. See Ball Assignments for  
information specific to this device.  
Table 9: Ball/Pad Descriptions  
Symbol  
Type  
Description  
CA[9:0]_A,  
CA[9:0]_B  
Input  
Command/address inputs: Provide the command and address inputs according to the  
command truth table. A separate CA[9:0] is provided for each channel (A and B).  
CK_t_A, CK_t_B  
CK_c_A, CK_c_B  
Input  
Input  
Clock: Differential clock inputs. All CA inputs are sampled on both rising and falling  
edges of CK. CS and CKE inputs are sampled at the rising edge of CK. AC timings are  
referenced to clock. A separate CK_t/CK_c is provided for each channel (A and B).  
CKE[1:0]_A,  
CKE[1:0]_B  
Clock enable: CKE HIGH activates and CKE LOW deactivates the internal clock signals,  
input buffers, and output drivers. Power-saving modes are entered and exited via CKE  
transitions. CKE is considered part of the command code. CKE is sampled on the rising  
edge of CK. A separate CKE is provided for each channel (A and B).  
CS[1:0]_n_A,  
CS[1:0]_n_B  
Input  
Input  
Chip select: Considered part of the command code and is sampled on the rising edge  
of CK. A separate CS_n is provided for each channel (A and B).  
DM[3:0]_A,  
DM[3:0]_B  
Input data mask: Input mask signal for write data. Although DM balls are input-only,  
the DM loading is designed to match that of DQ and DQS balls. DM[3:0] is DM for each  
of the four data bytes, respectively. A separate DM[3:0] is provided for each channel (A  
and B).  
DQ[31:0]_A,  
DQ[31:0]_B  
I/O  
I/O  
Data input/output: Bidirectional data bus. A separate DQ[11:0] is provided for each  
channel (A and B).  
DQS[3:0]_t_A,  
DQS[3:0]_t_B,  
DQS[3:0]_c_A,  
DQS[3:0]_c_B  
Data strobe: Bidirectional (used for read and write data) and complementary (DQS_t  
and DQS_c). It is edge-aligned output with read data and centered input with write da-  
ta. DQS[3:0]_t/DQS[3:0]_c is DQS for each of the four data bytes, respectively. A sepa-  
rate DQS[3:0]_t and DQS[3:0]_c is provided for each channel (A and B).  
V
DDQ_A, VDDQ_B  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
DQ power supply: Isolated on the die for improved noise immunity.  
DQ ground: Isolated on the die for improved noise immunity.  
Core power: Supply 1.  
VSSQ_A/B  
VDD1 _A/B  
VDD2_A/B  
VSS_A/B  
Core power: Supply 2.  
Common ground.  
VREFCA_A, VREFCA_B  
Reference voltage: VREFCA is reference for command/address input buffers, VREFDQ is  
reference for DQ input buffers. A separate VREFCA and VREFDQ provided for each channel  
(A and B).  
V
REFDQ_A, VREFDQ_B  
ZQ_A, ZQ_B  
Reference External reference ball for output drive calibration: This ball is tied to an external  
240Ω resistor (RZQ), which is tied to VSSQ. A separate ZQ is provided for each channel (A  
and B).  
NU  
NC  
Not usable: Do not connect.  
No connect: Not internally connected.  
(NC)  
No connect: Balls indicated as (NC) are no connects; however, they could be connected  
together internally.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
24  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Functional Description  
Functional Description  
Mobile LPDDR2 is a high-speed SDRAM internally configured as a 4- or 8-bank memory  
device. The device uses a double data rate architecture on the command/address (CA)  
bus to reduce the number of input pins in the system. The 10-bit CA bus is used to  
transmit command, address, and bank information. Each command uses one clock cy-  
cle, during which command information is transferred on both the rising and falling  
edges of the clock.  
The LPDDR2-S4 device uses a double data rate architecture on the DQ pins to achieve  
high- speed operation. The double data rate architecture is essentially a 4n prefetch ar-  
chitecture with an interface designed to transfer two data bits per DQ every clock cycle  
at the I/O pins. A single read or write access for the LPDDR2-S4 effectively consists of a  
single 4n-bit-wide, one-clock-cycle data transfer at the internal SDRAM core and four  
corresponding n-bit-wide, one-half-clock-cycle data transfers at the I/O pins.  
Read and write access is burst oriented; access starts at a selected location and contin-  
ues for a programmed number of locations in a programmed sequence.  
Access begins with the registration of an ACTIVATE command followed by a READ or  
WRITE command. Registered address and BA bits that coincide with the ACTIVATE  
command are used to select the row and bank to be accessed. Registered address bits  
that coincide with the READ or WRITE command are used to select the bank and the  
starting column location for the burst access.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
25  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Simplified State Diagram  
Figure 10: Functional Block Diagram  
CK_t  
CK_c  
CKE  
Bank n  
Row  
address  
buffer  
and  
Memory cell array  
Bank 0  
refresh  
counter  
Mode  
register  
CS_n  
Sense amp.  
CA[9:0]  
Column decoder  
Column  
address  
buffer  
and  
burst  
counter  
Data control circuit  
Latch circuit  
DQS_t  
DQS_c  
DM  
Input and Output buffer  
DQ  
1. 512Mb is a 4-bank only.  
Note:  
Simplified State Diagram  
The state diagram provides a simplified illustration of allowed state transitions and the  
related commands to control them. For a complete definition of the device behavior,  
the information provided by the state diagram should be integrated with the truth ta-  
bles and timing specification. The truth tables provide complementary information to  
the state diagram, they clarify the device behavior and the applied restrictions when  
considering the actual state of all the banks.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
26  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Simplified State Diagram  
Figure 11: Simplified State Diagram  
Deep  
power-down  
DPDX  
Power  
applied  
Power-on  
Automatic sequence  
Command sequence  
Self  
refreshing  
MRR  
Resetting  
Resetting  
MR reading  
DPD  
Resetting  
power-down  
MRR  
REF  
Idle  
MR reading  
1
Idle  
Refreshing  
Idle  
power-down  
MR writing  
ACT  
Active  
power-down  
Active  
MR reading  
PR,PRA  
Active  
BST  
BST  
WR  
RD  
PR = PRECHARGE  
PRA = PRECHARGE ALL  
ACT = ACTIVATE  
Writing  
Reading  
WR(A) = WRITE (with auto precharge)  
RD(A) = READ (with auto precharge)  
BST = BURST TERMINATE  
RESET = RESET is achieved through  
MRW command  
PR, PRA  
WRA  
RDA  
MRW = MODE REGISTER WRITE  
MRR = MODE REGISTER READ  
PD = enter power-down  
PDX = exit power-down  
SREF = enter self refresh  
SREFX = exit self refresh  
DPD = enter deep power-down  
DPDX = exit deep power-down  
REF = REFRESH  
Writing  
with  
auto precharge  
Reading  
with  
auto precharge  
Precharging  
1. All banks are precharged in the idle state.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
27  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Power-Up and Initialization  
Power-Up and Initialization  
The device must be powered up and initialized in a predefined manner. Power-up and  
initialization by means other than those specified will result in undefined operation.  
Voltage Ramp and Device Initialization  
The following sequence must be used to power up the device. Unless specified other-  
wise, this procedure is mandatory (see the Voltage Ramp and Initialization Sequence  
figure). Power-up and initialization by means other than those specified will result in  
undefined operation.  
1.Voltage Ramp Beginning  
While applying power (after Ta), CKE must be held LOW (0.2 × VDD2), and all other in-  
puts must be between VILmin and VIHmax. The device outputs remain at High-Z while  
CKE is held LOW.  
On or before the completion of the voltage ramp (Tb), CKE must be held LOW. DQ, DM,  
DQS_t, and DQS_c voltage levels must be between VSSQ and VDDQ during voltage ramp  
to avoid latchup. CK_t, CK_c, CS_n, and CA input levels must be between VSS and VDD2  
during voltage ramp to avoid latchup.  
The following conditions apply for voltage ramp:  
Ta is the point when any power supply first reaches 300mV.  
• Noted conditions apply between Ta and power-down (controlled or uncontrolled).  
• Tb is the point at which all supply and reference voltages are within their defined op-  
erating ranges.  
• Power ramp duration tINIT0 (Tb - Ta) must not exceed 20ms.  
• For supply and reference voltage operating conditions, see the Recommended DC  
Operating Conditions table.  
• The voltage difference between any of VSS, and VSSQ pins must not exceed 100mV.  
2.Voltage Ramp Completion  
After Ta is reached:  
• VDD1 must be greater than VDD2 - 200mV  
• VDD1 and VDD2 must be greater than VDDQ - 200mV  
• VREF must always be less than all other supply voltages  
Beginning at Tb, CKE must remain LOW for at least tINIT1 = 100ns, after which CKE can  
be asserted HIGH. The clock must be stable at least tINIT2 = 5 × tCK prior to the first  
CKE LOW-to-HIGH transition (Tc). CKE, CS_n, and CA inputs must observe setup and  
hold requirements (tIS, tIH) with respect to the first rising clock edge (and to subse-  
quent falling and rising edges).  
If any MRRs are issued, the clock period must be within the range defined for tCKb  
(18ns to 100ns). MRWs can be issued at normal clock frequencies as long as all AC tim-  
ings are met. Some AC parameters (for example, tDQSCK) could have relaxed timings  
(such as tDQSCKb) before the system is appropriately configured. While keeping CKE  
HIGH, NOP commands must be issued for at least tINIT3 = 200μs (Td).  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
28  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Power-Up and Initialization  
3. RESET Command  
After tINIT3 is satisfied, the MRW RESET command must be issued (Td). An optional  
PRECHARGE ALL command can be issued prior to the MRW RESET command. Wait at  
least tINIT4 while keeping CKE asserted and issuing NOP commands.  
4. MRRs and Device Auto Initialization (DAI) Polling  
After tINIT4 is satisfied (Te), only MRR commands and power-down entry/exit com-  
mands are supported. After Te, CKE can go LOW in alignment with power-down entry  
and exit specifications (see Power-Down).  
The MRR command can be used to poll the DAI bit, which indicates when device auto  
initialization is complete; otherwise, the controller must wait a minimum of tINIT5 or  
until the DAI bit is set before proceeding.  
Because the memory output buffers are not properly configured by Te, some AC param-  
eters must use relaxed timing specifications before the system is appropriately config-  
ured.  
After the memory device sets the DAI bit (MR0, DAI) to zero, indicating DAI complete,  
the device is in the idle state (Tf). DAI status can be determined by issuing the MRR  
command to MR0.  
The device sets the DAI bit no later than tINIT5 after the RESET command. The control-  
ler must wait at least tINIT5 or until the DAI bit is set before proceeding.  
5. ZQ Calibration  
After tINIT5 (Tf), the MRW initialization calibration (ZQ calibration) command can be  
issued to the memory (MR10).  
This command is used to calibrate output impedance over process, voltage, and tem-  
perature. In systems where more than one Mobile LPDDR2 device exists on the same  
bus, the controller must not overlap MRW ZQ calibration commands. The device is  
ready for normal operation after tZQINIT.  
6. Normal Operation  
After (Tg), the MRW command must be used to properly configure the memory, includ-  
ing, for example, output buffer drive strength, latencies,and so on. Specifically, MR1,  
MR2, and MR3 must be set to configure the memory for the target frequency and mem-  
ory configuration.  
After the initialization sequence is complete, the device is ready for any valid command.  
After Tg, the clock frequency can be changed using the procedure described in Input  
Clock Frequency Changes and Stop Events.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
29  
© 2014 Micron Technology, Inc. All rights reserved.  
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Power-Off Sequence  
Figure 12: Voltage Ramp and Initialization Sequence  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
t
INIT2  
CK_c  
CK_t  
t
INIT0  
Supplies  
t
t
INIT3  
INIT1  
PD  
CKE  
CA  
t
t
t
INIT4  
ISCKE  
ZQINIT  
t
INIT5  
RESET  
MRR  
ZQ_CAL  
Valid  
DQ  
1. High-Z on the CA bus indicates valid NOP.  
Note:  
Table 10: Initialization Timing Parameters  
Value  
Parameter  
tINIT0  
Min  
Max  
20  
Unit  
ms  
ns  
Comment  
Maximum voltage ramp time  
tINIT1  
tINIT2  
tINIT3  
tINIT4  
tINIT5  
tZQINIT  
tCKb  
100  
5
Minimum CKE LOW time after completion of voltage ramp  
Minimum stable clock before first CKE HIGH  
Minimum idle time after first CKE assertion  
Minimum idle time after RESET command  
Maximum duration of device auto initialization  
ZQ initial calibration (S4 devices only)  
tCK  
200  
1
μs  
μs  
10  
μs  
1
μs  
18  
100  
ns  
Clock cycle time during boot  
1. The tINIT0 maximum specification is not a tested limit and should be used as a general  
guideline. For voltage ramp times exceeding tINIT0 MAX, contact the factory.  
Note:  
Initialization After RESET (Without Voltage Ramp)  
If the RESET command is issued before or after the power-up initialization sequence,  
the reinitialization procedure must begin at Td.  
Power-Off Sequence  
While powering off, CKE must be held LOW (0.2 × VDD2); all other inputs must be be-  
tween VILmin and VIHmax. The device outputs remain at High-Z while CKE is held LOW.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
30  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Mode Register Definition  
DQ, DM, DQS_t, and DQS_c voltage levels must be between VSSQ and VDDQ during the  
power-off sequence to avoid latchup. CK_t, CK_c, CS_n, and CA input levels must be be-  
tween VSS and VDD2 during the power-off sequence to avoid latchup.  
Tx is the point where any power supply drops below the minimum value specified in  
the Recommended DC Operating Conditions table.  
Tz is the point where all power supplies are below 300mV. After Tz, the device is pow-  
ered off.  
Required Power Supply Conditions Between Tx and Tz:  
• VDD1 must be greater than VDD2 - 200mV  
• VDD1 must be greater than VDDQ - 200mV  
• VREF must always be less than all other supply voltages  
The voltage difference between VSS and VSSQ must not exceed 100mV.  
For supply and reference voltage operating conditions, see Recommended DC Operat-  
ing Conditions table.  
Uncontrolled Power-Off Sequence  
When an uncontrolled power-off occurs, the following conditions must be met:  
• At Tx, when the power supply drops below the minimum values specified in the Rec-  
ommended DC Operating Conditions table, all power supplies must be turned off and  
all power-supply current capacity must be at zero, except for any static charge re-  
maining in the system.  
• After Tz, the point at which all power supplies first reach 300mV, the device must pow-  
t
er off. The time between Tx and Tz must not exceed POFF. During this period, the rel-  
ative voltage between power supplies is uncontrolled. VDD1 and VDD2 must decrease  
with a slope lower than 0.5 V/μs between Tx and Tz.  
An uncontrolled power-off sequence can occur a maximum of 400 times over the life of  
the device.  
Table 11: Power-Off Timing  
Parameter  
Symbol  
Min  
Max  
Unit  
Maximum power-off ramp time  
tPOFF  
2
sec  
Mode Register Definition  
The LPDDR2 device contains a set of mode registers used for programming device op-  
erating parameters, reading device information and status, and for initiating special op-  
erations such as DQ calibration, ZQ calibration, and device reset.  
Mode Register Assignments and Definitions  
The MRR command is used to read from a register. The MRW command is used to write  
to a register. An “R” in the access column of the mode register assignment table indi-  
cates read-only; a “W” indicates write-only; “R/W” indicates read or write capable or  
enabled.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
31  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Mode Register Definition  
Table 12: Mode Register Assignments  
Notes 1–5 apply to all parameters and conditions  
MR#  
MA[7:0]  
00h  
Function  
Device info  
Access OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0  
Link  
0
1
2
3
4
R
W
W
W
R
RFU  
nWR (for AP)  
RFU  
RZQI  
WC BT  
RFU  
DI  
DAI go to MR0  
go to MR1  
01h  
Device feature 1  
Device feature 2  
I/O config-1  
BL  
02h  
RL and WL  
DS  
go to MR2  
03h  
RFU  
go to MR3  
04h  
SDRAM refresh  
rate  
TUF  
RFU  
Refresh rate  
go to MR4  
5
6
05h  
06h  
Basic config-1  
Basic config-2  
Basic config-3  
Basic config-4  
Test mode  
R
R
LPDDR2 Manufacturer ID  
Revision ID1  
Revision ID2  
Density  
go to MR5  
go to MR6  
go to MR7  
go to MR8  
go to MR9  
go to MR10  
go to MR11  
go to MR16  
go to MR17  
go to MR18  
go to MR32  
7
07h  
R
8
08h  
R
I/O width  
Type  
9
09h  
W
W
Vendor-specific test mode  
Calibration code  
RFU  
10  
0Ah  
I/O calibration  
Reserved  
11–15  
16  
0Bh 0Fh  
10h  
PASR_Bank  
PASR_Seg  
W
W
Bank mask  
17  
11h  
Segment mask  
RFU  
18–31  
32  
12h–1Fh  
20h  
Reserved  
DQ calibration  
pattern A  
R
See Data Calibration Pattern Description table  
33–39  
40  
21h–27h  
28h  
Do not use  
go to MR33  
go to MR40  
DQ calibration  
pattern B  
R
See Data Calibration Pattern Description table  
41–47  
48–62  
63  
29h–2Fh  
30h–3Eh  
3Fh  
Do not use  
Reserved  
RESET  
go to MR41  
go to MR48  
go to MR63  
go to MR64  
go to MR127  
go to MR128  
go to MR191  
go to MR192  
go to MR255  
W
RFU  
X
64–126  
127  
40h–7Eh  
7Fh  
Reserved  
Do not use  
RFU  
128–190 80h–BEh  
191 BFh  
192–254 C0h–FEh  
Reserved for vendor use  
Do not use  
RVU  
RVU  
Reserved for vendor use  
Do not use  
255  
FFh  
1. RFU bits must be set to 0 during MRW.  
2. RFU bits must be read as 0 during MRR.  
Notes:  
3. For READs to a write-only or RFU register, DQS will be toggled and undefined data is  
returned.  
4. RFU mode registers must not be written.  
5. WRITEs to read-only registers must have no impact on the functionality of the device.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
32  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Mode Register Definition  
Table 13: MR0 Device Information (MA[7:0] = 00h)  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
RFU  
RZQI  
RFU  
DI  
DAI  
Table 14: MR0 Op-Code Bit Definitions  
Notes 1–4 apply to all parameters and conditions  
Register Information  
Tag  
Type  
OP  
Definition  
Device auto initialization  
status  
DAI  
Read-only  
OP0  
0b: DAI complete  
1b: DAI in progress  
Device information  
DI  
Read-only  
Read-only  
OP1  
0b:DDR2 Mobile RAM (S4 SDRAM)  
Built-in self test for RZQ  
information  
RZQI  
OP[4:3] 01b: ZQ pin might be connected to VDD2 or left floating  
10b: ZQ pin might be shorted to ground  
11b: ZQ pin self test complete; no error condition de-  
tected(ZQ-pin may not connect to VDD or float nor  
short to GND)  
1. If RZQI is supported, it will be set upon completion of the MRW ZQ initialization calibra-  
tion.  
Notes:  
2. If ZQ is connected to VDD2 to set default calibration, OP[4:3] must be set to 01. If ZQ is  
not connected to VDD2, either OP[4:3] = 01 or OP[4:3] = 10 could indicate a ZQ-pin as-  
sembly error. It is recommended that the assembly error be corrected.  
3. In the case of a possible assembly error (either OP[4:3] = 01 or OP[4:3] = 10, as defined  
above), the device will default to factory trim settings for RON(output impedance) and  
will ignore ZQ calibration commands. In either case, the system might not function as  
intended.  
4. If a ZQ self test returns a value of 11b, this indicates that the device has detected a resis-  
tor connection to the ZQ pin. Note that this result cannot be used to validate the ZQ  
resistor value, nor does it indicate that the ZQ resistor tolerance meets the specified lim-  
its (240 ohms 1%).  
Table 15: MR1 Device Feature 1 (MA[7:0] = 01h)  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
nWR (for AP)  
WC  
BT  
BL  
Table 16: MR1 Op-Code Bit Definitions  
Feature  
Type  
OP  
OP[2:0]  
Definition  
Notes  
BL = burst length  
Write-only  
010b: BL4 (default)  
011b: BL8  
1
100b: BL16  
All others: Reserved  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
33  
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Mode Register Definition  
Table 16: MR1 Op-Code Bit Definitions (Continued)  
Feature  
Type  
OP  
Definition  
Notes  
BT = burst type  
Write-only  
OP3  
0b: Sequential (default)  
1b: Interleaved  
WC = wrap control  
Write-only  
OP4  
0b: Wrap (default)  
1b: No wrap (allowed for BL4 only)  
001b: nWR = 3 (default)  
010b: nWR = 4  
nWR = number of tWR clock Write-only  
cycles  
OP[7:5]  
2
011b: nWR = 5  
100b: nWR = 6  
101b: nWR = 7  
110b: nWR = 8  
All others: Reserved  
1. BL16, interleaved is not an official combination to be supported.  
Notes:  
2. The programmed value in nWR register is the number of clock cycles that determines  
when to start internal precharge operation for a WRITE burst with AP enabled. It is de-  
termined by RU (tWR/tCK).  
Table 17: Burst Sequence by Burst Length (BL), Burst Type (BT), and Wrap Control (WC)  
Notes 1–5 apply to all parameters and conditions  
Burst Cycle Number and Burst Address Sequence  
BL  
BT  
C3 C2 C1 C0  
WC  
1
0
2
y
2
1
3
3
2
0
4
3
1
5
6
7
8
9
10 11 12 13 14 15 16  
4
Any  
X
X
X
X
X
X
0b 0b Wrap  
1b 0b  
Any  
Seq  
X
0b  
No  
wrap  
y + y + y +  
1
1
3
5
7
1
3
5
7
2
2
4
6
0
2
0
6
4
3
3
5
7
1
3
1
7
5
8
X
X
X
X
X
X
X
X
X
0b 0b 0b Wrap  
0b 1b 0b  
1b 0b 0b  
1b 1b 0b  
0b 0b 0b  
0b 1b 0b  
1b 0b 0b  
1b 1b 0b  
0
2
4
6
0
2
4
6
4
6
0
2
4
6
0
2
5
7
1
3
5
7
1
3
6
0
2
4
6
4
2
0
7
1
3
5
7
5
3
1
Int  
Any  
X
X
0b  
No  
Illegal (not supported)  
wrap  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
34  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Mode Register Definition  
Table 17: Burst Sequence by Burst Length (BL), Burst Type (BT), and Wrap Control (WC) (Continued)  
Notes 1–5 apply to all parameters and conditions  
Burst Cycle Number and Burst Address Sequence  
BL  
BT  
C3 C2 C1 C0  
WC  
1
0
2
4
6
8
A
C
E
2
1
3
5
7
9
B
D
F
3
2
4
6
8
A
C
E
0
4
3
5
7
9
B
D
F
5
4
6
8
A
C
E
0
2
6
5
7
9
B
D
F
7
6
8
A
C
E
0
2
4
8
7
9
B
D
F
9
8
A
C
E
0
2
4
6
10 11 12 13 14 15 16  
16  
Seq 0b 0b 0b 0b Wrap  
0b 0b 1b 0b  
0b 1b 0b 0b  
0b 1b 1b 0b  
1b 0b 0b 0b  
1b 0b 1b 0b  
1b 1b 0b 0b  
1b 1b 1b 0b  
9
B
D
F
A
C
E
0
2
4
6
8
B
D
F
C
E
0
2
4
6
8
A
D
F
E
0
2
4
6
8
A
C
F
1
3
5
7
9
B
D
1
3
5
7
9
B
1
3
5
7
9
1
3
5
7
1
3
5
1
3
1
Int  
X
X
X
X
X
X
0b  
0b  
Illegal (not supported)  
Illegal (not supported)  
Any  
No  
wrap  
1. C0 input is not present on CA bus. It is implied zero.  
2. For BL = 4, the burst address represents C[1:0].  
3. For BL = 8, the burst address represents C[2:0].  
4. For BL = 16, the burst address represents C[3:0].  
Notes:  
5. For no-wrap, BL4, the burst must not cross the page boundary or the sub-page boun-  
dary. The variable y can start at any address with C0 equal to 0, but must not start at any  
address shown in the following table.  
Table 18: No-Wrap Restrictions  
Width  
64Mb  
128Mb/256Mb  
512Mb/1Gb/2Gb  
4Gb/8Gb  
Cannot cross full-page boundary  
x16  
x32  
FE, FF, 00, 01  
7E, 7F, 00, 01  
1FE, 1FF, 000, 001  
FE, FF, 00, 01  
3FE, 3FF, 000, 001  
1FE, 1FF, 000, 001  
7FE, 7FF, 000, 001  
3FE, 3FF, 000, 001  
Cannot cross sub-page boundary  
x16  
x32  
7E, 7F, 80, 81  
None  
0FE, 0FF, 100, 101  
None  
1FE, 1FF, 200, 201  
None  
3FE, 3FF, 400, 401  
None  
1. No-wrap BL = 4 data orders shown are prohibited.  
Note:  
Table 19: MR2 Device Feature 2 (MA[7:0] = 02h)  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
RFU  
RL and WL  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
35  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Mode Register Definition  
Table 20: MR2 Op-Code Bit Definitions  
Feature  
Type  
OP  
Definition  
RL and WL  
Write-only  
OP[3:0]  
0001b: RL3/WL1 (default)  
0010b: RL4/WL2  
0011b: RL5/WL2  
0100b: RL6/WL3  
0101b: RL7/WL4  
0110b: RL8/WL4  
All others: Reserved  
Table 21: MR3 I/O Configuration 1 (MA[7:0] = 03h)  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
RFU  
DS  
Table 22: MR3 Op-Code Bit Definitions  
Feature  
Type  
OP  
Definition  
DS  
Write-only  
OP[3:0]  
0000b: Reserved  
0001b: 34.3 ohm typical  
0010b: 40 ohm typical (default)  
0011b: 48 ohm typical  
0100b: 60 ohm typical  
0101b: Reserved  
0110b: 80 ohm typical  
0111b: 120 ohm typical  
All others: Reserved  
Table 23: MR4 Device Temperature (MA[7:0] = 04h)  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
SDRAM refresh rate  
OP0  
TUF  
RFU  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
36  
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Mode Register Definition  
Table 24: MR4 Op-Code Bit Definitions  
Notes 1–8 apply to all parameters and conditions  
Feature  
Type  
OP  
Definition  
SDRAM refresh  
rate  
Read-only  
OP[2:0] 000b: SDRAM low temperature operating limit exceeded  
001b: 4 × tREFI, 4 × tREFIpb, 4 × tREFW  
010b: 2 × tREFI, 2 × tREFIpb, 2 × tREFW  
011b: 1 × tREFI, 1 × tREFIpb, 1 × tREFW (85˚C)  
100b: Reserved  
101b: 0.25 × tREFI, 0.25 × tREFIpb, 0.25 × tREFW, do not derate SDRAM AC  
timing  
110b: 0.25 × tREFI, 0.25 × tREFIpb, 0.25 × tREFW, derate SDRAM AC timing  
111b: SDRAM high temperature operating limit exceeded  
Temperature up-  
date flag (TUF)  
Read-only  
Notes:  
OP7  
0b: OP[2:0] value has not changed since last read of MR4  
1b: OP[2:0] value has changed since last read of MR4  
1. A MODE REGISTER READ from MR4 will reset OP7 to 0.  
2. OP7 is reset to 0 at power-up.  
3. If OP2 = 1, the device temperature is greater than 85˚C.  
4. OP7 is set to 1 if OP[2:0] has changed at any time since the last MR4 read.  
5. The device might not operate properly when OP[2:0] = 000b or 111b.  
6. For specified operating temperature range and maximum operating temperature, refer  
to the Operating Temperature Range table.  
7. LPDDR2 devices must be derated by adding 1.875ns to the following core timing param-  
eters: tRCD, tRC, tRAS, tRP, and tRRD. The tDQSCK parameter must be derated as speci-  
fied in AC Timing. Prevailing clock frequency specifications and related setup and hold  
timings remain unchanged.  
8. The recommended frequency for reading MR4 is provided in Temperature Sensor.  
Table 25: MR5 Basic Configuration 1 (MA[7:0] = 05h)  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
LPDDR2 Manufacturer ID  
Table 26: MR5 Op-Code Bit Definitions  
Feature  
Type  
OP  
Definition  
00000011b  
All others: Reserved  
Manufacturer ID  
Read-only  
OP[7:0]  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
37  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Mode Register Definition  
Table 27: MR6 Basic Configuration 2 (MA[7:0] = 06h)  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
Revision ID1 (Die Revision)  
1. MR6 is vendor-specific.  
Note:  
Table 28: MR6 Op-Code Bit Definitions  
Feature  
Type  
OP  
Definition  
Revision ID1 (Die Revision)  
Read-only  
OP[7:0]  
0000 0000b: Version A  
0000 0001b: Version B  
0000 0010b: Version C  
0000 0010b: Version D(512Mb only)  
0000 0011b: Version D  
Table 29: MR7 Basic Configuration 3 (MA[7:0] = 07h)  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
Revision ID2 (RFU)  
Table 30: MR7 Op-Code Bit Definitions  
Feature  
Type  
OP  
Definition  
Revision ID2 (RFU)  
Read-only  
OP[7:0]  
0000 0000b: Default Value  
1. MR7 is vendor-specific.  
Note:  
Table 31: MR8 Basic Configuration 4 (MA[7:0] = 08h)  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
I/O width  
Density  
Type  
Table 32: MR8 Op-Code Bit Definitions  
Feature  
Type  
OP  
OP[1:0]  
Definition  
Type  
Read-only  
00b: S4 SDRAM  
01b: S2 SDRAM  
10b: Reserved  
11b: Reserved  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
38  
 
 
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Mode Register Definition  
Table 32: MR8 Op-Code Bit Definitions (Continued)  
Feature  
Type  
OP  
Definition  
0000b: 64Mb  
0001b: 128Mb  
0010b: 256Mb  
0011b: 512Mb  
0100b: 1Gb  
0101b: 2Gb  
0110b: 4Gb  
0111b: 8Gb  
1000b: 16Gb  
1001b: 32Gb  
All others: Reserved  
00b: x32  
Density  
Read-only  
OP[5:2]  
I/O width  
Read-only  
OP[7:6]  
01b: x16  
10b: x8  
11b: not used  
Table 33: MR9 Test Mode (MA[7:0] = 09h)  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP1  
OP0  
OP0  
Vendor-specific test mode  
Table 34: MR10 Calibration (MA[7:0] = 0Ah)  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
S4  
Calibration code  
Table 35: MR10 Op-Code Bit Definitions  
Notes 1–6 apply to all parameters and conditions  
Feature  
Type  
OP  
Definition  
Calibration code  
Write-only  
OP[7:0]  
0xFF: Calibration command after initialization  
0xAB: Long calibration  
0x56: Short calibration  
0xC3: ZQRESET  
All others: Reserved  
1. Host processor must not write MR10 with reserved values.  
Notes:  
2. The device ignores calibration commands when a reserved value is written into MR10.  
3. See AC timing table for the calibration latency.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
39  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Mode Register Definition  
4. If ZQ is connected to VSS through RZQ, either the ZQ calibration function (see MODE  
REGISTER WRITE command) or default calibration (through the ZQRESET command) is  
supported. If ZQ is connected to VDD2, the device operates with default calibration, and  
ZQ calibration commands are ignored. In both cases, the ZQ connection must not  
change after power is supplied to the device.  
5. LPDDR2 devices that do not support calibration shall ignore the ZQ Calibration com-  
mand.  
6. Optionally, the MRW ZQ Initialization Calibration command will update MR0 to indicate  
RZQ pin connection.  
Table 36: MR[11:15] Reserved (MA[7:0] = 0Bh–0Fh)  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP2  
OP1  
OP1  
OP0  
OP0  
Reserved  
Table 37: MR16 PASR Bank Mask (MA[7:0] = 010h)  
OP7  
OP6  
OP5  
OP4  
OP3  
Bank mask (4-bank or 8-bank)  
Table 38: MR16 Op-Code Bit Definitions  
Feature  
Type  
OP  
Definition  
Bank[7:0] mask  
Write-only  
OP[7:0]  
0b: refresh enable to the bank = unmasked (default)  
1b: refresh blocked = masked  
1. For 4-bank devices, only OP[3:0] are used.  
Note:  
Table 39: MR16 Bank and OP corresponding table  
4-Bank Mask  
Bank  
8-Bank Mask  
Bank  
Feature  
Type  
OP  
0
Bank #  
Address  
Bank #  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Bank 4  
Bank 5  
Bank 6  
Bank 7  
Address  
Bank 0  
000b  
001b  
010b  
011b  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
1
Bank 1  
2
Bank 2  
3
Bank 3  
Bank[7:0] mask  
Write-only  
4
5
6
7
1. Each bank can be masked independently by setting each OP value.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
40  
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Mode Register Definition  
Table 40: MR17 PASR Segment Mask (MA[7:0] = 011h)  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
Segment mask  
1. This table applies for 1Gb to 8Gb devices only.  
Note:  
Table 41: MR17 PASR Segment Mask Definitions (1Gb - 8Gb only)  
Feature  
Type  
OP  
Definition  
Segment[7:0] mask  
Write-only  
OP[7:0]  
0b: refresh enable to the segment: = unmasked (default)  
1b: refresh blocked: = masked  
Table 42: MR17 PASR Row Address Ranges in Masked Segments  
1Gb  
2Gb, 4Gb  
R[13:11]  
000b  
8Gb  
R[14:12]  
Segment  
OP  
0
Segment Mask  
XXXXXXX1  
XXXXXX1X  
XXXXX1XX  
XXXX1XXX  
XXX1XXXX  
XX1XXXXX  
X1XXXXXX  
1XXXXXXX  
R[12:10]  
0
1
2
3
4
5
6
7
1
001b  
2
010b  
3
011b  
4
100b  
5
101b  
6
110b  
7
111b  
1. X is “Don’t Care” for the designated segment.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
41  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Commands and Timing  
Table 43: Reserved Mode Registers  
Mode Reg-  
ister  
MA  
Address  
Restriction OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
MR[18:19]  
MR[20:31]  
MR[33:39]  
MR[41:47]  
MR[48:62]  
MR[64:126]  
MR127  
MA[7:0] 12h–13h  
14h–1Fh  
21h–27h  
29h–2Fh  
30h–3Eh  
40h–7Eh  
7Fh  
RFU  
Reserved  
NVM1  
DNU1  
RFU  
RFU  
DNU  
RVU1  
DNU  
RVU  
DNU  
MR[128:190]  
MR191  
80h–BEh  
BFh  
MR[192:254]  
MR255  
C0h–FEh  
FFh  
1. NVM = nonvolatile memory use only; DNU = Do not use; RVU = Reserved for vendor use.  
Note:  
Table 44: MR32 DQ Calibration Pattern A (MA[7:0] = 20H)  
MR32 Reads  
Reads to MR32 return DQ Calibration Pattern A  
Table 45: MR40 DQ Calibration Pattern B (MA[7:0] = 28H)  
MR40 Reads  
Reads to MR40 return DQ Calibration Pattern B  
Table 46: MR63 RESET (MA[7:0] = 3Fh) – MRW Only  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
X
1. For additional information on MRW RESET see MODE REGISTER WRITE Command.  
Note:  
Commands and Timing  
The setup and hold timings shown in the figures below apply for all commands.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
42  
 
 
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
ACTIVATE Command  
Figure 13: Command and Input Setup and Hold  
T0  
T1  
T2  
T3  
CK_c  
CK_t  
t
tIS IH  
tIS tIH  
V
IH(DC)  
CS_n  
CA[9:0]  
CMD  
V
IH(AC)  
V
V
IL(DC)  
IL(AC)  
t
t
tIS IH  
tIS IH  
CA  
CA  
fall  
CA  
rise  
CA  
fall  
CA  
rise  
CA  
fall  
CA  
CA  
rise  
rise  
fall  
NOP  
Command  
NOP  
Command  
Don’t Care  
Transitioning data  
1. Setup and hold conditions also apply to the CKE pin. For timing diagrams related to the  
CKE pin, see the Power-Down section.  
Note:  
Figure 14: CKE Input Setup and Hold  
T0  
CK_c  
T1  
Tx  
Tx + 1  
CK_t  
tIHCKE tISCKE  
tIHCKE tISCKE  
CKE  
VIHCKE  
VIHCKE  
VILCKE  
VILCKE  
HIGH or LOW, but defined  
1. After CKE is registered LOW, the CKE signal level is maintained below VILCKE for tCKE  
specification (LOW pulse width).  
Notes:  
2. After CKE is registered HIGH, the CKE signal level is maintained below VIHCKE for tCKE  
specification (HIGH pulse width).  
ACTIVATE Command  
The ACTIVATE command is issued by holding CS_n LOW, CA0 LOW, and CA1 HIGH at  
the rising edge of the clock. The bank addresses BA[2:0] are used to select the desired  
bank. Row addresses are used to determine which row to activate in the selected bank.  
The ACTIVATE command must be applied before any READ or WRITE operation can be  
t
executed. The device can accept a READ or WRITE command at RCD after the ACTI-  
VATE command is issued. After a bank has been activated, it must be precharged before  
another ACTIVATE command can be applied to the same bank. The bank active and  
precharge times are defined as tRAS and tRP, respectively. The minimum time interval  
between successive ACTIVATE commands to the same bank is determined by the RAS  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
43  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
ACTIVATE Command  
cycle time of the device (tRC). The minimum time interval between ACTIVATE com-  
mands to different banks is tRRD.  
Figure 15: ACTIVATE Command  
T0  
T1  
T2  
T3  
Tn  
Tn+1  
Tn+2  
Tn+3  
CK_c  
CK_t  
Bankn  
row addr  
Bankm  
row addr  
Bankn  
col addr  
Bankn  
Row addr  
Row addr  
Col addr  
Bankn  
Row addr  
row addr  
CA[9:0]  
tRRD  
tRCD  
tRAS  
tRP  
tRC  
ACTIVATE  
NOP  
ACTIVATE  
READ  
PRECHARGE  
NOP  
NOP  
ACTIVATE  
CMD  
1. tRCD = 3, tRP = 3, tRRD = 2.  
Notes:  
2. A PRECHARGE ALL command uses tRPab timing, and a single-bank PRECHARGE com-  
mand uses tRPpb timing. In this figure, tRP is used to denote either an all-bank PRE-  
CHARGE or a single-bank PRECHARGE.  
8-Bank Device Operation  
Two rules regarding 8-bank device operation must be observed: One rule restricts the  
number of sequential ACTIVATE commands that can be issued; the second rule pro-  
vides additional RAS precharge time for a PRECHARGE ALL command.  
The 8-Bank Device Sequential Bank Activation Restriction: No more than four banks  
can be activated (or refreshed, in the case of REFpb) in a rolling tFAW window. To con-  
vert to clocks, divide tFAW[ns] by tCK[ns], and round up to the next integer value. For  
example, if RU(tFAW/tCK) is 10 clocks, and an ACTIVATE command is issued in clock n,  
no more than three further ACTIVATE commands can be issued at or between clock  
n + 1 and n + 9. REFpb also counts as bank activation for purposes of tFAW.  
The 8-Bank Device PRECHARGE ALL Provision: tRP for a PRECHARGE ALL command  
must equal tRPab, which is greater than tRPpb.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
44  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Read and Write Access Modes  
Figure 16: tFAW Timing (8-Bank Devices)  
Tn  
Tn+  
Tm  
Tm+  
Tx  
Tx+  
Ty  
Ty + 1  
Ty + 2  
Tz  
Tz + 1  
Tz + 2  
CK_c  
CK_t  
Bank Bank  
Bank Bank  
Bank Bank  
Bank Bank  
Bank Bank  
CA[9:0]  
CMD  
A
A
B
B
C
C
D
D
E
E
t
t
t
t
RRD  
RRD  
NOP  
RRD  
ACTIVATE  
NOP  
ACTIVATE  
ACTIVATE  
NOP  
FAW  
ACTIVATE  
NOP  
NOP  
NOP  
ACTIVATE  
NOP  
1. Exclusively for 8-bank devices.  
Note:  
Read and Write Access Modes  
After a bank is activated, a READ or WRITE command can be issued with CS_n LOW,  
CA0 HIGH, and CA1 LOW at the rising edge of the clock. CA2 must also be defined at  
this time to determine whether the access cycle is a READ operation (CA2 HIGH) or a  
WRITE operation (CA2 LOW). A single READ or WRITE command initiates a burst  
READ or burst WRITE operation on successive clock cycles.  
A new burst access must not interrupt the previous 4-bit burst operation when BL = 4.  
When BL = 8 or BL = 16, a READ can be interrupted by a READ and a WRITE can be  
interrupted by a WRITE, provided that the interrupt occurs on a 4-bit boundary and  
that tCCD is met.  
Burst READ Command  
The burst READ command is initiated with CS# LOW, CA0 HIGH, CA1 LOW, and CA2  
HIGH at the rising edge of the clock. The command address bus inputs, CA5r–CA6r and  
CA1f–CA9f, determine the starting column address for the burst. The read latency (RL)  
is defined from the rising edge of the clock on which the READ command is issued to  
the rising edge of the clock from which the tDQSCK delay is measured. The first valid  
data is available RL × tCK + tDQSCK + tDQSQ after the rising edge of the clock when the  
READ command is issued. The data strobe output is driven LOW tRPRE before the first  
valid rising strobe edge. The first bit of the burst is synchronized with the first rising  
edge of the data strobe. Each subsequent data-out appears on each DQ pin, edge-  
aligned with the data strobe. The RL is programmed in the mode registers.  
Pin input timings for the data strobe are measured relative to the crosspoint of DQS and  
its complement, DQS#.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
45  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Burst READ Command  
Figure 17: READ Output Timing – tDQSCK (MAX)  
RL - 1  
RL  
RL + BL/2  
t
t
CH  
CL  
CK#  
CK  
t
t
DQSCKmax  
HZ(DQS)  
t
t
t
LZ(DQS)  
RPRE  
RPST  
DQS#  
DQS  
t
t
QH  
QH  
t
t
DQSQmax  
DQSQmax  
D
D
D
D
DQ  
OUT  
OUT  
OUT  
t
OUT  
t
LZ(DQ)  
HZ(DQ)  
Transitioning data  
1. tDQSCK can span multiple clock periods.  
2. An effective burst length of 4 is shown.  
Notes:  
Figure 18: READ Output Timing – tDQSCK (MIN)  
RL - 1  
RL  
RL + BL/2  
t
t
CH  
CL  
CK#  
CK  
t
t
HZ(DQS)  
DQSCKmin  
t
t
t
LZ(DQS)  
RPRE  
RPST  
DQS#  
DQS  
t
t
QH  
QH  
t
t
DQSQmax  
DQSQmax  
D
D
D
D
DQ  
OUT  
OUT  
OUT  
OUT  
t
t
LZ(DQ)  
HZ(DQ)  
Transitioning data  
1. An effective burst length of 4 is shown.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
46  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Burst READ Command  
Figure 19: Burst READ – RL = 5, BL = 4, tDQSCK > tCK  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK#  
CK  
RL = 5  
Bank n  
Col addr  
CA[9:0]  
CMD  
col addr  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
tDQSCK  
NOP  
NOP  
NOP  
DQS#  
DQS  
DOUT A0 DOUT A1 DOUT A2 DOUT A3  
DQ  
Transitioning data  
Figure 20: Burst READ – RL = 3, BL = 8, tDQSCK < tCK  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK#  
CK  
RL = 3  
Bank n  
Col addr  
CA[9:0]  
CMD  
col addr  
READ  
NOP  
NOP  
NOP  
tDQSCK  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS#  
DQS  
DOUT A0  
DOUT A1  
DOUT A2 DOUT A3 DOUT A4  
DOUT A5  
DOUT A6 DOUT A7  
DQ  
Transitioning data  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
47  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Burst READ Command  
Figure 21: tDQSCKDL Timing  
Tn  
Tn + 1  
Tn + 2  
Tn + 3  
Tn + 4  
Tn + 5  
Tn + 6  
Tn + 7  
Tn + 8  
CK#  
CK  
RL = 5  
CA  
[9:0]  
Bank n  
col addr  
Col addr  
CMD  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
tDQSCKn  
NOP  
NOP  
NOP  
DQS#  
DQS  
DOUT A0 DOUT A1 DOUT A2 DOUTA3  
DQ  
32ms maximum…  
1
Tm  
Tm + 1  
Tm + 2  
Tm + 3  
Tm + 4  
Tm + 5  
Tm + 6  
Tm + 7  
Tm + 8  
CK#  
CK  
RL = 5  
CA  
[9:0]  
Bank n  
col addr  
Col addr  
CMD  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
tDQSCKm  
NOP  
NOP  
NOP  
DQS#  
DQS  
DOUT A0 DOUT A1 DOUT A2 DOUTA3  
DQ  
…32ms maximum  
Transitioning data  
1
1. tDQSCKDL = (tDQSCKn - tDQSCKm).  
Notes:  
2. tDQSCKDL (MAX) is defined as the maximum of ABS (tDQSCKn - tDQSCKm) for any  
(tDQSCKn, tDQSCKm) pair within any 32ms rolling window.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
48  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Burst READ Command  
Figure 22: tDQSCKDM Timing  
Tn  
Tn + 1  
Tn + 2  
Tn + 3  
Tn + 4  
Tn + 5  
Tn + 6  
Tn + 7  
Tn + 8  
CK#  
CK  
RL = 5  
CA  
[9:0]  
Bank n  
col addr  
Col addr  
CMD  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
tDQSCKn  
NOP  
NOP  
NOP  
DQS#  
DQS  
DOUT A0 DOUT A1 DOUT A2 DOUTA3  
DQ  
1.6μs maximum…  
1
Tm  
Tm + 1  
Tm + 2  
Tm + 3  
Tm + 4  
Tm + 5  
Tm + 6  
Tm + 7  
Tm + 8  
CK#  
CK  
RL = 5  
CA  
[9:0]  
Bankn  
col addr  
Col addr  
CMD  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
tDQSCKm  
NOP  
NOP  
NOP  
DQS#  
DQS  
DOUT A0 DOUT A1 DOUT A2 DOUTA3  
DQ  
…1.6μs maximum  
Transitioning data  
1
1. tDQSCKDM = (tDQSCKn - tDQSCKm).  
Notes:  
2. tDQSCKDM (MAX) is defined as the maximum of ABS (tDQSCKn - tDQSCKm) for any  
(tDQSCKn, tDQSCKm) pair within any 1.6μs rolling window.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
49  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Burst READ Command  
Figure 23: tDQSCKDS Timing  
Tn  
Tn + 1  
Tn + 2  
Tn + 3  
Tn + 4  
Tn + 5  
Tn + 6  
Tn + 7  
Tn + 8  
CK#  
CK  
RL = 5  
CA  
[9:0]  
Bank n  
col addr  
Col addr  
CMD  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
t
DQSCKn  
DQS#  
DQS  
DOUT A0 DOUT A1 DOUT A2 DOUTA3 DOUT A
DQ  
160ns maximum…  
1
Tm  
Tm + 1  
Tm + 2  
Tm + 3  
Tm + 4  
Tm + 5  
Tm + 6  
Tm + 7  
Tm + 8  
CK#  
CK  
RL = 5  
CA  
[9:0]  
Bankn  
col addr  
Col addr  
CMD  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
t
DQSCKm  
DQS#  
DQS  
DOUT A2 DOUT A3 DOUT A0 DOUT A1 DOUT A2 DOUT A3 DOUT A0 DOUT A1 DOUT A2 DOUT A3 DOUT A0  
D
OUT A2 DOUT A3 DOUT A0 DOUT A1 DOUT A2 DOUT A3  
DOUT A1  
DQ  
…160ns maximum  
Transitioning data  
1
1. tDQSCKDS = (tDQSCKn - tDQSCKm).  
Notes:  
2. tDQSCKDS (MAX) is defined as the maximum of ABS (tDQSCKn - tDQSCKm) for any  
(tDQSCKn, tDQSCKm) pair for READs within a consecutive burst, within any 160ns rolling  
window.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
50  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Burst READ Command  
Figure 24: Burst READ Followed by Burst WRITE – RL = 3, WL = 1, BL = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK#  
CK  
RL = 3  
WL = 1  
Bank n  
Bank n  
Col addr  
Col addr  
CA[9:0]  
CMD  
col addr  
col addr  
READ  
NOP  
NOP  
NOP  
t
NOP  
NOP  
BL/2  
WRITE  
NOP  
NOP  
t
DQSCK  
DQSSmin  
DQS#  
DQS  
DOUT A0 DOUT A1 DOUT A2 DOUT A3  
DIN A0  
DIN A1  
D
DQ  
Transitioning data  
The minimum time from the burst READ command to the burst WRITE command is  
defined by the read latency (RL) and the burst length (BL). Minimum READ-to-WRITE  
latency is RL + RU(tDQSCK(MAX)/tCK) + BL/2 + 1 - WL clock cycles. Note that if a READ  
burst is truncated with a burst TERMINATE (BST) command, the effective burst length  
of the truncated READ burst should be used for BL when calculating the minimum  
READ-to-WRITE delay.  
Figure 25: Seamless Burst READ – RL = 3, BL = 4, tCCD = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK#  
CK  
RL = 3  
Bankn  
Bankn  
Col addr a  
t
Col addr b  
CA[9:0]  
CMD  
col addr a  
col addr b  
CCD = 2  
READ  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS#  
DQS  
DOUT A0 DOUT A1 DOUT A2 DOUT A3 DOUT B0 DOUT B1 DOUT B2 DOUT B3  
DQ  
Transitioning data  
A seamless burst READ operation is supported by enabling a READ command at every  
other clock cycle for BL = 4 operation, every fourth clock cycle for BL = 8 operation, and  
every eighth clock cycle for BL = 16 operation. This operation is supported as long as the  
banks are activated, whether the accesses read the same or different banks.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
51  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Burst WRITE Command  
READs Interrupted by a READ  
A burst READ can be interrupted by another READ with a 4-bit burst boundary, provi-  
ded that tCCD is met.  
Figure 26: READ Burst Interrupt Example – RL = 3, BL = 8, tCCD = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK#  
CK  
RL = 3  
Bank n  
col addr a  
Bank n  
col addr b  
Col addr a  
Col addr b  
CA[9:0]  
CMD  
t
CCD = 2  
READ  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS#  
DQS  
DOUT A1 DOUT A2 DOUT A3 DOUT B0 DOUT B1 DOUT B2 DOUT B3 DOUT B4 DOUT B5  
DOUT A0  
DQ  
Transitioning data  
1. READs can only be interrupted by other READs or the BST command.  
Note:  
Burst WRITE Command  
The burst WRITE command is initiated with CS# LOW, CA0 HIGH, CA1 LOW, and CA2  
LOW at the rising edge of the clock. The command address bus inputs, CA5r–CA6r and  
CA1f–CA9f, determine the starting column address for the burst. Write latency (WL) is  
defined from the rising edge of the clock on which the WRITE command is issued to the  
rising edge of the clock from which the tDQSS delay is measured. The first valid data  
t
must be driven WL × CK + tDQSS from the rising edge of the clock from which the  
WRITE command is issued. The data strobe signal (DQS) must be driven LOW tWPRE  
prior to data input. The burst cycle data bits must be applied to the DQ pins tDS prior to  
the associated edge of the DQS and held valid until tDH after that edge. Burst data is  
sampled on successive edges of the DQS until the 4-, 8-, or 16-bit burst length is com-  
t
pleted. After a burst WRITE operation, WR must be satisfied before a PRECHARGE  
command to the same bank can be issued.  
Pin input timings are measured relative to the crosspoint of DQS and its complement,  
DQS#.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
52  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Burst WRITE Command  
Figure 27: Data Input (WRITE) Timing  
tWPRE  
tDQSH  
tDQSL  
tWPST  
DQS  
DQS#  
DQS  
DQS#  
VIH(AC)  
VIH(AC)  
VIH(DC)  
VIH(DC)  
DIN  
DIN  
DIN  
DIN  
DQ  
tDS tDH  
tDS tDH  
tDS tDH  
tDS tDH  
VIL(DC)  
VIH(AC)  
VIL(DC)  
VIH(AC)  
VIL(AC)  
VIH(DC)  
VIL(AC)  
VIH(DC)  
DM  
VIL(AC)  
VIL(DC)  
VIL(AC)  
VIL(DC)  
Don’t Care  
Ty + 1  
Figure 28: Burst WRITE – WL = 1, BL = 4  
T0  
T1  
T2  
T3  
T4  
Tx  
Tx + 1  
Ty  
CK#  
CK  
WL = 1  
Bank n  
Bank n  
Col addr  
Row addr  
Bank n  
CA[9:0]  
CMD  
col addr  
row addr  
WRITE  
NOP  
t
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVATE  
NOP  
Case 1: tDQSSmax  
t
t
DQSSmax  
DSS  
DSS  
Completion of burst WRITE  
DQS#  
DQS  
t
WR  
D
A0  
D
A1  
D
A2  
D
A3  
DQ  
IN  
IN  
IN  
IN  
Case 2: tDQSSmin  
DSH  
DSH  
t
t
t
t
DQSSmin  
RP  
DQS#  
DQS  
t
WR  
D
A0  
D
A1  
D
A2  
D
A3  
IN  
DQ  
IN  
IN  
IN  
Transitioning data  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
53  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Burst WRITE Command  
Figure 29: Burst WRITE Followed by Burst READ – RL = 3, WL = 1, BL = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK#  
CK  
WL = 1  
RL = 3  
NOP  
Bank n  
col addr b  
Bank m  
col addr a  
Col addr a  
Col addr b  
CA[9:0]  
CMD  
tWTR  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
READ  
NOP  
DQS#  
DQS  
D
A0  
D
A1  
D
A2  
D
A3  
IN  
DQ  
IN  
IN  
IN  
Transitioning data  
1. The minimum number of clock cycles from the burst WRITE command to the burst READ  
command for any bank is [WL + 1 + BL/2 + RU(tWTR/tCK)].  
2. tWTR starts at the rising edge of the clock after the last valid input data.  
Notes:  
3. If a WRITE burst is truncated with a BST command, the effective burst length of the  
truncated WRITE burst should be used as BL to calculate the minimum WRITE-to-READ  
delay.  
Figure 30: Seamless Burst WRITE – WL = 1, BL = 4, tCCD = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK#  
CK  
WL = 1  
Bank m  
col addr a  
Bank n  
col addr b  
Col addr a  
Col addr b  
CA[9:0]  
CMD  
t
CCD = 2  
WRITE  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS#  
DQS  
D
A0  
D
A1  
D
A2  
D
A3  
D
B0  
D
B1  
D
B2  
D
B3  
DQ  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
Transitioning data  
1. The seamless burst WRITE operation is supported by enabling a WRITE command every  
other clock for BL = 4 operation, every four clocks for BL = 8 operation, or every eight  
clocks for BL = 16 operation. This operation is supported for any activated bank.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
54  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
BURST TERMINATE Command  
WRITEs Interrupted by a WRITE  
A burst WRITE can only be interrupted by another WRITE with a 4-bit burst boundary,  
provided that tCCD (MIN) is met.  
A WRITE burst interrupt can occur on even clock cycles after the initial WRITE com-  
mand, provided that tCCD (MIN) is met.  
Figure 31: WRITE Burst Interrupt Timing – WL = 1, BL = 8, tCCD = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK#  
CK  
WL = 1  
Bank m  
col addr a  
Bank n  
col addr b  
Col addr a  
Col addr b  
CA[9:0]  
CMD  
t
CCD = 2  
WRITE  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS#  
DQS  
D
A0  
D
A1  
D
A2  
D
A3  
D
B0  
D
B1  
D
B2  
D
B3  
D
B4  
D
B5  
D
B6  
D
B7  
DQ  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
Transitioning data  
1. WRITEs can only be interrupted by other WRITEs or the BST command.  
Notes:  
2. The effective burst length of the first WRITE equals two times the number of clock cycles  
between the first WRITE and the interrupting WRITE.  
BURST TERMINATE Command  
The BURST TERMINATE (BST) command is initiated with CS_n LOW, CA0 HIGH, CA1  
HIGH, CA2 LOW, and CA3 LOW at the rising edge of the clock. A BST command can be  
issued only to terminate an active READ or WRITE burst. Therefore, a BST command  
can be issued only up to and including BL/2 - 1 clock cycles after a READ or WRITE  
command. The effective burst length of a READ or WRITE command truncated by a  
BST command is as follows:  
• Effective burst length = 2 × (number of clock cycles from the READ or WRITE com-  
mand to the BST command).  
• If a READ or WRITE burst is truncated with a BST command, the effective burst length  
of the truncated burst should be used for BL when calculating the minimum READ-  
to-WRITE or WRITE-to-READ delay.  
• The BST command only affects the most recent READ or WRITE command. The BST  
command truncates an ongoing READ burst RL × tCK + tDQSCK + tDQSQ after the ris-  
ing edge of the clock where the BST command is issued. The BST command truncates  
t
an ongoing WRITE burst WL × CK + tDQSS after the rising edge of the clock where the  
BST command is issued.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
55  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
BURST TERMINATE Command  
• The 4-bit prefetch architecture enables BST command assertion on even clock cycles  
following a WRITE or READ command. The effective burst length of a READ or WRITE  
command truncated by a BST command is thus an integer multiple of four.  
Figure 32: Burst WRITE Truncated by BST – WL = 1, BL = 16  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK_c  
CK_t  
WL = 1  
Bank m  
col addr a  
Col addr a  
CA[9:0]  
CMD  
WRITE  
NOP  
NOP  
NOP  
BST  
NOP  
t
NOP  
NOP  
NOP  
t
WL × CK + DQSS  
DQS_c  
DQS_t  
D
A0  
D
A1  
D
A2  
D
A3  
D
A4  
D
A5  
D
A6  
D
A7  
DQ  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
BST prohibited  
Transitioning data  
1. The BST command truncates an ongoing WRITE burst WL × tCK + tDQSS after the rising  
edge of the clock where the BST command is issued.  
Notes:  
2. BST can only be issued an even number of clock cycles after the WRITE command.  
3. Additional BST commands are not supported after T4 and must not be issued until after  
the next READ or WRITE command.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
56  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Write Data Mask  
Figure 33: Burst READ Truncated by BST – RL = 3, BL = 16  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK_c  
CK_t  
RL = 3  
Bank n  
Col addr a  
CA[9:0]  
CMD  
col addr a  
NOP  
NOP  
NOP  
BST  
NOP  
t
NOP  
t
NOP  
NOP  
READ  
t
RL × CK + DQSCK + DQSQ  
DQS_c  
DQS_t  
D
A0  
D
A1  
D
A2  
D
A3  
D
A4  
D
A5  
D
A6  
D
A7  
OUT  
DQ  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
BST prohibited  
Transitioning data  
1. The BST command truncates an ongoing READ burst (RL × tCK + tDQSCK + tDQSQ) after  
the rising edge of the clock where the BST command is issued.  
Notes:  
2. BST can only be issued an even number of clock cycles after the READ command.  
3. Additional BST commands are not supported after T4 and must not be issued until after  
the next READ or WRITE command.  
Write Data Mask  
On the LPDDR2 device, one write data mask (DM) pin for each data byte (DQ) is sup-  
ported, consistent with the implementation on LPDDR SDRAM. Each DM can mask its  
respective DQ for any given cycle of the burst. Data mask timings match data bit timing,  
but are inputs only. Internal data mask loading is identical to data bit loading to ensure  
matched system timing.  
Figure 34: Data Mask Timing  
DQS_c  
DQS_t  
DQ  
t
t
t
t
DS  
DH  
DS  
DH  
V
V
V
V
V
V
IH(AC)  
IH(DC)  
IH(DC)  
IH(AC)  
DM  
V
V
IL(AC)  
IL(AC)  
IL(DC)  
IL(DC)  
Don’t Care  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
57  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
PRECHARGE Command  
Figure 35: Write Data Mask – Second Data Bit Masked  
CK_c  
CK_t  
t
WR  
t
WL = 2  
WTR  
WRITE  
CMD  
t
t
Case 1: DQSSmin  
DQSSmin  
DQS_c  
DQS_t  
D
1
D
0
D
2
D 3  
IN  
DQ  
IN  
IN  
IN  
DM  
t
Case 2: DQSSmax  
t
DQSSmax  
DQS_c  
DQS_t  
D
0
D
1
D
2
D 3  
IN  
DQ  
IN  
IN  
IN  
DM  
Don’t Care  
1. For the data mask function, WL = 2, BL = 4 is shown; the second data bit is masked.  
Note:  
PRECHARGE Command  
The PRECHARGE command is used to precharge or close a bank that has been activa-  
ted. The PRECHARGE command is initiated with CS_n LOW, CA0 HIGH, CA1 HIGH,  
CA2 LOW, and CA3 HIGH at the rising edge of the clock. The PRECHARGE command  
can be used to precharge each bank independently or all banks simultaneously. For a 4-  
bank device, the AB flag and bank address bits BA0 and BA1 are used to determine  
which bank(s) to precharge. For an 8-bank device, the AB flag and the bank address bits  
BA0, BA1, and BA2 are used to determine which bank(s) to precharge. The precharged  
bank(s) will be available for subsequent row access tRPab after an all bank PRECHARGE  
command is issued, or tRPpb after a single-bank PRECHARGE command is issued.  
To ensure that an 8-bank device can meet the instantaneous current demand required  
to operate, the row precharge time (tRP) for an all bank PRECHARGE in an 8-bank de-  
vice (tRPab) will be longer than the row precharge time for a single-bank PRECHARGE  
(tRPpb). For a 4-bank device, tRPab is equal to tRPpb.  
ACTIVATE to PRECHARGE timing is shown in ACTIVATE Command.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
58  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
PRECHARGE Command  
Table 47: Bank Selection for PRECHARGE by Address Bits  
Precharged Bank(s) 4-  
Precharged Bank(s) 8-  
Bank Device  
AB (CA4r)  
BA2 (CA9r)  
BA1 (CA8r)  
BA0 (CA7r)  
Bank Device  
Bank 0 only  
Bank 1 only  
Bank 2 only  
Bank 3 only  
Bank 0 only  
Bank 1 only  
Bank 2 only  
Bank 3 only  
All banks  
0
0
0
0
0
0
0
0
1
0
0
0
Bank 0 only  
Bank 1 only  
Bank 2 only  
Bank 3 only  
Bank 4 only  
Bank 5 only  
Bank 6 only  
Bank 7 only  
All banks  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Don’t Care  
Don’t Care  
Don’t Care  
READ Burst Followed by PRECHARGE  
For the earliest possible precharge, the PRECHARGE command can be issued BL/2  
clock cycles after a READ command. A new bank ACTIVATE command can be issued to  
the same bank after the row precharge time (tRP) has elapsed. A PRECHARGE com-  
mand cannot be issued until after tRAS is satisfied.  
The minimum READ-to-PRECHARGE time (tRTP) must also satisfy a minimum analog  
time from the rising clock edge that initiates the last 4-bit prefetch of a READ com-  
mand. tRTP begins BL/2 - 2 clock cycles after the READ command.  
If the burst is truncated by a BST command, the effective BL value is used to calculate  
when tRTP begins.  
Figure 36: READ Burst Followed by PRECHARGE – RL = 3, BL = 8, RU(tRTP(MIN)/tCK) = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK_c  
CK_t  
RL = 3  
BL/2  
Bank m  
Bank m  
Col addr a  
Bank m  
Row addr  
CA[9:0]  
CMD  
col addr a  
row addr  
t
t
RP  
RTP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVATE  
NOP  
DQS_c  
DQS_t  
D
A0  
D
A1  
D
A2  
D
A3  
D
A4  
D
A5  
D
A6  
D
A7  
OUT  
DQ  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Transitioning data  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
59  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
PRECHARGE Command  
Figure 37: READ Burst Followed by PRECHARGE – RL = 3, BL = 4, RU(tRTP(MIN)/tCK) = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK_c  
CK_t  
BL/2  
RL = 3  
Bank m  
Bank m  
Col addr a  
Bank m  
Row addr  
CA[9:0]  
CMD  
col addr a  
row addr  
t
t
RP  
RTP = 3  
READ  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVATE  
NOP  
NOP  
DQS_c  
DQS_t  
D
A0  
D
A1  
D
A2  
D
A3  
OUT  
DQ  
OUT  
OUT  
OUT  
Transitioning data  
WRITE Burst Followed by PRECHARGE  
For WRITE cycles, a WRITE recovery time (tWR) must be provided before a PRECHARGE  
command can be issued. tWR delay is referenced from the completion of the burst  
WRITE. The PRECHARGE command must not be issued prior to the tWR delay. For  
WRITE-to-PRECHARGE timings, see the PRECHARGE and Auto Precharge Clarification  
table.  
These devices write data to the array in prefetch quadruples (prefetch = 4). An internal  
WRITE operation can only begin after a prefetch group has been completely latched.  
The minimum WRITE-to-PRECHARGE time for commands to the same bank is WL +  
BL/2 + 1 + RU(tWR/tCK) clock cycles. For untruncated bursts, BL is the value set in the  
mode register. For truncated bursts, BL is the effective burst length.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
60  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
PRECHARGE Command  
Figure 38: WRITE Burst Followed by PRECHARGE – WL = 1, BL = 4  
T0  
T1  
T2  
T3  
T4  
Tx  
Tx + 1  
Ty  
Ty + 1  
CK_c  
CK_t  
WL = 1  
Bank n  
Bank n  
row addr  
Col addr  
Row addr  
Bank n  
CA[9:0]  
CMD  
col addr  
t
t
WR  
RP  
WRITE  
NOP  
t
NOP  
NOP  
NOP  
PRECHARGE  
ACTIVATE  
NOP  
NO
t
Case 1: DQSSmax  
DQSSmax  
Completion of burst WRITE  
DQS_c  
DQS_t  
D
A0  
D
A1  
D
A2  
D
A3  
IN  
DQ  
IN  
IN  
IN  
t
t
Case 2: DQSSmin  
DQSSmin  
DQS_c  
DQS_t  
D
A0  
D
A1  
D
A2  
D
A3  
IN  
DQ  
IN  
IN  
IN  
Transitioning data  
Auto Precharge operation  
Before a new row can be opened in an active bank, the active bank must be precharged  
using either the PRECHARGE command or the auto precharge function. When a READ  
or WRITE command is issued to the device, the auto precharge bit (AP) can be set to  
enable the active bank to automatically begin precharge at the earliest possible mo-  
ment during the burst READ or WRITE cycle.  
If AP is LOW when the READ or WRITE command is issued, then normal READ or  
WRITE burst operation is executed and the bank remains active at the completion of  
the burst.  
If AP is HIGH when the READ or WRITE command is issued, the auto precharge func-  
tion is engaged. This feature enables the PRECHARGE operation to be partially or com-  
pletely hidden during burst READ cycles (dependent upon READ or WRITE latency),  
thus improving system performance for random data access.  
READ Burst with Auto Precharge  
If AP (CA0f) is HIGH when a READ command is issued, the READ with auto precharge  
function is engaged.  
This device starts an auto precharge on the rising edge of the clock BL/2 or BL/2 - 2 +  
RU(tRTP/tCK) clock cycles later than the READ with auto precharge command, which-  
ever is greater. For auto precharge calculations, see the PRECHARGE and Auto Pre-  
charge Clarification table.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
61  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
PRECHARGE Command  
Following an auto precharge operation, an ACTIVATE command can be issued to the  
same bank if the following two conditions are satisfied simultaneously:  
• The RAS precharge time (tRP) has been satisfied from the clock at which the auto pre-  
charge begins.  
• The RAS cycle time (tRC) from the previous bank activation has been satisfied.  
Figure 39: READ Burst with Auto Precharge – RL = 3, BL = 4, RU(tRTP(MIN)/tCK) = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK_c  
CK_t  
BL/2  
RL = 3  
Bankm  
col addr a  
Bankm  
row addr  
Col addr a  
Row addr  
CA[9:0]  
t
t
RPpb  
RTP  
CMD READ w/AP  
NOP  
NOP  
NOP  
NOP  
ACTIVATE  
NOP  
NOP  
NOP  
DQS_c  
DQS_t  
D
A0  
D
A1  
D
A2  
D
A3  
DQ  
OUT  
OUT  
OUT  
OUT  
Transitioning data  
WRITE Burst with Auto Precharge  
If AP (CA0f) is HIGH when a WRITE command is issued, the WRITE with auto precharge  
function is engaged. The device starts an auto precharge at the clock rising edge tWR  
cycles after the completion of the burst WRITE.  
Following a WRITE with auto precharge, an ACTIVATE command can be issued to the  
same bank if the following two conditions are met:  
• The RAS precharge time (tRP) has been satisfied from the clock at which the auto pre-  
charge begins.  
• The RAS cycle time (tRC) from the previous bank activation has been satisfied.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
62  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
PRECHARGE Command  
Figure 40: WRITE Burst with Auto Precharge – WL = 1, BL = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK_c  
CK_t  
WL = 1  
Bankn  
Bankn  
Col addr  
Row addr  
CA[9:0]  
CMD  
col addr  
row addr  
t
t
WR  
RPpb  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVATE  
NOP  
DQS_c  
DQS_t  
D
A0  
D
A1  
D
A2  
D
A3  
IN  
DQ  
IN  
IN  
IN  
Transitioning data  
Table 48: PRECHARGE and Auto Precharge Clarification  
From  
Command To Command  
Minimum Delay Between Commands  
BL/2 + MAX(2, RU(tRTP/tCK)) - 2  
BL/2 + MAX(2, RU(tRTP/tCK)) - 2  
1
Unit Notes  
READ  
BST  
PRECHARGE to same bank as READ  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
1
1
PRECHARGE ALL  
PRECHARGE to same bank as READ  
PRECHARGE ALL  
1
1
1
READ w/AP PRECHARGE to same bank as READ w/AP  
PRECHARGE ALL  
BL/2 + MAX(2, RU(tRTP/tCK)) - 2  
BL/2 + MAX(2, RU(tRTP/tCK)) - 2  
BL/2 + MAX(2, RU(tRTP/tCK)) - 2 + RU(tRPpb/  
tCK)  
1, 2  
1
ACTIVATE to same bank as READ w/AP  
1
WRITE or WRITE w/AP (same bank)  
WRITE or WRITE w/AP (different bank)  
READ or READ w/AP (same bank)  
READ or READ w/AP (different bank)  
Illegal  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
3
3
3
3
1
1
1
1
RL + BL/2 + RU(tDQSCKmax/tCK) - WL + 1  
Illegal  
BL/2  
WRITE  
BST  
PRECHARGE to same bank as WRITE  
PRECHARGE ALL  
WL + BL/2 + RU(tWR/tCK) + 1  
WL + BL/2 + RU(tWR/tCK) + 1  
WL + RU(tWR/tCK) + 1  
WL + RU(tWR/tCK) + 1  
PRECHARGE to same bank as WRITE  
PRECHARGE ALL  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
63  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
REFRESH Command  
Table 48: PRECHARGE and Auto Precharge Clarification (Continued)  
From  
Command To Command  
Minimum Delay Between Commands  
Unit Notes  
WRITE w/AP PRECHARGE to same bank as WRITE w/AP WL + BL/2 + RU(tWR/tCK) + 1  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
1, 2  
1
PRECHARGE ALL  
WL + BL/2 + RU(tWR/tCK) + 1  
ACTIVATE to same bank as WRITE w/AP  
WRITE or WRITE w/AP (same bank)  
WRITE or WRITE w/AP (different bank)  
READ or READ w/AP (same bank)  
READ or READ w/AP (different bank)  
PRECHARGE PRECHARGE to same bank as PRECHARGE  
PRECHARGE ALL  
WL + BL/2 + RU(tWR/tCK) + 1 + RU(tRPpb/tCK)  
1
Illegal  
3
BL/2  
3
Illegal  
3
WL + BL/2 + RU(tWTR/tCK) + 1  
3
1
1
1
1
1
1
PRECHARGE PRECHARGE  
1
ALL  
PRECHARGE ALL  
1
1. For a given bank, the PRECHARGE period should be counted from the latest PRECHARGE  
command—either a one-bank PRECHARGE or PRECHARGE ALL—issued to that bank.  
The PRECHARGE period is satisfied after tRP, depending on the latest PRECHARGE com-  
mand issued to that bank.  
Notes:  
2. Any command issued during the specified minimum delay time is illegal.  
3. After READ with auto precharge, seamless READ operations to different banks are sup-  
ported. After WRITE with auto precharge, seamless WRITE operations to different banks  
are supported. READ with auto precharge and WRITE with auto precharge must not be  
interrupted or truncated.  
REFRESH Command  
The REFRESH command is initiated with CS_n LOW, CA0 LOW, CA1 LOW, and CA2  
HIGH at the rising edge of the clock. A per-bank REFRESH command is initiated with  
CA3 LOW at the rising edge of the clock. The all-bank REFRESH command is initiated  
with CA3 HIGH at the rising edge of the clock. A per-bank REFRESH is only supported  
in devices with eight banks.  
A per-bank REFRESH command (REFpb) performs a per-bank REFRESH operation to  
the bank scheduled by the bank counter in the memory device. The bank sequence for  
per-bank REFRESH is fixed to be a sequential round-robin: 0-1-2-3-4-5-6-7-0-1-.... The  
bank count is synchronized between the controller and the SDRAM by resetting the  
bank count to zero. Synchronization can occur upon issuing a RESET command or at  
every exit from self refresh.  
A bank must be idle before it can be refreshed. The controller must track the bank being  
refreshed by the per-bank REFRESH command.  
The REFpb command must not be issued to the device until the following conditions  
have been met:  
t
• RFCab has been satisfied after the prior REFab command  
t
• RFCpb has been satisfied after the prior REFpb command  
t
• RP has been satisfied after the prior PRECHARGE command to that bank  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
64  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
REFRESH Command  
tRRD has been satisfied after the prior ACTIVATE command (when applicable, for ex-  
ample after activating a row in a different bank than the one affected by the REFpb  
command)  
The target bank is inaccessible during per-bank REFRESH cycle time (tRFCpb); howev-  
er, other banks within the device are accessible and can be addressed during the cycle.  
During the REFpb operation, any of the banks other than the one being refreshed can  
be maintained in an active state or accessed by a READ or WRITE command.  
When the per-bank REFRESH cycle has completed, the affected bank will be in the idle  
state.  
After issuing REFpb, the following conditions must be met:  
t
• RFCpb must be satisfied before issuing a REFab command  
t
• RFCpb must be satisfied before issuing an ACTIVATE command to the same bank  
t
• RRD must be satisfied before issuing an ACTIVATE command to a different bank  
t
• RFCpb must be satisfied before issuing another REFpb command  
An all-bank REFRESH command (REFab) issues a REFRESH command to all banks. All  
banks must be idle when REFab is issued (for instance, by issuing a PRECHARGE ALL  
command prior to issuing an all-bank REFRESH command). REFab also synchronizes  
the bank count between the controller and the SDRAM to zero. The REFab command  
must not be issued to the device until the following conditions have been met:  
t
• RFCab has been satisfied following the prior REFab command  
t
• RFCpb has been satisfied following the prior REFpb command  
t
• RP has been satisfied following the prior PRECHARGE commands  
After an all-bank REFRESH cycle has completed, all banks will be idle. After issuing RE-  
Fab:  
t
• RFCab latency must be satisfied before issuing an ACTIVATE command  
t
• RFCab latency must be satisfied before issuing a REFab or REFpb command  
Table 49: REFRESH Command Scheduling Separation Requirements  
Minimum  
Symbol  
Delay From To  
Notes  
tRFCab  
REFab  
REFab  
ACTIVATE command to any bank  
REFpb  
tRFCpb  
REFpb  
REFab  
ACTIVATE command to same bank as REFpb  
REFpb  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
65  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
REFRESH Command  
Table 49: REFRESH Command Scheduling Separation Requirements (Continued)  
Minimum  
Symbol  
Delay From To  
Notes  
tRRD  
REFpb  
ACTIVATE command to a different bank than REFpb  
ACTIVATE  
REFpb affecting an idle bank (different bank than activate)  
1
ACTIVATE command to a different bank than the prior ACTIVATE com-  
mand  
1. A bank must be in the idle state before it is refreshed, so REFab is prohibited following  
an ACTIVATE command. REFpb is supported only if it affects a bank that is in the idle  
state.  
Note:  
REFRESH Requirements  
1. Minimum Number of REFRESH Commands  
Mobile LPDDR2 requires a minimum number, R, of REFRESH (REFab) commands with-  
in any rolling refresh window (tREFW = 32 ms @ MR4[2:0] = 011 or TC 85˚C). For actual  
values per density and the resulting average refresh interval (tREFI), see Refresh Re-  
quirements.  
For tREFW and tREFI refresh multipliers at different MR4 settings, see the MR4 Device  
Temperature (MA[7:0] = 04h) table.  
For devices supporting per-bank REFRESH, a REFab command can be replaced by a full  
cycle of eight REFpb commands.  
2. Burst REFRESH Limitation  
To limit current consumption, a maximum of eight REFab commands can be issued in  
any rolling tREFBW (tREFBW = 4 × 8 × tRFCab). This condition does not apply if REFpb  
commands are used.  
3. REFRESH Requirements and Self Refresh  
If any time within a refresh window is spent in self refresh mode, the number of re-  
quired REFRESH commands in that window is reduced to the following:  
t
t
SRF  
REFW  
SRF  
R´ = R - RU  
= R - RU R ×  
t
t
REFI  
Where RU represents the round-up function  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
66  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
REFRESH Command  
Figure 41: tSRF Definition  
tREFW  
tSRF  
Example A1  
CKE  
Enter self refresh mode  
tREFW  
Exit self refresh mode  
Example B2  
tSRF  
CKE  
Enter self refresh mode  
tREFW  
Exit self refresh mode  
Example C3  
tSRF  
CKE  
Exit self refresh mode  
tREFW  
Example D4  
CKE  
tSRF1  
tSRF2  
Enter self refresh mode  
Exit self refresh mode  
Enter self refresh mode  
Exit self refresh mode  
1. Time in self refresh mode is fully enclosed in the refresh window (tREFW).  
2. At self refresh entry.  
Notes:  
3. At self refresh exit.  
4. Several intervals in self refresh during one tREFW interval. In this example, tSRF = tSRF1 +  
tSRF2.  
The mobile LPDDR2 device provides significant flexibility in scheduling a REFRESH  
command as long as the required boundary conditions are met (see the tSRF Definition  
figure).  
In the most straightforward implementations, a REFRESH command should be sched-  
uled every tREFI. In this case, self refresh can be entered at any time.  
Users may choose to deviate from this regular refresh pattern, for instance, to enable a  
period in which no refresh is required. As an example, using a 1Gb LPDDR2 device, the  
user can choose to issue a refresh burst of 4096 REFRESH commands at the maximum  
supported rate (limited by tREFBW), followed by an extended period without issuing  
any REFRESH commands, until the refresh window is complete. The maximum suppor-  
ted time without REFRESH commands is calculated as follows: tREFW - (R/8) × tREFBW  
= tREFW - R × 4 × tRFCab.  
For example, a 1Gb device at TC 85˚C can be operated without a refresh for up to 32ms  
- 4096 × 4 × 130ns 30ms.  
Both the regular and the burst/pause patterns can satisfy refresh requirements if they  
are repeated in every 32ms window. It is critical to satisfy the refresh requirement in  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
67  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
REFRESH Command  
every rolling refresh window during refresh pattern transitions. The supported transi-  
tion from a burst pattern to a regular distributed pattern is shown in the Supported  
Transition from Repetitive REFRESH Burst figure. If this transition occurs immediately  
after the burst refresh phase, all rolling tREFW intervals will meet the minimum re-  
quired number of REFRESH commands.  
A nonsupported transition is shown below. In this example, the regular refresh pattern  
starts after the completion of the pause phase of the burst/pause refresh pattern. For  
several rolling tREFW intervals, the minimum number of REFRESH commands is not  
satisfied.  
Understanding this pattern transition is extremely important, even when only one pat-  
tern is employed. In self refresh mode, a regular distributed refresh pattern must be as-  
sumed. Micron recommends entering self refresh mode immediately following the  
burst phase of a burst/pause refresh pattern; upon exiting self refresh, begin with the  
burst phase (see the Recommended Self Refresh Entry and Exit figure).  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
68  
© 2014 Micron Technology, Inc. All rights reserved.  
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
REFRESH Command  
Figure 42: Regular Distributed Refresh Pattern  
t
t
REFI  
REFI  
0ms  
32ms  
64ms  
96ms  
t
t
REFBW  
REFBW  
1. Compared to repetitive burst REFRESH with subsequent REFRESH pause.  
Notes:  
2. As an example, in a 1Gb LPDDR2 device at TC 85˚C, the distributed refresh pattern has  
one REFRESH command per 7.8μs; the burst refresh pattern has one REFRESH command  
per 0.52μs, followed by 30ms without any REFRESH command.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
69  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
REFRESH Command  
Figure 43: Supported Transition from Repetitive REFRESH Burst  
t
t
REFI  
REFI  
0ms  
32ms  
64ms  
96ms  
t
t
REFBW  
REFBW  
1. Shown with subsequent REFRESH pause to regular distributed refresh pattern.  
Notes:  
2. As an example, in a 1Gb LPDDR2 device at TC 85˚C, the distributed refresh pattern has  
one REFRESH command per 7.8μs; the burst refresh pattern has one REFRESH command  
per 0.52μs, followed by 30ms without any REFRESH command.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
70  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
REFRESH Command  
Figure 44: Nonsupported Transition from Repetitive REFRESH Burst  
t
t
REFI  
REFI  
0ms  
32ms  
64ms  
96ms  
2
t
REFW = 32ms  
Insufficient REFRESH commands  
in this refresh window!  
t
t
REFBW  
REFBW  
1. Shown with subsequent REFRESH pause to regular distributed refresh pattern.  
Notes:  
2. There are only 2048 REFRESH commands in the indicated tREFW window. This does not  
provide the required minimum number of REFRESH commands (R).  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
71  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
REFRESH Command  
Figure 45: Recommended Self Refresh Entry and Exit  
0ms  
32ms  
Self refresh  
t
t
REFBW  
REFBW  
1. In conjunction with a burst/pause refresh pattern.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
72  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
SELF REFRESH Operation  
Figure 46: All-Bank REFRESH Operation  
T0  
T1  
T2  
T3  
T4  
Tx  
Tx + 1  
Ty  
Ty + 1  
CK_c  
CK_t  
CA[9:0] AB  
t
t
t
RPab  
RFCab  
RFCab  
CMD PRECHARGE  
NOP  
NOP  
REFab  
NO
REFab  
NOP  
Valid  
NOP  
Figure 47: Per-Bank REFRESH Operation  
T0  
T1  
Tx  
Tx + 1  
Tx + 2  
Ty  
Ty + 1  
Tz  
Tz + 1  
CK_c  
CK_t  
Bank 1  
Row A  
Row A  
CA[9:0]  
AB  
t
t
t
RPab  
RFCpb  
RFCpb  
CMD PRECHARGE  
NOP  
NOP  
REFpb  
NO
REFpb  
NOP  
ACTIVATE  
NOP  
REFRESH to bank 0  
REFRESH to bank 1  
ACTIVATE command  
to bank 1  
1. Prior to T0, the REFpb bank counter points to bank 0.  
Notes:  
2. Operations to banks other than the bank being refreshed are supported during the  
tRFCpb period.  
SELF REFRESH Operation  
The SELF REFRESH command can be used to retain data in the array, even if the rest of  
the system is powered down. When in the self refresh mode, the device retains data  
without external clocking. The device has a built-in timer to accommodate the SELF  
REFRESH operation.  
The SELF REFRESH command is executed by taking CKE LOW, CS_n LOW, CA0 LOW,  
CA1 LOW, and CA2 HIGH at the rising edge of the clock. CKE must be HIGH during the  
previous clock cycle. A NOP command must be driven in the clock cycle following the  
POWER-DOWN command. Once the command is registered, CKE must be held LOW to  
keep the device in self-refresh mode.  
The mobile LPDDR2 device can operate in self refresh mode in both the standard and  
extended temperature ranges. The device also manages self refresh power consumption  
when the operating temperature changes, resulting in the lowest possible power con-  
sumption across the operating temperature range (See IDD Specifications for details).  
After the device has entered self refresh mode, all external signals other than CKE are  
“Don’t Care.” For proper self refresh operation, power supply pins (VDD1, VDD2, and  
VDDQ) must be at valid levels. VDDQ can be turned off during self refresh. If VDDQ is  
turned off, VREFDQ must also be turned off. Prior to exiting self refresh, both VDDQ and  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
73  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
SELF REFRESH Operation  
VREFDQ must be within their respective minimum/maximum operating ranges (see the  
Single-Ended AC and DC Input Levels for DQ and DM table). VREFDQ can be at any level  
between 0 and VDDQ; VREFCA can be at any level between 0 and VDD2 during self refresh.  
Before exiting self refresh, VREFDQ and VREFCA must be within specified limits (See AC  
and DC Logic Input Measurement Levels for Single-Ended Signals for details). After en-  
tering self refresh mode, the device initiates at least one all-bank REFRESH command  
internally during tCKESR. The clock is internally disabled during SELF REFRESH opera-  
tion to save power. The device must remain in self refresh mode for at least tCKESR. The  
user can change the external clock frequency or halt the external clock one clock after  
self refresh entry is registered; however, the clock must be restarted and stable before  
the device can exit SELF REFRESH operation.  
Exiting self refresh requires a series of commands. First, the clock must be stable prior  
to CKE returning HIGH. After the self refresh exit is registered, a minimum delay, at least  
equal to the self refresh exit interval (tXSR), must be satisfied before a valid command  
can be issued to the device. This provides completion time for any internal refresh in  
progress. For proper operation, CKE must remain HIGH throughout tXSR. NOP com-  
mands must be registered on each rising clock edge during tXSR.  
Using self refresh mode introduces the possibility that an internally timed refresh event  
could be missed when CKE is driven HIGH for exit from self refresh mode. Upon exiting  
self refresh, at least one REFRESH command (one all-bank command or eight per-bank  
commands) must be issued before issuing a subsequent SELF REFRESH command.  
Figure 48: SELF REFRESH Operation  
t
2 CK(MIN)  
CK_c  
CK_t  
Input clock frequency can be changed  
or clock can be stopped during self refresh.  
t
t
IHCKE  
IHCKE  
CKE  
CS_n  
CMD  
t
t
ISCKE  
ISCKE  
t
t
XSR (MIN)  
CKESR (MIN)  
Exit  
SR  
Enter  
SR  
Valid  
NOP  
NOP NOP Valid  
Enter self refresh mode  
Exit self refresh mode  
Don’t Care  
1. Input clock frequency can be changed or stopped during self refresh, provided that  
upon exiting self-refresh, a minimum of two cycles of stable clocks are provided, and the  
clock frequency is between the minimum and maximum frequencies for the particular  
speed grade.  
Notes:  
2. The device must be in the all banks idle state prior to entering self refresh mode.  
3. tXSR begins at the rising edge of the clock after CKE is driven HIGH.  
4. A valid command can be issued only after tXSR is satisfied. NOPs must be issued during  
tXSR.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
74  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
SELF REFRESH Operation  
Partial-Array Self Refresh – Bank Masking  
Any device of densities of 64Mb–512Mb is comprised of four banks; a device of 1Gb  
density or higher is comprised of eight banks. Each bank can be configured independ-  
ently whether or not a SELF REFRESH operation will occur in that bank. One 8-bit  
mode register (accessible via the MRW command) is assigned to program the bank-  
masking status of each bank up to eight banks. For bank masking bit assignments, see  
the MR16 PASR Bank Mask (MA[7:0] = 010h) and MR16 Op-Code Bit Definitions tables.  
The mask bit to the bank enables or disables a refresh operation of the entire memory  
space within the bank. If a bank is masked using the bank mask register, a REFRESH op-  
eration to the entire bank is blocked and bank data retention is not guaranteed in self  
refresh mode. To enable a REFRESH operation to a bank, the corresponding bank mask  
bit must be programmed as “unmasked.” When a bank mask bit is unmasked, the array  
space being refreshed within that bank is determined by the programmed status of the  
segment mask bits.  
Partial-Array Self Refresh – Segment Masking  
Programming segment mask bits is similar to programming bank mask bits. For a den-  
sity of 1Gb or higher, eight segments are used for masking (see the MR17 PASR Segment  
Mask (MA[7:0] = 011h) and MR17 PASR Segment Mask Definitions tables). A mode reg-  
ister is used for programming segment mask bits up to eight bits. For a density of less  
than 1Gb, segment masking is not supported.  
When the mask bit to an address range (represented as a segment) is programmed as  
“masked,” a REFRESH operation to that segment is blocked. Conversely, when a seg-  
ment mask bit to an address range is unmasked, refresh to that segment is enabled.  
A segment masking scheme can be used in place of or in combination with a bank  
masking scheme. Each segment mask bit setting is applied across all banks. For seg-  
ment masking bit assignments, see the tables noted above.  
Table 50: Bank and Segment Masking Example  
Segment Mask (MR17) Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7  
Bank Mask (MR16)  
Segment 0  
0
1
0
0
0
0
0
1
0
0
1
0
0
0
0
1
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
Segment 1  
Segment 2  
M
M
M
M
M
M
Segment 3  
Segment 4  
Segment 5  
Segment 6  
Segment 7  
M
M
M
M
M
M
1. This table provides values for an 8-bank device with REFRESH operations masked to  
banks 1 and 7, and segments 2 and 7.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
75  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
MODE REGISTER READ  
MODE REGISTER READ  
The MODE REGISTER READ (MRR) command is used to read configuration and status  
data from SDRAM mode registers. The MRR command is initiated with CS_n LOW, CA0  
LOW, CA1 LOW, CA2 LOW, and CA3 HIGH at the rising edge of the clock. The mode reg-  
ister is selected by CA1f–CA0f and CA9r–CA4r. The mode register contents are available  
on the first data beat of DQ[7:0] after RL × tCK + tDQSCK + tDQSQ and following the ris-  
ing edge of the clock where MRR is issued. Subsequent data beats contain valid but un-  
defined content, except in the case of the DQ calibration function, where subsequent  
data beats contain valid content as described in the Data Calibration Pattern Descrip-  
tion table. All DQS_t,DQS_c are toggled for the duration of the mode register READ  
burst.  
The MRR command has a burst length of four. MRR operation (consisting of the MRR  
command and the corresponding data traffic) must not be interrupted. The MRR com-  
mand period (tMRR) is two clock cycles. The MRR command issued to reserved and  
write-only registers should returns valid but undefined content on all data beats, and  
DQS_t, DQS_c should be toggled.  
Figure 49: MRR Timing – RL = 3, tMRR = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK_c  
CK_t  
RL = 3  
Register Register  
Register Register  
CA[9:0]  
CMD  
A
A
B
B
tMRR = 2  
tMRR = 2  
MRR1  
NOP2  
MRR1  
NOP2  
Valid  
DQS_c  
DQS_t  
DQ[7:0]3  
D
A
D
B
OUT  
OUT  
DQ[MAX:8]  
Transitioning data  
Undefined  
1. MRRs to DQ calibration registers MR32 and MR40 are described in the Data Calibration  
Pattern Description table.  
2. Only the NOP command is supported during tMRR.  
Notes:  
3. Mode register data is valid only on DQ[7:0] on the first beat. Subsequent beats contain  
valid but undefined data. DQ[MAX:8] contain valid but undefined data for the duration  
of the MRR burst.  
4. Minimum MRR to write latency is RL + RU(tDQSCKmax/tCK) + 4/2 + 1 - WL clock cycles.  
5. Minimum MRR to MRW latency is RL + RU(tDQSCKmax/tCK) + 4/2 + 1 clock cycles.  
READ bursts and WRITE bursts cannot be truncated by MRR. Following a READ com-  
mand, the MRR command must not be issued before BL/2 clock cycles have completed.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
76  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
MODE REGISTER READ  
Following a WRITE command, the MRR command must not be issued before WL + 1 +  
BL/2 + RU(tWTR/tCK) clock cycles have completed. If a READ or WRITE burst is trunca-  
ted with a BST command, the effective burst length of the truncated burst should be  
used for the BL value.  
Figure 50: READ to MRR Timing – RL = 3, tMRR = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK_c  
CK_t  
1
BL/2  
RL = 3  
Bank m  
Register Register  
Col addr a  
CA[9:0]  
CMD  
col addr a  
B
B
t
MRR = 2  
NOP  
2
READ  
Valid  
MRR  
DQS_c  
DQS_t  
D
D
A0  
A0  
D
A1  
A1  
D
D
A2  
A2  
D
D
A3  
A3  
D
OUT  
B
DQ[7:0]  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
D
DQ[MAX:8]  
OUT  
Transitioning data  
Undefined  
1. The minimum number of clock cycles from the burst READ command to the MRR com-  
mand is BL/2.  
2. Only the NOP command is supported during tMRR.  
Notes:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
77  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
MODE REGISTER READ  
Figure 51: Burst WRITE Followed by MRR – RL = 3, WL = 1, BL = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK_c  
CK_t  
WL = 1  
RL = 3  
Bank n  
col addr a  
Register Register  
Col addr a  
CA[9:0]  
CMD  
B
B
t
t
WTR  
MRR = 2  
NOP2  
MRR1  
WRITE  
Valid  
DQS_c  
DQS_t  
D
A0  
D
A1  
D
A2  
D
A3  
IN  
DQ  
IN  
IN  
IN  
Transitioning data  
1. The minimum number of clock cycles from the burst WRITE command to the MRR com-  
mand is [WL + 1 + BL/2 + RU(tWTR/tCK)].  
2. Only the NOP command is supported during tMRR.  
Notes:  
Temperature Sensor  
The mobile LPDDR2 device features a temperature sensor whose status can be read  
from MR4. This sensor can be used to determine an appropriate refresh rate, determine  
whether AC timing derating is required in the extended temperature range, and/or  
monitor the operating temperature. Either the temperature sensor or the device operat-  
ing temperature can be used to determine whether operating temperature require-  
ments are being met (see Operating Temperature Range table).  
Temperature sensor data can be read from MR4 using the mode register read protocol.  
Upon exiting self-refresh or power-down, the device temperature status bits will be no  
older than tTSI.  
When using the temperature sensor, the actual device case temperature may be higher  
than the operating temperature specification that applies for the standard or extended  
temperature ranges (see table noted above). For example, TCASE could be above 85˚C  
when MR4[2:0] equals 011b.  
To ensure proper operation using the temperature sensor, applications must accommo-  
date the parameters in the temperature sensor definitions table.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
78  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
MODE REGISTER READ  
Table 51: Temperature Sensor Definitions and Operating Conditions  
Parameter  
Description  
Symbol  
Min/Max  
Value  
Unit  
System temperature Maximum temperature gradient experi-  
TempGradient  
MAX  
System-dependent ˚C/s  
gradient  
enced by the memory device at the temper-  
ature of interest over a range of 2˚C  
MR4 READ interval  
Time period between MR4 READs from the  
system  
ReadInterval  
tTSI  
MAX  
MAX  
MAX  
MAX  
System-dependent ms  
Temperature sensor Maximum delay between internal updates  
interval  
32  
System-dependent ms  
˚C  
ms  
of MR4  
System response  
delay  
Maximum response time from an MR4 READ SysRespDelay  
to the system response  
Device temperature Margin above maximum temperature to  
TempMargin  
2
margin  
support controller response  
The mobile LPDDR2 device accommodates the temperature margin between the point  
at which the device temperature enters the extended temperature range and the point  
at which the controller reconfigures the system accordingly. To determine the required  
MR4 polling frequency, the system must use the maximum TempGradient and the max-  
imum response time of the system according to the following equation:  
t
TempGradient × (ReadInterval + TSI + SysRespDelay) 2°C  
For example, if TempGradient is 10˚C/s and the SysRespDelay is 1ms:  
10°C  
s
× (ReadInterval + 32ms + 1ms) 2°C  
In this case, ReadInterval must not exceed 167ms.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
79  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
MODE REGISTER READ  
Figure 52: Temperature Sensor Timing  
Temp  
t
< ( TSI + ReadInterval + SysRespDelay)  
Device  
Temp  
Margin  
2°C  
MR4  
Trip Level  
t
TSI  
MR4 = 0x03  
Temperture sensor update  
MR4 = 0x86  
MR4 = 0x86  
ReadInterval  
MR4 = 0x86  
MR4 = 0x06  
Time  
SysRespDelay  
MRR MR4 = 0x86  
Host MR4 READ  
MRR MR4 = 0x03  
DQ Calibration  
The mobile LPDDR2 device features a DQ calibration function that outputs one of two  
predefined system timing calibration patterns. For a x16 device, pattern A (MRR to  
MRR32), and pattern B (MRR to MRR40), will return the specified pattern on DQ0 and  
DQ8; a x32 device returns the specified pattern on DQ0, DQ8, DQ16, and DQ24.  
For a x16 device, DQ[7:1] and DQ[15:9] drive the same information as DQ0 during the  
MRR burst. For a x32 device, DQ[7:1], DQ[15:9], DQ[23:17], and DQ[31:25] drive the  
same information as DQ0 during the MRR burst. MRR DQ calibration commands can  
occur only in the idle state.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
80  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
MODE REGISTER READ  
Figure 53: MR32 and MR40 DQ Calibration Timing – RL = 3, tMRR = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK_c  
CK_t  
RL = 3  
CA[9:0] Reg 32 Reg 32  
Reg 40 Reg 40  
MRR  
tMRR = 2  
tMRR = 2  
MRR  
NOP1  
NOP  
CMD  
DQS_c  
DQS_t  
Pattern A  
Pattern B  
DQ0  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DQ[7:1]  
DQ8  
x16  
DQ[15:9]  
DQ16  
x32  
DQ[23:17]  
DQ24  
DQ[31:25]  
Transitioning data  
Optionally driven the same as DQ0 or 0b  
1. The MRR command has a burst length of four.  
2. The MRR operation must not be interrupted.  
Notes:  
3. A MRR to MR32 and MR40 drives valid data on DQ[0] during the entire burst. For a x16  
device, DQ[8] drives the same information as DQ[0] during the burst. For a x32 device,  
DQ[8], DQ[16], and DQ[24] drive the same information as DQ[0] during the burst.  
4. For a x16 device, DQ[7:1] and DQ[15:9] may optionally drive the same information as  
DQ[0], or they may drive 0b during the burst. For a x32 device, DQ[7:1], DQ[15:9],  
DQ[23:17], and DQ[31:25] may optionally drive the same information as DQ[0], or they  
may drive 0b during the burst.  
5. The MODE REGISTER command period is tMRR. No command (other than NOP) is al-  
lowed during this period.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
81  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
MODE REGISTER WRITE Command  
Table 52: Data Calibration Pattern Description  
Bit Time Bit Time Bit Time Bit Time  
Pattern  
Pattern A  
Pattern B  
MR#  
MR32  
MR40  
0
1
2
3
Description  
1
0
1
0
Reads to MR32 return DQ calibration pattern A  
Reads to MR40 return DQ calibration pattern B  
0
0
1
1
MODE REGISTER WRITE Command  
The MODE REGISTER WRITE (MRW) command is used to write configuration data to  
the mode registers. The MRW command is initiated with CS_n LOW, CA0 LOW, CA1  
LOW, CA2 LOW, and CA3 LOW at the rising edge of the clock. The mode register is selec-  
ted by CA1f–CA0f, CA9r–CA4r. The data to be written to the mode register is contained  
in CA9f–CA2f. The MRW command period is defined by tMRW. A MRW command to  
read-only registers has no impact on the functionality of the device.  
MRW can be issued only when all banks are in the idle precharge state. One method of  
ensuring that the banks are in this state is to issue a PRECHARGE ALL command.  
Figure 54: MODE REGISTER WRITE Timing – RL = 3, tMRW = 5  
7ꢇ  
7ꢄ  
7ꢃ  
7[  
7[ꢀꢍꢀꢄ  
7[ꢀꢍꢀꢃ  
7\ꢄ  
7\ꢀꢍꢀꢄ  
7\ꢀꢍꢀꢃ  
&.BF  
&.BW  
W
W
05:  
05:  
05ꢀDGGU 05ꢀGDWD  
05ꢀDGGU 05ꢀGDWD  
&$>ꢆꢎꢇ@  
&0'  
05:  
123ꢃ  
123ꢃ  
05:  
123ꢃ  
123ꢃ  
9DOLG  
1. At time Ty, the device is in the idle state.  
2. Only the NOP command is supported during tMRW.  
Notes:  
Table 53: Truth Table for MRR and MRW  
Current State  
Command  
MRR  
Intermediate State  
Next State  
All banks idle  
All banks idle  
All banks idle  
Bank(s) active  
Not allowed  
Not allowed  
All banks idle  
Reading mode register, all banks idle  
Writing mode register, all banks idle  
Resetting, device auto initialization  
Reading mode register, bank(s) active  
Not allowed  
MRW  
MRW (RESET)  
MRR  
Bank(s) active  
MRW  
MRW (RESET)  
Not allowed  
MRW RESET Command  
The MRW RESET command brings the device to the device auto initialization (reset-  
ting) state in the power-on initialization sequence (see step 2. of the RESET Command  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
82  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
MODE REGISTER WRITE Command  
under Voltage Ramp and Initialization Sequence). The MRW RESET command can be  
issued from the idle state. This command resets all mode registers to their default val-  
ues. Only the NOP command is supported during tINIT4. After MRW RESET, boot tim-  
ings must be observed until the device initialization sequence is complete and the de-  
vice is in the idle state. Array data is undefined after the MRW RESET command has  
completed. For MRW RESET timing, see Voltage Ramp and Initialization Sequence.  
MRW ZQ Calibration Commands  
The MRW command is used to initiate a ZQ calibration command that calibrates output  
driver impedance across process, temperature, and voltage. LPDDR2-S4 devices sup-  
port ZQ calibration. To achieve tighter tolerances, proper ZQ calibration must be per-  
formed.  
There are four ZQ calibration commands and related timings: tZQINIT, tZQRESET,  
tZQCL, and tZQCS. tZQINIT is used for initialization calibration; tZQRESET is used for  
resetting ZQ to the default output impedance; tZQCL is used for long calibration(s); and  
tZQCS is used for short calibration(s). See the MR10 Calibration (MA[7:0] = 0Ah) table  
for ZQ calibration command code definitions.  
ZQINIT must be performed for LPDDR2 devices. ZQINIT provides an output impe-  
dance accuracy of 15ꢀ. After initialization, the ZQ calibration long (ZQCL) can be used  
to recalibrate the system to an output impedance accuracy of 15ꢀ. A ZQ calibration  
short (ZQCS) can be used periodically to compensate for temperature and voltage drift  
in the system.  
ZQRESET resets the output impedance calibration to a default accuracy of 30ꢀ across  
process, voltage, and temperature. This command is used to ensure output impedance  
accuracy to 30ꢀ when ZQCS and ZQCL commands are not used.  
One ZQCS command can effectively correct at least 1.5ꢀ (ZQ correction) of output im-  
pedance errors within tZQCS for all speed bins if maximum sensitivities are met as  
specified in Output Driver Sensitivity Definition and Output Driver Temperature and  
Voltage Sensitivity. The appropriate interval between ZQCS commands can be deter-  
mined using these tables and system-specific parameters.  
Mobile LPDDR2 devices are subject to temperature drift rate (Tdriftrate) and voltage drift  
rate (Vdriftrate) in various applications. To accommodate drift rates and calculate the  
necessary interval between ZQCS commands, apply the following formula:  
ZQcorrection  
(Tsens × Tdriftrate) + (Vsens × Vdriftrate  
)
Where Tsens = MAX (dRONdT) and Vsens = MAX (dRONdV) define temperature and volt-  
age sensitivities.  
For example, if Tsens = 0.75ꢀ/˚C, Vsens = 0.20ꢀ/mV, Tdriftrate = 1˚C/sec, and Vdriftrate  
15 mV/sec, then the interval between ZQCS commands is calculated as:  
=
1.5  
= 0.4s  
(0.75 × 1) + (0.20 × 15)  
A ZQ calibration command can only be issued when the device is in the idle state with  
all banks precharged.  
No other activities can be performed on the data bus during calibration periods  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
83  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
MODE REGISTER WRITE Command  
(tZQINIT, tZQCL, or tZQCS). The quiet time on the data bus helps to calibrate output im-  
pedance accurately. There is no required quiet time after the ZQRESET command. If  
multiple devices share a single ZQ resistor, only one device can be calibrating at any giv-  
en time. After calibration is complete, the ZQ ball circuitry is disabled to reduce power  
consumption.  
In systems sharing a ZQ resistor between devices, the controller must prevent tZQINIT,  
tZQCS, and tZQCL overlap between the devices. ZQRESET overlap is acceptable. If the  
ZQ resistor is absent from the system, ZQ must be connected to VDD2. In this situation,  
the device must ignore ZQ calibration commands and the device will use the default  
calibration settings.  
Figure 55: ZQ Timings  
7ꢇ  
7ꢄ  
7ꢃ  
7ꢈ  
7ꢋ  
7ꢉ  
7[  
7[ꢀꢍꢀꢄ  
7[ꢀꢍꢀꢃ  
&.BF  
&.BW  
05ꢀDGGU 05ꢀGDWD  
&$>ꢆꢎꢇ@  
=4,1,7  
&0'  
W
=4,1,7  
05:  
05:  
05:  
05:  
123  
123  
123  
123  
123  
123  
123  
123  
123  
123  
123  
123  
123  
123  
123  
123  
123  
9DOLG  
9DOLG  
9DOLG  
9DOLG  
=4&6  
&0'  
W
=4&6  
123  
=4&/  
&0'  
W
=4&/  
123  
=45(6(7  
&0'  
W
=45(6(7  
123  
1. Only the NOP command is supported during ZQ calibrations  
tZQINIT: ZQ calibration initialization period  
tZQCS: ZQ calibration short period  
Notes:  
t ZQCL: ZQ calibration long period  
tZQRESET: ZQ calibration reset period  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
84  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Power-Down  
2. CKE must be registered HIGH continuously during the calibration period.  
3. All devices connected to the DQ bus should be High-Z during the calibration process.  
ZQ External Resistor Value, Tolerance, and Capacitive Loading  
To use the ZQ calibration function, a 240 ohm ( 1ꢀ tolerance) external resistor must be  
connected between the ZQ pin and ground. A single resistor can be used for each device  
or one resistor can be shared between multiple devices if the ZQ calibration timings for  
each device do not overlap. The total capacitive loading on the ZQ pin must be limited  
(see the Input/Output Capacitance table).  
Power-Down  
Power-down is entered synchronously when CKE is registered LOW and CS_n is HIGH  
at the rising edge of clock. A NOP command must be driven in the clock cycle following  
power-down entry. CKE must not go LOW while MRR, MRW, READ, or WRITE opera-  
tions are in progress. CKE can go LOW while any other operation such as ACTIVATE,  
PRECHARGE, auto precharge, or REFRESH are in progress, but the power-down IDD  
specification will not be applied until such operations are complete.  
If power-down occurs when all banks are idle, this mode is referred to as idle power-  
down; if power-down occurs when there is a row active in any bank, this mode is refer-  
red to as active power-down.  
Entering power-down deactivates the input and output buffers, excluding CK_t, CK_c,  
and CKE. In power-down mode, CKE must be held LOW; all other input signals are  
“Don’t Care.” CKE LOW must be maintained until tCKE is satisfied. VREFCA must be  
maintained at a valid level during power-down.  
V
DDQ can be turned off during power-down. If VDDQ is turned off, VREFDQ must also be  
turned off. Prior to exiting power-down, both VDDQ and VREFDQ must be within their re-  
spective minimum/maximum operating ranges (see AC and DC Operating Conditions).  
No refresh operations are performed in power-down mode. The maximum duration in  
power-down mode is limited only by the refresh requirements outlined in REFRESH  
Command.  
The power-down state is exited when CKE is registered HIGH. The controller must drive  
CS_n HIGH in conjunction with CKE HIGH when exiting the power-down state. CKE  
HIGH must be maintained until tCKE is satisfied. A valid, executable command can be  
applied with power-down exit latency tXP after CKE goes HIGH. Power-down exit laten-  
cy is defined in the AC Timing section.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
85  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Power-Down  
Figure 56: Power-Down Entry and Exit Timing  
t
2 CK(MIN)  
CK_c  
CK_t  
Input clock frequency can be changed  
or the input clock can be stopped during power-down.  
t
t
t
CKE(MIN)  
IHCKE  
IHCKE  
1
CKE  
t
t
ISCKE  
ISCKE  
CS_n  
t
t
XP(MIN)  
CKE(MIN)  
Exit  
PD  
Enter  
PD  
CMD Valid  
NOP  
NP NOP Valid  
Enter power-down mode  
Exit power-down mode  
Don’t Care  
1. Input clock frequency can be changed or the input clock stopped during power-down,  
provided that the clock frequency is between the minimum and maximum specified fre-  
quencies for the speed grade in use, and that prior to power-down exit, a minimum of  
two stable clocks complete.  
Note:  
Figure 57: CKE Intensive Environment  
CK_c  
CK_t  
t
t
t
t
CKE  
CKE  
CKE  
CKE  
CKE  
Figure 58: REFRESH-to-REFRESH Timing in CKE Intensive Environments  
CK_c  
CK_t  
tCKE  
tCKE  
tCKE  
tCKE  
CKE  
tXP  
tXP  
tREFI  
CMD  
REFRESH  
REFRESH  
1. The pattern shown can repeat over an extended period of time. With this pattern, all  
AC and DC timing and voltage specifications with temperature and voltage drift are en-  
sured.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
86  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Power-Down  
Figure 59: READ to Power-Down Entry  
BL = 4  
T0  
T1  
T2  
RL  
Tx  
Tx + 1  
Tx + 2  
Tx + 3  
Tx + 4  
Tx + 5  
Tx + 6  
Tx + 7  
Tx + 8  
Tx + 9  
CK_c  
CK_t  
tISCKE  
CKE1, 2  
CMD  
DQ  
READ  
D
D
D
D
OUT  
OUT  
OUT OUT  
DQS_c  
DQS_t  
BL = 8  
T0  
T1  
T2  
RL  
Tx  
Tx + 1  
Tx + 2  
Tx + 3  
Tx + 4  
Tx + 5  
Tx + 6  
Tx + 7  
Tx + 8  
Tx + 9  
CK_c  
CK_t  
tISCKE  
CKE1, 2  
CMD  
DQ  
READ  
D
D
D
D
D
D
D
D
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT OUT  
DQS_c  
DQS_t  
1. CKE must be held HIGH until the end of the burst operation.  
Notes:  
2. CKE can be registered LOW at (RL + RU(tDQSCK(MAX)/tCK) + BL/2 + 1) clock cycles after  
the clock on which the READ command is registered.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
87  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Power-Down  
Figure 60: READ with Auto Precharge to Power-Down Entry  
BL = 4  
T0  
T1  
T2  
Tx  
Tx + 1  
Tx + 2  
Tx + 3  
Tx + 4  
Tx + 5  
Tx + 6  
Tx + 7  
Tx + 8  
Tx + 9  
CK_c  
CK_t  
BL/23  
t
ISCKE  
RL  
CKE1, 2  
CMD  
DQ  
PRE4  
READ w/AP  
DOUT DOUT DOUT DOUT  
DQS_c  
DQS_t  
BL = 8  
T0  
T1  
T2  
Tx  
Tx + 1  
Tx + 2  
Tx + 3  
Tx + 4  
Tx + 5  
Tx + 6  
Tx + 7  
Tx + 8  
Tx + 9  
CK_c  
CK_t  
RL  
t
BL/23  
ISCKE  
CKE1, 2  
CMD  
DQ  
PRE4  
READ w/AP  
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT  
DQS_c  
DQS_t  
1. CKE must be held HIGH until the end of the burst operation.  
Notes:  
2. CKE can be registered LOW at (RL + RU(tDQSCK/tCK)+ BL/2 + 1) clock cycles after the  
clock on which the READ command is registered.  
3. BL/2 with tRTP = 7.5ns and tRAS (MIN) is satisfied.  
4. Start internal PRECHARGE.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
88  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Power-Down  
Figure 61: WRITE to Power-Down Entry  
BL = 4  
T0  
T1  
Tm  
Tm + 1 Tm + 2 Tm + 3  
Tx  
Tx + 1  
tISCKE  
Tx + 2  
Tx + 3  
Tx + 4  
Tx + 5  
Tx + 6  
CK_c  
CK_t  
WL  
CKE1  
CMD  
DQ  
tWR  
WRITE  
BL/2  
DIN DIN DIN DIN  
DQS_c  
DQS_t  
BL = 8  
T0  
T1  
Tm  
Tm +m1 Tm + 2 Tm + 3 Tm + 4 Tm + 5  
Tx  
Tx + 1  
tISCKE  
Tx + 2  
Tx + 3  
Tx + 4  
CK_c  
CK_t  
WL  
CKE1  
CMD  
DQ  
tWR  
WRITE  
BL/2  
DIN DIN DIN DIN DIN DIN DIN DIN  
DQS_c  
DQS_t  
1. CKE can be registered LOW at (WL + 1 + BL/2 + RU(tWR/tCK)) clock cycles after the clock  
on which the WRITE command is registered.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
89  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Power-Down  
Figure 62: WRITE with Auto Precharge to Power-Down Entry  
BL = 4  
T0  
T1  
Tm  
Tm + 1 Tm + 2 Tm + 3  
Tx  
Tx + 1  
Tx + 2  
tISCKE  
Tx + 3  
Tx + 4  
Tx + 5  
Tx + 6  
CK_c  
CK_t  
WL  
CKE1  
CMD  
DQ  
tWR  
2
WRITE w/AP  
BL/2  
PRE  
DIN DIN DIN DIN  
DQS_c  
DQS_t  
BL = 8  
T0  
T1  
Tm  
Tm + 1 Tm + 2 Tm + 3 Tm + 4 Tm + 5  
Tx  
Tx + 1  
Tx + 2  
tISCKE  
Tx + 3  
Tx + 4  
CK_c  
CK_t  
WL  
CKE1  
CMD  
DQ  
tWR  
2
WRITE w/AP  
BL/2  
PRE  
DIN DIN DIN DIN DIN DIN DIN DIN  
DQS_c  
DQS_t  
1. CKE can be registered LOW at (WL + 1 + BL/2 + RU(tWR/tCK + 1) clock cycles after the  
WRITE command is registered.  
Notes:  
2. Start internal PRECHARGE.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
90  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Power-Down  
Figure 63: REFRESH Command to Power-Down Entry  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK_c  
CK_t  
tISCKE  
tIHCKE  
CKE1  
CMD  
REFRESH  
1. CKE can go LOW tIHCKE after the clock on which the REFRESH command is registered.  
Note:  
Figure 64: ACTIVATE Command to Power-Down Entry  
7ꢇ  
7ꢄ  
7ꢃ  
7ꢈ  
7ꢋ  
7ꢉ  
7ꢅ  
7ꢊ  
7ꢌ  
7ꢆ  
7ꢄꢇ  
7ꢄꢄ  
&.BF  
&.BW  
W,6&.(  
W,+&.(  
&.(ꢄ  
&0'  
$&7,9$7(  
1. CKE can go LOW at tIHCKE after the clock on which the ACTIVATE command is regis-  
tered.  
Note:  
Figure 65: PRECHARGE Command to Power-Down Entry  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK_c  
CK_t  
tISCKE  
tIHCKE  
PRE  
CKE1  
CMD  
1. CKE can go LOW tIHCKE after the clock on which the PRECHARGE command is regis-  
tered.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
91  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Deep Power-Down  
Figure 66: MRR Command to Power-Down Entry  
T0  
T1  
T2  
Tx  
Tx + 1  
Tx + 2  
Tx + 3  
Tx + 4  
Tx + 5  
Tx + 6  
Tx + 7  
Tx + 8  
Tx + 9  
CK_c  
CK_t  
tISCKE  
RL  
CKE1  
CMD  
MRR  
DOUT DOUT DOUT DOUT  
DQ  
DQS_c  
DQS_t  
1. CKE can be registered LOW at (RL + RU(tDQSCK/tCK)+ BL/2 + 1) clock cycles after the  
clock on which the MRR command is registered.  
Note:  
Figure 67: MRW Command to Power-Down Entry  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK_c  
CK_t  
t
ISCKE  
CKE1  
CMD  
t
MRW  
MRW  
1. CKE can be registered LOW tMRW after the clock on which the MRW command is regis-  
tered.  
Note:  
Deep Power-Down  
Deep power-down (DPD) is entered when CKE is registered LOW with CS_n LOW, CA0  
HIGH, CA1 HIGH, and CA2 LOW at the rising edge of the clock. The NOP command  
must be driven in the clock cycle following power-down entry. CKE must not go LOW  
while MRR or MRW operations are in progress. CKE can go LOW while other operations  
such as ACTIVATE, auto precharge, PRECHARGE, or REFRESH are in progress; however,  
deep power-down IDD specifications will not be applied until those operations com-  
plete. The contents of the array will be lost upon entering DPD mode.  
In DPD mode, all input buffers except CKE, all output buffers, and the power supply to  
internal circuitry are disabled within the device. VREFDQ can be at any level between 0  
and VDDQ, and VREFCA can be at any level between 0 and VDD2 during DPD. All power  
supplies (including VREF) must be within the specified limits prior to exiting DPD (see  
AC and DC Operating Conditions).  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
92  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Input Clock Frequency Changes and Stop Events  
To exit DPD, CKE must be HIGH, tISCKE must be complete, and the clock must be sta-  
ble. To resume operation, the device must be fully reinitialized using the power-up initi-  
alization sequence.  
Figure 68: Deep Power-Down Entry and Exit Timing  
CK_c  
CK_t  
t
2 CK (MIN)  
Input clock frequency can be changed  
or the input clock can be stopped during DPD.  
1, 2  
t
t
IHCKE  
INIT3  
CKE  
t
t
ISCKE  
ISCKE  
CS_n  
t
t
RP  
DPD  
Exit  
DPD  
Enter  
DPD  
CMD NOP  
NOP  
NOP  
RESET  
Enter DPD mode  
Exit DPD mode  
Don’t Care  
1. The initialization sequence can start at any time after Tx + 1.  
Notes:  
2. tINIT3 and Tx + 1 refer to timings in the initialization sequence. For details, see Mode  
Register Definition.  
Input Clock Frequency Changes and Stop Events  
Input Clock Frequency Changes and Clock Stop with CKE LOW  
During CKE LOW, the mobile LPDDR2 device supports input clock frequency changes  
and clock stop under the following conditions:  
• Refresh requirements are met  
• Only REFab or REFpb commands can be in process  
• Any ACTIVATE or PRECHARGE commands have completed prior to changing the fre-  
quency  
• Related timing conditions,tRCD and tRP, have been met prior to changing the fre-  
quency  
• The initial clock frequency must be maintained for a minimum of two clock cycles af-  
ter CKE goes LOW  
• The clock satisfies tCH(abs) and tCL(abs) for a minimum of two clock cycles prior to  
CKE going HIGH  
For input clock frequency changes, tCK(MIN) and tCK(MAX) must be met for each clock  
cycle.  
After the input clock frequency is changed and CKE is held HIGH, additional MRW  
commands may be required to set the WR, RL, etc. These settings may require adjust-  
ment to meet minimum timing requirements at the target clock frequency.  
For clock stop, CK_t is held LOW and CK_c is held HIGH.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
93  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
NO OPERATION Command  
Input Clock Frequency Changes and Clock Stop with CKE HIGH  
During CKE HIGH, the LPDDR2 device supports input clock frequency changes and  
clock stop under the following conditions:  
• REFRESH requirements are met  
• Any ACTIVATE, READ, WRITE, PRECHARGE, MRW, or MRR commands must have  
completed, including any associated data bursts, prior to changing the frequency  
• Related timing conditions, tRCD, tWR, tRP, tMRW, and tMRR, etc., are met  
• CS_n must be held HIGH  
• Only REFab or REFpb commands can be in process  
The device is ready for normal operation after the clock satisfies tCH(abs) and tCL(abs)  
for a minimum of 2 × tCK + tXP.  
For input clock frequency changes, tCK(MIN) and tCK(MAX) must be met for each clock  
cycle.  
After the input clock frequency is changed, additional MRW commands may be re-  
quired to set the WR, RL, etc. These settings may require adjustment to meet minimum  
timing requirements at the target clock frequency.  
For clock stop, CK_t is held LOW and CK_c is held HIGH.  
NO OPERATION Command  
The NO OPERATION (NOP) command prevents the device from registering any unwan-  
ted commands issued between operations. A NOP command can be issued only at  
clock cycle N when the CKE level is constant for clock cycle N-1 and clock cycle N. The  
NOP command has two possible encodings: CS_n HIGH at the clock rising edge N; and  
CS_n LOW with CA0, CA1, CA2 HIGH at the clock rising edge N.  
The NOP command will not terminate a previous operation that is still in process, such  
as a READ burst or WRITE burst cycle.  
Truth Tables  
Truth tables provide complementary information to the state diagram. They also clarify  
device behavior and applicable restrictions when considering the actual state of the  
banks.  
Unspecified operations and timings are illegal. To ensure proper operation after an ille-  
gal event, the device must be powered down and then restarted using the specified initi-  
alization sequence before normal operation can continue.  
Table 54: Command Truth Table  
Notes 1–13 apply to all parameters conditions  
Command Pins  
CA Pins  
CKE  
CK  
Command  
CK(n-1) CK(n) CS_n CA0 CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9 Edge  
MRW  
H
H
H
H
L
L
L
L
L
MA0 MA1 MA2 MA3 MA4 MA5  
OP2 OP3 OP4 OP5 OP6 OP7  
X
MA6 MA7 OP0 OP1  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
94  
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Truth Tables  
Table 54: Command Truth Table (Continued)  
Notes 1–13 apply to all parameters conditions  
Command Pins  
CA Pins  
CKE  
CK  
Command  
CK(n-1) CK(n) CS_n CA0 CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9 Edge  
MRR  
H
H
H
H
H
H
H
X
H
H
H
H
H
H
H
H
H
H
H
X
H
H
L
H
H
H
H
H
H
L
L
X
L
L
L
L
H
MA0 MA1 MA2 MA3 MA4 MA5  
MA6 MA7  
X
REFRESH  
(per bank)  
L
L
L
L
L
L
H
H
H
L
X
X
L
X
X
X
X
X
REFRESH  
(all banks)  
H
X
L
Enter self  
refresh  
L
X
L
ACTIVATE  
(bank)  
H
H
H
H
H
H
H
H
H
H
L
L
R0  
H
H
R1  
L
R8  
R2  
L
R9  
R3  
R10  
R4  
R11  
R5  
C1  
C7  
C1  
C7  
X
R12  
R6  
C2  
C8  
C2  
C8  
X
BA0  
R7  
BA1  
R13  
BA1  
C10  
BA1  
C10  
BA1  
BA2  
R14  
BA2  
C11  
BA2  
C11  
BA2  
X
L
WRITE (bank)  
RFU  
C5  
RFU  
C6  
BA0  
C9  
X
L
AP  
H
C3  
L
C4  
H
READ (bank)  
RFU  
C5  
RFU  
C6  
BA0  
C9  
X
L
AP  
H
C3  
H
C4  
L
PRECHARGE  
(bank)  
H
AB  
BA0  
X
L
X
X
X
X
X
BST  
H
H
H
H
H
H
H
H
L
L
L
X
X
L
Enter DPD  
NOP  
X
X
X
L
X
L
H
H
L
H
H
X
L
Maintain PD,  
SREF, DPD,  
(NOP)  
L
L
X
NOP  
H
H
L
H
H
L
H
X
H
X
X
X
X
X
Maintain PD,  
SREF, DPD,  
(NOP)  
L
L
Enter power-  
down  
H
X
L
L
H
X
X
X
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
95  
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Truth Tables  
Table 54: Command Truth Table (Continued)  
Notes 1–13 apply to all parameters conditions  
Command Pins  
CA Pins  
CKE  
CK  
Command  
CK(n-1) CK(n) CS_n CA0 CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9 Edge  
Exit PD, SREF,  
DPD  
L
H
H
H
X
X
X
X
1. All commands are defined by the current state of CS_n, CA0, CA1, CA2, CA3, and CKE at  
the rising edge of the clock.  
Notes:  
2. Bank addresses (BA) determine which bank will be operated upon.  
3. AP HIGH during a READ or WRITE command indicates that an auto precharge will occur  
to the bank associated with the READ or WRITE command.  
4. X indicates a “Don’t Care” state, with a defined logic level, either HIGH (H) or LOW (L).  
5. Self refresh exit and DPD exit are asynchronous.  
6. VREF must be between 0 and VDDQ during self refresh and DPD operation.  
7. CAxr refers to command/address bit “x” on the rising edge of clock.  
8. CAxf refers to command/address bit “x” on the falling edge of clock.  
9. CS_n and CKE are sampled on the rising edge of the clock.  
10. Per-bank refresh is supported only in devices with eight banks.  
11. The least-significant column address C0 is not transmitted on the CA bus, and is inferred  
to be zero.  
12. RFU needs to input “H” or “L“ (but a defined logic level).  
13. AB “high”during Precharge command indicates that all bank Precharge will occur. In  
this case, Bank Address is don’t care.  
Table 55: CKE Truth Table  
Notes 1–5 apply to all parameters and conditions; L = LOW, H = HIGH, X = “Don’t Care”  
Current State  
CKEn-1  
CKEn  
CS_n  
Command n Operation n  
Next State  
Notes  
6, 7  
Active  
power-down  
L
L
X
X
Maintain active power-down  
Active  
power-down  
L
L
H
L
H
X
NOP  
X
Exit active power-down  
Active  
Idle power-  
down  
Maintain idle power-down  
Idle  
power-down  
L
L
H
L
H
X
NOP  
X
Exit idle power-down  
Idle  
6, 7  
Resetting idle  
power-down  
Maintain resetting power-down  
Resetting  
power-down  
L
L
H
L
H
X
NOP  
X
Exit resetting power-down  
Maintain deep power-down  
Idle or resetting 6, 7, 8  
Deep power-  
down  
Deep  
power-down  
L
L
H
L
H
X
H
H
NOP  
X
Exit deep power-down  
Maintain self refresh  
Exit self refresh  
Power-on  
Self refresh  
Idle  
9
Self refresh  
L
H
L
NOP  
NOP  
10, 11  
Bank(s) active  
H
Enter active power-down  
Active  
power-down  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
96  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Truth Tables  
Table 55: CKE Truth Table (Continued)  
Notes 1–5 apply to all parameters and conditions; L = LOW, H = HIGH, X = “Don’t Care”  
Current State  
CKEn-1  
CKEn  
CS_n  
Command n Operation n  
Next State  
Notes  
All banks idle  
H
L
H
NOP  
Enter idle power-down  
Idle  
power-down  
H
H
H
H
L
L
L
L
Enter self re- Enter self refresh  
fresh  
Self refresh  
DPD  
Enter deep power-down  
Deep  
power-down  
Resetting  
L
H
NOP  
Enter resetting power-down  
Resetting  
power-down  
Other states  
H
Refer to the command truth table  
1. Current state = the state of the device immediately prior to the clock rising edge n.  
Notes:  
2. All states and sequences not shown are illegal or reserved unless explicitly described  
elsewhere in this document.  
3. CKEn = the logic state of CKE at clock rising edge n; CKEn-1 was the state of CKE at the  
previous clock edge.  
4. CS_n= the logic state of CS_n at the clock rising edge n.  
5. Command n = the command registered at clock edge n, and operation n is a result of  
command n.  
6. Power-down exit time (tXP) must elapse before any command other than NOP is issued.  
7. The clock must toggle at least twice prior to the tXP period.  
8. Upon exiting the resetting power-down state, the device will return to the idle state if  
tINIT5 has expired.  
9. The DPD exit procedure must be followed as described in Deep Power Down.  
10. Self refresh exit time (tXSR) must elapse before any command other than NOP is issued.  
11. The clock must toggle at least twice prior to the tXSR time.  
Table 56: Current State Bank n to Command to Bank n Truth Table  
Notes 1–5 apply to all parameters and conditions  
Current State  
Command  
NOP  
Operation  
Next State  
Current state  
Active  
Notes  
Any  
Idle  
Continue previous operation  
Select and activate row  
ACTIVATE  
Refresh (per bank)  
Refresh (all banks)  
MRW  
Begin to refresh  
Refreshing (per bank)  
Refreshing (all banks)  
MR writing  
6
7
7
Begin to refresh  
Load value to mode register  
Read value from mode register  
Begin device auto initialization  
Deactivate row(s) in bank or banks  
Select column and start read burst  
Select column and start write burst  
Read value from mode register  
Deactivate row(s) in bank or banks  
MRR  
Idle, MR reading  
Resetting  
RESET  
7, 8  
PRECHARGE  
READ  
Precharging  
9, 10  
Row active  
Reading  
WRITE  
Writing  
MRR  
Active MR reading  
Precharging  
PRECHARGE  
9
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
97  
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Truth Tables  
Table 56: Current State Bank n to Command to Bank n Truth Table (Continued)  
Notes 1–5 apply to all parameters and conditions  
Current State  
Command  
READ  
WRITE  
BST  
Operation  
Next State  
Reading  
Notes  
11, 12  
11, 12, 13  
14  
Reading  
Select column and start new read burst  
Select column and start write burst  
Read burst terminate  
Writing  
Active  
Writing  
WRITE  
READ  
BST  
Select column and start new write burst  
Select column and start read burst  
Write burst terminate  
Writing  
11, 12  
11, 12, 15  
14  
Reading  
Active  
Power-on  
Resetting  
RESET  
MRR  
Begin device auto initialization  
Read value from mode register  
Resetting  
Resetting MR reading  
7, 9  
1. Values in this table apply when both CKEn -1 and CKEn are HIGH, and after tXSR or tXP  
Notes:  
has been met, if the previous state was power-down.  
2. All states and sequences not shown are illegal or reserved.  
3. Current state definitions:  
Idle: The bank or banks have been precharged, and tRP has been met.  
Active: A row in the bank has been activated, and tRCD has been met. No data bursts or  
accesses and no register accesses are in progress.  
Reading: A READ burst has been initiated with auto precharge disabled and has not yet  
terminated or been terminated.  
Writing: A WRITE burst has been initiated with auto precharge disabled and has not yet  
terminated or been terminated.  
4. These states must not be interrupted by a command issued to the same bank. NOP com-  
mands or supported commands to the other bank must be issued on any clock edge oc-  
curring during these states. Supported commands to the other banks are determined by  
that bank’s current state and the definitions given here.  
Precharge: Starts with registration of a PRECHARGE command and ends when tRP is  
met. After tRP is met, the bank is in the idle state.  
Row activate: Starts with registration of an ACTIVATE command and ends when tRCD is  
met. After tRCD is met, the bank is in the active state.  
READ with AP enabled: Starts with registration of a READ command with auto pre-  
charge enabled and ends when tRP is met. After tRP is met, the bank is in the idle state.  
WRITE with AP enabled: Starts with registration of a WRITE command with auto pre-  
charge enabled and ends when tRP is met. After tRP is met, the bank is in the idle state.  
5. These states must not be interrupted by any executable command. NOP commands must  
be applied to each rising clock edge during these states.  
Refresh (per bank): Starts with registration of a REFRESH (per bank) command and ends  
when tRFCpb is met. After tRFCpb is met, the bank is in the idle state.  
Refresh (all banks): Starts with registration of a REFRESH (all banks) command and ends  
when tRFCab is met. After tRFCab is met, the device is in the all banks idle state.  
Idle MR reading: Starts with registration of the MRR command and ends when tMRR is  
met. After tMRR is met, the device is in the all banks idle state.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
98  
© 2014 Micron Technology, Inc. All rights reserved.  
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Truth Tables  
Resetting MR reading: Starts with registration of the MRR command and ends when  
tMRR is met. After tMRR is met, the device is in the all banks idle state.  
Active MR reading: Starts with registration of the MRR command and ends when tMRR  
is met. After tMRR is met, the bank is in the active state.  
MR writing: Starts with registration of the MRW command and ends when tMRW is met.  
After tMRW is met, the device is in the all banks idle state.  
Precharging all: Starts with registration of a PRECHARGE ALL command and ends when  
tRP is met. After tRP is met, the device is in the all banks idle state.  
6. Bank-specific; requires that the bank is idle and no bursts are in progress.  
7. Not bank-specific; requires that all banks are idle and no bursts are in progress.  
8. Not bank-specific.  
9. This command may or may not be bank specific. If all banks are being precharged, they  
must be in a valid state for precharging.  
10. If a PRECHARGE command is issued to a bank in the idle state, tRP still applies.  
11. A command other than NOP should not be issued to the same bank while a burst READ  
or burst WRITE with auto precharge is enabled.  
12. The new READ or WRITE command could be auto precharge enabled or auto precharge  
disabled.  
13. A WRITE command can be issued after the completion of the READ burst; otherwise, a  
BST must be issued to end the READ prior to asserting a WRITE command.  
14. Not bank-specific. The BST command affects the most recent READ/WRITE burst started  
by the most recent READ/WRITE command, regardless of bank.  
15. A READ command can be issued after completion of the WRITE burst; otherwise, a BST  
must be used to end the WRITE prior to asserting another READ command.  
Table 57: Current State Bank n to Command to Bank m Truth Table  
Notes 1–6 apply to all parameters and conditions  
Current State  
of Bank n  
Command to Bank m Operation  
Next State for Bank m  
Notes  
Any  
NOP  
Any  
Continue previous operation  
Current state of bank m  
Idle  
Any command supported to bank m  
Select and activate row in bank m  
7
8
9
Row activating,  
active, or pre-  
charging  
ACTIVATE  
READ  
Active  
Reading  
Select column and start READ burst  
from bank m  
WRITE  
Select column and start WRITE burst to  
Writing  
9
bank m  
PRECHARGE  
MRR  
Deactivate row(s) in bank or banks  
READ value from mode register  
Precharging  
10  
Idle MR reading or active 11, 12, 13  
MR reading  
BST  
READ or WRITE burst terminates an on-  
Active  
7
going READ/WRITE from/to bank m  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
99  
 
 
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Truth Tables  
Table 57: Current State Bank n to Command to Bank m Truth Table (Continued)  
Notes 1–6 apply to all parameters and conditions  
Current State  
of Bank n  
Command to Bank m Operation  
Next State for Bank m  
Notes  
Reading  
READ  
Select column and start READ burst  
Reading  
9
(auto precharge  
disabled)  
from bank m  
WRITE  
Select column and start WRITE burst to  
Writing  
9, 14  
bank m  
ACTIVATE  
PRECHARGE  
READ  
Select and activate row in bank m  
Active  
Precharging  
Reading  
Deactivate row(s) in bank or banks  
10  
Writing  
Select column and start READ burst  
9, 15  
(auto precharge  
disabled)  
from bank m  
WRITE  
Select column and start WRITE burst to  
Writing  
9
bank m  
ACTIVATE  
PRECHARGE  
READ  
Select and activate row in bank m  
Active  
Precharging  
Reading  
Deactivate row(s) in bank or banks  
10  
Reading with  
Select column and start READ burst  
9, 16  
auto precharge  
from bank m  
WRITE  
Select column and start WRITE burst to  
Writing  
9, 14, 16  
bank m  
ACTIVATE  
PRECHARGE  
READ  
Select and activate row in bank m  
Active  
Precharging  
Reading  
Deactivate row(s) in bank or banks  
10  
Writing with  
Select column and start READ burst  
9, 15, 16  
auto precharge  
from bank m  
WRITE  
Select column and start WRITE burst to  
Writing  
9, 16  
bank m  
ACTIVATE  
PRECHARGE  
RESET  
Select and activate row in bank m  
Deactivate row(s) in bank or banks  
Begin device auto initialization  
Read value from mode register  
Active  
Precharging  
10  
Power-on  
Resetting  
Resetting  
17, 18  
MRR  
Resetting MR reading  
1. This table applies when: the previous state was self refresh or power-down; after tXSR  
Notes:  
or tXP has been met; and both CKEn -1 and CKEn are HIGH.  
2. All states and sequences not shown are illegal or reserved.  
3. Current state definitions:  
Idle: The bank has been precharged and tRP has been met.  
Active: A row in the bank has been activated, tRCD has been met, no data bursts or ac-  
cesses and no register accesses are in progress.  
Read: A READ burst has been initiated with auto precharge disabled and the READ has  
not yet terminated or been terminated.  
Write: A WRITE burst has been initiated with auto precharge disabled and the WRITE  
has not yet terminated or been terminated.  
4. Refresh, self refresh, and MRW commands can be issued only when all banks are idle.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
100  
© 2014 Micron Technology, Inc. All rights reserved.  
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Truth Tables  
5. A BST command cannot be issued to another bank; it applies only to the bank represen-  
ted by the current state.  
6. These states must not be interrupted by any executable command. NOP commands must  
be applied during each clock cycle while in these states:  
Idle MRR: Starts with registration of the MRR command and ends when tMRR has been  
met. After tMRR is met, the device is in the all banks idle state.  
Reset MRR: Starts with registration of the MRR command and ends when tMRR has been  
met. After tMRR is met, the device is in the all banks idle state.  
Active MRR: Starts with registration of the MRR command and ends when tMRR has  
been met. After tMRR is met, the bank is in the active state.  
MRW: Starts with registration of the MRW command and ends when tMRW has been  
met. After tMRW is met, the device is in the all banks idle state.  
7. BST is supported only if a READ or WRITE burst is ongoing.  
8. tRRD must be met between the ACTIVATE command to bank n and any subsequent  
ACTIVATE command to bank m.  
9. READs or WRITEs listed in the command column include READs and WRITEs with or  
without auto precharge enabled.  
10. This command may or may not be bank-specific. If all banks are being precharged, they  
must be in a valid state for precharging.  
11. MRR is supported in the row-activating state.  
12. MRR is supported in the precharging state.  
13. The next state for bank m depends on the current state of bank m (idle, row-activating,  
precharging, or active).  
14. A WRITE command can be issued after the completion of the READ burst; otherwise a  
BST must be issued to end the READ prior to asserting a WRITE command.  
15. A READ command can be issued after the completion of the WRITE burst; otherwise, a  
BST must be issued to end the WRITE prior to asserting another READ command.  
16. A READ with auto precharge enabled or a WRITE with auto precharge enabled can be  
followed by any valid command to other banks provided that the timing restrictions in  
the PRECHARGE and Auto Precharge Clarification table are met.  
17. Not bank-specific; requires that all banks are idle and no bursts are in progress.  
18. RESET command is achieved through MODE REGISTER WRITE command.  
Table 58: DM Truth Table  
Functional Name  
Write enable  
DM  
L
DQ  
Valid  
X
Notes  
1
1
Write inhibit  
H
1. Used to mask write data, and is provided simultaneously with the corresponding input  
data.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
101  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Absolute Maximum Ratings  
Absolute Maximum Ratings  
Stresses greater than those listed below may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at these or any other  
conditions outside those indicated in the operational sections of this document is not  
implied. Exposure to absolute maximum rating conditions for extended periods may  
adversely affect reliability.  
Table 59: Absolute Maximum DC Ratings  
Parameter  
Symbol  
VDD1  
Min  
–0.4  
–0.4  
–0.4  
–0.4  
–55  
Max  
+2.3  
+1.6  
+1.6  
+1.6  
+125  
Unit  
V
Notes  
VDD1 supply voltage relative to VSS  
VDD2 supply voltage relative to VSS  
VDDQ supply voltage relative to VSSQ  
Voltage on any ball relative to VSS  
Storage temperature  
1
1
VDD2 (1.2V)  
VDDQ  
V
V
1, 3  
VIN, VOUT  
TSTG  
V
˚C  
4
1. See 1. Voltage Ramp under Power Up.  
2. VREFCA 0.6 VDD2; however, VREFCA may be VDD2 provided that VREFCA 300mV.  
Notes:  
3. VREFDQ 0.6 VDDQ; however, VREFDQ may be VDDQ provided that VREFDQ 300mV.  
4. Storage temperature is the case surface temperature on the center/top side of the de-  
vice. For measurement conditions, refer to the JESD51-2 standard.  
Input/Output Capacitance  
Table 60: Input/Output Capacitance  
Note 1 applies to all parameters and conditions  
Parameter  
Symbol  
CL1  
MIN  
1.0  
MAX  
3.0  
Unit  
pF  
Notes  
2
Input capacitance, CK and CK#  
Input capacitance, all other LPDDR2 input only balls  
Input/output capacitance, DQ, DM, DQS, DQS#  
Input/output capacitance, ZQ  
CL2  
1.0  
3.0  
pF  
2
CI/O  
2.0  
3.5  
pF  
2, 3  
2, 3  
CZQ  
2.0  
3.0  
pF  
1. This parameter is not subject to production testing. It is verified by design and character-  
ization. The capacitance is measured according to JEP147 (procedure for measuring in-  
put capacitance using a vector network analyzer), with VDD1, VDD2, VDDQ, VSS, and VSSQ  
applied; all other pins are left floating.  
Notes:  
2. These parameters are measured on f = 100 MHz, VOUT = VDDQ2, TA = 25°C.  
3. DOUT circuits are disabled.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
102  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Electrical Specifications – IDD Specifications and Conditions  
Electrical Specifications – IDD Specifications and Conditions  
The following definitions and conditions are used in the IDD measurement tables unless  
stated otherwise:  
• LOW: VIN VIL(DC)max  
• HIGH: VIN VIH(DC)min  
• STABLE: Inputs are stable at a HIGH or LOW level  
• SWITCHING: See the following three tables  
Table 61: Switching for CA Input Signals  
Notes 1–3 apply to all parameters and conditions  
CK_t Rising/ CK_t Fall- CK_t Rising/ CK_t Fall- CK_t Rising/ CK_t Fall- CK_t Rising/ CK_t Fall-  
CK_c Fall-  
ing  
ing/ CK_c  
Rising  
CK_c Fall-  
ing  
ing/ CK_c  
Rising  
CK_c Fall-  
ing  
ing/ CK_c  
Rising  
CK_c Fall-  
ing  
ing/ CK_c  
Rising  
Cycle  
CS_n  
CA0  
CA1  
CA2  
CA3  
CA4  
CA5  
CA6  
CA7  
CA8  
CA9  
N
N + 1  
HIGH  
N + 2  
HIGH  
N + 3  
HIGH  
HIGH  
H
H
H
H
H
H
H
H
H
H
L
H
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
H
L
H
H
H
H
H
H
H
H
H
H
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
H
1. CS# must always be driven HIGH.  
2. For each clock cycle, 50% of the CA bus is changing between HIGH and LOW.  
Notes:  
3. The noted pattern (N, N + 1, N + 2, N + 3...) is used continuously during IDD measure-  
ment for IDD values that require switching on the CA bus.  
Table 62: Switching for IDD4R  
Clock Cycle  
Number  
Clock  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
CKE  
H
CS_n  
Command  
Read_Rising  
Read_Falling  
NOP  
CA[2:0]  
HLH  
LLL  
CA[9:3]  
LHLHLHL  
LLLLLLL  
All DQ  
L
L
N
L
L
H
N
H
H
H
L
N +1  
N + 1  
N + 2  
N + 2  
N + 3  
LLL  
LLLLLLL  
H
L
H
NOP  
HLH  
HLH  
LLL  
HLHLLHL  
HLHLLHL  
HHHHHHH  
HHHHHHH  
H
Read_Rising  
Read_Falling  
NOP  
H
H
H
H
L
H
H
LLL  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
103  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Electrical Specifications – IDD Specifications and Conditions  
Table 62: Switching for IDD4R (Continued)  
Clock Cycle  
Number  
Clock  
CKE  
CS_n  
Command  
CA[2:0]  
CA[9:3]  
All DQ  
Falling  
H
H
N + 3  
NOP  
HLH  
LHLHLHL  
L
1. Data strobe (DQS) is changing between HIGH and LOW with every clock cycle.  
2. The noted pattern (N, N + 1...) is used continuously during IDD measurement for IDD4R  
Notes:  
.
Table 63: Switching for IDD4W  
Clock Cycle  
Number  
Clock  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
CKE  
H
CS_n  
Command  
Write_Rising  
Write_Falling  
NOP  
CA[2:0]  
HLL  
CA[9:3]  
LHLHLHL  
LLLLLLL  
All DQ  
L
L
N
L
L
H
N
LLL  
H
H
H
L
N +1  
N + 1  
N + 2  
N + 2  
N + 3  
N + 3  
LLL  
LLLLLLL  
H
L
H
NOP  
HLH  
HLL  
HLHLLHL  
HLHLLHL  
HHHHHHH  
HHHHHHH  
LHLHLHL  
H
Write_Rising  
Write_Falling  
NOP  
H
H
H
L
H
L
LLL  
H
H
H
LLL  
H
NOP  
HLH  
1. Data strobe (DQS) is changing between HIGH and LOW with every clock cycle.  
2. Data masking (DM) must always be driven LOW.  
Notes:  
3. The noted pattern (N, N + 1...) is used continuously during IDD measurement for IDD4W  
.
Table 64: IDD Specification Parameters and Operating Conditions  
Notes 1–3 apply to all parameters and conditions  
Parameter/Condition  
Symbol  
IDD01  
Power Supply Notes  
Operating one bank active-precharge current (SDRAM): tCK = tCKmin;  
tRC = tRCmin; CKE is HIGH; CS_n is HIGH between valid commands; CA bus in-  
puts are switching; Data bus inputs are stable  
VDD1  
VDD2  
IDD02  
IDD0in  
VDDQ  
VDD1  
VDD2  
VDDQ  
VDD1  
VDD2  
VDDQ  
VDD1  
VDD2  
VDDQ  
4
4
4
4
Idle power-down standby current: tCK = tCKmin; CKE is LOW; CS_n is  
HIGH; All banks are idle; CA bus inputs are switching; Data bus inputs are sta-  
ble  
IDD2P1  
IDD2P2  
IDD2P,in  
IDD2PS1  
IDD2PS2  
IDD2PS,in  
IDD2N1  
IDD2N2  
IDD2N,in  
Idle power-down standby current with clock stop: CK_t = LOW, CK_c =  
HIGH; CKE is LOW; CS_n is HIGH; All banks are idle; CA bus inputs are stable;  
Data bus inputs are stable  
Idle non-power-down standby current: tCK = tCKmin; CKE is HIGH; CS_n is  
HIGH; All banks are idle; CA bus inputs are switching; Data bus inputs are sta-  
ble  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
104  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Electrical Specifications – IDD Specifications and Conditions  
Table 64: IDD Specification Parameters and Operating Conditions (Continued)  
Notes 1–3 apply to all parameters and conditions  
Parameter/Condition  
Symbol  
IDD2NS1  
IDD2NS2  
IDD2NS,in  
IDD3P1  
Power Supply Notes  
Idle non-power-down standby current with clock stopped: CK_t = LOW;  
CK_c = HIGH; CKE is HIGH; CS_n is HIGH; All banks are idle; CA bus inputs are  
stable; Data bus inputs are stable  
VDD1  
VDD2  
VDDQ  
VDD1  
VDD2  
VDDQ  
VDD1  
VDD2  
VDDQ  
VDD1  
VDD2  
VDDQ  
VDD1  
VDD2  
VDDQ  
VDD1  
VDD2  
4
4
4
4
4
Active power-down standby current: tCK = tCKmin; CKE is LOW; CS_n is  
HIGH; One bank is active; CA bus inputs are switching; Data bus inputs are  
stable  
IDD3P2  
IDD3P,in  
IDD3PS1  
IDD3PS2  
IDD3PS,in  
IDD3N1  
Active power-down standby current with clock stop: CK_t = LOW, CK_c  
= HIGH; CKE is LOW; CS_n is HIGH; One bank is active; CA bus inputs are sta-  
ble; Data bus inputs are stable  
Active non-power-down standby current: tCK = tCKmin; CKE is HIGH;  
CS_n is HIGH; One bank is active; CA bus inputs are switching; Data bus inputs  
are stable  
IDD3N2  
IDD3N,in  
IDD3NS1  
IDD3NS2  
IDD3NS,in  
IDD4R1  
Active non-power-down standby current with clock stopped: CK_t =  
LOW, CK_c = HIGH CKE is HIGH; CS_n is HIGH; One bank is active; CA bus in-  
puts are stable; Data bus inputs are stable  
Operating burst READ current: tCK = tCKmin; CS_n is HIGH between valid  
commands; One bank is active; BL = 4; RL = RL (MIN); CA bus inputs are  
switching; 50% data change each burst transfer  
IDD4R2  
Operating burst WRITE current: tCK = tCKmin; CS_n is HIGH between valid  
commands; One bank is active; BL = 4; WL = WLmin; CA bus inputs are switch-  
ing; 50% data change each burst transfer  
IDD4W1  
IDD4W2  
IDD4W,in  
IDD51  
VDD1  
VDD2  
VDDQ  
VDD1  
VDD2  
VDDQ  
VDD1  
VDD2  
VDDQ  
VDD1  
VDD2  
VDDQ  
VDD1  
VDD2  
VDDQ  
VDD1  
VDD2  
VDDQ  
4
4
All-bank REFRESH burst current: tCK = tCKmin; CKE is HIGH between valid  
commands; tRC = tRFCabmin; Burst refresh; CA bus inputs are switching; Data  
bus inputs are stable  
IDD52  
IDD5IN  
All-bank REFRESH average current: tCK = tCKmin; CKE is HIGH between  
valid commands; tRC = tREFI; CA bus inputs are switching; Data bus inputs are  
stable  
IDD5AB1  
IDD5AB2  
IDD5AB,in  
IDD5PB1  
IDD5PB2  
IDD5PB,in  
IDD61  
4
5
Per-bank REFRESH average current: tCK = tCKmin; CKE is HIGH between  
valid commands; tRC = tREFI/8; CA bus inputs are switching; Data bus inputs  
are stable  
5
4, 5  
6
Self refresh current (–30˚C to +85˚C): CK_t = LOW, CK_c = HIGH; CKE is  
LOW; CA bus inputs are stable; Data bus inputs are stable; Maximum 1x self  
refresh rate  
IDD62  
6
IDD6IN  
4, 6  
6, 7  
6, 7  
4, 6, 7  
Self refresh current (+85˚C to +105˚C): CK_t = LOW, CK_c = HIGH; CKE is  
LOW; CA bus inputs are stable; Data bus inputs are stable  
IDD6ET1  
IDD6ET2  
IDD6ET,in  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
105  
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
AC and DC Operating Conditions  
Table 64: IDD Specification Parameters and Operating Conditions (Continued)  
Notes 1–3 apply to all parameters and conditions  
Parameter/Condition  
Symbol  
IDD81  
Power Supply Notes  
Deep power-down current: CK_t = LOW, CK_c = HIGH; CKE is LOW; CA bus  
inputs are stable; Data bus inputs are stable  
VDD1  
VDD2  
VDDQ  
7
7
IDD82  
IDD8IN  
4, 7  
1. IDD values are the maximum of the distribution of the arithmetic mean.  
2. IDD current specifications are tested after the device is properly initialized.  
Notes:  
3. The 1x self refresh rate is the rate at which the device is refreshed internally during self  
refresh before going into the extended temperature range.  
4. Measured currents are the sum of VDDQ and VDD2  
.
5. Per-bank REFRESH is only applicable for LPDDR2-S4 device densities 1Gb or higher.  
6. This is the general definition that applies to full-array self refresh. Refer to "IDD6 Full  
and Partial Array Self-Refresh Current" for details of Partial Array Self Refresh IDD6  
specification.  
7. IDD6ET and IDD8 are typical values, sampled only and not tested.  
AC and DC Operating Conditions  
An operation or timing that is not specified is illegal. To ensure proper operation, the  
device must be initialized properly.  
Table 65: Recommended DC Operating Conditions  
LPDDR2-S4B  
Symbol  
Min  
1.70  
1.14  
1.14  
Typ  
1.80  
1.20  
1.20  
Max  
1.95  
1.30  
1.30  
Power Supply  
Core power 1  
Unit  
V
1
VDD1  
VDD2  
VDDQ  
Core power 2  
V
I/O buffer power  
V
1. VDD1 uses significantly less power than VDD2  
.
Note:  
Table 66: Input Leakage Current  
Parameter/Condition  
Symbol  
Min  
Max  
Unit Notes  
Input leakage current: For CA, CKE, CS_n, CK_t, CK_c; Any input 0V ≤  
VIN VDD2; (All other pins not under test = 0V)  
IL  
–2  
2
μA  
1
VREF supply leakage current: VREFDQ = VDDQ/2, or VREFCA = VDD2/2; (All  
IVREF  
–1  
1
μA  
2
other pins not under test = 0V)  
1. Although DM is for input only, the DM leakage must match the DQ and DQS_t/DQS_c  
output leakage specification.  
Notes:  
2. The minimum limit requirement is for testing purposes. The leakage current on VREFCA  
and VREFDQ pins should be minimal.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
106  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
AC and DC Logic Input Measurement Levels for Single-Ended  
Signals  
Table 67: Operating Temperature Range  
Parameter/Condition  
Symbol  
Min  
–30  
–40  
–40  
Max  
+85  
Unit  
˚C  
1
Standard (WT) temperature range  
Industrial (IT) temperature range  
Automotive (AT) temperature range  
TCASE  
+85  
˚C  
+105  
˚C  
1. Operating temperature is the case surface temperature at the center of the top side of  
the device. For measurement conditions, refer to the JESD51-2 standard.  
Notes:  
2. Some applications require operation in the maximum case temperature range, between  
85˚C and 105˚C. For some LPDDR2 devices, derating may be necessary to operate in this  
range (see the MR4 Device Temperature (MA[7:0] = 04h) table).  
3. Either the device operating temperature or the temperature sensor can be used to set  
an appropriate refresh rate, determine the need for AC timing derating, and/or monitor  
the operating temperature (see Temperature Sensor). When using the temperature sen-  
sor, the actual device case temperature may be higher than the TCASE rating that applies  
for the operating temperature range. For example, TCASE could be above 85˚C when the  
temperature sensor indicates a temperature of less than 85˚C.  
AC and DC Logic Input Measurement Levels for Single-Ended Signals  
Table 68: Single-Ended AC and DC Input Levels for CA and CS_n Inputs  
LPDDR2-1066 to LPDDR2-466 LPDDR2-400 to LPDDR2-200  
Symbol  
VIHCA(AC)  
VILCA(AC)  
VIHCA(DC)  
VILCA(DC)  
Parameter  
Min  
VREF + 0.220  
Note 2  
Max  
Min  
VREF + 0.300  
Note 2  
Max  
Unit Notes  
AC input logic HIGH  
AC input logic LOW  
DC input logic HIGH  
DC input logic LOW  
Note 2  
Note 2  
V
V
V
V
V
1, 2  
1, 2  
1
VREF - 0.220  
VDD2  
VREF - 0.300  
VDD2  
VREF + 0.130  
VSS  
VREF + 0.200  
VSS  
VREF - 0.130  
0.51 × VDD2  
VREF - 0.200  
0.51 × VDD2  
1
VREFCA(DC) Reference voltage for  
CA and CS_n inputs  
0.49 × VDD2  
0.49 × VDD2  
3, 4  
1. For CA and CS_n input-only pins. VREF = VREFCA(DC)  
2. See Overshoot and Undershoot Definition.  
.
Notes:  
3. The AC peak noise on VREFCA could prevent VREFCA from deviating more than 1% VDD2  
from VREFCA(DC) (for reference, approximately 12mV).  
4. For reference, approximately VDD2/2 12mV.  
Table 69: Single-Ended AC and DC Input Levels for CKE  
Symbol  
VIHCKE  
Parameter  
Min  
Max  
Note 1  
Unit Notes  
CKE input HIGH level  
CKE input LOW level  
0.8 × VDD2  
Note 1  
V
V
1
1
VILCKE  
0.2 × VDD2  
1. See Overshoot and Undershoot Definition.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
107  
 
 
 
 
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
AC and DC Logic Input Measurement Levels for Single-Ended  
Signals  
Table 70: Single-Ended AC and DC Input Levels for DQ and DM  
LPDDR2-1066 to LPDDR2-466 LPDDR2-400 to LPDDR2-200  
Symbol  
VIHDQ(AC)  
VILDQ(AC)  
VIHDQ(DC)  
VILDQ(DC)  
Parameter  
Min  
VREF + 0.220  
Note 2  
Max  
Min  
VREF + 0.300  
Note 2  
Max  
Unit Notes  
AC input logic HIGH  
AC input logic LOW  
DC input logic HIGH  
DC input logic LOW  
Note 2  
Note 2  
V
V
V
V
V
1, 2  
1, 2  
1
VREF - 0.220  
VDDQ  
VREF - 0.300  
VDDQ  
VREF + 0.130  
VSS  
VREF + 0.200  
VSS  
VREF - 0.130  
0.51 × VDDQ  
VREF - 0.200  
0.51 × VDDQ  
1
VREFDQ(DC) Reference voltage for  
DQ and DM inputs  
0.49 × VDDQ  
0.49 × VDDQ  
3, 4  
1. For DQ input-only pins. VREF = VREFDQ(DC)  
.
Notes:  
2. See Overshoot and Undershoot Definition.  
3. The AC peak noise on VREFDQ could prevent VREFDQ from deviating more than 1% VDDQ  
from VREFDQ(DC) (for reference, approximately 12mV).  
4. For reference, approximately. VDDQ/2 12mV.  
VREF Tolerances  
The DC tolerance limits and AC noise limits for the reference voltages VREFCA and  
VREFDQ are illustrated below. This figure shows a valid reference voltage VREF(t) as a  
function of time. VDD is used in place of VDD2 for VREFCA, and VDDQ for VREFDQ. VREF(DC)  
is the linear average of VREF(t) over a very long period of time (for example, 1 second)  
and is specified as a fraction of the linear average of VDDQ or VDD2, also over a very long  
period of time (for example, 1 second). This average must meet the MIN/MAX require-  
ments in the Single-Ended AC and DC Input Levels for CA and CS_n Inputs table. Addi-  
tionally, VREF(t) can temporarily deviate from VREF(DC) by no more than 1ꢀ VDD. VREF(t)  
cannot track noise on VDDQ or VDD2 if doing so would force VREF outside these specifica-  
tions.  
Figure 69: VREF DC Tolerance and VREF AC Noise Limits  
VDD  
VREF(AC) noise  
VREF(t)  
VREF(DC)max  
VREF(DC)  
VDD/2  
VREF(DC)min  
VSS  
Time  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
108  
 
 
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
AC and DC Logic Input Measurement Levels for Single-Ended  
Signals  
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC), and  
VIL(DC) are dependent on VREF  
.
V
REF DC variations affect the absolute voltage a signal must reach to achieve a valid  
HIGH or LOW, as well as the time from which setup and hold times are measured. When  
VREF is outside the specified levels, devices will function correctly with appropriate tim-  
ing deratings as long as:  
• VREF is maintained between 0.44 x VDDQ (or VDD2) and 0.56 x VDDQ (or VDD2), and  
• the controller achieves the required single-ended AC and DC input levels from instan-  
taneous VREF (see the Single-Ended AC and DC Input Levels for CA and CS_n Inputs  
table).  
System timing and voltage budgets must account for VREF deviations outside this range.  
The setup/hold specification and derating values must include time and voltage associ-  
ated with VREF AC noise. Timing and voltage effects due to AC noise on VREF up to the  
specified limit ( 1ꢀ VDD) are included in LPDDR2 timings and their associated derat-  
ings.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
109  
© 2014 Micron Technology, Inc. All rights reserved.  
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
AC and DC Logic Input Measurement Levels for Single-Ended  
Signals  
Input Signal  
Figure 70: LPDDR2-466 to LPDDR2-1066 Input Signal  
V
and V levels with ringback  
IH  
IL  
V
+ 0.35V  
1.550V  
DD  
narrow pulse width  
1.200V  
V
DD  
Minimum V and V levels  
IL  
IH  
V
IH(AC)  
0.820V  
0.730V  
0.820V  
0.730V  
V
IH(AC)  
V
IH(DC)  
V
IH(DC)  
V
V
+ AC noise  
+ DC error  
0.624V  
0.612V  
0.600V  
0.588V  
0.576V  
0.624V  
0.612V  
0.600V  
0.588V  
0.576V  
REF  
REF  
V
V
- DC error  
- AC noise  
REF  
REF  
0.470V  
0.380V  
V
0.470V  
0.380V  
IL(DC)  
IL(AC)  
V
V
IL(DC)  
V
IL(AC)  
0.000V  
V
SS  
–0.350V  
V
- 0.35V  
SS  
narrow pulse width  
1. Numbers reflect typical values.  
2. For CA[9:0], CK_t, CK_c, and CS_n VDD stands for VDD2. For DQ, DM, DQS_t, and DQS_c,  
DD stands for VDDQ  
3. For CA[9:0], CK_t, CK_c, and CS_n are VSS . For DQ, DM, DQS_t, and DQS_c, VSS stands for  
VSSQ  
Notes:  
V
.
.
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
110  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
AC and DC Logic Input Measurement Levels for Single-Ended  
Signals  
Figure 71: LPDDR2-200 to LPDDR2-400 Input Signal  
V
and V levels with ringback  
IH  
IL  
V
+ 0.35V  
1.550V  
DD  
narrow pulse width  
1.200V  
V
DD  
Minimum V and V levels  
IL  
IH  
V
IH(AC)  
0.900V  
0.800V  
0.900V  
0.800V  
V
IH(AC)  
V
IH(DC)  
V
IH(DC)  
V
V
+ AC noise  
+ DC error  
0.624V  
0.612V  
0.600V  
0.588V  
0.576V  
0.624V  
0.612V  
0.600V  
0.588V  
0.576V  
REF  
REF  
V
V
- DC error  
- AC noise  
REF  
REF  
0.400V  
0.300V  
V
0.400V  
0.300V  
IL(DC)  
IL(AC)  
V
V
IL(DC)  
V
IL(AC)  
0.000V  
V
SS  
V
- 0.35V  
–0.350V  
SS  
narrow pulse width  
1. Numbers reflect typical values.  
2. For CA[9:0], CK_t, CK_c, and CS_n VDD stands for VDD2. For DQ, DM, DQS_t, and DQS_c,  
DD stands for VDDQ  
3. For CA[9:0], CK_t, CK_c, and CS_n are VSS. For DQ, DM, DQS_t, and DQS_c, VSS stands for  
VSSQ  
Notes:  
V
.
.
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
111  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
AC and DC Logic Input Measurement Levels for Differential  
Signals  
AC and DC Logic Input Measurement Levels for Differential Signals  
Figure 72: Differential AC Swing Time and tDVAC  
tDVAC  
V
IH,diff(AC)min  
V
IH,diff(DC)min  
CK_t, CK_c  
DQS_t, DQS_c  
0.0  
V
IL,diff(DC)max  
tDVAC  
1/2 cycle  
V
IL,diff(AC)max  
Time  
Table 71: Differential AC and DC Input Levels  
For CK_t and CK_c, VREF = VREFCA(DC); For DQS_t and DQS_c VREF = VREFDQ(DC)  
LPDDR2-1066 to LPDDR2-466  
LPDDR2-400 to LPDDR2-200  
Symbol Parameter  
Min  
Max  
Min  
Max  
Unit Notes  
VIH,diff(AC) Differential input 2 × (VIH(AC) - VREF  
HIGH AC  
)
)
Note 1  
2 × (VIH(AC) - VREF  
)
Note 1  
V
V
V
V
2
2
3
3
VIL,diff(AC) Differential input  
LOW AC  
Note 1  
2 × (VIL(AC) - VREF  
)
)
Note 1  
2 × (VIH(DC) - VREF  
Note 1  
2 × (VIL(AC) - VREF  
)
)
VIH,diff(DC) Differential input 2 × (VIH(DC) - VREF  
HIGH  
Note 1  
)
Note 1  
VIL,diff(DC) Differential input  
LOW  
Note 1  
2 × (VIL(DC) - VREF  
2 × (VIL(DC) - VREF  
1. These values are not defined, however the single-ended signals CK_t, CK_c, DQS_t, and  
DQS_c must be within the respective limits (VIH(DC)max, VIL(DC)min) for single-ended signals  
and must comply with the specified limitations for overshoot and undershoot (see Over-  
shoot and Undershoot Definitions).  
Notes:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
112  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
AC and DC Logic Input Measurement Levels for Differential  
Signals  
2. For CK_t and CK_c, use VIH/VIL(AC) of CA and VREFCA; for DQS_t and DQS_c, use VIH/VIL(AC)  
of DQ and VREFDQ. If a reduced AC HIGH or AC LOW is used for a signal group, the re-  
duced voltage level also applies.  
3. Used to define a differential signal slew rate. For CK_t - CK_c use VIH/VIL(dc) of CA and  
VREFCA; for DQS_t - DQS_c, use VIH/VIL(dc) of DQs and VREFDQ; if a reduced dc-high or  
dc-low level is used for a signal group,then the reduced level applies also here.  
Table 72: CK_t/CK_c and DQS_t/DQS_c Time Requirements Before Ringback (tDVAC)  
tDVAC (ps) at VIH/VILdiff(AC) = 440mV  
tDVAC (ps) at VIH/VILdiff(AC) = 600mV  
Slew Rate (V/ns)  
Min  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
Min  
75  
57  
50  
38  
34  
29  
22  
13  
0
> 4.0  
4.0  
3.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
< 1.0  
0
Single-Ended Requirements for Differential Signals  
Each individual component of a differential signal (CK_t, CK_c, DQS_t, and DQS_c)  
must also comply with certain requirements for single-ended signals.  
CK_t and CK_c must meet VSEH(AC)min/VSEL(AC)max in every half cycle. DQS_t, DQS_c  
must meet VSEH(AC)min/VSEL(AC)max in every half cycle preceding and following a valid  
transition.  
The applicable AC levels for CA and DQ differ by speed bin.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
113  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
AC and DC Logic Input Measurement Levels for Differential  
Signals  
Figure 73: Single-Ended Requirements for Differential Signals  
V
or V  
DDQ  
DD2  
V
SEH(AC)  
V
SEH(AC)min  
V
/2 or V  
/2  
DDQ  
DD2  
CK or DQS  
V
SEL(AC)max  
or V  
V
SEL(AC)  
V
SS  
SSQ  
Time  
While CA and DQ signal requirements are referenced to VREF, the single-ended compo-  
nents of differential signals also have a requirement with respect to  
VDDQ/2 for DQS, and VDD2/2 for CK.  
The transition of single-ended signals through the AC levels is used to measure setup  
time. For single-ended components of differential signals, the requirement to reach  
VSEL(AC)max or VSEH(AC)min has no bearing on timing. This requirement does, however,  
add a restriction on the common mode characteristics of these signals (see Single-  
Ended AC and DC Input Levels for CA and CS_n Inputs for CK_t/CK_c single-ended re-  
quirements, and Single-Ended AC and DC Input Levels for DQ and DM for DQ and  
DQM single-ended requirements).  
Table 73: Single-Ended Levels for CK_t, CK_c, DQS_t, DQS_c  
LPDDR2-1066 to LPDDR2-466  
LPDDR2-400 to LPDDR2-200  
Symbol Parameter  
Min  
Max  
Min  
Max  
Unit Notes  
VSEH(AC) Single-ended HIGH  
level for strobes  
(VDDQ/2) + 0.220  
Note 1  
(VDDQ/2) + 0.300  
Note 1  
V
V
V
V
2, 3  
2, 3  
2, 3  
2, 3  
Single-ended HIGH  
level for CK_t, CK_c  
(VDD2/2) + 0.220  
Note 1  
Note 1  
(VDD2/2) + 0.300  
Note 1  
Note 1  
VSEL(AC) Single-ended LOW  
level for strobes  
(VDDQ/2) - 0.220  
(VDD2/2) - 0.220  
(VDDQ/2) + 0.300  
(VDD2/2) + 0.300  
Single-ended LOW  
level for CK_t, CK_c  
Note 1  
Note 1  
1. These values are not defined; however, the single-ended signals CK_t, CK_c, DQS0_t,  
DQS0_c, DQS1_t, DQS1_c, DQS2_t, DQS2_c, DQS3_t, DQS3_c must be within the respec-  
tive limits (VIH(DC)max/ VIL(DC)min) for single-ended signals, and must comply with the  
Notes:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
114  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
AC and DC Logic Input Measurement Levels for Differential  
Signals  
specified limitations for overshoot and undershoot (see Overshoot and Undershoot Defi-  
nition).  
2. For CK_t and CK_c, use VSEH/VSEL(AC) of CA; for strobes (DQS[3:0]_t and DQS[3:0]_c), use  
VIH/VIL(AC) of DQ.  
3. VIH(AC) and VIL(AC) for DQ are based on VREFDQ; VSEH(AC) and VSEL(AC) for CA are based on  
V
REFCA. If a reduced AC HIGH or AC LOW is used for a signal group, the reduced level  
applies.  
Differential Input Crosspoint Voltage  
To ensure tight setup and hold times as well as output skew parameters with respect to  
clock and strobe, each crosspoint voltage of differential input signals (CK_t, CK_c,  
DQS_t, and DQS_c) must meet the specifications listed in the Single-Ended Levels for  
CK_t, CK_c, DQS_t, DQS_c table. The differential input crosspoint voltage (VIX) is meas-  
ured from the actual crosspoint of the true signal and its and complement to the midle-  
vel between VDD and VSS  
.
Figure 74: VIX Definition  
9
ꢏꢀ9  
9
ꢏꢀ9  
''ꢃ  
''4  
''ꢃ ''4  
&.BFꢏꢀ'46BF  
&.BFꢏꢀ'46BF  
9
;
,;  
9
,;  
9
ꢐꢃꢏ  
ꢐꢃ  
9
ꢐꢃꢏ  
ꢐꢃ  
''ꢃ  
''ꢃ  
;
;
9
9
''4  
''4  
9
,;  
9
,;  
;
&.BWꢏꢀ'46BW  
ꢏꢀ9  
&.BWꢏꢀ'46BW  
9
9
ꢏꢀ9  
66  
664  
66 664  
Table 74: Crosspoint Voltage for Differential Input Signals (CK_t, CK_c, DQS_t, DQS_c)  
LPDDR2-1066 to LPDDR2-200  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
VIXCA(AC)  
Differential input crosspoint voltage rela-  
tive to VDD2/2 for CK_t and CK_c  
–120  
120  
mV  
1, 2  
VIXDQ(AC)  
Differential input crosspoint voltage rela-  
tive to VDDQ/2 for DQS_t and DQS_c  
–120  
120  
mV  
1, 2  
1. The typical value of VIX(AC) is expected to be about 0.5 × VDD of the transmitting device,  
and it is expected to track variations in VDD. VIX(AC) indicates the voltage at which differ-  
ential input signals must cross.  
Notes:  
2. For CK_t and CK_c, VREF = VREFCA(DC). For DQS_t and DQS_c, VREF = VREFDQ(DC)  
.
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
115  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Output Characteristics and Operating Conditions  
Input Slew Rate  
Table 75: Differential Input Slew Rate Definition  
Measured1  
From  
VIL,diff,max  
Description  
To  
Defined by  
Differential input slew rate for rising  
edge (CK_t/CK_c and DQS_t/DQS_c)  
VIH,diff,min  
[VIH,diff,min - VIL,diff,maxΔTRdiff  
Differential input slew rate for falling  
edge (CK_t/CK_c and DQS_t/DQS_c)  
VIH,diff,min  
VIL,diff,max  
[VIH,diff,min - VIL,diff,maxΔTFdiff  
1. The differential signals (CK_t/CK_c and DQS_t/DQS_c) must be linear between these  
thresholds.  
Note:  
Figure 75: Differential Input Slew Rate Definition for CK_t, CK_c, DQS_t, and DQS_c  
ΔTF ΔTR  
diff  
diff  
V
IH,diff,min  
0
V
IL,diff,max  
Time  
Output Characteristics and Operating Conditions  
Table 76: Single-Ended AC and DC Output Levels  
Symbol Parameter  
Value  
VREF + 0.12  
VREF - 0.12  
0.9 x VDDQ  
0.1 x VDDQ  
–5  
Unit Notes  
VOH(AC)  
VOL(AC)  
VOH(DC)  
VOL(DC)  
IOZ  
AC output HIGH measurement level (for output slew rate)  
AC output LOW measurement level (for output slew rate)  
DC output HIGH measurement level (for I-V curve linearity)  
DC output LOW measurement level (for I-V curve linearity)  
V
V
V
V
1
2
Output leakage current (DQ, DM, DQS_t, DQS_c);  
MIN  
μA  
μA  
DQ, DQS_t, DQS_c are disabled; 0V VOUT VDDQ  
MAX  
+5  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
116  
 
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Output Characteristics and Operating Conditions  
Table 76: Single-Ended AC and DC Output Levels (Continued)  
Symbol Parameter  
Value  
–15  
Unit Notes  
MMpupd Delta output impedance between pull-up and pull-  
down for DQ/DM  
MIN  
%
%
MAX  
+15  
1. IOH = –0.1mA.  
2. IOL = 0.1mA.  
Notes:  
Table 77: Differential AC and DC Output Levels  
Symbol Parameter  
Value  
Unit  
V
VOHdiff(AC) AC differential output HIGH measurement level (for output SR)  
VOLdiff(AC) AC differential output LOW measurement level (for output SR)  
+ 0.2 x VDDQ  
- 0.2 x VDDQ  
V
Single-Ended Output Slew Rate  
With the reference load for timing measurements, the output slew rate for falling and  
rising edges is defined and measured between VOL(AC) and VOH(AC) for single-ended  
signals.  
Table 78: Single-Ended Output Slew Rate Definition  
Measured  
From  
VOL(AC)  
VOH(AC)  
Description  
To  
Defined by  
Single-ended output slew rate for rising edge  
Single-ended output slew rate for falling edge  
VOH(AC)  
VOL(AC)  
[VOH(AC) - VOL(AC)ΔTRSE  
[VOH(AC) - VOL(AC)ΔTFSE  
1. Output slew rate is verified by design and characterization and may not be subject to  
production testing.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
117  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Output Characteristics and Operating Conditions  
Figure 76: Single-Ended Output Slew Rate Definition  
ΔTFSE  
ΔTRSE  
VOH(AC)  
VREF  
VOL(AC)  
Time  
Table 79: Single-Ended Output Slew Rate  
Notes 1–5 apply to all parameters conditions  
Value  
Parameter  
Symbol  
Min  
1.5  
Max  
Unit  
V/ns  
V/ns  
Single-ended output slew rate (output impedance = 40Ω   
Single-ended output slew rate (output impedance = 60Ω   
Output slew-rate-matching ratio (pull-up to pull-down)  
SRQSE  
SRQSE  
3.5  
2.5  
1.4  
1.0  
0.7  
1. Definitions: SR = slew rate; Q = output (similar to DQ = data-in, data-out); SE = single-  
ended signals.  
Notes:  
2. Measured with output reference load.  
3. The ratio of pull-up to pull-down slew rate is specified for the same temperature and  
voltage over the entire temperature and voltage range. For a given output, the ratio  
represents the maximum difference between pull-up and pull-down drivers due to proc-  
ess variation.  
4. The output slew rate for falling and rising edges is defined and measured between  
V
OL(AC) and VOH(AC).  
5. Slew rates are measured under typical simultaneous switching output (SSO) conditions,  
with one-half of DQ signals per data byte driving HIGH and one-half of DQ signals per  
data byte driving LOW.  
Differential Output Slew Rate  
With the reference load for timing measurements, the output slew rate for falling and  
rising edges is defined and measured between VOL,diff(AC) and VOH,diff(AC) for differential  
signals.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
118  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Output Characteristics and Operating Conditions  
Table 80: Differential Output Slew Rate Definition  
Measured  
From  
VOL,diff(AC)  
VOH,diff(AC)  
Description  
To  
Defined by  
Differential output slew rate for rising edge  
Differential output slew rate for falling edge  
VOH,diff(AC)  
VOL,diff(AC)  
[VOH,diff(AC) - VOL,diff(AC)ΔTRdiff  
[VOH,diff(AC) - VOL,diff(AC)ΔTFdiff  
1. Output slew rate is verified by design and characterization and may not be subject to  
production testing.  
Note:  
Figure 77: Differential Output Slew Rate Definition  
TF  
TR  
diff  
diff  
V
OH,diff(AC)  
OL,diff(AC)  
0
V
Time  
Table 81: Differential Output Slew Rate  
Value  
Parameter  
Symbol  
Min  
3.0  
Max  
7.0  
Unit  
V/ns  
V/ns  
Differential output slew rate (output impedance = 40Ω   
Differential output slew rate (output impedance = 60Ω   
SRQdiff  
SRQdiff  
2.0  
5.0  
1. Definitions: SR = slew rate; Q = output (similar to DQ = data-in, data-out); SE = single-  
ended signals.  
Notes:  
2. Measured with output reference load.  
3. The output slew rate for falling and rising edges is defined and measured between  
V
OL(AC) and VOH(AC).  
4. Slew rates are measured under typical simultaneous switching output (SSO) conditions,  
with one-half of DQ signals per data byte driving HIGH and one-half of DQ signals per  
data byte driving LOW.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
119  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Output Characteristics and Operating Conditions  
Table 82: AC Overshoot/Undershoot Specification  
Applies for CA[9:0], CS_n, CKE, CK_t, CK_c, DQ, DQS_t, DQS_c, DM  
Parameter  
1066  
933 800 667 533 466 400 333 266 200 Unit  
Maximum peak amplitude provided for over-  
shoot area  
0.35  
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35  
V
Maximum peak amplitude provided for under-  
shoot area  
0.35  
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35  
V
1
Maximum area above VDD  
0.15  
0.15  
0.17 0.20 0.24 0.30 0.35 0.40 0.48 0.60 0.80 V-ns  
0.17 0.20 0.24 0.30 0.35 0.40 0.48 0.60 0.80 V-ns  
2
Maximum area below VSS  
1. VDD stands for VDD2 for CA[9:0], CK_t, CK_c, CS_n, and CKE. VDD stands for VDDQ for DQ,  
DM, DQS_t, and DQS_c.  
Notes:  
2. VSS is for CA[9:0], CK_t, CK_c, CS_n, and CKE. VSS stands for VSSQ for DQ, DM, DQS_t, and  
DQS_c.  
Figure 78: Overshoot and Undershoot Definition  
Maximum amplitude  
Overshoot area  
V
DD  
Time (ns)  
V
SS  
Undershoot area  
Maximum amplitude  
1. VDD stands for VDD2 for CA[9:0], CK_t, CK_c, CS_n, and CKE. VDD stands for VDDQ for DQ,  
DM, DQS_t, and DQS_c.  
Notes:  
2. VSS is for CA[9:0], CK_t, CK_c, CS_n, and CKE. VSS stands for VSSQ for DQ, DM, DQS_t, and  
DQS_c.  
HSUL_12 Driver Output Timing Reference Load  
The timing reference loads are not intended as a precise representation of any particu-  
lar system environment or a depiction of the actual load presented by a production test-  
er. System designers should use IBIS or other simulation tools to correlate the timing  
reference load to a system environment. Manufacturers correlate to their production  
test conditions, generally with one or more coaxial transmission lines terminated at the  
tester electronics.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
120  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Output Driver Impedance  
Figure 79: HSUL_12 Driver Output Reference Load for Timing and Slew Rate  
LPDDR2  
V
0.5 × V  
DDQ  
REF  
50Ω  
Output  
V
= 0.5 × V  
TT DDQ  
C
= 5pF  
LOAD  
1. All output timing parameter values (tDQSCK, tDQSQ, tQHS, tHZ, tRPRE etc.) are reported  
with respect to this reference load. This reference load is also used to report slew rate.  
Note:  
Output Driver Impedance  
Output driver impedance is selected by a mode register during initialization. To achieve  
tighter tolerances, ZQ calibration is required. Output specifications refer to the default  
output drive unless specifically stated otherwise. The output driver impedance RON is  
defined by the value of the external reference resistor RZQ as follows:  
VDDQ - VOUT  
=
RONPU  
ABS(IOUT  
)
When RONPD is turned off.  
VOUT  
ABS(IOUT  
RONPD  
=
)
When RONPU is turned off.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
121  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Output Driver Impedance  
Figure 80: Output Driver  
Chip in Drive Mode  
Output Driver  
V
DDQ  
To other  
circuitry  
I
PU  
(RCV, etc.)  
R
ONPU  
DQ  
I
OUT  
R
I
ONPD  
V
OUT  
PD  
V
SSQ  
Output Driver Impedance Characteristics with ZQ Calibration  
Output driver impedance is defined by the value of the external reference resistor RZQ  
.
Typical RZQ is 240 ohms.  
Table 83: Output Driver DC Electrical Characteristics with ZQ Calibration  
Notes 1–4 apply to all parameters and conditions  
RONnom  
Resistor  
RON34PD  
RON34PU  
RON40PD  
RON40PU  
RON48PD  
RON48PU  
RON60PD  
RON60PU  
RON80PD  
RON80PU  
RON120PD  
RON120PU  
MMPUPD  
VOUT  
Min  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
–15.00  
Typ  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
Max  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
+15.00  
Unit  
RZQ/7  
RZQ/7  
RZQ/6  
RZQ/6  
RZQ/5  
RZQ/5  
RZQ/4  
RZQ/4  
RZQ/3  
RZQ/3  
RZQ/2  
RZQ/2  
%
Notes  
Ω  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
Ω  
Ω  
Ω  
Ω  
Ω  
(optional)  
Mismatch between  
5
pull-up and pull-down  
1. Applies across entire operating temperature range after calibration.  
Notes:  
2. RZQ Ω  
3. The tolerance limits are specified after calibration, with fixed voltage and temperature.  
For behavior of the tolerance limits if temperature or voltage changes after calibration,  
see Output Driver Temperature and Voltage Sensitivity.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
122  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Output Driver Impedance  
4. Pull-down and pull-up output driver impedances should be calibrated at 0.5 x VDDQ  
5. Measurement definition for mismatch between pull-up and pull-down, MMPUPD  
Measure RONPU and RONPD, both at 0.5 × VDDQ  
.
:
:
RONPU  
R
MMPUPD  
=
ONPD × 100  
RON,nom  
For example, with MMPUPD (MAX) = 15% and RONPD = 0.85, RONPU must be less than 1.0.  
Output Driver Temperature and Voltage Sensitivity  
If temperature and/or voltage change after calibration, the tolerance limits widen.  
Table 84: Output Driver Sensitivity Definition  
Resistor  
RONPD  
VOUT  
Min  
Max  
Unit  
0.5 × VDDQ  
85 – (dRONdT ΔT|) – (dRONdV ΔV|)  
115 + (dRONdT ΔT|) + (dRONdV ΔV|)  
%
RONPU  
1. ΔT = T - T (at calibration). ΔV = V - V (at calibration).  
Notes:  
2. dRONdT and dRONdV are not subject to production testing; they are verified by design  
and characterization.  
Table 85: Output Driver Temperature and Voltage Sensitivity  
Symbol  
RONdT  
Parameter  
Min  
0.00  
0.00  
Max  
0.75  
0.20  
Unit  
%/˚C  
RON temperature sensitivity  
RON voltage sensitivity  
RONdV  
%/mV  
Output Impedance Characteristics Without ZQ Calibration  
Output driver impedance is defined by design and characterization as the default set-  
ting.  
Table 86: Output Driver DC Electrical Characteristics Without ZQ Calibration  
RONnom  
Resistor  
RON34PD  
RON34PU  
RON40PD  
RON40PU  
RON48PD  
RON48PU  
RON60PD  
RON60PU  
RON80PD  
RON80PU  
VOUT  
Min  
0.70  
0.70  
0.70  
0.70  
0.70  
0.70  
0.70  
0.70  
0.70  
0.70  
Typ  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
Max  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
Unit  
RZQ/7  
RZQ/7  
RZQ/6  
RZQ/6  
RZQ/5  
RZQ/5  
RZQ/4  
RZQ/4  
RZQ/3  
RZQ/3  
Ω  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
0.5 × VDDQ  
Ω  
Ω  
Ω  
Ω  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
123  
 
 
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Output Driver Impedance  
Table 86: Output Driver DC Electrical Characteristics Without ZQ Calibration (Continued)  
RONnom  
Resistor  
RON120PD  
RON120PU  
VOUT  
Min  
0.70  
0.70  
Typ  
1.00  
1.00  
Max  
1.30  
1.30  
Unit  
RZQ/2  
RZQ/2  
Ω  
(optional)  
0.5 × VDDQ  
0.5 × VDDQ  
1. Applies across entire operating temperature range without calibration.  
Notes:  
2. RZQ Ω  
Table 87: I-V Curves  
RON Ω (RZQ  
)
Pull-Down  
Pull-Up  
Current (mA) / RON (ohms)  
Current (mA) / RON (ohms)  
Default Value after  
ZQRESET  
Default Value after  
ZQRESET  
With Calibration  
With Calibration  
Voltage (V) Min (mA) Max (mA) Min (mA) Max (mA) Min (mA) Max (mA) Min (mA) Max (mA)  
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
0.45  
0.50  
0.55  
0.60  
0.65  
0.70  
0.75  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
0.00  
0.19  
0.38  
0.56  
0.74  
0.92  
1.08  
1.25  
1.40  
1.54  
1.68  
1.81  
1.92  
2.02  
2.11  
2.19  
2.25  
2.30  
2.34  
2.37  
2.41  
2.43  
2.46  
2.48  
2.50  
0.00  
0.32  
0.64  
0.94  
1.26  
1.57  
1.86  
2.17  
2.46  
2.74  
3.02  
3.30  
3.57  
3.83  
4.08  
4.31  
4.54  
4.74  
4.92  
5.08  
5.20  
5.31  
5.41  
5.48  
5.55  
0.00  
0.21  
0.40  
0.60  
0.79  
0.98  
1.17  
1.35  
1.52  
1.69  
1.86  
2.02  
2.17  
2.32  
2.46  
2.58  
2.70  
2.81  
2.89  
2.97  
3.04  
3.09  
3.14  
3.19  
3.23  
0.00  
0.26  
0.53  
0.78  
1.04  
1.29  
1.53  
1.79  
2.03  
2.26  
2.49  
2.72  
2.94  
3.15  
3.36  
3.55  
3.74  
3.91  
4.05  
4.23  
4.33  
4.44  
4.52  
4.59  
4.65  
0.00  
0.00  
0.00  
0.00  
–0.19  
–0.38  
–0.56  
–0.74  
–0.92  
–1.08  
–1.25  
–1.40  
–1.54  
–1.68  
–1.81  
–1.92  
–2.02  
–2.11  
–2.19  
–2.25  
–2.30  
–2.34  
–2.37  
–2.41  
–2.43  
–2.46  
–2.48  
–2.50  
–0.32  
–0.64  
–0.94  
–1.26  
–1.57  
–1.86  
–2.17  
–2.46  
–2.74  
–3.02  
–3.30  
–3.57  
–3.83  
–4.08  
–4.31  
–4.54  
–4.74  
–4.92  
–5.08  
–5.20  
–5.31  
–5.41  
–5.48  
–5.55  
–0.21  
–0.40  
–0.60  
–0.79  
–0.98  
–1.17  
–1.35  
–1.52  
–1.69  
–1.86  
–2.02  
–2.17  
–2.32  
–2.46  
–2.58  
–2.70  
–2.81  
–2.89  
–2.97  
–3.04  
–3.09  
–3.14  
–3.19  
–3.23  
–0.26  
–0.53  
–0.78  
–1.04  
–1.29  
–1.53  
–1.79  
–2.03  
–2.26  
–2.49  
–2.72  
–2.94  
–3.15  
–3.36  
–3.55  
–3.74  
–3.91  
–4.05  
–4.23  
–4.33  
–4.44  
–4.52  
–4.59  
–4.65  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
124  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Output Driver Impedance  
Figure 81: Output Impedance = 240 Ohms, I-V Curves After ZQRESET  
6
PD (MAX)  
PD (MIN)  
PU (MIN)  
PU (MAX)  
4
2
0
–2  
–4  
–6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
Voltage  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
125  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Clock Specification  
Figure 82: Output Impedance = 240 Ohms, I-V Curves After Calibration  
6
PD (MAX)  
PD (MIN)  
PU (MIN)  
PU (MAX)  
4
2
0
–2  
–4  
–6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
Voltage  
Clock Specification  
The specified clock jitter is a random jitter with Gaussian distribution. Input clocks vio-  
lating minimum or maximum values may result in device malfunction.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
126  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Clock Specification  
Table 88: Definitions and Calculations  
Symbol  
Description  
Calculation  
Notes  
tCK(avg) and  
nCK  
The average clock period across any consecutive  
200-cycle window. Each clock period is calculated CK(avg) =  
from rising clock edge to rising clock edge.  
N
t
t
CKj /N  
Σ
j = 1  
Where N = 200  
Unit tCK(avg) represents the actual clock average  
tCK(avg)of the input clock under operation. Unit  
nCK represents one clock cycle of the input clock,  
counting from actual clock edge to actual clock  
edge.  
tCK(avg)can change no more than 1% within a  
100-clock-cycle window, provided that all jitter  
and timing specifications are met.  
tCK(abs)  
tCH(avg)  
The absolute clock period, as measured from one  
rising clock edge to the next consecutive rising  
clock edge.  
1
N
The average HIGH pulse width, as calculated  
across any 200 consecutive HIGH pulses.  
t
t
t
CH(avg) =  
CL(avg) =  
Σ
CHj /(N × CK(avg))  
j = 1  
Where N = 200  
tCL(avg)  
The average LOW pulse width, as calculated  
across any 200 consecutive LOW pulses.  
N
t
t
t
Σ
CLj /(N × CK(avg))  
j = 1  
Where N = 200  
t
tJIT(per)  
The single-period jitter defined as the largest de-  
viation of any signal tCK from tCK(avg).  
1
t
t
JIT(per) = min/max of CKi – CK(avg)  
Where i = 1 to 200  
tJIT(per),act  
tJIT(per),  
allowed  
The actual clock jitter for a given system.  
The specified clock period jitter allowance.  
tJIT(cc)  
The absolute difference in clock periods between  
two consecutive clock cycles. tJIT(cc) defines the  
cycle-to-cycle jitter.  
1
1
t
t
t
t
JIT(cc) = max of CKi + 1 – CKi  
tERR(nper)  
The cumulative error across n multiple consecu-  
tive cycles from tCK(avg).  
i + n – 1  
t
t
ERR(nper) =  
Σ
CKj – (n × CK(avg))  
j = i  
tERR(nper),act The actual cumulative error over n cycles for a  
given system.  
tERR(nper),  
allowed  
The specified cumulative error allowance over n  
cycles.  
tERR(nper),min The minimum tERR(nper).  
2
2
t
t
t
ERR(nper),min = (1 + 0.68LN(n)) × JIT(per),min  
tERR(nper),max The maximum tERR(nper).  
t
ERR(nper),max = (1 + 0.68LN(n)) × JIT(per),max  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
127  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Clock Period Jitter  
Table 88: Definitions and Calculations (Continued)  
Symbol  
Description  
Calculation  
Notes  
tJIT(duty)  
Defined with absolute and average specifications  
for tCH and tCL, respectively.  
tJIT(duty),min =  
MIN((tCH(abs),min – tCH(avg),min),  
(tCL(abs),min – tCL(avg),min)) × tCK(avg)  
tJIT(duty),max =  
MAX((tCH(abs),max – tCH(avg),max),  
(tCL(abs),max – tCL(avg),max)) × tCK(avg)  
1. Not subject to production testing.  
2. Using these equations, tERR(nper) tables can be generated for each tJIT(per),act value.  
Notes:  
tCK(abs), tCH(abs), and tCL(abs)  
These parameters are specified with their average values; however, the relationship be-  
tween the average timing and the absolute instantaneous timing (defined in the follow-  
ing table) is applicable at all times.  
Table 89: tCK(abs), tCH(abs), and tCL(abs) Definitions  
Parameter  
Symbol  
Minimum  
Unit  
ps1  
Absolute clock period  
tCK(abs) tCK(avg),min + tJIT(per),min  
Absolute clock HIGH pulse width  
Absolute clock LOW pulse width  
tCH(abs) tCH(avg),min + tJIT(duty),min2/tCK(avg)min  
tCL(abs) tCL(avg),min + tJIT(duty),min2/tCK(avg)min  
tCK(avg)  
tCK(avg)  
1. tCK(avg),min is expressed in ps for this table.  
2. tJIT(duty),min is a negative value.  
Notes:  
Clock Period Jitter  
The LPDDR2 device can tolerate some clock period jitter without core timing parameter  
derating. This section describes device timing requirements with clock period jitter  
(tJIT(per)) in excess of the values found in the AC Timing section. Calculating cycle time  
derating and clock cycle derating are also described.  
Clock Period Jitter Effects on Core Timing Parameters  
Core timing parameters (tRCD, tRP, tRTP, tWR, tWRA, tWTR, tRC, tRAS, tRRD, tFAW) ex-  
tend across multiple clock cycles. Clock period jitter impacts these parameters when  
measured in numbers of clock cycles. Within the specification limits, the device is char-  
acterized and verified to support tnPARAM = RU[tPARAM/tCK(avg)]. During device op-  
eration where clock jitter is outside specification limits, the number of clocks or  
tCK(avg), may need to be increased based on the values for each core timing parameter.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
128  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Clock Period Jitter  
Cycle Time Derating for Core Timing Parameters  
For a given number of clocks (tnPARAM), when tCK(avg) and tERR(tnPARAM),act exceed  
tERR(tnPARAM),allowed, cycle time derating may be required for core timing parame-  
ters.  
t
t
t
t
t
PARAM + ERR( nPARAM),act – ERR( nPARAM),allowed  
t
– CK(avg) , 0  
CycleTimeDerating = max  
t
nPARAM  
Cycle time derating analysis should be conducted for each core timing parameter. The  
amount of cycle time derating required is the maximum of the cycle time deratings de-  
termined for each individual core timing parameter.  
Clock Cycle Derating for Core Timing Parameters  
For each core timing parameter and a given number of clocks (tnPARAM), clock cycle  
derating should be specified with tJIT(per).  
For a given number of clocks (tnPARAM), when tCK(avg) plus (tERR(tnPARAM),act) ex-  
ceed the supported cumulative tERR(tnPARAM),allowed, derating is required. If the  
equation below results in a positive value for a core timing parameter (tCORE), the re-  
quired clock cycle derating will be that positive value (in clocks).  
t
t
t
t
t
PARAM + ERR( nPARAM),act – ERR( nPARAM),allowed  
t
ClockCycleDerating = RU  
– nPARAM  
t
CK(avg)  
Cycle-time derating analysis should be conducted for each core timing parameter.  
Clock Jitter Effects on Command/Address Timing Parameters  
Command/address timing parameters (tIS, tIH, tISCKE, tIHCKE, tISb, tIHb, tISCKEb,  
tIHCKEb) are measured from a command/address signal (CKE, CS_n, or CA[9:0]) transi-  
tion edge to its respective clock signal (CK_t/CK_c) crossing. The specification values  
are not affected by the tJIT(per) applied, because the setup and hold times are relative to  
the clock signal crossing that latches the command/address. Regardless of clock jitter  
values, these values must be met.  
Clock Jitter Effects on READ Timing Parameters  
tRPRE  
When the device is operated with input clock jitter, tRPRE must be derated by the  
tJIT(per),act,max of the input clock that exceeds tJIT(per),allowed,max. Output derat-  
ings are relative to the input clock:  
t
t
JIT(per),act,max – JIT(per),allowed,max  
t
RPRE(min,derated) = 0.9 –  
t
CK(avg)  
For example, if the measured jitter into a LPDDR2-800 device has tCK(avg) = 2500ps,  
tJIT(per),act,min = –172ps, and tJIT(per),act,max = +193ps, then tRPRE,min,derated =  
0.9 - (tJIT(per),act,max - tJIT(per),allowed,max)/tCK(avg) = 0.9 - (193 - 100)/2500 =  
0.8628 tCK(avg).  
tLZ(DQ), tHZ(DQ), tDQSCK, tLZ(DQS), tHZ(DQS)  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
129  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Clock Period Jitter  
These parameters are measured from a specific clock edge to a data signal transition  
(DMn or DQm, where: n = 0, 1, 2, or 3; and m = DQ[31:0]), and specified timings must be  
met with respect to that clock edge. Therefore, they are not affected by tJIT(per).  
tQSH, tQSL  
These parameters are affected by duty cycle jitter, represented by tCH(abs)min and  
tCL(abs)min. These parameters determine the absolute data valid window at the device  
pin. The absolute minimum data valid window at the device pin = min [(tQSH(abs)min  
× tCK(avg)min - tDQSQmax - tQHSmax), (tQSL(abs)min × tCK(avg)min - tDQSQmax -  
tQHSmax)]. This minimum data valid window must be met at the target frequency re-  
gardless of clock jitter.  
tRPST  
tRPST is affected by duty cycle jitter, represented by tCL(abs). Therefore, tRPST(abs)min  
can be specified by tCL(abs)min. tRPST(abs)min = tCL(abs)min - 0.05 = tQSL(abs)min.  
Clock Jitter Effects on WRITE Timing Parameters  
tDS, tDH  
These parameters are measured from a data signal (DMn or DQm, where n = 0, 1, 2, 3;  
and m = DQ[31:0]) transition edge to its respective data strobe signal (DQSn_t, DQSn_c:  
n = 0,1,2,3) crossing. The specification values are not affected by the amount of tJIT(per)  
applied, because the setup and hold times are relative to the clock signal crossing that  
latches the command/address. Regardless of clock jitter values, these values must be  
met.  
tDSS, tDSH  
These parameters are measured from a data strobe signal crossing (DQSx_t, DQSx_c) to  
its clock signal crossing (CK_t/CK_c). The specification values are not affected by the  
amount of tJIT(per)) applied, because the setup and hold times are relative to the clock  
signal crossing that latches the command/address. Regardless of clock jitter values,  
these values must be met.  
tDQSS  
tDQSS is measured from the clock signal crossing (CK_t/CK_c) to the first latching data  
strobe signal crossing (DQSx_t, DQSx_c). When the device is operated with input clock  
jitter, this parameter must be derated by the actual tJIT(per),act of the input clock in ex-  
cess of tJIT(per),allowed.  
t
t
JIT(per),act,min – JIT(per),allowed, min  
t
DQSS(min,derated) = 0.75 -  
DQSS(max,derated) = 1.25 –  
t
CK(avg)  
t
t
JIT(per),act,max – JIT(per),allowed, max  
t
t
CK(avg)  
For example, if the measured jitter into an LPDDR2-800 device has tCK(avg) = 2500ps,  
tJIT(per),act,min = -172ps, and tJIT(per),act,max = +193ps, then:  
tDQSS,(min,derated) = 0.75 - (tJIT(per),act,min - tJIT(per),allowed,min)/tCK(avg) =  
0.75 - (-172 + 100)/2500 = 0.7788 tCK(avg), and  
tDQSS,(max,derated) = 1.25 - (tJIT(per),act,max - tJIT(per),allowed,max)/tCK(avg) =  
1.25 - (193 - 100)/2500 = 1.2128 tCK(avg).  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
130  
© 2014 Micron Technology, Inc. All rights reserved.  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Refresh Requirements Parameters  
Refresh Requirements Parameters  
Table 90: Refresh Requirement Parameters (Per Density)  
Parameter  
Symbol 64Mb 128Mb 256Mb 512Mb  
1Gb  
8
2Gb  
8
4Gb  
8
8Gb  
8
Unit  
Number of banks  
Refresh window: TCASE 85˚  
4
32  
8
4
32  
8
4
32  
8
4
32  
8
tREFW  
tREFW  
32  
8
32  
8
32  
8
32  
8
ms  
ms  
Refresh window:  
85˚C < TCASE 105˚C  
Required number of REFRESH  
commands (MIN)  
R
2048  
2048  
4096  
4096  
4096  
8192  
8192  
8192  
Average time be-  
REFab  
tREFI  
15.6  
15.6  
7.8  
7.8  
7.8  
3.9  
3.9  
3.9  
μs  
μs  
tween REFRESH com-  
mands (for reference  
only) TCASE 85˚C  
REFpb tREFIpb (REFpb not supported below 1Gb)  
0.975  
0.4875 0.4875 0.4875  
Refresh cycle time  
tRFCab  
tRFCpb  
tREFBW  
90  
90  
90  
90  
130  
60  
130  
60  
130  
60  
210  
90  
ns  
ns  
μs  
Per-bank REFRESH cycle time  
na  
Burst REFRESH window =  
4 × 8 × tRFCab  
2.88  
2.88  
2.88  
2.88  
4.16  
4.16  
4.16  
6.72  
AC Timing  
Table 91: AC Timing  
Notes 1–2 apply to all parameters and conditions. AC timing parameters must satisfy the tCK minimum conditions (in mul-  
tiples of tCK) as well as the timing specifications when values for both are indicated.  
Data Rate  
Min/ tCK  
Parameter  
Symbol  
Max Min 1066 933 800 667 533 400 333 Unit Notes  
Maximum frequency  
Clock Timing  
533  
466 400 333 266 200 166 MHz  
Average clock period  
tCK(avg)  
tCH(avg)  
tCL(avg)  
tCK(abs)  
MIN  
MAX  
MIN  
1.875 2.15 2.5  
3
3.75  
5
6
ns  
100 100 100 100 100 100 100  
0.45 0.45 0.45 0.45 0.45 0.45 0.45 tCK  
Average HIGH pulse width  
Average LOW pulse width  
Absolute clock period  
(avg)  
MAX  
MIN  
0.55 0.55 0.55 0.55 0.55 0.55 0.55  
0.45 0.45 0.45 0.45 0.45 0.45 0.45 tCK  
(avg)  
MAX  
MIN  
0.55 0.55 0.55 0.55 0.55 0.55 0.55  
tCK(avg)min tJIT(per)min  
0.43 0.43 0.43 0.43 0.43 0.43 0.43 tCK  
ps  
Absolute clock HIGH pulse width  
(with allowed jitter)  
tCH(abs),  
allowed  
MIN  
(avg)  
MAX  
MIN  
0.57 0.57 0.57 0.57 0.57 0.57 0.57  
0.43 0.43 0.43 0.43 0.43 0.43 0.43 tCK  
Absolute clock LOW pulse width  
(with allowed jitter)  
tCL(abs),  
allowed  
(avg)  
MAX  
MIN  
0.57 0.57 0.57 0.57 0.57 0.57 0.57  
Clock period jitter  
(with supported jitter)  
tJIT(per),  
allowed  
-90  
90  
-95 -100 -110 -120 -140 -150  
95 100 110 120 140 150  
ps  
MAX  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
131  
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
AC Timing  
Table 91: AC Timing (Continued)  
Notes 1–2 apply to all parameters and conditions. AC timing parameters must satisfy the tCK minimum conditions (in mul-  
tiples of tCK) as well as the timing specifications when values for both are indicated.  
Data Rate  
Min/ tCK  
Parameter  
Symbol  
Max Min 1066 933 800 667 533 400 333 Unit Notes  
Maximum clock jitter between  
two consectuive clock cycles  
(with allowed jitter)  
tJIT(cc),  
allowed  
MAX  
180  
190 200 220 240 280 300  
ps  
ps  
Duty cycle jitter  
(with allowed jitter)  
tJIT(duty),  
allowed  
MIN  
MIN ((tCH(abs),min - tCH(avg),min),  
(tCL(abs),min - tCL(avg),min)) × tCK(avg)  
MAX ((tCH(abs),max - tCH(avg),max),  
(tCL(abs),max - tCL(avg),max)) × tCK(avg)  
MAX  
Cumulative errors across 2 cycles  
Cumulative errors across 3 cycles  
Cumulative errors across 4 cycles  
Cumulative errors across 5 cycles  
Cumulative errors across 6 cycles  
Cumulative errors across 7 cycles  
Cumulative errors across 8 cycles  
Cumulative errors across 9 cycles  
tERR(2per), MIN  
-132 -140 -147 -162 -177 -206 -221  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
allowed  
MAX  
132  
-157 -166 -175 -192 -210 -245 -262  
157 166 175 192 210 245 262  
-175 -185 -194 -214 -233 -272 -291  
175 185 194 214 233 272 291  
-188 -199 -209 -230 -251 -293 -314  
188 199 209 230 251 293 314  
-200 -211 -222 -244 -266 -311 -333  
200 211 222 244 266 311 333  
-209 -221 -232 -256 -279 -325 -348  
209 221 232 256 279 325 348  
-217 -229 -241 -266 -290 -338 -362  
217 229 241 266 290 338 362  
-224 -237 -249 -274 -299 -349 -374  
224 237 249 274 299 349 374  
-231 -244 -257 -282 -308 -359 -385  
231 244 257 282 308 359 385  
-237 -250 -263 -289 -316 -368 -395  
237 250 263 289 316 368 395  
-242 -256 -269 -296 -323 -377 -403  
242 256 269 296 323 377 403  
140 147 162 177 206 221  
tERR(3per), MIN  
allowed  
MAX  
tERR(4per), MIN  
allowed  
MAX  
tERR(5per), MIN  
allowed  
MAX  
tERR(6per), MIN  
allowed  
MAX  
tERR(7per), MIN  
allowed  
MAX  
tERR(8per), MIN  
allowed  
MAX  
tERR(9per), MIN  
allowed  
MAX  
Cumulative errors across 10 cycles tERR(10per), MIN  
allowed  
MAX  
Cumulative errors across 11 cycles tERR(11per), MIN  
allowed  
MAX  
Cumulative errors across 12 cycles tERR(12per), MIN  
allowed  
MAX  
Cumulative errors across n = 13,  
14, 15…, 49, 50 cycles  
tERR(nper), MIN  
allowed  
tERR(nper),allowed,min = (1 + 0.68ln(n)) ×  
tJIT(per),allowed,min  
MAX  
tERR(nper), allowed,max = (1 + 0.68ln(n)) ×  
tJIT(per),allowed,max  
ZQ Calibration Parameters  
Initialization calibration time  
Long calibration time  
tZQINIT  
tZQCL  
tZQCS  
MIN  
MIN  
MIN  
6
6
1
1
1
1
1
1
1
μs  
ns  
ns  
360  
90  
360 360 360 360 360 360  
90 90 90 90 90 90  
Short calibration time  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
132  
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
AC Timing  
Table 91: AC Timing (Continued)  
Notes 1–2 apply to all parameters and conditions. AC timing parameters must satisfy the tCK minimum conditions (in mul-  
tiples of tCK) as well as the timing specifications when values for both are indicated.  
Data Rate  
Min/ tCK  
Parameter  
Symbol  
Max Min 1066 933 800 667 533 400 333 Unit Notes  
Calibration RESET time  
READ Parameters3  
tZQRESET  
MIN  
3
50  
50  
50  
50  
50  
50  
50  
ns  
DQS output access time from  
CK_t/CK_c  
tDQSCK  
MIN  
2500 2500 2500 2500 2500 2500 2500 ps  
5500 5500 5500 5500 5500 5500 5500  
MAX  
DQSCK delta short  
tDQSCKDS MAX  
tDQSCKDM MAX  
tDQSCKDL MAX  
tDQSQ  
tQHS  
330  
680  
380 450 540 670 900 1080 ps  
780 900 1050 1350 1800 1900 ps  
4
5
6
DQSCK delta medium  
DQSCK delta long  
920 1050 1200 1400 1800 2400  
ps  
ps  
ps  
DQS-DQ skew  
MAX  
MAX  
MIN  
200  
230  
220 240 280 340 400 500  
Data-hold skew factor  
DQS output HIGH pulse width  
260 280 340 400 480 600  
tCH(abs) - 0.05  
tQSH  
tCK  
(avg)  
DQS output LOW pulse width  
Data half period  
tQSL  
tQHP  
tQH  
MIN  
MIN  
MIN  
MIN  
MIN  
tCL(abs) - 0.05  
MIN (tQSH, tQSL)  
tQHP - tQHS  
tCK  
(avg)  
tCK  
(avg)  
DQ/DQS output hold time from  
DQS  
ps  
READ preamble  
tRPRE  
tRPST  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
tCK  
(avg)  
tCK  
7
8
READ postamble  
tCL(abs) - 0.05  
(avg)  
DQS Low-Z from clock  
DQ Low-Z from clock  
DQS High-Z from clock  
DQ High-Z from clock  
WRITE Parameters3  
tLZ(DQS)  
tLZ(DQ)  
tHZ(DQS)  
tHZ(DQ)  
MIN  
MIN  
tDQSCK (MIN) - 300  
tDQSCK(MIN) - (1.4 × tQHS(MAX))  
tDQSCK (MAX) - 100  
ps  
ps  
ps  
ps  
MAX  
MAX  
tDQSCK(MAX) + (1.4 × tDQSQ(MAX))  
DQ and DM input hold time (VREF  
based)  
tDH  
tDS  
MIN  
MIN  
MIN  
MIN  
MAX  
MIN  
210  
210  
235 270 350 430 480 600  
235 270 350 430 480 600  
ps  
ps  
DQ and DM input setup time (VREF  
based)  
DQ and DM input pulse width  
tDIPW  
tDQSS  
0.35 0.35 0.35 0.35 0.35 0.35 0.35 tCK  
(avg)  
0.75 0.75 0.75 0.75 0.75 0.75 0.75 tCK  
(avg)  
1.25 1.25 1.25 1.25 1.25 1.25 1.25 tCK  
(avg)  
Write command to first DQS latch-  
ing transition  
DQS input high-level width  
tDQSH  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
tCK  
(avg)  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
133  
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
AC Timing  
Table 91: AC Timing (Continued)  
Notes 1–2 apply to all parameters and conditions. AC timing parameters must satisfy the tCK minimum conditions (in mul-  
tiples of tCK) as well as the timing specifications when values for both are indicated.  
Data Rate  
Min/ tCK  
Parameter  
Symbol  
Max Min 1066 933 800 667 533 400 333 Unit Notes  
DQS input low-level width  
tDQSL  
MIN  
MIN  
MIN  
MIN  
MIN  
0.4  
0.2  
0.2  
0.4  
0.4  
0.2  
0.2  
0.4  
0.4  
0.2  
0.2  
0.4  
0.4  
0.2  
0.2  
0.4  
0.4  
0.2  
0.2  
0.4  
0.4  
0.2  
0.2  
0.4  
0.4  
0.2  
0.2  
0.4  
tCK  
(avg)  
tCK  
(avg)  
tCK  
(avg)  
tCK  
(avg)  
DQS falling edge to CK setup time  
tDSS  
tDSH  
DQS falling edge hold time from  
CK  
Write postamble  
tWPST  
tWPRE  
Write preamble  
0.35 0.35 0.35 0.35 0.35 0.35 0.35 tCK  
(avg)  
CKE Input Parameters  
CKE minimum pulse width (HIGH  
and LOW pulse width)  
tCKE  
tISCKE  
tIHCKE  
MIN  
MIN  
MIN  
3
3
3
3
3
3
3
3
tCK  
(avg)  
CKE input setup time  
0.25 0.25 0.25 0.25 0.25 0.25 0.25 tCK  
(avg)  
0.25 0.25 0.25 0.25 0.25 0.25 0.25 tCK  
(avg)  
9
CKE input hold time  
10  
Command Address Input Parameters3  
Address and control input setup  
time ( Vref based )  
tIS  
MIN  
MIN  
MIN  
220  
220  
250 290 370 460 600 740  
250 290 370 460 600 740  
ps  
ps  
11  
11  
Address and control input hold  
time ( Vref based )  
tIH  
Address and control input pulse  
width  
tIPW  
0.40 0.40 0.40 0.40 0.40 0.40 0.40 tCK  
(avg)  
Boot Parameters (10 MHz–55 MHz)12, 13, 14  
Clock cycle time  
tCKb  
MAX  
MIN  
MIN  
MIN  
MIN  
100  
18  
100 100 100 100 100 100  
ns  
18  
2.5  
2.5  
18  
2.5  
2.5  
18  
2.5  
2.5  
18  
2.5  
2.5  
18  
2.5  
2.5  
18  
2.5  
2.5  
CKE input setup time  
CKE input hold time  
tISCKEb  
tIHCKEb  
tISb  
2.5  
2.5  
ns  
ns  
Address and control input setup  
time  
1150 1150 1150 1150 1150 1150 1150 ps  
Address and control input hold  
time  
tIHb  
MIN  
1150 1150 1150 1150 1150 1150 1150 ps  
DQS output data access time from  
CK_t/CK_c  
tDQSCKb  
MIN  
MAX  
MAX  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
ns  
10.0 10.0 10.0 10.0 10.0 10.0 10.0  
Data strobe edge to output data  
edge tDQSQb - 1.2  
tDQSQb  
tQHSb  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
ns  
ns  
Data hold skew factor  
MAX  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
134  
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
AC Timing  
Table 91: AC Timing (Continued)  
Notes 1–2 apply to all parameters and conditions. AC timing parameters must satisfy the tCK minimum conditions (in mul-  
tiples of tCK) as well as the timing specifications when values for both are indicated.  
Data Rate  
Min/ tCK  
Parameter  
Symbol  
Max Min 1066 933 800 667 533 400 333 Unit Notes  
Mode Register Parameters  
MODE REGISTER WRITE  
command period  
tMRW  
tMRR  
MIN  
MIN  
5
2
5
2
5
2
5
2
5
2
5
2
5
2
5
2
tCK  
(avg)  
tCK  
(avg)  
MODE REGISTER READ  
command period  
Core Parameters15  
READ latency  
RL  
WL  
MIN  
MIN  
MIN  
MIN  
3
1
3
8
4
7
4
6
3
5
2
4
2
3
1
3
1
tCK  
(avg)  
tCK  
(avg)  
WRITE latency  
ACTIVATE-to-ACTIVATE  
command period  
tRC  
tRAS + tRPab (with all-bank precharge),  
tRAS + tRPpb (with per-bank precharge)  
ns  
17  
CKE minimum pulse width during  
SELF REFRESH (low pulse width  
during SELF REFRESH)  
tCKESR  
15  
15  
15  
15  
15  
15  
15  
ns  
SELF REFRESH exit to next valid  
command delay  
tXSR  
tXP  
MIN  
MIN  
MIN  
MIN  
2
2
2
2
tRFCab + 10  
ns  
ns  
Exit power-down to next valid  
command delay  
7.5  
2
7.5  
2
7.5  
2
7.5  
2
7.5  
2
7.5  
2
7.5  
2
CAS-to-CAS delay  
tCCD  
tRTP  
tCK  
(avg)  
Internal READ to PRECHARGE  
command delay  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
ns  
RAS-to-CAS delay  
tRCD  
tRPpb  
tRPab  
MIN  
MIN  
MIN  
3
3
3
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
ns  
ns  
ns  
Row precharge time (single bank)  
Row precharge time (all banks)  
4-bank  
Row precharge time (all banks)  
Row active time  
tRPab  
8-bank  
tRAS  
MIN  
3
21  
21  
21  
21  
21  
21  
21  
ns  
MIN  
MAX  
MIN  
MIN  
3
3
2
42  
70  
15  
7.5  
42  
70  
15  
7.5  
42  
70  
15  
7.5  
42  
70  
15  
7.5  
42  
70  
15  
7.5  
42  
70  
15  
10  
42  
70  
15  
10  
ns  
μs  
ns  
ns  
WRITE recovery time  
tWR  
tWTR  
Internal WRITE-to-READ  
command delay  
Active bank a to active bank b  
Four-bank activate window  
Minimum deep power-down time  
Temperature Derating16  
tRRD  
tFAW  
tDPD  
MIN  
MIN  
MIN  
2
8
10  
50  
10  
50  
10  
50  
10  
50  
10  
50  
10  
50  
10  
60  
ns  
ns  
μs  
500  
500 500 500 500 500 500  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
135  
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
AC Timing  
Table 91: AC Timing (Continued)  
Notes 1–2 apply to all parameters and conditions. AC timing parameters must satisfy the tCK minimum conditions (in mul-  
tiples of tCK) as well as the timing specifications when values for both are indicated.  
Data Rate  
Min/ tCK  
Parameter  
Symbol  
Max Min 1066 933 800 667 533 400 333 Unit Notes  
tDQSCK derating  
tDQSCK  
(derated)  
tRCD  
(derated)  
tRC  
(derated)  
tRAS  
(derated)  
MAX  
MIN  
MIN  
MIN  
MIN  
MIN  
5620 6000 6000 6000 6000 6000 6000 ps  
Core timing temperature  
derating  
tRCD + 1.875  
tRC + 1.875  
tRAS + 1.875  
tRP + 1.875  
tRRD + 1.875  
ns  
ns  
ns  
ns  
ns  
tRP  
(derated)  
tRRD  
(derated)  
1. Frequency values are for reference only. Clock cycle time (tCK) is used to determine de-  
vice capabilities.  
Notes:  
2. All AC timings assume an input slew rate of 1 V/ns.  
3. READ, WRITE, and input setup and hold values are referenced to VREF  
.
4. tDQSCKDS is the absolute value of the difference between any two tDQSCK measure-  
ments (in a byte lane) within a contiguous sequence of bursts in a 160ns rolling window.  
tDQSCKDS is not tested and is guaranteed by design. Temperature drift in the system is  
<10˚C/s. Values do not include clock jitter.  
5. tDQSCKDM is the absolute value of the difference between any two tDQSCK measure-  
ments (in a byte lane) within a 1.6μs rolling window. tDQSCKDM is not tested and is  
guaranteed by design. Temperature drift in the system is <10˚C/s. Values do not include  
clock jitter.  
6. tDQSCKDL is the absolute value of the difference between any two tDQSCK measure-  
ments (in a byte lane) within a 32ms rolling window. tDQSCKDL is not tested and is  
guaranteed by design. Temperature drift in the system is <10˚C/s. Values do not include  
clock jitter.  
For LOW-to-HIGH and HIGH-to-LOW transitions, the timing reference is at the point  
when the signal crosses the transition threshold (VTT). tHZ and tLZ transitions occur in  
the same access time (with respect to clock) as valid data transitions. These parameters  
are not referenced to a specific voltage level but to the time when the device output is  
no longer driving (for tRPST, tHZ(DQS) and tHZ(DQ)), or begins driving (for tRPRE,  
tLZ(DQS), tLZ(DQ)). The figure below shows a method to calculate the point when the  
device is no longer driving tHZ(DQS) and tHZ(DQ) or begins driving tLZ(DQS) and tLZ(DQ)  
by measuring the signal at two different voltages. The actual voltage measurement  
points are not critical as long as the calculation is consistent. The parameters tLZ(DQS),  
tLZ(DQ), tHZ(DQS), and tHZ(DQ) are defined as single-ended. The timing parameters  
tRPRE and tRPST are determined from the differential signal DQS_t/DQS_c.  
Output Transition Timing  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
136  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
CA and CS_n Setup, Hold, and Derating  
VOH  
X
VOH - X mV  
OH - 2x X mV  
2x X  
V
TT + 2x Y mV  
V
t
t
V
TT + Y mV  
LZ(DQS), LZ(DQ)  
l
t
t
VTT  
VTT  
HZ(DQS), HZ(DQ)  
Y
2x Y  
VTT - Y mV  
VTT - 2x Y mV  
VOL + 2x X mV  
OL + X mV  
V
VOL  
T1 T2  
Start driving point = 2 × T1 - T2  
T1 T2  
End driving point = 2 × T1 - T2  
7. Measured from the point when DQS_t/DQS_c begins driving the signal, to the point  
when DQS_t/DQS_c begins driving the first rising strobe edge.  
8. Measured from the last falling strobe edge of DQS_t/DQS_c to the point when DQS_t/  
DQS_c finishes driving the signal.  
9. CKE input setup time is measured from CKE reaching a HIGH/LOW voltage level to  
CK_t/CK_c crossing.  
10. CKE input hold time is measured from CK_t/CK_n crossing to CKE reaching a HIGH/LOW  
voltage level.  
11. Input setup/hold time for signal (CA[9:0], CS_n).  
12. To ensure device operation before the device is configured, a number of AC boot timing  
parameters are defined in this table. The letter b is appended to the boot parameter  
symbols (for example, tCK during boot is tCKb).  
13. Mobile LPDDR2 devices set some mode register default values upon receiving a RESET  
(MRW) command, as specified in Mode Register Definition.  
14. The output skew parameters are measured with default output impedance settings  
using the reference load.  
15. The minimum tCK column applies only when tCK is greater than 6ns.  
16. Timing derating applies for operation at 85˚C to 105˚C when the requirement to derate  
is indicated by mode register 4 op-code (see the MR4 Device Temperature (MA[7:0] =  
04h) table).  
17. DRAM devices should be evenly addressed when being accessed. Disproportionate ac-  
cesses to a particular row address may result in reduction of the product lifetime.  
CA and CS_n Setup, Hold, and Derating  
For all input signals (CA and CS_n), the total required setup time (tIS) and hold time  
(tIH) are calculated by adding the data sheet tIS (base) and tIH (base) values to the ΔtIS  
and ΔtIH derating values, respectively. Example: tIS (total setup time) = tIS(base) + ΔtIS.  
(See the series of tables following this section.)  
The typical setup slew rate (tIS) for a rising signal is defined as the slew rate between the  
last crossing of VREF(DC) and the first crossing of VIH(AC)min. The typical setup slew rate  
for a falling signal is defined as the slew rate between the last crossing of VREF(DC) and  
the first crossing of VIL(AC)max. If the actual signal is consistently earlier than the typical  
slew rate line between the shaded VREF(DC)-to-(AC) region, use the typical slew rate for  
the derating value (see Figure 83 (page 141)). If the actual signal is later than the typical  
slew rate line anywhere between the shaded VREF(DC)-to-AC region, the slew rate of a  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
137  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
 
 
 
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
CA and CS_n Setup, Hold, and Derating  
tangent line to the actual signal from the AC level to the DC level is used for the derating  
value (see Figure 85 (page 143)).  
The hold (tIH) typical slew rate for a rising signal is defined as the slew rate between the  
last crossing of VIL(DC)max and the first crossing of VREF(DC). The hold (tIH) typical slew  
rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min  
and the first crossing of VREF(DC). If the actual signal is consistently later than the typical  
slew rate line between the shaded DC-to-VREF(DC) region, use the typical slew rate for  
the derating value (see Figure 84 (page 142)). If the actual signal is earlier than the typi-  
cal slew rate line anywhere between the shaded DC-to-VREF(DC) region, the slew rate of a  
tangent line to the actual signal from the DC level to VREF(DC) level is used for the derat-  
ing value (see Figure 86 (page 144)).  
For a valid transition, the input signal must remain above or below VIH/VIL(AC) for a  
specified time, tVAC (see Table 96 (page 139)).  
For slow slew rates the total setup time could be a negative value; that is, a valid input  
signal will not have reached VIH/VIL(AC) at the time of the rising clock transition. A valid  
input signal is still required to complete the transition and reach VIH/VIL(AC)  
.
For slew rates between the values listed in Table 94, the derating values are obtained us-  
ing linear interpolation. Typically, slew rate values are not subject to production testing.  
They are verified by design and characterization.  
Table 92: CA and CS_n Setup and Hold Base Values (>400 MHz, 1 V/ns Slew Rate)  
Data Rate  
Parameter  
tIS (base)  
tIH (base)  
1066  
0
933  
30  
800  
667  
150  
240  
533  
240  
330  
466  
300  
390  
Reference  
70  
VIH/VIL(AC) = VREF(DC) 220mV  
VIH/VIL(DC) = VREF(DC) 130mV  
90  
120  
160  
1. AC/DC referenced for 1 V/ns CA and CS_n slew rate, and 2 V/ns differential CK_t/CK_c  
Note:  
slew rate.  
Table 93: CA and CS_n Setup and Hold Base Values (<400 MHz, 1 V/ns Slew Rate)  
Data Rate  
Parameter  
tIS (base)  
tIH (base)  
400  
300  
400  
333  
440  
540  
266  
600  
700  
200  
850  
950  
Reference  
VIH/VIL(AC) = VREF(DC) 300mV  
VIH/VIL(DC) = VREF(DC) 200mV  
1. AC/DC referenced for 1 V/ns CA and CS_n slew rate, and 2 V/ns differential CK_t/CK_c  
Note:  
slew rate.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
138  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
CA and CS_n Setup, Hold, and Derating  
Table 94: Derating Values for AC/DC-Based tIS/tIH (AC220)  
ΔtIS, ΔtIH derating in ps  
AC220 Threshold -> VIH(ac)=VREF(dc)+220mV, VIL(ac)=VREF(dc)-220mV  
DC100 Threshold -> VIH(dc)=VREF(dc)+130mV, VIL(dc)=VREF(dc)-130mV  
CK_t, CK_c Differential Slew Rate  
2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns  
ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH  
4.0 V/ns  
3.0 V/ns  
1.2 V/ns  
1.0 V/ns  
CA, CS_n slew 2.0  
110  
74  
0
65  
43  
0
110  
73  
0
65  
43  
0
110  
73  
0
65  
43  
0
rate V/ns  
1.5  
89  
16  
13  
8
59  
16  
11  
3
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
32  
29  
24  
18  
10  
32  
27  
19  
10  
-3  
-3  
-5  
-3  
-5  
45  
40  
34  
26  
4
43  
35  
26  
13  
-4  
-8  
-13  
56  
50  
42  
20  
-7  
55  
46  
33  
16  
2
2
-6  
66  
58  
36  
17  
78  
65  
48  
34  
1. Shaded cells are not supported.  
Note:  
Table 95: Derating Values for AC/DC-Based tIS/tIH (AC300)  
ΔtIS, ΔtIH derating in ps  
AC300 Threshold -> VIH(ac)=VREF(dc)+300mV, VIL(ac)=VREF(dc)-300mV  
DC200 Threshold -> VIH(dc)=VREF(dc)+200mV, VIL(dc)=VREF(dc)-200mV  
CK_t, CK_c Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH  
CA, CS_n slew 2.0  
150 100 150 100 150 100  
rate V/ns  
1.5  
100  
0
67  
0
100  
0
67  
0
100  
0
67  
0
116  
16  
12  
4
83  
16  
8
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
32  
28  
20  
13  
2
32  
24  
12  
-2  
-4  
-8  
-4  
-8  
44  
36  
29  
18  
40  
28  
14  
-5  
-12 -20  
-4  
52  
45  
34  
4
48  
34  
-3  
-18  
61  
50  
20  
66  
47  
20  
-8  
-21  
15  
-12 -32  
-12  
-35 -40 -11  
1. Shaded cells are not supported.  
Note:  
Table 96: Required Time for Valid Transition – tVAC > VIH(AC) and < VIL(AC)  
tVAC at 300mV (ps)  
tVAC at 220mV (ps)  
Slew Rate  
(V/ns)  
Min  
Max  
Min  
Max  
>2.0  
75  
175  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
139  
 
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
CA and CS_n Setup, Hold, and Derating  
Table 96: Required Time for Valid Transition – tVAC > VIH(AC) and < VIL(AC) (Continued)  
tVAC at 300mV (ps)  
tVAC at 220mV (ps)  
Slew Rate  
(V/ns)  
Min  
57  
50  
38  
34  
29  
22  
13  
0
Max  
Min  
170  
167  
163  
162  
161  
159  
155  
150  
150  
Max  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
<0.5  
0
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
140  
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
CA and CS_n Setup, Hold, and Derating  
Figure 83: Typical Slew Rate and tVAC – tIS for CA and CS_n Relative to Clock  
CK_c  
CK_t  
t
t
t
t
IS  
IH  
IS  
IH  
V
DD2  
V
V
t
IH(AC)min  
VAC  
V
to AC  
REF  
region  
IH(DC)min  
Typical  
slew rate  
V
REF(DC)  
Typical  
slew rate  
V
V
IL(DC)max  
V
to AC  
REF  
region  
IL(AC)max  
t
VAC  
V
SS  
TF  
TR  
V
- V  
REF(DC)  
V
- V  
IL(AC)max  
Setup slew rate  
rising signal  
Setup slew rate  
falling signal  
IH(AC)min  
REF(DC)  
=
=
TF  
TR  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
141  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
CA and CS_n Setup, Hold, and Derating  
Figure 84: Typical Slew Rate – tIH for CA and CS_n Relative to Clock  
CK_c  
CK_t  
tIS  
tIH  
tIS  
tIH  
VDD2  
VIH(AC)min  
VIH(DC)min  
DC to VREF  
region  
Typical slew rate  
VREF(DC)  
Typical slew rate  
DC to VREF  
region  
VIL(DC)max  
VIL(AC)max  
VSS  
TF  
TR  
VIH(DC)min- VREF(DC)  
VREF(DC)- VIL(DC)max  
Hold slew rate  
falling signal  
Hold slew rate  
rising signal  
=
=
TF  
TR  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
142  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
CA and CS_n Setup, Hold, and Derating  
Figure 85: Tangent Line – tIS for CA and CS_n Relative to Clock  
CK_c  
CK_t  
tIS  
tIH  
tIS  
tIH  
VDD2  
VIH(AC)min  
tVAC  
VREF to AC  
region  
Typical  
line  
VIH(DC)min  
Tangent  
line  
VREF(DC)  
Tangent  
line  
VIL(DC)max  
Typical  
line  
VREF to AC  
region  
VIL(AC)max  
TF  
TR  
VSS  
tVAC  
- V  
tangent line [V  
]
tangent line [V  
- V  
]
Setup slew rate  
falling signal  
Setup slew rate  
rising signal  
REF(DC)  
IL(AC)]max  
IH(AC)min  
REF(DC)  
=
=
TF  
TR  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
143  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
CA and CS_n Setup, Hold, and Derating  
Figure 86: Tangent Line – tIH for CA and CS_n Relative to Clock  
CK_c  
CK_t  
t
t
t
t
IS  
IH  
IS  
IH  
V
DD2  
V
V
IH(AC)min  
Typical  
line  
IH(DC)min  
DC to V  
region  
REF  
Tangent  
line  
V
REF(DC)  
Tangent  
line  
DC to V  
Typical line  
REF  
region  
V
V
IL(DC)max  
IL(AC)max  
V
SS  
TR  
TF  
tangent line [V  
- V  
]
tangent line [V  
- V  
]
REF(DC)  
IL(DC)max  
Hold slew rate  
falling signal  
IH(DC)min  
REF(DC)  
Hold slew rate  
rising signal  
=
=
TR  
TF  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
144  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Data Setup, Hold, and Slew Rate Derating  
Data Setup, Hold, and Slew Rate Derating  
For all input signals (DQ, DM) the total required setup time (tDS) and hold time (tDH)  
are calculated by adding the data sheet tDS(base) and tDH(base) values (see the follow-  
ing table) to the ΔtDS and ΔtDH derating values, respectively (see the following derating  
tables). Example: tDS = tDS(base) + ΔtDS.  
The typical tDS slew rate for a rising signal is defined as the slew rate between the last  
crossing of VREF(DC) and the first crossing of VIH(AC)min. The typical tDS slew rate for a  
falling signal is defined as the slew rate between the last crossing of VREF(DC) and the  
first crossing of VIL(AC)max (see the Typical Slew Rate and tVAC – tDS for DQ Relative to  
Strobe figure).  
If the actual signal is consistently earlier than the typical slew rate line in the figure,  
"Typical Slew Rate and tVAC – tIS for CA and CS_n Relative to Clock (CA and CS_n Setup,  
Hold, and Derating), the area shaded gray between the VREF(DC) region and the AC re-  
gion, use the typical slew rate for the derating value. If the actual signal is later than the  
typical slew rate line anywhere between the shaded VREF(DC) region and the AC region,  
the slew rate of a tangent line to the actual signal from the AC level to the DC level is  
used for the derating value (see figure "Tangent Line – tIS for CA and CS_n Relative to  
Clock" in CA and CS_n Setup, Hold, and Derating).  
The typical tDH slew rate for a rising signal is defined as the slew rate between the last  
crossing of VIL(DC)max and the first crossing of VREF(DC). The typical tDH slew rate for a  
falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the  
first crossing of VREF(DC) (see the Typical Slew Rate – DH for DQ Relative to Strobe fig-  
ure).  
If the actual signal is consistently later than the typical slew rate line between the  
shaded DC-level-to-VREF(DC) region, the typical slew rate should be used for the derating  
value. If the actual signal is earlier than the typical slew rate line anywhere between sha-  
ded DC-to-VREF(DC) region, the slew rate of a tangent line to the actual signal from the  
DC level to the VREF(DC) level is used for the derating value (see the Tangent Line – tDH  
for DQ with Respect to Strobe figure).  
For a valid transition, the input signal must remain above or below VIH/VIL(AC) for the  
t
specified time, tVAC (see the Required Time for Valid Transition – VAC > VIH(AC) or <  
VIL(AC) table).  
The total setup time for slow slew rates could be negative; that is, a valid input signal  
may not have reached VIH/VIL(AC) at the time of the rising clock transition. A valid input  
signal is still required to complete the transition and reach VIH/VIL(AC)  
.
For slew rates between the values listed in the following tables, the derating values can  
be obtained using linear interpolation. Typically, slew rate values are not subject to pro-  
duction testing. They are verified by design and characterization.  
Table 97: Data Setup and Hold Base Values (>400 MHz, 1 V/ns Slew Rate)  
Data Rate  
Parameter  
tDS (base)  
1066  
933  
800  
50  
667  
533  
466  
Reference  
-10  
15  
130  
210  
230  
VIH/VIL(AC) = VREF(DC) 220mV  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
145  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Data Setup, Hold, and Slew Rate Derating  
Table 97: Data Setup and Hold Base Values (>400 MHz, 1 V/ns Slew Rate) (Continued)  
Data Rate  
Parameter  
1066  
933  
800  
667  
533  
466  
Reference  
tDH (base)  
80  
105  
140  
220  
300  
320  
VIH/VIL(DC) = VREF(DC) 130mV  
1. AC/DC referenced for 1 V/ns DQ, DM slew rate, and 2 V/ns differential DQS_t/DQS_c slew  
rate.  
Note:  
Table 98: Data Setup and Hold Base Values (<400 MHz, 1 V/ns Slew Rate)  
Data Rate  
Parameter  
tDS (base)  
tDH (base)  
400  
180  
280  
333  
300  
400  
266  
450  
550  
200  
700  
800  
Reference  
VIH/VIL(AC) = VREF(DC) 300mV  
VIH/VIL(DC) = VREF(DC) 200mV  
1. AC/DC referenced for 1 V/ns DQ, DM slew rate, and 2 V/ns differential DQS_t/DQS_c slew  
Note:  
rate.  
Table 99: Derating Values for AC/DC-Based tDS/tDH (AC220)  
ΔtDS, ΔtDH derating in ps  
AC220 Threshold -> VIH(ac)=VREF(dc)+220mV, VIL(ac)=VREF(dc)-220mV  
DC130 Threshold -> VIH(dc)=VREF(dc)+130mV, VIL(dc)=VREF(dc)-130mV  
DQS_t, DQS_c Differential Slew Rate  
2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns  
ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH  
4.0 V/ns  
3.0 V/ns  
1.2 V/ns  
1.0 V/ns  
DQ, DM 2.0  
110  
74  
0
65  
43  
0
110  
73  
0
65  
43  
0
110  
73  
0
65  
43  
0
slew  
1.5  
89  
16  
13  
8
59  
16  
11  
3
rate  
1.0  
32  
29  
24  
18  
10  
32  
27  
19  
10  
-3  
V/ns  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-3  
-5  
-3  
-5  
45  
40  
34  
26  
4
43  
35  
26  
13  
-4  
-8  
-13  
56  
50  
42  
20  
-7  
55  
46  
33  
16  
2
2
-6  
66  
58  
36  
17  
78  
65  
48  
34  
1. Shaded cells are not supported.  
Note:  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
146  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Data Setup, Hold, and Slew Rate Derating  
Table 100: Derating Values for AC/DC-Based tDS/tDH (AC300)  
ΔtDS, ΔtDH derating in ps  
AC300 Threshold -> VIH(ac)=VREF(dc)+300mV, VIL(ac)=VREF(dc)-300mV  
DC200 Threshold -> VIH(dc)=VREF(dc)+200mV, VIL(dc)=VREF(dc)-200mV  
DQS_t, DQS_c Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH  
DQ, DM 2.0  
150 100 150 100 150 100  
slew  
rate V/ns  
1.0  
1.5  
100  
0
67  
0
100  
0
67  
0
100  
0
67  
0
116  
16  
12  
4
83  
16  
8
32  
28  
20  
13  
2
32  
24  
12  
-2  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-4  
-8  
-4  
-8  
44  
36  
29  
18  
-12  
40  
28  
14  
-5  
-12  
-20  
-4  
52  
45  
34  
4
48  
34  
-3  
-18  
61  
50  
66  
47  
20  
-8  
-21  
15  
-32  
-12  
-40  
20  
-35  
-11  
1. Shaded cells are not supported.  
Note:  
Table 101: Required Time for Valid Transition – tVAC > VIH(AC) or < VIL(AC)  
tVAC at 300mV (ps)  
tVAC at 220mV (ps)  
Slew Rate (V/ns)  
Min  
75  
57  
50  
38  
34  
29  
22  
13  
0
Max  
Min  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
Max  
>2.0  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
<0.5  
0
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
147  
 
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Data Setup, Hold, and Slew Rate Derating  
Figure 87: Typical Slew Rate and tVAC – tDS for DQ Relative to Strobe  
DQS_c  
DQS_t  
t
t
t
t
DS  
DH  
DS  
DH  
V
DDQ  
V
V
IH(AC)min  
t
VAC  
V
to AC  
REF  
region  
IH(DC)min  
Typical  
slew rate  
V
REF(DC)  
Typical  
slew rate  
V
V
IL(DC)max  
V
to AC  
REF  
region  
IL(AC)max  
t
VAC  
V
SSQ  
TF  
TR  
Setup slew rate  
V
- V  
V
- V  
Setup slew rate  
falling signal  
REF(DC)  
IL(AC)max  
IH(AC)min REF(DC)  
=
=
rising signal  
TR  
TF  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
148  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Data Setup, Hold, and Slew Rate Derating  
Figure 88: Typical Slew Rate – tDH for DQ Relative to Strobe  
DQS_c  
DQS_t  
tDS  
tDH  
tDS  
tDH  
VDDQ  
VIH(AC)min  
VIH(DC)min  
DC to VREF  
region  
Typical  
slew rate  
VREF(DC)  
Typical  
slew rate  
DC to VREF  
region  
VIL(DC)max  
VIL(AC)max  
VSSQ  
TR  
TF  
VIH(DC)min - VREF(DC)  
V
REF(DC) - VIL(DC)max  
Hold slew rate  
falling signal  
Hold slew rate  
rising signal  
=
=
TF  
TR  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
149  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Data Setup, Hold, and Slew Rate Derating  
Figure 89: Tangent Line – tDS for DQ with Respect to Strobe  
DQS_c  
DQS_t  
t
t
t
t
DS  
DH  
DS  
DH  
V
DDQ  
V
V
IH(AC)min  
t
VAC  
Typical  
line  
V
to AC  
REF  
region  
IH(DC)min  
Tangent line  
V
REF(DC)  
Tangent line  
Typical line  
V
V
IL(DC)max  
IL(AC)max  
V
to AC  
REF  
region  
TR  
TF  
t
VAC  
VSSQ  
tangent line [V  
- V  
]
tangent line [V  
- V  
]
REF(DC)  
Setup slew rate  
falling signal  
Setup slew rate  
rising signal  
REF(DC)  
IL(AC)max  
IH(AC)min  
=
=
TF  
TR  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
150  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Data Setup, Hold, and Slew Rate Derating  
Figure 90: Tangent Line – tDH for DQ with Respect to Strobe  
DQS_c  
DQS_t  
tDS  
tDH  
tDS  
tDH  
VDDQ  
VIH(AC)min  
Nominal  
line  
VIH(DC)min  
DC to V  
region  
REF  
Tangent  
line  
VREF(DC)  
Tangent  
line  
DC to V  
Typical line  
REF  
region  
VIL(DC)max  
VIL(AC)max  
VSSQ  
TR  
TF  
tangent line [VIH(DC)min - VREF(DC)  
]
tangent line [VREF(DC) - VIL(DC)max]  
Hold slew rate  
falling signal  
Hold slew rate  
=
=
rising signal  
TF  
TR  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
151  
 
216-Ball and 220-Ball, Dual-Channel LPDDR2 SDRAM  
Revision History  
Revision History  
Rev. F – 08/16  
• Updated legal status to Production  
• Removed "Embedded" from title  
• Corrected Revision information in Options  
Rev. E – 05/16  
Rev. D – 03/16  
• Updated IDD table  
• Updated Ballout Diagrams for 216-Ball Dual-Channel FBGA – 2 x 4Gb Die and 4 x 4Gb  
Die to match Ball Description table  
Rev. C – 02/16  
Rev. B – 01/15  
Rev. A – 09/14  
• Preliminary DDP release  
• Added 220-ball ballout and a 14x14 package  
• Initial release created from the 216b_2c0e_2channel Rev. A data sheet  
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-4000  
www.micron.com/products/support Sales inquiries: 800-932-4992  
Micron and the Micron logo are trademarks of Micron Technology, Inc.  
All other trademarks are the property of their respective owners.  
This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein.  
Although considered final, these specifications are subject to change, as further product development and data characterization some-  
times occur.  
09005aef85eb530a  
216b_220b_2ch_2e0e_embedded_lpddr2.pdf – Rev. F 08 /16 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
152  
 
 
 
 
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY