MT16VDDF6464HG-265 [MICRON]

SMALL-OUTLINE DDR SDRAM DIMM; 小外形的DDR SDRAM DIMM
MT16VDDF6464HG-265
型号: MT16VDDF6464HG-265
厂家: MICRON TECHNOLOGY    MICRON TECHNOLOGY
描述:

SMALL-OUTLINE DDR SDRAM DIMM
小外形的DDR SDRAM DIMM

动态存储器 双倍数据速率
文件: 总31页 (文件大小:552K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
MT16VDDF6464H – 512MB  
MT16VDDF12864H – 1GB  
SMALL-OUTLINE  
DDR SDRAM DIMM  
For the latest data sheet, please refer to the Micron Web  
site: www.micron.com/moduleds  
Features  
Figure 1: 200-Pin SODIMM (MO-224)  
200-pin, small-outline, dual in-line memory  
module (SODIMM)  
512MB Module  
Fast data transfer rates: PC1600, PC2100, and PC2700  
Utilizes 200 MT/s, 266 MT/s, or 333 MT/s DDR  
SDRAM components  
512MB (64 Meg x 64), 1GB (128 Meg x 64)  
VDD = VDDQ = +2.5V  
VDDSPD = +2.3V to +3.6V  
2.5V I/O (SSTL_2 compatible)  
Commands entered on each positive CK edge  
DQS edge-aligned with data for READs; center-  
aligned with data for WRITEs  
1GB Module  
Internal, pipelined double data rate (DDR)  
architecture; two data accesses per clock cycle  
Bidirectional data strobe (DQS) transmitted/  
received with data—i.e., source-synchronous data  
capture  
Differential clock inputs CK and CK#  
Four internal device banks for concurrent operation  
Programmable burst lengths: 2, 4, or 8  
Auto precharge option  
Auto Refresh and Self Refresh Modes  
7.8125µs maximum average periodic refresh interval  
Serial Presence Detect (SPD) with EEPROM  
Programmable READ CAS latency  
Gold edge contacts  
OPTIONS  
MARKING  
Package  
G
Y
200-pin SODIMM (standard)  
200-pin SODIMM (lead-free)1  
Frequency/CAS Latency2  
167 MHz (333 MT/s) CL = 2.5  
133 MHz (266 MT/s) CL = 2  
133 MHz (266 MT/s) CL = 2  
133 MHz (266 MT/s) CL = 2.5  
100 MHz (200 MT/s) CL = 2  
-335  
-262  
-26A  
-265  
-202  
NOTE: 1. Contact factory for availability of lead-free prod-  
ucts.  
2. CL = CAS (READ) latency.  
Table 1:  
Address Table  
512MB  
1GB  
8K  
8K  
Refresh Count  
8K (A0–A12)  
4 (BA0, BA1)  
32 Meg x 8  
1K (A0–A9)  
2 (S0#, S1#)  
8K (A0–A12)  
4 (BA0, BA1)  
64 Meg x 8  
Device Row Addressing  
Device Bank Addressing  
Device Configuration  
2K (A0–A9, A11)  
2 (S0#, S1#)  
Device Column Addressing  
Module Rank Addressing  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
1
©2003 Micron Technology, Inc.  
PRODUCTS AND SPECIFICATIONS DISCUSSED HEREIN ARE SUBJECT TO CHANGE BY MICRON WITHOUT NOTICE.  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Table 2:  
Part Numbers and Timing Parameters  
LATENCY  
PART NUMBER  
MODULE  
DENSITY  
CONFIGURATION  
TRANSFER MEMORY CLOCK/  
RATE  
DATA BIT RATE  
(CL - tRCD - tRP)  
512MB  
512MB  
512MB  
512MB  
512MB  
512MB  
512MB  
512MB  
512MB  
512MB  
1GB  
64 Meg x 64  
64 Meg x 64  
64 Meg x 64  
64 Meg x 64  
64 Meg x 64  
64 Meg x 64  
64 Meg x 64  
64 Meg x 64  
64 Meg x 64  
64 Meg x 64  
128 Meg x 64  
128 Meg x 64  
128 Meg x 64  
128 Meg x 64  
128 Meg x 64  
128 Meg x 64  
128 Meg x 64  
128 Meg x 64  
128 Meg x 64  
128 Meg x 64  
2.7 GB/s  
2.7 GB/s  
2.1 GB/s  
2.1 GB/s  
2.1 GB/s  
2.1 GB/s  
2.1 GB/s  
2.1 GB/s  
1.6 GB/s  
1.6 GB/s  
2.7 GB/s  
2.7 GB/s  
2.1 GB/s  
2.1 GB/s  
2.1 GB/s  
2.1 GB/s  
2.1 GB/s  
2.1 GB/s  
1.6 GB/s  
1.6 GB/s  
6ns/333 MT/s  
6ns/333 MT/s  
2.5-3-3  
2.5-3-3  
2-2-2  
MT16VDDF6464HG-335__  
MT16VDDF6464HY-335__  
MT16VDDF6464HG-262__  
MT16VDDF6464HY-262__  
MT16VDDF6464HG-26A__  
MT16VDDF6464HY-26A__  
MT16VDDF6464HG-265__  
MT16VDDF6464HY-265__  
MT16VDDF6464HG-202__  
MT16VDDF6464HY-202__  
MT16VDDF12864HG-335__  
MT16VDDF12864HY-335__  
MT16VDDF12864HG-262__  
MT16VDDF12864HY-262__  
MT16VDDF12864HG-26A__  
MT16VDDF12864HY-26A__  
MT16VDDF12864HG-265__  
MT16VDDF12864HY-265__  
MT16VDDF12864HG-202__  
MT16VDDF12864HY-202__  
NOTE:  
7.5ns/266 MT/s  
7.5ns/266 MT/s  
7.5ns/266 MT/s  
7.5ns/266 MT/s  
7.5ns/266 MT/s  
7.5ns/266 MT/s  
10ns/200 MT/s  
10ns/200 MT/s  
6ns/333 MT/s  
2-2-2  
2-3-3  
2-3-3  
2.5-3-3  
2.5-3-3  
2-2-2  
2-2-2  
2.5-3-3  
2.5-3-3  
2-2-2  
1GB  
6ns/333 MT/s  
1GB  
7.5ns/266 MT/s  
7.5ns/266 MT/s  
7.5ns/266 MT/s  
7.5ns/266 MT/s  
7.5ns/266 MT/s  
7.5ns/266 MT/s  
10ns/200 MT/s  
10ns/200 MT/s  
1GB  
2-2-2  
1GB  
2-3-3  
1GB  
2-3-3  
1GB  
2.5-3-3  
2.5-3-3  
2-2-2  
1GB  
1GB  
1GB  
2-2-2  
All part numbers end with a two-place code (not shown), designating component and PCB revisions. Consult factory for  
current Revision codes. Example: MT16VDDF6464HG-265A1.  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
2
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Table 3:  
Pin Assignment  
(200-Pin SODIMM Front)  
Table 4:  
Pin Assignment  
(200-Pin SODIMM Back)  
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL  
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL  
1
VREF  
VSS  
51  
VSS  
101  
A9  
VSS  
A7  
151 DQ42  
153 DQ43  
2
VREF  
VSS  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
82  
84  
86  
88  
90  
92  
94  
96  
98  
VSS  
102  
A8  
VSS  
A6  
152 DQ46  
154 DQ47  
3
53 DQ19 103  
55 DQ24 105  
4
DQ23 104  
DQ28 106  
5
DQ0  
DQ1  
VDD  
155  
157  
159  
161  
VDD  
VDD  
VSS  
6
DQ4  
DQ5  
VDD  
156  
VDD  
7
57  
VDD  
107  
A5  
8
VDD  
108  
A4  
158 CK1#  
9
59 DQ25 109  
A3  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
DQ29 110  
DM3 112  
A2  
160  
162  
CK1  
VSS  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
DQS0  
DQ2  
VSS  
61  
63  
DQS3 111  
113  
A1  
VSS  
DM0  
DQ6  
VSS  
A0  
VSS  
VDD  
A10  
BA0  
WE#  
S0#  
NC  
163 DQ48  
165 DQ49  
VSS  
114  
VDD  
BA1  
164 DQ52  
166 DQ53  
65 DQ26 115  
67 DQ27 117  
DQ30 116  
DQ3  
DQ8  
VDD  
167  
VDD  
DQ7  
DQ12  
VDD  
DQ31 118 RAS# 168  
VDD  
69  
71  
73  
75  
77  
79  
81  
83  
85  
87  
89  
91  
93  
95  
97  
99  
VDD  
119  
169 DQS6  
171 DQ50  
VDD  
DNU  
DNU  
VSS  
120 CAS# 170 DM6  
DNU 121  
DNU 123  
122  
124  
126  
S1#  
NC  
VSS  
172 DQ54  
174  
176 DQ55  
DQ9  
DQS1  
VSS  
173  
VSS  
DQ13  
DM1  
VSS  
VSS  
VSS  
125  
VSS  
175 DQ51  
DNU 127 DQ32 177 DQ56  
DNU 129 DQ33 179  
131 181 DQ57  
DNU 133 DQS4 183 DQS7  
DNU  
DNU  
VDD  
DNU  
DNU  
VSS  
128 DQ36 178 DQ60  
130 DQ37 180  
132 182 DQ61  
134 DM4 184 DM7  
136 DQ38 186  
138 188 DQ62  
140 DQ39 190 DQ63  
DQ10  
DQ11  
VDD  
VDD  
DQ14  
DQ15  
VDD  
VDD  
VDD  
VDD  
VDD  
CK0  
NC  
VSS  
135 DQ34 185  
VSS  
VDD  
VSS  
CK0#  
VSS  
137 187 DQ58  
VSS  
VSS  
VSS  
DNU 139 DQ35 189 DQ59  
VSS  
VSS  
DQ16  
DQ17  
VDD  
DNU 141 DQ40 191  
143 193  
CKE1 145 DQ41 195  
VDD  
SDA  
SCL  
DQ20  
DQ21  
VDD  
VDD  
VDD  
142 DQ44 192  
144 194  
VDD  
SA0  
SA1  
SA2  
VSS  
VDD  
VDD  
VDD  
CKE0 146 DQ45 196  
DQS2  
DQ18  
NC  
147 DQS5 197 VDDSPD  
149 VSS 199 NC  
DM2  
NC  
148 DM5 198  
A12  
DQ22 100  
A11  
150  
VSS  
200  
Figure 2: Module Layout  
Front View  
Front View  
U17  
U1  
U2  
U3  
U4  
U5  
U6  
U1  
U5  
U2  
U6  
U3  
U7  
U4  
U8  
U7  
U8  
U17  
PIN 1  
(all odd pins)  
PIN 199  
U14  
PIN 1  
(all odd pins)  
PIN 199  
Back View  
Back View  
U9  
U10  
U11  
U12  
U13  
U9  
U10  
U14  
U11  
U15  
U12  
U16  
U13  
U15  
U16  
PIN 200  
(all even pins)  
PIN 2  
PIN 200  
(all even pins)  
PIN 2  
Indicates a VDD or VDDQ pin  
Indicates a VSS pin  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
3
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Table 5:  
Pin Descriptions  
Pin numbers may not correlate with symbols. Refer to Pin Assignment Tables on page 3 for more information  
PIN NUMBERS  
SYMBOL  
TYPE  
DESCRIPTION  
118, 119, 120  
WE#,  
CAS#,RAS#  
Input  
Command Inputs: RAS#, CAS#, and WE# (along with S#) define  
the command being entered.  
35, 37, 158, 160  
95, 96  
CK0, CK0#  
CK1, CK1#  
Input  
Input  
Clock: CK, CK# are differential clock inputs. All address and  
control input signals are sampled on the crossing of the  
positive edge of CK, and negative edge of CK#. Output data  
(DQs and DQS) is referenced to the crossings of CK and CK#.  
CKE0, CKE1  
Clock Enable: CKE HIGH activates and CKE LOW deactivates the  
internal clock, input buffers and output drivers. Taking CKE  
LOW provides PRECHARGE POWER-DOWN and SELF REFRESH  
operations (all device banks idle), or ACTIVE POWER-DOWN  
(row ACTIVE in any device bank). CKE is synchronous for  
POWER-DOWN entry and exit, and for SELF REFRESH entry. CKE  
is asynchronous for SELF REFRESH exit and for disabling the  
outputs. CKE must be maintained HIGH throughout read and  
write accesses. Input buffers (excluding CK, CK# and CKE) are  
disabled during POWER-DOWN. Input buffers (excluding CKE)  
are disabled during SELF REFRESH. CKE is an SSTL_2 input but  
will detect an LVCMOS LOW level after VDD is applied and  
until CKE is first brought HIGH. After CKE is brought HIGH, it  
becomes an SSTL_2 input only.  
121, 122  
116, 117  
S0#, S1#  
Input  
Chip Selects: S# enables (registered LOW) and disables  
(registered HIGH) the command decoder. All commands are  
masked when S# is registered HIGH. S# is considered part of  
the command code.  
BA0, BA1  
A0-A12  
Input  
Input  
Bank Address: BA0 and BA1 define to which device bank an  
ACTIVE, READ, WRITE, or PRECHARGE command is being  
applied.  
99, 100, 101, 102, 105,106,  
107, 108, 109, 110, 111, 112,  
115  
Address Inputs: Provide the row address for ACTIVE commands,  
and the column address and auto precharge bit (A10) for  
READ/WRITE commands, to select one location out of the  
memory array in the respective device bank. A10 sampled  
during a PRECHARGE command determines whether the  
PRECHARGE applies to one device bank (A10 LOW, device bank  
selected by BA0, BA1) or all device banks (A10 HIGH). The  
address inputs also provide the op-code during a MODE  
REGISTER SET command. BA0 and BA1 define which mode  
register (mode register or extended mode register) is loaded  
during the LOAD MODE REGISTER command.  
1, 2  
195  
VREF  
Input  
Input  
SSTL_2 reference voltage.  
SCL  
Serial Clock for Presence-Detect: SCL is used to synchronize the  
presence-detect data transfer to and from the module.  
194, 196, 198  
193  
SA0-SA2  
SDA  
Input  
Presence-Detect Address Inputs: These pins are used to  
configure the presence-detect device.  
Input/  
Output  
Serial Presence-Detect Data: SDA is a bidirectional pin used to  
transfer addresses and data into and out of the presence-  
detect portion of the module.  
12, 26, 48, 62, 134, 148, 170,  
184  
DM0-DM7  
Input  
Data Write Mask. DM LOW allows WRITE operation. DM HIGH  
blocks WRITE operation. DM lines do not affect READ  
operation.  
09005aef80a646bc  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
4
©2003 Micron Technology, Inc.  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Table 5:  
Pin Descriptions (Continued)  
Pin numbers may not correlate with symbols. Refer to Pin Assignment Tables on page 3 for more information  
PIN NUMBERS  
SYMBOL  
TYPE  
DESCRIPTION  
11, 25, 47, 61, 133, 147, 169,  
183  
DQS0-DQS7  
Input/  
Output  
Data Strobe: Output with READ data, input with WRITE data.  
DQS is edge-aligned with READ data, centered in WRITE data.  
Used to capture data.  
5, 6, 7, 8, 13, 14, 17, 18, 19,  
20, 23, 24, 29, 30, 31, 32, 41,  
42, 43, 44, 49, 50, 53, 54, 55,  
56, 59, 60, 65, 66, 67, 68, 127,  
128, 129, 130, 135, 136, 139,  
140, 141, 142, 145, 146, 151,  
152, 153, 154, 163, 164, 165,  
166, 171, 172, 175, 176, 177,  
178, 181, 182, 187, 188, 189,  
190  
DQ0-DQ63  
Input/  
Output  
Data I/Os: Data bus.  
9, 10, 21, 22, 33, 34, 36, 45,  
46, 57, 58, 69, 70, 81, 82, 92,  
93, 94, 113, 114, 131, 132,  
143, 144, 155, 156, 157, 167,  
168, 179, 180, 191, 192  
VDD  
VSS  
Supply  
Supply  
Power Supply: +2.5V 0.2V.  
3, 4, 15, 16, 27, 28, 38, 39, 40,  
51, 52, 63, 64, 75, 76, 87, 88,  
90, 103, 104, 125, 126, 137,  
138, 149, 150, 159, 161, 162,  
173, 174, 185, 186, 200  
Ground.  
197  
VDDSPD  
NC  
Supply  
Serial EEPROM positive power supply: +2.3V to +3.6V  
No Connect: These pins should be left unconnected.  
85, 97, 98, 123, 124, 199  
71, 72, 73, 74, 77, 78, 79, 80,  
83, 84, 86, 89, 91  
DNU  
Do Not Use: These pins are not connected on this module, but  
are assigned pins on other modules in this product family.  
09005aef80a646bc  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
5
©2003 Micron Technology, Inc.  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Figure 3: Functional Block Diagram – 512MB  
S1#  
S0#  
DQS0  
DM0  
DQS1  
DM1  
DM CS# DQS  
DM CS# DQS  
DM CS# DQS  
DM CS# DQS  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ8  
DQ9  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
U1  
U14  
U7  
U16  
DQS3  
DM3  
DQS2  
DM2  
DM CS# DQS  
DM CS# DQS  
DM CS# DQS  
DM CS# DQS  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
U2  
U13  
U3  
U12  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQS5  
DM5  
DQS4  
DM4  
DM CS# DQS  
DM CS# DQS  
DM CS# DQS  
DM CS# DQS  
DQ32  
DQ33  
DQ34  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
U4  
U11  
U5  
U10  
DQ  
DQ  
DQ  
DQ  
DQS7  
DM7  
DQS6  
DM6  
DM CS# DQS  
DM CS# DQS  
DM CS# DQS  
DM CS# DQS  
DQ48  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
DQ54  
DQ55  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
U8  
U15  
U6  
U9  
120  
120  
BA0, BA1: DDR SDRAMs  
A0-A12: DDR SDRAMs  
RAS#: DDR SDRAMs  
BA0, BA1  
A0-A12  
CK0  
CK0#  
DDR SDRAMs U1, U2, U3, U7  
U12, U13, U14, U16  
RAS#  
CAS#  
CAS#: DDR SDRAMs  
CK1  
CK1#  
CKE0: DDR SDRAMs U1-U8  
CKE1: DDR SDRAMs U9-U16  
WE#: DDR SDRAMs  
CKE0  
CKE1  
WE#  
DDR SDRAMs U4, U5, U6, U8  
U9, U10, U11, U15  
CK2  
CK2#  
120  
VDDSPD  
SPD/EEPROM  
DDR SDRAMs  
DDR SDRAMs  
DDR SDRAMs  
VDD  
VREF  
SERIAL PD  
SCL  
WP  
U17  
A0 A1 A2  
SDA  
VSS  
SA0 SA1 SA2  
DDR SDRAMs: MT46V32M8S2FD  
DDR SDRAMs: MT46V64M8S2FD  
NOTE:  
1. All resistor values are 22unless otherwise specified.  
2. Per industry standard, Micron utilizes various component speed grades as  
referenced in the Module Part Numbering Guide at www.micron.com/  
numberguide.  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
6
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Figure 4: Functional Block Diagram – 1GB  
S1#  
S0#  
DQS0  
DM0  
DQS1  
DM1  
DM CS# DQS  
DM CS# DQS  
DM CS# DQS  
DM CS# DQS  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ8  
DQ9  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
U1  
U12  
U5  
U16  
DQS3  
DM3  
DQS2  
DM2  
DM CS# DQS  
DM CS# DQS  
DM CS# DQS  
DM CS# DQS  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
U2  
U11  
U6  
U15  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQS5  
DM5  
DQS4  
DM4  
DM CS# DQS  
DM CS# DQS  
DM CS# DQS  
DM CS# DQS  
DQ32  
DQ33  
DQ34  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
U3  
U10  
U7  
U14  
DQ  
DQ  
DQ  
DQ  
DQS7  
DM7  
DQS6  
DM6  
DM CS# DQS  
DM CS# DQS  
DM CS# DQS  
DM CS# DQS  
DQ48  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
DQ54  
DQ55  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
U4  
U9  
U8  
U13  
120  
BA0, BA1: DDR SDRAMs  
A0-A12: DDR SDRAMs  
RAS#: DDR SDRAMs  
BA0, BA1  
A0-A12  
DDR SDRAMs  
U1, U2, U3, U7  
U12, U13, U14, U16  
CK2  
CK2#  
CK0  
CK0#  
120  
RAS#  
CAS#  
120  
SERIAL PD  
CAS#: DDR SDRAMs  
DDR SDRAMs  
U4, U5, U6, U8  
U9, U10, U11, U15  
SCL  
WP  
U17  
A0 A1 A2  
CK1  
CK1#  
SDA  
CKE0: DDR SDRAMs U1-U8  
CKE0  
CKE1  
WE#  
CKE1: DDR SDRAMs U9-U16  
WE#: DDR SDRAMs  
SA0 SA1 SA2  
VDDSPD  
SPD/EEPROM  
DDR SDRAMs  
DDR SDRAMs  
DDR SDRAMs  
VDD  
VREF  
VSS  
DDR SDRAMs: MT46V32M8S2FD  
DDR SDRAMs: MT46V64M8S2FD  
NOTE:  
1. All resistor values are 22unless otherwise specified.  
2. Per industry standard, Micron utilizes various component speed grades as  
referenced in the Module Part Numbering Guide at www.micron.com/  
numberguide.  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
7
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
General Description  
The MT16VDDF6464H and MT16VDDF12864H are  
high-speed CMOS, dynamic random-access, 512MB  
and 1GB memory modules organized in a x64 configu-  
ration. These modules use internally configured quad-  
bank DRAM devices.  
high effective bandwidth by hiding row precharge and  
activation time.  
An auto refresh mode is provided, along with a  
power-saving power-down mode. All inputs are com-  
patible with the JEDEC Standard for SSTL_2. All out-  
puts are SSTL_2, Class II compatible. For more  
information regarding DDR SDRAM operation, refer to  
the 256Mb or 512Mb DDR SDRAM data sheets.  
DDR SDRAM modules use a double data rate archi-  
tecture to achieve high-speed operation. The double  
data rate architecture is essentially a 2n-prefetch  
architecture with an interface designed to transfer two  
data words per clock cycle at the I/O pins. A single read  
or write access for the DDR SDRAM module effectively  
consists of a single 2n-bit wide, one-clock-cycle data  
transfer at the internal DRAM core and two corre-  
sponding n-bit wide, one-half-clock-cycle data trans-  
fers at the I/O pins.  
A bidirectional data strobe (DQS) is transmitted  
externally, along with data, for use in data capture at  
the receiver. DQS is an intermittent strobe transmitted  
by the DDR SDRAM during READs and by the memory  
controller during WRITEs. DQS is edge-aligned with  
data for READs and center-aligned with data for  
WRITEs.  
DDR SDRAM modules operate from a differential  
clock (CK and CK#); the crossing of CK going HIGH  
and CK# going LOW will be referred to as the positive  
edge of CK. Commands (address and control signals)  
are registered at every positive edge of CK. Input data  
is registered on both edges of DQS, and output data is  
referenced to both edges of DQS, as well as to both  
edges of CK.  
Read and write accesses to DDR SDRAM modules  
are burst oriented; accesses start at a selected location  
and continue for a programmed number of locations  
in a programmed sequence. Accesses begin with the  
registration of an ACTIVE command, which is then fol-  
lowed by a READ or WRITE command. The address  
bits registered coincident with the ACTIVE command  
are used to select the device bank and row to be  
accessed (BA0, BA1 select devices bank; A0–A12 select  
device row). The address bits registered coincident  
with the READ or WRITE command are used to select  
the device bank and the starting device column loca-  
tion for the burst access.  
Serial Presence-Detect Operation  
DDR SDRAM modules incorporate serial presence-  
detect (SPD). The SPD function is implemented using  
a 2,048-bit EEPROM. This nonvolatile storage device  
contains 256 bytes. The first 128 bytes can be pro-  
grammed by Micron to identify the module type and  
various SDRAM organizations and timing parameters.  
The remaining 128 bytes of storage are available for  
use by the customer. System READ/WRITE operations  
between the master (system logic) and the slave  
EEPROM device (DIMM) occur via a standard I2C bus  
using the DIMMs SCL (clock) and SDA (data) signals,  
together with SA (2:0), which provide eight unique  
DIMM/EEPROM addresses. Write protect (WP) is tied  
to ground on the module, permanently disabling hard-  
ware write protect.  
Mode Register Definition  
The mode register is used to define the specific  
mode of operation of the DDR SDRAM. This definition  
includes the selection of a burst length, a burst type, a  
CAS latency and an operating mode, as shown in  
Figure 5, Mode Register Definition Diagram, on page 9.  
The mode register is programmed via the MODE REG-  
ISTER SET command (with BA0 = 0 and BA1 = 0) and  
will retain the stored information until it is pro-  
grammed again or the device loses power (except for  
bit A8, which is self-clearing).  
Reprogramming the mode register will not alter the  
contents of the memory, provided it is performed cor-  
rectly. The mode register must be loaded (reloaded)  
when all device banks are idle and no bursts are in  
progress, and the controller must wait the specified  
time before initiating the subsequent operation. Vio-  
lating either of these requirements will result in  
unspecified operation.  
Mode register bits A0–A2 specify the burst length,  
A3 specifies the type of burst (sequential or inter-  
leaved), A4–A6 specify the CAS latency, and A7–A12  
specify the operating mode.  
DDR SDRAM modules provides for programmable  
read or write burst lengths of 2, 4, or 8 locations. An  
auto precharge function may be enabled to provide a  
self-timed row precharge that is initiated at the end of  
the burst access.  
As with standard SDR SDRAM modules, the pipe-  
lined, multibank architecture of DDR SDRAM modules  
allows for concurrent operation, thereby providing  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
8
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Reserved states should not be used as unknown  
operation or incompatibility with future versions may  
result.  
Burst Length  
Read and write accesses to the DDR SDRAM are  
burst oriented, with the burst length being program-  
mable, as shown in Figure 5, Mode Register Definition  
Diagram. The burst length determines the maximum  
number of column locations that can be accessed for a  
given READ or WRITE command. Burst lengths of 2, 4,  
or 8 locations are available for both the sequential and  
the interleaved burst types.  
Figure 5: Mode Register Definition  
Diagram  
A8  
A6 A5 A4  
A1  
A0  
Address Bus  
A10  
A7  
A3 A2  
BA0 A12 A11  
A9  
BA1  
Reserved states should not be used, as unknown  
operation or incompatibility with future versions may  
result.  
14 13  
11  
9
8
6
5
4
1
12  
10  
7
3
2
0
Mode Register (Mx)  
0* 0*  
Operating Mode  
CAS Latency BT Burst Length  
When a READ or WRITE command is issued, a block  
of columns equal to the burst length is effectively  
selected. All accesses for that burst take place within  
this block, meaning that the burst will wrap within the  
block if a boundary is reached. The block is uniquely  
selected by A1–Ai when the burst length is set to two,  
by A2–Ai when the burst length is set to four and by  
A3–Ai when the burst length is set to eight (where Ai is  
the most significant column address bit for a given  
configuration. See Note 5 of Table 6, Burst Definition  
Table, on page 10, for Ai values). The remaining (least  
significant) address bit(s) is (are) used to select the  
starting location within the block. The programmed  
burst length applies to both read and write bursts.  
* M14 and M13 (BA1 and BA0)  
must be “0, 0” to select the  
base mode register (vs. the  
extended mode register).  
Burst Length  
M2 M1 M0  
M3 = 0  
Reserved  
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
4
8
Reserved  
Reserved  
Reserved  
Reserved  
Burst Type  
Sequential  
Interleaved  
M3  
0
1
Burst Type  
CAS Latency  
Reserved  
Reserved  
2
M6 M5 M4  
Accesses within a given burst may be programmed  
to be either sequential or interleaved; this is referred to  
as the burst type and is selected via bit M3.  
The ordering of accesses within a burst is deter-  
mined by the burst length, the burst type and the start-  
ing column address, as shown in Table 6, Burst  
Definition Table, on page 10.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Reserved  
Reserved  
2.5  
Reserved  
Read Latency  
M13 M12 M11 M10 M9 M8 M7  
M6-M0  
Valid  
Valid  
-
Operating Mode  
The READ latency is the delay, in clock cycles,  
between the registration of a READ command and the  
availability of the first bit of output data. The latency  
can be set to 2 or 2.5 clocks, as shown in Figure 6, CAS  
Latency Diagram, on page 10.  
0
0
-
0
0
-
0
0
-
0
0
-
0
0
-
0
1
-
0
0
-
Normal Operation  
Normal Operation/Reset DLL  
All other states reserved  
If a READ command is registered at clock edge n,  
and the latency is m clocks, the data will be available  
nominally coincident with clock edge n + m. The CAS  
Latency Table indicates the operating frequencies at  
which each CAS latency setting can be used.  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
9
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Figure 6: CAS Latency Diagram  
Table 6:  
Burst Definition Table  
T0  
T1  
T2  
T2n  
T3  
T3n  
ORDER OF ACCESSES WITHIN  
A BURST  
CK#  
CK  
STARTING  
COLUMN  
ADDRESS  
BURST  
LENGTH  
TYPE =  
TYPE =  
COMMAND  
READ  
NOP  
NOP  
NOP  
SEQUENTIAL INTERLEAVED  
CL = 2  
A0  
2
4
DQS  
DQ  
0
1
0-1  
1-0  
0-1  
1-0  
A1 A0  
T0  
T1  
T2  
T2n  
T3  
T3n  
0
0
1
1
0
1
0
1
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3  
1-0-3-2  
2-3-0-1  
3-2-1-0  
CK#  
CK  
COMMAND  
READ  
NOP  
NOP  
NOP  
CL = 2.5  
A2 A1 A0  
DQS  
DQ  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6  
2-3-4-5-6-7-0-1 2-3-0-1-6-7-4-5  
3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2  
6-7-0-1-2-3-4-5 6-7-4-5-2-3-0-1  
7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0  
8
Burst Length = 4 in the cases shown  
Shown with nominal AC, DQSCK, and DQSQ  
t
t
t
TRANSITIONING DATA DON T CARE  
Operating Mode  
NOTE:  
The normal operating mode is selected by issuing a  
MODE REGISTER SET command with bits A7–A12  
each set to zero, and bits A0–A6 set to the desired val-  
ues. A DLL reset is initiated by issuing a MODE REGIS-  
TER SET command with bits A7 and A9–A12 each set  
to zero, bit A8 set to one, and bits A0–A6 set to the  
desired values. Although not required by the Micron  
device, JEDEC specifications recommend when a  
LOAD MODE REGISTER command is issued to reset  
the DLL, it should always be followed by a LOAD  
MODE REGISTER command to select normal operat-  
ing mode.  
1. For a burst length of two, A1-Ai select the two-data-ele-  
ment block; A0 selects the first access within the block.  
2. For a burst length of four, A2-Ai select the four-data-  
element block; A0-A1 select the first access within the  
block.  
3. For a burst length of eight, A3-Ai select the eight-data-  
element block; A0-A2 select the first access within the  
block.  
4. Whenever a boundary of the block is reached within a  
given sequence above, the following access wraps  
within the block.  
5. i = 9 (512MB);  
i = 9,11 (1GB)  
All other combinations of values for A7–A12 are  
reserved for future use and/or test modes. Test modes  
and reserved states should not be used because  
unknown operation or incompatibility with future ver-  
sions may result.  
Table 7:  
CAS Latency (CL) Table  
ALLOWABLE OPERATING  
CLOCK FREQUENCY (MHZ)  
Extended Mode Register  
SPEED  
CL = 2  
CL = 2.5  
The extended mode register controls functions  
beyond those controlled by the mode register; these  
additional functions are DLL enable/disable and out-  
put drive strength. These functions are controlled via  
the bits shown in Figure 7, Extended Mode Register  
Definition Diagram, on page 11. The extended mode  
register is programmed via the LOAD MODE REGIS-  
TER command to the mode register (with BA0 = 1 and  
-335  
-262  
-26A  
-265  
-202  
75 ? f ? 133  
75 ? f ? 133  
75 ? f ? 133  
75 ? f ? 100  
75 ? f ? 100  
75 ? f ? 167  
75 ? f ? 133  
75 ? f ? 133  
75 ? f ? 133  
75 ? f ? 125  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
10  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
BA1 = 0) and will retain the stored information until it  
is programmed again or the device loses power. The  
enabling of the DLL should always be followed by a  
LOAD MODE REGISTER command to the mode regis-  
ter (BA0/ BA1 both LOW) to reset the DLL.  
Figure 7: Extended Mode Register  
Definition Diagram  
A8  
A6 A5 A4  
A1  
A0  
Address Bus  
BA1  
A10  
A7  
A3 A2  
BA0 A12 A11  
A9  
The extended mode register must be loaded when  
all device banks are idle and no bursts are in progress,  
and the controller must wait the specified time before  
initiating any subsequent operation. Violating either of  
these requirements could result in unspecified opera-  
tion.  
14 13  
11  
9
8
6
5
4
1
12  
10  
7
3
2
0
Extended Mode  
Register (Ex)  
1
1
0
1
Operating Mode  
DS DLL  
DLL  
E0  
0
Enable  
Disable  
1
DLL Enable/Disable  
The DLL must be enabled for normal operation.  
DLL enable is required during power-up initialization  
and upon returning to normal operation after having  
disabled the DLL for the purpose of debug or evalua-  
tion. (When the device exits self refresh mode, the DLL  
is enabled automatically.) Any time the DLL is enabled,  
200 clock cycles must occur before a READ command  
can be issued.  
Drive Strength  
Normal  
E1  
0
1
Reduced  
E22  
0
E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3  
E1, E0  
Valid  
Operating Mode  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
Reserved  
NOTE:  
1. BA1 and BA0 (E14 and E13) must be “0, 1” to select the  
Extended Mode Register (vs. the base Mode Register).  
2. The QFC# option is not supported.  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
11  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Commands  
The Truth Tables below provides a general reference  
of available commands. For a more detailed descrip-  
tion of commands and operations, refer to the 256Mb  
or 512Mb DDR SDRAM component data sheet.  
Table 8:  
Commands Truth Table  
CKE is HIGH for all commands shown except SELF REFRESH  
NAME (FUNCTION)  
CS# RAS# CAS# WE#  
ADDR  
NOTES  
H
L
L
L
L
L
L
L
L
X
H
L
X
H
H
L
X
H
H
H
L
X
X
1
1
DESELECT (NOP)  
NO OPERATION (NOP)  
Bank/Row  
Bank/Col  
Bank/Col  
X
2
ACTIVE (Select bank and activate row)  
READ (Select bank and column, and start READ burst)  
WRITE (Select bank and column, and start WRITE burst)  
BURST TERMINATE  
H
H
H
L
3
L
3
H
H
L
L
4
L
Code  
5
PRECHARGE (Deactivate row in bank or banks)  
AUTO REFRESH or SELF REFRESH (Enter self refresh mode)  
LOAD MODE REGISTER  
L
H
L
X
6, 7  
8
L
L
Op-Code  
NOTE:  
1. DESELECT and NOP are functionally interchangeable.  
2. BA0–BA1 provide device bank address and A0–A12 provide device row address.  
3. BA0–BA1 provide device bank address; A0–A9 (512MB) or A0–A9, A11 (1GB) provide device column address; A10 HIGH  
enables the auto precharge feature (nonpersistent), and A10 LOW disables the auto precharge feature.  
4. Applies only to read bursts with auto precharge disabled; this command is undefined (and should not be used) for READ  
bursts with auto precharge enabled and for WRITE bursts.  
5. A10 LOW: BA0-BA1 determine which device bank is precharged. A10 HIGH: all device banks are precharged and BA0–  
BA1 are “Don’t Care.”  
6. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.  
7. Internal refresh counter controls device row addressing; all inputs and I/Os are “Don’t Care” except for CKE.  
8. BA0–BA1 select either the mode register or the extended mode register (BA0 = 0, BA1 = 0 select the mode register; BA0  
= 1, BA1 = 0 select extended mode register; other combinations of BA0-BA1 are reserved). A0–A12 provide the op-code  
to be written to the selected mode register.  
Table 9:  
DM Operation Truth Table  
Used to mask write data; provided coincident with the corresponding data  
NAME (FUNCTION)  
DM  
DQS  
L
Valid  
X
WRITE Enable  
WRITE Inhibit  
H
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
12  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Absolute Maximum Ratings  
Stresses greater than those listed may cause perma-  
nent damage to the device. This is a stress rating only,  
and functional operation of the device at these or any  
other conditions above those indicated in the opera-  
tional sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
Voltage on VDD Supply  
Operating Temperature  
Relative to VSS. . . . . . . . . . . . . . . . . . . . . -1V to +3.6V  
Voltage on VDDQ Supply  
Relative to VSS . . . . . . . . . . . . . . . . . . . -1V to +3.6V  
Voltage on VREF and Inputs  
TA (ambient) . . . . . . . . . . . . . . . . . . . . .. 0°C to +70°C  
Storage Temperature (plastic) . . . . . .-55°C to +150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . 16W  
Short Circuit Output Current. . . . . . . . . . . . . . . 50mA  
Relative to VSS. . . . . . . . . . . . . . . . . . . . -1V to +3.6V  
Voltage on I/O Pins  
Relative to VSS. . . . . . . . . . . . . -0.5V to VDDQ +0.5V  
Table 10: DC Electrical Characteristics and Operating Conditions  
Notes: 1–5, 14; notes appear on pages 20–23; 0°Cꢀ? TA ? +70°C  
PARAMETER/CONDITION  
SYMBOL  
MIN  
MAX  
UNITS NOTES  
Supply Voltage  
VDD  
VDDQ  
VREF  
2.3  
2.3  
2.7  
2.7  
V
V
V
32, 36  
32, 36, 39  
6, 39  
I/O Supply Voltage  
I/O Reference Voltage  
0.49ꢀPꢀ  
0.51ꢀPꢀ  
VDDQ  
VDDQ  
I/O Termination Voltage (system)  
Input High (Logic 1) Voltage  
Input Low (Logic 0) Voltage  
VTT  
VREF - 0.04 VREF + 0.04  
V
V
V
7, 39  
25  
VIH(DC)  
VIH(DC)  
VREF + 0.15  
-0.3  
VDD + 0.3  
VREF - 0.15  
25  
INPUT LEAKAGE CURRENT Any input  
0V ? VIN ? VDD, VREF pin 0V ? VIN ?ꢀ1.35V  
(All other pins not under test = 0V)  
Command/Address,  
RAS#, CAS#, WE#  
-32  
-16  
-4  
32  
16  
4
II  
S#, CKE, CK, CK#  
DM  
µA  
µA  
47  
47  
IOZ  
-10  
10  
OUTPUT LEAKAGE CURRENT  
DQ, DQS  
(DQs are disabled; 0V ? VOUT ?ꢀVDDQ)  
IOH  
IOL  
-16.8  
16.8  
mA  
mA  
OUTPUT LEVELS  
High Current (VOUT = VDDQ - 0.373V, minimum VREF, minimum VTT  
Low Current (VOUT = 0.373V, maximum VREF, maximum VTT)  
)
33, 34  
Table 11: AC Input Operating Conditions  
Notes: 1–5, 14; notes appear on pages 20–23; 0°Cꢀ? TA ? +70°C; VDD = VDDQ = +2.5V 0.2V  
UNIT  
S
PARAMETER/CONDITION  
SYMBOL  
MIN  
MAX  
NOTES  
VIH(AC)  
VIL(AC)  
VREF + 0.310  
V
V
V
12, 25, 35  
12, 25, 35  
6
Input High (Logic 1) Voltage  
Input Low (Logic 0) Voltage  
I/O Reference Voltage  
VREF - 0.310  
0.49 P VDDQ  
VREF(AC)  
0.49 P VDDQ  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
13  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Table 12: IDD Specifications and Conditions – 512MB  
Notes: 1–5, 8, 10, 12, 48; DDR SDRAM devices only; notes appear on pages 20–23; 0°Cꢀ? TA ? +70°C; VDD, VDDQ = +2.5V 0.2V  
MAX  
-26A/-  
265  
UNIT NOTE  
PARAMETER/CONDITION  
SYM  
-335  
-262  
-202  
S
S
a
IDD0  
1,032  
1,032  
872  
992  
mA 20, 42  
OPERATING CURRENT: One device bank; Active-  
Precharge; tRC = tRC (MIN); tCK = tCK (MIN); DQ, DM and  
DQS inputs changing once per clock cycle; Address and  
control inputs changing once every two clock cycles  
a
IDD1  
1,392  
1,312  
1,192  
1,272  
mA 20, 42  
OPERATING CURRENT: One device bank; Active-Read-  
Precharge; Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN);  
IOUT = 0mA; Address and control inputs changing once  
per clock cycle  
b
IDD2P  
IDD2F  
64  
64  
64  
64  
mA 21, 28,  
44  
PRECHARGE POWER-DOWN STANDBY CURRENT: All  
device banks idle; Power-down mode; tCK = tCK (MIN);  
CKE = (LOW)  
b
800  
720  
720  
720  
mA  
45  
IDLE STANDBY CURRENT: CS# = HIGH; All device banks  
are idle; tCK = tCK (MIN); CKE = HIGH; Address and other  
control inputs changing once per clock cycle. VIN = VREF  
for DQ, DQS, and DM  
b
b
IDD3P  
480  
960  
400  
800  
400  
800  
480  
800  
mA 21, 28,  
44  
ACTIVE POWER-DOWN STANDBY CURRENT: One device  
bank active; Power-down mode; tCK = tCK (MIN);  
CKE = LOW  
IDD3N  
mA  
41  
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH;  
One device bank active; tRC = tRAS (MAX); tCK = tCK  
(MIN); DQ, DM and DQS inputs changing twice per clock  
cycle; Address and other control inputs changing once per  
clock cycle  
a
IDD4R  
1,432  
1,272  
1,232  
1,112  
1,232  
1,122  
1,432  
1,552  
mA 20, 42  
OPERATING CURRENT: Burst = 2; Reads; Continuous  
burst; One device bank active; Address and control inputs  
changing once per clock cycle; tCK = tCK (MIN); IOUT =  
0mA  
a
IDD4W  
mA  
20  
OPERATING CURRENT: Burst = 2; Writes; Continuous  
burst; One device bank active; Address and control  
inputs changing once per clock cycle; tCK = tCK (MIN); DQ,  
DM, and DQS inputs changing twice per clock cycle  
b
tRC = tRFC  
IDD5  
4,080  
96  
3,760  
96  
3,760  
96  
3,920  
96  
mA 20, 44  
mA 24, 44  
AUTO REFRESH BURST CURRENT:  
(MIN) tRFC =  
7.8125µs  
IDD5A  
b
b
SELF REFRESH CURRENT: CKE ? 0.2V  
IDD6  
IDD7  
64  
64  
64  
64  
mA  
9
a
3,272  
2,832  
2,832  
2,952  
mA 20, 43  
OPERATING CURRENT: Four device bank interleaving  
READs (Burst = 4) with auto precharge, tRC = minimum  
tRC allowed; tCK = tCK (MIN); Address and control inputs  
change only during Active READ, or WRITE commands  
NOTE:  
a - Value calculated as one module rank in this operating condition, and all other module ranks in IDD2p (CKE LOW) mode.  
b - Value calculated reflects all module ranks in this operating condition.  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
14  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Table 13: IDD Specifications and Conditions – 1GB  
Notes: 1–5, 8, 10, 12, 48; DDR SDRAM devices only; notes appear on pages 20–23; 0°Cꢀ? TA ? +70°C; VDD, VDDQ = +2.5V 0.2V  
MAX  
-26A/-  
265  
UNIT NOTE  
PARAMETER/CONDITION  
SYM  
-335  
-262  
-202  
S
S
1,080  
1,080  
960  
960  
mA 20, 42  
OPERATING CURRENT: One device bank; Active-  
IDD0  
Precharge; tRC = tRC (MIN); tCK = tCK (MIN); DQ, DM and  
DQS inputs changing once per clock cycle; Address and  
control inputs changing once every two clock cycles  
1,320  
1,320  
1,200  
1,200  
mA 20, 42  
OPERATING CURRENT: One device bank; Active-Read-  
IDD1  
Precharge; Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN);  
IOUT = 0mA; Address and control inputs changing once  
per clock cycle  
80  
80  
80  
80  
mA 21, 28,  
44  
PRECHARGE POWER-DOWN STANDBY CURRENT: All  
device banks idle; Power-down mode; tCK = tCK (MIN);  
CKE = (LOW)  
IDD2P  
720  
720  
640  
640  
mA  
45  
IDLE STANDBY CURRENT: CS# = HIGH; All device banks IDD2F  
are idle; tCK = tCK (MIN); CKE = HIGH; Address and other  
control inputs changing once per clock cycle. VIN = VREF  
for DQ, DQS, and DM  
560  
720  
560  
720  
480  
640  
480  
640  
mA 21, 28,  
44  
ACTIVE POWER-DOWN STANDBY CURRENT: One device  
bank active; Power-down mode; tCK = tCK (MIN);  
CKE = LOW  
IDD3P  
IDD3N  
mA  
41  
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH;  
One device bank active; tRC = tRAS (MAX); tCK = tCK  
(MIN); DQ, DM and DQS inputs changing twice per clock  
cycle; Address and other control inputs changing once per  
clock cycle  
1,360  
1,280  
4,640  
1,360  
1,280  
4,640  
1,200  
1,120  
4,480  
1,200  
1,120  
4,480  
mA 20, 42  
OPERATING CURRENT: Burst = 2; Reads; Continuous  
burst; One device bank active; Address and control inputs  
changing once per clock cycle; tCK = tCK (MIN); IOUT =  
0mA  
IDD4R  
mA  
20  
OPERATING CURRENT: Burst = 2; Writes; Continuous  
burst; One device bank active; Address and control  
inputs changing once per clock cycle; tCK = tCK (MIN); DQ,  
DM, and DQS inputs changing twice per clock cycle  
IDD4W  
tRC = tRFC (MIN)  
mA 20, 44  
mA 24, 44  
AUTO REFRESH BURST CURRENT:  
IDD5  
tRC = 7.8125µs  
160  
80  
160  
80  
160  
80  
160  
80  
IDD5A  
mA  
9
SELF REFRESH CURRENT: CKE ? 0.2V  
IDD6  
IDD7  
3,280  
3,240  
2,840  
2,840  
mA 20, 43  
OPERATING CURRENT: Four device bank interleaving  
READs (Burst = 4) with auto precharge, tRC = minimum  
tRC allowed; tCK = tCK (MIN); Address and control inputs  
change only during Active READ, or WRITE commands  
NOTE:  
a - Value calculated as one module rank in this operating condition, and all other module ranks in IDD2p (CKE LOW) mode.  
b - Value calculated reflects all module ranks in this operating condition.  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
15  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Table 14: Capacitance  
Note: 11; notes appear notes appear on pages 20–23  
PARAMETER  
SYMBOL  
MIN MAX  
UNITS  
CIO  
CI1  
CI2  
7
9
pF  
pF  
pF  
Input/Output Capacitance: DQ, DQS,DM  
24  
12  
40  
20  
Input Capacitance: Command and Address, RAS#, CAS#, WE#  
Input Capacitance:CK, CK#, CKE, S#  
Table 15: DDR SDRAM Component Electrical Characteristics and Recommended AC  
Operating Conditions (-335, -262)  
Notes: 1–5, 12–15, 29, 40; notes appear on pages 20–23; 0°Cꢀ? TA ? +70°C; VDD = VDDQ = +2.5V 0.2V  
AC CHARACTERISTICS  
-335  
MAX  
-262  
MAX  
PARAMETER  
SYMBOL MIN  
MIN  
-0.75  
0.45  
0.45  
7.5  
UNITS NOTES  
tAC  
tCH  
tCL  
Access window of DQs from CK/CK#  
CK high-level width  
CK low-level width  
Clock cycle time  
-0.70  
0.45  
0.45  
6
+0.70  
0.55  
0.55  
13  
+0.75  
0.55  
0.55  
13  
ns  
tCK  
26  
tCK  
26  
tCK (2.5)  
tCK (2)  
tDH  
CL=2.5  
CL=2  
ns  
ns  
ns  
ns  
ns  
ns  
40, 46  
40, 46  
23, 27  
23, 27  
27  
7.5  
13  
7.5  
13  
0.45  
0.45  
1.75  
-0.60  
0.35  
0.35  
0.5  
DQ and DM input hold time relative to DQS  
DQ and DM input setup time relative to DQS  
DQ and DM input pulse width (for each input)  
Access window of DQS from CK/CK#  
DQS input high pulse width  
tDS  
0.5  
tDIPW  
tDQSCK  
tDQSH  
tDQSL  
tDQSQ  
tDQSS  
tDSS  
1.75  
-0.75  
0.35  
0.35  
+0.60  
+0.75  
tCK  
tCK  
DQS input low pulse width  
0.4  
0.5  
ns  
22, 23  
DQS-DQ skew, DQS to last DQ valid, per group, per access  
Write command to first DQS latching transition  
DQS falling edge to CK rising - setup time  
DQS falling edge from CK rising - hold time  
Half clock period  
tCK  
tCK  
tCK  
0.75  
0.20  
0.20  
1.25  
0.75  
0.20  
0.20  
1.25  
tDSH  
tHP  
tCH,tCL  
+0.70  
tCH,tCL  
+0.75  
ns  
8
tHZ  
ns  
ns  
ns  
16, 37  
16, 38  
12  
Data-out high-impedance window from CK/CK#  
Data-out low-impedance window from CK/CK#  
Address and control input hold time (fast slew rate)  
tLZ  
tIHF  
-0.70  
0.75  
-0.75  
0.90  
tISF  
tIHS  
tISS  
0.75  
0.8  
0.90  
1
ns  
ns  
ns  
12  
12  
12  
Address and control input setup time (fast slew rate)  
Address and control input hold time (slow slew rate)  
Address and control input setup time (slow slew rate)  
0.8  
1
tIPW  
tMRD  
tQH  
tQHS  
tRAS  
tRAP  
2.2  
12  
2.2  
15  
ns  
ns  
ns  
ns  
ns  
ns  
Address and Control input pulse width (for each input)  
LOAD MODE REGISTER command cycle time  
DQ-DQS hold, DQS to first DQ to go non-valid, per access  
Data hold skew factor  
tHP -tQHS  
tHP -tQHS  
22, 23  
31  
0.75  
0.75  
42  
18  
70,000  
40  
15  
120,000  
ACTIVE to PRECHARGE command  
ACTIVE to READ with Auto precharge command  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
16  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Table 15: DDR SDRAM Component Electrical Characteristics and Recommended AC  
Operating Conditions (-335, -262) (Continued)  
Notes: 1–5, 12–15, 29, 40; notes appear on pages 20–23; 0°Cꢀ? TA ? +70°C; VDD = VDDQ = +2.5V 0.2V  
AC CHARACTERISTICS  
-335  
MAX  
-262  
MAX  
PARAMETER  
SYMBOL MIN  
MIN  
60  
UNITS NOTES  
tRC  
60  
ns  
ACTIVE to ACTIVE/AUTO REFRESH command period  
AUTO REFRESH command period  
ACTIVE to READ or WRITE delay  
PRECHARGE command period  
DQS read preamble  
tRFC  
tRCD  
tRP  
tRPRE  
tRPST  
tRRD  
tWPRE  
tWPRES  
tWPST  
tWR  
72  
18  
18  
0.9  
0.4  
12  
0.25  
0
75  
ns  
ns  
ns  
44  
37  
15  
15  
tCK  
1.1  
0.6  
0.9  
0.4  
15  
1.1  
0.6  
tCK  
DQS read postamble  
ns  
ACTIVE bank a to ACTIVE bank b command  
DQS write preamble  
tCK  
ns  
0.25  
0
18, 19  
17  
DQS write preamble setup time  
DQS write postamble  
tCK  
ns  
0.4  
15  
1
0.6  
0.4  
15  
0.6  
Write recovery time  
tWTR  
tCK  
ns  
1
Internal WRITE to READ command delay  
Data valid output window  
tQH -tDQSQ  
70.3  
tQH -tDQSQ  
70.3  
NA  
22  
21  
21  
tREFC  
tREFI  
REFRESH to REFRESH command interval  
Average periodic refresh interval  
Terminating voltage delay to VDD  
Exit SELF REFRESH to non-READ command  
Exit SELF REFRESH to READ command  
µs  
µs  
ns  
ns  
7.8  
7.8  
tVTD  
0
0
tXSNR  
tXSRD  
75  
75  
tCK  
200  
200  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
17  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Table 16: DDR SDRAM Component Electrical Characteristics and Recommended AC  
Operating Conditions (-26A, -265, -202)  
Notes: 1–5, 12–15, 29, 40; notes appear on pages 20–23; 0°Cꢀ? TA ? +70°C; VDD = VDDQ = +2.5V 0.2V  
AC CHARACTERISTICS  
-26A  
-265  
-202  
PARAMETER  
SYMBOL MIN MAX MIN MAX MIN MAX UNITS NOTES  
tAC  
tCH  
tCL  
-0.75 +0.75 -0.75 +0.75 -0.8 +0.8  
ns  
Access window of DQs from CK/CK#  
CK high-level width  
CK low-level width  
Clock cycle time  
tCK  
tCK  
ns  
0.45  
0.45  
7.5  
0.55  
0.55  
13  
0.45  
0.45  
7.5  
0.55 0.45 0.55  
0.55 0.45 0.55  
26  
26  
tCK (2.5)  
tCK (2)  
tDH  
13  
13  
8
13  
13  
40, 46  
40, 46  
23, 27  
23, 27  
27  
CL=2.5  
CL=2  
7.5  
13  
10  
10  
0.6  
0.6  
2
ns  
ns  
ns  
ns  
ns  
DQ and DM input hold time relative to DQS  
DQ and DM input setup time relative to DQS  
DQ and DM input pulse width (for each input)  
Access window of DQS from CK/CK#  
DQS input high pulse width  
0.5  
0.5  
tDS  
0.5  
0.5  
tDIPW  
tDQSCK  
tDQSH  
tDQSL  
tDQSQ  
1.75  
1.75  
-0.75 +0.75 -0.75 +0.75 -0.8 +0.8  
tCK  
tCK  
0.35  
0.35  
0.35  
0.35  
0.35  
0.35  
DQS input low pulse width  
DQS-DQ skew, DQS to last DQ valid, per group,  
per access  
0.5  
0.5  
0.6  
ns  
22, 23  
tDQSS  
tDSS  
tDSH  
tHP  
tHZ  
tLZ  
tCK  
tCK  
tCK  
0.75  
0.20  
0.20  
1.25  
0.75  
0.20  
0.20  
1.25 0.75 1.25  
Write command to first DQS latching transition  
DQS falling edge to CK rising - setup time  
DQS falling edge from CK rising - hold time  
Half clock period  
0.20  
0.20  
tCH,tCL  
+0.75  
tCH,tCL  
+0.75  
tCH,tCL  
+0.8  
ns  
8
Data-out high-impedance window from CK/CK#  
Data-out low-impedance window from CK/CK#  
ns  
ns  
ns  
16, 37  
16, 38  
12  
-0.75  
0.90  
-0.75  
0.90  
-0.8  
tIHF  
1.1  
Address and control input hold time (fast slew  
rate)  
tISF  
tIHS  
tISS  
.900  
1
0.90  
1
1.1  
1.1  
1.1  
ns  
ns  
ns  
12  
12  
12  
Address and control input setup time (fast slew rate)  
Address and control input hold time (slow slew rate)  
1
1
Address and control input setup time (slow slew  
rate)  
tIPW  
2.2  
2.2  
2.2  
ns  
Address and Control input pulse width (for each  
input)  
tMRD  
tQH  
LOAD MODE REGISTER command cycle time  
15  
15  
16  
ns  
ns  
tHP -tQHS  
0.75  
tHP -tQHS  
0.75  
tHP -tQHS  
1
22, 23  
31  
DQ-DQS hold, DQS to first DQ to go non-valid,  
per access  
tQHS  
tRAS  
tRAP  
tRC  
Data hold skew factor  
ns  
40 120,000 40 120,000 40 120,000 ns  
ACTIVE to PRECHARGE command  
ACTIVE to READ with Auto precharge command  
20  
65  
20  
65  
20  
70  
ns  
ns  
ACTIVE to ACTIVE/AUTO REFRESH command  
period  
tRFC  
tRCD  
tRP  
75  
20  
20  
75  
20  
20  
80  
20  
20  
ns  
ns  
ns  
44  
AUTO REFRESH command period  
ACTIVE to READ or WRITE delay  
PRECHARGE command period  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
18  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Table 16: DDR SDRAM Component Electrical Characteristics and Recommended AC  
Operating Conditions (-26A, -265, -202) (Continued)  
Notes: 1–5, 12–15, 29, 40; notes appear on pages 20–23; 0°Cꢀ? TA ? +70°C; VDD = VDDQ = +2.5V 0.2V  
AC CHARACTERISTICS  
-26A  
-265  
-202  
PARAMETER  
SYMBOL MIN MAX MIN MAX MIN MAX UNITS NOTES  
tRPRE  
tRPST  
tRRD  
tWPRE  
tWPRES  
tWPST  
tWR  
tCK  
tCK  
ns  
0.9  
0.4  
15  
0.25  
0
1.1  
0.6  
0.9  
0.4  
15  
0.25  
0
1.1  
0.6  
0.9  
0.4  
15  
0.25  
0
1.1  
0.6  
37  
DQS read preamble  
DQS read postamble  
ACTIVE bank a to ACTIVE bank b command  
DQS write preamble  
tCK  
ns  
DQS write preamble setup time  
DQS write postamble  
18, 19  
17  
tCK  
ns  
0.4  
15  
1
0.6  
0.4  
15  
1
0.6  
0.4  
15  
1
0.6  
Write recovery time  
tWTR  
NA  
tCK  
ns  
Internal WRITE to READ command delay  
Data valid output window  
tQH -tDQSQ  
70.3  
tQH -tDQSQ tQH - tDQSQ  
22  
21  
21  
tREFC  
tREFI  
tVTD  
tXSNR  
tXSRD  
70.3  
70.3  
µs  
µs  
ns  
ns  
REFRESH to REFRESH command interval  
Average periodic refresh interval  
Terminating voltage delay to VDD  
Exit SELF REFRESH to non-READ command  
Exit SELF REFRESH to READ command  
7.8  
7.8  
7.8  
0
0
0
75  
75  
80  
tCK  
200  
200  
200  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
19  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Notes  
1. All voltages referenced to VSS.  
25°C, VOUT(DC) = VDDQ/2, VOUT (peak to peak) TA  
2. Tests for AC timing, IDD, and electrical AC and DC  
characteristics may be conducted at nominal ref-  
erence/supply voltage levels, but the related spec-  
ifications and device operation are guaranteed for  
the full voltage range specified.  
= 0.2V. DM input is grouped with I/O pins, reflect-  
ing the fact that they are matched in loading.  
12. Command/Address input slew rate = 0.5V/ns. For  
-262, -26A, and -265 with slew rates 1V/ns and  
t
t
faster, IS and IH are reduced to 900ps; for -335,  
they are reduced to 750ps. If the slew rate is less  
3. Outputs measured with equivalent load:  
t
VTT  
than 0.5 V/ns, timing must be derated: IS has an  
additional 50ps per each 100mV/ns reduction in  
50  
t
slew rate from the 500mV/ns, while IH remains  
constant. If the slew rate exceeds 4.5V/ns, func-  
tionality is uncertain.  
Reference  
Output  
Point  
(VOUT  
)
30pF  
13. The CK/CK# input reference level (for timing ref-  
erenced to CK/CK#) is the point at which CK and  
CK# cross; the input reference level for signals  
other than CK/CK# is VREF.  
4. AC timing and IDD tests may use a VIL-to-VIH  
swing of up to 1.5V in the test environment, but  
input timing is still referenced to VREF (or to the  
crossing point for CK/CK#), and parameter speci-  
fications are guaranteed for the specified AC input  
levels under normal use conditions. The mini-  
mum slew rate for the input signals used to test  
the device is 1V/ns in the range between VIL(AC)  
and VIH(AC).  
14. Inputs are not recognized as valid until VREF stabi-  
lizes. Exception: during the period before VREF  
stabilizes, CKE ? 0.3 x VDDQ is recognized as LOW.  
15. The output timing reference level, as measured at  
the timing reference point indicated in Note 3, is  
VTT.  
t
16. tHZ and LZ transitions occur in the same access  
5. The AC and DC input level specifications are as  
defined in the SSTL_2 Standard (i.e., the receiver  
will effectively switch as a result of the signal  
crossing the AC input level, and will remain in that  
state as long as the signal does not ring back  
above [below] the DC input LOW [HIGH] level).  
6. VREF is expected to equal VDDQ/2 of the transmit-  
ting device and to track variations in the DC level  
of the same. Peak-to-peak noise (non-common  
mode) on VREF may not exceed 2 percent of the  
DC value. Thus, from VDDQ/2, VREF is allowed  
25mV for DC error and an additional 25mV for  
AC noise. This measurement is to be taken at the  
nearest VREF bypass capacitor.  
7. VTT is not applied directly to the device. VTT is a  
system supply for signal termination resistors, is  
expected to be set equal to VREF and must track  
variations in the DC level of VREF.  
8. IDD is dependent on output loading and cycle  
rates. Specified values are obtained with mini-  
mum cycle time at CL = 2 for -262, -26A, and -202,  
CL = 2.5 for-335 and -265 with the outputs open.  
9. Enables on-chip refresh and address counters.  
10. IDD specifications are tested after the device is  
properly initialized, and is averaged at the defined  
cycle rate.  
time windows as valid data transitions. These  
parameters are not referenced to a specific voltage  
level, but specify when the device output is no  
longer driving (HZ) or begins driving (LZ).  
17. The intent of the Don’t Care state after completion  
of the postamble is the DQS-driven signal should  
either be high, low, or high-Z and that any signal  
transition within the input switching region must  
follow valid input requirements. That is, if DQS  
transitions high (above VIH DC (MIN) then it must  
t
not transition low (below VIH DC) prior to DQSH  
(MIN).  
18. This is not a device limit. The device will operate  
with a negative value, but system performance  
could be degraded due to bus turnaround.  
19. It is recommended that DQS be valid (HIGH or  
LOW) on or before the WRITE command. The  
case shown (DQS going from High-Z to logic  
LOW) applies when no WRITEs were previously in  
progress on the bus. If a previous WRITE was in  
progress, DQS could be HIGH during this time,  
depending on tDQSS.  
t
20. MIN (tRC or RFC) for IDD measurements is the  
smallest multiple of tCK that meets the minimum  
t
absolute Value for the respective parameter. RAS  
11. This parameter is sampled. VDD = +2.5V 0.2V,  
VDDQ = +2.5V 0.2V, VREF = VSS, f = 100 MHz, =  
(MAX) for IDD measurements is the largest multi-  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
20  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
ple of tCK that meets the maximum absolute  
value for tRAS.  
21. The refresh period 64ms. This equates to an aver-  
age refresh rate of 7.8125µs. However, an AUTO  
REFRESH command must be asserted at least  
once every 70.3µs; burst refreshing or posting by  
the DRAM controller greater than eight refresh  
cycles is not allowed.  
25. To maintain a valid level, the transitioning edge of  
the input must:  
a. Sustain a constant slew rate from the current  
AC level through to the target AC level, VIL(AC)  
or VIH(AC).  
b. Reach at least the target AC level.  
c. After the AC target level is reached, continue to  
maintain at least the target DC level, VIL(DC)  
or VIH(DC).  
22. The valid data window is derived by achieving  
26. JEDEC specifies CK and CK# input slew rate must  
be O 1V/ns (2V/ns differentially).  
other specifications: tHP (tCK/2), tDQSQ, and tQH  
(tQH = tHP - tQHS). The data valid window derates  
directly porportional with the clock duty cycle  
and a practical data valid window can be derived.  
The clock is allowed a maximum duty cycle varia-  
tion of 45/55. Functionality is uncertain when  
operating beyond a 45/55 ratio. Figure 8, Derating  
Data Valid Window, shows derating curves for  
duty cycles ranging between 50/50 and 45/55.  
23. Each byte lane has a corresponding DQS.  
27. DQ and DM input slew rates must not deviate  
from DQS by more than 10 percent. If the DQ/  
DM/DQS slew rate is less than 0.5V/ns, timing  
t
must be derated: 50ps must be added to DS and  
tDH for each 100mv/ns reduction in slew rate. If  
slew rate exceeds 4V/ns, functionality is uncer-  
tain.  
28. VDD must not vary more than 4 percent if CKE is  
not active while any bank is active.  
29. The clock is allowed up to 150ps of jitter. Each  
timing parameter is allowed to vary by the same  
amount.  
24. This limit is actually a nominal value and does not  
result in a fail value. CKE is HIGH during  
REFRESH command period (tRFC [MIN]) else  
CKE is LOW (i.e., during standby).  
Figure 8: Derating Data Valid Window  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
3.750  
3.700  
3.650  
3.600  
3.550  
3.400  
3.500  
3.450  
3.350  
3.300  
3.400  
3.350  
3.300  
3.250  
3.200  
3.150  
3.250  
3.100  
3.050  
NA -335  
3.000  
2.950  
t
-262/-26A/-265 @ CK = 10ns  
-202 @ CK = 10ns  
-262/-26A/-265 @ CK = 7.5ns  
-202 @ CK = 8ns  
2.900  
t
t
t
2.500  
2.463  
2.425  
2.388  
2.350  
2.313  
2.275  
2.238  
2.200  
2.163  
2.125  
50/50  
49.5/50.5  
49/51  
48.5/52.5  
48/52  
47.5/53.5  
47/53  
46.5/54.5  
46/54  
45.5/55.5  
45/55  
Clock Duty Cycle  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
21  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
t
t
30. tHP min is the lesser of CL minimum and CH  
minimum actually applied to the device CK and  
CK# inputs, collectively during bank active.  
drain-to-source voltages from 0.1V to 1.0V, and  
at the same voltage and temperature.  
f. The full variation in the ratio of the nominal  
pull-up to pull-down current should be unity  
10 percent, for device drain-to-source volt-  
ages from 0.1V to 1.0V.  
31. READs and WRITEs with auto precharge are not  
allowed to be issued until tRAS(MIN) can be satis-  
fied prior to the internal precharge command  
being issued.  
34. The voltage levels used are derived from a mini-  
mum VDD level and the referenced test load. In  
practice, the voltage levels obtained from a prop-  
erly terminated bus will provide significantly dif-  
ferent voltage values.  
35. VIH overshoot: VIH (MAX) = VDDQ + 1.5V for a  
pulse widthꢀ? 3ns and the pulse width can not be  
greater than 1/3 of the cycle rate. VIL undershoot:  
VIL (MIN) = -1.5V for a pulse width ?ꢀ 3ns and the  
pulse width can not be greater than 1/3 of the  
cycle rate.  
32. Any positive glitch must be less than 1/3 of the  
clock and not more than +400mV or 2.9V, which-  
ever is less. Any negative glitch must be less than  
1/3 of the clock cycle and not exceed either -  
300mV or 2.2V, whichever is more positive.  
33. Normal Output Drive Curves:  
a. The full variation in driver pull-down current  
from minimum to maximum process, temper-  
ature and voltage will lie within the outer  
bounding lines of the V-I curve of Figure 9,  
Pull-Down Characteristics.  
b. The variation in driver pull-down current  
within nominal limits of voltage and tempera-  
ture is expected, but not guaranteed, to lie  
within the inner bounding lines of the V-I  
curve of Figure 9, Pull-Down Characteristics.  
c. The full variation in driver pull-up current  
from minimum to maximum process, temper-  
ature and voltage will lie within the outer  
bounding lines of the V-I curve of Figure 10,  
Pull-Up Characteristics.  
d. The variation in driver pull-up current within  
nominal limits of voltage and temperature is  
expected, but not guaranteed, to lie within the  
inner bounding lines of the V-I curve of Figure  
10, Pull-Up Characteristics.  
e. The full variation in the ratio of the maximum  
to minimum pull-up and pull-down current  
should be between 0.71 and 1.4, for device  
36. VDD and VDDQ must track each other.  
37. This maximum value is derived from the refer-  
enced test load. In practice, the values obtained  
in a typical terminated design may reflect up to  
t
t
310ps less for HZ(MAX) and the last DVW. HZ  
t
t
(MAX) will prevail over DQSCK (MAX) + RPST  
(MAX) condition. tLZ (MIN) will prevail over  
tDQSCK (MIN) + tRPRE (MAX) condition.  
38. For slew rates greater than 1V/ns the (LZ) transi-  
tion will start about 310ps earlier.  
39. During Initialization, VDDQ, VTT, and VREF must  
be equal to or less than VDD + 0.3V. Alternatively,  
VTT may be 1.35V maximum during power up,  
even if VDD/VDDQ are 0.0V, provided a minimum  
of 42of series resistance is used between the VTT  
supply and the input pin.  
40. The current Micron part operates below the slow-  
est JEDEC operating frequency of 83 MHz. As  
such, future die may not reflect this option.  
Figure 9: Pull-Down Characteristics  
Figure 10: Pull-Up Characteristics  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
22  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
41. For -265, -26A, -262 and -335, IDD3N is specified to  
be 35mA at 100 MHz.  
42. Random addressing changing and 50 percent of  
data changing at every transfer.  
similar to IDD2F except IDD2Q specifies the  
address and control inputs to remain stable.  
Although IDD2F, IDD2N, and IDD2Q are similar,  
IDD2F is “worst case.”  
43. Random addressing changing and 100 percent of  
data changing at every transfer.  
44. CKE must be active (high) during the entire time a  
refresh command is executed. That is, from the  
time the AUTO REFRESH command is registered,  
CKE must be active at each rising clock edge, until  
46. Whenever the operating frequency is altered, not  
including jitter, the DLL is required to be reset.  
This is followed by 200 clock cycles.  
47. Leakage number reflects the worst case leakage  
possible through the module pin, not what each  
memory device contributes.  
tREF later.  
48. When an input signal is HIGH or LOW, it is  
defined as a steady state logic HIGH or LOW.  
45. IDD2N specifies the DQ, DQS, and DM to be  
driven to a valid high or low logic level. IDD2Q is  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
23  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
SPD Clock and Data Conventions  
Data states on the SDA line can change only during  
SCL LOW. SDA state changes during SCL HIGH are  
reserved for indicating start and stop conditions (as  
shown in Figure 11, Data Validity, and Figure 12, Defi-  
nition of Start and Stop).  
SPD Acknowledge  
Acknowledge is a software convention used to indi-  
cate successful data transfers. The transmitting device,  
either master or slave, will release the bus after trans-  
mitting eight bits. During the ninth clock cycle, the  
receiver will pull the SDA line LOW to acknowledge  
that it received the eight bits of data (as shwon in Fig-  
ure 13, Acknowledge Response From Receiver).  
SPD Start Condition  
The SPD device will always respond with an  
acknowledge after recognition of a start condition and  
its slave address. If both the device and a WRITE oper-  
ation have been selected, the SPD device will respond  
with an acknowledge after the receipt of each subse-  
quent eight-bit word. In the read mode the SPD device  
will transmit eight bits of data, release the SDA line and  
monitor the line for an acknowledge. If an acknowl-  
edge is detected and no stop condition is generated by  
the master, the slave will continue to transmit data. If  
an acknowledge is not detected, the slave will termi-  
nate further data transmissions and await the stop  
condition to return to standby power mode.  
All commands are preceded by the start condition,  
which is a HIGH-to-LOW transition of SDA when SCL  
is HIGH. The SPD device continuously monitors the  
SDA and SCL lines for the start condition and will not  
respond to any command until this condition has been  
met.  
SPD Stop Condition  
All communications are terminated by a stop condi-  
tion, which is a LOW-to-HIGH transition of SDA when  
SCL is HIGH. The stop condition is also used to place  
the SPD device into standby power mode.  
Figure 11: Data Validity  
Figure 12: Definition of Start and Stop  
SCL  
SCL  
SDA  
SDA  
DATA STABLE  
DATA  
CHANGE  
DATA STABLE  
START  
BIT  
STOP  
BIT  
Figure 13: Acknowledge Response From Receiver  
SCL from Master  
8
9
Data Output  
from Transmitter  
Data Output  
from Receiver  
Acknowledge  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
24  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Table 17: EEPROM Device Select Code  
Most significant bit (b7) is sent first.  
DEVICE TYPE IDENTIFIER  
CHIP ENABLE  
RW  
B0  
SELECT CODE  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
Memory Area Select Code (two arrays)  
Protection Register Select Code  
1
0
0
1
1
1
0
0
SA2  
SA2  
SA1  
SA1  
SA0  
SA0  
RW  
RW  
Table 18: EEPROM Operating Modes  
MODE  
RW BIT  
WC  
BYTES INITIAL SEQUENCE  
1
0
1
1
0
0
VIH or VIL  
VIH or VIL  
VIH or VIL  
VIH or VIL  
VIL  
1
1
Current Address Read  
Random Address Read  
START, Device Select, RW = ‘1’  
START, Device Select, RW = ‘0’, Address  
reSTART, Device Select, RW = ‘1’  
Similar to Current or Random Address Read  
START, Device Select, RW = ‘0’  
1
O 1  
1
Sequential Read  
Byte Write  
VIL  
? 16  
Page Write  
START, Device Select, RW = ‘0’  
Figure 14: SPD EEPROM Timing Diagram  
t
t
t
F
HIGH  
R
t
LOW  
SCL  
t
t
t
t
t
SU:STO  
SU:STA  
HD:STA  
HD:DAT  
SU:DAT  
SDA IN  
t
t
t
DH  
AA  
BUF  
SDA OUT  
UNDEFINED  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
25  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Table 19: Serial Presence-Detect EEPROM DC Operating Conditions  
All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V  
PARAMETER/CONDITION  
SYMBOL  
MIN  
MAX  
UNITS  
VDDSPD  
VIH  
VIL  
2.3  
3.6  
V
V
SUPPLY VOLTAGE  
VDD Pꢀ0.7 VDD + 0.5  
INPUT HIGH VOLTAGE: Logic 1; All inputs  
INPUT LOW VOLTAGE: Logic 0; All inputs  
-1  
VDD Pꢀ0.3  
V
VOL  
ILI  
0.4  
10  
10  
30  
2
V
OUTPUT LOW VOLTAGE: IOUT = 3mA  
µA  
µA  
µA  
mA  
INPUT LEAKAGE CURRENT: VIN = GND to VDD  
OUTPUT LEAKAGE CURRENT: VOUT = GND to VDD  
STANDBY CURRENT: SCL = SDA = VDD - 0.3V; All other inputs = VDD or VSS  
POWER SUPPLY CURRENT: SCL clock frequency = 100 KHz  
ILO  
ISB  
ICC  
Table 20: Serial Presence-Detect EEPROM AC Operating Conditions  
All voltages referenced to VSS; VDDSPD = +2.3V TO +3.6V  
PARAMETER/CONDITION  
SYMBOL  
MIN MAX UNITS  
NOTES  
tAA  
tBUF  
0.2  
1.3  
0.9  
µs  
µs  
1
SCL LOW to SDA data-out valid  
Time the bus must be free before a new transition can start  
Data-out hold time  
tDH  
200  
ns  
tF  
300  
ns  
2
SDA and SCL fall time  
tHD:DAT  
tHD:STA  
tHIGH  
tI  
tLOW  
tR  
fSCL  
tSU:DAT  
tSU:STA  
tSU:STO  
tWRC  
0
µs  
Data-in hold time  
0.6  
0.6  
µs  
Start condition hold time  
Clock HIGH period  
µs  
50  
ns  
Noise suppression time constant at SCL, SDA inputs  
Clock LOW period  
1.3  
µs  
0.3  
µs  
2
SDA and SCL rise time  
400  
KHz  
ns  
SCL clock frequency  
100  
0.6  
0.6  
Data-in setup time  
µs  
3
4
Start condition setup time  
Stop condition setup time  
WRITE cycle time  
µs  
10  
ms  
NOTE:  
1. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising  
edge of SDA.  
2. This parameter is sampled.  
3. For a reSTART condition, or following a WRITE cycle.  
4. The SPD EEPROM WRITE cycle time (tWRC) is the time from a valid stop condition of a write sequence to the end of  
the EEPROM internal erase/program cycle. During the WRITE cycle, the EEPROM bus interface circuit is disabled, SDA  
remains HIGH due to pull-up resistor, and the EEPROM does not respond to its slave address.  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
26  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Table 21: Serial Presence-Detect Matrix  
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 29  
BYTE  
DESCRIPTION  
ENTRY (VERSION)  
MT16VDDF6464H MT16VDDF12864H  
0
1
2
3
4
5
6
7
8
9
128  
80  
08  
07  
0D  
0A  
02  
40  
00  
04  
80  
08  
07  
0D  
0B  
02  
40  
00  
04  
Number of Bytes Used by Micron  
Total Number of Bytes in SPD Device  
Fundamental Memory Type  
256  
SDRAM DDR  
13  
Number of Rows Addresses on Assembly  
Number of Column Addresses on Assembly  
Number of Physical Ranks on DIMM  
Module Data With  
11, 12  
2
64  
0
Module Data With (Continued)  
Moduel Voltage Interface Levels  
SDRAM Cycle Time, (tCK), CAS Latency = 2.5  
(See note 1)  
SSTL 2.5V  
6ns (-335)  
7ns (-262/-26A)  
7.5ns( -265)  
8ns (-202)  
60  
70  
75  
80  
60  
70  
75  
80  
SDRAM Access From Clock,(tAC),  
CAS Latency = 2.5  
10  
0.7ns (-335)  
0.75ns (-262/-26A/-265)  
0.8ns (-202)  
70  
75  
80  
70  
75  
80  
11  
12  
13  
14  
15  
Non-ECC  
7.8µs/SELF  
x8  
00  
82  
08  
00  
01  
00  
82  
08  
00  
01  
Module Configuration Type  
Refresh Rate/Type  
SDRAM Device Width (Primary SDRAM)  
Error-checking SDRAM Data Width  
Non-ECC  
1 clock  
Minimum Clock Delay, Back-to-Back Random  
Column Access  
16  
17  
18  
19  
20  
21  
22  
23  
Burst Lengths Supported  
Number of Banks on SDRAM Device  
CAS Latencies Supported  
CS Latency  
2, 4, 8  
0E  
04  
0C  
01  
02  
20  
C0  
0E  
04  
0C  
01  
02  
20  
C0  
4
2, 2.5  
0
WE Latency  
1
SDRAM Module Attributes  
SDRAM Device Attributes: General  
SDRAM Cycle Time, (tCK), CAS Latency = 2  
(See note 1)  
Unbuffered/Diff. Clock  
Fast/Concurrent AP  
7.5ns (-335/-262/-26A)  
10ns (-265/-202)  
75  
A0  
75  
A0  
SDRAM Access From CK, (tAC), CAS Latency = 2  
24  
0.7ns (-335)  
0.75ns (-262/-26A/-265)  
0.8ns (-202)  
70  
75  
80  
70  
75  
80  
SDRAM Cycle Time, (tCK), CAS Latency = 1.5  
SDRAM Access From CK, (tAC),  
CAS Latency = 1.5  
25  
26  
N/A  
00  
00  
N/A  
00  
00  
Minimum Row Precharge Time, (tRP)  
27  
18ns (-335)  
15ns (-262)  
20ns (-26A/-265/-202)  
48  
3C  
50  
48  
3C  
50  
Minimum Row to Row Active, (tRRD)  
Minimum RAS# to CAS# Delay, (tRCD)  
28  
29  
12ns (-335)  
15 ns (-262/-26A/-265/-202)  
30  
3C  
30  
3C  
18ns (-335)  
15ns (-262)  
20ns (-26A/-265/-202)  
48  
3C  
50  
48  
3C  
50  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
27  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Table 21: Serial Presence-Detect Matrix (Continued)  
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 29  
BYTE  
DESCRIPTION  
ENTRY (VERSION)  
MT16VDDF6464H MT16VDDF12864H  
Minimum RAS# Pulse Width, (tRAS)  
(See note 2)  
30  
42ns (-335)  
45ns (-262/-26A/-265)  
40ns (-202)  
2A  
2D  
28  
2A  
2D  
28  
31  
32  
256MB, 512MB  
40  
80  
Module Rank Density  
Address and Command Setup Time, (tIS)  
(See note 3)  
0.8ns (-335)  
1ns (-262/-26A/-265)  
1.1ns (-202)  
80  
A0  
B0  
80  
A0  
B0  
Address and Command Hold Time, (tIH)  
(See note 3)  
33  
34  
35  
0.8ns (-335)  
1ns (-262/-26A/-265)  
1.1ns (-202)  
80  
A0  
B0  
80  
A0  
B0  
Data/ Data Mask Input Setup Time, (tDS)  
0.45ns (-335)  
0.5ns (-262/-26A/-265)  
0.6ns (-202)  
45  
50  
60  
45  
50  
60  
Data/ Data Mask Input Hold Time, (tDH)  
0.45ns (-335)  
0.5ns (-262/-26A/-265)  
0.6ns (-202)  
45  
50  
60  
45  
50  
60  
36-40 Reserved  
41  
00  
00  
Minimum Active Auto Refresh Time (tRC)  
60ns (-335/-262)  
65ns (-26A/-265)  
70ns (-202)  
3C  
41  
46  
3C  
41  
46  
42  
72ns (-335)  
75ns (-262/-26A/-265)  
80ns (-202)  
48  
4B  
50  
48  
4B  
50  
Minimum Auto Refresh to Active/Auto Refresh  
Command Period, (tRFC)  
SDRAM Device Max Cycle Time (tCKMAX)  
43  
44  
12ns (-335)  
13ns (-262/-26A/-265/-202)  
30  
34  
30  
34  
0.40ns (-335)  
0.5ns (-262/-26A/-265)  
0.6ns (-202)  
28  
32  
3C  
28  
32  
3C  
SDRAM Device Max DQS-DQ Skew Time  
(tDQSQ)  
45  
SDRAM Device Max Read Data Hold Skew  
Factor (tQHS)  
0.5ns (-335)  
0.75ns (-26A/-265)  
1.0ns (-202)  
50  
75  
A0  
50  
75  
A0  
46  
47  
00  
01  
00  
10  
00  
01  
00  
10  
Reserved  
DIMM Height  
Reserved  
48–61  
62  
Release 1.0  
SPD Revision  
Checksum for Bytes 0-62  
63  
-335  
-262  
-26A  
-265  
-202  
30  
BB  
E8  
18  
B3  
5F  
FC  
29  
59  
F4  
64  
65-71  
72  
MICRON  
2C  
00  
2C  
00  
Manufacturer’s JEDEC ID Code  
Manufacturer’s JEDEC ID Code (Continued)  
Manufacturing Location  
01–12  
01–0C  
01–0D  
73-90  
91  
Variable Data  
01-09  
Variable Data  
01-09  
Module Part Number (ASCII)  
PCB Identification Code  
1-9  
0
92  
00  
00  
Identification Code (Continued)  
Year of Manufacture in BCD  
93  
Variable Data  
Variable Data  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
28  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Table 21: Serial Presence-Detect Matrix (Continued)  
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 29  
BYTE  
DESCRIPTION  
ENTRY (VERSION)  
MT16VDDF6464H MT16VDDF12864H  
94  
Variable Data  
Variable Data  
Variable Data  
Variable Data  
Week of Manufacture in BCD  
Module Serial Number  
95-98  
99-127  
Manufacturer-Specific Data (RSVD)  
NOTE:  
1. Device latencies used for SPD values.  
2. The value of tRAS used for -262/-26A/-265 modules is calculated from tRC - tRP. Actual device spec value is 40 ns.  
3. The JEDEC SPD specification allows fast or slow slew rate values for these bytes. The worst-case (slow slew rate) value is  
represented here. Systems requiring the fast slew rate setup and hold values are supported, provided the faster mini-  
mum slew rate is met.  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
29  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Figure 15: 200-PIN SODIMM Dimensions – 512MB  
FRONT VIEW  
0.150 (3.80)  
MAX  
2.666 (67.72)  
2.656 (67.45)  
0.079 (2.00) R  
(2X)  
U1  
U2  
U3  
U4  
U5  
U6  
1.255 (31.88)  
1.245 (31.62)  
0.071 (1.80)  
(2X)  
U7  
U8  
0.787 (20.00)  
TYP  
U17  
0.236 (6.00)  
0.096 (2.44)  
0.043 (1.10)  
0.035 (0.90)  
0.079 (2.00)  
0.039 (.99)  
TYP  
0.018 (.46)  
TYP  
0.024 (.61)  
TYP  
PIN 199  
PIN 1  
2.504 (63.60)  
TYP  
BACK VIEW  
U9  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
PIN 200  
PIN 2  
NOTE:  
MAX  
MIN  
All dimensions are in inches (millimeters)  
or typical where noted.  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
30  
512MB, 1GB (x64)  
200-PIN DDR SODIMM  
Figure 16: 200-PIN SODIMM Dimensions – 1GB  
FRONT VIEW  
0.150 (3.80)  
MAX  
2.666 (67.72)  
2.656 (67.45)  
U17  
0.079 (2.00) R  
(2X)  
U1  
U5  
U2  
U6  
U3  
U4  
U8  
1.255 (31.88)  
1.245 (31.62)  
0.071 (1.80)  
(2X)  
U7  
0.787 (20.00)  
TYP  
0.236 (6.00)  
0.096 (2.44)  
0.043 (1.10)  
0.035 (0.90)  
0.079 (2.00)  
0.039 (.99)  
TYP  
0.018 (.46)  
TYP  
0.024 (.61)  
TYP  
PIN 199  
PIN 1  
2.504 (63.60)  
TYP  
BACK VIEW  
U9  
U10  
U14  
U11  
U12  
U16  
U13  
U15  
PIN 200  
PIN 2  
NOTE:  
MAX  
MIN  
All dimensions are in inches (millimeters)  
or typical where noted.  
Data Sheet Designation  
Released (No Mark): This data sheet contains mini-  
mum and maximum limits specified over the complete  
power supply and temperature range for production  
devices. Although considered final, these specifica-  
tions are subject to change, as further product devel-  
opment and data characterization sometimes occur.  
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992  
Micron, the M logo, and the Micron logo are trademarks and/or service marks of Micron Technology, Inc.  
All other trademarks are the property of their respective owners.  
09005aef80a646bc  
DDF16C64_128x64HG_B.fm - Rev. B 7/03 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice..  
©2003 Micron Technology, Inc  
31  

相关型号:

MT16VDDF6464HG-26A

SMALL-OUTLINE DDR SDRAM DIMM
MICRON

MT16VDDF6464HG-335

SMALL-OUTLINE DDR SDRAM DIMM
MICRON

MT16VDDF6464HG-40B

DDR SDRAM SODIMM
MICRON

MT16VDDF6464HI-335

DDR SDRAM SODIMM
MICRON

MT16VDDF6464HY-202

SMALL-OUTLINE DDR SDRAM DIMM
MICRON

MT16VDDF6464HY-262

SMALL-OUTLINE DDR SDRAM DIMM
MICRON

MT16VDDF6464HY-265

SMALL-OUTLINE DDR SDRAM DIMM
MICRON

MT16VDDF6464HY-26A

SMALL-OUTLINE DDR SDRAM DIMM
MICRON

MT16VDDF6464HY-335

SMALL-OUTLINE DDR SDRAM DIMM
MICRON

MT16VDDF6464HY-40B

DDR SDRAM SODIMM
MICRON

MT16VDDT12864A

DDR SDRAM UNBUFFERED DIMM
MICRON

MT16VDDT12864AG-262

DDR SDRAM UNBUFFERED DIMM
MICRON