MT48LC2M32B2TG [MICRON]

SYNCHRONOUS DRAM; 同步DRAM
MT48LC2M32B2TG
型号: MT48LC2M32B2TG
厂家: MICRON TECHNOLOGY    MICRON TECHNOLOGY
描述:

SYNCHRONOUS DRAM
同步DRAM

动态存储器
文件: 总53页 (文件大小:1810K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
64Mb: x32  
SDRAM  
MT48LC2M32B2 - 512K x 32 x 4 banks  
SYNCHRONOUS  
DRAM  
For the latest data sheet, please refer to the Micron Web  
site: www.micron.com/sdramds  
FEATURES  
• PC100 functionality  
• Fully synchronous; all signals registered on  
positive edge of system clock  
• Internal pipelined operation; column address can  
be changed every clock cycle  
• Internal banks for hiding row access/precharge  
• Programmable burst lengths: 1, 2, 4, 8, or full page  
• Auto Precharge, includes CONCURRENT AUTO  
PRECHARGE, and Auto Refresh Modes  
• Self Refresh Mode  
• 64ms, 4,096-cycle refresh (15.6µs/row)  
• LVTTL-compatible inputs and outputs  
• Single +3.3V 0.3V power supply  
• Supports CAS latency of 1, 2, and 3  
PINASSIGNMENT(TOPVIEW)  
86-PINTSOP  
V
DQ0  
DD  
1
2
3
4
5
6
7
8
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
VSS  
DQ15  
VSSQ  
DQ14  
DQ13  
VDDQ  
DQ12  
DQ11  
VSSQ  
DQ10  
DQ9  
VDDQ  
DQ8  
NC  
VSS  
DQM1  
NC  
V
DD  
Q
DQ1  
DQ2  
V
SS  
Q
DQ3  
DQ4  
V
DD  
Q
9
DQ5  
DQ6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
V
SS  
Q
DQ7  
NC  
V
DQM0  
WE#  
CAS#  
RAS#  
CS#  
DD  
OPTIONS  
• Configuration  
2 Meg x 32 (512K x 32 x 4 banks)  
• Plastic Package - OCPL1  
86-pin TSOP (400 mil)  
MARKING  
NC  
2M32B2  
CLK  
CKE  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
DQM3  
VSS  
NC  
DQ31  
VDDQ  
DQ30  
DQ29  
VSSQ  
DQ28  
DQ27  
NC  
TG  
BA0  
BA1  
A10  
A0  
A1  
A2  
DQM2  
V
NC  
DQ16  
• Timing (Cycle Time)  
5ns (200 MHz)  
5.5ns (183 MHz)  
6ns (166 MHz)  
7ns (143 MHz)  
-5  
-55  
-6  
DD  
-7  
• Operating Temperature Range  
Commercial (0° to +70°C)  
V
SS  
Q
DQ17  
DQ18  
None  
IT2  
Extended (-40°C to +85°C)  
V
DD  
Q
DQ19  
DQ20  
NOTE: 1. Off-center parting line  
V
SS  
Q
VDDQ  
DQ26  
DQ25  
VSSQ  
DQ24  
2. Available on -7  
DQ21  
DQ22  
Part Number Example:  
V
DD  
Q
MT48LC2M32B2TG-7  
DQ23  
V
DD  
VSS  
KEYTIMINGPARAMETERS  
Note: The # symbol indicates signal is active LOW.  
SPEED  
GRADE FREQUENCY  
CLOCK  
ACCESS TIME SETUP  
HOLD  
TIME  
CL = 3*  
TIME  
2 Meg x 32  
-5  
-55  
-6  
200MHz  
183MHz  
166MHz  
143MHz  
4.5ns  
5ns  
5.5ns  
5.5ns  
1.5ns  
1.5ns  
1.5ns  
2ns  
1ns  
1ns  
1ns  
1ns  
Configuration  
512K x 32 x 4 banks  
4K  
Refresh Count  
Row Addressing  
Bank Addressing  
Column Addressing  
2K (A0-A10)  
4 (BA0, BA1)  
256 (A0-A7)  
-7  
*CL = CAS (READ) latency  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
1
64Mb: x32  
SDRAM  
The SDRAM provides for programmable READ or  
WRITE burst lengths of 1, 2, 4, or 8 locations, or the full  
page, with a burst terminate option. An auto precharge  
function may be enabled to provide a self-timed row  
precharge that is initiated at the end of the burst se-  
quence.  
64Mb (x32) SDRAM PART NUMBER  
PART NUMBER  
ARCHITECTURE  
MT48LC2M32B2TG  
2 Meg x 32  
The 64Mb SDRAM uses an internal pipelined archi-  
tecture to achieve high-speed operation. This archi-  
tecture is compatible with the 2n rule of prefetch archi-  
tectures, but it also allows the column address to be  
changed on every clock cycle to achieve a high-speed,  
fully random access. Precharging one bank while ac-  
cessing one of the other three banks will hide the  
precharge cycles and provide seamless, high-speed,  
random-access operation.  
The 64Mb SDRAM is designed to operate in 3.3V,  
low-power memory systems. An auto refresh mode is  
provided, along with a power-saving, power-down  
mode. All inputs and outputs are LVTTL-compatible.  
SDRAMs offer substantial advances in DRAM oper-  
ating performance, including the ability to synchro-  
nously burst data at a high data rate with automatic  
column-address generation, the ability to interleave  
between internal banks to hide precharge time and  
the capability to randomly change column addresses  
on each clock cycle during a burst access.  
GENERALDESCRIPTION  
The 64Mb SDRAM is a high-speed CMOS, dynamic  
random-access memory containing 67,108,864-bits. It  
is internally configured as a quad-bank DRAM with a  
synchronous interface (all signals are registered on the  
positive edge of the clock signal, CLK). Each of the  
16,777,216-bit banks is organized as 2,048 rows by 256  
columns by 32 bits.  
Read and write accesses to the SDRAM are burst  
oriented; accesses start at a selected location and con-  
tinue for a programmed number of locations in a pro-  
grammed sequence. Accesses begin with the registra-  
tion of an ACTIVE command, which is then followed by  
a READ or WRITE command. The address bits regis-  
tered coincident with the ACTIVE command are used  
to select the bank and row to be accessed (BA0, BA1  
select the bank, A0-A10 select the row). The address  
bits registered coincident with the READ or WRITE com-  
mand are used to select the starting column location  
for the burst access.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
2
64Mb: x32  
SDRAM  
TABLEOFCONTENTS  
Functional Block Diagram - 2 Meg x 32 .................  
Pin Descriptions .....................................................  
4
5
Concurrent Auto Precharge .............................. 23  
Write with Auto Precharge ............................... 24  
Truth Table 2 (CKE) ................................................ 25  
Truth Table 3 (Current State, Same Bank) ..................... 26  
Truth Table 4 (Current State, Different Bank) ................. 28  
Absolute Maximum Ratings .................................. 30  
DCElectricalCharacteristics  
and Operating Conditions...................................... 30  
IDD Specifications and Conditions ......................... 30  
Capacitance ............................................................ 32  
Functional Description.........................................  
Initialization ......................................................  
Register Definition ............................................  
Mode Register ...............................................  
Burst Length............................................  
Burst Type ...............................................  
CAS Latency ............................................  
Operating Mode ......................................  
Write Burst Mode ....................................  
Commands ............................................................  
Truth Table 1 (Commands and DQM Operation) ............  
6
6
6
6
6
7
8
8
8
9
9
AC Electrical Characteristics (Timing Table) .... 32  
AC Electrical Characteristics ................................... 34  
Timing Waveforms  
Command Inhibit ............................................. 10  
No Operation (NOP).......................................... 10  
Load Mode Register ........................................... 10  
Active ................................................................ 10  
Read ................................................................ 10  
Write ................................................................ 10  
Precharge ........................................................... 10  
Auto Precharge .................................................. 10  
Burst Terminate ................................................. 11  
Auto Refresh ...................................................... 11  
Self Refresh ........................................................ 11  
Operation ............................................................... 12  
Bank/Row Activation ........................................ 12  
Reads ................................................................ 13  
Writes ................................................................ 19  
Precharge ........................................................... 21  
Power-Down ...................................................... 21  
Clock Suspend .................................................. 22  
Burst Read/Single Write .................................... 22  
Initialize and Load Mode Register .................... 36  
Power-Down Mode .......................................... 37  
Clock Suspend Mode........................................ 38  
Auto Refresh Mode ........................................... 39  
Self Refresh Mode ............................................. 40  
Reads  
Read – Single Read....................................... 41  
Read – Without Auto Precharge ................. 42  
Read – With Auto Precharge ....................... 43  
Alternating Bank Read Accesses .................. 44  
Read – Full-Page Burst ................................. 45  
Read – DQM Operation .............................. 46  
Writes  
Write – Single Write ..................................... 47  
Write – Without Auto Precharge ................ 48  
Write – With Auto Precharge ...................... 49  
Alternating Bank Write Accesses ................. 50  
Write – Full-Page Burst ................................ 51  
Write – DQM Operation ............................. 52  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
3
64Mb: x32  
SDRAM  
FUNCTIONALBLOCKDIAGRAM  
2 Meg x 32 SDRAM  
CKE  
CLK  
CONTROL  
LOGIC  
CS#  
WE#  
BANK3  
CAS#  
RAS#  
BANK2  
BANK1  
BANK0  
REFRESH  
COUNTER  
11  
MODE REGISTER  
11  
BANK0  
ROW-  
ADDRESS  
LATCH  
&
ROW-  
ADDRESS  
MUX  
11  
BANK0  
MEMORY  
ARRAY  
4
4
2048  
DQM0-  
DQM3  
11  
(2,048 x 256 x 32)  
DECODER  
DATA  
OUTPUT  
REGISTER  
SENSE AMPLIFIERS  
8192  
32  
DQ0-  
DQ31  
I/O GATING  
2
32  
DQM MASK LOGIC  
READ DATA LATCH  
WRITE DRIVERS  
BANK  
CONTROL  
LOGIC  
A0-A10,  
BA0, BA1  
ADDRESS  
REGISTER  
13  
DATA  
INPUT  
REGISTER  
2
32  
256  
(x32)  
COLUMN  
DECODER  
COLUMN-  
ADDRESS  
COUNTER/  
LATCH  
8
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
4
64Mb: x32  
SDRAM  
PINDESCRIPTIONS  
PIN NUMBERS  
SYMBOL  
TYPE  
DESCRIPTION  
68  
CLK  
Input Clock: CLK is driven by the system clock. All SDRAM input signals are  
sampled on the positive edge of CLK. CLK also increments the internal burst  
counterandcontrolstheoutputregisters.  
67  
CKE  
Input ClockEnable:CKEactivates(HIGH)anddeactivates(LOW)theCLKsignal.  
DeactivatingtheclockprovidesPRECHARGEPOWER-DOWNandSELFREFRESH  
operation(allbanksidle),ACTIVEPOWER-DOWN(rowactiveinanybank)or  
CLOCKSUSPENDoperation(burst/accessinprogress).CKEissynchronous  
exceptafterthedeviceenterspower-downandselfrefreshmodes,where  
CKEbecomesasynchronousuntilafterexitingthesamemode.Theinput  
buffers,includingCLK,aredisabledduringpower-downandselfrefresh  
modes,providinglowstandbypower.CKEmaybetiedHIGH.  
20  
CS#  
Input ChipSelect:CS#enables(registeredLOW)anddisables(registeredHIGH)the  
commanddecoder.AllcommandsaremaskedwhenCS#isregisteredHIGH.  
CS#providesforexternalbankselectiononsystemswithmultiplebanks.  
CS#isconsideredpartofthecommandcode.  
17, 18, 19  
WE#,CAS#, Input CommandInputs:WE#,CAS#,andRAS#(alongwithCS#)definethe  
RAS#  
commandbeingentered.  
16, 71, 28, 59  
DQM0-  
DQM3  
Input Input/OutputMask:DQMissampledHIGHandisaninputmasksignal  
for write accesses and an output enable signal for read accesses. Input data  
ismaskedduringaWRITEcycle. TheoutputbuffersareplacedinaHigh-Z  
state(two-clocklatency)duringaREADcycle.DQM0correspondstoDQ0-  
DQ7;DQM1correspondstoDQ8-DQ15;DQM2correspondstoDQ16-DQ23;  
andDQM3correspondstoDQ24-DQ31.DQM0-DQM3areconsideredsame  
statewhenreferencedasDQM.  
22, 23  
BA0,BA1  
A0-A10  
Input BankAddressInput(s):BA0andBA1definetowhichbanktheACTIVE,READ,  
WRITEorPRECHARGEcommandisbeingapplied.  
25-27, 60-66, 24  
Input AddressInputs:A0-A10aresampledduringtheACTIVEcommand(row-  
addressA0-A10)andREAD/WRITEcommand(column-addressA0-A7withA10  
definingautoprecharge)toselectonelocationoutofthememoryarrayin  
therespectivebank.A10issampledduringaPRECHARGEcommandto  
determineifallbanksaretobeprecharged(A10HIGH)orbankselectedby  
BA0,BA1(LOW).Theaddressinputsalsoprovidetheop-codeduringaLOAD  
MODEREGISTERcommand.  
2, 4, 5, 7, 8, 10, 11, 13,  
74, 76, 77, 79, 80, 82, 83,  
85, 31, 33, 34, 36, 37, 39,  
40, 42, 45, 47, 48, 50, 51,  
53, 54, 56  
DQ0-DQ31 Input/ Data I/Os: Data bus.  
Output  
14, 21, 30, 57, 69, 70, 73  
NC  
NoConnect:Thesepinsshouldbeleftunconnected.Pin70isreserved  
forSSTLreferencevoltagesupply.  
3, 9, 35, 41, 49, 55, 75, 81  
6, 12, 32, 38, 46, 52, 78, 84  
1, 15, 29, 43  
V
DD  
Q
Supply DQ PowerSupply: Isolatedonthedieforimprovednoiseimmunity.  
Supply DQ Ground:ProvideisolatedgroundtoDQsforimprovednoiseimmunity.  
Supply PowerSupply:+3.3V 0.3V. (Seenote27onpage35.)  
Supply Ground.  
V
SS  
Q
V
DD  
44, 58, 72, 86  
V
SS  
64Mb: x32 SDRAM  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
5
©2002,MicronTechnology,Inc.  
64Mb: x32  
SDRAM  
FUNCTIONALDESCRIPTION  
RegisterDefinition  
In general, this 64Mb SDRAM (512K x 32 x 4 banks) is  
a quad-bank DRAM that operates at 3.3V and includes  
a synchronous interface (all signals are registered on  
the positive edge of the clock signal, CLK). Each of the  
16,777,216-bit banks is organized as 2,048 rows by 256  
columns by 32-bits.  
MODE REGISTER  
The Mode Register is used to define the specific  
mode of operation of the SDRAM. This definition in-  
cludes the selection of a burst length, a burst type, a  
CAS latency, an operating mode and a write burst mode,  
as shown in Figure 1. The Mode Register is programmed  
via the LOAD MODE REGISTER command and will re-  
tain the stored information until it is programmed again  
or the device loses power.  
Mode Register bits M0-M2 specify the burst length,  
M3 specifies the type of burst (sequential or inter-  
leaved), M4-M6 specify the CAS latency, M7 and M8  
specify the operating mode, M9 specifies the write burst  
mode, and M10 is reserved for future use.  
Read and write accesses to the SDRAM are burst  
oriented; accesses start at a selected location and con-  
tinue for a programmed number of locations in a pro-  
grammed sequence. Accesses begin with the registra-  
tion of an ACTIVE command, which is then followed by  
a READ or WRITE command. The address bits regis-  
tered coincident with the ACTIVE command are used  
to select the bank and row to be accessed (BA0 and BA1  
select the bank, A0-A10 select the row). The address  
bits (A0-A7) registered coincident with the READ or  
WRITE command are used to select the starting col-  
umn location for the burst access.  
The Mode Register must be loaded when all banks  
are idle, and the controller must wait the specified time  
before initiating the subsequent operation. Violating  
either of these requirements will result in unspecified  
operation.  
Prior to normal operation, the SDRAM must be ini-  
tialized. The following sections provide detailed infor-  
mation covering device initialization, register defini-  
tion, command descriptions and device operation.  
Burst Length  
Read and write accesses to the SDRAM are burst  
oriented, with the burst length being programmable,  
as shown in Figure 1. The burst length determines the  
maximum number of column locations that can be ac-  
cessed for a given READ or WRITE command. Burst  
lengths of 1, 2, 4, or 8 locations are available for both the  
sequential and the interleaved burst types, and a full-  
page burst is available for the sequential type. The  
full-page burst is used in conjunction with the BURST  
TERMINATE command to generate arbitrary burst  
lengths.  
Initialization  
SDRAMs must be powered up and initialized in a  
predefined manner. Operational procedures other  
than those specified may result in undefined opera-  
tion. Once power is applied to VDD and VDDQ (simulta-  
neously) and the clock is stable (stable clock is defined  
as a signal cycling within timing constraints specified  
for the clock pin), the SDRAM requires a 100µs delay  
prior to issuing any command other than a COMMAND  
INHIBIT or a NOP. Starting at some point during this  
100µs period and continuing at least through the end  
of this period, COMMAND INHIBIT or NOP commands  
should be applied.  
Reserved states should not be used, as unknown  
operation or incompatibility with future versions may  
result.  
When a READ or WRITE command is issued, a block  
of columns equal to the burst length is effectively se-  
lected. All accesses for that burst take place within this  
block, meaning that the burst will wrap within the block  
if a boundary is reached. The block is uniquely se-  
lected by A1-A7 when the burst length is set to two; by  
A2-A7 when the burst length is set to four; and by A3-A7  
when the burst length is set to eight. The remaining  
(least significant) address bit(s) is (are) used to select  
the starting location within the block. Full-page bursts  
wrap within the page if the boundary is reached.  
Once the 100µs delay has been satisfied with at  
least one COMMAND INHIBIT or NOP command hav-  
ing been applied, a PRECHARGE command should be  
applied. All banks must then be precharged, thereby  
placing the device in the all banks idle state.  
Once in the idle state, two AUTO REFRESH cycles  
must be performed. After the AUTO REFRESH cycles  
are complete, the SDRAM is ready for Mode Register  
programming. Because the Mode Register will power  
up in an unknown state, it should be loaded prior to  
applying any operational command.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
6
64Mb: x32  
SDRAM  
Burst Type  
Accesses within a given burst may be programmed  
to be either sequential or interleaved; this is referred to  
as the burst type and is selected via bit M3.  
The ordering of accesses within a burst is deter-  
mined by the burst length, the burst type and the start-  
ing column address, as shown in Table 1.  
Table 1  
Burst Definition  
Burst  
Length  
Starting Column  
Address  
Order of Accesses Within a Burst  
Type = Sequential Type = Interleaved  
A0  
0
1
0-1  
1-0  
0-1  
1-0  
2
4
A1 A0  
Figure 1  
Mode Register Definition  
0
0
1
1
0
1
0
1
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3  
1-0-3-2  
2-3-0-1  
3-2-1-0  
A8  
A6 A5 A4  
A1  
Address Bus  
A10  
A7  
A3 A2  
A0  
A9  
A2 A1 A0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
Cn, Cn + 1, Cn + 2  
Cn + 3, Cn + 4...  
…Cn-1,  
0-1-2-3-4-5-6-7  
1-0-3-2-5-4-7-6  
2-3-0-1-6-7-4-5  
3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3  
5-4-7-6-1-0-3-2  
6-7-4-5-2-3-0-1  
7-6-5-4-3-2-1-0  
9
8
6
5
4
1
10  
7
3
2
0
Mode Register (Mx)  
Reserved* WB Op Mode CAS Latency  
BT  
Burst length  
1. *Should program  
8
A10, BA0, and BA1= “0”  
to ensure compatibility  
with future device  
Burst Length  
M2 M1 M0  
M3 = 0  
M3 = 1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
4
8
1
2
4
Full  
Page  
(256)  
n = A0-A7  
8
Not Supported  
Reserved  
Reserved  
Reserved  
Full Page  
Reserved  
Reserved  
Reserved  
Reserved  
(Location0-256)  
Cn…  
NOTE: 1. For a burst length of two, A1-A7 select the block-  
of-two burst; A0 selects the starting column  
within the block.  
Burst Type  
M3  
0
2. For a burst length of four, A2-A7 select the block-  
of-four burst; A0-A1 select the starting column  
within the block.  
Sequential  
Interleave  
1
CAS Latency  
M6 M5 M4  
3. For a burst length of eight, A3-A7 select the block-  
of-eight burst; A0-A2 select the starting column  
within the block.  
4. For a full-page burst, the full row is selected and  
A0-A7 select the starting column.  
5. Whenever a boundary of the block is reached  
within a given sequence above, the following  
access wraps within the block.  
6. For a burst length of one, A0-A7 select the unique  
column to be accessed, and mode register bit M3  
is ignored.  
Reserved  
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2
3
Reserved  
Reserved  
Reserved  
Reserved  
M8  
0
M7  
0
M6 - M0  
Defined  
-
Operating Mode  
Standard operation  
All other states reserved  
-
-
Write Burst Mode  
M9  
0
1
Programmed Burst Length  
Single Location Access  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
7
64Mb: x32  
SDRAM  
CAS Latency  
The CAS latency is the delay, in clock cycles, be-  
tween the registration of a READ command and the  
availability of the first piece of output data. The la-  
tency can be set to one, two or three clocks.  
Reserved states should not be used as unknown  
operation or incompatibility with future versions may  
result.  
If a READ command is registered at clock edge n,  
and the latency is m clocks, the data will be available by  
clock edge n + m. The DQs will start driving as a result of  
the clock edge one cycle earlier (n + m - 1), and provided  
that the relevant access times are met, the data will be  
valid by clock edge n + m. For example, assuming that  
the clock cycle time is such that all relevant access times  
are met, if a READ command is registered at T0 and the  
latency is programmed to two clocks, the DQs will start  
driving after T1 and the data will be valid by T2, as  
shown in Figure 2. Table 2 below indicates the operat-  
ing frequencies at which each CAS latency setting can  
be used.  
Operating Mode  
The normal operating mode is selected by setting  
M7 and M8 to zero; the other combinations of values for  
M7 and M8 are reserved for future use and/or test  
modes. The programmed burst length applies to both  
READ and WRITE bursts.  
Test modes and reserved states should not be used  
because unknown operation or incompatibility with  
future versions may result.  
Write Burst Mode  
When M9 = 0, the burst length programmed via  
M0-M2 applies to both READ and WRITE bursts; when  
M9 = 1, the programmed burst length applies to READ  
bursts, but write accesses are single-location (nonburst)  
accesses.  
Figure 2  
CAS Latency  
Table 2  
T0  
T1  
T2  
CAS Latency  
CLK  
COMMAND  
READ  
NOP  
t
ALLOWABLE OPERATING  
FREQUENCY (MHz)  
t
LZ  
OH  
DOUT  
DQ  
t
AC  
CAS  
CAS  
CAS  
SPEED  
- 5  
-55  
- 6  
- 7  
LATENCY = 1 LATENCY = 2 LATENCY = 3  
CAS Latency = 1  
-
-
200  
183  
166  
143  
-
-
50  
50  
100  
100  
T0  
T1  
T2  
T3  
CLK  
COMMAND  
READ  
NOP  
t
NOP  
t
LZ  
OH  
DOUT  
DQ  
t
AC  
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
CLK  
COMMAND  
READ  
NOP  
NOP  
NOP  
t
t
LZ  
OH  
DOUT  
DQ  
t
AC  
CAS Latency = 3  
DON’T CARE  
UNDEFINED  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
8
64Mb: x32  
SDRAM  
Commands  
Truth Table 1 provides a quick reference of avail-  
able commands. This is followed by a written descrip-  
tion of each command. Three additional Truth Tables  
appear following the Operation section; these tables  
provide current state/next state information.  
TRUTH TABLE 1 – COMMANDS AND DQM OPERATION  
(Note: 1)  
NAME (FUNCTION)  
CS# RAS# CAS# WE# DQM  
ADDR  
DQs NOTES  
COMMAND INHIBIT (NOP)  
H
L
L
L
L
L
L
L
X
H
L
X
H
H
L
X
H
H
H
L
X
X
X
X
X
X
X
NO OPERATION (NOP)  
ACTIVE (Select bank and activate row)  
READ (Select bank and column, and start READ burst)  
WRITE (Select bank and column, and start WRITE burst)  
BURST TERMINATE  
Bank/Row  
X
X
3
4
4
H
H
H
L
L/H8 Bank/Col  
L/H8 Bank/Col  
L
Valid  
Active  
X
H
H
L
L
X
X
X
X
Code  
X
PRECHARGE (Deactivate row in bank or banks)  
L
5
AUTO REFRESH or SELF REFRESH  
(Enter self refresh mode)  
L
H
X
6, 7  
LOAD MODE REGISTER  
L
L
L
L
X
L
Op-Code  
X
2
8
8
Write Enable/Output Enable  
Write Inhibit/Output High-Z  
Active  
High-Z  
H
NOTE: 1. CKE is HIGH for all commands shown except SELF REFRESH.  
2. A0-A10 define the op-code written to the Mode Register.  
3. A0-A10 provide row address, BA0 and BA1 determine which bank is made active.  
4. A0-A7 provide column address; A10 HIGH enables the auto precharge feature (nonpersistent), while  
A10 LOW disables the auto precharge feature; BA0 and BA1 determine which bank is being read from  
or written to.  
5. A10 LOW: BA0 and BA1 determine the bank being precharged. A10 HIGH: All banks precharged and  
BA0 and BA1 are “Don’t Care.”  
6. This command is AUTO REFRESH if CKE is HIGH; SELF REFRESH if CKE is LOW.  
7. Internal refresh counter controls row addressing; all inputs and I/Os are “Don’t Care” except for CKE.  
8. Activates or deactivates the DQs during WRITEs (zero-clock delay) and READs (two-clock delay). DQM0  
controls DQ0-DQ7; DQM1 controls DQ8-DQ15; DQM2 controls DQ16-DQ23; and DQM3 controls  
DQ24-DQ31.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
9
64Mb: x32  
SDRAM  
COMMAND INHIBIT  
WRITE  
The COMMAND INHIBIT function prevents new  
commands from being executed by the SDRAM, re-  
gardless of whether the CLK signal is enabled. The  
SDRAM is effectively deselected. Operations already  
in progress are not affected.  
The WRITE command is used to initiate a burst write  
access to an active row. The value on the BA0 and BA1  
inputs selects the bank, and the address provided on  
inputs A0-A7 selects the starting column location. The  
value on input A10 determines whether or not auto  
precharge is used. If auto precharge is selected, the row  
being accessed will be precharged at the end of the  
WRITE burst; if auto precharge is not selected, the row  
will remain open for subsequent accesses. Input data  
appearing on the DQs is written to the memory array  
subject to the DQM input logic level appearing coinci-  
dent with the data. If a given DQM signal is registered  
LOW, the corresponding data will be written to memory;  
if the DQM signal is registered HIGH, the correspond-  
ing data inputs will be ignored, and a WRITE will not be  
executed to that byte/column location.  
NO OPERATION (NOP)  
The NO OPERATION (NOP) command is used to  
perform a NOP to an SDRAM which is selected (CS# is  
LOW). This prevents unwanted commands from being  
registered during idle or wait states. Operations already  
in progress are not affected.  
LOAD MODE REGISTER  
The mode register is loaded via inputs A0-A10. See  
mode register heading in the Register Definition sec-  
tion. The LOAD MODE REGISTER command can only  
be issued when all banks are idle, and a subsequent  
executable command cannot be issued until MRD is  
met.  
PRECHARGE  
t
The PRECHARGE command is used to deactivate  
the open row in a particular bank or the open row in all  
banks. The bank(s) will be available for a subsequent  
row access a specified time (tRP) after the PRECHARGE  
command is issued. Input A10 determines whether  
one or all banks are to be precharged, and in the case  
where only one bank is to be precharged, inputs BA0  
and BA1 select the bank. Otherwise BA0 and BA1 are  
treated as “Don’t Care.” Once a bank has been  
precharged, it is in the idle state and must be activated  
prior to any READ or WRITE commands being issued to  
that bank.  
ACTIVE  
The ACTIVE command is used to open (or activate)  
a row in a particular bank for a subsequent access. The  
value on the BA0 and BA1 inputs selects the bank, and  
the address provided on inputs A0-A10 selects the row.  
This row remains active (or open) for accesses until a  
PRECHARGE command is issued to that bank. A  
PRECHARGE command must be issued before open-  
ing a different row in the same bank.  
READ  
AUTO PRECHARGE  
The READ command is used to initiate a burst read  
access to an active row. The value on the BA0 and BA1  
(B1) inputs selects the bank, and the address provided  
on inputs A0-A7 selects the starting column location.  
The value on input A10 determines whether or not auto  
precharge is used. If auto precharge is selected, the row  
being accessed will be precharged at the end of the  
READ burst; if auto precharge is not selected, the row  
will remain open for subsequent accesses. Read data  
appears on the DQs subject to the logic level on the  
DQM inputs two clocks earlier. If a given DQMx signal  
was registered HIGH, the corresponding DQs will be  
High-Z two clocks later; if the DQMx signal was regis-  
tered LOW, the corresponding DQs will provide valid  
data. DQM0 corresponds to DQ0-DQ7, DQM1 corre-  
sponds to DQ8-DQ15, DQM2 corresponds to DQ16-  
DQ23 and DQM3 corresponds to DQ24-DQ31.  
Auto precharge is a feature which performs the  
same individual-bank PRECHARGE function de-  
scribed above, without requiring an explicit command.  
This is accomplished by using A10 to enable auto  
precharge in conjunction with a specific READ or WRITE  
command. A PRECHARGE of the bank/row that is ad-  
dressed with the READ or WRITE command is auto-  
matically performed upon completion of the READ or  
WRITE burst, except in the full-page burst mode, where  
auto precharge does not apply. Auto precharge is non-  
persistent in that it is either enabled or disabled for  
each individual READ or WRITE command.  
Auto precharge ensures that the precharge is initi-  
ated at the earliest valid stage within a burst. The user  
must not issue another command to the same bank  
until the precharge time (tRP) is completed. This is  
determined as if an explicit PRECHARGE command  
was issued at the earliest possible time, as described  
for each burst type in the Operation section of this data  
sheet.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
10  
64Mb: x32  
SDRAM  
BURST TERMINATE  
SELF REFRESH  
The BURST TERMINATE command is used to trun-  
cate either fixed-length or full-page bursts. The most  
recently registered READ or WRITE command prior to  
the BURST TERMINATE command will be truncated,  
as shown in the Operation section of this data sheet.  
The SELF REFRESH command can be used to retain  
data in the SDRAM, even if the rest of the system is  
powered down. When in the self refresh mode, the  
SDRAM retains data without external clocking. The SELF  
REFRESH command is initiated like an AUTO REFRESH  
command except CKE is disabled (LOW). Once the SELF  
REFRESH command is registered, all the inputs to the  
SDRAM become “Don’t Care” with the exception of  
CKE, which must remain LOW.  
Once self refresh mode is engaged, the SDRAM pro-  
vides its own internal clocking, causing it to perform its  
own AUTO REFRESH cycles. The SDRAM must remain  
in self refresh mode for a minimum period equal to  
tRAS and may remain in self refresh mode for an indefi-  
nite period beyond that.  
The procedure for exiting self refresh requires a se-  
quence of commands. First, CLK must be stable (stable  
clock is defined as a signal cycling within timing con-  
straints specified for the clock pin) prior to CKE going  
back HIGH. Once CKE is HIGH, the SDRAM must have  
NOP commands issued (a minimum of two clocks) for  
tXSR because time is required for the completion of any  
internal refresh in progress.  
AUTO REFRESH  
AUTO REFRESH is used during normal operation of  
the SDRAM and is analagous to CAS#-BEFORE-RAS#  
(CBR) REFRESH in conventional DRAMs. This com-  
mand is nonpersistent, so it must be issued each time  
a refresh is required.  
The addressing is generated by the internal refresh  
controller. This makes the address bits “Don’t Care”  
during an AUTO REFRESH command. The 64Mb  
SDRAM requires 4,096 AUTO REFRESH cycles every  
64ms (tREF), regardless of width option. Providing a  
distributed AUTO REFRESH command every 15.625µs  
will meet the refresh requirement and ensure that each  
row is refreshed. Alternatively, 4,096 AUTO REFRESH  
commands can be issued in a burst at the minimum  
cycle rate (tRC), once every 64ms.  
Upon exiting SELF REFRESH mode, AUTO REFRESH  
commands must be issued every 15.625ms or less as  
both SELF REFRESH and AUTO REFRESH utililze the  
row refresh counter.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
11  
64Mb: x32  
SDRAM  
Operation  
Figure 3  
Activating a Specific Row in a  
Specific Bank  
BANK/ROW ACTIVATION  
Before any READ or WRITE commands can be is-  
sued to a bank within the SDRAM, a row in that bank  
must be “opened.” This is accomplished via the AC-  
TIVE command, which selects both the bank and the  
row to be activated. See Figure 3.  
CLK  
After opening a row (issuing an ACTIVE command),  
a READ or WRITE command may be issued to that row,  
CKE  
CS#  
HIGH  
t
t
subject to the RCD specification. RCD (MIN) should  
be divided by the clock period and rounded up to the  
next whole number to determine the earliest clock edge  
after the ACTIVE command on which a READ or WRITE  
t
command can be issued. For example, a RCD specifi-  
RAS#  
cation of 20ns with a 125 MHz clock (8ns period) results  
in 2.5 clocks, rounded to 3. This is reflected in Figure 4,  
t
which covers any case where 2 < RCD (MIN)/tCK - 3.  
CAS#  
WE#  
(The same procedure is used to convert other specifi-  
cation limits from time units to clock cycles.)  
A subsequent ACTIVE command to a different row  
in the same bank can only be issued after the previous  
active row has been “closed” (precharged). The mini-  
mum time interval between successive ACTIVE com-  
ROW  
ADDRESS  
A0–A10  
t
mands to the same bank is defined by RC.  
A subsequent ACTIVE command to another bank  
can be issued while the first bank is being accessed,  
which results in a reduction of total row-access over-  
head. The minimum time interval between successive  
ACTIVE commands to different banks is defined by  
tRRD.  
BANK  
ADDRESS  
BA0, BA1  
Figure 4  
Example: Meeting RCD (MIN) When 2 < RCD (MIN)/ CK - 3  
t
t
t
T0  
T1  
T2  
T3  
CLK  
t
t
t
CK  
CK  
CK  
READ or  
WRITE  
COMMAND  
ACTIVE  
NOP  
NOP  
t
RCD (MIN)  
t
t
RCD (MIN) +0.5 CK  
t
t
t
RCD (MIN) = 20ns, CK = 8ns  
RCD (MIN) x CK  
DON’T CARE  
t
where x = number of clocks for equation to be true.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
12  
64Mb: x32  
SDRAM  
READs  
READ bursts are initiated with a READ command,  
as shown in Figure 5.  
Upon completion of a burst, assuming no other com-  
mands have been initiated, the DQs will go High-Z. A  
full-page burst will continue until terminated. (At the  
end of the page, it will wrap to column 0 and continue.)  
Data from any READ burst may be truncated with a  
subsequent READ command, and data from a fixed-  
length READ burst may be immediately followed by  
data from a READ command. In either case, a continu-  
ous flow of data can be maintained. The first data ele-  
ment from the new burst follows either the last ele-  
ment of a completed burst or the last desired data ele-  
ment of a longer burst that is being truncated. The new  
READ command should be issued x cycles before the  
clock edge at which the last desired data element is  
valid, where x equals the CAS latency minus one. This  
is shown in Figure 7 for CAS latencies of one, two and  
The starting column and bank addresses are pro-  
vided with the READ command, and auto precharge is  
either enabled or disabled for that burst access. If auto  
precharge is enabled, the row being accessed is  
precharged at the completion of the burst. For the ge-  
neric READ commands used in the following illustra-  
tions, auto precharge is disabled.  
During READ bursts, the valid data-out element  
from the starting column address will be available fol-  
lowing the CAS latency after the READ command. Each  
subsequent data-out element will be valid by the next  
positive clock edge. Figure 6 shows general timing for  
each possible CAS latency setting.  
Figure 6  
Figure 5  
CAS Latency  
READ Command  
T0  
T1  
T2  
CLK  
CLK  
COMMAND  
CKE  
CS#  
HIGH  
READ  
NOP  
t
t
LZ  
OH  
DOUT  
DQ  
t
AC  
CAS Latency = 1  
RAS#  
T0  
T1  
T2  
T3  
CAS#  
WE#  
CLK  
COMMAND  
READ  
NOP  
t
NOP  
t
LZ  
OH  
DOUT  
DQ  
t
COLUMN  
ADDRESS  
AC  
A0–A7  
A8, A9  
CAS Latency = 2  
ENABLE AUTO PRECHARGE  
DISABLE AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
A10  
CLK  
COMMAND  
READ  
NOP  
NOP  
NOP  
t
t
BANK  
ADDRESS  
LZ  
OH  
BA0, 1  
DOUT  
DQ  
t
AC  
CAS Latency = 3  
DON’T CARE  
UNDEFINED  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
13  
64Mb: x32  
SDRAM  
three; data element n + 3 is either the last of a burst of  
four or the last desired of a longer burst. This 64Mb  
SDRAM uses a pipelined architecture and therefore  
does not require the 2n rule associated with a prefetch  
architecture. A READ command can be initiated on any  
clock cycle following a previous READ command. Full-  
speed random read accesses can be performed to the  
same bank, as shown in Figure 8, or each subsequent  
READ may be performed to a different bank.  
Figure 7  
Consecutive READ Bursts  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
COMMAND  
X = 0 cycles  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
D
OUT  
D
n + 1  
OUT  
D
n + 2  
OUT  
DOUT  
D
OUT  
n
n + 3  
b
CAS Latency = 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
COMMAND  
X = 1 cycle  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
D
OUT  
D
n + 1  
OUT  
DOUT  
D
n + 3  
OUT  
D
OUT  
n
n + 2  
b
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
COMMAND  
X = 2 cycles  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
D
OUT  
DOUT  
D
n + 2  
OUT  
D
n + 3  
OUT  
DOUT  
b
n
n + 1  
CAS Latency = 3  
NOTE: Each READ command may be to either bank. DQM is LOW.  
DON’T CARE  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
14  
64Mb: x32  
SDRAM  
Figure 8  
Random READ Accesses  
T0  
T1  
T2  
T3  
T4  
CLK  
COMMAND  
ADDRESS  
DQ  
READ  
READ  
READ  
READ  
NOP  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
DOUT  
DOUT  
D
OUT  
D
OUT  
n
a
x
m
CAS Latency = 1  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
COMMAND  
ADDRESS  
DQ  
READ  
READ  
READ  
READ  
NOP  
NOP  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
DOUT  
DOUT  
D
OUT  
D
OUT  
n
a
x
m
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
READ  
READ  
READ  
READ  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
DOUT  
D
OUT  
D
OUT  
D
OUT  
n
a
x
m
CAS Latency = 3  
NOTE: Each READ command may be to either bank. DQM is LOW.  
DON’T CARE  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
15  
64Mb: x32  
SDRAM  
Data from any READ burst may be truncated with a  
subsequent WRITE command, and data from a fixed-  
length READ burst may be immediately followed by  
data from a WRITE command (subject to bus turn-  
around limitations). The WRITE burst may be initiated  
on the clock edge immediately following the last (or last  
desired) data element from the READ burst, provided  
that I/O contention can be avoided. In a given system  
design, there may be a possibility that the device driv-  
ing the input data will go Low-Z before the SDRAM DQs  
go High-Z. In this case, at least a single-cycle delay  
should occur between the last read data and the WRITE  
command.  
The DQM input is used to avoid I/O contention, as  
shown in Figures 9 and 10. The DQM signal must be  
asserted (HIGH) at least two clocks prior to the WRITE  
command (DQM latency is two clocks for output buff-  
ers) to suppress data-out from the READ. Once the  
WRITE command is registered, the DQs will go High-Z  
(or remain High-Z), regardless of the state of the DQM  
signal; provided the DQM was active on the clock just  
prior to the WRITE command that truncated the READ  
command. If not, the second WRITE will be an invalid  
WRITE. For example, if DQM was low during T4 in Fig-  
ure 10, then the WRITEs at T5 and T7 would be valid,  
while the WRITE at T6 would be invalid.  
The DQM signal must be de-asserted prior to the  
WRITE command (DQM latency is zero clocks for input  
buffers) to ensure that the written data is not masked.  
Figure 9 shows the case where the clock frequency al-  
lows for bus contention to be avoided without adding a  
NOP cycle, and Figure 10 shows the case where the  
additional NOP is needed.  
Figure 9  
READ to WRITE  
T0  
T1  
T2  
T3  
T4  
CLK  
DQM  
READ  
NOP  
NOP  
NOP  
WRITE  
COMMAND  
ADDRESS  
Figure 10  
READ to WRITE with  
Extra Clock Cycle  
BANK,  
COL n  
BANK,  
COL b  
t
CK  
t
HZ  
T0  
T1  
T2  
T3  
T4  
T5  
DOUT n  
DIN b  
CLK  
DQ  
t
DS  
DON’T CARE  
DQM  
READ  
NOP  
NOP  
NOP  
NOP  
WRITE  
COMMAND  
ADDRESS  
NOTE:  
A CAS latency of three is used for illustration. The READ  
command may be to any bank, and the WRITE command  
BANK,  
BANK,  
COL n  
COL b  
t
HZ  
DOUT  
n
DIN  
b
DQ  
t
DS  
DON’T CARE  
NOTE:  
A CAS latency of three is used for illustration. The READ command  
may be to any bank, and the WRITE command may be to any bank.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
16  
64Mb: x32  
SDRAM  
A fixed-length READ burst may be followed by, or  
truncated with, a PRECHARGE command to the same  
bank (provided that auto precharge was not acti-  
vated), and a full-page burst may be truncated with a  
PRECHARGE command to the same bank. The  
PRECHARGE command should be issued x cycles be-  
fore the clock edge at which the last desired data ele-  
ment is valid, where x equals the CAS latency minus  
one. This is shown in Figure 11 for each possible CAS  
latency; data element n + 3 is either the last of a burst of  
four or the last desired of a longer burst. Following the  
PRECHARGE command, a subsequent command to  
the same bank cannot be issued until RP is met. Note  
that part of the row precharge time is hidden during  
the access of the last data element(s).  
In the case of a fixed-length burst being executed to  
completion, a PRECHARGE command issued at the  
optimum time (as described above) provides the same  
t
Figure 11  
READ to PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
t
RP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVE  
COMMAND  
ADDRESS  
DQ  
X = 0 cycles  
BANK  
(a or all)  
BANK a,  
COL n  
BANK a,  
ROW  
DOUT  
D
n + 1  
OUT  
DOUT  
D
OUT  
n
n + 2  
n + 3  
CAS Latency = 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
t
RP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVE  
COMMAND  
ADDRESS  
DQ  
X = 1 cycle  
BANK  
(a or all)  
BANK a,  
BANK a,  
ROW  
COL  
n
D
OUT  
D
n + 1  
OUT  
DOUT  
DOUT  
n + 3  
n
n + 2  
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
t
RP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVE  
COMMAND  
ADDRESS  
DQ  
X = 2 cycles  
BANK  
(a or all)  
BANK a,  
BANK a,  
ROW  
COL  
n
D
OUT  
D
OUT  
DOUT  
D
n + 3  
OUT  
n
n + 1  
n + 2  
CAS Latency = 3  
NOTE: DQM is LOW.  
DON’T CARE  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
17  
64Mb: x32  
SDRAM  
operation that would result from the same fixed-length  
burst with auto precharge. The disadvantage of the  
PRECHARGE command is that it requires that the com-  
mand and address buses be available at the appropri-  
ate time to issue the command; the advantage of the  
PRECHARGE command is that it can be used to trun-  
cate fixed-length or full-page bursts.  
bursts may be truncated with a BURST TERMINATE  
command, provided that auto precharge was not acti-  
vated. The BURST TERMINATE command should be  
issued x cycles before the clock edge at which the last  
desired data element is valid, where x equals the CAS  
latency minus one. This is shown in Figure 12 for each  
possible CAS latency; data element n + 3 is the last  
desired data element of a longer burst.  
Full-page READ bursts can be truncated with the  
BURST TERMINATE command, and fixed-length READ  
Figure 12  
Terminating a READ Burst  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
BURST  
TERMINATE  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
X = 0 cycles  
BANK,  
COL n  
D
OUT  
D
n + 1  
OUT  
D
n + 2  
OUT  
DOUT  
n
n + 3  
CAS Latency = 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
BURST  
TERMINATE  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
X = 1 cycle  
BANK,  
COL n  
D
OUT  
D
n + 1  
OUT  
DOUT  
D
n + 3  
OUT  
n
n + 2  
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
COMMAND  
ADDRESS  
DQ  
BURST  
TERMINATE  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
X = 2 cycles  
BANK,  
COL n  
D
OUT  
D
OUT  
D
n + 2  
OUT  
D
n + 3  
OUT  
n
n + 1  
CAS Latency = 3  
NOTE: DQM is LOW.  
DON’T CARE  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
18  
64Mb: x32  
SDRAM  
WRITEs  
WRITE bursts are initiated with a WRITE command,  
as shown in Figure 13.  
can be issued on any clock following the previous WRITE  
command, and the data provided coincident with the  
new command applies to the new command. An ex-  
ample is shown in Figure 15. Data n + 1 is either the last  
of a burst of two or the last desired of a longer burst.  
This 64Mb SDRAM uses a pipelined architecture and  
therefore does not require the 2n rule associated with a  
prefetch architecture. A WRITE command can be initi-  
ated on any clock cycle following a previous WRITE  
command. Full-speed random write accesses within a  
page can be performed to the same bank, as shown in  
Figure 16, or each subsequent WRITE may be per-  
formed to a different bank.  
The starting column and bank addresses are pro-  
vided with the WRITE command, and auto precharge  
is either enabled or disabled for that access. If auto  
precharge is enabled, the row being accessed is  
precharged at the completion of the burst. For the ge-  
neric WRITE commands used in the following  
illustrations,auto precharge is disabled.  
During WRITE bursts, the first valid data-in ele-  
ment will be registered coincident with the WRITE com-  
mand. Subsequent data elements will be registered on  
each successive positive clock edge. Upon completion  
of a fixed-length burst, assuming no other commands  
have been initiated, the DQs will remain High-Z and  
any additional input data will be ignored (see Figure  
14). A full-page burst will continue until terminated.  
(At the end of the page, it will wrap to column 0 and  
continue.)  
Figure 14  
WRITE Burst  
T0  
T1  
T2  
T3  
CLK  
Data for any WRITE burst may be truncated with a  
subsequent WRITE command, and data for a fixed-  
length WRITE burst may be immediately followed by  
data for a WRITE command. The new WRITE command  
WRITE  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
Figure 13  
WRITE Command  
D
IN  
DIN  
n + 1  
n
CLK  
CKE HIGH  
Figure 15  
WRITE to WRITE  
CS#  
T0  
T1  
T2  
RAS#  
CLK  
CAS#  
WE#  
WRITE  
NOP  
WRITE  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
BANK,  
COL b  
COLUMN  
ADDRESS  
A0–A7  
A8, A9  
DIN  
DIN  
DIN  
b
n
n + 1  
ENABLE AUTO PRECHARGE  
DISABLE AUTO PRECHARGE  
A10  
DON’T CARE  
NOTE: DQM is LOW. Each WRITE command may  
be to any bank.  
BANK  
ADDRESS  
BA0, 1  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
19  
64Mb: x32  
SDRAM  
Data for any WRITE burst may be truncated with a  
subsequent READ command, and data for a fixed-  
length WRITE burst may be immediately followed by a  
READ command. Once the READ command is regis-  
tered, the data inputs will be ignored, and WRITEs will  
not be executed. An example is shown in Figure 17.  
Data n + 1 is either the last of a burst of two or the last  
desired of a longer burst.  
Data for a fixed-length WRITE burst may be fol-  
lowed by, or truncated with, a PRECHARGE command  
to the same bank (provided that auto precharge was  
not activated), and a full-page WRITE burst may be  
truncated with a PRECHARGE command to the same  
bank. The PRECHARGE command should be issued  
tWR after the clock edge at which the last desired input  
data element is registered. The “two-clock” write-back  
requires at least one clock plus time, regardless of fre-  
quency, in auto precharge mode. In addition, when  
truncating a WRITE burst, the DQM signal must be  
used to mask input data for the clock edge prior to, and  
the clock edge coincident with, the PRECHARGE com-  
mand. An example is shown in Figure 18. Data n + 1 is  
either the last of a burst of two or the last desired of a  
longer burst. Following the PRECHARGE command, a  
subsequent command to the same bank cannot be  
t
issued until RP is met. The precharge will actually be-  
gin coincident with the clock-edge (T2 in Figure 18) on  
t
a “one-clock” WR and sometime between the first and  
second clock on a “two-clock” tWR (between T2 and T3  
in Figure 18.)  
In the case of a fixed-length burst being executed to  
completion, a PRECHARGE command issued at the  
optimum time (as described above) provides the same  
operation that would result from the same fixed-length  
burst with auto precharge. The disadvantage of the  
PRECHARGE command is that it requires that the com-  
mand and address buses be available at the appropri-  
ate time to issue the command; the advantage of the  
PRECHARGE command is that it can be used to trun-  
cate fixed-length or full-page bursts.  
Figure 16  
Random WRITE Cycles  
T0  
T1  
T2  
T3  
CLK  
WRITE  
WRITE  
WRITE  
WRITE  
COMMAND  
ADDRESS  
DQ  
Figure 18  
WRITE to PRECHARGE  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
D
IN  
D
IN  
D
IN  
DIN  
x
CLK  
m
n
a
t
t
t
WR = 1 CLK ( CK > WR)  
DON’T CARE  
DQM  
NOTE: Each WRITE command may be to any bank. DQM is LOW.  
t
RP  
NOP  
NOP  
NOP  
WRITE  
NOP  
PRECHARGE  
ACTIVE  
COMMAND  
ADDRESS  
BANK  
(a or all)  
BANK a,  
COL n  
BANK a,  
ROW  
Figure 17  
t
WR  
WRITE to READ  
D
n
IN  
DIN  
n + 1  
DQ  
T0  
T1  
T2  
T3  
T4  
T5  
t
t
t
CLK  
WR = 2 CLK (when WR > CK)  
DQM  
WRITE  
NOP  
READ  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
t
RP  
NOP  
NOP  
WRITE  
NOP  
NOP  
PRECHARGE  
ACTIVE  
COMMAND  
ADDRESS  
BANK,  
COL n  
BANK,  
COL b  
BANK  
(a or all)  
BANK a,  
COL n  
BANK a,  
ROW  
t
WR  
DIN  
n
DIN  
n + 1  
DOUT  
b
DOUT  
b + 1  
D
IN  
DIN  
n + 1  
DQ  
n
DON’T CARE  
NOTE:  
DQM could remain LOW in this example if the WRITE burst is a fixed  
length of two.  
DON’T CARE  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
20  
64Mb: x32  
SDRAM  
Fixed-length or full-page WRITE bursts can be trun-  
cated with the BURST TERMINATE command. When  
truncating a WRITE burst, the input data applied coin-  
cident with the BURST TERMINATE command will be  
ignored. The last data written (provided that DQM is  
LOW at that time) will be the input data applied one  
clock previous to the BURST TERMINATE command.  
This is shown in Figure 19, where data n is the last  
desired data element of a longer burst.  
PRECHARGE  
The PRECHARGE command (Figure 20) is used to  
deactivate the open row in a particular bank or the  
open row in all banks. The bank(s) will be available for  
a subsequent row access some specified time (tRP) af-  
ter the PRECHARGE command is issued. Input A10  
determines whether one or all banks are to be  
precharged, and in the case where only one bank is to  
be precharged, inputs BA0 and BA1 select the bank.  
When all banks are to be precharged, inputs BA0 and  
BA1 are treated as “Don’t Care.” Once a bank has been  
precharged, it is in the idle state and must be activated  
prior to any READ or WRITE commands being issued to  
that bank.  
Figure 19  
Terminating a WRITE Burst  
T0  
T1  
T2  
POWER-DOWN  
CLK  
Power-down occurs if CKE is registered LOW coinci-  
dent with a NOP or COMMAND INHIBIT when no ac-  
cesses are in progress (see Figure 21). If power-down  
occurs when all banks are idle, this mode is referred to  
as precharge power-down; if power-down occurs when  
there is a row active in either bank, this mode is referred  
to as active power-down. Entering power-down deacti-  
vates the input and output buffers, excluding CKE, for  
maximum power savings while in standby. The device  
may not remain in the power-down state longer than  
the refresh period (64ms) since no refresh operations  
are performed in this mode.  
BURST  
TERMINATE  
NEXT  
COMMAND  
WRITE  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
(ADDRESS)  
(DATA)  
DIN  
n
NOTE: DQMs are LOW.  
The power-down state is exited by registering a NOP  
or COMMAND INHIBIT and CKE HIGH at the desired  
t
clock edge (meeting CKS).  
Figure 20  
PRECHARGECommand  
Figure 21  
CLK  
Power-Down  
CKE  
CS#  
HIGH  
( (  
) )  
( (  
CLK  
) )  
> t  
CKS  
t
CKS  
CKE  
( (  
) )  
( (  
) )  
( (  
) )  
RAS#  
COMMAND  
NOP  
NOP  
ACTIVE  
t
All banks idle  
RCD  
CAS#  
WE#  
Input buffers gated off  
t
RAS  
t
RC  
Enter power-down mode.  
Exit power-down mode.  
DON’T CARE  
A0–A9  
A10  
All Banks  
Bank Selected  
BANK  
ADDRESS  
BA0, 1  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
21  
64Mb: x32  
SDRAM  
CLOCK SUSPEND  
The clock suspend mode occurs when a column ac-  
cess/burst is in progress and CKE is registered LOW. In  
the clock suspend mode, the internal clock is deacti-  
vated, “freezing” the synchronous logic.  
Clock suspend mode is exited by registering CKE  
HIGH; the internal clock and related operation will re-  
sume on the subsequent positive clock edge.  
For each positive clock edge on which CKE is  
sampled LOW, the next internal positive clock edge is  
suspended. Any command or data present on the in-  
put pins at the time of a suspended internal clock edge  
is ignored; any data present on the DQ pins remains  
driven; and burst counters are not incremented, as  
long as the clock is suspended. (See examples in Fig-  
ures 22 and 23.)  
BURST READ/SINGLE WRITE  
The burst read/single write mode is entered by pro-  
gramming the write burst mode bit (M9) in the Mode  
Register to a logic 1. In this mode, all WRITE commands  
result in the access of a single column location (burst of  
one), regardless of the programmed burst length. READ  
commands access columns according to the pro-  
grammed burst length and sequence, just as in the  
normal mode of operation (M9 = 0).  
Figure 22  
Figure 23  
CLOCK SUSPEND During WRITE Burst  
CLOCK SUSPEND During READ Burst  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
CKE  
CLK  
CKE  
INTERNAL  
CLOCK  
INTERNAL  
CLOCK  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
NOP  
WRITE  
NOP  
NOP  
COMMAND  
ADDRESS  
BANK,  
COL n  
BANK,  
COL n  
D
OUT  
D
OUT  
D
n + 2  
OUT  
DOUT  
n + 3  
n
n + 1  
D
n
IN  
D
n + 1  
IN  
DIN  
n + 2  
D
IN  
DON’T CARE  
NOTE: For this example, CAS latency = 2, burst length = 4 or greater, and  
DQM is LOW.  
DON’T CARE  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
22  
64Mb: x32  
SDRAM  
CONCURRENT AUTO PRECHARGE  
An access command to (READ or WRITE) another  
bank while an access command with auto precharge  
enabled is executing is not allowed by SDRAMs, unless  
the SDRAM supports CONCURRENT AUTO  
PRECHARGE. Micron SDRAMs support CONCURRENT  
AUTO PRECHARGE. Four cases where CONCURRENT  
AUTO PRECHARGE occurs are defined below.  
on bank n, CAS latency later. The PRECHARGE to  
bank n will begin when the READ to bank m is regis-  
tered (Figure 24).  
2. Interrupted by a WRITE (with or without auto  
precharge): A WRITE to bank m will interrupt a READ  
on bank n when registered. DQM should be used  
two clocks prior to the WRITE command to prevent  
bus contention. The PRECHARGE to bank n will  
begin when the WRITE to bank m is registered (Fig-  
ure 25).  
READ with auto precharge  
1. Interrupted by a READ (with or without auto  
precharge): A READ to bank m will interrupt a READ  
Figure 24  
READ With Auto Precharge Interrupted by a READ  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ - AP  
BANK n  
READ - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page Active  
READ with Burst of 4  
Interrupt Burst, Precharge  
t
Idle  
BANK n  
t
RP - BANK n  
RP - BANK m  
Internal  
States  
Precharge  
Page Active  
READ with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
DQ  
D
a
OUT  
D
a + 1  
OUT  
D
OUT  
DOUT  
d + 1  
d
CAS Latency = 3 (BANK n)  
CAS Latency = 3 (BANK m)  
NOTE: DQM is LOW.  
Figure 25  
READ With Auto Precharge Interrupted by a WRITE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ - AP  
BANK n  
WRITE - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page  
Active  
READ with Burst of 4  
Page Active  
Interrupt Burst, Precharge  
t
Idle  
WR - BANK m  
BANK n  
t
RP - BANK  
n
Internal  
States  
Write-Back  
WRITE with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
1
DQM  
D
OUT  
DIN  
d
D
d + 1  
IN  
D
d + 2  
IN  
DIN  
d + 3  
DQ  
a
CAS Latency = 3 (BANK n)  
NOTE: 1. DQM is HIGH at T2 to prevent DOUT-a+1 from contending with DIN-d at T4.  
DON’T CARE  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
23  
64Mb: x32  
SDRAM  
WRITE WITH AUTO PRECHARGE  
3. Interrupted by a READ (with or without auto  
precharge): A READ to bank m will interrupt a WRITE  
on bank n when registered, with the data-out ap-  
pearing CAS latency later. The PRECHARGE to bank  
n will begin after tWR is met, where tWR begins when  
the READ to bank m is registered. The last valid  
WRITE to bank n will be data-in registered one clock  
prior to the READ to bank m (Figure 26).  
4. Interrupted by a WRITE (with or without auto  
precharge): A WRITE to bank m will interrupt a  
WRITE on bank n when registered. The PRECHARGE  
t
t
to bank n will begin after WR is met, where WR  
begins when the WRITE to bank m is registered. The  
last valid data WRITE to bank n will be data regis-  
tered one clock prior to a WRITE to bank m (Figure  
27).  
Figure 26  
WRITE With Auto Precharge Interrupted by a READ  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
WRITE - AP  
BANK n  
READ - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page Active  
WRITE with Burst of 4  
Interrupt Burst, Write-Back  
Precharge  
BANK n  
t
RP - BANK n  
t
WR - BANK n  
Internal  
States  
t
RP - BANK m  
Page Active  
READ with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
DQ  
DIN  
D
a + 1  
IN  
D
OUT  
DOUT  
d + 1  
a
d
CAS Latency = 3 (BANK m)  
NOTE: 1. DQM is LOW.  
Figure 27  
WRITE With Auto Precharge Interrupted by a WRITE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
WRITE - AP  
BANK n  
WRITE - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page Active  
WRITE with Burst of 4  
Interrupt Burst, Write-Back  
Precharge  
BANK n  
t
RP - BANK n  
t
WR - BANK n  
Internal  
States  
t
WR - BANK m  
Write-Back  
Page Active  
WRITE with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
DQ  
DIN  
D
a + 1  
IN  
D
a + 2  
IN  
DIN  
D
d + 1  
IN  
D
d + 2  
IN  
DIN  
d + 3  
a
d
NOTE: 1. DQM is LOW.  
DON’T CARE  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
24  
64Mb: x32  
SDRAM  
TRUTH TABLE 2 – CKE  
(Notes: 1-4)  
CKEn-1 CKEn  
CURRENT STATE  
COMMANDn  
ACTIONn  
NOTES  
L
L
L
H
L
Power-Down  
Self Refresh  
X
Maintain Power-Down  
Maintain Self Refresh  
Maintain Clock Suspend  
Exit Power-Down  
X
Clock Suspend  
Power-Down  
Self Refresh  
X
COMMAND INHIBIT or NOP  
COMMAND INHIBIT or NOP  
X
5
6
7
Exit Self Refresh  
Clock Suspend  
All Banks Idle  
All Banks Idle  
Reading or Writing  
Exit Clock Suspend  
Power-Down Entry  
Self Refresh Entry  
H
COMMAND INHIBIT or NOP  
AUTO REFRESH  
VALID  
Clock Suspend Entry  
H
H
See Truth Table 3  
NOTE: 1. CKEn is the logic state of CKE at clock edge n; CKEn-1 was the state of CKE at the previous clock edge.  
2. Current state is the state of the SDRAM immediately prior to clock edge n.  
3. COMMANDn is the command registered at clock edge n, and ACTIONn is a result of COMMANDn.  
4. All states and sequences not shown are illegal or reserved.  
5. Exiting power-down at clock edge n will put the device in the all banks idle state in time for clock  
edge n + 1 (provided that tCKS is met).  
6. Exiting self refresh at clock edge n will put the device in the all banks idle state once tXSR is met.  
COMMAND INHIBIT or NOP commands should be issued on any clock edges occurring during the tXSR  
period. A minimum of two NOP commands must be provided during tXSR period.  
7. After exiting clock suspend at clock edge n, the device will resume operation and recognize the next  
command at clock edge n + 1.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
25  
64Mb: x32  
SDRAM  
TRUTH TABLE 3 – CURRENT STATE BANK n, COMMAND TO BANK n  
(Notes: 1-6; notes appear below and on next page)  
CURRENT STATE CS# RAS# CAS# WE#  
COMMAND (ACTION)  
NOTES  
Any  
Idle  
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
H
L
X
H
H
L
X
H
H
H
L
COMMAND INHIBIT (NOP/Continue previous operation)  
NO OPERATION (NOP/Continue previous operation)  
ACTIVE (Select and activate row)  
L
AUTO REFRESH  
7
7
L
L
LOAD MODE REGISTER  
L
H
L
L
PRECHARGE  
11  
10  
10  
8
H
H
L
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE (Deactivate row in bank or banks)  
READ (Select column and start new READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE (Truncate READ burst, start PRECHARGE)  
BURST TERMINATE  
Row Active  
L
H
L
L
Read  
(Auto  
H
H
L
H
L
10  
10  
8
L
Precharge  
Disabled)  
Write  
H
H
L
L
H
H
H
L
L
9
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start new WRITE burst)  
PRECHARGE (Truncate WRITE burst, start PRECHARGE)  
BURST TERMINATE  
10  
10  
8
(Auto  
L
Precharge  
Disabled)  
H
H
L
H
L
9
NOTE: 1. This table applies when CKEn-1 was HIGH and CKEn is HIGH (see Truth Table 2) and after tXSR has been  
met (if the previous state was self refresh).  
2. This table is bank-specific, except where noted, i.e., the current state is for a specific bank and the  
commands shown are those allowed to be issued to that bank when in that state. Exceptions are  
covered in the notes below.  
3. Current state definitions:  
Idle:  
The bank has been precharged, and tRP has been met.  
Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts/  
accesses and no register accesses are in progress.  
Read: A READ burst has been initiated, with auto precharge disabled, and has not yet  
terminated or been terminated.  
Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet  
terminated or been terminated.  
4. The following states must not be interrupted by a command issued to the same bank. COMMAND  
INHIBIT or NOP commands, or allowable commands to the other bank should be issued on any clock  
edge occurring during these states. Allowable commands to the other bank are determined by its  
current state and Truth Table 3, and according to Truth Table 4.  
Precharging: Starts with registration of a PRECHARGE command and ends when tRP is met.  
Once tRP is met, the bank will be in the idle state.  
Row Activating: Starts with registration of an ACTIVE command and ends when tRCD is met. Once  
tRCD is met, the bank will be in the row active state.  
Read w/Auto  
Precharge Enabled: Starts with registration of a READ command with auto precharge enabled and  
t
t
ends when RP has been met. Once RP is met, the bank will be in the idle state.  
64Mb: x32 SDRAM  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
26  
©2002,MicronTechnology,Inc.  
64Mb: x32  
SDRAM  
NOTE (continued):  
Write w/Auto  
Precharge Enabled: Starts with registration of a WRITE command with auto precharge enabled and  
ends when tRP has been met. Once tRP is met, the bank will be in the idle state.  
5. The following states must not be interrupted by any executable command; COMMAND INHIBIT or NOP  
commands must be applied on each positive clock edge during these states.  
Refreshing: Starts with registration of an AUTO REFRESH command and ends when tRC is met.  
Once tRC is met, the SDRAM will be in the all banks idle state.  
Accessing Mode  
Register:  
Starts with registration of a LOAD MODE REGISTER command and ends when  
tMRD has been met. Once tMRD is met, the SDRAM will be in the all banks idle  
state.  
Precharging All: Starts with registration of a PRECHARGE ALL command and ends when tRP is met.  
Once tRP is met, all banks will be in the idle state.  
6. All states and sequences not shown are illegal or reserved.  
7. Not bank-specific; requires that all banks are idle.  
8. May or may not be bank-specific; if all banks are to be precharged, all must be in a valid state for  
precharging.  
9. Not bank-specific; BURST TERMINATE affects the most recent READ or WRITE burst, regardless of bank.  
10. READs or WRITEs listed in the Command (Action) column include READs or WRITEs with auto  
precharge enabled and READs or WRITEs with auto precharge disabled.  
11. Does not affect the state of the bank and acts as a NOP to that bank.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
27  
64Mb: x32  
SDRAM  
TRUTH TABLE 4 – CURRENT STATE BANK n, COMMAND TO BANK m  
(Notes: 1-6; notes appear below and on next page)  
CURRENT STATE CS# RAS# CAS# WE#  
COMMAND (ACTION)  
NOTES  
Any  
H
L
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
H
X
L
X
H
X
H
L
X
H
X
H
H
L
COMMAND INHIBIT (NOP/Continue previous operation)  
NO OPERATION (NOP/Continue previous operation)  
Any Command Otherwise Allowed to Bank m  
ACTIVE (Select and activate row)  
Idle  
Row  
Activating,  
Active, or  
Precharging  
Read  
H
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE  
7
7
L
H
H
L
L
L
H
H
L
ACTIVE (Select and activate row)  
(Auto  
H
H
L
READ (Select column and start new READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE  
7, 10  
7, 11  
9
Precharge  
Disabled)  
Write  
L
H
H
L
L
L
H
H
L
ACTIVE (Select and activate row)  
(Auto  
H
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start new WRITE burst)  
PRECHARGE  
7, 12  
7, 13  
9
Precharge  
Disabled)  
Read  
L
H
H
L
L
L
H
H
L
ACTIVE (Select and activate row)  
(With Auto  
Precharge)  
H
H
L
READ (Select column and start new READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE  
7, 8, 14  
7, 8, 15  
9
L
H
H
L
L
Write  
L
H
H
L
ACTIVE (Select and activate row)  
(With Auto  
Precharge)  
H
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start new WRITE burst)  
PRECHARGE  
7, 8, 16  
7, 8, 17  
9
L
H
L
NOTE: 1. This table applies when CKEn-1 was HIGH and CKEn is HIGH (see Truth Table 2) and after tXSR has been  
met (if the previous state was self refresh).  
2. This table describes alternate bank operation, except where noted; i.e., the current state is for bank n  
and the commands shown are those allowed to be issued to bank m (assuming that bank m is in such a  
state that the given command is allowable). Exceptions are covered in the notes below.  
3. Current state definitions:  
Idle: The bank has been precharged, and tRP has been met.  
Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts/  
accesses and no register accesses are in progress.  
Read: A READ burst has been initiated, with auto precharge disabled, and has not yet  
terminated or been terminated.  
Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet  
terminated or been terminated.  
Read w/Auto  
Precharge Enabled: Starts with registration of a READ command with auto precharge enabled, and  
ends when tRP has been met. Once tRP is met, the bank will be in the idle state.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
28  
64Mb: x32  
SDRAM  
NOTE (continued):  
4. AUTO REFRESH, SELF REFRESH, and LOAD MODE REGISTER commands may only be issued when all  
banks are idle.  
5. A BURST TERMINATE command cannot be issued to another bank; it applies to the bank represented  
by the current state only.  
6. All states and sequences not shown are illegal or reserved.  
7. READs or WRITEs to bank m listed in the Command (Action) column include READs or WRITEs with  
auto precharge enabled and READs or WRITEs with auto precharge disabled.  
8. CONCURRENT AUTO PRECHARGE: Bank n will initiate the auto precharge command when its burst has  
been interrupted by bank m’s burst.  
9. Burst in bank n continues as initiated.  
10. For a READ without auto precharge interrupted by a READ (with or without auto precharge), the  
READ to bank m will interrupt the READ on bank n, CAS latency later (Figure 7).  
11. For a READ without auto precharge interrupted by a WRITE (with or without auto precharge), the  
WRITE to bank m will interrupt the READ on bank n when registered (Figures 9 and 10). DQM should  
be used one clock prior to the WRITE command to prevent bus contention.  
12. For a WRITE without auto precharge interrupted by a READ (with or without auto precharge), the  
READ to bank m will interrupt the WRITE on bank n when registered (Figure 17), with the data-out  
appearing CAS latency later. The last valid WRITE to bank n will be data-in registered one clock prior  
to the READ to bank m.  
13. For a WRITE without auto precharge interrupted by a WRITE (with or without auto precharge), the  
WRITE to bank m will interrupt the WRITE on bank n when registered (Figure 15). The last valid WRITE  
to bank n will be data-in registered one clock prior to the READ to bank m.  
14. For a READ with auto precharge interrupted by a READ (with or without auto precharge), the READ to  
bank m will interrupt the READ on bank n, CAS latency later. The PRECHARGE to bank n will begin  
when the READ to bank m is registered (Figure 24).  
15. For a READ with auto precharge interrupted by a WRITE (with or without auto precharge), the  
WRITE to bank m will interrupt the READ on bank n when registered. DQM should be used two  
clocks prior to the WRITE command to prevent bus contention. The PRECHARGE to bank n will  
begin when the WRITE to bank m is registered (Figure 25).  
16. For a WRITE with auto precharge interrupted by a READ (with or without auto precharge), the READ  
to bank m will interrupt the WRITE on bank n when registered, with the data-out appearing CAS  
latency later. The PRECHARGE to bank n will begin after tWR is met, where tWR begins when the  
READ to bank m is registered. The last valid WRITE to bank n will be data-in registered one clock prior  
to the READ to bank m (Figure 26).  
17. For a WRITE with auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE  
to bank m will interrupt the WRITE on bank n when registered. The PRECHARGE to bank n will begin  
after tWR is met, where tWR begins when the WRITE to bank m is registered. The last valid WRITE to  
bank n will be data registered one clock prior to the WRITE to bank m (Figure 27).  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
29  
64Mb: x32  
SDRAM  
*Stresses greater than those listed under “Absolute  
Maximum Ratings” may cause permanent damage to  
the device. This is a stress rating only, and functional  
operation of the device at these or any other conditions  
above those indicated in the operational sections of  
this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may  
affect reliability.  
ABSOLUTEMAXIMUMRATINGS*  
Voltage on VDD, VDDQ Supply  
Relative to VSS .............................................. -1V to +4.6V  
Voltage on Inputs, NC or I/O Pins  
Relative to VSS .............................................. -1V to +4.6V  
Operating Temperature, TA ............................ 0°C to +70°C  
Extended Temperature .......................... -40°C to +85°C  
Storage Temperature (plastic) ............ -55°C to +150°C  
Power Dissipation ........................................................ 1W  
DCELECTRICALCHARACTERISTICSANDOPERATINGCONDITIONS  
(Notes: 1, 6, 27; notes appear on page 35) (VDD, VDDQ = +3.3V 0.3V)  
PARAMETER/CONDITION  
SYMBOL  
VDD, VDDQ  
VIH  
MIN  
3
MAX UNITS NOTES  
SUPPLY VOLTAGE  
3.6  
VDD + 0.3  
0.8  
V
V
V
27  
22  
22  
INPUT HIGH VOLTAGE: Logic 1; All inputs  
INPUT LOW VOLTAGE: Logic 0; All inputs  
2
VIL  
-0.3  
INPUT LEAKAGE CURRENT:  
Any input 0V VIN VDD  
(All other pins not under test = 0V)  
II  
-5  
5
µA  
OUTPUT LEAKAGE CURRENT: DQs are disabled; 0V VOUT VDDQ  
IOZ  
-5  
5
µA  
V
OUTPUT LEVELS:  
VOH  
2.4  
Output High Voltage (IOUT = -4mA)  
Output Low Voltage (IOUT = 4mA)  
VOL  
0.4  
V
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
30  
64Mb: x32  
SDRAM  
IDD SPECIFICATIONSANDCONDITIONS  
(Notes: 1, 6, 11, 13, 27; notes appear on page 35) (VDD, VDDQ = +3.3V 0.3V)  
MAX  
PARAMETER/CONDITION  
SYMBOL  
-6  
-7  
UNITS NOTES  
OPERATING CURRENT: Active Mode;  
IDD1  
150  
130  
mA  
3, 18,  
19, 26  
t
Burst = 2; READ or WRITE; tRC = RC (MIN);  
CAS latency = 3  
STANDBY CURRENT: Power-Down Mode;  
CKE = LOW; All banks idle  
IDD2  
IDD3  
2
2
mA  
mA  
STANDBY CURRENT: Active Mode; CS# = HIGH;  
60  
50  
3, 12,  
19, 26  
t
CKE = HIGH; All banks active after RCD met;  
No accesses in progress  
OPERATING CURRENT: Burst Mode; Continuous burst;  
READ or WRITE; All banks active,  
CAS latency = 3  
IDD4  
IDD5  
IDD6  
180  
225  
2
160  
225  
2
mA  
mA  
mA  
3, 18,  
19, 26  
t
AUTO REFRESH CURRENT:  
tRFC = RFC (MIN)  
3, 12,  
18, 19,  
26, 29  
CAS latency = 3; CKE, CS# = HIGH  
SELF REFRESH CURRENT: CKE 0.2V  
4
IDD SPECIFICATIONSANDCONDITIONS  
(Notes: 1, 6, 11, 13, 27; notes appear on page 35) (VDD, VDDQ = +3.3V 0.3V)  
MAX  
PARAMETER/CONDITION  
SYMBOL  
-5  
-55  
UNITS NOTES  
OPERATING CURRENT: Active Mode;  
IDD1  
200  
190  
mA  
3, 18,  
19, 26  
t
Burst = 2; READ or WRITE; tRC = RC (MIN);  
CAS latency = 3  
STANDBYCURRENT:Power-DownMode;  
CKE = LOW; All banks idle  
IDD2  
IDD3  
2
2
mA  
mA  
STANDBY CURRENT: Active Mode; CS# = HIGH;  
80  
70  
3, 12,  
t
CKE = HIGH; All banks active after RCD met;  
19, 26  
No accesses in progress  
OPERATING CURRENT: Burst Mode; Continuous burst;  
READ or WRITE; All banks active,  
CAS latency = 3  
IDD4  
IDD5  
IDD6  
280  
225  
2
260  
225  
2
mA  
mA  
mA  
3, 18,  
19, 26  
AUTOREFRESHCURRENT:  
tRFC = tRFC (MIN)  
3, 12,  
18, 19,  
26, 29  
CAS latency = 3; CKE, CS# = HIGH  
SELF REFRESH CURRENT: CKE 0.2V  
4
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
31  
64Mb: x32  
SDRAM  
CAPACITANCE  
(Note: 2; notes appear on page 35)  
PARAMETER  
SYMBOL MIN  
MAX UNITS  
Input Capacitance: CLK  
CI1  
CI2  
CIO  
2.5  
2.5  
4.0  
4.0  
4.0  
6.5  
pF  
pF  
pF  
Input Capacitance: All other input-only pins  
Input/Output Capacitance: DQs  
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS  
(Notes: 5, 6, 8, 9, 11; notes appear on page 35)  
AC CHARACTERISTICS  
PARAMETER  
Access time from CLK  
(pos.edge)  
-5  
-55  
SYMBOL  
MIN MAX MIN MAX UNITS NOTES  
t
CL = 3  
CL = 2  
CL = 1  
AC(3)  
AC(2)  
AC(1)  
4.5  
-
-
5
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
ns  
ns  
t
t
t
Address hold time  
Address setup time  
CLK high-level width  
CLK low-level width  
Clock cycle time  
AH  
AS  
CH  
CL  
1
1.5  
2
2
5
1
1.5  
2
2
5.5  
-
t
t
t
t
CL = 3  
CL = 2  
CL = 1  
CK (3)  
CK (2)  
23  
23  
23  
t
-
t
CK (1)  
-
1
1.5  
1
1.5  
1
1.5  
4.5  
-
-
1
-
1
1.5  
1
1.5  
1
1.5  
5
-
-
1
t
CKE hold time  
CKE setup time  
CS#, RAS#, CAS#, WE#, DQM hold time  
CS#, RAS#, CAS#, WE#, DQM setup time  
Data-in hold time  
CKH  
CKS  
t
t
CMH  
CMS  
t
t
DH  
DS  
t
Data-in setup time  
Data-outhigh-impedancetime  
t
CL = 3  
CL = 2  
CL = 1  
HZ (3)  
HZ (2)  
HZ (1)  
10  
10  
10  
t
t
t
Data-outlow-impedancetime  
Data-outholdtime  
ACTIVE to PRECHARGE command  
ACTIVE to ACTIVE command period  
AUTO REFRESH period  
ACTIVE to READ or WRITE delay  
Refresh period (4,096 rows)  
PRECHARGE command period  
ACTIVE bankatoACTIVEbankbcommand  
Transition time  
LZ  
t
OH  
1.5  
2
t
RAS  
RC  
RFC  
38.7 120k 38.7 120k  
t
55  
60  
15  
55  
60  
t
t
RCD  
16.5  
t
REF  
64  
64  
t
RP  
15  
10  
0.3  
2
16.5  
11  
t
RRD  
25  
7
24  
20  
t
T
1.2  
0.3  
2
55  
1.2  
t
t
WRITE recovery time  
Exit SELF REFRESH to ACTIVE command  
WR  
CK  
ns  
t
XSR  
55  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
32  
64Mb: x32  
SDRAM  
ELECTRICALCHARACTERISTICSANDRECOMMENDEDACOPERATINGCONDITIONS  
(Notes: 5, 6, 8, 9, 11; notes appear on page 35)  
ACCHARACTERISTICS  
PARAMETER  
Access time from CLK  
(pos.edge)  
-6  
-7  
SYMBOL  
MIN MAX MIN MAX UNITS NOTES  
t
CL = 3  
CL = 2  
CL = 1  
AC(3)  
AC(2)  
AC(1)  
AH  
AS  
CH  
CL  
CK (3)  
CK (2)  
CK (1)  
CKH  
CKS  
CMH  
CMS  
DH  
DS  
5.5  
7.5  
17  
5.5  
8
17  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
ns  
ns  
t
t
t
Address hold time  
Address setup time  
CLKhigh-levelwidth  
CLK low-level width  
Clock cycle time  
1
1.5  
2.5  
2.5  
6
10  
20  
1
1.5  
1
1.5  
1
1
2
2.75  
2.75  
7
10  
20  
1
2
1
2
1
t
t
t
t
CL = 3  
CL = 2  
CL = 1  
23  
23  
23  
t
t
t
CKE hold time  
CKE setup time  
CS#, RAS#, CAS#, WE#, DQM hold time  
CS#, RAS#, CAS#, WE#, DQM setup time  
Data-in hold time  
t
t
t
t
t
Data-in setup time  
Data-outhigh-impedancetime  
1.5  
2
t
CL = 3  
CL = 2  
CL = 1  
HZ (3)  
HZ (2)  
HZ (1)  
5.5  
7.5  
17  
5.5  
8
17  
10  
10  
10  
t
t
t
Data-outlow-impedancetime  
Data-outholdtime  
ACTIVEtoPRECHARGEcommand  
ACTIVEtoACTIVEcommandperiod  
AUTOREFRESHperiod  
ACTIVE to READ or WRITE delay  
Refresh period (4,096 rows)  
PRECHARGEcommandperiod  
ACTIVE bankatoACTIVE bankbcommand  
Transition time  
LZ  
OH  
RAS  
RC  
RFC  
RCD  
REF  
RP  
1
2
42  
60  
60  
18  
1
t
2.5  
42  
70  
70  
20  
t
120k  
120k  
t
t
t
t
64  
64  
t
18  
12  
0.3  
20  
14  
0.3  
t
RRD  
T
25  
7
24  
t
1.2  
1.2  
t
t
WRITE recovery time  
WR  
1CLK+  
6ns  
1CLK+  
7ns  
CK  
12ns  
70  
14ns  
70  
ns  
ns  
28  
20  
t
Exit SELF REFRESH to ACTIVE command  
XSR  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
33  
64Mb: x32  
SDRAM  
AC FUNCTIONAL CHARACTERISTICS  
(Notes: 5, 6, 7, 8, 9, 11; notes appear on page 35)  
PARAMETER  
SYMBOL  
CCD  
-5  
1
1
1
0
0
2
0
5
-
-55  
1
1
1
0
0
2
0
5
-
-6  
1
1
1
0
0
2
0
5
4
3
2
1
1
2
2
3
2
-7  
1
1
1
0
0
2
0
5
4
3
2
1
1
2
2
3
2
1
UNITS NOTES  
t
t
READ/WRITEcommandtoREAD/WRITEcommand  
CKE to clock disable or power-down entry mode  
CKE to clock enable or power-down exit setup mode  
DQM to input data delay  
DQM to data mask during WRITEs  
DQMtodatahigh-impedanceduringREADs  
WRITE command to input data delay  
Data-intoACTIVEcommand  
CK  
CK  
17  
14  
14  
17  
17  
17  
17  
t
t
CKED  
t
t
PED  
CK  
t
t
DQD  
CK  
t
t
DQM  
CK  
t
t
DQZ  
CK  
t
t
DWD  
CK  
t
t
CL = 3  
CL = 2  
CL = 1  
DAL(3)  
DAL(2)  
DAL(1)  
CK 15, 21  
t
t
CK 15, 21  
t
t
-
-
CK 15, 21  
t
t
Data-intoPRECHARGEcommand  
Last data-in to burst STOP command  
Lastdata-intonewREAD/WRITEcommand  
Lastdata-intoPRECHARGEcommand  
LOADMODEREGISTERcommandtoACTIVEorREFRESHcommand  
Data-outtohigh-impedancefromPRECHARGEcommand  
DPL  
2
1
1
2
2
3
-
2
1
1
2
2
3
-
CK 16, 21  
t
t
BDL  
CK  
17  
17  
t
t
CDL  
CK  
t
t
RDL  
CK 16, 21  
t
t
MRD  
CK  
26  
17  
17  
17  
t
t
CL = 3  
CL = 2  
CL = 1  
ROH(3)  
ROH(2)  
ROH(1)  
CK  
t
t
CK  
t
t
-
-
CK  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
34  
64Mb: x32  
SDRAM  
NOTES  
1. All voltages referenced to VSS.  
13. IDD specifications are tested after the device is prop-  
erly initialized.  
14. Timing actually specified by CKS; clock(s) speci-  
2. This parameter is sampled. VDD, VDDQ = +3.3V;  
f = 1 MHz, TA = 25°C; pin under test biased at 1.4V.  
AC can range from 0pF to 6pF.  
3. IDD is dependent on output loading and cycle rates.  
Specified values are obtained with minimum cycle  
time and the outputs open.  
t
fied as a reference only at minimum cycle rate.  
t
t
15. Timing actually specified by WR plus RP; clock(s)  
specified as a reference only at minimum cycle rate.  
t
16. Timing actually specified by WR.  
4. Enables on-chip refresh and address counters.  
5. The minimum specifications are used only to indi-  
cate cycle time at which proper operation over the  
17. Required clocks are specified by JEDEC function-  
ality and are not dependent on any timing param-  
eter.  
18. The IDD current will decrease as the CAS latency is  
reduced. This is due to the fact that the maximum  
cycle rate is slower as the CAS latency is reduced.  
19. Address transitions average one transition every  
two clocks.  
full temperature range (0°C TA  
+70°C and  
-40°C TA +85°C for IT parts) is ensured.  
6. An initial pause of 100µs is required after power-  
up, followed by two AUTO REFRESH commands,  
before proper device operation is ensured. (VDD  
and VDDQ must be powered up simultaneously. VSS  
and VSSQ must be at same potential.) The two  
AUTO REFRESH command wake-ups should be  
20. CLK must be toggled a minimum of two times dur-  
ing this period.  
t
21. Based on CK = 143 MHz for -7, 166 MHz for -6,  
t
repeated any time the REF refresh requirement is  
183 MHz for -55, and 200 MHz for -5.  
exceeded.  
7. AC characteristics assume T = 1ns.  
8. In addition to meeting the transition rate specifi-  
cation, the clock and CKE must transit between VIH  
and VIL (or between VIL and VIH) in a monotonic  
manner.  
22. VIH overshoot: VIH(MAX) = VDDQ + 1.2V for a pulse  
width 3ns, and the pulse width cannot be greater  
than one third of the cycle rate. VIL undershoot:  
VIL(MIN) = -1.2V for a pulse width 3ns, and the  
pulse width cannot be greater than one third of the  
cycle rate.  
t
23. The clock frequency must remain constant during  
access or precharge states (READ, WRITE, includ-  
Q
30pF  
t
ing WR, and PRECHARGE commands). CKE may  
be used to reduce the data rate.  
24. Auto precharge mode only.  
9. Outputs measured at 1.5V with equivalent load:  
10. HZ defines the time at which the output achieves  
25. JEDEC and PC100 specify three clocks.  
26. CK = 7ns for -7, 6ns for -6, 5.5ns for -5.5, and  
t
t
the open circuit condition; it is not a reference to  
VOH or VOL. The last valid data element will meet  
tOH before going High-Z.  
5ns for -5.  
27. VDD(MIN) = 3.135V for -6, -55, and -5 speed grades.  
28. Check factory for availability of specially screened  
t
11. AC timing and IDD tests have VIL = .25 and VIH = 2.75,  
with timing referenced to 1.5V crossover point.  
12. Other input signals are allowed to transition no  
more than once in any two-clock period and are  
otherwise at valid VIH or VIL levels.  
devices having WR = 10ns. tWR = 1 tCK for 100 MHz  
and slower (tCK = 10ns and higher) in manual  
precharge.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
35  
64Mb: x32  
SDRAM  
INITIALIZEANDLOADMODEREGISTER  
T0  
T1  
Tn + 1  
To + 1  
CL  
Tp + 1  
Tp + 2  
Tp + 3  
( (  
) )  
( (  
) )  
( (  
) )  
t
t
CK  
CLK  
CKE  
((  
))  
t
( (  
) )  
( (  
) )  
( (  
) )  
CH  
t
t
CKH  
CKS  
((  
))  
((  
))  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
t
t
t
t
t
t
CMS CMH  
CMS CMH  
CMS CMH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
AUTO  
REFRESH  
AUTO  
REFRESH  
LOAD MODE  
REGISTER  
COMMAND  
DQM 0-3  
NOP  
PRECHARGE  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
CODE  
ROW  
ROW  
BANK  
A0-A9  
A10  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
ALL BANKS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
CODE  
SINGLE BANK  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
ALL  
BANKS  
CODE  
BA0, BA1  
DQ  
High-Z  
((  
))  
((  
))  
T = 100µs  
(MIN)  
t
t
t
t
MRD  
RP  
RFC  
RFC  
Power-up:  
Program Mode Register 1, 2, 5  
AUTO REFRESH  
VDD and  
AUTO REFRESH  
Precharge  
all banks  
CK stable  
DON’T CARE  
UNDEFINED  
TIMING PARAMETERS  
-5  
-6  
-7  
-5  
-6  
-7  
SYMBOL* MIN  
MAX  
MIN  
1
MAX  
MIN  
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
MAX  
MIN  
1
MAX UNITS  
t
t
AH  
AS  
1
1.5  
2
1
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
CKS  
1
1.5  
1
1
1.5  
1
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
1.5  
2.5  
2.5  
6
2
CH  
2.75  
2.75  
7
CMH  
CMS  
MRD  
RFC  
1
CL  
2
1.5  
2
1.5  
2
2
t
t
CLK (3)  
CLK (2)  
CLK (1)  
5
2
CK  
t
t
10  
10  
60  
15  
60  
18  
70  
20  
ns  
ns  
20  
20  
RP  
*CAS latency indicated in parentheses.  
NOTE: 1. The Mode Register may be loaded prior to the AUTO REFRESH cycles if desired.  
2. Outputs are guaranteed High-Z after command is issued.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
36  
64Mb: x32  
SDRAM  
POWER-DOWN MODE 1  
T0  
T1  
T2  
Tn + 1  
Tn + 2  
( (  
) )  
t
CK  
t
CL  
CLK  
CKE  
( (  
t
CH  
) )  
t
t
CKS  
CKS  
( (  
) )  
t
t
CKS  
CKH  
t
t
CMS CMH  
PRECHARGE  
( (  
) )  
COMMAND  
DQM 0-3  
NOP  
NOP  
NOP  
ACTIVE  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
A0-A9  
A10  
ROW  
ROW  
ALL BANKS  
( (  
) )  
( (  
) )  
SINGLE BANK  
t
AS  
t
AH  
( (  
) )  
( (  
) )  
BANK  
BA0, BA1  
DQ  
BANK(S)  
High-Z  
( (  
) )  
Two clock cycles  
Input buffers gated off while in  
power-down mode  
Precharge all  
active banks  
All banks idle  
All banks idle, enter  
power-down mode  
Exit power-down mode  
DON’T CARE  
UNDEFINED  
TIMING PARAMETERS  
-5  
-6  
-7  
-5  
-6  
-7  
SYMBOL* MIN  
MAX  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
20  
MAX  
MIN  
20  
1
MAX UNITS  
t
t
AH  
AS  
1
1.5  
2
ns  
ns  
ns  
ns  
ns  
ns  
CK (1)  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
1.5  
2.5  
2.5  
6
2
CKH  
CKS  
1
1.5  
1
1
t
t
t
CH  
2.75  
2.75  
7
1.5  
1
2
CL  
2
CMH  
CMS  
1
t
CK (3)  
CK (2)  
5
1.5  
1.5  
2
t
10  
10  
*CAS latency indicated in parentheses.  
NOTE: 1. Violating refresh requirements during power-down may result in a loss of data.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
37  
64Mb: x32  
SDRAM  
CLOCK SUSPEND MODE 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
CK  
t
CL  
CLK  
CKE  
t
CH  
t
t
CKS CKH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
DQM0-3  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
WRITE  
NOP  
t
t
CMS  
CMH  
t
AS  
t
AH  
2
2
A0-A9  
COLUMN m  
COLUMN e  
t
AS  
t
AH  
A10  
t
AS  
t
AH  
BA0, BA1  
BANK  
BANK  
t
AC  
t
AC  
t
OH  
t
HZ  
t
DS  
t
DH  
DOUT  
m
DOUT m + 1  
DOUT  
e
DOUT e + 1  
DQ  
t
LZ  
DON’T CARE  
UNDEFINED  
TIMING PARAMETERS  
-5  
-6  
-7  
-5  
-6  
-7  
SYMBOL* MIN  
MAX  
MIN  
MAX  
MIN  
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
1.5  
1
MAX  
MIN  
MAX UNITS  
t
t
AC (3)  
4.5  
5.5  
7.5  
17  
5.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKS  
1.5  
1
2
1
2
1
2
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
AC (2)  
CMH  
CMS  
DH  
t
AC (1)  
17  
1.5  
1
1.5  
1
t
AH  
AS  
1
1.5  
2
1
1.5  
2.5  
2.5  
6
1
2
t
t
t
DS  
1.5  
1.5  
CH  
2.75  
2.75  
7
HZ (3)  
HZ (2)  
HZ (1)  
4.5  
5.5  
7.5  
17  
5.5  
8
ns  
ns  
ns  
ns  
ns  
CL  
2
t
CK (3)  
CK (2)  
CK (1)  
5
17  
t
t
t
10  
20  
1
10  
20  
1
LZ  
1
1
2
1
t
OH  
1.5  
2.5  
CKH  
1
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 2, the CAS latency = 3, and auto precharge is disabled.  
2. A8 and A9 = “Don’t Care.”  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
38  
64Mb: x32  
SDRAM  
AUTOREFRESHMODE  
T0  
T1  
T2  
Tn + 1  
CL  
To + 1  
( (  
) )  
( (  
) )  
t
CLK  
CKE  
t
t
( (  
( (  
CK  
CH  
) )  
) )  
( (  
) )  
( (  
) )  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
AUTO  
REFRESH  
AUTO  
REFRESH  
COMMAND  
DQM 0–3  
PRECHARGE  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
( (  
( (  
) )  
) )  
( (  
) )  
( (  
) )  
( (  
( (  
) )  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
A0–A9  
A10  
ROW  
ROW  
ALL BANKS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
SINGLE BANK  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
BANK(S)  
BA0, BA1  
DQ  
BANK  
( (  
( (  
) )  
) )  
High-Z  
( (  
) )  
( (  
) )  
t
t
t
RP  
RFC  
RFC  
Precharge all  
active banks  
DON’T CARE  
TIMING PARAMETERS  
-5  
-6  
-7  
-5  
-6  
-7  
SYMBOL* MIN  
MAX  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AH  
AS  
1
1.5  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
CKS  
1
1.5  
1
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
1.5  
2.5  
2.5  
6
2
1.5  
1
2
CH  
2.75  
2.75  
7
CMH  
CMS  
RFC  
1
CL  
2
1.5  
60  
15  
1.5  
60  
2
t
CK (3)  
CK (2)  
CK (1)  
5
70  
20  
t
t
10  
10  
RP  
18  
20  
20  
*CAS latency indicated in parentheses.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
39  
64Mb: x32  
SDRAM  
SELFREFRESHMODE  
T0  
T1  
T2  
Tn + 1  
To + 1  
To + 2  
( (  
) )  
( (  
) )  
t
CL  
CLK  
CKE  
t
( (  
) )  
( (  
) )  
t
CK  
CH  
t
> t  
RAS  
CKS  
( (  
) )  
( (  
) )  
( (  
) )  
t
t
CKS  
t
CKS  
CKH  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
AUTO  
REFRESH  
AUTO  
REFRESH  
COMMAND  
DQM 0-3  
PRECHARGE  
NOP  
NOP  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
A0-A9  
A10  
ALL BANKS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
SINGLE BANK  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
BA0, BA1  
DQ  
BANK(S)  
High-Z  
( (  
) )  
( (  
) )  
t
t
RP  
XSR  
Precharge all  
active banks  
Enter self refresh mode  
Exit self refresh mode  
(Restart refresh time base)  
DON’T CARE  
CLK stable prior to exiting  
self refresh mode  
TIMING PARAMETERS  
-5  
-6  
-7  
-5  
-6  
-7  
SYMBOL* MIN  
MAX  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
t
t
t
t
t
AH  
AS  
1
1.5  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
CKS  
1
1.5  
1
ns  
ns  
ns  
ns  
t
t
t
1.5  
2.5  
2.5  
6
2
1.5  
1
2
CH  
2.75  
2.75  
7
CMH  
CMS  
RAS  
1
CL  
2
1.5  
1.5  
42  
18  
70  
2
t
CK (3)  
CK (2)  
CK (1)  
5
38.7 120,000  
120,000  
42  
20  
70  
120,000  
ns  
ns  
ns  
t
t
10  
10  
RP  
15  
55  
t
20  
20  
XSR  
*CAS latency indicated in parentheses.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
40  
64Mb: x32  
SDRAM  
1
SINGLE READ  
T0  
T1  
T2  
T3  
T4  
T5  
t
t
CL  
CK  
CLK  
t
CH  
t
t
t
CKS  
CKH  
CKE  
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
READ  
PRECHARGE  
NOP  
ACTIVE  
t
t
CMS  
CMH  
DQM /  
DQML, DQMH  
t
t
AS  
AH  
2
A0-A9  
ROW  
ROW  
COLUMN  
m
t
t
AS  
AH  
ALL BANKS  
SINGLE BANK  
BANK  
ROW  
ROW  
A10  
DISABLE AUTO PRECHARGE  
BANK  
t
t
AH  
AS  
BA0, BA1  
BANK  
BANK  
t
t
OH  
AC  
D
OUTm  
DQ  
t
LZ  
t
HZ  
t
RCD  
CAS Latency  
t
t
RP  
RAS  
t
RC  
DON’T CARE  
TIMING PARAMETERS  
-5  
-6  
-7  
-5  
-6  
-7  
SYMBOL* MIN  
MAX  
MIN  
MAX  
5.5  
MIN  
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
MAX  
MIN  
MAX UNITS  
t
t
AC (3)  
4.5  
5.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
CMS  
1
1
1
2
ns  
ns  
t
t
t
t
t
t
AC (2)  
-
-
7.5  
1.5  
1.5  
t
AC (1)  
17  
17  
HZ (3)  
HZ (2)  
HZ (1)  
4.5  
5.5  
7.5  
17  
5.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
AH  
AS  
1
1.5  
2
1
1.5  
2.5  
2.5  
6
1
2
-
-
t
t
t
17  
CH  
2.75  
2.75  
7
LZ  
1
1
1
t
CL  
2
OH  
1.5  
2
2.5  
42  
70  
20  
20  
t
t
CK (3)  
CK (2)  
CK (1)  
5
RAS  
RC  
38.7 120,000  
42  
60  
18  
18  
120,000  
120,000  
t
t
t
t
t
t
-
10  
20  
1
10  
20  
1
55  
15  
15  
-
RCD  
CKH  
1
RP  
t
CKS  
1.5  
1.5  
2
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 1, the CAS latency = 2, and the READ burst is followed by a “manual” PRECHARGE.  
2. A8, A9 = “Don’t Care.”  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
41  
64Mb: x32  
SDRAM  
READ – WITHOUT AUTO PRECHARGE 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
t
t
CMH  
CMS  
DQM 0-3  
A0-A9  
t
t
AH  
AS  
2
ROW  
ROW  
COLUMN m  
t
t
AH  
AS  
ALL BANKS  
ROW  
ROW  
A10  
SINGLE BANK  
DISABLE AUTO PRECHARGE  
BANK  
t
t
AH  
AS  
BA0, BA1  
BANK  
BANK  
t
BANK  
t
t
AC  
AC  
AC  
t
t
t
t
t
OH  
AC  
OH  
OH  
OH  
DOUT  
m
DOUT m + 1  
D
OUT m + 2  
DOUT m + 3  
DQ  
t
LZ  
t
HZ  
t
t
RCD  
CAS Latency  
RP  
t
RAS  
t
RC  
DON’T CARE  
UNDEFINED  
TIMING PARAMETERS  
-5  
-6  
-7  
-5  
-6  
-7  
SYMBOL* MIN  
MAX  
MIN  
MAX  
5.5  
MIN  
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
MAX  
MIN  
MAX UNITS  
t
t
AC (3)  
4.5  
5.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
CMS  
1
1
1
2
ns  
ns  
t
t
t
t
t
t
AC (2)  
-
-
7.5  
1.5  
1.5  
t
AC (1)  
17  
17  
HZ (3)  
HZ (2)  
HZ (1)  
4.5  
5.5  
7.5  
17  
5.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
AH  
AS  
1
1.5  
2
1
1.5  
2.5  
2.5  
6
1
2
-
-
t
t
t
17  
CH  
2.75  
2.75  
7
LZ  
1
1
1
t
CL  
2
OH  
1.5  
2
2.5  
42  
70  
20  
20  
t
t
CK (3)  
CK (2)  
CK (1)  
5
RAS  
RC  
38.7 120,000  
42  
60  
18  
18  
120,000  
120,000  
t
t
t
t
t
t
-
10  
20  
1
10  
20  
1
55  
15  
15  
-
RCD  
CKH  
1
RP  
t
CKS  
1.5  
1.5  
2
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4, the CAS latency = 2, and the READ burst is followed by a “manual” PRECHARGE.  
2. A8 and A9 = “Don’t Care.”  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
42  
64Mb: x32  
SDRAM  
READ – WITH AUTO PRECHARGE 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS CMH  
COMMAND  
DQM 0-3  
A0-A9  
ACTIVE  
NOP  
READ  
t
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
t
CMS  
CMH  
t
t
AH  
AS  
2
ROW  
ROW  
COLUMN m  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ROW  
ROW  
A10  
t
t
AH  
AS  
BANK  
BANK  
BA0, BA1  
BANK  
t
t
t
AC  
AC  
AC  
t
t
t
t
t
AC  
OH  
OH  
OH  
OH  
DOUT  
m
D
OUT  
m
+ 1  
D
OUT  
m
+ 2  
DOUT m + 3  
DQ  
t
LZ  
t
HZ  
t
t
RCD  
CAS Latency  
RP  
t
RAS  
t
RC  
DON’T CARE  
UNDEFINED  
TIMING PARAMETERS  
-5  
-6  
-7  
-5  
-6  
-7  
SYMBOL* MIN  
MAX  
MIN  
MAX  
5.5  
MIN  
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
MAX  
MIN  
MAX UNITS  
t
t
AC (3)  
4.5  
5.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
CMS  
1
1
1
2
ns  
ns  
t
t
t
t
t
t
AC (2)  
-
-
7.5  
1.5  
1.5  
t
AC (1)  
17  
17  
HZ (3)  
HZ (2)  
HZ (1)  
4.5  
5.5  
7.5  
17  
5.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
AH  
AS  
1
1.5  
2
1
1.5  
2.5  
2.5  
6
1
2
-
-
t
t
t
17  
CH  
2.75  
2.75  
7
LZ  
1
1
1
t
CL  
2
OH  
1.5  
2
2.5  
42  
70  
20  
20  
t
t
CK (3)  
CK (2)  
CK (1)  
5
RAS  
RC  
38.7 120,000  
42  
60  
18  
18  
120,000  
120,000  
t
t
t
t
t
t
-
10  
20  
1
10  
20  
1
55  
15  
15  
-
RCD  
CKH  
1
RP  
t
CKS  
1.5  
1.5  
2
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4, and the CAS latency = 2.  
2. A8 and A9 = “Don’t Care.”  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
43  
64Mb: x32  
SDRAM  
ALTERNATING BANK READ ACCESSES 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
CK  
t
CL  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
DQM 0-3  
ACTIVE  
NOP  
READ  
t
NOP  
ACTIVE  
NOP  
READ  
NOP  
ACTIVE  
t
CMS  
CMH  
t
AS  
t
AH  
2
2
ROW  
ROW  
ROW  
ROW  
COLUMN m  
COLUMN b  
A0-A9  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ENABLE AUTO PRECHARGE  
ROW  
ROW  
A10  
t
AS  
t
AH  
BANK 0  
BANK 0  
BANK 4  
t
BANK 4  
BA0, BA1  
BANK 0  
t
AC  
t
t
AC  
t
AC  
AC  
AC  
t
AC  
t
OH  
t
OH  
t
OH  
t
OH  
t
OH  
DOUT  
m
D
OUT m + 1  
D
OUT m + 2  
D
OUT m + 3  
DOUT b  
DQ  
t
LZ  
t
t
RCD - BANK 0  
t
RP - BANK 0  
RCD - BANK 0  
CAS Latency - BANK 0  
t
RAS - BANK 0  
t
RC - BANK 0  
t
t
RCD - BANK 4  
CAS Latency - BANK 4  
RRD  
DON’T CARE  
UNDEFINED  
TIMING PARAMETERS  
-5  
-6  
-7  
-5  
-6  
-7  
SYMBOL* MIN  
MAX  
MIN  
MAX  
5.5  
MIN  
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
1.5  
1
MAX  
MIN  
2
MAX UNITS  
t
t
AC (3)  
4.5  
5.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKS  
1.5  
1
ns  
ns  
ns  
ns  
ns  
t
t
t
t
AC (2)  
-
-
7.5  
CMH  
CMS  
1
t
AC (1)  
17  
17  
1.5  
1
1.5  
1
2
t
AH  
AS  
1
1.5  
2
1
1.5  
2.5  
2.5  
6
1
2
LZ  
1
t
t
t
t
OH  
1.5  
2
2.5  
42  
70  
20  
20  
14  
t
CH  
2.75  
2.75  
7
RAS  
RC  
38.7 120,000  
42  
60  
18  
18  
12  
120,000  
120,000  
ns  
ns  
ns  
ns  
ns  
t
t
t
CL  
2
55  
15  
15  
10  
t
CK (3)  
CK (2)  
CK (1)  
5
RCD  
t
t
t
-
10  
20  
1
10  
20  
1
RP  
t
-
RRD  
CKH  
1.5  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4, and the CAS latency = 2.  
2. A8 and A9 = “Don’t Care.”  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
44  
64Mb: x32  
SDRAM  
READ – FULL-PAGE BURST 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
Tn + 1  
Tn + 2  
Tn + 3  
Tn + 4  
( (  
) )  
( (  
) )  
t
CL  
t
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
( (  
) )  
CKE  
( (  
) )  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
COMMAND  
ACTIVE  
NOP  
READ  
t
NOP  
NOP  
NOP  
NOP  
NOP  
BURST TERM  
NOP  
NOP  
t
CMS  
CMH  
( (  
) )  
DQM 0-3  
A0-A9  
( (  
) )  
t
AS  
t
AH  
( (  
) )  
( (  
) )  
2
ROW  
COLUMN m  
t
AS  
t
AH  
( (  
) )  
( (  
) )  
ROW  
A10  
t
AS  
t
AH  
( (  
) )  
( (  
) )  
BA0, BA1  
BANK  
BANK  
t
t
t
t
t
AC  
AC  
AC  
AC  
AC  
( (  
) )  
t
AC  
t
t
t
OH  
t
t
t
OH  
OH  
OH  
OH  
OH  
( (  
) )  
( (  
) )  
Dout  
m
D
OUT m+1  
D
OUT m+2  
D
OUT m-1  
D
OUT  
m
DOUT m+1  
DQ  
t
LZ  
t
HZ  
t
256 locations within same row  
Full page completed  
RCD  
CAS Latency  
DON’T CARE  
UNDEFINED  
Full-page burst does not self-terminate.  
Can use BURST TERMINATE command.  
3
TIMING PARAMETERS  
-5  
-6  
-7  
-5  
-6  
-7  
SYMBOL* MIN  
MAX  
MIN  
MAX  
5.5  
MIN  
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
1
MAX  
MIN  
MAX UNITS  
t
t
AC (3)  
4.5  
5.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
1
1.5  
1
1
2
1
2
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
AC (2)  
-
-
7.5  
CKS  
1.5  
1
t
AC (1)  
17  
17  
CMH  
CMS  
t
AH  
AS  
1
1.5  
2
1
1
2
1.5  
1.5  
t
t
t
1.5  
2.5  
2.5  
6
HZ (3)  
HZ (2)  
HZ (1)  
4.5  
5
5.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
CH  
2.75  
2.75  
7
-
-
7.5  
17  
CL  
2
17  
t
CK (3)  
CK (2)  
CK (1)  
5
LZ  
1
1
2
1
t
t
t
-
10  
20  
10  
OH  
1.5  
15  
2.5  
20  
t
-
20  
RCD  
18  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the CAS latency = 2.  
2. A8 and A9 = “Don’t Care.”  
3. Page left open; no tRP.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
45  
64Mb: x32  
SDRAM  
READ – DQM OPERATION 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
READ  
t
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
t
CMS CMH  
DQM 0-3  
A0-A9  
t
t
AH  
AS  
2
ROW  
COLUMN m  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ROW  
A10  
DISABLE AUTO PRECHARGE  
BANK  
t
t
AH  
AS  
BA0, BA1  
BANK  
t
AC  
t
t
t
t
t
OH  
AC  
OH  
AC  
OH  
DQ  
D
OUT  
m
DOUT m + 2  
D
OUT m + 3  
t
LZ  
t
t
t
LZ  
HZ  
HZ  
t
RCD  
CAS Latency  
DON’T CARE  
UNDEFINED  
TIMING PARAMETERS  
-5  
-6  
-7  
-5  
-6  
-7  
SYMBOL* MIN  
MAX  
MIN  
MAX  
5.5  
MIN  
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
1
MAX  
MIN  
MAX UNITS  
t
t
AC (3)  
4.6  
5.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
1
1.5  
1
1
2
1
2
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
AC (2)  
-
-
7.5  
CKS  
1.5  
1
t
AC (1)  
17  
17  
CMH  
CMS  
t
AH  
AS  
1
1.5  
2
1
1
2
1.5  
1.5  
t
t
t
1.5  
2.5  
2.5  
6
HZ (3)  
HZ (2)  
HZ (1)  
4.5  
5
5.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
CH  
2.75  
2.75  
7
-
-
7.5  
17  
CL  
2
17  
t
CK (3)  
CK (2)  
CK (1)  
5
LZ  
1
1
2
1
t
t
t
-
10  
20  
10  
OH  
1.5  
15  
2.5  
20  
t
-
20  
RCD  
18  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the CAS latency = 2.  
2. A8 and A9 = “Don’t Care.”  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
46  
64Mb: x32  
SDRAM  
SINGLEWRITE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
WRITE  
NOP  
PRECHARGE  
NOP  
ACTIVE  
t
t
CMS  
CMH  
DQM /  
DQML, DQMH  
t
t
t
t
AH  
AS  
3
A0-A9  
ROW  
t
ROW  
ROW  
BANK  
COLUMN m  
AS  
AH  
ALL BANKS  
ROW  
t
A10  
DISABLE AUTO PRECHARGE  
BANK  
SINGLE BANK  
BANK  
AS  
AH  
BA0, BA1  
BANK  
t
t
DH  
DS  
D
IN m  
DQ  
2
t
t
t
RCD  
RP  
WR  
t
RAS  
t
RC  
DON’T CARE  
TIMING PARAMETERS  
-5  
-6  
-7  
-5  
-6  
-7  
SYMBOL* MIN  
MAX  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AH  
AS  
1
1.5  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
CMS  
DH  
1
1.5  
1
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
1.5  
2.5  
2.5  
6
2
1.5  
1
2
CH  
2.75  
2.75  
7
1
CL  
2
DS  
1.5  
1.5  
42  
60  
18  
18  
12  
2
t
CK (3)  
CK (2)  
CK (1)  
5
RAS  
RC  
38.7 120,000  
120,000  
42  
70  
20  
20  
14  
120,000  
ns  
ns  
ns  
ns  
ns  
t
t
t
10  
20  
1
10  
20  
1
55  
15  
15  
RCD  
CKH  
1
RP  
t
t
t
CKS  
1.5  
1.5  
2
WR  
2 CK  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4, and the WRITE burst is followed by a “manual” PRECHARGE.  
2. 10ns is required between <DIN m> and the PRECHARGE command, regardless of frequency, to meet tWR.  
3. A8, A9 = “Don’t Care.”  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
47  
64Mb: x32  
SDRAM  
WRITE – WITHOUT AUTO PRECHARGE 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
t
t
CMS  
CMH  
DQM 0-3  
A0-A9  
t
t
t
t
AH  
AS  
3
ROW  
t
ROW  
ROW  
BANK  
COLUMN m  
AS  
AH  
ALL BANKs  
ROW  
t
A10  
DISABLE AUTO PRECHARGE  
BANK  
SINGLE BANK  
BANK  
AS  
AH  
BANK  
BA0, BA1  
t
t
t
t
t
t
t
t
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DIN  
m
DIN m + 1  
DIN m + 2  
DIN m + 3  
DQ  
2
t
t
t
RCD  
RP  
WR  
t
RAS  
t
RC  
DON’T CARE  
TIMING PARAMETERS  
-5  
-6  
-7  
-5  
-6  
-7  
SYMBOL* MIN  
MAX  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AH  
AS  
1
1.5  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
CMS  
DH  
1
1.5  
1
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
1.5  
2.5  
2.5  
6
2
1.5  
1
2
CH  
2.75  
2.75  
7
1
CL  
2
DS  
1.5  
1.5  
42  
60  
18  
18  
12  
2
t
CK (3)  
CK (2)  
CK (1)  
5
RAS  
RC  
38.7 120,000  
120,000  
42  
70  
20  
20  
14  
120,000  
ns  
ns  
ns  
ns  
ns  
t
t
t
10  
20  
1
10  
20  
1
55  
15  
15  
RCD  
CKH  
1
RP  
t
t
4
t
CKS  
1.5  
2
2
WR  
2 CK  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4, and the WRITE burst is followed by a “manual” PRECHARGE.  
2. Faster frequencies require two clocks (when tWR > tCK).  
3. A8 and A9 = “Don’t Care.”  
t
4. WR of 1 CLK available if running 100 MHz or slower. Check factory for availability.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
48  
64Mb: x32  
SDRAM  
WRITE – WITH AUTO PRECHARGE 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
t
t
CMS  
CMH  
DQM 0-3  
A0-A9  
t
t
AS  
AH  
3
ROW  
ROW  
ROW  
BANK  
COLUMN m  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ROW  
t
A10  
t
AS  
AH  
BANK  
BANK  
BA0, BA1  
t
t
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
D
IN  
m
D
IN m + 1  
D
IN m + 2  
DIN m + 3  
DQ  
2
t
t
RP  
t
RCD  
WR  
t
RAS  
t
RC  
DON’T CARE  
TIMING PARAMETERS  
-5  
-6  
-7  
-5  
-6  
-7  
SYMBOL* MIN  
MAX  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
MAX  
MIN  
2
MAX UNITS  
t
t
AH  
AS  
1
1.5  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMS  
DH  
1.5  
1
1.5  
1
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
1.5  
2.5  
2.5  
6
2
1
CH  
2.75  
2.75  
7
DS  
1.5  
1.5  
42  
2
CL  
2
RAS  
RC  
38.7 120,000  
120,000  
42  
70  
20  
20  
120,000  
ns  
ns  
ns  
ns  
ns  
t
CK (3)  
CK (2)  
CK (1)  
CKH  
5
55  
15  
15  
60  
t
t
t
t
t
10  
20  
1
10  
20  
1
RCD  
18  
RP  
18  
t
t
1
1.5  
1
WR  
2 CK  
1 CLK+  
6
1 CLK+  
7
CKS  
2
2
CMH  
1
1
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4.  
2. Faster frequencies require two clocks (when tWR > tCK).  
3. A8 and A9 = “Don’t Care.”  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
49  
64Mb: x32  
SDRAM  
ALTERNATINGBANKWRITEACCESSES 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
WRITE  
NOP  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
ACTIVE  
t
t
CMS  
CMH  
DQM /  
DQML, DQMH  
t
t
AH  
AS  
2
2
A0-A9  
ROW  
ROW  
ROW  
ROW  
ROW  
COLUMN m  
COLUMN b  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ENABLE AUTO PRECHARGE  
ROW  
A10  
t
t
AH  
AS  
BA0, BA1  
BANK 0  
BANK 0  
BANK 1  
t
BANK 1  
BANK 0  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
DH  
t
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DS  
DH  
DIN  
m
DIN m + 1  
DIN m + 2  
DIN m + 3  
DIN  
b
DIN b + 1  
DIN b + 2  
DIN b + 3  
DQ  
t
t
t
t
RCD - BANK 0  
WR - BANK 0  
RP - BANK 0  
RCD - BANK 0  
t
RAS - BANK 0  
t
RC - BANK 0  
t
t
WR - BANK 1  
t
RCD - BANK 1  
RRD  
TIMING PARAMETERS  
-5  
-6  
-7  
-5  
-6  
-7  
SYMBOL* MIN  
MAX  
MIN  
1
MAX  
MIN  
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
MAX  
MIN  
1
MAX UNITS  
t
t
t
t
t
t
t
AH  
AS  
1
1.5  
2
1
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DH  
DS  
1
1.5  
38.7  
55  
1
1.5  
42  
ns  
ns  
t
t
t
1.5  
2.5  
2.5  
6
2
CH  
2.75  
2.75  
7
RAS  
RC  
120,000  
42  
70  
20  
20  
14  
120,000  
ns  
ns  
ns  
ns  
ns  
ns  
CL  
2
60  
t
CK (3)  
CK (2)  
CK (1)  
5
RCD  
15  
18  
t
t
t
10  
20  
1
10  
20  
1
RP  
15  
18  
t
RRD  
WR  
10  
12  
t
t
CKH  
1
1.5  
1
2 CK  
1 CLK+  
6
1 CLK+  
7
t
CKS  
2
2
t
CMH  
CMS  
1
1
t
1.5  
1.5  
2
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4.  
2. Faster frequencies require two clocks (when tWR > tCK).  
3. A8 and A9 = “Don’t Care.”  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
50  
64Mb: x32  
SDRAM  
WRITEFULL-PAGEBURST  
T0  
T1  
T2  
T3  
T4  
T5  
Tn + 1  
Tn + 2  
Tn + 3  
( (  
) )  
( (  
) )  
t
t
CK  
CL  
CLK  
t
CH  
t
t
CKS  
CKH  
( (  
) )  
CKE  
( (  
) )  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
COMMAND  
ACTIVE  
NOP  
WRITE  
t
NOP  
NOP  
NOP  
NOP  
BURST TERM  
NOP  
t
CMH  
CMS  
( (  
) )  
( (  
) )  
DQM 0-3  
A0-A9  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
1
ROW  
COLUMN m  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
ROW  
A10  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
BA0, BA1  
BANK  
BANK  
t
t
t
t
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
( (  
) )  
DIN  
m
DIN m + 1  
DIN m + 2  
DIN m + 3  
DIN m - 1  
DQ  
( (  
) )  
t
RCD  
Full-page burst does  
256 locations within same row  
not self-terminate. Can  
use BURST TERMINATE  
2, 3  
command to stop.  
Full page completed  
DON’T CARE  
TIMING PARAMETERS  
-5  
-6  
-7  
-5  
-6  
-7  
SYMBOL* MIN  
MAX  
MIN  
MAX  
MIN  
1
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
t
t
t
t
t
t
AH  
AS  
1
1.5  
2
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
CKS  
CMH  
CMS  
DH  
1
1.5  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
1.5  
2.5  
2.5  
6
2
1.5  
1
2
CH  
2.75  
2.75  
7
1
CL  
2
1.5  
1
2
2
t
CK (3)  
CK (2)  
CK (1)  
5
1
1
t
t
10  
20  
10  
DS  
1.5  
15  
1.5  
18  
2
20  
RCD  
20  
*CAS latency indicated in parentheses.  
NOTE: 1. A8 and A9 = “Don’t Care.”  
t
2. WR must be satisfied prior to PRECHARGE command.  
3. Page left open; no tRP.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
51  
64Mb: x32  
SDRAM  
WRITE – DQM OPERATION 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
DQM 0-3  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
t
t
CMS CMH  
t
t
t
t
AS  
AH  
2
A0-A9  
ROW  
COLUMN m  
t
AS  
AH  
ENABLE AUTO PRECHARGE  
ROW  
A10  
t
DISABLE AUTO PRECHARGE  
BANK  
AS  
AH  
BA0, BA1  
BANK  
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DIN m  
D
IN m + 2  
DIN m + 3  
DQ  
t
RCD  
DON’T CARE  
TIMING PARAMETERS  
-5  
-6  
-7  
-5  
-6  
-7  
SYMBOL* MIN  
MAX  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AH  
AS  
1
1.5  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
CKS  
CMH  
CMS  
DH  
1
1.5  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
1.5  
2.5  
2.5  
6
2
2
2
CH  
2.75  
2.75  
7
1
1
CL  
2
1.5  
1
1.5  
1
2
t
CK (3)  
CK (2)  
CK (1)  
5
1
t
t
10  
10  
DS  
1.5  
15  
1.5  
18  
2
20  
20  
RCD  
20  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4.  
2. A8 and A9 = “Don’t Care.”  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
52  
64Mb: x32  
SDRAM  
86-PIN PLASTIC TSOP (400 MIL)  
SEE DETAIL A  
22.22 .08  
.61  
.50  
TYP  
.10 (2X)  
+.07  
-.03  
0.20  
2.80 (2X)  
11.76 .10  
10.16 .08  
R .75 (2X)  
PIN #1 ID  
+.03  
-.02  
.15  
R 1.00  
(2X)  
.25  
GUAGE  
PLANE  
+.10  
-.05  
.10  
.10  
.50 .10  
1.20 MAX  
.80  
TYP  
DETAIL A  
MAX  
MIN  
NOTE: 1. All dimensions in millimeters  
or typical where noted.  
2. Package width and length do not include mold protrusion; allowable mold protrusion is 0.025mm  
per side.  
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
E-mail:prodmktg@micronsemi.com,Internet:http://www.micronsemi.com,CustomerCommentLine:800-932-4992  
Micron and the M logo are registered trademarks and the Micron logo is a trademark of Micron Technology, Inc.  
64Mb: x32 SDRAM  
64MSDRAMx32_5.p65 – Rev. B; Pub. 6/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
53  

相关型号:

MT48LC2M32B2TG-7ITG

SDR SDRAM MT48LC2M32B2 – 512K x 32 x 4 Banks
MICRON

MT48LC2M3B2B51

SDR SDRAM MT48LC2M32B2 – 512K x 32 x 4 Banks
MICRON

MT48LC2M8A1

SYNCHRONOUS DRAM
MICRON

MT48LC2M8A1TGS

SYNCHRONOUS DRAM
MICRON

MT48LC2M8A2

SYNCHRONOUS DRAM
MICRON

MT48LC32M16A2

SYNCHRONOUS DRAM
MICRON

MT48LC32M16A2P-75IT:C

Synchronous DRAM, 32MX16, 5.4ns, CMOS, PDSO54, 0.400 INCH, LEAD FREE, PLASTIC, TSOP2-54
MICROSS

MT48LC32M16A2P-75ITC

SDR SDRAM MT48LC128M4A2 – 32 Meg x 4 x 4 banks MT48LC64M8A2 – 16 Meg x 8 x 4 banks MT48LC32M16A2 – 8 Meg x 16 x 4 banks
MICRON

MT48LC32M16A2P-75L:C

Synchronous DRAM, 32MX16, 5.4ns, CMOS, PDSO54, 0.400 INCH, LEAD FREE, PLASTIC, TSOP2-54
MICROSS

MT48LC32M16A2TG

SYNCHRONOUS DRAM
MICRON

MT48LC32M16A2TG-75IT:C

Synchronous DRAM, 32MX16, 5.4ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54
MICROSS

MT48LC32M16A2TG-75L:C

Synchronous DRAM, 32MX16, 5.4ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54
MICROSS