MT54W2MH18B-5 [MICRON]

36Mb QDR⑩II SRAM 2-WORD BURST; 36MB QDR⑩II SRAM 2字突发
MT54W2MH18B-5
型号: MT54W2MH18B-5
厂家: MICRON TECHNOLOGY    MICRON TECHNOLOGY
描述:

36Mb QDR⑩II SRAM 2-WORD BURST
36MB QDR⑩II SRAM 2字突发

静态存储器
文件: 总27页 (文件大小:522K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCE‡  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W4MH8B  
36Mb QDRII SRAM  
2-WORD BURST  
MT54W4MH9B  
MT54W2MH18B  
MT54W1MH36B  
FEATURES  
Figure 1  
165-Ball FBGA  
DLL circuitry for accurate output data placement  
Separate independent read and write data ports  
with concurrent transactions  
100 percent bus utilization DDR READ and WRITE  
operation  
Fast clock to valid data times  
Full data coherency, providing most current data  
Two-tick burst counter for low DDR transaction size  
Double data rate operation on read and write ports  
Two input clocks (K and K#) for precise DDR timing  
at clock rising edges only  
Two output clocks (C and C#) for precise flight time  
and clock skew matching—clock and data delivered  
together to receiving device  
Single address bus  
Simple control logic for easy depth expansion  
Internally self-timed, registered writes  
+1.8V core and HSTL I/O  
Clock-stop capability  
15mm x 17mm, 1mm pitch, 11 x 15 grid FBGA  
package  
VALID PART NUMBERS  
PART NUMBER  
DESCRIPTION  
MT54W4MH8BF-xx  
MT54W4MH9BF-xx  
4 Meg x 8, QDRIIb2 FBGA  
4 Meg x 9, QDRIIb2 FBGA  
User-programmable impedance output  
JTAG boundary scan  
MT54W2MH18BF-xx 2 Meg x 18, QDRIIb2 FBGA  
MT54W1MH36BF-xx 1 Meg x 36, QDRIIb2 FBGA  
OPTIONS  
MARKING1  
Clock Cycle Timing  
4ns (250 MHz)  
5ns (200 MHz)  
6ns (167 MHz)  
7.5ns (133 MHz)  
Configurations  
4 Meg x 8  
4 Meg x 9  
2 Meg x 18  
1 Meg x 36  
Package  
GENERAL DESCRIPTION  
The Micron® QDR™II (Quad Data Rate™) synchro-  
nous, pipelined burst SRAM employs high-speed, low-  
power CMOS designs using an advanced 6T CMOS  
process.  
-4  
-5  
-6  
-7.5  
The QDR architecture consists of two separate DDR  
(double data rate) ports to access the memory array.  
The read port has dedicated data outputs to support  
READ operations. The write port has dedicated data  
inputs to support WRITE operations. This architecture  
eliminates the need for high-speed bus turnaround.  
Access to each port is accomplished using a common  
address bus. Addresses for reads and writes are latched  
on rising edges of the K and K# input clocks, respec-  
tively. Each address location is associated with two  
words that burst sequentially into or out of the device.  
MT54W4MH8B  
MT54W4MH9B  
MT54W2MH18B  
MT54W1MH36B  
165-ball, 15mm x 17mm FBGA  
F
NOTE:  
1. A Part Marking Guide for the FBGA devices can be found  
on Micron’s Web site—http://www.micron.com/number-  
guide.  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
1
PRODUCTS AND SPECIFICATIONS DISCUSSED HEREIN ARE FOR EVALUATION AND REFERENCE PURPOSES ONLY AND ARE SUBJECT TO CHANGE BY  
MICRON WITHOUT NOTICE. PRODUCTS ARE ONLY WARRANTED BY MICRON TO MEET MICRON’S PRODUCTION DATA SHEET SPECIFICATIONS.  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
GENERAL DESCRIPTION (continued)  
Since data can be transferred into and out of the  
device on every rising edge of both clocks (K and K#, C  
and C#), memory bandwidth is maximized while sys-  
tem design is simplified by eliminating bus turn-  
arounds.  
The SRAM operates from a +1.8V power supply, and  
all inputs and outputs are HSTL-compatible. The  
device is ideally suited for applications that benefit  
from a high-speed, fully-utilized DDR data bus.  
Please refer to Microns Web site (www.micron.com/  
sramds) for the latest data sheet.  
Depth expansion is accomplished with port selects  
for each port (read R#, write W#), which are received at  
K rising edge. Port selects permit independent port  
operation.  
READ/WRITE OPERATIONS  
All bus transactions operate on an uninterruptable  
burst of two data, requiring one full clock cycle of bus  
utilization. The resulting benefit is that short data  
transactions can remain in operation on both buses  
provided that the address rate can be maintained by  
the system (2x the clock frequency).  
All synchronous inputs pass through registers con-  
trolled by the K or K# input clock rising edges. Active  
LOW byte writes (BWx#) permit byte or nibble write  
selection. Write data and byte writes are registered on  
the rising edges of both K and K#. The addressing  
within each burst of two is fixed and sequential, begin-  
ning with the lowest and ending with the highest  
address. All synchronous data outputs pass through  
output registers controlled by the rising edges of the  
output clocks (C and C# if provided, otherwise K and  
K#).  
Four balls are used to implement JTAG test capabili-  
ties: test mode select (TMS), test data-in (TDI), test  
clock (TCK), and test data-out (TDO). JTAG circuitry is  
used to serially shift data to and from the SRAM. JTAG  
inputs use JEDEC-standard 1.8V I/O levels to shift data  
during this testing mode of operation.  
READ cycles are pipelined. The request is initiated  
by asserting R# LOW at K rising edge. Data is delivered  
after the rising edge of K# (t + 1) using C and C# as the  
output timing references or using K and K#, if C and C#  
are tied HIGH. If C and C# are tied HIGH, they may not  
be toggled during device operation. Output tri-stating  
is automatically controlled such that the bus is  
released if no data is being delivered. This permits  
banked SRAM systems with no complex OE timing  
generation. Back-to-back READ cycles are initiated  
every K rising edge.  
Figure 2  
Functional Block Diagram: 2 Meg x 18  
n
ADDRESS  
R#  
n
ADDRESS  
REGISTRY  
& LOGIC  
W#  
K
K#  
W#  
BW0#  
BW1#  
O
B
D
R
I
V
E
R
O
U
T
O
U
T
S
E
L
E
C
T
W R  
R E  
I G  
T
W
R
I
T
E
S
E
N
S
R
E
U U  
DATA  
REGISTRY  
& LOGIC  
A
M
P
n
18  
36  
36  
18  
2
x 36  
36  
T
P
U
T
F
F
E
R
G
D (Data In)  
MUX  
Q
MEMORY  
ARRAY  
P
P
(Data Out)  
2
R#  
U
T
U
T
A
S
E 2  
E
K
C
K
K#  
CQ, CQ#  
C, C#  
(Echo Clock Out)  
or  
K, K#  
NOTE:  
1. The functional block diagram illustrates simplified device operation. See truth table, ball descriptions, and timing diagrams for  
detailed information. The x8, x9, and x36 operations are the same, with apporpriate adjustments of depth and width.  
2. n = 20  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
2
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
READ/WRITE OPERATIONS (continued)  
PROGRAMMABLE IMPEDANCE OUTPUT  
BUFFER  
WRITE cycles are initiated by W# LOW at K rising  
edge. The address for the WRITE cycle is provided at  
the following K# rising edge. Data is expected at the  
rising edge of K and K#, beginning at the same K that  
initiated the cycle. Write registers are incorporated to  
facilitate pipelined, self-timed WRITE cycles and to  
provide fully coherent data for all combinations of  
reads and writes. A read can immediately follow a  
write, even if they are to the same address. Although  
the write data has not been written to the memory  
array, the SRAM will deliver the data from the write  
register instead of using the older data from the mem-  
ory array. The latest data is always utilized for all bus  
transactions. WRITE cycles can be initiated on every K  
rising edge.  
The QDR SRAM is equipped with programmable  
impedance output buffers. This allows a user to match  
the driver impedance to the system. To adjust the  
impedance, an external precision resistor (RQ) is con-  
nected between the ZQ ball and VSS. The value of the  
resistor must be five times the desired impedance. For  
example, a 350resistor is required for an output  
impedance of 70. To ensure that output impedance  
is one-fifth the value of RQ (within 15 percent), the  
range of RQ is 175to 350. Alternately, the ZQ ball  
can be connected directly to VDDQ, which will place  
the device in a minimum impedance mode.  
Output impedance updates may be required  
because variations may occur over time in supply volt-  
age and temperature. The device samples the value of  
RQ. Impedance updates are transparent to the system;  
they do not affect device operation, and all data sheet  
timing and current specifications are met during an  
update.  
The device will power up with an output impedance  
set at 50. To guarantee optimum output driver  
impedance after power-up, the SRAM needs 1,024  
cycles to update the impedance. The user can operate  
the part with fewer than 1,024 clock cycles, but optimal  
output impedance is not guaranteed.  
PARTIAL WRITE OPERATIONS  
BYTE WRITE operations are supported, except for  
the x8 devices in which nibble write is supported. The  
active LOW byte write controls, BWx# (NWx#), are reg-  
istered coincident with their corresponding data. This  
feature can eliminate the need for some READ-MOD-  
IFY-WRITE cycles, collapsing it to a single BYTE/NIB-  
BLE WRITE operation in some instances.  
Figure 3  
Application Example  
SRAM #1  
SRAM #4  
B
R = 250  
R = 250Ω  
Vt  
ZQ  
Q
C# K K#  
ZQ  
Q
C# K K#  
B
R W W  
# #  
D
D
SA  
R W W  
# #  
#
R
SA  
C
#
C
DATA IN  
DATA OUT  
Address  
Read#  
Vt  
Vt  
R
BUS  
MASTER  
(CPU  
Write#  
BW#  
or  
ASIC)  
Source K  
Source K#  
Delayed K  
Delayed K#  
R
R = 50Ω  
Vt = VREF/2  
NOTE:  
In this approach, the second clock pair drives the C and C# clocks but is delayed such that return data meets data setup and  
hold times at the bus master.  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
3
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
CLOCK CONSIDERATIONS  
DEPTH EXPANSION  
This device utilizes internal delay-locked loops for  
maximum output data valid window. It can be placed  
into a stopped-clock state to minimize power with a  
modest restart time of 1,024 clock cycles. Circuitry  
automatically resets the DLL when the absence of  
input clock is detected. See Micron Technical Note TN-  
54-02 for more information on clock DLL start-up pro-  
cedures.  
Port select inputs are provided for the read and  
write ports. This allows for easy depth expansion. Both  
port selects are sampled on the rising edge of K only.  
Each port can be independently selected and dese-  
lected and does not affect the operation of the oppo-  
site port. All pending transactions are completed prior  
to a port deselecting. Depth expansion requires repli-  
cating R# and W# control signals for each bank if it is  
desired to have the bank independent of READ and  
WRITE operations.  
SINGLE CLOCK MODE  
The SRAM can be used with the single K, K# clock  
pair by tying C and C# HIGH. In this mode, the SRAM  
will use K and K# in place of C and C#. This mode pro-  
vides the most rapid data output but does not com-  
pensate for system clock skew and flight times.  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
4
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
4 MEG x 8 BALL ASSIGNMENT (TOP VIEW)  
165-BALL FBGA  
1
2
3
SA  
4
5
6
7
8
9
SA  
10  
SA  
11  
CQ  
Q3  
D3  
NC  
Q2  
NC  
NC  
ZQ  
D1  
NC  
Q0  
D0  
NC  
NC  
TDI  
VSS/SA1  
NC  
NW1#2  
NC/SA4  
SA  
NC/SA3  
NW0#5  
SA  
A
B
C
D
E
CQ#  
NC  
W#  
K#  
K
R#  
NC  
NC  
NC  
Q4  
NC  
Q5  
VDDQ  
NC  
NC  
D6  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
NC  
D2  
NC  
NC  
D4  
VSS  
SA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
D5  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
F
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
NC  
NC  
VREF  
Q1  
NC  
NC  
NC  
NC  
NC  
TMS  
G
H
J
NC  
DLL#  
NC  
VREF  
NC  
NC  
Q6  
NC  
D7  
K
L
NC  
NC  
M
N
P
NC  
NC  
NC  
Q7  
SA  
VSS  
VSS  
NC  
VSS  
SA  
SA  
VSS  
NC  
NC  
TCK  
SA  
SA  
SA  
SA  
R
TDO  
SA  
SA  
C#  
SA  
SA  
NOTE:  
1. Expansion address: 2A for 72Mb  
2. NW1# controls writes to D4:D7  
3. Expansion address: 7A for 144Mb  
4. Expansion address: 5B for 288Mb  
5. NW0# controls writes to D0:D3  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
5
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
4 MEG x 9 BALL ASSIGNMENT (TOP VIEW)  
165-BALL FBGA  
1
2
3
SA  
4
5
6
7
8
9
SA  
10  
SA  
11  
CQ  
Q4  
D4  
NC  
Q3  
NC  
NC  
ZQ  
D2  
NC  
Q1  
D1  
NC  
Q0  
TDI  
VSS/SA1  
NC  
NC/SA2  
BW0#4  
SA  
A
B
C
D
E
CQ#  
NC  
W#  
NC  
K#  
K
R#  
NC/SA3  
SA  
NC  
NC  
NC  
Q5  
NC  
Q6  
VDDQ  
NC  
NC  
D7  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
NC  
D3  
NC  
NC  
VSS  
SA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
VSS  
NC  
D5  
NC  
NC  
D6  
VSS  
VSS  
VSS  
VSS  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
F
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
NC  
NC  
VREF  
Q2  
NC  
NC  
NC  
NC  
D0  
G
H
J
NC  
DLL#  
NC  
VREF  
NC  
NC  
Q7  
NC  
D8  
K
L
NC  
NC  
M
N
P
NC  
NC  
NC  
Q8  
SA  
VSS  
VSS  
NC  
VSS  
SA  
SA  
VSS  
NC  
NC  
TCK  
SA  
SA  
SA  
SA  
R
TDO  
SA  
SA  
C#  
SA  
SA  
TMS  
NOTE:  
1. Expansion address: 2A for 72Mb  
2. Expansion address: 7A for 144Mb  
3. Expansion address: 5B for 288Mb  
4. BW0# controls writes to D0:D8  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
6
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
2 MEG x 18 BALL ASSIGNMENT (TOP VIEW)  
165-BALL FBGA  
1
2
3
4
5
6
7
8
9
10  
11  
VSS/SA1  
Q9  
BW1#2  
NC  
NC/SA3  
VSS/SA4  
NC  
CQ#  
NC  
SA  
W#  
K#  
R#  
SA  
CQ  
A
B
C
D
E
BW0#5  
SA  
D9  
D10  
Q10  
Q11  
D12  
Q13  
VDDQ  
D14  
Q14  
D15  
D16  
Q16  
Q17  
SA  
SA  
VSS  
K
SA  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
NC  
NC  
D11  
NC  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
SA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
Q7  
NC  
D6  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
Q12  
D13  
VREF  
NC  
NC  
NC  
VREF  
Q4  
D3  
F
NC  
G
H
J
DLL#  
NC  
NC  
NC  
K
L
NC  
Q15  
NC  
NC  
Q1  
NC  
D0  
NC  
M
N
P
NC  
D17  
NC  
VSS  
VSS  
NC  
SA  
SA  
SA  
SA  
TDO  
TCK  
SA  
SA  
C#  
SA  
SA  
TMS  
R
NOTE:  
1. Expansion address: 2A for 144Mb  
2. BW1# controls writes to D9:D17  
3. Expansion address: 7A for 288Mb  
4. Expansion address: 10A for 72Mb  
5. BW0# controls writes to D0:D8  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
7
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
1 MEG x 36 BALL ASSIGNMENT (TOP VIEW)  
165-BALL FBGA  
1
2
3
4
5
6
7
8
9
10  
11  
VSS/SA1  
Q18  
NC/SA2  
D18  
BW2#3  
BW1#4  
VSS/SA5  
Q17  
CQ#  
Q27  
D27  
D28  
Q29  
Q30  
D30  
DLL#  
D31  
Q32  
Q33  
D33  
D34  
Q35  
TDO  
W#  
K#  
R#  
SA  
CQ  
A
B
C
D
E
BW3#6  
SA  
BW0#7  
SA  
SA  
VSS  
K
SA  
VSS  
D17  
D16  
Q16  
Q15  
D14  
Q13  
VDDQ  
D12  
Q12  
D11  
D10  
Q10  
Q9  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
Q28  
D20  
D29  
Q21  
D22  
VREF  
Q31  
D32  
Q24  
Q34  
D26  
D35  
TCK  
D19  
Q19  
Q20  
D21  
Q22  
VDDQ  
D23  
Q23  
D24  
D25  
Q25  
Q26  
SA  
SA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
Q7  
D15  
D6  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
Q14  
D13  
VREF  
Q4  
F
G
H
J
D3  
K
L
Q11  
Q1  
M
N
P
VSS  
VSS  
D9  
SA  
SA  
SA  
SA  
D0  
SA  
SA  
C#  
SA  
SA  
SA  
TMS  
R
NOTE:  
1. Expansion address: 2A for 288Mb  
2. Expansion address: 3A for 72Mb  
3. BW2# controls writes to D18:D26  
4. BW1# controls writes to D9:D17  
5. Expansion address: 10A for 144Mb  
6. BW3# controls writes to D27:D35  
7. BW0# controls writes to D0:D8  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
8
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
FBGA BALL DESCRIPTIONS  
SYMBOL  
TYPE  
DESCRIPTION  
SA  
Input  
Synchronous Address Inputs: These inputs are registered and must meet the setup and hold  
times around the rising edge of K for READ cycles and K# for WRITE cycles. See Ball  
Assignment figures for address expansion inputs. All transactions operate on a burst of two  
words (one clock period of bus activity). These inputs are ignored when both ports are  
deselected.  
R#  
Input  
Input  
Input  
Synchronous Read: When LOW, this input causes the address inputs to be registered and a  
READ cycle to be initiated. This input must meet setup and hold times around the rising edge  
of K.  
W#  
Synchronous Write: When LOW, this input causes the address inputs to be registered and a  
WRITE cycle to be initiated. This input must meet setup and hold times around the rising  
edge of K.  
BW_#  
NW_#  
Synchronous Byte Writes (or Nibble Writes on the x8): When LOW, these inputs cause their  
respective Bytes to be registered and written if W# had initiated a WRITE cycle. These signals  
must meet setup and hold times around the rising edges of K and K# for each of the two  
rising edges comprising the WRITE cycle. See Ball Assignment figures for signal to data  
relationships.  
K
K#  
Input  
Input  
Input Clock: This input clock pair registers address and control inputs on the rising edge of K,  
and registers data on the rising edge of K and the rising edge of K#. K# is ideally 180 degrees  
out of phase with K. All synchronous inputs must meet setup and hold times around the clock  
rising edges.  
C
C#  
Output Clock: This clock pair provides a user-controlled means of tuning device output data.  
The rising edge of C is used as the output timing reference for second output data. The rising  
edge of C# is used as the output reference for first output data. Ideally, C# is 180 degrees out  
of phase with C. C and C# may be tied HIGH to force the use of K and K# as the output  
reference clocks instead of having to provide C and C# clocks. If tied HIGH, these inputs may  
not be allowed to toggle during device operation.  
TMS  
TDI  
Input  
Input  
Input  
Input  
IEEE 1149.1 Test Inputs: 1.8V I/O levels. These balls may be left as No Connects if the JTAG  
function is not used in the circuit.  
TCK  
VREF  
ZQ  
IEEE 1149.1 Clock Input: 1.8V I/O levels. This ball must be tied to VSS if the JTAG function is not  
used in the circuit.  
HSTL Input Reference Voltage: Nominally VDDQ/2, but may be adjusted to improve system  
noise margin. Provides a reference voltage for the HSTL input buffer trip point.  
Output Impedance Matching Input: This input is used to tune the device outputs to the  
system data bus impedance. DQ output impedance is set to 0.2 x RQ, where RQ is a resistor  
from this ball to ground. Alternately, this ball can be connected directly to VDDQ to enable  
the minimum impedance mode. This ball cannot be connected directly to GND or left  
unconnected.  
DLL#  
D_  
Input  
Input  
DLL Disable: When LOW, this input causes the DLL to be bypassed for stable, low-frequency  
operation.  
Synchronous Data Inputs: Input data must meet setup and hold times around the rising edges  
of K and K# during WRITE operations. See Ball Assignment figures for ball site location of  
individual signals. The x8 device uses D0-D7. Remaining signals are NC. The x9 device uses D0-  
D8. Remaining signals are NC. The x18 device uses D0–D17. Remaining signals are NC. The x36  
device uses D0–D35. Remaining signals are NC.  
CQ#, CQ  
TDO  
Output  
Output  
Synchronous Echo Clock Outputs: The edges of these outputs are tightly matched to the  
synchronous data outputs and can be used as data valid indication. These signals run freely  
and do not stop when Q tri-states.  
IEEE 1149.1 Test Output: 1.8V I/0 level.  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
9
©2002, Micron Technology Inc.  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
FBGA BALL DESCRIPTIONS (continued)  
SYMBOL  
TYPE  
DESCRIPTION  
Q_  
Output  
Synchronous Data Outputs: Output data is synchronized to the respective C and C# or to K  
and K# rising edges if C and C# are tied HIGH. This bus operates in response to R# commands.  
See Ball Assignment figures for ball site location of individual signals. The x8 device uses D0-  
D7. The x9 device uses D0-D8. The x18 device uses Q0–Q17. Remaining signals are NC. The x36  
device uses Q0–Q35. Remaining signals are NC.  
VDD  
Supply  
Supply  
Power Supply: 1.8V nominal. See DC Electrical Characteristics and Operating Conditions for  
range.  
VDDQ  
Power Supply: Isolated Output Buffer Supply. Nominally 1.5V. 1.8V is also permissible. See DC  
Electrical Characteristics and Operating Conditions for range.  
VSS  
NC  
Supply  
Power Supply: GND.  
No Connect: These signals are not internally connected and may be connected to ground to  
improve package heat dissipation.  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
10  
©2002, Micron Technology Inc.  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
Figure 4  
Bus Cycle State Diagram  
RD  
RD  
LOAD NEW  
/RD  
READ DOUBLE  
READ PORT NOP  
R_Init=0  
READ ADDRESS  
always  
Supply voltage  
provided  
/RD  
POWER-UP  
WT  
Supply voltage  
provided  
WT  
LOAD NEW  
WRITE ADDRESS  
AT K#  
/WT  
WRITE PORT NOP  
WRITE DOUBLE  
AT K#↑  
always  
/WT  
NOTE:  
1. The address is concatenated with one additional internal LSB to facilitate burst operation. The address order is always fixed as xxx .  
. . xxx + 0, xxx . . . xxx + 1. Bus cycle is terminated at the end of this sequence (burst count = 2).  
2. State transitions: RD = (R# = LOW); WT = (W# = LOW).  
3. Read and write state machines can be simultaneously active.  
4. State machine control timing sequence is controlled by K.  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
11  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
TRUTH TABLE  
Notes 1-6  
OPERATION  
K
R#  
W#  
D or Q  
D or Q  
LJH  
X
L
DA(A + 0)  
at  
K(t)I  
DA(A + 1)  
at  
K#(t)I  
WRITE Cycle:  
Load address, input write data on  
consecutive K and K# rising edges  
LJH  
L
X
QA(A + 0)  
at  
C#(t + 1)I  
QA(A + 1)  
at  
C(t + 2)I  
READ Cycle:  
Load address, output data on  
consecutive C and C# rising edges  
NOP: No operation  
LJH  
H
X
H
X
D = X  
Q = High-Z  
D = X  
Q = High-Z  
STANDBY: Clock stopped  
Stopped  
Previous  
State  
Previous  
State  
BYTE WRITE OPERATION  
Notes 7, 8  
OPERATION  
K
K#  
BW0#  
BW1#  
LJH  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
WRITE D0-17 at K rising edge  
WRITE D0-17 at K# rising edge  
WRITE D0-8 at K rising edge  
WRITE D0-8 at K# rising edge  
WRITE D9-17 at K rising edge  
WRITE D9-17 at K# rising edge  
WRITE nothing at K rising edge  
WRITE nothing at K# rising edge  
LJH  
LJH  
LJH  
LJH  
LJH  
LJH  
LJH  
NOTE:  
1. X means “Don’t Care.” H means logic HIGH. L means logic LOW. I means rising edge; K means falling edge.  
2. Data inputs are registered at K and K# rising edges. Data outputs are delivered at C and C# rising edges, except if C and C# are  
HIGH, then data outputs are delivered at K and K# rising edges.  
3. R# and W# must meet setup and hold times around the rising edge (LOW to HIGH) of K and are registered at the rising edge of K.  
4. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. It is recommended that K = K# = C = C# when clock is stopped. This is not essential, but permits most rapid restart by overcoming  
transmission line charging symmetrically.  
7. Assumes a WRITE cycle was initiated. BW0# and BW1# can be altered for any portion of the BURST WRITE operation, provided that  
the setup and hold requirements are satisfied.  
8. This table illustrates operation for the x18 devices. The x36 device operation is similar, except for the addition of BW2# (controls  
D18:D26) and BW3# (controls D27:D35). The x9 device operation is similar, except that BW1# and D8:D17 are not available. The x8  
device operation is similar, except that NW0# controls D0:D3, and NW1# controls D4:D7.  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
12  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
*Stresses greater than those listed under Absolute Maximum  
ABSOLUTE MAXIMUM RATINGS*  
Ratings may cause permanent damage to the device. This is a  
stress rating only, and functional operation of the device at  
these or any other conditions above those indicated in the  
operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
**Maximum junction temperature depends upon package  
type, cycle time, loading, ambient temperature, and airflow.  
See Micron Technical Note TN-05-14 for more information.  
Voltage on VDD Supply  
Relative to VSS ........................................ 0.5V to +2.8V  
Voltage on VDDQ Supply  
Relative to VSS ....................................... -0.5V to +VDD  
VIN ..................................................... -0.5V to VDD + 0.5V  
Storage Temperature..............................-55ºC to +125ºC  
Junction Temperature**....................................... +125ºC  
Short Circuit Output Current .............................. 70mA  
DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS  
0ºC  
?
TA  
?
+70ºC; +1.7V ? VDD ? +1.9V unless otherwise noted  
DESCRIPTION  
CONDITIONS  
SYMBOL  
MIN  
MAX  
UNITS NOTES  
VIH(DC)  
VIL(DC)  
VIN  
VREF + 0.1  
VDDQ + 0.3  
V
V
3, 4  
3, 4  
3, 4  
Input High (Logic 1) Voltage  
Input Low (Logic 0) Voltage  
Clock Input Signal Voltage  
Input Leakage Current  
-0.3  
-0.3  
-5  
VREF - 0.1  
VDDQ + 0.3  
V
0V ? VIN ? VDDQ  
ILI  
5
5
µA  
µA  
Output(s) disabled,  
ILO  
-5  
Output Leakage Current  
0V ? VIN ? VDDQ (Q)  
|IOH| ? 0.1mA  
Note 1  
VOH (LOW)  
VOH  
VDDQ - 0.2  
VDDQ/2 - 0.12  
VSS  
VDDQ  
VDDQ/2 + 0.12  
0.2  
V
V
V
V
V
V
V
3, 5, 7  
3, 5, 7  
3, 5, 7  
3, 5, 7  
3
Output High Voltage  
Output Low Voltage  
IOL ? 0.1mA  
Note 2  
VOL (LOW)  
VOL  
VDDQ/2 - 0.12  
1.7  
VDDQ/2 + 0.12  
1.9  
Supply Voltage  
VDD  
Isolated Output Buffer Supply  
Reference Voltage  
VDDQ  
VREF  
1.4  
VDD  
3, 6  
0.68  
0.95  
3
AC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS  
0ºC  
?
TA  
?
+70ºC; +1.7V ? VDD ? +1.9V unless otherwise noted  
DESCRIPTION  
CONDITIONS  
SYMBOL  
VIH AC)  
MIN  
VREF + 0.2  
MAX  
UNITS  
NOTES  
3, 4, 8  
3, 4, 8  
V
V
Input High (Logic 1) Voltage  
Input Low (Logic 0) Voltage  
NOTE:  
VIL(AC)  
VREF - 0.2  
1. Outputs are impedance-controlled. |IOH| = (VDDQ/2)/(RQ/5) for values of 175ꢀ ? RQ ? 350.  
2. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) for values of 175ꢀ ? RQ ? 350.  
3. All voltages referenced to VSS (GND).  
t
4. Overshoot:  
VIH(AC) ? VDD + 0.7V for t ? KHKH/2  
t
Undershoot: VIL(AC)ꢁO -0.5V for t ? KHKH/2  
Power-up:  
VIH ? VDDQ + 0.3V and VDD ? 1.7V and VDDQ ? 1.4V for t ? 200ms  
t
During normal operation, VDDQ must not exceed VDD. Control input signals may not have pulse widths less than KHKL  
t
(MIN) or operate at cycle rates less than KHKH (MIN).  
5. AC load current is higher than the shown DC values. AC I/O curves are available upon request.  
6. Output buffer supply can be set to 1.5V or 1.8V nominal 0.1 with appropriate derating of AC timing parameters. Consult factory for  
further information.  
7. HSTL outputs meet JEDEC HSTL Class I and Class II standards.  
8. To maintain a valid level, the transitioning edge of the input must:  
a. Sustain a constant slew rate from the current AC level through the target AC level, VIL(AC) or VIH(AC).  
b. Reach at least the target AC level.  
c. After the AC target level is reached, continue to maintain at least the target DC level, VIL(DC) or VIH(DC).  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
13  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
IDD OPERATING CONDITIONS AND MAXIMUM LIMITS  
0ºC  
?
TA  
?
+70ºC; VDD = MAX unless otherwise noted  
MAX  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
-4  
-5  
-6  
-7.5 UNITS NOTES  
Operating Supply  
Current: DDR  
All inputs ? VIL or O VIH;  
IDD  
(x8, x9, x18)  
(x36)  
t
TBD  
mA  
1, 2, 3  
Cycle time Oꢀ KHKH (MIN);  
600  
800  
490  
655  
415  
550  
340  
450  
Outputs open  
tKHKH = tKHKH (MIN);  
Device in NOP state;  
All addresses/data static  
ISB1  
(x8, x9 x18)  
(x36)  
Standby Supply  
Current: NOP  
TBD  
TBD  
mA  
mA  
2, 4  
2
200  
210  
170  
180  
150  
160  
125  
135  
Cycle time = 0; Input Static  
Stop Clock Current  
ISB  
75  
75  
75  
75  
IDDQ  
(x8, x9)  
(x18)  
Output Supply  
Current: DDR  
(Information only)  
32  
71  
142  
25  
57  
113  
21  
47  
95  
17  
38  
76  
CL = 15pF  
TBD  
mA  
5
(x36)  
CAPACITANCE  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
MAX  
UNITS  
NOTES  
CI  
4
5
pF  
6
Address/Control Input  
Capacitance  
TA = 25ºC; f = 1 MHz  
Output Capacitance (Q)  
Clock Capacitance  
CO  
6
5
7
6
pF  
pF  
6
6
CCK  
THERMAL RESISTANCE  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
UNITS  
NOTES  
JA  
25  
ºC/W  
6, 7  
Junction to Ambient  
(Airflow of 1m/s)  
Soldered on a 4.25 x 1.125 inch, 4-layer  
printed circuit board  
Junction to Case (Top)  
Junction to Balls (Bottom)  
NOTE:  
JC  
10  
12  
ºC/W  
ºC/W  
6
JB  
6, 8  
1. IDD is specified with no output current. IDD is linear with frequency. Typical value is measured at 6ns cycle time.  
2. Typical values are measured at VDD = 1.8V, VDDQ = 1.5V, and temperature = 25°C.  
3. Operating supply currents and burst mode currents are measured at 100 percent bus utilization.  
4. NOP currents are valid when entering NOP after all pending READ and WRITE cycles are completed.  
5. Average I/O current and power is provided for information purposes only and is not tested. Calculation assumes that all outputs are  
loaded with CL (in farads), f = input clock frequency, half of outputs toggle at each transition (for example, n = 18 for x36), CO = 6pF,  
VDDQ = 1.5V and uses the equations: Average I/O Power as dissipated by the SRAM is:  
2
P = 0.5 × n x f x VDDQ x (CL + 2CO). Average IDDQ = n x f x VDDQ x (CL + CO).  
6. This parameter is sampled.  
7. Average thermal resistance between the die and the case top surface per MIL SPEC 883 Method 1012.1.  
8. Junction temperature is a function of total device power dissipation and device mounting environment. Measured per SEMI G38-  
87.  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
14  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
AC ELECTRICAL CHARACTERISTICS AND RECOMMENDED OPERATING  
CONDITIONS 1, 2, 3, 6, 8  
0ºC  
?
TA  
?
+70ºC; +1.7V ?ꢁVDD ? +1.9V  
-4  
-5  
-6  
-7.5  
DESCRIPTION  
SYMBOL  
UNITS  
MIN  
MAX  
5.00  
0.20  
MIN  
MAX  
6.00  
0.20  
MIN  
MAX  
7.50  
0.20  
MIN  
MAX  
8.00  
0.20  
Clock  
tKHKH  
tKC var  
4.00  
5.00  
6.0  
7.50  
ns  
ns  
Clock cycle time  
(K, K#, C, C#)4  
Clock phase jitter  
(K, K#, C, C#)5  
tKHKL  
tKLKH  
Clock HIGH time  
(K, K#, C, C#)  
Clock LOW time  
(K, K#, C, C#)  
Clock to clock#  
(KIJK#I, CIJC#I) at  
tKHKH minimum  
1.60  
1.60  
1.80  
2.00  
2.00  
2.20  
2.40  
2.40  
2.70  
3.00  
3.00  
3.38  
ns  
ns  
ns  
tKHK#H  
tK#HKH  
tKHCH  
1.80  
0.00  
2.20  
0.00  
2.70  
0.00  
3.38  
0.00  
ns  
ns  
Clock to clock#  
(K#IJKI, C#IJCI)  
Clock to data clock  
(KIJCI, K#IJC#I)  
1.80  
2.30  
2.80  
3.55  
tKC lock  
tKC reset  
DLL lock time (K, C)6  
K static to DLL reset  
1,024  
30  
1,024  
30  
1,024  
30  
1,024  
30  
cycles  
ns  
Output Times  
C, C# HIGH to output valid  
tCHQV  
tCHQX  
tCHCQV  
0.40  
0.33  
0.43  
0.36  
0.45  
0.38  
0.45  
0.38  
ns  
ns  
ns  
-0.40  
-0.33  
-0.43  
-0.36  
-0.45  
-0.38  
-0.45  
-0.38  
C, C# HIGH to output hold  
C, C# HIGH to echo clock  
valid  
tCHCQX  
tCQHQV  
C, C# HIGH to echo clock  
hold  
CQ, CQ# HIGH to output  
valid7  
ns  
ns  
0.35  
0.0  
0.38  
0.43  
0.40  
0.45  
0.40  
0.45  
tCQHQX  
-0.35  
-0.38  
-0.40  
-0.40  
ns  
CQ, CQ# HIGH to output  
hold7  
tCHQZ  
tCHQX1  
ns  
ns  
C HIGH to output High-Z  
C HIGH to output Low-Z  
-0.40  
0.40  
0.40  
0.40  
-0.43  
0.50  
0.50  
0.50  
-0.45  
0.60  
0.60  
0.60  
-0.45  
0.70  
0.70  
0.70  
Setup Times  
Address valid to K rising  
edge8  
Control inputs valid to K  
rising edge8  
tAVKH  
tIVKH  
ns  
ns  
ns  
tDVKH  
Data-in valid to K, K# rising  
edge8  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
15  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
AC ELECTRICAL CHARACTERISTICS AND RECOMMENDED OPERATING  
CONDITIONS 1, 2, 3, 6, 8  
0ºC  
?
TA  
?
+70ºC; +1.7V ?ꢁVDD ? +1.9V  
-4  
-5  
-6  
-7.5  
DESCRIPTION  
SYMBOL  
UNITS  
MIN  
0.40  
0.40  
0.40  
MAX  
MIN  
0.50  
0.50  
0.50  
MAX  
MIN  
0.60  
0.70  
0.60  
MAX  
MIN  
0.70  
0.70  
0.70  
MAX  
Hold Times  
K rising edge to address  
hold8  
K rising edge to control  
inputs hold8  
K, K# rising edge to data-in  
tKHAX  
tKHIX  
ns  
ns  
ns  
tKHDX  
hold8  
NOTE:  
1. Test conditions as specified with the output loading shown in Figure 5, unless otherwise noted.  
t
2. Control input signals may not be operated with pulse widths less than KHKL (MIN).  
3. If C and C# are tied HIGH, K and K# become the references for C and C# timing parameters.  
t
4. The device will operate at clock frequencies slower than KHKH (MAX). See Micron Technical Note TN-54-02 for more information.  
5. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
6. VDD slew rate must be less than 0.1V DC per 50ns for DLL lock retention. DLL lock time begins once VDD and input clock are stable.  
7. Echo clock is tightly controlled to data valid/data hold. By design, there is a 0.1ns variation from echo clock to data. The data sheet  
parameters reflect tester guardbands and test setup variations.  
8. This is a syncrhonous device. All addresses, data, and control lines must meet the specified setup and hold times for all latching clock  
edges.  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
16  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
AC TEST CONDITIONS  
Figure 5  
Output Load Equivalent  
Input pulse levels . . . . . . . . . . . . . . . . . . 0.25V to 1.25V  
Input rise and fall times . . . . . . . . . . . . . . . . . . . . 0.7ns  
Input timing reference levels . . . . . . . . . . . . . . . . 0.75V  
Output reference levels . . . . . . . . . . . . . . . . . . .VDDQ/2  
ZQ for 50impedance . . . . . . . . . . . . . . . . . . . . . 250ꢀ  
Output load . . . . . . . . . . . . . . . . . . . . . . . . . See Figure 5  
0.75V  
VDDQ/2  
VREF  
50  
Z
= 50  
O
SRAM  
250Ω  
ZQ  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
17  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
Figure 6  
READ/WRITE Timing3  
READ  
WRITE  
READ  
WRITE  
READ  
WRITE  
NOP  
WRITE  
NOP  
(Note 2)  
6
1
2
3
4
5
7
8
10  
9
K
t
t
t
t
KHKL  
KLKH  
KHKH  
KHK#H  
K#  
R#  
t
t
KHIX  
IVKH  
W#  
A
(Note 3)  
t
A5  
A6  
A0  
A1  
t
A2  
A3  
A4  
t
t
AVKH KHAX AVKH KHAX  
D
Q
D10  
D11  
D30  
D31  
D50  
D51  
Q01  
D60  
Q20  
D61  
t
t
KHDX  
t
t
KHDX  
DVKH  
DVKH  
(Note 1)  
Q00  
Q21  
Q40  
Q41  
t
CHQZ  
t
CHQX1  
t
t
CHQX  
t
CQHQV  
CHQX  
t
KHCH  
t
KLKH  
t
t
CHQV  
CHQV  
C
C#  
t
KHKL  
t
t
KHKH  
KHK#H  
t
KHCH  
t
CHCQV  
CHCQX  
t
CQ  
t
CHCQV  
CHCQX  
t
CQ#  
DON’T CARE  
UNDEFINED  
NOTE:  
1. Q00 refers to output from address A0. Q01 refers to output from the next internal burst address following  
A0, i.e., A0 + 1.  
2. Outputs are disabled (High-Z) one clock cycle after a NOP.  
3. In this example, if address A0 =A1, then data Q00 = D10, Q01 = D11. Write data is forwarded immediately as read results.  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
18  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
IEEE 1149.1 SERIAL BOUNDARY SCAN  
(JTAG)  
Figure 7  
TAP Controller State Diagram  
The QDR SRAM incorporates a serial boundary scan  
TEST-LOGIC  
RESET  
1
0
test access port (TAP). This port operates in accor-  
dance with IEEE Standard 1149.1-2001. The TAP oper-  
ates using JEDEC-standard 1.8V I/O logic levels.  
The SRAM contains a TAP controller, instruction  
register, boundary scan register, bypass register, and  
ID register.  
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
SELECT  
IR-SCAN  
DR-SCAN  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
Disabling the JTAG Feature  
1
1
EXIT1-DR  
EXIT1-IR  
It is possible to operate the SRAM without using the  
JTAG feature. To disable the TAP controller, TCK must  
be tied LOW (VSS) to prevent clocking of the device.  
TDI and TMS are internally pulled up and may be  
unconnected. Alternately, they may be connected to  
VDD through a pull-up resistor. TDO should be left  
unconnected. Upon power-up, the device will come up  
in a reset state, which will not interfere with the opera-  
tion of the device.  
0
0
PAUSE-DR  
1
0
PAUSE-IR  
1
0
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
0
1
0
TEST ACCESS PORT (TAP)  
Test Clock (TCK)  
NOTE:  
The 0 or 1 next to each state represents the value of TMS at  
the rising edge of TCK.  
The test clock is used only with the TAP controller.  
All inputs are captured on the rising edge of TCK. All  
outputs are driven from the falling edge of TCK.  
Test Data-In (TDI)  
The TDI ball is used to serially input information  
into the registers and can be connected to the input of  
any of the registers. The register between TDI and TDO  
is chosen by the instruction that is loaded into the TAP  
instruction register. For information on loading the  
instruction register, see Figure 7. TDI is internally  
pulled up and can be unconnected if the TAP is unused  
in an application. TDI is connected to the most-signifi-  
cant bit (MSB) of any register, as illustrated in Figure 8.  
Test MODE SELECT (TMS)  
The TMS input is used to give commands to the TAP  
controller and is sampled on the rising edge of TCK. It  
is allowable to leave this ball unconnected if the TAP is  
not used. The ball is pulled up internally, resulting in a  
logic HIGH level.  
Test Data-Out (TDO)  
The TDO output ball is used to serially clock data-  
out from the registers. The output is active depending  
upon the current state of the TAP state machine. (See  
Figure 7.) The output changes on the falling edge of  
TCK. TDO is connected to the least-significant bit  
(LSB) of any register, as depicted in Figure 8.  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
19  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
Figure 8  
TAP Controller Block Diagram  
Bypass Register  
To save time when serially shifting data through reg-  
isters, it is sometimes advantageous to skip certain  
chips. The bypass register is a single-bit register that  
can be placed between the TDI and TDO balls. This  
allows data to be shifted through the SRAM with mini-  
mal delay. The bypass register is set LOW (VSS) when  
the BYPASS instruction is executed.  
0
Bypass Register  
2
1 0  
Selection  
Circuitry  
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
TDI  
TDO  
.
.
. 2 1 0  
x
.
.
.
.
. 2 1 0  
Boundary Scan Register  
The boundary scan register is connected to all the  
input and bidirectional balls on the SRAM. Several no  
connect (NC) balls are also included in the scan regis-  
ter to reserve balls. The SRAM has a 109-bit-long regis-  
ter.  
Boundary Scan Register  
TCK  
TMS  
TAP CONTROLLER  
The boundary scan register is loaded with the con-  
tents of the RAM I/O ring when the TAP controller is in  
the Capture-DR state and is then placed between the  
TDI and TDO balls when the controller is moved to the  
Shift-DR state.  
NOTE:  
X = 108 for all configurations.  
The Boundary Scan Order tables show the order in  
which the bits are connected. Each bit corresponds to  
one of the balls on the SRAM package. The MSB of the  
register is connected to TDI, and the LSB is connected  
to TDO.  
Performing a TAP RESET  
A RESET is performed by forcing TMS HIGH (VDD)  
for five rising edges of TCK. This RESET does not affect  
the operation of the SRAM and may be performed  
while the SRAM is operating.  
Identification (ID) Register  
At power-up, the TAP is reset internally to ensure  
that TDO comes up in a High-Z state.  
The ID register is loaded with a vendor-specific, 32-  
bit code during the Capture-DR state when the  
IDCODE command is loaded in the instruction regis-  
ter. The IDCODE is hardwired into the SRAM and can  
be shifted out when the TAP controller is in the Shift-  
DR state. The ID register has a vendor code and other  
information described in the Identification Register  
Definitions table.  
TAP REGISTERS  
Registers are connected between the TDI and TDO  
balls and allow data to be scanned into and out of the  
SRAM test circuitry. Only one register can be selected  
at a time through the instruction register. Data is seri-  
ally loaded into the TDI ball on the rising edge of TCK.  
Data is output on the TDO ball on the falling edge of  
TCK.  
TAP INSTRUCTION SET  
Overview  
Eight different instructions are possible with the  
three-bit instruction register. All combinations are  
listed in the Instruction Codes table. Three of these  
instructions are listed as RESERVED and should not be  
used. The other five instructions are described below  
in detail.  
The TAP controller used in this SRAM is fully com-  
pliant to the 1149.1 convention.  
Instructions are loaded into the TAP controller dur-  
ing the Shift-IR state when the instruction register is  
placed between TDI and TDO. During this state,  
instructions are shifted through the instruction regis-  
Instruction Register  
Three-bit instructions can be serially loaded into  
the instruction register. This register is loaded when it  
is placed between the TDI and TDO balls as shown in  
Figure 8. Upon power-up, the instruction register is  
loaded with the IDCODE instruction. It is also loaded  
with the IDCODE instruction if the controller is placed  
in a reset state, as described in the previous section.  
When the TAP controller is in the Capture-IR state,  
the two LSBs are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test  
data path.  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
20  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
ter, and through the TDI and TDO balls. To execute the  
instruction once it is shifted in, the TAP controller  
needs to be moved into the Update-IR state.  
The user must be aware that the TAP controller  
clock can only operate at a frequency up to 10 MHz,  
while the SRAM clock operates more than an order of  
magnitude faster. Because there is a large difference in  
the clock frequencies, it is possible that during the  
Capture-DR state, an input or output will undergo a  
transition. The TAP may then try to capture a signal  
while in transition (metastable state). This will not  
harm the device, but there is no guarantee as to the  
value that will be captured. Repeatable results may not  
be possible.  
EXTEST  
The EXTEST instruction allows circuitry external to  
the component package to be tested. Boundary scan  
register cells at output balls are used to apply test vec-  
tors, while those at input balls capture test results. Typ-  
ically, the first test vector to be applied using the  
EXTEST instruction will be shifted into the boundary  
scan register using the PRELOAD instruction. Thus,  
during the Update-IR state of EXTEST, the output drive  
is turned on and the PRELOAD data is driven onto the  
output pins.  
To guarantee that the boundary scan register will  
capture the correct value of a signal, the SRAM signal  
must be stabilized long enough to meet the TAP con-  
t
trollers capture setup plus hold time (tCS plus CH).  
The SRAM clock input might not be captured correctly  
if there is no way in a design to stop (or slow) the clock  
during a SAMPLE/PRELOAD instruction. If this is an  
issue, it is still possible to capture all other signals and  
simply ignore the value of the C and C#, and K and K#,  
captured in the boundary scan register.  
Once the data is captured, it is possible to shift out  
the data by putting the TAP into the Shift-DR state.  
This places the boundary scan register between the  
TDI and TDO balls.  
IDCODE  
The IDCODE instruction causes a vendor-specific,  
32-bit code to be loaded into the instruction register. It  
also places the instruction register between the TDI  
and TDO balls and allows the IDCODE to be shifted  
out of the device when the TAP controller enters the  
Shift-DR state. The IDCODE instruction is loaded into  
the instruction register upon power-up or whenever  
the TAP controller is given a test logic reset state.  
BYPASS  
SAMPLE Z  
When the BYPASS instruction is loaded in the  
instruction register and the TAP is placed in a Shift-DR  
state, the bypass register is placed between the TDI  
and TDO balls. The advantage of the BYPASS instruc-  
tion is that it shortens the boundary scan path when  
multiple devices are connected together on a board.  
The SAMPLE Z instruction causes the boundary  
scan register to be connected between the TDI and  
TDO balls when the TAP controller is in a Shift-DR  
state. It also places all SRAM outputs into a High-Z  
state.  
SAMPLE/PRELOAD  
RESERVED  
These instructions are not implemented but are  
reserved for future use. Do not use these instructions.  
When the SAMPLE/PRELOAD instruction is loaded  
into the instruction register and the TAP controller is in  
the Capture-DR state, a snapshot of data on the inputs  
and bidirectional balls is captured in the boundary  
scan register.  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
21  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
Figure 9  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
t
THTH  
THTL  
TLTH  
t
t
MVTH  
DVTH  
THMX  
Test Mode Select  
(TMS)  
t
THDX  
Test Data-In  
(TDI)  
t
TLOV  
t
TLOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP DC ELECTRICAL CHARACTERISTICS1,2  
0ºC  
?
TA  
?
+70ºC; +1.7V ? VDD ? +1.9V  
DESCRIPTION  
SYMBOL  
MIN  
MAX  
UNITS  
Clock  
tTHTH  
fTF  
tTHTL  
tTLTH  
100  
ns  
MHz  
ns  
Clock cycle time  
Clock frequency  
Clock HIGH time  
Clock LOW time  
10  
40  
40  
ns  
Output Times  
tTLOX  
tTLOV  
tDVTH  
tTHDX  
0
ns  
ns  
ns  
ns  
TCK LOW to TDO unknown  
20  
TCK LOW to TDO valid  
TDI valid to TCK HIGH  
TCK HIGH to TDI invalid  
10  
10  
Setup Times  
tMVTH  
tCS  
TMS setup  
10  
10  
ns  
ns  
Capture setup  
Hold Times  
tTHMX  
tCH  
TMS hold  
10  
10  
ns  
ns  
Capture hold  
NOTE:  
t
t
1. CS and CH refer to the setup and hold time requirements of latching data from the boundary scan register.  
2. Test conditions are specified using the load in Figure 10.  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
22  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
TAP AC TEST CONDITIONS  
Figure 10  
TAP AC Output Load Equivalent  
Input pulse levels . . . . . . . . . . . . . . . . . . . . . VSS to 1.8V  
Input rise and fall times . . . . . . . . . . . . . . . . . . . . . .1ns  
Input timing reference levels . . . . . . . . . . . . . . . . . 0.9V  
Output reference levels . . . . . . . . . . . . . . . . . . . . . . 0.9V  
Test load termination supply voltage. . . . . . . . . . 0.9V  
0.9V  
50  
TDO  
ZO= 50Ω  
20pF  
TAP DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS  
0ºC  
?
TA  
?
+70ºC; +1.7V ? VDD ? +1.9V unless otherwise noted  
DESCRIPTION  
CONDITIONS  
SYMBOL  
VIH  
MIN  
1.3  
MAX  
VDD + 0.3  
0.5  
UNITS NOTES  
Input High (Logic 1) Voltage1,2  
Input Low (Logic 0) Voltage1,2  
Input Leakage Current  
V
V
1, 2  
1, 2  
VIL  
-0.3  
0V ? VIN ? VDD  
ILI  
-5.0  
-5.0  
5.0  
5.0  
µA  
µA  
Output Leakage Current  
Output(s) disabled,  
ILO  
0V ? VIN ? VDDQ (DQx)  
Output Low Voltage1  
Output Low Voltage1  
Output High Voltage1  
Output High Voltage1  
NOTE:  
IOLC = 100µA  
VOL1  
VOL2  
VOH1  
VOH1  
0.2  
0.4  
V
V
V
V
1
1
1
1
IOLT = 2mA  
IOHC = -100µA  
IOHT = -2mA  
1.6  
1.4  
1. 1All voltages referenced to Vss (GND).  
t
2. Overshoot:  
VIH(AC) ? VDD + 0.7V for t ? KHKH/2  
t
Undershoot: VIL(AC)ꢁO -0.5V for t ? KHKH/2  
Power-up: VIH ? VDDQ + 0.3V and VDD ? +1.7V and VDDQ ? 1.4V for t ? 200ms  
During normal operation, VDDQ must not exceed VDD. Control input signals (R#, W#, etc.) may not have pulse widths less than  
t
t
KHKL (MIN) or operate at frequencies exceeding KF (MAX).  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
23  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
IDENTIFICATION REGISTER DEFINITIONS  
INSTRUCTION FIELD  
ALL DEVICES  
DESCRIPTION  
REVISION NUMBER (31:28)  
DEVICE ID (28:12)  
000  
Version number.  
00def0Wx0t0q0b0s0 def = 001 for 36Mb density  
wx = 11 for x36, 10 for x18, 00 for x9, and 01 for x8  
t = 1 for DLL version, 0 for non-DLL version  
q = 1 for QDR, 0 for DDR  
b = 1 for four-word burst, 0 for two-word burst  
s = 1 for separate I/O, 0 for common I/O  
00000101100  
1
MICRON JEDEC ID CODE  
(11:1)  
Allows unique identification of SRAM vendor.  
ID Register Presence  
Indicator (0)  
Indicates the presence of an ID register.  
SCAN REGISTER SIZES  
REGISTER NAME  
BIT SIZE (x18)  
3
1
Instruction  
Bypass  
32  
109  
ID  
Boundary Scan  
INSTRUCTION CODES  
INSTRUCTION  
CODE  
DESCRIPTION  
EXTEST1, 2  
000  
Captures I/O ring contents. Places the boundary scan register between  
TDI and TDO.  
001  
010  
IDCODE  
Loads the ID register with the vendor ID code and places the register  
between TDI and TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between  
TDI and TDO. Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between  
TDI and TDO.  
101  
110  
111  
RESERVED  
RESERVED  
BYPASS  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does  
not affect SRAM operations.  
NOTE:  
1. Data in output register is not guaranteed if EXTEST instruction is loaded.  
2. After performing EXTEST, power-up conditions are required in order to return part to normal operation.  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
24  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
BOUNDARY SCAN (EXIT) ORDER  
BIT#  
FBGA BALL  
BIT#  
FBGA BALL  
BIT#  
FBGA BALL  
1
6R  
6P  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
10D  
9E  
73  
74  
2C  
3E  
2
3
6N  
10C  
11D  
9C  
75  
2D  
2E  
4
7P  
76  
5
7N  
77  
1E  
6
7R  
9D  
11B  
11C  
9B  
78  
2F  
7
8R  
79  
3F  
8
8P  
80  
1G  
1F  
9
9R  
81  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
11P  
10P  
10N  
9P  
10B  
11A  
10A  
9A  
8B  
82  
3G  
2G  
1H  
1J  
83  
84  
85  
10M  
11N  
9M  
9N  
86  
2J  
7C  
87  
3K  
3J  
6C  
88  
8A  
7A  
7B  
89  
2K  
1K  
2L  
11L  
11M  
9L  
90  
91  
6B  
92  
3L  
10L  
11K  
10K  
9J  
6A  
5B  
93  
1M  
1L  
94  
5A  
4A  
5C  
95  
3N  
3M  
1N  
2M  
3P  
96  
9K  
97  
10J  
11J  
11H  
10G  
9G  
4B  
98  
3A  
2A  
1A  
2B  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
2N  
2P  
1P  
11F  
11G  
9F  
3B  
3R  
1C  
4R  
1B  
4P  
10F  
11E  
10E  
3D  
3C  
5P  
5N  
5R  
1D  
INTERNAL  
NOTE:  
For NC balls in the range of 1B-1P, 2B-2P, 3B-3P, 9B-9P, 10B-10P, and 11B-11P, a logic zero will be read from the chain. All other  
NC balls will appear in the scan chain as the logic level present on the ball site.  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
25  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
Figure 11  
165-Ball FBGA  
0.850 0.075  
SEATING PLANE  
C
0.12 C  
10.00  
1.00  
TYP  
BALL A11  
165X 0.45  
SOLDER BALL DIAMETER  
REFERS TO POST REFLOW  
CONDITION. THE PRE-  
BALL A1  
1.20 MAX  
PIN A1 ID  
PIN A1 ID  
REFLOW DIAMETER IS Ø 0.40  
1.00  
TYP  
14.00  
17.00 0.10  
7.00 0.05  
8.50 0.10  
MOLD COMPOUND: EPOXY NOVOLAC  
7.50 0.05  
5.00 0.05  
SUBSTRATE: PLASTIC LAMINATE  
SOLDER BALL MATERIAL: EUTECTIC 63% Sn, 37% Pb or  
62% Sn, 36% Pb, 2%Ag  
15.00 0.10  
SOLDER BALL PAD: Ø .33mm  
NOTE:  
1. All dimensions are in millimeters.  
DATA SHEET DESIGNATION  
Advance: This data sheet contains initial descriptions of products still under development.  
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992  
Micron and the M logo are registered trademarks and SyncBurst and the Micron logo are trademarks of Micron Technology, Inc.  
QDR RAMs and Quad Data Rate RAMs comprise a new family of products developed by Cypress Semiconductor, IDT, Micron Technology,  
Inc., NEC, and Samsung.  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
©2002, Micron Technology Inc.  
26  
ADVANCE  
4 MEG x 8, 4 MEG x 9, 2 MEG x 18, 1 MEG x 36  
1.8V VDD, HSTL, QDRIIb2 SRAM  
REVISION HISTORY  
Rev. A, Pub. 9/02..........................................................................................................................................................9/02  
New ADVANCE data sheet  
36Mb: 1.8V VDD, HSTL, QDRIIb2 SRAM  
MT54W2MH18B_A.fm - Rev 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology Inc.  
27  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY