PC28F256P30TFE [MICRON]

256Mb and 512Mb (256Mb/256Mb), P30-65nm; 256MB和512MB (256 / 256MB ) , P30-65nm
PC28F256P30TFE
型号: PC28F256P30TFE
厂家: MICRON TECHNOLOGY    MICRON TECHNOLOGY
描述:

256Mb and 512Mb (256Mb/256Mb), P30-65nm
256MB和512MB (256 / 256MB ) , P30-65nm

闪存 内存集成电路
文件: 总95页 (文件大小:1351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Features  
Micron Parallel NOR Flash Embedded  
Memory (P30-65nm)  
JS28F256P30B/TFx, RC28F256P30B/TFx, PC28F256P30B/TFx,  
RD48F4400P0VBQEx, RC48F4400P0VB0Ex,  
PC48F4400P0VB0Ex, PF48F4000P0ZB/TQEx  
• Security  
Features  
• High performance  
– One-Time Programmable Register: 64 OTP bits,  
programmed with unique information from Mi-  
cron; 2112 OTP bits available for customer pro-  
gramming  
– 100ns initial access for Easy BGA  
– 110ns initial access for TSOP  
– 25ns 16-word asychronous page read mode  
– 52 MHz (Easy BGA) with zero WAIT states and  
17ns clock-to-data output synchronous burst  
read mode  
– Absolute write protection: VPP = VSS  
– Power-transition erase/program lockout  
– Individual zero-latency block locking  
– Individual block lock-down  
– Password access  
• Software  
– 4-, 8-, 16-, and continuous word options for burst  
mode  
– Buffered enhanced factory programming (BEFP)  
at 2MB/s (TYP) using a 512 word buffer  
– 1.8V buffered programming at 1.14MB/s (TYP)  
using a 512 word buffer  
25μs (TYP) program suspend  
25μs (TYP) erase suspend  
– Flash Data Integrator optimized  
– Basic command set and extended function Inter-  
face (EFI) command set compatible  
– Common flash interface  
• Architecture  
– MLC: highest density at lowest cost  
– Asymmetrically blocked architecture  
– Four 32-KB parameter blocks: top or bottom con-  
figuration  
– 128KB main blocks  
– Blank check to verify an erased block  
• Voltage and power  
• Density and Packaging  
– 56-lead TSOP package (256Mb only)  
– 64-ball Easy BGA package (256Mb, 512Mb)  
– QUAD+ and SCSP packages (256Mb, 512Mb)  
– 16-bit wide data bus  
• Quality and Reliabilty  
– VCC (core) voltage: 1.7V to 2.0V  
– VCCQ (I/O) voltage: 1.7V to 3.6V  
– Standy current: 65µA (TYP) for 256Mb  
– 52 MHz continuous synchronous read current:  
21mA (TYP), 24mA (MAX)  
– JESD47E compliant  
– Operating temperature: –40 °C to +85 °C  
– Minimum 100,000 erase cycles per block  
– 65nm process technology  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
1
© 2013 Micron Technology, Inc. All rights reserved.  
Products and specifications discussed herein are subject to change by Micron without notice.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Features  
Discrete and MCP Part Numbering Information  
Devices are shipped from the factory with memory content bits erased to 1. For available options, such as pack-  
ages or for further information, contact your Micron sales representative. Part numbers can be verified at www.mi-  
cron.com. Feature and specification comparison by device type is available at www.micron.com/products. Con-  
tact the factory for devices not found.  
Table 1: Discrete Part Number Information  
Part Number Category  
Category Details  
Package  
JS = 56-lead TSOP, lead free  
PC = 64-ball Easy BGA, lead-free  
RC = 64-ball Easy BGA, leaded  
28F = Micron Flash memory  
256 = 256Mb  
Product Line  
Density  
Product Family  
Parameter Location  
Lithography  
P30 (VCC = 1.7 to 2.0V; VCCQ = 1.7 to 3.6V)  
B/T = Bottom/Top parameter  
F = 65nm  
Features  
*
1. The last digit is assigned randomly to cover packaging media, features, or other specific configuration infor-  
mation. Sample part number: JS28F256P30BF*  
Note:  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
2
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Features  
Table 2: MCP Part Number Information  
Part Number Category  
Category Details  
Package  
RD = Micron MCP, leaded  
PF = Micron MCP, lead-free  
RC = 64-ball Easy BGA, leaded  
PC = 64-ball Easy BGA, lead-free  
48F = Micron Flash memory only  
0 = No die  
Product Line  
Density  
4 = 256Mb  
Product Family  
P = Micron Flash memory (P30)  
0 = No die  
IO Voltage and Chip Configuration  
Z = Individual Chip Enables  
V = Virtual Chip Enables  
VCC = 1.7 to 2.0V; VCCQ = 1.7 to 3.6V  
B/T = Bottom/Top parameter  
Q = QUAD+  
Parameter Location  
Ballout  
0 = Discrete  
Lithography  
Features  
E = 65nm  
*
1. The last digit is assigned randomly to cover packaging media, features, or other specific configuration infor-  
mation. Sample part number: RD48F4400P0VB0E*  
Note:  
Table 3: Discrete and MCP Part Combinations  
Package  
Density  
Packing Media  
Tray  
Boot Configuration 1  
Part Number  
JS28F256P30BFE  
JS  
256Mb  
B
Tape and Reel  
Tray  
JS28F256P30BFF  
T
B
JS28F256P30TFE  
PC  
PF  
256Mb  
Tray  
PC28F256P30BFE  
PC28F256P30BFF  
PC28F256P30TFE  
PC48F4400P0VB0EE  
PC48F4400P0VB0EF  
PF48F4000P0ZBQEF  
PF48F4000P0ZTQEJ  
PF48F4400P0VBQEF  
PF48F4400P0VBQEK  
Tape and Reel  
Tray  
T
512Mb  
(256Mb/256Mb)  
Tray  
B/T  
Tape and Reel  
Tray  
256Mb  
B
T
Tray  
512Mb  
(256Mb/256Mb)  
Tray  
B/T  
Tape and Reel  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
3
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Features  
Table 3: Discrete and MCP Part Combinations (Continued)  
Package  
Density  
Packing Media  
Tray  
Boot Configuration 1  
Part Number  
RC28F256P30BFE  
RC28F256P30TFE  
RC28F256P30TFF  
RC48F4400P0VB0EJ  
RC  
256Mb  
B
T
Tray  
Tape and Reel  
Tray  
512Mb  
(256Mb/256Mb)  
B/T  
B/T  
RD  
512Mb  
Tray  
RD48F4400P0VBQEJ  
(256Mb/256Mb)  
1. Bottom Boot/Top Boot = B/T  
Note:  
Table 4: OTP Feature Part Combinations  
Package  
Density  
Packing Media  
Boot Configuration 1  
Part Number  
JS  
PC  
PF  
B
256Mb  
Tape and Reel  
PC28F256P30BFR  
RC  
RD  
1. This data sheet covers only standard parts. For OTP parts, contact your local Micron representative.  
2. Bottom Boot/Top Boot = B/T  
Notes:  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
4
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Features  
Contents  
Introduction .................................................................................................................................................... 9  
Overview .......................................................................................................................................................... 9  
Virtual Chip Enable Description ...................................................................................................................... 10  
Memory Map ................................................................................................................................................. 12  
Package Dimensions ....................................................................................................................................... 13  
Pinouts and Ballouts ....................................................................................................................................... 17  
Signals ........................................................................................................................................................... 20  
Bus Operations ............................................................................................................................................... 23  
Reads ......................................................................................................................................................... 23  
Writes ........................................................................................................................................................ 23  
Output Disable ........................................................................................................................................... 23  
Standby ..................................................................................................................................................... 24  
Reset .......................................................................................................................................................... 24  
Device Command Codes ................................................................................................................................. 25  
Device Command Bus Cycles .......................................................................................................................... 28  
Read Operation .............................................................................................................................................. 30  
Asynchronous Page-Mode Read .................................................................................................................. 30  
Synchronous Burst-Mode Read ................................................................................................................... 30  
Read Device Identifier ................................................................................................................................ 31  
Read CFI .................................................................................................................................................... 31  
Program Operation ......................................................................................................................................... 32  
Word Programming .................................................................................................................................... 32  
Buffered Programming ............................................................................................................................... 32  
Buffered Enhanced Factory Programming ................................................................................................... 33  
BEFP Requirements and Considerations .................................................................................................. 34  
BEFP Setup Phase ................................................................................................................................... 34  
BEFP Program/Verify Phase .................................................................................................................... 35  
BEFP Exit Phase ..................................................................................................................................... 35  
Program Suspend ....................................................................................................................................... 36  
Program Resume ........................................................................................................................................ 36  
Program Protection .................................................................................................................................... 37  
Erase Operations ............................................................................................................................................ 38  
Block Erase ................................................................................................................................................ 38  
Blank Check ............................................................................................................................................... 38  
Erase Suspend ............................................................................................................................................ 39  
Erase Resume ............................................................................................................................................. 39  
Erase Protection ......................................................................................................................................... 39  
Security Modes ............................................................................................................................................... 40  
Block Locking ............................................................................................................................................. 40  
Lock Block ............................................................................................................................................. 40  
Unlock Block .......................................................................................................................................... 40  
Lock-Down Block ................................................................................................................................... 40  
Block Lock Status ................................................................................................................................... 41  
Block Locking During Suspend ............................................................................................................... 41  
Selectable One-Time Programmable Blocks ................................................................................................. 42  
Password Access ......................................................................................................................................... 42  
Registers ........................................................................................................................................................ 43  
Read Status Register ................................................................................................................................... 43  
Clear Status Register ............................................................................................................................... 44  
Read Configuration Register ....................................................................................................................... 44  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
5
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Features  
Read Mode ............................................................................................................................................. 45  
Latency Count ........................................................................................................................................ 45  
End of Word Line (EOWL) Considerations ................................................................................................ 46  
WAIT Signal Polarity and Functionality .................................................................................................... 47  
WAIT Delay ............................................................................................................................................ 48  
Burst Sequence ...................................................................................................................................... 49  
Clock Edge ............................................................................................................................................. 49  
Burst Wrap ............................................................................................................................................. 50  
Burst Length .......................................................................................................................................... 50  
One-Time-Programmable (OTP) Registers ................................................................................................... 50  
Reading the OTP Registers ...................................................................................................................... 51  
Programming the OTP Registers .............................................................................................................. 51  
Locking the OTP Registers ....................................................................................................................... 52  
Common Flash Interface ................................................................................................................................ 53  
READ CFI Structure Output ........................................................................................................................ 53  
Flowcharts ..................................................................................................................................................... 66  
Power-Up and Power-Down ............................................................................................................................ 75  
Reset Specifications ........................................................................................................................................ 75  
Power Supply Decoupling ............................................................................................................................... 76  
Absolute Maximum Ratings ............................................................................................................................ 77  
Operating Conditions ..................................................................................................................................... 77  
DC Current Characteristics ............................................................................................................................. 78  
DC Voltage Characteristics .............................................................................................................................. 79  
AC Test Conditions ......................................................................................................................................... 80  
Capacitance ................................................................................................................................................... 81  
AC Read Specifications ................................................................................................................................... 82  
AC Write Specifications ................................................................................................................................... 89  
Program and Erase Characteristics .................................................................................................................. 94  
Revision History ............................................................................................................................................. 95  
Rev. A – 10/12 ............................................................................................................................................. 95  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
6
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Features  
List of Figures  
Figure 1: 512Mb Easy BGA Block Diagram ...................................................................................................... 10  
Figure 2: 512Mb QUAD+ Block Diagram ......................................................................................................... 11  
Figure 3: P30-65nm, 256Mb and 512Mb Memory Map .................................................................................... 12  
Figure 4: 56-Pin TSOP – 14mm x 20mm .......................................................................................................... 13  
Figure 5: 64-Ball Easy BGA – 10mm x 13mm x 1.2mm ...................................................................................... 14  
Figure 6: 88-Ball QUAD+ – 8mm x 11mm x 1.0mm .......................................................................................... 15  
Figure 7: 88-Ball QUAD+ – 8mm x 11mm x 1.2mm .......................................................................................... 16  
Figure 8: 56-Lead TSOP Pinout (256Mb) ......................................................................................................... 17  
Figure 9: 64-Ball Easy BGA Ballout (256Mb, 512Mb) ........................................................................................ 18  
Figure 10: QUAD+ MCP Ballout ..................................................................................................................... 19  
Figure 11: Example VPP Supply Connections .................................................................................................. 37  
Figure 12: Block Locking State Diagram .......................................................................................................... 41  
Figure 13: First Access Latency Count ............................................................................................................ 45  
Figure 14: Example Latency Count Setting Using Code 3 ................................................................................. 46  
Figure 15: End of Wordline Timing Diagram ................................................................................................... 47  
Figure 16: OTP Register Map .......................................................................................................................... 51  
Figure 17: Word Program Procedure ............................................................................................................... 66  
Figure 18: Buffer Program Procedure .............................................................................................................. 67  
Figure 19: Buffered Enhanced Factory Programming (BEFP) Procedure ........................................................... 68  
Figure 20: Block Erase Procedure ................................................................................................................... 69  
Figure 21: Program Suspend/Resume Procedure ............................................................................................ 70  
Figure 22: Erase Suspend/Resume Procedure ................................................................................................. 71  
Figure 23: Block Lock Operations Procedure ................................................................................................... 72  
Figure 24: OTP Register Programming Procedure ............................................................................................ 73  
Figure 25: Status Register Procedure .............................................................................................................. 74  
Figure 26: Reset Operation Waveforms ........................................................................................................... 76  
Figure 27: AC Input/Output Reference Timing ................................................................................................ 80  
Figure 28: Transient Equivalent Load Circuit .................................................................................................. 80  
Figure 29: Clock Input AC Waveform .............................................................................................................. 80  
Figure 30: Asynchronous Single Word Read (ADV# LOW) ................................................................................ 84  
Figure 31: Asynchronous Single Word Read (ADV# Latch) ............................................................................... 84  
Figure 32: Asynchronous Page Mode Read ...................................................................................................... 85  
Figure 33: Synchronous Single Word Array or Nonarray Read .......................................................................... 86  
Figure 34: Continuous Burst Read with Output Delay (ADV# LOW) ................................................................. 87  
Figure 35: Synchronous Burst Mode 4-Word Read ........................................................................................... 88  
Figure 36: Write to Write Timing .................................................................................................................... 90  
Figure 37: Asynchronous Read to Write Timing ............................................................................................... 90  
Figure 38: Write to Asynchronous Read Timing ............................................................................................... 91  
Figure 39: Synchronous Read to Write Timing ................................................................................................ 92  
Figure 40: Write to Synchronous Read Timing ................................................................................................ 93  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
7
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Features  
List of Tables  
Table 1: Discrete Part Number Information ...................................................................................................... 2  
Table 2: MCP Part Number Information ........................................................................................................... 3  
Table 3: Discrete and MCP Part Combinations .................................................................................................. 3  
Table 4: OTP Feature Part Combinations .......................................................................................................... 4  
Table 5: Virtual Chip Enable Truth Table for 512Mb (QUAD+ Package) ............................................................. 10  
Table 6: Virtual Chip Enable Truth Table for 512Mb (Easy BGA Packages) ........................................................ 10  
Table 7: TSOP and Easy BGA Signal Descriptions ............................................................................................ 20  
Table 8: QUAD+ SCSP Signal Descriptions ...................................................................................................... 21  
Table 9: Bus Operations ................................................................................................................................. 23  
Table 10: Command Codes and Definitions .................................................................................................... 25  
Table 11: Command Bus Cycles ..................................................................................................................... 28  
Table 12: Device Identifier Information .......................................................................................................... 31  
Table 13: Device ID codes .............................................................................................................................. 31  
Table 14: BEFP Requirements ........................................................................................................................ 34  
Table 15: BEFP Considerations ...................................................................................................................... 34  
Table 16: Status Register Description .............................................................................................................. 43  
Table 17: Read Configuration Register ............................................................................................................ 44  
Table 18: Latency Count and Frequency Support ............................................................................................ 46  
Table 19: End of Wordline Data and WAIT State Comparison ........................................................................... 47  
Table 20: WAIT Functionality Table ................................................................................................................ 48  
Table 21: Burst Sequence Word Ordering ........................................................................................................ 49  
Table 22: Example of CFI Output (x16 device) as a Function of Device and Mode ............................................. 53  
Table 23: CFI Database: Addresses and Sections ............................................................................................. 54  
Table 24: CFI ID String ................................................................................................................................... 54  
Table 25: System Interface Information .......................................................................................................... 55  
Table 26: Device Geometry ............................................................................................................................ 56  
Table 27: Block Region Map Information ........................................................................................................ 56  
Table 28: Primary Vendor-Specific Extended Query ........................................................................................ 57  
Table 29: Optional Features Field ................................................................................................................... 58  
Table 30: One Time Programmable (OTP) Space Information .......................................................................... 58  
Table 31: Burst Read Information ................................................................................................................... 59  
Table 32: Partition and Block Erase Region Information .................................................................................. 60  
Table 33: Partition Region 1 Information: Top and Bottom Offset/Address ....................................................... 61  
Table 34: Partition Region 1 Information ........................................................................................................ 61  
Table 35: Partition Region 1: Partition and Erase Block Map Information ......................................................... 64  
Table 36: CFI Link Information ...................................................................................................................... 65  
Table 37: Additional CFI Link Field ................................................................................................................. 65  
Table 38: Power and Reset .............................................................................................................................. 75  
Table 39: Absolute Maximum Ratings ............................................................................................................. 77  
Table 40: Operating Conditions ...................................................................................................................... 77  
Table 41: DC Current Characteristics .............................................................................................................. 78  
Table 42: DC Voltage Characteristics .............................................................................................................. 79  
Table 43: Test Configuration: Worst Case Speed Condition .............................................................................. 80  
Table 44: Capacitance .................................................................................................................................... 81  
Table 45: AC Read Specifications .................................................................................................................... 82  
Table 46: AC Write Specifications ................................................................................................................... 89  
Table 47: Program and Erase Specifications .................................................................................................... 94  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
8
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Introduction  
Introduction  
This document provides information about the Micron Flash memory (P30-65nm)  
product and describes its features, operations, and specifications.  
The Micron Flash memory (P30-65nm) is the latest generation of flash memory devices.  
P30-65nm device will be offered in 64Mb up through 2Gb densities. This document cov-  
ers specifically 256Mb and 512Mb (256Mb/256Mb) product information. Benefits in-  
clude more density in less space, high-speed interface device, and support for code and  
data storage. Features include high-performance synchronous-burst read mode, fast  
asynchronous access times, low power, flexible security options, and three industry-  
standard package choices. The P30-65nm product family is manufactured using Micron  
65nm process technology.  
Overview  
This section provides an overview of the features and capabilities of the P30-65nm.  
The P30-65nm family devices provides high performance at low voltage on a 16-bit data  
bus. Individually erasable memory blocks are sized for optimum code and data storage.  
Upon initial power up or return from reset, the device defaults to asynchronous page-  
mode read. Configuring the Read Configuration Register enables synchronous burst-  
mode reads. In synchronous burst mode, output data is synchronized with a user-sup-  
plied clock signal. A WAIT signal provides easy CPU-to-flash memory synchronization.  
In addition to the enhanced architecture and interface, the device incorporates technol-  
ogy that enables fast factory program and erase operations. Designed for low-voltage  
systems, the P30-65nm supports read operations with VCC at 1.8 V, and erase and pro-  
gram operations with VPP at 1.8 V or 9.0 V. Buffered Enhanced Factory Programming  
(BEFP) provides the fastest flash array programming performance with VPP at 9.0 V,  
which increases factory throughput. With VPP at 1.8 V, VCC and VPP can be tied together  
for a simple, ultra low power design. In addition to voltage flexibility, a dedicated VPP  
connection provides complete data protection when VPP VPPLK  
.
A Command User Interface (CUI) is the interface between the system processor and all  
internal operations of the device. An internal Write State Machine (WSM) automatically  
executes the algorithms and timings necessary for block erase and program. A Status  
Register indicates erase or program completion and any errors that may have occurred.  
An industry-standard command sequence invokes program and erase automation.  
Each erase operation erases one block. The Erase Suspend feature allows system soft-  
ware to pause an erase cycle to read or program data in another block. Program Sus-  
pend allows system software to pause programming to read other locations. Data is pro-  
grammed in word increments (16 bits).  
The P30-65nm protection register allows unique flash device identification that can be  
used to increase system security. The individual Block Lock feature provides zero-laten-  
cy block locking and unlocking. The P30-65nm device includes enhanced protection via  
Password Access; this new feature allows write and/or read access protection of user-  
defined blocks. In addition, the P30-65nm device also provides the full-device One-  
Time Programmable (OTP) security feature.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
9
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Virtual Chip Enable Description  
Virtual Chip Enable Description  
The P30-65nm 512Mb devices employ a virtual chip enable feature, which combines  
two 256Mb die with a common chip enable, F1-CE# for QUAD+ packages, or CE# for  
Easy BGA Packages. The maximum address bit is then used to select between the die  
pair with F1-CE#/CE# asserted depending upon the package option used. When chip  
enable is asserted and the maximum address bit is LOW (VIL), the lower parameter die  
is selected; when chip enable is asserted and the maximum address bit is HIGH (VIH),  
the upper parameter die is selected (see the tables below).  
Table 5: Virtual Chip Enable Truth Table for 512Mb (QUAD+ Package)  
Die Selected  
Lower Param Die  
Upper Param Die  
F1-CE#  
A24  
L
L
L
H
Table 6: Virtual Chip Enable Truth Table for 512Mb (Easy BGA Packages)  
Die Selected  
Lower Param Die  
Upper Param Die  
CE#  
A25  
L
L
L
H
Figure 1: 512Mb Easy BGA Block Diagram  
Easy BGA 512Mb (Dual Die) Top/Bottom  
Parameter Configuration  
Top Parameter Die  
256Mb  
CE#  
WP#  
OE#  
RST#  
V
CC  
V
WE#  
CLK  
PP  
V
CCQ  
Bottom Parameter Die  
256Mb  
V
ADV#  
SS  
DQ[15:0]  
WAIT  
A[MAX:1]  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
10  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Virtual Chip Enable Description  
Figure 2: 512Mb QUAD+ Block Diagram  
QUAD+ 512Mb (Dual Die) Top/Bottom  
Parameter Configuration  
Top Parameter Die  
256Mb  
F1-CE#  
WP#  
OE#  
RST#  
V
CC  
V
WE#  
CLK  
PP  
V
CCQ  
Bottom Parameter Die  
256Mb  
V
ADV#  
SS  
DQ[15:0]  
WAIT  
A[MAX:0]  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
11  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Memory Map  
Memory Map  
Figure 3: P30-65nm, 256Mb and 512Mb Memory Map  
A[24:1] 256Mb, Easy BGA, TSOP  
A[23:0] 256Mb, Quad+  
A[24:1] 256Mb, Easy BGA, TSOP  
A[23:0] 256Mb, Quad+  
FF0000 - FFFFFF  
FFC000 - FFFFFF  
FF8000 - FFBFFF  
FF4000 - FF7FFF  
FF0000 - FF3FFF  
FE0000 - FEFFFF  
16 KWord Block 258  
16 KWord Block 257  
16 KWord Block 256  
16 KWord Block 255  
64 KWord Block 254  
64 KWord Block 258  
7F0000 - 7FFFFF  
3F0000 - 3FFFFF  
64 KWord Block 130  
64 KWord Block 66  
256Mb  
256Mb  
020000 - 02FFFF  
010000 - 01FFFF  
00C000 - 00FFFF  
008000 - 00BFFF  
004000 - 007FFF  
000000 - 003FFF  
64 KWord Block 5  
64 KWord Block 4  
16 KWord Block 3  
16 KWord Block 2  
16 KWord Block 1  
16 KWord Block 0  
010000 - 01FFFF  
000000 - 00FFFF  
64 KWord Block 1  
64 KWord Block 0  
Bottom Boot 256Mb, World-Wide x16 Mode  
Top Boot 256Mb, World-Wide x16 Mode  
A[25:1] 512Mb (256Mb/256Mb), Easy BGA, TSOP  
A[24:0] 512Mb (256Mb/256Mb), Quad+  
1FFC000 - 1FFFFFF  
16 KWord Block 517  
16 KWord Block 516  
16 KWord Block 515  
16 KWord Block 514  
64 KWord Block 513  
64 KWord Block 512  
1FF8000 - 1FFBFFF  
1FF4000 - 1FF7FFF  
1FF0000 - 1FF3FFF  
1FE0000 - 1FEFFFF  
1FD0000 - 1FDFFFF  
512Mb (256Mb/256Mb)  
020000 - 02FFFF  
010000 - 01FFFF  
00C000 - 00FFFF  
008000 - 00BFFF  
004000 - 007FFF  
000000 - 003FFF  
64 KWord Block 5  
64 KWord Block 4  
16 KWord Block 3  
16 KWord Block 2  
16 KWord Block 1  
16 KWord Block 0  
512Mb (256Mb/256Mb), World Wide x16 Mode  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
12  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Package Dimensions  
Package Dimensions  
Figure 4: 56-Pin TSOP – 14mm x 20mm  
20 ±0.2  
18.4 ±0.2  
0.995 ±0.03  
Pin #1 index  
See notes 2  
See note 2  
0.5 TYP  
14.00 ±0.2  
0.22 ±0.05  
See note 2  
See note 2  
0.25 ±0.1  
0.15 ±0.05  
0.10  
+2°  
3°  
-3°  
See Detail A  
Seating  
plane  
1.20 MAX  
0.05 MIN  
0.60 ±0.10  
Detail A  
1. All dimensions are in millimeters. Drawing not to scale.  
Notes:  
2. One dimple on package denotes pin 1; if two dimples, then the larger dimple denotes  
pin 1. Pin 1 will always be in the upper left corner of the package, in reference to the  
product mark.  
3. For the lead width value of 0.22 ±0.05, there is also a legacy value of 0.15 ±0.05.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
13  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Package Dimensions  
Figure 5: 64-Ball Easy BGA – 10mm x 13mm x 1.2mm  
0.78 TYP  
0.25 MIN  
Seating  
plane  
0.1  
1.00 TYP  
Ball A1 ID  
1.5 ±0.1  
64X Ø0.43 ±0.1  
Ball A1 ID  
8
7
6
5
4
3
2
1
3.0 ±0.1  
A
B
C
D
E
13 ±0.1  
F
1.00 TYP  
G
H
10 ±0.1  
1.20 MAX  
1. All dimensions are in millimeters. Drawing not to scale.  
Note:  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
14  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Package Dimensions  
Figure 6: 88-Ball QUAD+ – 8mm x 11mm x 1.0mm  
1.20 ±0.10  
1.10 ±0.10  
A 1 Index  
Mark  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
A
B
C
D
E
A
B
C
D
E
F
F
11.00 ±0.10  
0.80 TYP  
G
G
H
J
H
J
K
K
L
L
M
M
0.35 ±0.05  
8.00 ±0.10  
Bottom View - Ball Up  
1.00 MAX  
Top View - Ball Down  
0.740 TYP  
0.20 MIN  
0.10 MAX  
1. All dimensions are in millimeters. Drawing not to scale.  
Note:  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
15  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Package Dimensions  
Figure 7: 88-Ball QUAD+ – 8mm x 11mm x 1.2mm  
1.20 ±0.10  
1.10 ±0.10  
A 1 Index  
Mark  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
A
B
C
D
E
A
B
C
D
E
F
F
11.00 ±0.10  
0.80 TYP  
G
G
H
J
H
J
K
K
L
L
M
M
0.375 ±0.050  
8.00 ±0.10  
Bottom View - Ball Up  
1.20 MAX  
Top View - Ball Down  
0.860 TYP  
0.20 MIN  
0.10 MAX  
1. All dimensions are in millimeters. Drawing not to scale.  
Note:  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
16  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Pinouts and Ballouts  
Pinouts and Ballouts  
Figure 8: 56-Lead TSOP Pinout (256Mb)  
WAIT  
A17  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
A 16  
A 15  
DQ15  
DQ7  
DQ14  
DQ 6  
DQ13  
DQ5  
DQ12  
DQ4  
ADV#  
CLK  
A 14  
A 13  
A 12  
A 11  
A 10  
A 9  
A 23  
A 22  
A 21  
VSS  
RFU  
WE #  
WP #  
A 20  
A 19  
A 18  
A 8  
A 7  
A 6  
A 5  
A 4  
A 3  
A 2  
A 24  
RFU  
VSS  
56-Lead TSOP Pinout  
14mm x 20mm  
RST#  
VPP  
DQ11  
DQ 3  
DQ10  
DQ 2  
VCCQ  
DQ 9  
DQ1  
DQ 8  
DQ 0  
VCC  
Top View  
OE#  
VSS  
CE#  
A 1  
1. A1 is the least significant address bit.  
Notes:  
2. A24 is valid for 256Mb densities; otherwise, it is a no connect (NC).  
3. No Internal Connection on Pin 13; it may be driven or floated. For legacy designs, it is  
VCC pin and can be tied to Vcc.  
4. One dimple on package denotes Pin 1 which will always be in the upper left corner of  
the package, in reference to the product mark.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
17  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Pinouts and Ballouts  
Figure 9: 64-Ball Easy BGA Ballout (256Mb, 512Mb)  
5
8
8
5
1
2
3
4
6
7
7
6
4
3
2
1
A
B
C
D
A
B
C
D
E
A1  
A6  
A8  
VPP A13 VCC A18 A22  
A22 A18 VCC A13 VPP A8  
RFU A19 A25 A14 CE# A9  
A21 A20 WP# A15 A12 A10  
A17 A16 VCCQ VCCQ RST# A11  
A6  
VSS  
A7  
A1  
A2  
A3  
A4  
A2 VSS  
A9 CE# A14 A25 A19 RFU  
A10 A12 A15 WP# A20 A21  
A11 RST# VCCQ VCCQ A16 A17  
A3  
A4  
A7  
A5  
A5  
E
F
DQ8 DQ1 DQ9 DQ3 DQ4 CLK DQ15 RFU  
RFU DQ0 DQ10 DQ11 DQ12 ADV# WAIT OE#  
A23 RFU DQ2 VCCQ DQ5 DQ6 DQ14 WE#  
RFU DQ15 CLK DQ4 DQ3 DQ9 DQ1 DQ8  
OE# WAIT ADV# DQ12 DQ11 DQ10 DQ0 RFU  
WE# DQ14 DQ6 DQ5 VCCQ DQ2 RFU A23  
F
G
H
G
H
RFU VSS VCC VSS DQ13 VSS DQ7 A24  
A24 DQ7 VSS DQ13 VSS VCC VSS RFU  
Easy BGA  
Easy BGA  
Top View - Ball side down  
Bottom View - Ball side up  
1. A1 is the least significant address bit.  
Notes:  
2. A24 is valid for 256Mb densities and above; otherwise, it is a no connect (NC).  
3. A25 is valid for 512-Mbit densities; otherwise, it is a no connect.  
4. One dimple on package denotes A1 Pin which will always be in the upper left corner of  
the package, in reference to the product mark.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
18  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Pinouts and Ballouts  
Figure 10: QUAD+ MCP Ballout  
Pin 1  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
DU  
A4  
DU  
Depop  
A19  
Depop  
VSS  
Depop  
VCC  
RFU  
RFU  
ADV#  
WE#  
DQ5  
DQ12  
DQ4  
RFU  
VSS  
Depop  
VCC  
CLK  
RFU  
A20  
DU  
DU  
A
B
C
D
E
F
A18  
RFU  
A17  
A7  
A21  
A22  
A9  
A11  
A5  
A23  
VSS  
A12  
A3  
A24  
VPP  
A13  
A2  
RFU  
RFU  
DQ2  
DQ1  
DQ9  
RFU  
VCCQ  
WP#  
RST#  
DQ10  
DQ3  
DQ11  
RFU  
VCC  
A10  
A14  
WAIT  
DQ7  
DQ15  
VCCQ  
VSS  
A15  
A1  
A6  
A8  
A16  
G
H
J
A0  
DQ8  
DQ0  
OE#  
RFU  
VSS  
DQ13  
DQ14  
DQ6  
VCC  
VSS  
F2-CE#  
F2-OE#  
VCCQ  
RFU  
VSS  
G
H
J
RFU  
RFU  
F1-CE#  
VSS  
K
L
K
L
M
DU  
1
DU  
2
Depop  
3
Depop  
4
Depop  
5
Depop  
6
DU  
7
DU  
8
M
Top View - Ball Side Down  
Control Signals  
De-Populated Ball  
Reserved for Future Use  
Do Not Use  
Address  
Data  
Power/Ground  
Legends :  
1. A23 is valid for 256Mb densities and above; otherwise, it is a no connect.  
2. A24 is valid for 512Mb densities and above; otherwise, it is a no connect.  
3. F2-CE# and F2-OE# are no connect for all densities.  
4. A0 is LSB for Address.  
Notes:  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2013 Micron Technology, Inc. All rights reserved.  
19  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Signals  
Signals  
Table 7: TSOP and Easy BGA Signal Descriptions  
Symbol  
Type  
Name and Function  
A[MAX:1]  
Input  
Address inputs: Device address inputs. 256Mb: A[24:1]; 512Mb: A[25:1]. Note: The virtual  
selection of the 256Mb top parameter die in the dual-die 51Mb configuration is accom-  
plished by setting A25 HIGH (VIH).  
Note: The active address pins unused in design should not be left floating; tie them to  
VCCQ or VSS according to specific design requirements.  
DQ[15:0]  
ADV#  
Input/Output Data input/output: Inputs data and commands during write cycles; outputs data during  
memory, status register, protection register, and read configuration register reads. Data  
balls float when the CE# or OE# are de-asserted. Data is internally latched during writes.  
Input  
Address valid: Active LOW input. During synchronous READ operations, addresses are  
latched on the rising edge of ADV#, or on the next valid CLK edge with ADV# LOW, which-  
ever occurs first.  
In asynchronous mode, the address is latched when ADV# goes HIGH or continuously flows  
through if ADV# is held LOW.  
Note: Designs not using ADV# must tie it to VSS to allow addresses to flow through.  
CE#  
CLK  
Input  
Input  
Chip enable: Active LOW input. CE# LOW selects the associated flash memory die. When  
asserted, flash internal control logic, input buffers, decoders, and sense amplifiers are ac-  
tive. When de-asserted, the associated flash die is deselected, power is reduced to standby  
levels, data and wait outputs are placed in High-Z state.  
Note: Chip enable must be driven HIGH when device is not in use.  
Clock: Synchronizes the device with the system bus frequency in synchronous-read mode.  
During synchronous READs, addresses are latched on the rising edge of ADV#, or on the  
next valid CLK edge with ADV# LOW, whichever occurs first.  
Note:Designs not using CLK for synchronous read mode must tie it to VCCQ or VSS.  
OE#  
Input  
Input  
Output enable: Active LOW input. OE# LOW enables the device’s output data buffers  
during read cycles. OE# HIGH places the data outputs and WAIT in High-Z.  
RST#  
Reset: Active LOW input. RST# resets internal automation and inhibits WRITE operations.  
This provides data protection during power transitions. RST# HIGH enables normal opera-  
tion. Exit from reset places the device in asynchronous read array mode.  
WAIT  
Output  
Wait: Indicates data valid in synchronous array or non-array burst reads. Read Configura-  
tion Register bit 10 (RCR.10, WT) determines its polarity when asserted. This signal's active  
output is VOL or VOH when CE# and OE# are VIL. WAIT is High-Z if CE# or OE# is VIH.  
• In synchronous array or non-array read modes, this signal indicates invalid data when as-  
serted and valid data when de-asserted.  
• In asynchronous page mode, and all write modes, this signal is de-asserted.  
WE#  
WP#  
Input  
Input  
Write enable: Active LOW input. WE# controls writes to the device. Address and data are  
latched on the rising edge of WE# or CE#, whichever occurs first.  
Write protect: Active LOW input. WP# LOW enables the lock-down mechanism. Blocks in  
lock-down cannot be unlocked with the Unlock command. WP# HIGH overrides the lock-  
down function enabling blocks to be erased or programmed using software commands.  
Note: Designs not using WP# for protection could tie it to VCCQ or VSS without additional  
capacitor.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
20  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Signals  
Table 7: TSOP and Easy BGA Signal Descriptions (Continued)  
Symbol  
Type  
Name and Function  
VPP  
Power/Input Erase and program power: A valid voltage on this pin allows erasing or programming.  
Memory contents cannot be altered when VPP VPPLK. Block erase and program at invalid  
VPP voltages should not be attempted.  
Set VPP = VPPL for in-system PROGRAM and ERASE operations. To accommodate resistor or  
diode drops from the system supply, the VIH level of VPP can be as low as VPPL,min . VPP must  
remain above VPPL,min to perform in-system flash modification. VPP may be 0V during READ  
operations.  
VPPH can be applied to main blocks for 1000 cycles maximum and to parameter blocks for  
2500 cycles. VPP can be connected to 9V for a cumulative total not to exceed 80 hours. Ex-  
tended use of this pin at 9V may reduce block cycling capability.  
VCC  
Power  
Device core power supply: Core (logic) source voltage. Writes to the flash array are in-  
hibited when VCC VLKO. Operations at invalid VCC voltages should not be attempted.  
VCCQ  
VSS  
Power  
Power  
Output power supply: Output-driver source voltage.  
Ground: Connect to system ground. Do not float any VSS connection.  
RFU  
Reserved for future use: Reserved by Micron for future device functionality and en-  
hancement. These should be treated in the same way as a Do Not Use (DNU) signal.  
DU  
NC  
Do not use: Do not connect to any other signal, or power supply; must be left floating.  
No connect: No internal connection; can be driven or floated.  
Table 8: QUAD+ SCSP Signal Descriptions  
Symbol  
Type  
Name and Function  
A[MAX:0]  
Input  
Address inputs: Device address inputs. 256Mb: A[23:0]; 512Mb: A[24:0]. Note: The virtual  
selection of the 256Mb top parameter die in the dual-die 512Mb configuration is accom-  
plished by setting A24 HIGH (VIH).  
Note: The address pins unused in design should not be left floating; tie them to VCCQ or  
VSS according to specific design requirements.  
DQ[15:0]  
ADV#  
Input/Output Data input/output: Inputs data and commands during write cycles; outputs data during  
memory, status register, protection register, and read configuration register reads. Data  
balls float when the CE# or OE# are de-asserted. Data is internally latched during writes.  
Input  
Address valid: Active LOW input. During synchronous READ operations, addresses are  
latched on the rising edge of ADV#, or on the next valid CLK edge with ADV# LOW, which-  
ever occurs first.  
In asynchronous mode, the address is latched when ADV# goes HIGH or continuously flows  
through if ADV# is held LOW.  
Note: Designs not using ADV# must tie it to VSS to allow addresses to flow through.  
F1-CE#  
Input  
Flash chip enable: Active LOW input. CE# LOW selects the associated flash memory die.  
When asserted, flash internal control logic, input buffers, decoders, and sense amplifiers  
are active. When de-asserted, the associated flash die is deselected, power is reduced to  
standby levels, data and wait outputs are placed in High-Z state.  
Note: Chip enable must be driven HIGH when device is not in use.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
21  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Signals  
Table 8: QUAD+ SCSP Signal Descriptions (Continued)  
Symbol  
Type  
Name and Function  
CLK  
Input  
Clock: Synchronizes the device with the system bus frequency in synchronous-read mode.  
During synchronous READ operations, addresses are latched on the rising edge of ADV#,  
or on the next valid CLK edge with ADV# LOW, whichever occurs first.  
Note: Designs not using CLK for synchronous read mode must tie it to VCCQ or VSS.  
F1-OE#  
RST#  
Input  
Input  
Output enable: Active LOW input. OE# LOW enables the device’s output data buffers  
during read cycles. OE# HIGH places the data outputs and wait in High-Z.  
Reset: Active LOW input. RST# resets internal automation and inhibits WRITE operations.  
This provides data protection during power transitions. RST# HIGH enables normal opera-  
tion. Exit from reset places the device in asynchronous read array mode.  
WAIT  
Output  
Wait: Indicates data valid in synchronous array or non-array burst reads. Read configura-  
tion register bit 10 (RCR.10, WT) determines its polarity when asserted. The active output is  
VOL or VOH when CE# and OE# are VIL. WAIT is High-Z if CE# or OE# is VIH.  
• In synchronous array or non-array read modes, WAIT indicates invalid data when asser-  
ted and valid data when de-asserted.  
• In asynchronous page mode, and all write modes, WAIT is de-asserted.  
WE#  
WP#  
Input  
Input  
Write enable: Active LOW input. WE# controls writes to the device. Address and data are  
latched on the rising edge of WE# or CE#, whichever occurs first.  
Write protect: Active LOW input. WP# LOW enables the lock-down mechanism. Blocks in  
lock-down cannot be unlocked with the UNLOCK command. WP# HIGH overrides the lock-  
down function enabling blocks to be erased or programmed using software commands.  
Note: Designs not using WP# for protection could tie it to VCCQ or VSS without additional  
capacitor.  
VPP  
Power/lnput Erase and program power: A valid voltage on this pin allows erasing or programming.  
Memory contents cannot be altered when VPP VPPLK. Block erase and program at invalid  
VPP voltages should not be attempted.  
Set VPP = VPPL for in-system PROGRAM and ERASE operations. To accommodate resistor or  
diode drops from the system supply, the VIH level of VPP can be as low as VPPL,min . VPP must  
remain above VPPL,min to perform in-system flash modification. VPP may be 0V during READ  
operations.  
VPPH can be applied to main blocks for 1000 cycles maximum and to parameter blocks for  
2500 cycles. VPP can be connected to 9V for a cumulative total not to exceed 80 hours. Ex-  
tended use of this pin at 9V may reduce block cycling capability.  
VCC  
Power  
Device core power supply: Core (logic) source voltage. Writes to the flash array are in-  
hibited when VCC VLKO. Operations at invalid VCC voltages should not be attempted.  
VCCQ  
VSS  
Power  
Power  
Output power supply: Output driver source voltage.  
Ground: Connect to system ground. Do not float any VSS connection.  
RFU  
Reserved for future use: Reserved by Micron for future device functionality and en-  
hancement. These should be treated in the same way as a Do Not Use (DNU) signal.  
DU  
NC  
Do not use: Do not connect to any other signal, or power supply; must be left floating.  
No connect: No internal connection; can be driven or floated.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
22  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Bus Operations  
Bus Operations  
CE# low and RST# high enable device read operations. The device internally decodes  
upper address inputs to determine the accessed block. ADV# low opens the internal ad-  
dress latches. OE# low activates the outputs and gates selected data onto the I/O bus.  
In asynchronous mode, the address is latched when ADV# goes high or continuously  
flows through if ADV# is held low. In synchronous mode, the address is latched by the  
first of either the rising ADV# edge or the next valid CLK edge with ADV# low (WE# and  
RST# must be VIH; CE# must be VIL).  
Bus cycles to/from the P30-65nm device conform to standard microprocessor bus oper-  
ations. The Bus Operations table shows the bus operations and the logic levels that  
must be applied to the device control signal inputs.  
Table 9: Bus Operations  
Bus Operation  
RST#  
VIH  
VIH  
VIH  
VIH  
VIH  
VIL  
CLK  
ADV#  
CE#  
L
OE#  
L
WE#  
H
WAIT  
Deasserted  
Driven  
DQ[15:0] Notes  
Read  
Asynchronous  
Synchronous  
Write  
X
L
L
Output  
Output  
Input  
1
Running  
L
L
H
X
X
X
X
L
L
H
L
High-Z  
1, 2  
1
Output Disable  
X
X
X
L
H
H
High-Z  
High-Z  
High-Z  
High-Z  
Standby  
Reset  
H
X
X
X
High-Z  
1
X
X
High-Z  
1, 3  
1. X = Don’t Care (H or L).  
Notes:  
2. Refer to the Command Bus Cycles table for valid DQ[15:0] during a write operation.  
3. RST# must be at VSS ± 0.2 V to meet the maximum specified power-down current.  
Reads  
Writes  
To perform a read operation, RST# and WE# must be deasserted while CE# and OE# are  
asserted. CE# is the device-select control. When asserted, it enables the flash memory  
device. OE# is the data-output control. When asserted, the addressed flash memory da-  
ta is driven onto the I/O bus.  
To perform a write operation, both CE# and WE# are asserted while RST# and OE# are  
deasserted. During a write operation, address and data are latched on the rising edge of  
WE# or CE#, whichever occurs first. The Command Bus Cycles table shows the bus cycle  
sequence for each of the supported device commands, while the Command Codes and  
Definitions table describes each command.  
Note: Write operations with invalid VCC and/or VPP voltages can produce spurious re-  
sults and should not be attempted.  
Output Disable  
When OE# is deasserted, device outputs DQ[15:0] are disabled and placed in a high-im-  
pedance (High-Z) state, WAIT is also placed in High-Z.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
23  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Bus Operations  
Standby  
When CE# is deasserted the device is deselected and placed in standby, substantially re-  
ducing power consumption. In standby, the data outputs are placed in High-Z, inde-  
pendent of the level placed on OE#. Standby current, ICCS, is the average current meas-  
ured over any 5 ms time interval, 5μs after CE# is deasserted. During standby, average  
current is measured over the same time interval 5μs after CE# is deasserted.  
When the device is deselected (while CE# is deasserted) during a program or erase oper-  
ation, it continues to consume active power until the program or erase operation is  
completed.  
Reset  
As with any automated device, it is important to assert RST# when the system is reset.  
When the system comes out of reset, the system processor attempts to read from the  
flash memory if it is the system boot device. If a CPU reset occurs with no flash memory  
reset, improper CPU initialization may occur because the flash memory may be provid-  
ing status information rather than array data. Flash memory devices from Micron allow  
proper CPU initialization following a system reset through the use of the RST# input.  
RST# should be controlled by the same low-true reset signal that resets the system CPU.  
After initial power-up or reset, the device defaults to asynchronous Read Array mode,  
and the Status Register is set to 0x80. Asserting RST# de-energizes all internal circuits,  
and places the output drivers in High-Z. When RST# is asserted, the device shuts down  
the operation in progress, a process which takes a minimum amount of time to com-  
plete. When RST# has been deasserted, the device is reset to asynchronous Read Array  
state.  
When device returns from a reset (RST# deasserted), a minimum wait is required before  
the initial read access outputs valid data. Also, a minimum delay is required after a reset  
before a write cycle can be initiated. After this wake-up interval passes, normal opera-  
tion is restored.  
Note: If RST# is asserted during a program or erase operation, the operation is termina-  
ted and the memory contents at the aborted location (for a program) or block (for an  
erase) are no longer valid, because the data may have been only partially written or  
erased.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
24  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Device Command Codes  
Device Command Codes  
The system CPU provides control of all in-system READ, WRITE, and ERASE operations  
of the device via the system bus. The device manages all block-erase and word-program  
algorithms.  
Device commands are written to the command user interface (CUI) to control all flash  
memory device operations. The CUI does not occupy an addressable memory location;  
it is the mechanism through which the Flash device is controlled.  
Note: For 512Mb (256Mb/256Mb) device, all the setup commands should be re-issued  
to the device when a different die is selected.  
Table 10: Command Codes and Definitions  
Mode  
Code  
Device Mode  
Read Array  
Description  
Read  
0xFF  
Places the device in Read Array mode. Array data is output on  
DQ[15:0].  
0x70  
0x90  
Read Status Register Places the device in Read Status Register mode. The device enters this  
mode after a program or erase command is issued. Status Register data  
is output on DQ[7:0].  
Read Device ID or  
Places device in Read Device Identifier mode. Subsequent reads output  
Read Configuration manufacturer/device codes, Configuration Register data, Block Lock  
Register (RCR)  
Read CFI  
status, or Protection Register data on DQ[15:0].  
0x98  
0x50  
0x40  
Places the device in Read CFI mode. Subsequent reads output Common  
Flash Interface information on DQ[7:0].  
Clear Status Register The device sets Status Register error bits. The Clear Status Register com-  
mand is used to clear the SR error bits.  
Write  
Word Program Setup First cycle of a 2-cycle programming command; prepares the CUI for a  
write operation. On the next write cycle, the address and data are  
latched and the device executes the programming algorithm at the ad-  
dressed location. During program operations, the device responds only  
to Read Status Register and Program Suspend commands. CE# or OE#  
must be toggled to update the Status Register in asynchronous read.  
CE# or ADV# must be toggled to update the Status Register Data for  
synchronous Non-array reads. The Read Array command must be issued  
to read array data after programming has finished.  
0xE8  
0xD0  
Buffered Program  
This command loads a variable number of words up to the buffer size  
of 512 words onto the program buffer.  
Buffered Program  
Confirm  
The confirm command is issued after the data streaming for writing in-  
to the buffer is completed. The device then performs the Buffered Pro-  
gram algorithm, writing the data from the buffer to the Flash memory  
array.  
0x80  
0xD0  
BEFP Setup  
First cycle of a 2-cycle command; initiates Buffered Enhanced Factory  
Program mode (BEFP). The CUI then waits for the BEFP Confirm com-  
mand, 0xD0, that initiates the BEFP algorithm. All other commands are  
ignored when BEFP mode begins.  
BEFP Confirm  
If the previous command was BEFP Setup (0x80), the CUI latches the ad-  
dress and data, and prepares the device for BEFP mode.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
25  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Device Command Codes  
Table 10: Command Codes and Definitions (Continued)  
Mode  
Code  
Device Mode  
Description  
Erase  
0x20  
Block Erase Setup  
First cycle of a 2-cycle command; prepares the CUI for a block-erase op-  
eration. The device performs the erase algorithm on the block ad-  
dressed by the Erase Confirm command. If the next command is not the  
Erase Confirm (0xD0) command, the CUI sets Status Register bits SR.4  
and SR.5, and places the device in read status register mode.  
0xD0  
0xB0  
Block Erase Confirm If the first command was Block Erase Setup (0x20), the CUI latches the  
address and data, and the device erases the addressed block. During  
block-erase operations, the device responds only to Read Status Regis-  
ter and Erase Suspend commands. CE# or OE# must be toggled to up-  
date the Status Register in asynchronous read. CE# or ADV# must be  
toggled to update the Status Register Data for synchronous Non-array  
reads.  
Suspend  
Program or Erase  
Suspend  
This command issued to any device address initiates a suspend of the  
currently-executing program or block erase operation. The Status Reg-  
ister indicates successful suspend operation by setting either SR.2 (pro-  
gram suspended) or SR.6 (erase suspended), along with SR.7 (ready).  
The Write State Machine remains in the suspend mode regardless of  
control signal states (except for RST# asserted).  
0xD0  
0x60  
Suspend Resume  
Block lock Setup  
This command issued to any device address resumes the suspended  
program or block-erase operation.  
Block Locking/  
Unlocking  
First cycle of a 2-cycle command; prepares the CUI for block lock config-  
uration changes. If the next command is not Block Lock (0x01), Block  
Unlock (0xD0), or Block Lock-Down (0x2F), the CUI sets Status Register  
bits SR.5 and SR.4, indicating a command sequence error.  
0x01  
0xD0  
Block lock  
If the previous command was Block Lock Setup (0x60), the addressed  
block is locked.  
Block Unlock  
If the previous command was Block Lock Setup (0x60), the addressed  
block is unlocked. If the addressed block is in a lock-down state, the  
operation has no effect.  
0x2F  
Block Lock-Down  
If the previous command was Block Lock Setup (0x60), the addressed  
block is locked down.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
26  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Device Command Codes  
Table 10: Command Codes and Definitions (Continued)  
Mode  
Code  
Device Mode  
Description  
Protection  
0x60  
Block lock Setup  
First cycle of a 2-cycle command; prepares the CUI for block lock config-  
uration changes. If the next command is not Block Lock (0x01), Block  
Unlock (0xD0), or Block Lock-Down (0x2F), the CUI sets Status Register  
bits SR.5 and SR.4, indicating a command sequence error.  
0x01  
0xD0  
Block lock  
If the previous command was Block Lock Setup (0x60), the addressed  
block is locked.  
Block Unlock  
If the previous command was Block Lock Setup (0x60), the addressed  
block is unlocked. If the addressed block is in a lock-down state, the  
operation has no effect.  
0x2F  
0xC0  
Block Lock-Down  
If the previous command was Block Lock Setup (0x60), the addressed  
block is locked down.  
OTP Register or Lock First cycle of a 2-cycle command; prepares the device for a OTP register  
Register program  
setup  
or Lock Register program operation. The second cycle latches the regis-  
ter address and data, and starts the programming algorithm to pro-  
gram data the the OTP array.  
Configuration  
0x60  
0x03  
Read Configuration First cycle of a 2-cycle command; prepares the CUI for device read con-  
Register Setup  
figuration. If the Set Read Configuration Register command (0x03) is  
not the next command, the CUI sets Status Register bits SR.4 and SR.5,  
indicating a command sequence error.  
Read Configuration If the previous command was Read Configuration Register Setup  
Register  
(0x60), the CUI latches the address and writes A[16:1] to the Read Con-  
figuration Register for Easy BGA and TSOP, A[15:0] for QUAD+. Follow-  
ing a Configure Read Configuration Register command, subsequent  
read operations access array data.  
Blank Check  
0xBC  
0xD0  
0xEB  
Block Blank Check  
First cycle of a 2-cycle command; initiates the Blank Check operation on  
a main block.  
Block Blank Check  
Confirm  
Second cycle of blank check command sequence; it latches the block  
address and executes blank check on the main array block.  
EFI  
Extended Function  
First cycle of a multiple-cycle command; initiate operation using exten-  
Interface command ded function interface. The second cycle is a Sub-Op-Code, the data  
written on third cycle is one less than the word count; the allowable  
value on this cycle are 0–511. The subsequent cycles load data words in-  
to the program buffer at a specified address until word count is ach-  
ieved.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
27  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Device Command Bus Cycles  
Device Command Bus Cycles  
Device operations are initiated by writing specific device commands to the command  
user interface (CUI). Several commands are used to modify array data including Word  
Program and Block Erase commands. Writing either command to the CUI initiates a se-  
quence of internally timed functions that culminate in the completion of the requested  
task. However, the operation can be aborted by either asserting RST# or by issuing an  
appropriate suspend command.  
Table 11: Command Bus Cycles  
First Bus Cycle  
Second Bus Cycle  
Bus  
Cycles  
Mode  
Command  
Op  
Addr1  
DnA  
DnA  
DnA  
DnA  
DnA  
WA  
Data2  
Op  
Addr1  
Data2  
Read  
Read Array  
1
2  
2  
2
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
0xFF  
0x90  
0x98  
0x70  
0x50  
0x40  
0xE8  
0x80  
Read Device Identifier  
Read CFI  
Read  
DBA + IA  
ID  
Read DBA + CFI-A  
CFI-D  
SRD  
Read Status Register  
Clear Status Register  
Word Program  
Buffered Program3  
Read  
DnA  
1
Program  
2
Write  
Write  
Write  
WA  
WA  
WA  
WD  
N - 1  
0xD0  
>2  
>2  
WA  
Buffered Enhanced Factory  
Program (BEFP)4  
WA  
Erase  
Block Erase  
2
1
1
2
2
2
2
2
2
2
2
2
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
BA  
DnA  
DnA  
BA  
0x20  
0xB0  
0xD0  
0x60  
0x60  
0x60  
0x60  
0x60  
0x60  
0xC0  
0xC0  
0x60  
Write  
BA  
0xD0  
Suspend  
Program/Erase Suspend  
Program/Erase Resume  
Block Lock  
Block  
Locking/  
Unlocking  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
BA  
0x01  
0xD0  
0x2F  
0x01  
0xD0  
0x2F  
OTP-D  
LRD  
0x03  
Block Unlock  
BA  
BA  
Block Lock-down  
Block Lock  
BA  
BA  
Protection  
BA  
BA  
Block Unlock  
BA  
BA  
Block Lock-down  
Program OTP register  
Program Lock Register  
BA  
BA  
PRA  
LRA  
RCD  
OTP-RA  
LRA  
RCD  
Configuration Configure Read  
Configuration Register  
Block Blank Check  
Blank Check  
EFI  
2
Write  
Write  
BA  
0xBC  
0xEB  
Write  
Write  
BA  
D0  
Extended Function  
Interface command 5  
>2  
WA  
WA  
Sub-Op code  
1. First command cycle address should be the same as the operation’s target address. DBA  
= Device base address (needed for dual die 512Mb device); DnA = Address within the de-  
vice; IA = Identification code address offset; CFI-A = Read CFI address offset; WA = Word  
address of memory location to be written; BA = Address within the block; OTP-RA = Pro-  
tection register address; LRA = Lock register address; RCD = Read configuration register  
data on A[16:1] for Easy BGA and TSOP, A[15:0] for QUAD+ package.  
Notes:  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
28  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Device Command Bus Cycles  
2. ID = Identifier data; CFI-D = CFI data on DQ[15:0]; SRD = Status register data; WD = Word  
data; N = Word count of data to be loaded into the write buffer; OTP-D = Protection  
register data; LRD = Lock register data.  
3. The second cycle of the BUFFERED PROGRAM command is the word count of the data to  
be loaded into the write buffer. This is followed by up to 512 words of data. Then the  
CONFIRM command (0xD0) is issued, triggering the array programming operation.  
4. The CONFIRM command (0xD0) is followed by the buffer data.  
5. The second cycle is a Sub-Op-Code, the data written on third cycle is N-1; 1N 512.  
The subsequent cycles load data words into the program buffer at a specified address  
until word count is achieved, after the data words are loaded, the final cycle is the con-  
firm cycle 0xD0).  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
29  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Read Operation  
Read Operation  
The device supports two read modes: asynchronous page mode and synchronous burst  
mode. Asynchronous page mode is the default read mode after device power-up or a re-  
set. The Read Configuration Register must be configured to enable synchronous burst  
reads of the flash memory array.  
The device can be in any of four read states: Read Array, Read Identifier, Read Status or  
Read CFI. Upon power-up, or after a reset, the device defaults to Read Array. To change  
the read state, the appropriate read command must be written to the device.  
Asynchronous Page-Mode Read  
Following a device power-up or reset, asynchronous page mode is the default read  
mode and the device is set to Read Array. However, to perform array reads after any oth-  
er device operation (e.g. write operation), the Read Array command must be issued in  
order to read from the flash memory array.  
Asynchronous page-mode reads can only be performed when Read Configuration Reg-  
ister bit RCR.15 is set.  
To perform an asynchronous page-mode read, an address is driven onto the Address  
bus, and CE# and ADV# are asserted. WE# and RST# must already have been deasser-  
ted. WAIT is deasserted during asynchronous page mode. ADV# can be driven high to  
latch the address, or it must be held low throughout the read cycle. CLK is not used for  
asynchronous page-mode reads, and is ignored. If only asynchronous reads are to be  
performed, CLK should be tied to a valid VIH or VSS level, WAIT signal can be floated and  
ADV# must be tied to ground. Array data is driven onto DQ[15:0] after an initial access  
time tAVQV delay.  
In asynchronous page mode, sixteen data words are “sensed” simultaneously from the  
flash memory array and loaded into an internal page buffer. The buffer word corre-  
sponding to the initial address on the Address bus is driven onto DQ[15:0] after the ini-  
tial access delay. The lowest four address bits determine which word of the 16-word  
page is output from the data buffer at any given time.  
Note: Asynchronous page read mode is only supported in main array.  
Synchronous Burst-Mode Read  
Read Configuration register bits RCR[15:0] must be set before synchronous burst opera-  
tion can be performed. Synchronous burst mode can be performed for both array and  
non-array reads such as Read ID, Read Status or Read Query.  
To perform a synchronous burst-read, an initial address is driven onto the Address bus,  
and CE# and ADV# are asserted. WE# and RST# must already have been deasserted.  
ADV# is asserted, and then deasserted to latch the address. Alternately, ADV# can re-  
main asserted throughout the burst access, in which case the address is latched on the  
next valid CLK edge while ADV# is asserted.  
During synchronous array and non-array read modes, the first word is output from the  
data buffer on the next valid CLK edge after the initial access latency delay. Subsequent  
data is output on valid CLK edges following a minimum delay. However, for a synchro-  
nous non-array read, the same word of data will be output on successive clock edges  
until the burst length requirements are satisfied. Refer to the timing diagrams for more  
detailed information.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
30  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Read Operation  
Read Device Identifier  
The Read Device Identifier command instructs the device to output manufacturer code,  
device identifier code, block-lock status, protection register data, or configuration regis-  
ter data.  
Table 12: Device Identifier Information  
Item  
Address  
Data  
Manufacturer code  
0x00  
0x01  
0x89h  
Device ID code  
ID (see the Device ID Codes table )  
Lock bit:  
Block lock configuration:  
• Block is unlocked  
Block base address + 0x02  
DQ0 = 0b0  
• Block is locked  
DQ0 = 0b1  
• Block is not locked down  
• Block is locked down  
Read configuration register  
General purpose register  
Lock register 0  
DQ1 = 0b0  
DQ1 = 0b1  
0x05  
Device base address + 0x07  
0x80  
RCR contents  
General purpose register data  
PR-LK0 data  
64-bit factory-programmed OTP register  
64-bit user-programmable OTP register  
Lock register 1  
0x81–0x84  
Factory OTP register data  
User OTP register data  
PR-LK1 OTP register lock data  
OTP register data  
0x85–0x88  
0x89  
128-bit user-programmable protection regis-  
ters  
0x8A–0x109  
Table 13: Device ID codes  
Device Identifier Codes  
ID Code Type  
Device Density  
–T (Top Parameter)  
–B (Bottom Parameter)  
Device Code  
256Mb  
8919  
891C  
1. The 512Mb devices do not have a unique device ID associated with them. Each die with-  
in the stack can be identified by either of the 256Mb Device ID codes depending on its  
parameter option.  
Note:  
Read CFI  
The Read CFI command instructs the device to output Common Flash Interface (CFI)  
data when read. See READ CFI Structure Output for details on issuing the Read CFI  
command. The CFI Database: Addresses and Sections table shows CFI information and  
address offsets within the CFI database.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
31  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Program Operation  
Program Operation  
The device supports three programming methods: Word Programming (40h or 10h),  
Buffered Programming (E8h, D0h), and Buffered Enhanced Factory Programming (80h,  
D0h). See Device Command Codes for details on the various programming commands  
issued to the device. The following sections describe device programming in detail.  
Successful programming requires the addressed block to be unlocked. If the block is  
locked down, WP# must be de-asserted and the block must be unlocked before at-  
tempting to program the block. Attempting to program a locked block causes a program  
error (SR.4 and SR.1 set) and termination of the operation. See Security Modes for de-  
tails on locking and unlocking blocks.  
Word Programming  
Word programming operations are initiated by writing the Word Program Setup com-  
mand to the device (see the Command Codes and Definitions table). This is followed by  
a second write to the device with the address and data to be programmed. The device  
outputs status register data when read (see the Word Program Flowchart). VPP must be  
above VPPLK, and within the specified VPPL min/max values.  
During programming, the write state machine (WSM) executes a sequence of internal-  
ly-timed events that program the desired data bits at the addressed location, and veri-  
fies that the bits are sufficiently programmed. Programming the flash memory array  
changes 1s to 0s. Memory array bits that are 0s can be changed to 1s only by erasing the  
block (see Erase Operations).  
The Status Register can be examined for programming progress and errors by reading at  
any address. The device remains in the read status register state until another com-  
mand is written to the device.  
Status Register bit SR.7 indicates the programming status while the sequence executes.  
Commands that can be issued to the device during programming are Program Suspend,  
Read Status Register, Read Device Identifier, Read CFI, and Read Array (this returns un-  
known data).  
When programming has finished, status register bit SR.4 (when set) indicates a pro-  
gramming failure. If SR.3 is set, the WSM could not perform the word programming op-  
eration because VPP was outside of its acceptable limits. If SR.1 is set, the word pro-  
gramming operation attempted to program a locked block, causing the operation to  
abort.  
Before issuing a new command, the status register contents should be examined and  
then cleared using the Clear Status Register command. Any valid command can follow,  
when word programming has completed.  
Buffered Programming  
The device features a 512-word buffer to enable optimum programming performance.  
For Buffered Programming, data is first written to an on-chip write buffer. Then the buf-  
fer data is programmed into the flash memory array in buffer-size increments. This can  
improve system programming performance significantly over non-buffered program-  
ming.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
32  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Program Operation  
When the Buffered Programming Setup command is issued, Status Register information  
is updated and reflects the availability of the buffer. SR.7 indicates buffer availability: if  
set, the buffer is available; if cleared, the buffer is not available.  
Note: The device default state is to output SR data after the Buffer Programming Setup  
Command. CE# and OE# low drive device to update Status Register. It is not allowed to  
issue 70h to read SR data after E8h command otherwise 70h would be counted as Word  
Count.  
On the next write, a word count is written to the device at the buffer address. This tells  
the device how many data words will be written to the buffer, up to the maximum size  
of the buffer.  
On the next write, a device start address is given along with the first data to be written to  
the flash memory array. Subsequent writes provide additional device addresses and da-  
ta. All data addresses must lie within the start address plus the word count. Optimum  
programming performance and lower power usage are obtained by aligning the starting  
address at the beginning of a 512-word boundary (A[9:1] = 0x00 for Easy BGA and TSOP,  
A[8:0] for QUAD+ package). The maximum buffer size would be 256-word if the mis-  
aligned address range is crossing a 512-word boundary during programming.  
After the last data is written to the buffer, the Buffered Programming Confirm command  
must be issued to the original block address. The WSM begins to program buffer con-  
tents to the flash memory array. If a command other than the Buffered Programming  
Confirm command is written to the device, a command sequence error occurs and Sta-  
tus Register bits SR[7,5,4] are set. If an error occurs while writing to the array, the device  
stops programming, and Status Register bits SR[7,4] are set, indicating a programming  
failure.  
When Buffered Programming has completed, additional buffer writes can be initiated  
by issuing another Buffered Programming Setup command and repeating the buffered  
program sequence. Buffered programming may be performed with VPP = VPPL or VPPH  
(see Operating Conditions for limitations when operating the device with VPP = VPPH).  
If an attempt is made to program past an erase-block boundary using the Buffered Pro-  
gram command, the device aborts the operation. This generates a command sequence  
error, and Status Register bits SR[5,4] are set.  
If Buffered programming is attempted while VPP is at or below VPPLK, Status Register bits  
SR[4,3] are set. If any errors are detected that have set Status Register bits, the Status  
Register should be cleared using the Clear Status Register command.  
Buffered Enhanced Factory Programming  
Buffered Enhanced Factory Programing (BEFP) speeds up multilevel cell (MLC) flash  
programming. The enhanced programming algorithm used in BEFP eliminates tradi-  
tional programming elements that drive up overhead in device programmer systems.  
BEFP consists of three phases: Setup, Program/Verify, and Exit (see the BEFP Flow-  
chart). It uses a write buffer to spread MLC program performance across 512 data  
words. Verification occurs in the same phase as programming to accurately program the  
flash memory cell to the correct bit state.  
A single two-cycle command sequence programs the entire block of data. This en-  
hancement eliminates three write cycles per buffer: two commands and the word count  
for each set of 512 data words. Host programmer bus cycles fill the device write buffer  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
33  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Program Operation  
followed by a status check. SR.0 indicates when data from the buffer has been program-  
med into sequential flash memory array locations.  
Following the buffer-to-flash array programming sequence, the write state machine  
(WSM) increments internal addressing to automatically select the next 512-word array  
boundary. This aspect of BEFP saves host programming equipment the address bus set-  
up overhead.  
With adequate continuity testing, programming equipment can rely on the WSM’s in-  
ternal verification to ensure that the device has programmed properly. This eliminates  
the external post-program verification and its associated overhead.  
BEFP Requirements and Considerations  
Table 14: BEFP Requirements  
Parameter/Issue  
Case Temperature  
VCC  
Requirement  
Notes  
TC = 30°C ± 10 °C  
Nominal VCC  
VPP  
Driven to VPPH  
Setup and Confirm  
Programming  
Target block must be unlocked before issuing the BEFP Setup and Confirm commands.  
The first-word address (WA0) of the block to be programmed must be held constant  
from the setup phase through all data streaming into the target block, until transition  
to the exit phase is desired.  
Buffer Alignment  
WA0 must align with the start of an array buffer boundary.  
1
1. Word buffer boundaries in the array are determined by A[9:1] for Easy BGA and TSOP;  
A[8:0] for QUAD+ package (0x000 through 0x1FF). The alignment start point is A[9:1] =  
0x000 for Easy BGA and TSOP; A[8:0] = 0x000 for QUAD+ package.  
Note:  
Table 15: BEFP Considerations  
Parameter/Issue  
Requirement  
Notes  
Cycling  
For optimum performance, cycling must be limited below 50 erase cycles per block.  
1
2
Programming blocks BEFP programs one block at a time; all buffer data must fall within a single block.  
Suspend  
BEFP cannot be suspended.  
Programming the  
flash memory array  
Programming to the flash memory array can occur only when the buffer is full.  
3
1. Some degradation in performance may occur if this limit is exceeded, but the internal  
algorithm continues to work properly.  
Notes:  
2. If the internal address counter increments beyond the block's maximum address, ad-  
dressing wraps around to the beginning of the block.  
3. If the number of words is less than 512, remaining locations must be filled with 0xFFFF.  
BEFP Setup Phase  
After receiving the BEFP Setup and Confirm command sequence, Status Register bit SR.  
7 (Ready) is cleared, indicating that the WSM is busy with BEFP algorithm startup. A de-  
lay before checking SR.7 is required to allow the WSM enough time to perform all of its  
setups and checks (Block-Lock status, VPP level, etc.). If an error is detected, SR.4 is set  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
34  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Program Operation  
and BEFP operation terminates. If the block was found to be locked, SR.1 is also set. SR.  
3 is set if the error occurred due to an incorrect VPP level.  
Note: Reading from the device after the BEFP Setup and Confirm command sequence  
outputs status register data. Do not issue the Read Status Register command; it will be  
interpreted as data to be loaded into the buffer.  
BEFP Program/Verify Phase  
After the BEFP Setup Phase has completed, the host programming system must check  
SR[7,0] to determine the availability of the write buffer for data streaming. SR.7 cleared  
indicates the device is busy and the BEFP program/verify phase is activated. SR.0 indi-  
cates the write buffer is available.  
Two basic sequences repeat in this phase: loading of the write buffer, followed by buffer  
data programming to the array. For BEFP, the count value for buffer loading is always  
the maximum buffer size of 512 words. During the buffer-loading sequence, data is stor-  
ed to sequential buffer locations starting at address 0x00. Programming of the buffer  
contents to the flash memory array starts as soon as the buffer is full. If the number of  
words is less than 512, the remaining buffer locations must be filled with 0xFFFF.  
Note: The buffer must be completely filled for programming to occur. Supplying an ad-  
dress outside of the current block's range during a buffer-fill sequence causes the algo-  
rithm to exit immediately. Any data previously loaded into the buffer during the fill cy-  
cle is not programmed into the array.  
The starting address for data entry must be buffer size aligned, if not the BEFP algo-  
rithm will be aborted and the program fails and (SR.4) flag will be set.  
Data words from the write buffer are directed to sequential memory locations in the  
flash memory array; programming continues from where the previous buffer sequence  
ended. The host programming system must poll SR.0 to determine when the buffer pro-  
gram sequence completes. SR.0 cleared indicates that all buffer data has been transfer-  
red to the flash array; SR.0 set indicates that the buffer is not available yet for the next  
fill cycle. The host system may check full status for errors at any time, but it is only nec-  
essary on a block basis after BEFP exit. After the buffer fill cycle, no write cycles should  
be issued to the device until SR.0 = 0 and the device is ready for the next buffer fill.  
Note: Any spurious writes are ignored after a buffer fill operation and when internal  
program is proceeding.  
The host programming system continues the BEFP algorithm by providing the next  
group of data words to be written to the buffer. Alternatively, it can terminate this phase  
by changing the block address to one outside of the current block’s range.  
The Program/Verify phase concludes when the programmer writes to a different block  
address; data supplied must be 0xFFFF. Upon Program/Verify phase completion, the  
device enters the BEFP Exit phase.  
BEFP Exit Phase  
When SR.7 is set, the device has returned to normal operating conditions. A full status  
check should be performed at this time to ensure the entire block programmed success-  
fully. When exiting the BEFP algorithm with a block address change, the read mode will  
not change. After BEFP exit, any valid command can be issued to the device.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
35  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Program Operation  
Program Suspend  
Issuing the Program Suspend command while programming suspends the program-  
ming operation. This allows data to be accessed from the device other than the one be-  
ing programmed. The Program Suspend command can be issued to any device address.  
A program operation can be suspended to perform reads only. Additionally, a program  
operation that is running during an erase suspend can be suspended to perform a read  
operation.  
When a programming operation is executing, issuing the Program Suspend command  
requests the WSM to suspend the programming algorithm at predetermined points.  
The device continues to output Status Register data after the Program Suspend com-  
mand is issued. Programming is suspended when Status Register bits SR[7,2] are set.  
To read data from the device, the Read Array command must be issued. Read Array,  
Read Status Register, Read Device Identifier, Read CFI, and Program Resume are valid  
commands during a program suspend.  
During a program suspend, deasserting CE# places the device in standby, reducing ac-  
tive current. VPP must remain at its programming level, and WP# must remain un-  
changed while in program suspend. If RST# is asserted, the device is reset.  
Program Resume  
The Resume command instructs the device to continue programming, and automati-  
cally clears Status Register bits SR[7,2]. This command can be written to any address. If  
error bits are set, the Status Register should be cleared before issuing the next instruc-  
tion. RST# must remain deasserted.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
36  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Program Operation  
Program Protection  
When VPP = VIL, absolute hardware write protection is provided for all device blocks. If  
VPP is at or below VPPLK, programming operations halt and SR.3 is set indicating a VPP  
level error. Block lock registers are not affected by the voltage level on VPP; they may still  
be programmed and read, even if VPP is less than VPPLK  
-
.
Figure 11: Example VPP Supply Connections  
VCC  
VPP  
VCC  
VPP  
VCC  
VCC  
VPP  
PROT#  
<
10K Ω  
-Factory programming with VPP = VPPH  
-Complete with program/erase  
-Low voltage programming only  
-Logic control of device protection  
protection when VPP  
<
VPPLK  
VCC  
VCC  
VPP  
VCC  
VCC  
VPP  
VPP  
V
PPH  
=
-Low voltage and factory programming  
-Low voltage programming only  
-Full device protection unavailable  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
37  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Erase Operations  
Erase Operations  
Flash erasing is performed on a block basis. An entire block is erased each time an erase  
command sequence is issued, and only one block is erased at a time. When a block is  
erased, all bits within that block read as logical ones. The following sections describe  
block erase operations in detail.  
Block Erase  
Block erase operations are initiated by writing the Block Erase Setup command to the  
address of the block to be erased. Next, the Block Erase Confirm command is written to  
the address of the block to be erased. If the device is placed in standby (CE# deasserted)  
during an erase operation, the device completes the erase operation before entering  
standby. The VPP value must be above VPPLK and the block must be unlocked.  
During a block erase, the Write State Machine (WSM) executes a sequence of internally-  
timed events that conditions, erases, and verifies all bits within the block. Erasing the  
flash memory array changes “zeros” to “ones”. Memory block array that are ones can be  
changed to zeros only by programming the block.  
The Status Register can be examined for block erase progress and errors by reading any  
address. The device remains in the Read Status Register state until another command is  
written. SR.0 indicates whether the addressed block is erasing. Status Register bit SR.7 is  
set upon erase completion.  
Status Register bit SR.7 indicates block erase status while the sequence executes. When  
the erase operation has finished, Status Register bit SR.5 indicates an erase failure if set.  
SR.3 set would indicate that the WSM could not perform the erase operation because  
VPP was outside of its acceptable limits. SR.1 set indicates that the erase operation at-  
tempted to erase a locked block, causing the operation to abort.  
Before issuing a new command, the Status Register contents should be examined and  
then cleared using the Clear Status Register command. Any valid command can follow  
once the block erase operation has completed.  
The Block Erase operation is aborted by performing a reset or powering down the de-  
vice. In this case, data integrity cannot be ensured, and it is recommended to erase  
again the blocks aborted.  
Blank Check  
The Blank Check operation determines whether a specified main block is blank; that is,  
completely erased. Without Blank Check, Block Erase would be the only other way to  
ensure a block is completely erased. Blank Check is especially useful in the case of erase  
operation interrupted by a power loss event.  
Blank check can apply to only one block at a time, and no operations other than Status  
Register Reads are allowed during Blank Check (e.g. reading array data, program, erase  
etc). Suspend and resume operations are not supported during Blank Check, nor is  
Blank Check supported during any suspended operations.  
Blank Check operations are initiated by writing the Blank Check Setup command to the  
block address. Next, the Check Confirm command is issued along with the same block  
address. When a successful command sequence is entered, the device automatically en-  
ters the Read Status State. The WSM then reads the entire specified block, and deter-  
mines whether any bit in the block is programmed or over-erased.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
38  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Erase Operations  
The status register can be examined for Blank Check progress and errors by reading any  
address within the block being accessed. During a blank check operation, the Status  
Register indicates a busy status (SR.7 = 0). Upon completion, the Status Register indi-  
cates a ready status (SR.7 = 1). The Status Register should be checked for any errors, and  
then cleared. If the Blank Check operation fails, which means the block is not complete-  
ly erased, the Status Register bit SR.5 will be set (“1”). CE# or OE# toggle (during polling)  
updates the Status Register.  
After examining the Status Register, it should be cleared by the Clear Status Register  
command before issuing a new command. The device remains in Status Register Mode  
until another command is written to the device. Any command can follow once the  
Blank Check command is complete.  
Erase Suspend  
Issuing the Erase Suspend command while erasing suspends the block erase operation.  
This allows data to be accessed from memory locations other than the one being  
erased. The Erase Suspend command can be issued to any device address. A block erase  
operation can be suspended to perform a word or buffer program operation, or a read  
operation within any block except the block that is erase suspended.  
When a block erase operation is executing, issuing the Erase Suspend command re-  
quests the WSM to suspend the erase algorithm at predetermined points. The device  
continues to output Status Register data after the Erase Suspend command is issued.  
Block erase is suspended when Status Register bits SR[7,6] are set.  
To read data from the device (other than an erase-suspended block), the Read Array  
command must be issued. During Erase Suspend, a Program command can be issued to  
any block other than the erase-suspended block. Block erase cannot resume until pro-  
gram operations initiated during erase suspend complete. Read Array, Read Status Reg-  
ister, Read Device Identifier, Read CFI, and Erase Resume are valid commands during  
Erase Suspend. Additionally, Clear Status Register, Program, Program Suspend, Block  
Lock, Block Unlock, and Block Lock-Down are valid commands during Erase Suspend.  
During an erase suspend, deasserting CE# places the device in standby, reducing active  
current. VPP must remain at a valid level, and WP# must remain unchanged while in  
erase suspend. If RST# is asserted, the device is reset.  
Erase Resume  
The Erase Resume command instructs the device to continue erasing, and automatical-  
ly clears status register bits SR[7,6]. This command can be written to any address. If sta-  
tus register error bits are set, the Status Register should be cleared before issuing the  
next instruction. RST# must remain deasserted.  
Erase Protection  
When VPP = VIL, absolute hardware erase protection is provided for all device blocks. If  
VPP is at or below VPPLK, erase operations halt and SR.3 is set indicating a VPP-level error.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
39  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Security Modes  
Security Modes  
The device features security modes used to protect the information stored in the flash  
memory array. The following sections describe each security mode in detail.  
Block Locking  
Individual instant block locking is used to protect user code and/or data within the  
flash memory array. All blocks power-up in a locked state to protect array data from be-  
ing altered during power transitions. Any block can be locked or unlocked with no la-  
tency. Locked blocks cannot be programmed or erased; they can only be read.  
Software-controlled security is implemented using the Block Lock and Block Unlock  
commands. Hardware-controlled security can be implemented using the Block Lock-  
Down command along with asserting WP#. Also, VPP data security can be used to inhibit  
program and erase operations.  
Lock Block  
To lock a block, issue the Block Lock Setup command, followed by the Block Lock com-  
mand issued to the desired block’s address. If the Set Read Configuration Register com-  
mand is issued after the Block Lock Setup command, the device configures the RCR in-  
stead.  
Block lock and unlock operations are not affected by the voltage level on VPP. The block  
lock bits may be modified and/or read even if VPP is at or below VPPLK  
.
Unlock Block  
The Block Unlock command is used to unlock blocks. Unlocked blocks can be read,  
programmed, and erased. Unlocked blocks return to a locked state when the device is  
reset or powered down. If a block is in a lock-down state, WP# must be deasserted be-  
fore it can be unlocked.  
Lock-Down Block  
A locked or unlocked block can be locked-down by writing the Block Lock-Down com-  
mand sequence. Blocks in a lock-down state cannot be programmed or erased; they can  
only be read. However, unlike locked blocks, their locked state cannot be changed by  
software commands alone. A locked-down block can only be unlocked by issuing the  
Block Unlock command with WP# deasserted. To return an unlocked block to locked-  
down state, a Block Lock-Down command must be issued prior to changing WP# to VIL  
.
Locked-down blocks revert to the locked state upon reset or power up the device.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
40  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Security Modes  
Block Lock Status  
The Read Device Identifier command is used to determine a block’s lock status. Data  
bits DQ[1:0] display the addressed block’s lock status; DQ0 is the addressed block’s lock  
bit, while DQ1 is the addressed block’s lock-down bit.  
Figure 12: Block Locking State Diagram  
(Power-up/  
Reset default)  
[000]  
D0h  
01h  
[001]  
2Fh  
Program/Erase Allowed  
WP# = VIL = 0  
Program/Erase Prevented  
WP# = VIL = 0  
2Fh  
WP# toggle  
D0h, 01h, or 2Fh  
[010]  
[011] (Locked-down)  
(Virtual lock-down)  
WP# toggle  
(Lock-down  
disabled,  
WP# = VIH)  
D0h  
D0h  
[110]  
[100]  
01h/2Fh  
[111]  
Program/Erase Allowed  
WP# = VIH = 1  
Program/Erase Prevented  
WP# = VIH = 1  
2Fh  
01h  
2Fh  
(Power-up/  
Reset default)  
[101]  
1. D0h = UNLOCK command; 01h = LOCK command; 60h (not shown) LOCK SETUP com-  
mand; 2Fh = LOCK-DOWN command.  
Note:  
Block Locking During Suspend  
Block lock and unlock changes can be performed during an erase suspend. To change  
block locking during an erase operation, first issue the Erase Suspend command. Moni-  
tor the Status Register until SR.7 and SR.6 are set, indicating the device is suspended  
and ready to accept another command.  
Next, write the desired lock command sequence to a block, which changes the lock  
state of that block. After completing block lock or unlock operations, resume the erase  
operation using the Erase Resume command.  
Note:  
A Lock Block Setup command followed by any command other than Lock Block, Unlock  
Block, or Lock-Down Block produces a command sequence error and set Status Register  
bits SR.4 and SR.5. If a command sequence error occurs during an erase suspend, SR.4  
and SR.5 remains set, even after the erase operation is resumed. Unless the Status Reg-  
ister is cleared using the Clear Status Register command before resuming the erase op-  
eration, possible erase errors may be masked by the command sequence error.  
If a block is locked or locked-down during an erase suspend of the same block, the lock  
status bits change immediately. However, the erase operation completes when it is re-  
sumed. Block lock operations cannot occur during a program suspend.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
41  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Security Modes  
Selectable One-Time Programmable Blocks  
The OTP security feature on P30-65nm device is backward compatible to the  
P30-130nm device. Contact your local Micron representative for details about its imple-  
mentation.  
Password Access  
The Password Access is a security enhancement offered on the P30-65nm device. This  
feature protects information stored in array blocks by preventing content alteration or  
reads until a valid 64-bit password is received. The Password Access may be combined  
with Non-Volatile Protection and/or Volatile Protection to create a multi-tiered solu-  
tion.  
Contact your Micron sales office for further details concerning Password Access.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
42  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Registers  
Registers  
When non-array reads are performed in asynchronous page mode only the first data is  
valid and all subsequent data are undefined. When a non-array read operation occurs  
as synchronous burst mode, the same word of data requested will be output on succes-  
sive clock edges until the burst length requirements are satisfied.  
Read Status Register  
To read the Status Register, issue the Read Status Register command at any address. Sta-  
tus Register information is available to which the Read Status Register, Word Program,  
or Block Erase command was issued. Status Register data is automatically made availa-  
ble following a Word Program, Block Erase, or Block Lock command sequence. Reads  
from the device after any of these command sequences outputs the device’s status until  
another valid command is written (e.g. Read Array command).  
The Status Register is read using single asynchronous-mode or synchronous burst  
mode reads. Status Register data is output on DQ[7:0], while 0x00 is output on DQ[15:8].  
In asynchronous mode the falling edge of OE#, or CE# (whichever occurs first) updates  
and latches the Status Register contents. However, reading the Status Register in syn-  
chronous burst mode, CE# or ADV# must be toggled to update status data.  
The Device Write Status bit (SR.7) provides overall status of the device. Status register  
bits SR[6:1] present status and error information about the program, erase, suspend,  
VPP, and block-locked operations.  
Table 16: Status Register Description  
Bit Name  
Description  
7
6
5
Device Ready Status  
(DWS)  
0 = Device is busy; program or erase cycle in progress; SR.0 valid.  
1 = Device is ready; SR[6:1] are valid.  
Erase Suspend Status  
(ESS)  
0 = Erase suspend not in effect.  
1 = Erase suspend in effect.  
Erase /Blank Command SR.5 SR.4 Description  
Check Status Sequence  
(ES)  
Error  
4
Program Sta-  
tus (PS)  
0
0
1
1
0
1
0
1
Program or Erase operation successful.  
Program error - operation aborted.  
Erase or Blank check error - operation aborted.  
Command sequence error - command aborted.  
3
2
1
0
VPP Status (VPPS)  
0 = VPP within acceptable limits during program or erase operation.  
1 = VPP VPPLK during program or erase operation.  
Program Suspend Status 0 = Program suspend not in effect.  
(PSS) 1 = Program suspend in effect.  
Block-Locked Status (BLS) 0 = Block not locked during program or erase.  
1 = Block locked during program or erase; operation aborted.  
BEFP Status (BWS)  
After Buffered Enhanced Factory Programming (BEFP) data is loaded into the buffer:  
0 = BEFP complete.  
1 = BEFP in-progress.  
1. Default Value = 0x80  
Notes:  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
43  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Registers  
2. Always clear the Status Register prior to resuming erase operations. It avoids Status Reg-  
ister ambiguity when issuing commands during Erase Suspend. If a command sequence  
error occurs during an erase-suspend state, the Status Register contains the command  
sequence error status (SR[7,5,4] set). When the erase operation resumes and finishes,  
possible errors during the erase operation cannot be detected via the Status Register be-  
cause it contains the previous error status.  
3. A Clear SR command (50h) or Reset must be issued with 15µs delay after the Error bits  
(SR4 or SR5) is set during Program/Erase operations.  
Clear Status Register  
The Clear Status Register command clears the status register. It functions independent  
of VPP. The Write State Machine (WSM) sets and clears SR[7,6,2], but it sets bits SR[5:3,1]  
without clearing them. The Status Register should be cleared before starting a com-  
mand sequence to avoid any ambiguity. A device reset also clears the Status Register.  
Read Configuration Register  
The Read Configuration Register (RCR) is a 16-bit read/write register used to select bus-  
read mode (synchronous or asynchronous), and to configure device synchronous burst  
read characteristics. To modify RCR settings, use the Configure Read Configuration Reg-  
ister command. RCR contents can be examined using the Read Device Identifier com-  
mand, and then reading from offset 0x05. On power-up or exit from reset, the RCR de-  
faults to asynchronous mode. Details about each RCR bit follow the table.  
Table 17: Read Configuration Register  
Bit Name  
Description  
15 Read mode (RM)  
0 = Synchronous burst-mode read  
1 = Asynchronous page-mode read (default)  
14:11 Latency count  
(LC[3:0])  
0000 = Code 0 (reserved)  
0001 = Code 1 (reserved)  
0010 = Code 2  
0011 = Code 3  
0100 = Code 4  
0110 = Code 6  
0111 = Code 7  
1000 = Code 8  
1001 = Code 9  
1010 = Code 10  
1011 = Code11  
1100 = Code 12  
1101 = Code 13  
1110 = Code 14  
1111 = Code 15 (default)  
0101 = Code 5  
10 WAIT polarity (WP)  
0 = WAIT signal is active low (default)  
1 = WAIT signal is active high  
9
8
Reserved (R)  
Default 0, Non-changeable  
WAIT delay (WD)  
0 = WAIT deasserted with valid data  
1 = WAIT deasserted one data cycle before valid data (default)  
7
6
Burst sequence (BS)  
Clock edge (CE)  
Default 0, Non-changeable  
0 = Falling edge  
1 = Rising edge (default)  
5:4 Reserved (R)  
Burst wrap (BW)  
Default 0, Non-changeable  
3
0 = Wrap; Burst accesses wrap within burst length set by BL[2:0]  
1 = No Wrap; Burst accesses do not wrap within burst length (default)  
2:0 Burst length (BL[2:0]) 001 = 4-word burst  
010 = 8-word burst  
011 = 16-word burst  
111 = Continuous-word burst (default)  
(Other bit settings are reserved)  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
44  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Registers  
Read Mode  
The Read Mode (RM) bit selects synchronous burst-mode or asynchronous page-mode  
operation for the device. When the RM bit is set, asynchronous page mode is selected  
(default). When RM is cleared, synchronous burst mode is selected.  
Latency Count  
The Latency Count (LC) bits tell the device how many clock cycles must elapse from the  
rising edge of ADV# (or from the first valid clock edge after ADV# is asserted) until the  
first valid data word is to be driven onto DQ[15:0]. The input clock frequency is used to  
determine this value and the First Access Latency Count figure shows the data output  
latency for the different settings of LC. The minimum Latency Count for P30-65nm  
would be Code 4 based on the Max Clock frequency specification of 52 MHz, and there  
will be zero WAIT States when bursting within the word line. Refer to End of Word Line  
Considerations for more information on EOWL, and the Latency Count and Frequency  
Support table for latency code settings.  
Figure 13: First Access Latency Count  
CLK [C]  
Valid  
Address [A]  
Address  
ADV# [V]  
Code 0 (Reserved  
)
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
DQ[15:0] [D/Q]  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Code  
1
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
(Reserved  
)
DQ[15:0] [D/Q]  
DQ[15:0] [D/Q]  
DQ[15:0] [D/Q]  
DQ[15:0] [D/Q]  
DQ[15:0] [D/Q]  
DQ[15:0] [D/Q]  
DQ[15:0] [D/Q]  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Code  
Code  
2
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Output  
Output  
Output  
Output  
Output  
Output  
3
Valid  
Valid  
Valid  
Valid  
Valid  
Output  
Output  
Output  
Output  
Output  
Code  
Code  
Code  
Code  
4
5
6
7
Valid  
Valid  
Valid  
Valid  
Output  
Output  
Output  
Output  
Valid  
Valid  
Valid  
Output  
Output  
Output  
Valid  
Valid  
Output  
Output  
Valid  
Output  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
45  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Registers  
Table 18: Latency Count and Frequency Support  
Latency Count Settings  
5 (TSOP); 4 (Easy BGA)  
5 (Easy BGA)  
Frequency Support (MHz)  
40  
52  
Figure 14: Example Latency Count Setting Using Code 3  
t
Data  
0
1
2
3
4
CLK  
CE#  
ADV#  
Address  
A[MAX:1]  
Code 3  
High-Z  
D[15:0]  
Data  
R103  
End of Word Line (EOWL) Considerations  
End of Wordline (EOWL) WAIT states can result when the starting address of the burst  
operation is not aligned to a 16-word boundary; that is, A[3:0] of start address does not  
equal 0x0. The End of Wordline Timing Diagram illustrates the end of wordline WAIT  
state(s) that occur after the first 16-word boundary is reached. The number of data  
words and the number of WAIT states is summarized in the End of Wordline Data and  
WAIT State Comparison table for both P30-130nm and P30-65nm devices.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
46  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Registers  
Figure 15: End of Wordline Timing Diagram  
Latency Count  
CLK  
A[Max:1]  
DQ[15:0]  
Address  
Data  
Data  
Data  
ADV #  
OE #  
WAIT  
EOWL  
Table 19: End of Wordline Data and WAIT State Comparison  
P30-130nm  
P30-65nm  
Latency Count  
Data States  
WAIT States  
Not Supported  
0 to 1  
Data States  
WAIT States  
1
2
Not Supported  
Not Supported  
Not Supported  
0 to 1  
4
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
3
4
0 to 2  
0 to 2  
4
4
0 to 3  
0 to 3  
5
4
0 to 4  
0 to 4  
6
4
0 to 5  
0 to 5  
7
4
0 to 6  
0 to 6  
8
Not Supported  
Not Supported  
0 to 7  
9
0 to 8  
10  
11  
12  
13  
14  
15  
0 to 9  
0 to 10  
0 to 11  
0 to 12  
0 to 13  
0 to 14  
WAIT Signal Polarity and Functionality  
The WAIT Polarity bit (WP), RCR.10 determines the asserted level (VOH or VOL) of WAIT.  
When WP is set, WAIT is asserted high (default). When WP is cleared, WAIT is asserted  
low. WAIT changes state on valid clock edges during active bus cycles (CE# asserted,  
OE# asserted, RST# deasserted).  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
47  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Registers  
The WAIT signal indicates data valid when the device is operating in synchronous mode  
(RCR.15 =0). The WAIT signal is only deasserted when data is valid on the bus. When the  
device is operating in synchronous non-array read mode, such as read status, read ID,  
or read CFI, the WAIT signal is also deasserted when data is valid on the bus. WAIT be-  
havior during synchronous non-array reads at the end of word line works correctly only  
on the first data access. When the device is operating in asynchronous page mode,  
asynchronous single word read mode, and all write operations, WAIT is set to a deasser-  
ted state as determined by RCR.10.  
Table 20: WAIT Functionality Table  
Condition  
WAIT  
High-Z  
Active  
Notes  
CE# = ‘1’, OE# = ‘X’ or CE# = ‘0’, OE# = ‘1’  
CE# =’0’, OE# = ‘0’  
1, 2  
1
Synchronous Array Reads  
Synchronous Non-Array Reads  
All Asynchronous Reads  
All Writes  
Active  
1
Active  
1
Deasserted  
High-Z  
1
1, 2  
1. Active means that WAIT is asserted until data becomes valid, then desserts.  
2. When OE# = VIH during writes, WAIT = High-Z.  
Notes:  
WAIT Delay  
The WAIT Delay (WD) bit controls the WAIT assertion-delay behavior during synchro-  
nous burst reads. WAIT can be asserted either during or one data cycle before valid data  
is output on DQ[15:0]. When WD is set, WAIT is deasserted one data cycle before valid  
data (default). When WD is cleared, WAIT is deasserted during valid data.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
48  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Registers  
Burst Sequence  
The Burst Sequence (BS) bit selects linear-burst sequence (default). Only linear-burst  
sequence is supported. The synchronous burst sequence for all burst lengths, as well as  
the effect of the Burst Wrap (BW) setting are shown here.  
Table 21: Burst Sequence Word Ordering  
Start  
Address  
(DEC)  
Burst  
Wrap  
(RCR.3)  
Burst Addressing Sequence (DEC)  
4-Word Burst  
(BL[2:0] =  
0b001)  
8-Word Burst  
16-Word Burst  
(BL[2:0] = 0b011)  
Continuous Burst  
(BL[2:0] = 0b111)  
(BL[2:0] = 0b010)  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0
1
0
0
0
0
0
0
0
0
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3-4…14-15  
1-2-3-4-5…15-0  
0-1-2-3-4-5-6-…  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
3-4-5-6-7-8-9-…  
4-5-6-7-8-9-10…  
5-6-7-8-9-10-11…  
6-7-8-9-10-11-12-…  
7-8-9-10-11-12-13…  
2
2-3-4-5-6…15-0-1  
3-4-5-6-7…15-0-1-2  
4-5-6-7-8…15-0-1-2-3  
5-6-7-8-9…15-0-1-2-3-4  
6-7-8-9-10…15-0-1-2-3-4-5  
7-8-9-10…15-0-1-2-3-4-5-6  
3
4
5
6
7
14  
15  
0
0
14-15-0-1-2…12-13  
15-0-1-2-3…13-14  
14-15-16-17-18-19-20-…  
15-16-17-18-19-20-21-…  
0
1
1
1
1
1
1
1
1
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
2-3-4-5-6-7-8-9  
3-4-5-6-7-8-9-10  
4-5-6-7-8-9-10-11  
5-6-7-8-9-10-11-12  
6-7-8-9-10-11-12-13  
7-8-9-10-11-12-13-14  
0-1-2-3-4…14-15  
1-2-3-4-5…15-16  
2-3-4-5-6…16-17  
3-4-5-6-7…17-18  
4-5-6-7-8…18-19  
5-6-7-8-9…19-20  
6-7-8-9-10…20-21  
7-8-9-10-11…21-22  
0-1-2-3-4-5-6-…  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
3-4-5-6-7-8-9-…  
4-5-6-7-8-9-10…  
5-6-7-8-9-10-11…  
6-7-8-9-10-11-12-…  
7-8-9-10-11-12-13…  
1
2
3
4
5
6
7
14  
15  
1
1
14-15-16-17-18…28-29  
15-16-17-18-19…29-30  
14-15-16-17-18-19-20-…  
15-16-17-18-19-20-21-…  
Clock Edge  
The Clock Edge (CE) bit selects either a rising (default) or falling clock edge for CLK.  
This clock edge is used at the start of a burst cycle, to output synchronous data, and to  
assert/deassert WAIT.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
49  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Registers  
Burst Wrap  
The Burst Wrap (BW) bit determines whether 4-word, 8-word, or 16-word burst length  
accesses wrap within the selected word-length boundaries or cross word-length boun-  
daries. When BW is set, burst wrapping does not occur (default). When BW is cleared,  
burst wrapping occurs.  
When performing synchronous burst reads with BW set (no wrap), an output delay may  
occur when the burst sequence crosses its first device-row (16-word) boundary. If the  
burst sequence’s start address is 4-word aligned, then no delay occurs. If the start ad-  
dress is at the end of a 4-word boundary, the worst case output delay is one clock cycle  
less than the first access Latency Count. This delay can take place only once, and  
doesn’t occur if the burst sequence does not cross a device-row boundary. WAIT in-  
forms the system of this delay when it occurs.  
Burst Length  
The Burst Length bits (BL[2:0]) select the linear burst length for all synchronous burst  
reads of the flash memory array. The burst lengths are 4-word, 8-word, 16-word or con-  
tinuous.  
Continuous-burst accesses are linear only, and do not wrap within any word length  
boundaries. When a burst cycle begins, the device outputs synchronous burst data until  
it reaches the end of the “burstable” address space.  
One-Time-Programmable (OTP) Registers  
The device contains 17 one-time programmable (OTP) registers that can be used to im-  
plement system security measures and/or device identification. Each OTP register can  
be individually locked.  
The first 128-bit OTP Register is comprised of two 64-bit (8-word) segments. The lower  
64-bit segment is pre-programmed at the Micron factory with a unique 64-bit number.  
The upper 64-bit segment, as well as the other sixteen 128-bit OTP Registers, are blank.  
Users can program these registers as needed. Once programmed, users can then lock  
the OTP Register(s) to prevent additional bit programming (see the OTP Register Map  
figure).  
The OTP Registers contain one-time programmable (OTP) bits; when programmed, PR  
bits cannot be erased. Each OTP Register can be accessed multiple times to program in-  
dividual bits, as long as the register remains unlocked.  
Each OTP Register has an associated Lock Register bit. When a Lock Register bit is pro-  
grammed, the associated OTP Register can only be read; it can no longer be program-  
med. Additionally, because the Lock Register bits themselves are OTP, when program-  
med, Lock Register bits cannot be erased. Therefore, when a OTP Register is locked, it  
cannot be unlocked.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
50  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Registers  
Figure 16: OTP Register Map  
0x109  
128-bit OTP  
Register 16  
User Programmable  
0x102  
0x91  
128-bit OTP  
Register 1  
User Programmable  
Lock Register 1  
0x8A  
0x89  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0x88  
64-bit Segment  
User Programmable  
128-bit OTP  
Register 0  
0x85  
0x84  
64-bit Segment  
Factory Programed  
0x81  
0x80  
Lock Register 0  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Reading the OTP Registers  
The OTP Registers can be read from OTP-RA address. To read the OTP Register, first is-  
sue the Read Device Identifier command at OTP-RA address to place the device in the  
Read Device Identifier state. Next, perform a read operation using the address offset  
corresponding to the register to be read. The Device Identifier Information table shows  
the address offsets of the OTP Registers and Lock Registers. PR data is read 16 bits at a  
time.  
Programming the OTP Registers  
To program an OTP Register, first issue the Program OTP Register command at the pa-  
rameter’s base address plus the offset of the desired OTP Register location. Next, write  
the desired OTP Register data to the same OTP Register address.  
The device programs the 64-bit and 128-bit user-programmable OTP Register data 16  
bits at a time. Issuing the Program OTP Register command outside of the OTP Register’s  
address space causes a program error (SR.4 set). Attempting to program a locked OTP  
Register causes a program error (SR.4 set) and a lock error (SR.1 set).  
Note:  
When programming the OTP bits in the OTP registers for a Top Parameter Device, the  
following upper address bits must also be driven properly: A[Max:17] driven high (VIH  
for TSOP and Easy BGA packages, and A[Max:16] driven high (VIH) for QUAD+ SCSP.  
)
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
51  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Registers  
Locking the OTP Registers  
Each OTP Register can be locked by programming its respective lock bit in the Lock  
Register. To lock an OTP Register, program the corresponding bit in the Lock Register by  
issuing the Program Lock Register command, followed by the desired Lock Register da-  
ta. The physical addresses of the Lock Registers are 0x80 for register 0 and 0x89 for regis-  
ter 1. These addresses are used when programming the lock registers.  
Bit 0 of Lock Register 0 is already programmed during the manufacturing process, lock-  
ing the lower half segment of the first 128-bit OTP Register. Bit 1 of Lock Register 0 can  
be programmed by user to the upper half segment of the first 128-bit OTP Register.  
When programming Bit 1 of Lock Register 0, all other bits need to be left as ‘1’ such that  
the data programmed is 0xFFFD.  
Lock Register 1 controls the locking of the upper sixteen 128-bit OTP Registers. Each bit  
of Lock Register 1 corresponds to a specific 128-bit OTP Register. Programming a bit in  
Lock Register 1 locks the corresponding 128-bit OTP Register; e.g., programming LR1.0  
locks the corresponding OTP Register 1.  
Note: After being locked, the OTP Registers cannot be unlocked.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
52  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Common Flash Interface  
Common Flash Interface  
The Common Flash Interface (CFI) is part of an overall specification for multiple com-  
mand-set and control-interface descriptions. System software can parse the CFI data-  
base structure to obtain information about the Flash device, such as block size, density,  
bus width, and electrical specifications. The system software determines which com-  
mand set to use to properly perform a Flash WRITE command, a block ERASE or READ  
command, and to otherwise control the flash device. Information in the CFI database  
can be viewed by issuing the READ CFI command.  
READ CFI Structure Output  
The READ CFI command obtains CFI database structure information and always out-  
puts it on the lower byte, DQ[7:0], for a word-wide (x16) Flash device. This CFI-compli-  
ant device always outputs 00h data on the upper byte (DQ[15:8]).  
The numerical offset value is the address relative to the maximum bus width the Flash  
device supports. For this Flash device family, the starting address is a 10h, which is a  
word address for x16 devices. For example, at this starting address of 10h, a READ CFI  
command outputs an ASCII Q in the lower byte and 00h in the higher byte as shown  
here.  
In all the CFI tables shown here, address and data are represented in hexadecimal nota-  
tion. In addition, since the upper byte of word-wide devices is always 00h as shown in  
the example here, the leading 00 has been dropped and only the lower byte value is  
shown. Following is a table showing the CFI output for a x16 device, beginning at ad-  
dress 10h and a table showing an overview of the CFI database sections with their ad-  
dresses.  
Table 22: Example of CFI Output (x16 device) as a Function of Device and Mode  
Hex  
Offset  
Hex  
Code  
ASCII Value  
(DQ[15:8])  
ASCII Value  
(DQ[7:0])  
Device  
Address  
00010:  
00011:  
00012:  
00013:  
00014:  
00015:  
00016:  
00017:  
00018:  
51  
52  
00  
00  
00  
00  
00  
00  
00  
00  
00  
Q
R
59  
Y
P_IDLO  
P_IDHI  
PLO  
Primary vendor ID  
Primary vendor table address  
Alternate vendor ID  
PHI  
A_IDLO  
A_IDHI  
:
:
:
:
:
:
:
:
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
53  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Common Flash Interface  
Table 23: CFI Database: Addresses and Sections  
Address  
00001:Fh  
00010h  
Section Name  
Description  
Reserved  
Reserved for vendor-specific information  
CFI ID string  
Flash device command set ID (identification) and vendor da-  
ta offset  
0001Bh  
00027h  
P
System interface information  
Device geometry definition  
Flash device timing and voltage  
Flash device layout  
Primary Micron-specific extended query Vendor-defined informaton specific to the primary vendor  
algorithm (offset 15 defines P which points to the primary  
Micron-specific extended query table.)  
Table 24: CFI ID String  
Hex  
Hex  
Code  
ASCII Value  
(DQ[7:0])  
Offset  
Length  
Description  
Address  
10:  
10h  
3
Query unique ASCII string “QRY”  
- -51  
- -52  
- -59  
- -01  
- -00  
Q
11:  
R
12:  
Y
13h  
2
Primary vendor command set and control  
interface ID code. 16-bit ID code for ven-  
dor-specified algorithms.  
13:  
Primary vendor ID number  
14:  
15h  
17h  
2
2
Extended query table primary algorithm  
address.  
15:  
16:  
17:  
18:  
- -0A  
- -01  
- -00  
- -00  
Primary vendor table ad-  
dress, primary algorithm  
Alternate vendor command set and control  
interface ID code. 0000h means no second  
vendor-specified algorithm exists.  
Alternate vendor ID number  
19h  
2
Secondary algorithm extended query table  
address. 0000h means none exists.  
19:  
- -00  
- -00  
Primary vendor table ad-  
dress, secondary algorithm  
1A:  
1. The CFI ID string provides verification that the device supports the CFI specification. It  
also indicates the specification version and supported vendor-specific command sets.  
Note:  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
54  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Common Flash Interface  
Table 25: System Interface Information  
Hex  
Hex  
Code  
ASCII Value  
(DQ[7:0])  
Offset  
Length  
Description  
Address  
1Bh  
1
VCC logic supply minimum program/erase voltage.  
bits 0 - 3 BCD 100 mV  
1Bh  
- -17  
1.7V  
bits 4 - 7 BCD volts  
1Ch  
1Dh  
1Eh  
1
1
1
VCC logic supply maximum program/erase volt-  
age.  
bits 0 - 3 BCD 100 mV  
bits 4 - 7 BCD volts  
1Ch  
1Dh  
1Eh  
- -20  
2.0V  
VPP [programming] supply minimum program/  
erase voltage.  
bits 0 - 3 BCD 100 mV  
- -85  
- -95  
8.5V  
9.5V  
bits 4 - 7 hex volts  
VPP [programming] supply maximum program/  
erase voltage.  
bits 0 - 3 BCD 100 mV  
bits 4 - 7 hex volts  
1Fh  
20h  
1
1
“n” such that typical single word program time-  
1Fh  
20h  
- -09  
- -0A  
512µs  
out = 2n μs.  
“n” such that typical full buffer write timeout =  
2n μs.  
1024µs  
21h  
22h  
1
1
“n” such that typical block erase timeout = 2n ms.  
“n” such that typical full chip erase timeout = 2n  
ms.  
21h  
22h  
- -0A  
- -00  
1s  
NA  
23h  
24h  
25h  
26h  
1
1
1
1
“n” such that maximum word program timeout =  
2n times typical.  
23h  
24h  
25h  
26h  
- -01  
- -02  
- -02  
- -00  
1024µs  
4096µs  
4s  
“n” such that maximum buffer write timeout =  
2n times typical.  
“n” such that maximum block erase timeout = 2n  
times typical.  
“n” such that maximum chip erase timeout = 2n  
times typical.  
NA  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
55  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Common Flash Interface  
Table 26: Device Geometry  
Hex  
Hex  
Code  
ASCII Value  
(DQ[7:0])  
Offset Length  
Description  
n such that device size in bytes = 2n.  
Address  
27:  
27h  
28h  
1
2
1
Flash device interface code assignment: n such that n + 1  
specifies the bit field that represents the flash device width  
capabilities as described here:  
bit 0: x8  
28:  
- -01  
- -00  
x16  
29:  
bit 1: x16  
bit 2: x32  
bit 3: x64  
bits 4 - 7: –  
bits 8 - 15: –  
2Ah  
2Ch  
2
1
n such that maximum number of bytes in write buffer = 2n.  
2Ah  
2Bh  
2Ch  
- -0A  
- -00  
1024  
Number of erase block regions (x) within the device:  
1) x = 0 means no erase blocking; the device erases in bulk.  
2) x specifies the number of device regions with one or more  
contiguous, same-size erase blocks.  
See Note 1  
3) Symmetrically blocked partitions have one blocking region.  
2Dh  
31h  
35h  
4
4
4
Erase block region 1 information:  
bits 0 - 15 = y, y + 1 = number of identical-size erase blocks.  
bits 16 - 31 = z, region erase block(s) size are z x 256 bytes.  
2D:  
2E:  
2F:  
30:  
See Note 1  
See Note 1  
See Note 1  
Erase block region 2 information:  
bits 0 - 15 = y, y + 1 = number of identical-size erase blocks.  
bits 16 - 31 = z, region erase block(s) size are z x 256 bytes.  
31:  
32:  
33:  
34:  
Reserved for future erase block region information.  
35:  
36:  
37:  
38:  
1. See Block Region Map Information table.  
Note:  
Table 27: Block Region Map Information  
256Mb  
256Mb  
Address  
27:  
Bottom  
--19  
Top  
--19  
--01  
--00  
--0A  
--00  
--02  
--FE  
Address  
30:  
Bottom  
--00  
Top  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
28:  
--01  
31:  
--FE  
29:  
--00  
32:  
--00  
2A:  
--0A  
--00  
33:  
--00  
2B:  
34:  
--02  
2C:  
--02  
35:  
--00  
2D:  
--03  
36:  
--00  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
56  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Common Flash Interface  
Table 27: Block Region Map Information (Continued)  
256Mb  
256Mb  
Address  
2E:  
Bottom  
--00  
Top  
--00  
--00  
Address  
37:  
Bottom  
--00  
Top  
--00  
--00  
2F:  
--80  
38:  
--00  
Table 28: Primary Vendor-Specific Extended Query  
Hex Offset  
ASCII Value  
(DQ[7:0])  
P = 10Ah  
Length  
Description  
Address Hex Code  
(P+0)h  
(P+1)h  
(P+2)h  
3
Primary extended query table, unique ASCII  
string: PRI  
10A:  
10B:  
10C:  
10D:  
10E:  
10F:  
110:  
111:  
112:  
- -50  
- -52  
P
R
I
- -49  
(P+3)h  
(P+4)h  
1
1
4
Major version number, ASCII  
Minor version number, ASCII  
- -31  
1
4
- -34  
(P+5)h  
(P+6)h  
(P+7)h  
(P+8)h  
Optional feature and command support (1 = yes;  
0 = no)  
Bits 11 - 29 are reserved; undefined bits are 0  
If bit 31 = 1, then another 31-bit field of optional  
features follows at the end of the bit 30 field.  
- -E6  
- -01  
- -00  
See Note 1  
Bit 0: Chip erase supported.  
bit 0 = 0  
No  
Yes  
Bit 1: Suspend erase supported.  
bit 1 = 1  
bit 2 = 1  
bit 3 = 0  
bit 4 = 0  
bit 5 = 1  
bit 6 = 1  
bit 7 = 1  
bit 8 = 1  
bit 9 = 0  
Bit 2: Suspend program supported.  
Bit 3: Legacy lock/unlock supported.  
Bit 4: Queued erase supported.  
Yes  
No  
No  
Bit 5: Instant individual block locking supported.  
Bit 6: OTP bits supported.  
Yes  
Yes  
Bit 7: Page mode read supported.  
Bit 8: Synchronous read supported.  
Bit 9: Simultaneous operations supported.  
Bit 10: Extended Flash array block supported  
Bit 30: CFI links to follow:  
Yes  
Yes  
No  
bit 10 = 0  
bit 30 = 0  
bit 31 = 0  
No  
See Note 1  
Bit 31: Another optional features field to follow.  
(P+9)h  
1
Supported functions after SUSPEND: READ AR-  
RAY, STATUS, QUERY. Other supported options in-  
clude:  
113:  
- -01  
Bits 1 - 7: Reserved; undefined bits are 0.  
Bit 0: Program supported after ERASE SUSPEND.  
bit 0 = 1  
Yes  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
57  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Common Flash Interface  
Table 28: Primary Vendor-Specific Extended Query (Continued)  
Hex Offset  
P = 10Ah  
ASCII Value  
(DQ[7:0])  
Length  
Description  
Block Status Register mask:  
Bits 2 - 15 are reserved; undefined bits are 0.  
Address Hex Code  
(P+A)h  
(P+B)h  
2
114:  
115:  
- -03  
- -00  
Bit 0: Block lock-bit status register active.  
Bit 1: Block lock-down bit status active.  
Bit 4: EFA block lock-bit status register active.  
Bit 5: EFA block lock-bit status active.  
bit 0 = 1  
bit 1 = 1  
bit 4 = 0  
bit 5 = 0  
Yes  
Yes  
No  
No  
1.8V  
(P+C)h  
(P+D)h  
1
1
VCC logic supply highest performance program/  
erase voltage.  
bits 0 - 3 BCD 100 mV  
116:  
117:  
- -18  
- -90  
bits 4 - 7 hex value in volts  
VPP optimum program/erase voltage.  
bits 0 - 3 BCD 100mV  
9.0V  
bits 4 - 7 hex value in volts  
1. See Optional Features Fields table.  
Note:  
Table 29: Optional Features Field  
Discrete  
512Mb  
Address  
Bottom  
Top  
Bottom  
Top  
die 1 (B)  
40:  
die 2 (T)  
--00  
die 1 (T)  
--40  
die 2 (B)  
--00  
112:  
--00  
--00  
Table 30: One Time Programmable (OTP) Space Information  
Hex Offset  
Hex  
Code  
ASCII Value  
(DQ[7:0])  
P = 10Ah  
Length  
Description  
Address  
(P+E)h  
1
Number of OTP block fields in JEDEC ID space.  
00h indicates that 256 OTP fields are available.  
118:  
- -02  
2
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
58  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Common Flash Interface  
Table 30: One Time Programmable (OTP) Space Information (Continued)  
Hex Offset  
P = 10Ah  
Hex  
Code  
ASCII Value  
(DQ[7:0])  
Length  
Description  
Address  
119:  
OTP Field 1: OTP Description:  
- -80  
- -00  
- -03  
- -03  
80h  
00h  
This field describes user-available OTP bytes.  
Some are preprogrammed with device-unique se-  
rial numbers. Others are user-programmable.  
Bits 0-15 point to the OTP Lock byte (the first  
byte).  
11A:  
1B:  
8 byte  
8 byte  
11C:  
(P+F)h  
(P+10)h  
(P+11)h  
(P+12)h  
The following bytes are factory preprogrammed  
and user-programmable:  
Bits 0 - 7 = Lock/bytes JEDEC plane physical low  
address.  
4
Bits 8 - 15 = Lock/bytes JEDEC plane physical high  
address.  
Bits 16 - 23 = n where 2n equals factory preprog-  
rammed bytes.  
Bits 24 - 31 = n where 2n equals user-programma-  
ble bytes.  
(P+13)h  
(P+14)h  
(P+15)h  
(P+16)h  
10  
Protection field 2: protection description  
Bits 0 - 31 point to the protection register physi-  
cal lock word address in the JEDEC plane.  
The bytes that follow are factory or user-progam-  
mable.  
11D:  
11E:  
11F:  
120:  
- -89  
- -00  
- -00  
- -00  
89h  
00h  
00h  
00h  
(P+17)h  
(P+18)h  
(P+19)h  
Bits 32 - 39 = n where n equals factory program-  
med groups (low byte).  
Bits 40 - 47 = n where n equals factory program-  
med groups (high byte).  
121:  
122:  
123:  
- -00  
- -00  
- -00  
0
0
0
Bits 48 - 55 = n where 2n equals factory program-  
med bytes/groups.  
(P+1A)h  
(P+1B)h  
(P+1C)h  
Bits 56 - 63 = n where n equals user programmed  
groups (low byte).  
Bits 64 - 71 = n where n equals user programmed  
groups (high byte).  
Bits 72 - 79 = n where 2n equals user programma-  
ble bytes/groups.  
124:  
125:  
126:  
- -10  
- -00  
- -04  
16  
0
16  
Table 31: Burst Read Information  
Hex Offset  
Hex  
Code  
ASCII Value  
(DQ[7:0])  
P = 10Ah  
Length  
Description  
Address  
1
Page Mode Read capability:  
127:  
- -05  
32 byte  
Bits 7 - 0 = n where 2n hex value represents the  
number of read-page bytes. See offset 28h for  
device word width to determine page-mode data  
output width. 00h indicates no read page buffer.  
(P+1D)h  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
59  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Common Flash Interface  
Table 31: Burst Read Information (Continued)  
Hex Offset  
Hex  
Code  
ASCII Value  
(DQ[7:0])  
P = 10Ah  
Length  
Description  
Address  
1
Number of synchronous mode read configuration  
128:  
- -04  
(P+1E)h  
fields that follow. 00h indicates no burst capabili-  
ty.  
4
1
Synchronous mode read capability configuration  
1:  
129:  
- -01  
Bits 3 - 7 = Reserved.  
Bits 0 - 2 = n where 2n+1 hex value represents the  
maximum number of continuous synchronous  
reads when the device is configured for its maxi-  
mum word width.  
A value of 07h indicates that the device is capa-  
ble of continuous linear bursts that will output  
data until the internal burst counter reaches the  
end of the device’s burstable address space.  
This fields’s 3-bit value can be written directly to  
the Read Configuration Register bits 0 - 2 if the  
device is configured for its maximum word width.  
See offset 28h for word width to determine the  
burst data output width.  
(P+1F)h  
4
1
1
1
Synchronous mode read capability configuration  
2.  
12A:  
12B:  
12C:  
- -02  
- -03  
- -07  
8
16  
(P+20)h  
(P+21)h  
(P+22)  
Synchronous mode read capability configuration  
3.  
Synchronous mode read capability configuration  
4.  
Continued  
Table 32: Partition and Block Erase Region Information  
Hex Offset  
P = 10Ah  
Address  
Bottom  
12D:  
Description  
Optional Flash features and commands  
Bottom  
Top  
Length  
Top  
(P+23)h  
(P+23)h  
Number of device hardware-partition regions  
within the device:  
1
12D:  
x = 0: a single hardware partition device (no  
fields follow).  
x specifies the number of device partition regions  
containing one or more contiguous erase block  
regions  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
60  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Common Flash Interface  
Table 33: Partition Region 1 Information: Top and Bottom Offset/Address  
Hex Offset  
P = 10Ah  
Address  
Bottom  
Description  
Optional Flash features and commands  
Bottom  
Top  
Length  
Top  
12E:  
12F:  
(P+24)h  
(P+25)h  
(P+24)h  
(P+25)h  
Data size of this Partition Region information field  
(number of addressable locations, including this  
field.  
2
12E:  
12F:  
(P+26)h  
(P+27)h  
(P+26)h  
(P+27)h  
Number of identical partitions within the partition  
region.  
2
1
130:  
131:  
132:  
130:  
131:  
132:  
(P+28)h  
(P+29)h  
(P+28)h  
(P+29)h  
Number of program or erase operations allowed in a  
partition:  
Bits 0 - 3 = Number of simultaneous program opera-  
tions.  
Bits 4 - 7 = Number of simultaneous erase operations.  
Simultaneous program or erase operations allowed  
in other partitions while a partition in this region is  
in program mode:  
Bits 0 - 3 = Number of simultaneous program opera-  
tions.  
1
1
1
133:  
134:  
135:  
133:  
134:  
135:  
Bits 4 - 7 = Number of simultaneous erase operations.  
(P+2A)h  
(P+2B)h  
(P+2A)h  
(P+2B)h  
Simultaneous program or erase operations allowed  
in other partitions while a partition in this region is  
in erase mode:  
Bits 0 - 3 = Number of simultaneous program opera-  
tions.  
Bits 4 - 7 = Number of simultaneous erase operations.  
Types of erase block regions in this partition region:  
x=0: No erase blocking; the partition region erases in  
bulk.  
x = Number of erase block regions with contiguous,  
same-size erase blocks.  
Symmetrically blocked partitions have one blocking  
region.  
Partition size = (Type 1 blocks) x (Type 1 block sizes) +  
(Type 2 blocks) x (Type 2 block sizes) +...+ (Type n  
blocks) x (Type n block sizes).  
Table 34: Partition Region 1 Information  
Hex Offset  
P = 10Ah  
Description  
Address  
Bottom/Top  
Optional Flash features and commands  
Length  
Bottom/Top  
(P+2C)h  
(P+2D)h  
(P+2E)h  
(P+2F)h  
Partition region 1 erase block type 1 information:  
Bits 0-15 = y, y+1 = Number of identical-sized erase blocks in a  
partition.  
4
136:  
137:  
138:  
139:  
Bits 16-31 = z, where region erase block(s) size is z x 256 bytes.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
61  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Common Flash Interface  
Table 34: Partition Region 1 Information (Continued)  
Hex Offset  
P = 10Ah  
Description  
Address  
Bottom/Top  
Optional Flash features and commands  
Length  
Bottom/Top  
(P+30)h  
(P+31)h  
Partition 1 (erase block type 1):  
Minimum block erase cycles x 1000  
2
13A:  
13B:  
13C:  
(P+32)h  
(P+33)h  
Partition 1 (erase block type 1) bits per cell; internal ECC:  
Bits 0 - 3 = bits per cell in erase region  
Bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
Bit 5 - 7 = reserved for future use  
1
1
Partition 1 (erase block type 1) page mode and synchronous  
mode capabilities:  
13D:  
Bits 0 = page-mode host reads permitted (1=yes, 0=no)  
Bit 1 = synchronous host reads permitted (1=yes, 0=no)  
Bit 2 = synchronous host writes permitted (1=yes, 0=no)  
Bit 3 - 7 = reserved for future use  
(P+34)h  
(P+35)h  
(P+36)h  
(P+37)h  
(P+38)h  
(P+39)h  
Partition 1 (erase block type 1) programming region information:  
Bits 0 - 7 = x, 2x: programming region aligned size (bytes)  
Bit 8-14 = reserved for future use  
Bit 15 = legacy flash operation; ignore 0:7  
Bit 16 - 23 = y: control mode valid size (bytes)  
Bit 24 - 31 = reserved for future use  
6
13E:  
13F:  
140:  
141:  
142:  
143:  
Bit 32 - 39 = z: control mode invalid size (bytes)  
Bit 40 - 46 = reserved for future use  
Bit 47 = legacy flash operation (ignore 23:16 and 39:32)  
(P+3A)h  
(P+3B)h  
(P+3C)h  
(P+3D)h  
Partition 1 erase block type 2 information:  
Bits 0-15 = y, y+1 = Number of identical-size erase blocks in a par-  
tition.  
Bits 16 - 31 = z, where region erase block(s) size is z x 256 bytes.  
(bottom parameter device only)  
4
144:  
145:  
146:  
147:  
(P+3E)h  
(P+3F)h  
Partition 1 (erase block type 2)  
Minimum block erase cycles x 1000  
2
1
148:  
149:  
14A:  
(P+40)h  
Partition 1 (erase block type 2) bits per cell, internal EDAC:  
Bits 0 - 3 = bits per cell in erase region  
Bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
Bits 5 - 7 = reserved for future use  
(P+41)h  
Partition 1 (erase block type 2) page mode and synchronous  
mode capabilities:  
1
14B:  
Bit 0 = page-mode host reads permitted (1=yes, 0=no)  
Bit 1 = synchronous host reads permitted (1=yes, 0=no)  
Bit 2 = synchronous host writes permitted (1=yes, 0=no)  
Bits 3-7 = reserved for future use  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
62  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Common Flash Interface  
Table 34: Partition Region 1 Information (Continued)  
Hex Offset  
P = 10Ah  
Description  
Address  
Bottom/Top  
Optional Flash features and commands  
Length  
Bottom/Top  
(P+42)h  
(P+43)h  
(P+44)h  
(P+45)h  
(P+46)h  
(P+47)h  
Partition 1 (erase block type 2) programming region information:  
Bits 0-7 = x, 2nx = Programming region aligned size (bytes)  
Bits 8-14 = reserved for future use  
Bit 15 = legacy flash operation (ignore 0:7)  
Bits 16 - 23 = y = Control mode valid size in bytes Bits 24 - 31 =  
reserved  
6
14C:  
14D:  
14E:  
14F:  
150:  
151:  
Bits 32 - 39 = z = Control mode invalid size in bytes  
Bits 40 - 46 = reserved  
Bit 47 = legacy flash operation (ignore 23:16 and 39:32)  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
63  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Common Flash Interface  
Table 35: Partition Region 1: Partition and Erase Block Map Information  
256Mb  
Address  
12D:  
12E:  
12F:  
130:  
131:  
132:  
133:  
134:  
135:  
136:  
137:  
138:  
139:  
13A:  
13B:  
13C:  
13D:  
13E:  
13F:  
140:  
141:  
142:  
143:  
144:  
145:  
146:  
147:  
148:  
149:  
14A:  
14B:  
14C:  
14D:  
14E:  
14F:  
150:  
151:  
Bottom  
- -01  
- -24  
- -00  
- -01  
- -00  
- -11  
- -00  
- -00  
- -02  
- -03  
- -00  
- -80  
- -00  
- -64  
- -00  
- -02  
- -03  
- -00  
- -80  
- -00  
- -00  
- -00  
- -80  
- -FE  
- -00  
- -00  
- -02  
- -64  
- -00  
- -02  
- -03  
- -00  
- -80  
- -00  
- -00  
- -00  
- -80  
Top  
- -01  
- -24  
- -00  
- -01  
- -00  
- -11  
- -00  
- -00  
- -02  
- -FE  
- -00  
- -00  
- -02  
- -64  
- -00  
- -02  
- -03  
- -00  
- -80  
- -00  
- -00  
- -00  
- -80  
- -03  
- -00  
- -80  
- -00  
- -64  
- -00  
- -02  
- -03  
- -00  
- -80  
- -00  
- -00  
- -00  
- -80  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
64  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Common Flash Interface  
Table 36: CFI Link Information  
Offset  
ASCII Value  
P = 10Ah  
Length  
Description  
Address  
(DQ[7:0])  
CFI Link field bit definitions:  
(P+48)h  
4
Bits 0 - 9 = Address offset (within 32Mbit segment of refer-  
enced CFI table)  
152:  
See Note 1  
(P+49)h  
(P+4A)h  
(P+4B)h  
(P+4C)h  
Bits 10 - 27 = nth 32Mbit segment of referenced CFI table  
Bits 28 - 30 = Memory Type  
153:  
154:  
155:  
156:  
Bit 31 = Another CFI link field immediately follows  
1
CFI Link field quantity subfield definitions:  
Bits 0 - 3 = Quantity field (n such that n+1 equals quantity)  
Bit 4 = Table and die relative location  
Bit 5 = Link field and table relative location  
Bits 6 - 7 = Reserved  
1. See Additional CFI Link Field table.  
Note:  
Table 37: Additional CFI Link Field  
Discrete  
512Mb  
Address  
Bottom  
Top  
Bottom  
Top  
die 1 (B)  
--10  
die 2 (T)  
--FF  
die 1 (T)  
--10  
die 2 (B)  
--FF  
152:  
153:  
154:  
155:  
156:  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--20  
--FF  
--20  
--FF  
--00  
--FF  
--00  
--FF  
--00  
--FF  
--00  
--FF  
--10  
--FF  
--10  
--FF  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
65  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Flowcharts  
Flowcharts  
Figure 17: Word Program Procedure  
Start  
Command Cycle  
- Issue PROGRAM command  
- Address = location to program  
- Data = 0x40  
Data Cycle  
- Address = location to program  
- Data = data to program  
Check Ready Status  
- READ STATUS REGISTER command not required  
- Perform READ operation  
- Read ready status on signal D7  
No  
No  
Program suspend  
(See Suspend/Resume  
Flowchart  
No  
Yes  
D7 = 1?  
Suspend?  
Errors?  
Yes  
Yes  
Read Status Register  
- Toggle CE# or OE# to update status register  
- See Status Register Flowchart  
Error-handler  
user-defined routine  
Progam  
complete  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
66  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Flowcharts  
Figure 18: Buffer Program Procedure  
Start  
X = X + 1  
Write buffer data,  
start address  
Write buffer data,  
(at block address)  
within buffer range  
No  
Device  
supports buffer  
writes?  
No  
Use single word  
programming  
X = 0  
Yes  
Abort  
No  
X = N  
bufferred program  
?
Set timeout or  
loop counter  
Yes  
Yes  
Get next  
target address  
Write confirm D0h  
(at block address)  
Write to another  
block address  
Buffered program  
aborted  
Read status register  
(at block address)  
CE# and OE# LOW  
updates status register  
Issue WRITE-to-BUFFER  
command E8h  
(at block address)  
SR[7]?  
1 = Ready  
0 = Busy  
0
Suspend  
program loop  
Suspend  
program  
Read status register  
SR.7 = Valid  
(at block address )  
1
No  
Full status  
check (if desired)  
Device  
ready? SR[7] = 0/1  
Timeout  
or count expired?  
0 = No  
Yes  
Another  
buffered  
programming  
?
Yes  
1 = Yes  
Write word count (N-1)  
N = 0 corresponds to  
count = 1  
No  
(at block address)  
Program  
complete  
1. Word count values on DQ0:DQ15 are loaded into the count register. Count ranges for  
this device are N = 0000h to 01FFh.  
Notes:  
2. Device outputs the status register when read.  
3. Write buffer contents will be programmed at the device start address or destination ad-  
dress.  
4. Align the start address on a write buffer boundary for maximum programming perform-  
ance; that is, A[9:1] of the start address = 0).  
5. Device aborts the BUFFERED PROGRAM command if the current address is outside the  
original block address.  
6. Status register indicates an improper command sequence if the BUFFERED PROGRAM  
command is aborted. Follow this with a CLEAR STATUS REGISTER command.  
7. Device defaults to SR output data after Buffered Programming Setup Command (E8h) is  
issued . CE# or OE# must be toggled to update Status Register . Don’t issue the Read SR  
command (70h); it is interpreted by the device as Buffer Word Count.  
8. Full status check can be done after erase and write sequences complete. Write FFh after  
the last operation to reset the device to read array mode.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
67  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Flowcharts  
Figure 19: Buffered Enhanced Factory Programming (BEFP) Procedure  
Setup Phase  
Program and Verify Phase  
Exit Phase  
Read status  
register  
Read status  
register  
Start  
Issue BEFP SETUP  
Data = 0x80  
Buffer ready?  
BEFP exited?  
No (SR[0] = 1)  
No (SR[7] = 0)  
Yes (SR[7] = 1)  
Yes (SR[0] = 0)  
Issue BEFP CONFIRM  
Data = 00D0h  
Full status  
register check  
for errors  
Write data  
word to buffer  
BEFP setup  
delay  
No  
Buffer full?  
Yes  
Finish  
Read status  
register  
Read status  
register  
Yes (SR[7] = 0)  
BEFP setup  
done?  
No (SR[0] = 1)  
Program  
done?  
No (SR[7] = 1)  
SR error-handler  
user-defined  
Yes (SR[0] = 0)  
Yes  
Program  
more data  
Exit  
?
No  
Write 0xFFFF  
outside block  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
68  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Flowcharts  
Figure 20: Block Erase Procedure  
Start  
Command Cycle  
- Issue ERASE command  
- Address = block to be erased  
- Data = 0x20  
Confirm Cycle  
- Issue CONFIRM command  
- Address = block to be erased  
- Data = erase confirm (0xD0)  
Check Ready Status  
- READ STATUS REGISTER  
command not required  
- Perform READ operation  
- Read ready status on SR[7]  
No  
No  
Erase Suspend  
See Suspend/  
Resume Flowchart  
Yes  
No  
SR[7] = 1?  
Suspend?  
Errors?  
Yes  
Yes  
Read Status Register  
- Toggle CE# or OE#  
to update status register  
- See Status Register Flowchart  
Error Handler  
user-defined  
routine  
End  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
69  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Flowcharts  
Figure 21: Program Suspend/Resume Procedure  
Start  
=
SR.2  
0
Program  
Completed  
1 = Suspended  
0 = Completed  
Read Status  
Write 70h  
1
Any Address  
Read Array  
Program Suspend  
Write FFh  
Any Address  
Write B0h  
Any Address  
Read Array Data  
from a block other than  
from the one being  
programmed  
Read Status Register  
Initiate Read cycle to  
update the status register  
(Address = Block to suspend)  
Done  
No  
Reading  
=
SR.7  
0
Yes  
1 = Ready  
0 = Busy  
Read Array  
Write FFh  
Program Resume  
1
Write D0h  
Any Address  
Program  
Resumed  
Read Array  
Data  
Read Status  
Write 70h  
Any Address  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
70  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Flowcharts  
Figure 22: Erase Suspend/Resume Procedure  
=
SR.6  
Start  
0
Erase  
Completed  
1 = Suspended  
0 = Completed  
Read Status  
1
Write 70h  
Any Address  
Read  
Program  
Erase Suspend  
Read/Program?  
(FFh/40h)  
Write B0h  
Any Address  
Read Array Data from  
a block other than the  
one being erased  
Program Loop: to a  
block other than the  
one being erased  
No  
Done?  
Address = X  
Read Status Register  
Toggle CE#/OE# to  
update the  
status register  
Yes  
Erase Resume  
=
SR.7  
0
1 = Ready  
0 = Busy  
Read Array  
Write D0h  
Any Address  
1
Write FFh  
1
Erase  
Resumed  
Read Array  
Data  
Read Status  
Write 70h  
Any Address  
1. The tERS/SUSP timing between the initial block erase or erase resume command and a  
subsequent erase suspend command should be followed.  
Note:  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
71  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Flowcharts  
Figure 23: Block Lock Operations Procedure  
Start  
Lock Setup  
Write 60h  
Block Address  
Lock Confirm  
Write 01h, D0h, 2Fh  
Block Address  
Read ID Plane  
Write 90h  
Read Block  
Lock Status  
Optional  
No  
Locking  
Change?  
Yes  
Read Array  
Write FFh  
Any Address  
Lock Change  
Complete  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
72  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Flowcharts  
Figure 24: OTP Register Programming Procedure  
Start  
OTP Program Setup  
- Write 0xC0  
- OTP Address  
Confirm Data  
- Write OTP Address and Data  
Check Ready Status  
- READ STATUS REGISTER  
command not required  
- Perform READ operation  
- Read ready status on SR[7]  
No  
SR[7] = 1?  
Yes  
Read Status Register  
- Toggle CE# or OE#  
to update status register  
- See Status Register Flowchart  
End  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2013 Micron Technology, Inc. All rights reserved.  
73  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Flowcharts  
Figure 25: Status Register Procedure  
Start  
Command Cycle  
- Issue STATUS REGISTER command  
- Address = any device address  
- Data = 0x70  
Data Cycle  
- Read Status Register SR[7:0]  
No  
SR[7] = 1  
Yes  
Erase Suspend  
See Suspend/  
Yes  
SR[6] = 1  
Resume Flowchart  
No  
Program Suspend  
See Suspend/  
Resume Flowchart  
Yes  
Yes  
SR[2] = 1  
No  
Error  
Command  
sequence  
No  
SR[5] = 1  
SR[4] = 1  
Yes  
Error  
Erase failure  
No  
Yes  
Yes  
Yes  
Error  
Program failure  
SR[4] = 1  
No  
Error  
V
V
/V  
<
SR[3] = 1  
PEN PP  
/V  
PENLK PPLK  
No  
Error  
Block locked  
SR[1] = 1  
No  
End  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
74  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Power-Up and Power-Down  
Power-Up and Power-Down  
Power supply sequencing is not required if VPP is connected to VCC or VCCQ. Otherwise,  
VCC should attain VCCmin before applying VCCQ and VPP. Device inputs should not be  
driven before supply voltage = VCCmin  
.
Power supply transitions should only occur when RST# is low. This protects the device  
from accidental programming or erasure during power transitions.  
Reset Specifications  
Asserting RST# during a system reset is important with automated program/erase devi-  
ces because systems typically expect to read from flash memory when coming out of re-  
set. If a CPU reset occurs without a flash memory reset, proper CPU initialization may  
not occur. This is because the flash memory may be providing status information, in-  
stead of array data as expected. Connect RST# to the same active low reset signal used  
for CPU initialization.  
Also, because the device is disabled when RST# is asserted, it ignores its control inputs  
during power-up/down. Invalid bus conditions are masked, providing a level of memo-  
ry protection.  
Table 38: Power and Reset  
Number  
Symbol Parameter  
tPLPH RST# pulse width low  
tPLRH  
Min  
100  
-
Max  
Unit  
ns  
Notes  
P1  
P2  
-
1, 2, 3, 4  
1, 3, 4, 7  
1, 3, 4, 7  
1, 4, 5, 6  
RST# low to device reset during erase  
RST# low to device reset during program  
VCC Power valid to RST# de-assertion (high)  
25  
25  
-
us  
-
P3  
tVCCPH  
300  
1. These specifications are valid for all device versions (packages and speeds).  
2. The device may reset if tPLPH is < tPLPH MIN, but this is not guaranteed.  
3. Not applicable if RST# is tied to Vcc.  
Notes:  
4. Sampled, but not 100% tested.  
5. When RST# is tied to the VCC supply, device will not be ready until tVCCPH after VCC  
VCCMIN  
6. When RST# is tied to the VCCQ supply, device will not be ready until tVCCPH after VCC  
VCCMIN  
.
.
7. Reset completes within tPLPH if RST# is asserted while no erase or program operation is  
executing.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
75  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Power Supply Decoupling  
Figure 26: Reset Operation Waveforms  
tPLPH  
tPLRH  
tPHQV  
VIH  
VIL  
(A) Reset during  
RST#  
read mode  
Abort  
tPHQV  
complete  
VIH  
VIL  
(B) Reset during  
program or block erase  
P1 £ P2  
RST#  
RST#  
tPLRH  
tPHQV  
Abort  
complete  
VIH  
VIL  
(C) Reset during  
program or block erase  
P1 ³ P2  
tVCCPH  
(D) VCC power-up to  
RST# HIGH  
VCC  
0V  
V
CC  
Power Supply Decoupling  
Flash memory devices require careful power supply de-coupling. Three basic power  
supply current considerations are 1) standby current levels, 2) active current levels, and  
3) transient peaks produced when CE# and OE# are asserted and deasserted.  
When the device is accessed, many internal conditions change. Circuits within the de-  
vice enable charge-pumps, and internal logic states change at high speed. All of these  
internal activities produce transient signals. Transient current magnitudes depend on  
the device outputs’ capacitive and inductive loading. Two-line control and correct de-  
coupling capacitor selection suppress transient voltage peaks.  
Because flash memory devices draw their power from VCC, VPP, and VCCQ, each power  
connection should have a 0.1 µF ceramic capacitor to ground. High-frequency, inher-  
ently low-inductance capacitors should be placed as close as possible to package leads.  
Additionally, for every eight devices used in the system, a 4.7 µF electrolytic capacitor  
should be placed between power and ground close to the devices. The bulk capacitor is  
meant to overcome voltage droop caused by PCB trace inductance.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
76  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Absolute Maximum Ratings  
Absolute Maximum Ratings  
Caution: Stressing the device beyond the “Absolute Maximum Ratings” may cause per-  
manent damage. These are stress ratings only.  
Table 39: Absolute Maximum Ratings  
Parameter  
Maximum Rating  
–40 °C to + 85 °C  
–65 °C to + 125 °C  
–2.0 V to + 4.0 V  
–2.0 V to + 11.5 V  
–2.0 V to + 4.0 V  
–2.0 V to + 5.6 V  
100 mA  
Notes  
Temperature under bias  
Storage temperature  
Voltage on any signal (except VCC, VPP and VCCQ  
VPP voltage  
-
-
)
1
1, 2  
1
VCC voltage  
VCCQ voltage  
1
Output short circuit current  
3
1. Voltages shown are specified with respect to VSS. During infrequent non-periodic transi-  
tions, the level may undershoot to –2.0 V for periods less than 20 ns or overshoot to VCC  
+ 2.0 V or VCCQ + 2.0 V for periods less than 20 ns.  
Notes:  
2. Program/erase voltage is typically 1.7 V ~ 2.0 V. 9.0 V can be applied for 80 hours maxi-  
mum total. 9.0 V program/erase voltage may reduce block cycling capability.  
3. Output shorted for no more than one second. No more than one output shorted at a  
time.  
Operating Conditions  
Caution: Operation beyond the “Operating Conditions” is not recommended and ex-  
tended exposure beyond the “Operating Conditions” may affect device reliability.  
Table 40: Operating Conditions  
Symbol  
TC  
Parameter  
Min  
–40  
Max  
+85  
2.0  
3.6  
3.6  
3.6  
9.5  
80  
-
Unit Notes  
Operating Temperature  
VCC Supply Voltage  
I/O Supply Voltage  
°C  
V
1
3
VCC  
1.7  
VCCQ  
CMOS inputs  
TTL inputs  
1.7  
2.4  
VPPL  
VPPH  
tPPH  
VPP Voltage Supply (Logic Level)  
0.9  
2
Buffered Enhanced Factory Programming VPP  
Maximum VPP Hours  
8.5  
VPP = VPPH  
VPP = VPPL  
VPP = VPPH  
VPP = VPPH  
-
Hours  
Cycles  
Block Erase Main and Parameter Blocks  
100,000  
100,000  
100,000  
Cycles  
Main Blocks  
-
Parameter Blocks  
-
1. TC = Case Temperature.  
Notes:  
2. In typical operation VPP program voltage is VPPL  
.
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
77  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
DC Current Characteristics  
DC Current Characteristics  
Table 41: DC Current Characteristics  
CMOS Inputs  
TTL Inputs  
(VCCQ = 1.7V - (VCCQ = 2.4 V -  
3.6 V) 3.6 V)  
Typ Max Unit Test Conditions  
Sym-  
bol Parameter  
Typ  
Max  
Notes  
ILI  
Input Load Current  
-
±1  
-
±2  
µA VCC = VCCMax VCCQ = VCCQMax  
1, 6  
VIN = VCCQ or VSS  
ILO  
Output DQ[15:0], WAIT  
Leakage  
-
±1  
-
±10  
µA VCC = VCCMax VCCQ = VCCQMax  
VIN = VCCQ or VSS  
Current  
ICCS  
,
VCC Standby,  
256-Mbit  
512-Mbit  
65  
210  
420  
65  
210  
420  
µA VCC = VCCMax VCCQ = VCCQMax  
CE# = VCCQ RST# = VCCQ (for ICCS  
RST# = VSS (for ICCD) WP# = VIH  
1. 2  
1
ICCD Power-Down  
)
130  
130  
ICCR Average Asynchronous Sin-  
26  
31  
26  
31  
mA 16-Word Read VCC = VCCMax  
VCC  
Read  
Current  
gle-Word f = 5 MHz  
(1 CLK)  
CE# = VIL  
OE# = VIH  
Inputs: VIL or  
Page-Mode Read f =  
13 MHz (17 CLK)  
12  
16  
12  
16  
mA 16-Word Read  
VIH  
Synchronous Burst f  
= 52 MHz, LC=4  
19  
16  
21  
22  
18  
24  
19  
16  
21  
22  
18  
24  
mA 8-Word Read  
mA 16-Word Read  
mA Continuous  
Read  
ICCW, VCC Program Current,  
ICCE VCC Erase Current  
35  
35  
50  
50  
35  
35  
50  
50  
mA VPP = VPPL  
Pgm/Ers in progress  
VPP = VPPH  
Pgm/Ers in progress  
µA CE# = VCCQ; suspend in progress 1, 3, 4  
,
1, 3, 5  
,
1, 3, 5  
ICCWS, VCC Program Sus-  
ICCES pend Current,  
VCC Erase Suspend  
Current  
256-Mbit  
512-Mbit  
65  
70  
210  
225  
65  
70  
210  
225  
IPPS, VPP Standby Current,  
0.2  
5
0.2  
5
µA VPP = VPPL  
,
1, 3, 7  
IPPWS, VPP Program Suspend Current,  
VPP Erase Suspend Current  
suspend in progress  
IPPES  
IPPR VPP Read  
2
15  
2
15  
µA VPP = VPPL  
1, 3  
3
IPPW VPP Program Current  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.10  
0.10  
0.10  
0.10  
0.10  
0.10  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.10  
0.10  
0.10  
0.10  
0.10  
0.10  
mA VPP = VPPL, program in progress  
VPP = VPPH, program in progress  
mA VPP = VPPL, erase in progress  
VPP = VPPH, erase in progress  
mA VPP = VPPL  
IPPE VPP Erase Current  
IPPBC VPP Blank Check  
3
3
VPP = VPPH  
1. All currents are RMS unless noted. Typical values at typical VCC, TC = +25 °C.  
Notes:  
2. ICCS is the average current measured over any 5 ms time interval 5 µs after CE# is deas-  
serted.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
78  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
DC Voltage Characteristics  
3. Sampled, not 100% tested.  
4. ICCES is specified with the device deselected. If device is read while in erase suspend, cur-  
rent is ICCES plus ICCR  
.
5. ICCW, ICCE measured over typical or max times specified in Program and Erase Characteris-  
tics (page 94) .  
6. if VIN > VCC the input load current increases to 10uA max.  
7. the IPPS, PPWS, PPES Will increase to 200uA when Vpp/WP# is at VPPH.  
I
I
DC Voltage Characteristics  
Table 42: DC Voltage Characteristics  
CMOS Inputs (VCCQ = TTL Inputs (1) (VCCQ =  
1.7 V – 3.6 V) 2.4 V – 3.6 V)  
Min Max Min Max  
-0.5 0.4 -0.5 0.6  
VCCQ – 0.4 VCCQ + 0.5  
Symbol Parameter  
Unit Test Conditions  
Notes  
VIL  
VIH  
VOL  
Input Low Voltage  
V
V
2
Input High Voltage  
Output Low Voltage  
2
-
VCCQ + 0.5  
0.2  
-
0.2  
V
VCC = VCCMin VCCQ  
VCCQMin IOL = 100 µA  
VCC = VCCMin VCCQ  
VCCQMin IOH = –100 µA  
=
-
-
VOH  
Output High Voltage  
VCCQ – 0.2  
-
VCCQ – 0.2  
-
V
=
VPPLK VPP Lock-Out Voltage  
VLKO VCC Lock Voltage  
VLKOQ VCCQ Lock Voltage  
-
0.4  
-
-
0.4  
-
V
V
V
V
3
-
1.0  
0.9  
1.5  
1.0  
0.9  
1.5  
-
-
-
VPPL  
VPP Voltage Supply  
(Logic Level)  
3.6  
3.6  
VPPH  
Buffered Enhanced  
Factory Programming  
VPP  
8.5  
9.5  
8.5  
9.5  
V
1. Synchronous read mode is not supported with TTL inputs.  
Notes:  
2. VIL can undershoot to –1.0 V for duration of 2ns or less and VIH can overshoot to VCCQ  
1.0 V for durations of 2ns or less.  
+
3. VPP VPPLK inhibits erase and program operations. Do not use VPPL and VPPH outside their  
valid ranges.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
79  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
AC Test Conditions  
AC Test Conditions  
Figure 27: AC Input/Output Reference Timing  
VCCQ  
Input V  
/2  
Test points  
V
/2 output  
CCQ  
CCQ  
0V  
1. AC test inputs are driven at VCCQ for Logic "1" and 0 V for Logic "0". Input/output tim-  
ing begins/ends at VCCQ/2. Input rise and fall times (10% to 90%) < 5 ns. Worst case  
Note:  
speed occurs at VCC = VCCMin  
.
Figure 28: Transient Equivalent Load Circuit  
Device under  
test  
Out  
C
L
1. See the Test Configuration Component Value For Worst Case Speed Conditions table for  
component values.  
Notes:  
2. CL includes jig capacitance.  
Table 43: Test Configuration: Worst Case Speed Condition  
Test Configuration  
CL (pF)  
VCCQMin Standard Test  
30  
Figure 29: Clock Input AC Waveform  
tCLK  
VIH  
VIL  
CLK  
tCH/CL  
tFCLK/RCLK  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
80  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Capacitance  
Capacitance  
Table 44: Capacitance  
Parameter  
Signal  
Density  
Min  
Typ  
7
Max  
8
Unit  
Condition  
Notes  
Input  
Capacitance  
Address, Data,  
CE#, WE#, OE#,  
RST#, CLK,  
256Mb  
3
6
pF  
Typ temp = 25 °C, Max temp  
= 85 °C, VCC = (0 V - 2.0 V),  
VCCQ = (0 V - 3.6 V), Discrete  
silicon die  
1
256Mb/  
256Mb  
14  
16  
ADV#, WP#  
Output  
Capacitance  
Data, WAIT  
256Mb  
3
6
5
7
256Mb/  
256Mb  
10  
14  
1. Sampled, but not 100% tested.  
Note:  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
81  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
AC Read Specifications  
AC Read Specifications  
Table 45: AC Read Specifications  
Number Symbol Parameter  
Asynchronous Specifications  
Min  
Max  
Unit  
Note  
R1  
R2  
R3  
tAVAV  
tAVQV  
tELQV  
Read cycle time  
Easy BGA/QUAD+  
TSOP  
100  
110  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
Address to output valid  
CE# low to output valid  
Easy BGA/QUAD+  
TSOP  
100  
110  
100  
110  
25  
-
-
-
Easy BGA/QUAD+  
TSOP  
-
-
R4  
R5  
R6  
R7  
R8  
tGLQV  
tPHQV  
tELQX  
tGLQX  
tEHQZ  
OE# low to output valid  
RST# high to output valid  
CE# low to output in low-Z  
OE# low to output in low-Z  
-
-
1, 2  
1
150  
-
0
0
-
1, 3  
1, 2, 3  
1, 3  
-
CE# high to output in high-  
Z
20  
R9  
tGHQZ  
tOH  
OE# high to output in high-  
Z
-
15  
-
ns  
ns  
R10  
Output hold from first oc-  
curring address, CE#, or OE#  
change  
0
R11  
R12  
R13  
R15  
R16  
R17  
tEHEL  
tELTV  
tEHTZ  
tGLTV  
tGLTX  
tGHTZ  
CE# pulse width high  
17  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
1
CE# low to WAIT valid  
CE# high to WAIT high-Z  
OE# low to WAIT valid  
OE# low to WAIT in low-Z  
OE# high to WAIT in high-Z  
17  
20  
17  
-
-
1, 3  
1
-
0
-
1, 3  
20  
Latching Specifications  
R101  
R102  
R103  
tAVVH  
tELVH  
tVLQV  
Address setup to ADV# high  
CE# low to ADV# high  
10  
10  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
-
ADV# low to output valid  
Easy BGA/QUAD+  
TSOP  
100  
-
110  
R104  
R105  
R106  
tVLVH  
tVHVL  
tVHAX  
ADV# pulse width low  
ADV# pulse width high  
10  
10  
9
-
-
-
Address hold from ADV#  
high  
1, 4  
1
R108  
R111  
tAPA  
Page address access  
-
25  
-
ns  
ns  
tPHVH  
RST# high to ADV# high  
30  
Clock Specifications  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
82  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
AC Read Specifications  
Table 45: AC Read Specifications (Continued)  
Number Symbol Parameter  
Min  
-
Max  
Unit  
MHz  
MHz  
ns  
Note  
R200  
R201  
R202  
R203  
fCLK  
CLK frequency  
Easy BGA/QUAD+  
TSOP  
52  
40  
-
1, 3, 5  
-
tCLK  
CLK period  
Easy BGA/QUAD+  
TSOP  
19.2  
25  
5
-
ns  
tCH/CL  
CLK high/low time  
Easy BGA/QUAD+  
TSOP  
-
ns  
9
tFCLK/RCLK CLK fall/rise time  
0.3  
3
ns  
Synchronous Specifications(5)  
R301  
R302  
R303  
R304  
tAVCH/L Address setup to CLK  
-
9
9
9
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1, 6  
tVLCH/L  
tELCH/L  
ADV# low setup to CLK  
CE# low setup to CLK  
CLK to output valid  
-
-
-
tCHQV /  
Easy BGA/QUAD+  
17  
20  
-
tCLQV  
TSOP  
-
1, 6  
1, 6  
R305  
R306  
R307  
tCHQX  
tCHAX  
tCHTV  
Output hold from CLK  
Address hold from CLK  
CLK to WAIT valid  
-
3
10  
-
-
-
1, 4, 6  
1, 6  
Easy BGA/QUAD+  
17  
20  
-
TSOP  
-
R311  
R312  
tCHVL  
tCHTX  
CLK Valid to ADV# Setup  
WAIT Hold from CLK  
-
3
3
5
ns  
ns  
1
Easy BGA/QUAD+  
TSOP  
-
1, 6  
-
1. See on page for timing measurements and max allowable input slew rate.  
Notes:  
2. OE# may be delayed by up to tELQV – tGLQV after CE#’s falling edge without impact to  
tELQV.  
3. Sampled, not 100% tested.  
4. Address hold in synchronous burst mode is tCHAX or tVHAX, whichever timing specifica-  
tion is satisfied first.  
5. Synchronous read mode is not supported with TTL level inputs.  
6. Applies only to subsequent synchronous reads.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
83  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
AC Read Specifications  
Figure 30: Asynchronous Single Word Read (ADV# LOW)  
tAVAV  
tAVQV  
A
ADV#  
CE#  
tELQV  
tEHQZ  
tGHQZ  
tGLQV  
OE#  
tGLTV  
tGHTZ  
WAIT  
tGLQX  
tELQX  
DQ  
tPHQV  
RST#  
1. WAIT shown deasserted during asynchronous read mode (RCR.10=0, WAIT asserted low).  
Note:  
Figure 31: Asynchronous Single Word Read (ADV# Latch)  
tAVAV  
tAVQV  
A[MAX:5]  
A[4:1]  
tAVVH  
tVHAX  
tVHVL  
ADV#  
CE#  
tELQV  
tEHQZ  
tGLQV  
tGHQZ  
OE#  
tGHTZ  
tGLTV  
WAIT  
tGLQX  
tOH  
tELQX  
DQ  
1. WAIT shown deasserted during asynchronous read mode (RCR.10=0, WAIT asserted low).  
Note:  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
84  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
AC Read Specifications  
Figure 32: Asynchronous Page Mode Read  
tAVQV  
Valid address  
A[MAX:4]  
tOH  
tOH  
tOH  
tOH  
A[3:0]  
ADV#  
0
1
2
F
tAVVH  
tVHVL  
tVHAX  
tEHQZ  
tGHQZ  
tELQV  
tGLQV  
CE#  
OE#  
WAIT  
DQ  
tELQX  
tAPA  
tAPA  
tAPA  
tEHTZ  
Q1  
Q2  
Q3  
Q16  
1. WAIT shown deasserted during asynchronous read mode (RCR.10=0, WAIT asserted low).  
Note:  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
85  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
AC Read Specifications  
Figure 33: Synchronous Single Word Array or Nonarray Read  
tAVCH  
tCHAX  
tAVQV  
CLK  
A
tAVVH  
tVHVL  
tELCH  
tVHAX  
tVLVH  
ADV#  
tELVH  
tELQV  
tEHQZ  
tGHQZ  
CE#  
OE#  
tGLQX  
tCHTV  
tCHQV  
tGHTZ  
tCHTX  
WAIT  
tGLQV  
tCHQX  
DQ  
1. WAIT is driven per OE# assertion during synchronous array or non-array read, and can  
be configured to assert either during or one data cycle before valid data.  
Notes:  
2. This diagram illustrates the case in which an n-word burst is initiated to the flash memo-  
ry array and it is terminated by CE# deassertion after the first word in the burst.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
86  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
AC Read Specifications  
Figure 34: Continuous Burst Read with Output Delay (ADV# LOW)  
t
AVCH  
t
t
t
t
t
VLCH CHAX  
CHQV  
CHQV  
CHQV  
CLK  
t
AVQV  
t
t
AVVH  
A
t
VHAX  
VHVL  
ADV#  
t
ELCH  
t
ELVH  
t
ELQV  
CE#  
OE#  
t
t
t
GLTV  
CHTV  
CHTX  
WAIT  
DQ  
t
CHQV  
t
GLQV  
t
t
t
t
CHQX  
CHQX  
t
CHQX  
CHQX  
GLQX  
1. WAIT is driven per OE# assertion during synchronous array or non-array read, and can  
be configured to assert either during or one data cycle before valid data.  
Notes:  
2. At the end of Word Line; the delay incurred when a burst access crosses a 16-word  
boundary and the starting address is not 4-word boundary aligned.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
87  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
AC Read Specifications  
Figure 35: Synchronous Burst Mode 4-Word Read  
tAVCH  
Latency count  
tAVQV  
tVLCH tCHAX  
CLK  
tAVVH  
A
A
tVHAX  
tVHVL  
tELVH  
ADV#  
tELCH  
tELQV  
tELQV  
CE#  
OE#  
tCHTX  
tGLTV  
tCHTV  
tCHQV  
tCHTX  
WAIT  
DQ  
tCHQV  
tCHQX  
tGLQV  
tGLQX  
tCHQX  
Q0  
Q1  
Q2  
Q3  
1. WAIT is driven per OE# assertion during synchronous array or non-array read. WAIT as-  
serted during initial latency and deasserted during valid data (RCR.10 = 0, WAIT asserted  
low).  
Note:  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
88  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
AC Write Specifications  
AC Write Specifications  
Table 46: AC Write Specifications  
Number  
W1  
Symbol  
tPHWL  
tELWL  
Parameter  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
1, 2, 3  
1, 2, 3  
1, 2, 4  
1, 2, 12  
1, 2  
RST# high recovery to WE# low  
CE# setup to WE# low  
WE# write pulse width low  
Data setup to WE# high  
Address setup to WE# high  
CE# hold from WE# high  
Data hold from WE# high  
Address hold from WE# high  
WE# pulse width high  
VPP setup to WE# high  
VPP hold from Status read  
WP# hold from Status read  
WP# setup to WE# high  
WE# high to OE# low  
150  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
W2  
0
W3  
tWLWH  
tDVWH  
tAVWH  
tWHEH  
tWHDX  
tWHAX  
tWHWL  
tVPWH  
tQVVL  
50  
W4  
50  
W5  
50  
W6  
0
W7  
0
W8  
0
W9  
20  
1, 2, 5  
W10  
W11  
W12  
W13  
W14  
W16  
200  
1, 2, 3, 7  
0
tQVBL  
0
200  
1, 2, 3, 7  
1, 2, 9  
tBHWH  
tWHGL  
tWHQV  
0
WE# high to read valid  
tAVQV + 35  
1, 2, 3, 6,  
10  
Write to Asynchronous Read Specifications  
W18 tWHAV WE# high to Address valid  
Write to Synchronous Read Specifications  
0
-
ns  
1, 2, 3, 6, 8  
W19  
W20  
W28  
tWHCH/L  
tWHVH  
tWHVL  
WE# high to Clock valid  
WE# high to ADV# high  
WE# high to ADV# low  
19  
19  
7
-
-
-
ns  
ns  
ns  
1, 2, 3, 6,  
10  
Write Specifications with Clock Active  
W21  
W22  
tVHWL  
tCHWL  
Notes:  
ADV# high to WE# low  
Clock high to WE# low  
-
-
20  
20  
ns  
ns  
1, 2, 3, 11  
1. Write timing characteristics during erase suspend are the same as write-only operations.  
2. A write operation can be terminated with either CE# or WE#.  
3. Sampled, not 100% tested.  
4. Write pulse width low (tWLWH or tELEH) is defined from CE# or WE# low (whichever occurs  
last) to CE# or WE# high (whichever occurs first). Thus, tWLWH = tELEH = tWLEH = tELWH  
.
5. Write pulse width high (tWHWL or tEHEL) is defined from CE# or WE# high (whichever oc-  
curs first) to CE# or WE# low (whichever occurs last). Thus, tWHWL = tEHEL = tWHEL = tEHWL).  
6. tWHVH or tWHCH/L must be met when transiting from a write cycle to a synchronous burst  
read.  
7. VPP and WP# should be at a valid level until erase or program success is determined.  
8. This specification is only applicable when transiting from a write cycle to an asynchro-  
nous read. See spec W19 and W20 for synchronous read.  
9. When doing a Read Status operation following any command that alters the Status Reg-  
ister, W14 is 20 ns.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
89  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
AC Write Specifications  
10. Add 10 ns if the write operation results in a RCR or block lock status change, for the sub-  
sequent read operation to reflect this change.  
11. These specs are required only when the device is in a synchronous mode and clock is ac-  
tive during address setup phase.  
12. This specification must be complied with by customer’s writing timing. The result would  
be unpredictable if any violation to this timing specification.  
Figure 36: Write to Write Timing  
Figure 37: Asynchronous Read to Write Timing  
tAVAV  
tAVQV  
tAVWH  
tWHAX  
A
tEHQZ  
tELQV  
CE#  
tGLQV  
tGHQZ  
OE#  
tELWL  
tWLWH  
tWHEH  
WE#  
tGLTV  
tGHTZ  
tOH  
WAIT  
tGLQX  
tELQX  
tWHDX  
tDVWH  
DQ  
Q
D
tPHQV  
RST#  
1. WAIT deasserted during asynchronous read and during write. WAIT High-Z during write  
per OE# deasserted.  
Note:  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
90  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
AC Write Specifications  
Figure 38: Write to Asynchronous Read Timing  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
91  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
AC Write Specifications  
Figure 39: Synchronous Read to Write Timing  
t
AVCH  
Latency count  
t
t
VLCH CHAX  
CLK  
t
AVQV  
t
t
t
AVVH  
WHAV  
AVWH  
A
t
VHVL  
t
VHAX  
t
ELVH  
t
VLVH  
ADV#  
t
t
EHEL  
ELCH  
t
ELQV  
t
t
EHTZ  
WHEH  
CE#  
OE#  
t
t
EHQZ  
GLQV  
t
VHWL  
t
VHWL  
t
CHWL  
VLWH  
t
t
t
WHAX  
CHWL  
ELWL  
t
t
t
WHWL  
WLWH  
WE#  
t
t
GLTX  
CHTX  
t
CHTV  
WAIT  
t
t
t
WHDX  
CHQX  
GLQX  
t
CHQV  
Q
DQ  
D
D
1. WAIT shown deasserted and High-Z per OE# deassertion during write operation (RCR.  
10=0, WAIT asserted low). Clock is ignored during write operation.  
Note:  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
92  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
AC Write Specifications  
Figure 40: Write to Synchronous Read Timing  
Latency count  
VLCH  
t
t
t
AVCH  
AVQV  
CLK  
t
t
t
AVWH  
WHAX  
t
CHAX  
A
t
VHAX  
VLVH  
ADV#  
t
t
t
t
ELWL  
WHEH  
t
EHEL ELCH  
CE#  
WHAV  
t
WHCH/L  
t
t
WLWH  
WHVH  
WE#  
OE#  
t
GLQV  
t
t
GLTV  
t
CHTV  
WAIT  
t
t
CHQV  
CHQX  
t
t
t
DVWH  
WHDX  
ELQV  
CHQV  
DQ  
D
Q
Q
t
PHWL  
RST#  
1. WAIT shown deasserted and High-Z per OE# deassertion during write operation (RCR.  
10=0, WAIT asserted low).  
Note:  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
93  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Program and Erase Characteristics  
Program and Erase Characteristics  
Table 47: Program and Erase Specifications  
VPPL  
VPPH  
Number  
Symbol Parameter  
Min  
Typ Max Min  
Typ Max Unit  
Notes  
Conventional Word Programming  
W200  
tPROG/W  
Program Single word  
Time  
-
270  
456  
-
270  
456  
µs  
µs  
1
Buffered Programming  
W250 tPROG  
Program Aligned 32-Word, BP  
-
-
-
-
-
310  
310  
716  
900  
-
-
-
-
-
310  
310  
716  
900  
1
Time  
time (32 words)  
Aligned 64-Wd, BP  
time (64 words)  
Aligned 128-Wd, BP  
time (128 words)  
375 1140  
505 1690  
900 3016  
375 1140  
505 1690  
900 3016  
Aligned 256-Wd, BP  
time (256 words)  
one full buffer, BP  
time (512 words)  
Buffered Enhanced Factory Programming  
W451  
W452  
tBEFP/B  
Program Single byte  
BEFP Setup  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
-
0.5  
-
-
-
µs  
1, 2  
1
tBEFP/Setup  
5
Erase and Suspend  
W500  
W501  
tERS/PB  
tERS/MB  
tSUSP/P  
Erase  
Time  
32-KByte Parameter  
128-KByte Main  
-
-
-
-
-
0.8  
0.8  
25  
4.0  
4.0  
30  
30  
-
-
-
-
-
-
0.8  
0.8  
25  
4.0  
4.0  
30  
30  
-
s
1
W600  
Suspend Program suspend  
Latency  
µs  
W601  
tSUSP/E  
Erase suspend  
25  
25  
W602  
tERS/SUSP  
Erase to Suspend  
500  
500  
1, 3  
Blank Check  
W702  
tBC/MB  
blank  
check  
Main Array Block  
-
3.2  
-
-
3.2  
-
ms  
1. Typical values measured at TC = +25 °C and nominal voltages. Performance numbers are  
valid for all speed versions. Excludes system overhead. Sampled, but not 100% tested.  
Notes:  
2. Averaged over entire device.  
3. W602 is the typical time between an initial block erase or erase resume command and  
the a subsequent erase suspend command. Violating the specification repeatedly during  
any particular block erase may cause erase failures.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
94  
© 2013 Micron Technology, Inc. All rights reserved.  
256Mb and 512Mb (256Mb/256Mb), P30-65nm  
Revision History  
Revision History  
Rev. A – 10/12  
• Initial Micron brand release  
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
www.micron.com/productsupport Customer Comment Line: 800-932-4992  
Micron and the Micron logo are trademarks of Micron Technology, Inc.  
All other trademarks are the property of their respective owners.  
This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein.  
Although considered final, these specifications are subject to change, as further product development and data characterization some-  
times occur.  
PDF: 09005aef84566799  
p30_65nm_256Mb-512mb.pdf - Rev. A 1/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
95  
© 2013 Micron Technology, Inc. All rights reserved.  

相关型号:

PC28F256P33B85

Flash, 16MX16, 85ns, PBGA64, LEAD FREE, BGA-64
INTEL

PC28F256P33B85A

16MX16 FLASH 3V PROM, 85ns, PBGA64, LEAD FREE, BGA-64
ROCHESTER

PC28F256P33B85D

Flash, 16MX16, 85ns, PBGA64, LEAD FREE, BGA-64
NUMONYX

PC28F256P33T85

Flash, 16MX16, 85ns, PBGA64, LEAD FREE, BGA-64
NUMONYX

PC28F256P33T85A

Flash, 16MX16, 85ns, PBGA64, LEAD FREE, BGA-64
NUMONYX

PC28F256P33T85B

Flash, 16MX16, 85ns, PBGA64, LEAD FREE, BGA-64
NUMONYX

PC28F320C3BD70

Flash, 2MX16, 70ns, PBGA64, LEAD FREE, BGA-64
NUMONYX

PC28F320C3BD70

Flash, 2MX16, 70ns, PBGA64, LEAD FREE, BGA-64
INTEL

PC28F320C3TD70

Flash, 2MX16, 70ns, PBGA64, LEAD FREE, BGA-64
NUMONYX

PC28F320C3TD70

Flash, 2MX16, 70ns, PBGA64, LEAD FREE, BGA-64
INTEL

PC28F320C3TD90

Flash, 2MX16, 90ns, PBGA64, LEAD FREE, BGA-64
INTEL

PC28F320J3A-110

Intel StrataFlash Memory (J3)
INTEL