A3PE1500-1FGG208YES [MICROSEMI]

ProASIC3E Flash Family FPGAs with Optional Soft ARM Support; ProASIC3E闪存系列FPGA具有可选的软ARM支持
A3PE1500-1FGG208YES
型号: A3PE1500-1FGG208YES
厂家: Microsemi    Microsemi
描述:

ProASIC3E Flash Family FPGAs with Optional Soft ARM Support
ProASIC3E闪存系列FPGA具有可选的软ARM支持

闪存
文件: 总162页 (文件大小:8630K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Revision 13  
ProASIC3E Flash Family FPGAs  
with Optional Soft ARM Support  
Features and Benefits  
Pro (Professional) I/O  
700 Mbps DDR, LVDS-Capable I/Os  
High Capacity  
1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation  
Bank-Selectable I/O Voltages—up to 8 Banks per Chip  
Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V /  
2.5 V / 1.8 V / 1.5 V, 3.3 V PCI / 3.3 V PCI-X, and LVCMOS  
2.5 V / 5.0 V Input  
600 k to 3 Million System Gates  
108 to 504 kbits of True Dual-Port SRAM  
Up to 620 User I/Os  
Reprogrammable Flash Technology  
Differential I/O Standards: LVPECL, LVDS, B-LVDS, and  
M-LVDS  
Voltage-Referenced I/O Standards: GTL+ 2.5 V / 3.3 V, GTL  
2.5 V / 3.3 V, HSTL Class I and II, SSTL2 Class I and II, SSTL3  
Class I and II  
130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS  
Process  
Instant On Level 0 Support  
Single-Chip Solution  
Retains Programmed Design when Powered Off  
I/O Registers on Input, Output, and Enable Paths  
Hot-Swappable and Cold Sparing I/Os  
Programmable Output Slew Rate and Drive Strength  
Programmable Input Delay  
Schmitt Trigger Option on Single-Ended Inputs  
Weak Pull-Up/-Down  
On-Chip User Nonvolatile Memory  
1 kbit of FlashROM with Synchronous Interfacing  
High Performance  
350 MHz System Performance  
3.3 V, 66 MHz 64-Bit PCI  
IEEE 1149.1 (JTAG) Boundary Scan Test  
Pin-Compatible Packages across the ProASIC 3E Family  
In-System Programming (ISP) and Security  
®
ISP Using On-Chip 128-Bit Advanced Encryption Standard  
(AES) Decryption via JTAG (IEEE 1532–compliant)  
Clock Conditioning Circuit (CCC) and PLL  
®
FlashLock Designed to Secure FPGA Contents  
Six CCC Blocks, Each with an Integrated PLL  
Configurable Phase-Shift, Multiply/Divide, Delay Capabilities  
and External Feedback  
Low Power  
Core Voltage for Low Power  
Support for 1.5-V-Only Systems  
Low-Impedance Flash Switches  
Wide Input Frequency Range (1.5 MHz to 350 MHz)  
SRAMs and FIFOs  
Variable-Aspect-Ratio 4,608-Bit RAM Blocks (×1, ×2, ×4, ×9,  
and ×18 organizations available)  
High-Performance Routing Hierarchy  
Segmented, Hierarchical Routing and Clock Structure  
Ultra-Fast Local and Long-Line Network  
Enhanced High-Speed, Very-Long-Line Network  
High-Performance, Low-Skew Global Network  
Architecture Supports Ultra-High Utilization  
True Dual-Port SRAM (except ×18)  
24 SRAM and FIFO Configurations with Synchronous Operation  
up to 350 MHz  
ARM® Processor Support in ProASIC3E FPGAs  
M1 ProASIC3E Devices—Cortex-M1 Soft Processor Available  
with or without Debug  
Table 1-1 • ProASIC3E Product Family  
ProASIC3E Devices  
A3PE600  
A3PE1500  
A3PE3000  
1
Cortex-M1 Devices  
M1A3PE1500  
M1A3PE3000  
System Gates  
600,000  
13,824  
108  
24  
1,500,000  
3,000,000  
VersaTiles (D-flip-flops)  
RAM Kbits (1,024 bits)  
4,608-Bit Blocks  
38,400  
270  
60  
75,264  
504  
112  
1
FlashROM Kbits  
1
1
Secure (AES) ISP  
Yes  
6
Yes  
6
Yes  
6
2
CCCs with Integrated PLLs  
3
VersaNet Globals  
18  
18  
18  
I/O Banks  
8
8
8
Maximum User I/Os  
270  
444  
620  
Package Pins  
PQFP  
FBGA  
PQ208  
FG256, FG484  
PQ208  
FG484, FG676  
PQ208  
FG324, FG484, FG896  
Notes:  
1. Refer to the Cortex-M1 product brief for more information.  
2. The PQ208 package supports six CCCs and two PLLs.  
3. Six chip (main) and three quadrant global networks are available.  
4. For devices supporting lower densities, refer to the ProASIC3 Flash Family FPGAs datasheet.  
January 2013  
I
© 2013 Microsemi Corporation  
ProASIC3E Flash Family FPGAs  
1
I/Os Per Package  
ProASIC3E Devices  
Cortex-M1 Devices 2  
A3PE600  
A3PE1500 3  
M1A3PE1500  
I/O Types  
A3PE3000 3  
M1A3PE3000  
Package  
PQ208  
FG256  
FG324  
FG484  
FG676  
FG896  
Notes:  
147  
165  
65  
79  
147  
65  
147  
65  
221  
341  
110  
168  
270  
135  
280  
444  
139  
222  
620  
310  
1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3E FPGA Fabric User’s  
Guide to ensure compliance with design and board migration requirements.  
2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.  
3. For A3PE1500 and A3PE3000 devices, the usage of certain I/O standards is limited as follows:  
– SSTL3(I) and (II): up to 40 I/Os per north or south bank  
– LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank  
– SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank  
4. FG256 and FG484 are footprint-compatible packages.  
5. When using voltage-referenced I/O standards, one I/O pin should be assigned as a voltage-referenced pin (VREF) per  
minibank (group of I/Os).  
6. "G" indicates RoHS-compliant packages. Refer to the "ProASIC3E Ordering Information" on page III for the location of the "G"  
in the part number.  
Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions  
Package  
PQ208  
28 × 28  
784  
FG256  
17 × 17  
289  
FG324  
19 × 19  
361  
FG484  
23 × 23  
529  
FG676  
27 × 27  
729  
FG896  
31 × 31  
961  
Length × Width (mm\mm)  
Nominal Area (mm2)  
Pitch (mm)  
0.5  
1.0  
1.0  
1.0  
1.0  
1.0  
Height (mm)  
3.40  
1.60  
1.63  
2.23  
2.23  
2.23  
ProASIC3E Device Status  
ProASIC3E Devices  
Status  
M1 ProASIC3E Devices  
Status  
A3PE600  
Production  
Production  
Production  
A3PE1500  
A3PE3000  
M1A3PE1500  
M1A3PE3000  
Production  
Production  
II  
Revision 13  
ProASIC3E Flash Family FPGAs  
ProASIC3E Ordering Information  
_
A3PE3000  
1
FG  
896  
I
Y
G
Application (Temperature Range)  
Blank = Commercial (0°C to +70°C Ambient Temperature)  
I = Industrial (–40°C to +85°C Ambient Temperature)  
PP = Pre-Production  
ES = Engineering Sample (Room Temperature Only)  
Security Feature  
Y = Device Includes License to Implement IP Based on the  
Cryptography Research, Inc. (CRI) Patent Portfolio  
Blank = Device Does Not Include License to Implement IP Based  
on the Cryptography Research, Inc. (CRI) Patent Portfolio  
Package Lead Count  
Lead-Free Packaging  
Blank = Standard Packaging  
G = RoHS-Compliant (Green) Packaging  
Package Type  
=
PQ Plastic Quad Flat Pack (0.5 mm pitch)  
=
FG Fine Pitch Ball Grid Array (1.0 mm pitch)  
Speed Grade  
1 = 15% Faster than Standard  
2 = 25% Faster than Standard  
Part Number  
ProASIC3E Devices  
A3PE600 = 600,000 System Gates  
A3PE1500 = 1,500,000 System Gates  
A3PE3000 = 3,000,000 System Gates  
ProASIC3E Devices with Cortex-M1  
M1A3PE1500  
M1A3PE3000  
=
=
1,500,000 System Gates  
3,000,000 System Gates  
Revision 13  
III  
ProASIC3E Flash Family FPGAs  
Temperature Grade Offerings  
Package  
Cortex-M1 Devices  
PQ208  
A3PE600  
A3PE1500  
A3PE3000  
M1A3PE1500  
M1A3PE3000  
C, I  
C, I  
C, I  
C, I  
FG256  
FG324  
C, I  
C, I  
FG484  
C, I  
C, I  
C, I  
FG676  
FG896  
C, I  
Note: C = Commercial temperature range: 0°C to 70°C ambient temperature  
I = Industrial temperature range: –40°C to 85°C ambient temperature  
Speed Grade and Temperature Grade Matrix  
Temperature Grade  
Std.  
–1  
–2  
C 1  
I 2  
Notes:  
1. C = Commercial temperature range: 0°C to 70°C ambient temperature  
2. I = Industrial temperature range: –40°C to 85°C ambient temperature  
References made to ProASIC3E devices also apply to ARM-enabled ProASIC3E devices. The ARM-enabled part numbers start with  
M1 (Cortex-M1).  
Contact your local Microsemi SoC Products Group representative for device availability:  
http://www.microsemi.com/soc/contact/default.aspx.  
IV  
Revision 13  
ProASIC3E Flash Family FPGAs  
Table of Contents  
ProASIC3E Device Family Overview  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
ProASIC3E DC and Switching Characteristics  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12  
VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63  
Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-67  
Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69  
Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-71  
Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-82  
JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-82  
Pin Descriptions and Packaging  
Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
User-Defined Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
User Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Package Pin Assignments  
PQ208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
FG256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8  
FG324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12  
FG484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16  
FG676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32  
FG896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-40  
Datasheet Information  
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11  
Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11  
Revision 13  
V
1 – ProASIC3E Device Family Overview  
General Description  
ProASIC3E, the third-generation family of Microsemi flash FPGAs, offers performance, density, and  
features beyond those of the ProASICPLUS® family. Nonvolatile flash technology gives ProASIC3E  
devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3E is  
reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable  
designers to create high-density systems using existing ASIC or FPGA design flows and tools.  
ProASIC3E devices offer 1 kbit of on-chip, programmable, nonvolatile FlashROM storage as well as  
clock conditioning circuitry based on six integrated phase-locked loops (PLLs). ProASIC3E devices have  
up to three million system gates, supported with up to 504 kbits of true dual-port SRAM and up to 620  
user I/Os.  
Several ProASIC3E devices support the Cortex-M1 soft IP cores, and the ARM-Enabled devices have  
Microsemi ordering numbers that begin with M1A3PE.  
Flash Advantages  
Reduced Cost of Ownership  
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-  
based FPGAs, flash-based ProASIC3E devices allow all functionality to be Instant On; no external boot  
PROM is required. On-board security mechanisms prevent access to all the programming information  
and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system  
reprogramming to support future design iterations and field upgrades with confidence that valuable  
intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the  
industry-standard AES algorithm. The ProASIC3E family device architecture mitigates the need for ASIC  
migration at higher user volumes. This makes the ProASIC3E family a cost-effective ASIC replacement  
solution, especially for applications in the consumer, networking/ communications, computing, and  
avionics markets.  
Security  
The nonvolatile, flash-based ProASIC3E devices do not require a boot PROM, so there is no vulnerable  
external bitstream that can be easily copied. ProASIC3E devices incorporate FlashLock, which provides  
a unique combination of reprogrammability and design security without external overhead, advantages  
that only an FPGA with nonvolatile flash programming can offer.  
ProASIC3E devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level  
of protection in the FPGA industry for programmed intellectual property and configuration data. In  
addition, all FlashROM data in ProASIC3E devices can be encrypted prior to loading, using the industry-  
leading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the  
National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard.  
ProASIC3E devices have a built-in AES decryption engine and a flash-based AES key that make them  
the most comprehensive programmable logic device security solution available today. ProASIC3E  
devices with AES-based security provide a high level of protection for secure, remote field updates over  
public networks such as the Internet, and ensure that valuable IP remains out of the hands of system  
overbuilders, system cloners, and IP thieves.  
Security, built into the FPGA fabric, is an inherent component of the ProASIC3E family. The flash cells  
are located beneath seven metal layers, and many device design and layout techniques have been used  
to make invasive attacks extremely difficult. The ProASIC3E family, with FlashLock and AES security, is  
unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected  
with industry-standard security, making remote ISP possible. A ProASIC3E device provides the best  
available security for programmable logic designs.  
Revision 13  
1-1  
ProASIC3E Device Family Overview  
Single Chip  
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the  
configuration data is an inherent part of the FPGA structure, and no external configuration data needs to  
be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3E FPGAs  
do not require system configuration components such as EEPROMs or microcontrollers to load device  
configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system  
reliability.  
Instant On  
Flash-based ProASIC3E devices support Level 0 of the Instant On classification standard. This feature  
helps in system component initialization, execution of critical tasks before the processor wakes up, setup  
and configuration of memory blocks, clock generation, and bus activity management. The Instant On  
feature of flash-based ProASIC3E devices greatly simplifies total system design and reduces total  
system cost, often eliminating the need for CPLDs and clock generation PLLs that are used for these  
purposes in a system. In addition, glitches and brownouts in system power will not corrupt the  
ProASIC3E device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be  
reloaded when system power is restored. This enables the reduction or complete removal of the  
configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from  
the PCB design. Flash-based ProASIC3E devices simplify total system design and reduce cost and  
design risk while increasing system reliability and improving system initialization time.  
Firm Errors  
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike  
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the  
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These  
errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a  
complete system failure. Firm errors do not exist in the configuration memory of ProASIC3E flash-based  
FPGAs. Once it is programmed, the flash cell configuration element of ProASIC3E FPGAs cannot be  
altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in  
the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and  
correction (EDAC) circuitry built into the FPGA fabric.  
Low Power  
Flash-based ProASIC3E devices exhibit power characteristics similar to an ASIC, making them an ideal  
choice for power-sensitive applications. ProASIC3E devices have only a very limited power-on current  
surge and no high-current transition period, both of which occur on many FPGAs.  
ProASIC3E devices also have low dynamic power consumption to further maximize power savings.  
Advanced Flash Technology  
The ProASIC3E family offers many benefits, including nonvolatility and reprogrammability through an  
advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design  
techniques are used to implement logic and control functions. The combination of fine granularity,  
enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization  
without compromising device routability or performance. Logic functions within the device are  
interconnected through a four-level routing hierarchy.  
1-2  
Revision 13  
ProASIC3E Flash Family FPGAs  
Advanced Architecture  
The proprietary ProASIC3E architecture provides granularity comparable to standard-cell ASICs. The  
ProASIC3E device consists of five distinct and programmable architectural features (Figure 1-1 on  
page 3):  
FPGA VersaTiles  
Dedicated FlashROM  
Dedicated SRAM/FIFO memory  
Extensive CCCs and PLLs  
Pro I/O structure  
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic  
function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch  
interconnections. The versatility of the ProASIC3E core tile as either a three-input lookup table (LUT)  
equivalent or as a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile  
capability is unique to the ProASIC family of third-generation architecture Flash FPGAs. VersaTiles are  
connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the  
device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is  
possible for virtually any design.  
CCC  
RAM Block  
4,608-Bit Dual-Port SRAM  
or FIFO Block  
Pro I/Os  
VersaTile  
RAM Block  
4,608-Bit Dual-Port SRAM  
or FIFO Block  
User Nonvolatile  
Charge Pumps  
ISP AES Decryption  
FlashROM  
Figure 1-1 • ProASIC3E Device Architecture Overview  
Revision 13  
1-3  
ProASIC3E Device Family Overview  
VersaTiles  
The ProASIC3E core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS® core  
tiles. The ProASIC3E VersaTile supports the following:  
All 3-input logic functions—LUT-3 equivalent  
Latch with clear or set  
D-flip-flop with clear or set  
Enable D-flip-flop with clear or set  
Refer to Figure 1-2 for VersaTile configurations.  
Enable D-Flip-Flop with Clear or Set  
D-Flip-Flop with Clear or Set  
LUT-3 Equivalent  
X1  
Data  
Y
Data  
CLK  
CLR  
Y
X2  
X3  
LUT-3  
Y
D-FF  
CLK  
D-FF  
Enable  
CLR  
Figure 1-2 • VersaTile Configurations  
User Nonvolatile FlashROM  
ProASIC3E devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can  
be used in diverse system applications:  
Internet protocol addressing (wireless or fixed)  
System calibration settings  
Device serialization and/or inventory control  
Subscription-based business models (for example, set-top boxes)  
Secure key storage for secure communications algorithms  
Asset management/tracking  
Date stamping  
Version management  
The FlashROM is written using the standard ProASIC3E IEEE 1532 JTAG programming interface. The  
core can be individually programmed (erased and written), and on-chip AES decryption can be used  
selectively to securely load data over public networks, as in security keys stored in the FlashROM for a  
user design.  
The FlashROM can be programmed via the JTAG programming interface, and its contents can be read  
back either through the JTAG programming interface or via direct FPGA core addressing. Note that the  
FlashROM can only be programmed from the JTAG interface and cannot be programmed from the  
internal logic array.  
The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte  
basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks  
and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the  
FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM  
address define the byte.  
The ProASIC3E development software solutions, Libero® System-on-Chip (SoC) and Designer, have  
extensive support for the FlashROM. One such feature is auto-generation of sequential programming  
files for applications requiring a unique serial number in each part. Another feature allows the inclusion of  
static data for system version control. Data for the FlashROM can be generated quickly and easily using  
Libero SoC and Designer software tools. Comprehensive programming file support is also included to  
allow for easy programming of large numbers of parts with differing FlashROM contents.  
1-4  
Revision 13  
ProASIC3E Flash Family FPGAs  
SRAM and FIFO  
ProASIC3E devices have embedded SRAM blocks along their north and south sides. Each variable-  
aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9,  
1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be  
configured with different bit widths on each port. For example, data can be sent through a 4-bit port and  
read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port  
(ROM emulation mode) using the UJTAG macro.  
In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM  
block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width  
and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and  
Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control  
unit contains the counters necessary for generation of the read and write address pointers. The  
embedded SRAM/FIFO blocks can be cascaded to create larger configurations.  
PLL and CCC  
ProASIC3E devices provide designers with very flexible clock conditioning capabilities. Each member of  
the ProASIC3E family contains six CCCs, each with an integrated PLL.  
The six CCC blocks are located at the four corners and the centers of the east and west sides.  
To maximize user I/Os, only the center east and west PLLs are available in devices using the PQ208  
package. However, all six CCC blocks are still usable; the four corner CCCs allow simple clock delay  
operations as well as clock spine access.  
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs  
located near the CCC that have dedicated connections to the CCC block.  
The CCC block has these key features:  
Wide input frequency range (fIN_CCC) = 1.5 MHz to 350 MHz  
Output frequency range (fOUT_CCC) = 0.75 MHz to 350 MHz  
Clock delay adjustment via programmable and fixed delays from –7.56 ns to +11.12 ns  
2 programmable delay types for clock skew minimization  
Clock frequency synthesis  
Additional CCC specifications:  
Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider  
configuration.  
Output duty cycle = 50% ± 1.5% or better  
Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global  
network used  
Maximum acquisition time = 300 µs  
Low power consumption of 5 mW  
Exceptional tolerance to input period jitter— allowable input jitter is up to 1.5 ns  
Four precise phases; maximum misalignment between adjacent phases of 40 ps × (350 MHz /  
fOUT_CCC  
)
Global Clocking  
ProASIC3E devices have extensive support for multiple clocking domains. In addition to the CCC and  
PLL support described above, there is a comprehensive global clock distribution network.  
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant  
global networks. The VersaNets can be driven by the CCC or directly accessed from the core via  
multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid  
distribution of high fanout nets.  
Revision 13  
1-5  
ProASIC3E Device Family Overview  
Pro I/Os with Advanced I/O Standards  
The ProASIC3E family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V,  
1.8 V, 2.5 V, and 3.3 V). ProASIC3E FPGAs support 19 different I/O standards, including single-ended,  
differential, and voltage-referenced. The I/Os are organized into banks, with eight banks per device (two  
per side). The configuration of these banks determines the I/O standards supported. Each I/O bank is  
subdivided into VREF minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8  
to 18 I/Os. All the I/Os in a given minibank share a common VREF line. Therefore, if any I/O in a given  
VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able to use that  
reference voltage.  
Each I/O module contains several input, output, and enable registers. These registers allow the  
implementation of the following:  
Single-Data-Rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)  
Double-Data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point  
communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II)  
ProASIC3E banks support M-LVDS with 20 multi-drop points.  
Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card  
in a powered-up system.  
Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed  
when the system is powered up, while the component itself is powered down, or when power supplies  
are floating.  
Specifying I/O States During Programming  
You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for  
PDB files generated from Designer v8.5 or greater. See the FlashPro User’s Guide for more information.  
Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have  
limited display of Pin Numbers only.  
1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during  
programming.  
2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator  
window appears.  
3. Click the Specify I/O States During Programming button to display the Specify I/O States During  
Programming dialog box.  
4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header.  
Select the I/Os you wish to modify (Figure 1-3 on page 1-7).  
5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings  
for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state  
settings:  
1 – I/O is set to drive out logic High  
0 – I/O is set to drive out logic Low  
Last Known State – I/O is set to the last value that was driven out prior to entering the  
programming mode, and then held at that value during programming  
Z -Tri-State: I/O is tristated  
1-6  
Revision 13  
ProASIC3E Flash Family FPGAs  
Figure 1-3 • I/O States During Programming Window  
6. Click OK to return to the FlashPoint – Programming File Generator window.  
I/O States during programming are saved to the ADB and resulting programming files after  
completing programming file generation.  
Revision 13  
1-7  
2 – ProASIC3E DC and Switching Characteristics  
General Specifications  
DC and switching characteristics for –F speed grade targets are based only on simulation.  
The characteristics provided for the –F speed grade are subject to change after establishing FPGA  
specifications. Some restrictions might be added and will be reflected in future revisions of this  
document. The –F speed grade is only supported in the commercial temperature range.  
Operating Conditions  
Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any  
other conditions beyond those listed under the Recommended Operating Conditions specified in  
Table 2-2 on page 2-2 is not implied.  
Table 2-1 • Absolute Maximum Ratings  
Symbol  
VCC  
Parameter  
DC core supply voltage  
JTAG DC voltage  
Limits  
Units  
–0.3 to 1.65  
V
V
V
V
V
V
V
VJTAG  
–0.3 to 3.75  
VPUMP Programming voltage  
–0.3 to 3.75  
VCCPLL Analog power supply (PLL)  
–0.3 to 1.65  
–0.3 to 3.75  
VCCI 2  
VMV 2  
VI  
DC I/O output buffer supply voltage  
DC I/O input buffer supply voltage  
I/O input voltage  
–0.3 to 3.75  
–0.3 V to 3.6 V (when I/O hot insertion mode is enabled)  
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower  
(when I/O hot-insertion mode is disabled)  
3
TSTG  
Storage temperature  
Junction temperature  
–65 to +150  
+125  
°C  
°C  
3
TJ  
Notes:  
1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may  
undershoot or overshoot according to the limits shown in Table 2-3 on page 2-2.  
2. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on  
page 3-1 for further information.  
3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-2, and for recommended operating  
limits, refer to Table 2-2 on page 2-2.  
Revision 13  
2-1  
ProASIC3E DC and Switching Characteristics  
Table 2-2 • Recommended Operating Conditions 1  
Symbol  
TA  
Parameter  
Commercial  
0 to +70  
Industrial  
–40 to +85  
–40 to +100  
1.425 to 1.575  
1.4 to 3.6  
Units  
°C  
°C  
V
Ambient temperature  
Junction temperature  
TJ  
0 to +85  
VCC  
1.5 V DC core supply voltage  
JTAG DC voltage  
1.425 to 1.575  
1.4 to 3.6  
VJTAG  
VPUMP  
V
Programming voltage  
Programming Mode2  
Operation3  
3.15 to 3.45  
0 to 3.6  
3.15 to 3.45  
0 to 3.6  
V
V
VCCPLL  
Analog power supply (PLL)  
1.425 to 1.575  
1.425 to 1.575  
1.7 to 1.9  
1.425 to 1.575  
1.425 to 1.575  
1.7 to 1.9  
V
VCCI and VMV 4 1.5 V DC supply voltage  
V
1.8 V DC supply voltage  
V
2.5 V DC supply voltage  
2.3 to 2.7  
2.3 to 2.7  
V
3.3 V DC supply voltage  
3.0 to 3.6  
3.0 to 3.6  
V
3.0 V DC supply voltage5  
2.7 to 3.6  
2.7 to 3.6  
V
LVDS/B-LVDS/M-LVDS differential I/O  
LVPECL differential I/O  
2.375 to 2.625  
3.0 to 3.6  
2.375 to 2.625  
3.0 to 3.6  
V
V
Notes:  
1. All parameters representing voltages are measured with respect to GND unless otherwise specified.  
2. The programming temperature range supported is T = 0°C to 85°C.  
ambient  
3. VPUMP can be left floating during normal operation (not programming mode).  
4. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O  
standard are given in Table 2-13 on page 2-16. VMV and VCCI should be at the same voltage within a given I/O bank.  
VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on  
page 3-1 for further information.  
5. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi  
recommends that the user follow best design practices using Microsemi’s timing and power simulation tools.  
6. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.  
Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature 1  
Programming Program Retention  
Maximum Storage  
Maximum Operating Junction  
Temperature TJ (°C) 2  
Product Grade  
Commercial  
Industrial  
Cycles  
(biased/unbiased) Temperature TSTG (°C) 2  
500  
20 years  
20 years  
110  
110  
100  
100  
500  
Notes:  
1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.  
2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating  
conditions and absolute limits.  
2-2  
Revision 13  
ProASIC3E Flash Family FPGAs  
Table 2-4 • Overshoot and Undershoot Limits 1  
Average VCCI–GND Overshoot or  
Undershoot Duration  
Maximum Overshoot/  
Undershoot2  
VCCI and VMV  
as a Percentage of Clock Cycle2  
2.7 V or less  
10%  
5%  
1.4 V  
1.49 V  
1.1 V  
3 V  
10%  
5%  
1.19 V  
0.79 V  
0.88 V  
0.45 V  
0.54 V  
3.3 V  
3.6 V  
Notes:  
10%  
5%  
10%  
5%  
1. Based on reliability requirements at 85°C.  
2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the  
maximum overshoot/undershoot has to be reduced by 0.15 V.  
3. This table does not provide PCI overshoot/undershoot limits.  
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset  
(Commercial and Industrial)  
Sophisticated power-up management circuitry is designed into every ProASIC®3E device. These circuits  
ensure easy transition from the powered-off state to the powered-up state of the device. The many  
different supplies can power up in any sequence with minimized current spikes or surges. In addition, the  
I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1  
on page 2-4.  
There are five regions to consider during power-up.  
ProASIC3E I/Os are activated only if ALL of the following three conditions are met:  
1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4).  
2. VCCI > VCC – 0.75 V (typical)  
3. Chip is in the operating mode.  
VCCI Trip Point:  
Ramping up: 0.6 V < trip_point_up < 1.2 V  
Ramping down: 0.5 V < trip_point_down < 1.1 V  
VCC Trip Point:  
Ramping up: 0.6 V < trip_point_up < 1.1 V  
Ramping down: 0.5 V < trip_point_down < 1 V  
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically  
built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:  
During programming, I/Os become tristated and weakly pulled up to VCCI.  
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O  
behavior.  
Revision 13  
2-3  
ProASIC3E DC and Switching Characteristics  
PLL Behavior at Brownout Condition  
Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper  
power-up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLXL exceed  
brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-1 on  
page 2-4 for more details).  
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V ± 0.25  
V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/-Down  
Behavior of Low Power Flash Devices" chapter of the ProASIC3E FPGA Fabric User’s Guide for  
information on clock and lock recovery.  
Internal Power-Up Activation Sequence  
1. Core  
2. Input buffers  
3. Output buffers, after 200 ns delay from input buffer activation  
VCC = VCCI + VT  
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)  
VCC  
VCC = 1.575 V  
Region 5: I/O buffers are ON  
and power supplies are within  
specification.  
Region 4: I/O  
buffers are ON.  
I/Os are functional  
Region 1: I/O Buffers are OFF  
I/Os meet the entire datasheet  
(except differential  
and timer specifications for  
speed, VIH / VIL, VOH / VOL,  
etc.  
but slower because VCCI  
is below specification. For the  
same reason, input buffers do not  
meet VIH / VIL levels, and output  
buffers do not meet VOH / VOL levels.  
VCC = 1.425 V  
Region 2: I/O buffers are ON.  
Region 3: I/O buffers are ON.  
I/Os are functional; I/O DC  
specifications are met,  
but I/Os are slower because  
the VCC is below specification.  
I/Os are functional (except differential inputs)  
but slower because VCCI / VCC are below  
specification. For the same reason, input  
buffers do not meet VIH / VIL levels, and  
output buffers do not meet VOH / VOL levels.  
Activation trip point:  
V
= 0.85 V ± 0.25 V  
a
Deactivation trip point:  
= 0.75 V ± 0.25 V  
Region 1: I/O buffers are OFF  
V
d
VCCI  
Activation trip point:  
= 0.9 V ± 0.3 V  
Min VCCI datasheet specification  
V
voltage at a selected I/O  
standard; i.e., 1.425 V or 1.7 V  
or 2.3 V or 3.0 V  
a
Deactivation trip point:  
= 0.8 V ± 0.3 V  
V
d
Figure 2-1 • I/O State as a Function of VCCI and VCC Voltage Levels  
2-4  
Revision 13  
ProASIC3E Flash Family FPGAs  
Thermal Characteristics  
Introduction  
The temperature variable in Designer software refers to the junction temperature, not the ambient  
temperature. This is an important distinction because dynamic and static power consumption cause the  
chip junction to be higher than the ambient temperature.  
EQ 1 can be used to calculate junction temperature.  
TJ = Junction Temperature = T + TA  
EQ 1  
where:  
TA = Ambient Temperature  
T = Temperature gradient between junction (silicon) and ambient T = ja * P  
ja = Junction-to-ambient of the package. ja numbers are located in Table 2-5.  
P = Power dissipation  
Package Thermal Characteristics  
The device junction-to-case thermal resistivity is jc and the junction-to-ambient air thermal resistivity is  
ja. The thermal characteristics for ja are shown for two air flow rates. The absolute maximum junction  
temperature is 110°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation  
allowed for an 896-pin FBGA package at commercial temperature and in still air.  
Max. junction temp. (C) – Max. ambient temp. (C) 110C – 70C  
Maximum Power Allowed = --------------------------------------------------------------------------------------------------------------------------------- = ---------------------------------- = 5.88 W  
ja(C/W)  
13.6C/W  
EQ 2  
Table 2-5 • Package Thermal Resistivities  
ja  
Package Type  
Pin Count  
jc  
8.0  
3.8  
Still Air  
26.1  
200 ft./min.  
500 ft./min.  
20.8  
Units  
Plastic Quad Flat Package (PQFP)  
208  
208  
22.5  
13.3  
C/W  
C/W  
Plastic Quad Flat Package (PQFP) with  
embedded heat spreader  
16.2  
11.9  
Fine Pitch Ball Grid Array (FBGA)  
256  
484  
676  
896  
3.8  
3.2  
3.2  
2.4  
26.9  
20.5  
16.4  
13.6  
22.8  
17.0  
13.0  
10.4  
21.5  
15.9  
12.0  
9.4  
C/W  
C/W  
C/W  
C/W  
Temperature and Voltage Derating Factors  
Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays  
(normalized to TJ = 70°C, VCC = 1.425 V)  
Junction Temperature (°C)  
Array Voltage  
VCC (V)  
–40°C  
0°C  
0.92  
0.88  
0.85  
25°C  
0.95  
0.90  
0.87  
70°C  
1.00  
0.95  
0.92  
85°C  
1.02  
0.97  
0.93  
100°C  
1.425  
0.87  
1.04  
0.98  
0.95  
1.500  
0.83  
1.575  
0.80  
Revision 13  
2-5  
ProASIC3E DC and Switching Characteristics  
Calculating Power Dissipation  
Quiescent Supply Current  
Table 2-7 • Quiescent Supply Current Characteristics  
A3PE600  
A3PE1500  
12 mA  
A3PE3000  
25 mA  
Typical (25°C)  
5 mA  
30 mA  
45 mA  
Maximum (Commercial)  
Maximum (Industrial)  
Notes:  
70 mA  
150 mA  
225 mA  
105 mA  
1. IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in  
Table 2-8 and Table 2-9 on page 2-7.  
2. –F speed grade devices may experience higher standby IDD of up to five times the standard IDD and higher I/O  
leakage.  
Power per I/O Pin  
Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings  
VMV  
(V)  
Static Power  
PDC2 (mW)1  
Dynamic Power  
PAC9 (µW/MHz)2  
Single-Ended  
3.3 V LVTTL/LVCMOS  
3.3 V LVTTL/LVCMOS – Schmitt trigger  
3.3 V LVTTL/LVCMOS Wide Range3  
3.3 V LVTTL/LVCMOS Wide Range – Schmitt trigger3  
2.5 V LVCMOS  
3.3  
3.3  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
1.5  
1.5  
3.3  
3.3  
3.3  
3.3  
17.39  
25.51  
16.34  
24.49  
5.76  
2.5 V LVCMOS – Schmitt trigger  
1.8 V LVCMOS  
7.16  
2.72  
1.8 V LVCMOS – Schmitt trigger  
1.5 V LVCMOS (JESD8-11)  
1.5 V LVCMOS (JESD8-11) – Schmitt trigger  
3.3 V PCI  
2.80  
2.08  
2.00  
18.82  
20.12  
18.82  
20.12  
3.3 V PCI – Schmitt trigger  
3.3 V PCI-X  
3.3 V PCI-X – Schmitt trigger  
Voltage-Referenced  
3.3 V GTL  
3.3  
2.5  
3.3  
2.5  
2.90  
2.13  
2.81  
2.57  
8.23  
4.78  
4.14  
3.71  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
Notes:  
1. PDC2 is the static power (where applicable) measured on VMV.  
2. PAC9 is the total dynamic power measured on VCC and VMV.  
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.  
2-6  
Revision 13  
ProASIC3E Flash Family FPGAs  
Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings (continued)  
VMV  
(V)  
Static Power  
PDC2 (mW)1  
Dynamic Power  
PAC9 (µW/MHz)2  
HSTL (I)  
1.5  
1.5  
2.5  
2.5  
3.3  
3.3  
0.17  
0.17  
1.38  
1.38  
3.21  
3.21  
2.03  
2.03  
4.48  
4.48  
9.26  
9.26  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Differential  
LVDS/B-LVDS/M-LVDS  
LVPECL  
2.5  
3.3  
2.26  
5.71  
1.50  
2.17  
Notes:  
1. PDC2 is the static power (where applicable) measured on VMV.  
2. PAC9 is the total dynamic power measured on VCC and VMV.  
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.  
1
Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings  
CLOAD  
(pF)  
VCCI  
(V)  
Static Power  
PDC3 (mW)2  
Dynamic Power  
PAC10 (µW/MHz)3  
Single-Ended  
3.3 V LVTTL/LVCMOS  
3.3 V LVTTL/LVCMOS Wide Range4  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
3.3 V PCI  
35  
35  
35  
35  
35  
10  
10  
3.3  
3.3  
2.5  
1.8  
1.5  
3.3  
3.3  
474.70  
474.70  
270.73  
151.78  
104.55  
204.61  
204.61  
3.3 V PCI-X  
Voltage-Referenced  
3.3 V GTL  
10  
10  
10  
10  
20  
20  
30  
30  
3.3  
2.5  
3.3  
2.5  
1.5  
1.5  
2.5  
2.5  
24.08  
13.52  
24.10  
13.54  
26.22  
27.22  
105.56  
116.60  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
7.08  
13.88  
16.69  
25.91  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
Notes:  
1. Dynamic power consumption is given for standard load and software default drive strength and output slew.  
2. PDC3 is the static power (where applicable) measured on VCCI.  
3. PAC10 is the total dynamic power measured on VCC and VCCI.  
4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.  
Revision 13  
2-7  
ProASIC3E DC and Switching Characteristics  
Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings (continued)  
CLOAD  
(pF)  
VCCI  
(V)  
Static Power  
PDC3 (mW)2  
Dynamic Power  
PAC10 (µW/MHz)3  
SSTL3 (I)  
30  
30  
3.3  
3.3  
26.02  
42.21  
114.87  
131.76  
SSTL3 (II)  
Differential  
LVDS/B-LVDS/M-LVDS  
LVPECL  
2.5  
3.3  
7.70  
89.62  
19.42  
168.02  
Notes:  
1. Dynamic power consumption is given for standard load and software default drive strength and output slew.  
2. PDC3 is the static power (where applicable) measured on VCCI.  
3. PAC10 is the total dynamic power measured on VCC and VCCI.  
4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.  
Power Consumption of Various Internal Resources  
Table 2-10 • Different Components Contributing to the Dynamic Power Consumption in ProASIC3E Devices  
Device-Specific Dynamic Contributions  
(µW/MHz)  
Parameter  
PAC1  
Definition  
Clock contribution of a Global Rib  
Clock contribution of a Global Spine  
Clock contribution of a VersaTile row  
A3PE600  
12.77  
A3PE1500  
16.21  
3.06  
A3PE3000  
19.7  
PAC2  
1.85  
4.16  
PAC3  
0.88  
PAC4  
Clock contribution of a VersaTile used as a sequential  
module  
0.12  
PAC5  
PAC6  
PAC7  
First contribution of a VersaTile used as a sequential  
module  
0.07  
0.29  
0.29  
0.70  
Second contribution of a VersaTile used as a sequential  
module  
Contribution of a VersaTile used as a combinatorial  
module  
PAC8  
Average contribution of a routing net  
PAC9  
Contribution of an I/O input pin (standard-dependent)  
Contribution of an I/O output pin (standard-dependent)  
See Table 2-8 on page 2-6.  
See Table 2-9 on page 2-7  
25.00  
PAC10  
PAC11  
Average contribution of a RAM block during a read  
operation  
PAC12  
Average contribution of a RAM block during a write  
operation  
30.00  
PAC13  
PAC14  
Static PLL contribution  
2.55 mW  
2.60  
Dynamic contribution for PLL  
Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power  
calculator or SmartPower in Libero SoC.  
2-8  
Revision 13  
ProASIC3E Flash Family FPGAs  
Power Calculation Methodology  
This section describes a simplified method to estimate power consumption of an application. For more  
accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.  
The power calculation methodology described below uses the following variables:  
The number of PLLs as well as the number and the frequency of each output clock generated  
The number of combinatorial and sequential cells used in the design  
The internal clock frequencies  
The number and the standard of I/O pins used in the design  
The number of RAM blocks used in the design  
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-11 on  
page 2-11.  
Enable rates of output buffers—guidelines are provided for typical applications in Table 2-12 on  
page 2-11.  
Read rate and write rate to the memory—guidelines are provided for typical applications in  
Table 2-12 on page 2-11. The calculation should be repeated for each clock domain defined in the  
design.  
Methodology  
Total Power Consumption—P  
TOTAL  
PTOTAL = PSTAT + PDYN  
PSTAT is the total static power consumption.  
DYN is the total dynamic power consumption.  
Total Static Power Consumption—P  
P
STAT  
PSTAT = PDC1 + NINPUTS * PDC2 + NOUTPUTS * PDC3  
NINPUTS is the number of I/O input buffers used in the design.  
NOUTPUTS is the number of I/O output buffers used in the design.  
Total Dynamic Power Consumption—P  
DYN  
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL  
Global Clock Contribution—P  
CLOCK  
PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK  
NSPINE is the number of global spines used in the user design—guidelines are provided in the  
"Spine Architecture" section of the Global Resources chapter in the ProASIC3E FPGA Fabric  
User's Guide.  
NROW is the number of VersaTile rows used in the design—guidelines are provided in the  
"Spine Architecture" section of the Global Resources chapter in the ProASIC3E FPGA Fabric  
User's Guide.  
F
CLK is the global clock signal frequency.  
S-CELL is the number of VersaTiles used as sequential modules in the design.  
PAC1, PAC2, PAC3, and PAC4 are device-dependent.  
Sequential Cells Contribution—P  
N
S-CELL  
PS-CELL = NS-CELL * (PAC5 + 1 / 2 * PAC6) * FCLK  
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a  
multi-tile sequential cell is used, it should be accounted for as 1.  
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on  
page 2-11.  
F
CLK is the global clock signal frequency.  
Revision 13  
2-9  
ProASIC3E DC and Switching Characteristics  
Combinatorial Cells Contribution—P  
C-CELL  
PC-CELL = NC-CELL* 1 / 2 * PAC7 * FCLK  
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.  
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on  
page 2-11.  
F
CLK is the global clock signal frequency.  
Routing Net Contribution—P  
NET  
PNET = (NS-CELL + NC-CELL) * 1 / 2 * PAC8 * FCLK  
NS-CELL is the number of VersaTiles used as sequential modules in the design.  
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.  
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on  
page 2-11.  
F
CLK is the global clock signal frequency.  
I/O Input Buffer Contribution—P  
INPUTS  
PINPUTS = NINPUTS * 2 / 2 * PAC9 * FCLK  
NINPUTS is the number of I/O input buffers used in the design.  
2 is the I/O buffer toggle rate—guidelines are provided in Table 2-11 on page 2-11.  
F
CLK is the global clock signal frequency.  
I/O Output Buffer Contribution—P  
OUTPUTS  
POUTPUTS = NOUTPUTS * 2 / 2 * 1 * PAC10 * FCLK  
NOUTPUTS is the number of I/O output buffers used in the design.  
2 is the I/O buffer toggle rate—guidelines are provided in Table 2-11 on page 2-11.  
1 is the I/O buffer enable rate—guidelines are provided in Table 2-12 on page 2-11.  
F
CLK is the global clock signal frequency.  
RAM Contribution—P  
MEMORY  
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * 2 + PAC12 * NBLOCK * FWRITE-CLOCK * 3  
NBLOCKS is the number of RAM blocks used in the design.  
F
READ-CLOCK is the memory read clock frequency.  
2 is the RAM enable rate for read operations—guidelines are provided in Table 2-12 on  
page 2-11.  
F
WRITE-CLOCK is the memory write clock frequency.  
3 is the RAM enable rate for write operations—guidelines are provided in Table 2-12 on  
page 2-11.  
PLL Contribution—P  
PLL  
PPLL = PAC13 + PAC14 * FCLKOUT  
FCLKOUT is the output clock frequency.1  
1. The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the  
PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output  
clock in the formula by adding its corresponding contribution (PAC14 * FCLKOUT product) to the total PLL contribution.  
2-10  
Revision 13  
ProASIC3E Flash Family FPGAs  
Guidelines  
Toggle Rate Definition  
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the  
toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are  
some examples:  
The average toggle rate of a shift register is 100% as all flip-flop outputs toggle at half of the clock  
frequency.  
The average toggle rate of an 8-bit counter is 25%:  
Bit 0 (LSB) = 100%  
Bit 1  
Bit 2  
= 50%  
= 25%  
Bit 7 (MSB) = 0.78125%  
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8  
Enable Rate Definition  
Output enable rate is the average percentage of time during which tristate outputs are enabled. When  
nontristate output buffers are used, the enable rate should be 100%.  
Table 2-11 • Toggle Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
Toggle rate of VersaTile outputs  
I/O buffer toggle rate  
Guideline  
10%  
1  
2  
10%  
Table 2-12 • Enable Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
I/O output buffer enable rate  
Guideline  
100%  
1  
2  
3  
RAM enable rate for read operations  
RAM enable rate for write operations  
12.5%  
12.5%  
Revision 13  
2-11  
ProASIC3E DC and Switching Characteristics  
User I/O Characteristics  
Timing Model  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
Combinational Cell  
Y
LVPECL  
tPD = 0.56 ns  
t
PD = 0.49 ns  
tDP = 1.36 ns  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
LVTTL/LVCMOS  
Output drive strength = 12 mA  
High slew rate  
tDP = 2.74 ns  
tPD = 0.87 ns  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
I/O Module  
(Registered)  
LVTTL/LVCMOS  
Output drive strength = 24 mA  
High slew rate  
tDP = 2.39 ns  
t
PY = 1.22 ns  
tPD = 0.51 ns  
LVPECL  
D
Q
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
LVCMOS 1.5V  
Output drive strength = 12 mA  
High slew  
t
t
ICLKQ = 0.24 ns  
ISUD = 0.26 ns  
t
DP = 3.30 ns  
t
PD = 0.47 ns  
Input LVTTL/LVCMOS  
Clock  
I/O Module  
(Registered)  
Register Cell  
Register Cell  
Combinational Cell  
tPY = 0.90 ns  
Y
D
Q
D
Q
D
Q
GTL+ 3.3V  
DP = 1.53 ns  
I/O Module  
(Non-Registered)  
tPD = 0.47 ns  
t
t
t
CLKQ = 0.55 ns  
SUD = 0.43 ns  
t
CLKQ = 0.55 ns  
t
CLKQ = 0.59 ns  
LVDS,  
BLVDS,  
M-LVDS  
tSUD = 0.43 ns  
tSUD = 0.31 ns  
Input LVTTL/LVCMOS  
Clock  
Input LVTTL/LVCMOS  
Clock  
tPY = 1.36 ns  
t
PY = 0.90 ns  
tPY = 0.90 ns  
Figure 2-2 • Timing Model  
Operating Conditions: –2 Speed, Commercial Temperature Range (TJ = 70°C), Worst-Case  
VCC = 1.425 V  
2-12  
Revision 13  
ProASIC3E Flash Family FPGAs  
tPY  
tDIN  
D
Q
PAD  
DIN  
Y
CLK  
To Array  
I/O Interface  
tPY = MAX(tPY(R), tPY(F))  
tDIN = MAX(tDIN(R), tDIN(F))  
VIH  
Vtrip  
Vtrip  
VCC  
PAD  
VIL  
50%  
50%  
Y
tPY  
tPY  
(F)  
GND  
(R)  
tPYS  
(F)  
tPYS  
(R)  
VCC  
50%  
50%  
DIN  
tDIN  
(R)  
GND  
tDIN  
(F)  
Figure 2-3 • Input Buffer Timing Model and Delays (example)  
Revision 13  
2-13  
ProASIC3E DC and Switching Characteristics  
tDOUT  
D Q  
tDP  
PAD  
DOUT  
CLK  
Std  
Load  
D
From Array  
tDP = MAX(tDP(R), tDP(F))  
tDOUT = MAX(tDOUT(R), tDOUT(F))  
I/O Interface  
tDOUT  
(R)  
tDOUT  
(F)  
VCC  
50%  
50%  
VCC  
D
0 V  
50%  
50%  
DOUT  
PAD  
0 V  
VOH  
Vtrip  
VOL  
Vtrip  
tDP  
(R)  
tDP  
(F)  
Figure 2-4 • Output Buffer Model and Delays (example)  
2-14  
Revision 13  
ProASIC3E Flash Family FPGAs  
t
EOUT  
D
Q
CLK  
t
, t , t , t , t , t  
E
ZL ZH HZ LZ ZLS ZHS  
EOUT  
D
Q
PAD  
DOUT  
CLK  
D
t
= MAX(t  
(r), t (f))  
EOUT  
I/O Interface  
EOUT  
EOUT  
VCC  
D
E
VCC  
50%  
t
50%  
t
EOUT (F)  
EOUT (R)  
VCC  
50%  
50%  
50%  
ZH  
50%  
t
LZ  
EOUT  
PAD  
t
t
t
ZL  
HZ  
VCCI  
90% VCCI  
Vtrip  
Vtrip  
VOL  
10% V  
CCI  
VCC  
D
E
VCC  
50%  
50%  
50%  
t
t
EOUT (F)  
EOUT (R)  
VCC  
50%  
EOUT  
PAD  
50%  
VOH  
t
ZHS  
t
ZLS  
Vtrip  
Vtrip  
VOL  
Figure 2-5 • Tristate Output Buffer Timing Model and Delays (example)  
Revision 13  
2-15  
ProASIC3E DC and Switching Characteristics  
Overview of I/O Performance  
Summary of I/O DC Input and Output Levels – Default I/O Software  
Settings  
Table 2-13 • Summary of Maximum and Minimum DC Input and Output Levels  
Applicable to Commercial and Industrial Conditions  
IOL3 IOH3  
Equivalent  
Software  
Default  
VIL  
VIH  
VOL  
VOH  
Drive  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Slew  
Rate  
I/O Standard Strength Option1  
mA mA  
3.3 V LVTTL / 12 mA  
3.3 V  
LVCMOS  
12 mA High –0.3  
12 mA High –0.3  
12 mA High –0.3  
0.8  
2
3.6  
3.6  
3.6  
0.4  
2.4  
12 12  
3.3 V  
100 µA  
0.8  
0.7  
2
0.2  
VCCI – 0.2 0.1 0.1  
LVCMOS  
Wide Range  
2.5 V  
LVCMOS  
12 mA  
12 mA  
12 mA  
1.7  
0.7  
1.7  
12 12  
1.8 V  
LVCMOS  
12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6  
0.45  
VCCI – 0.45 12 12  
1.5 V  
12 mA High –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 12 12  
LVCMOS  
3.3 V PCI  
3.3 V PCI-X  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
Per PCI Specification  
Per PCI-X Specification  
20 mA2  
20 mA2  
35 mA  
33 mA  
8 mA  
20 mA2 High –0.3 VREF – 0.05 VREF + 0.05 3.6  
20 mA2 High –0.3 VREF – 0.05 VREF + 0.05 3.6  
35 mA High –0.3 VREF – 0.1 VREF + 0.1 3.6  
33 mA High –0.3 VREF – 0.1 VREF + 0.1 3.6  
0.4  
0.4  
20 20  
20 20  
35 35  
33 33  
0.6  
0.6  
8 mA  
High –0.3 VREF – 0.1 VREF + 0.1 3.6  
0.4  
VCCI – 0.4  
8
8
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Notes:  
15 mA2  
15 mA  
18 mA  
14 mA  
21 mA  
15 mA2 High –0.3 VREF – 0.1 VREF + 0.1 3.6  
15 mA High –0.3 VREF – 0.2 VREF + 0.2 3.6  
18 mA High –0.3 VREF – 0.2 VREF + 0.2 3.6  
14 mA High –0.3 VREF – 0.2 VREF + 0.2 3.6  
21 mA High –0.3 VREF – 0.2 VREF + 0.2 3.6  
0.4  
0.54  
0.35  
0.7  
VCCI – 0.4 15 15  
VCCI – 0.62 15 15  
VCCI – 0.43 18 18  
VCCI – 1.1 14 14  
VCCI – 0.9 21 21  
0.5  
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. Output drive strength is below JEDEC specification.  
3. Currents are measured at 85°C junction temperature.  
4. Output Slew Rates can be extracted from IBIS Models, located at  
http://www.microsemi.com/soc/download/ibis/default.aspx.  
2-16  
Revision 13  
ProASIC3E Flash Family FPGAs  
Table 2-14 • Summary of Maximum and Minimum DC Input Levels  
Applicable to Commercial and Industrial Conditions  
Commercial1  
Industrial2  
IIL3  
µA  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
IIH4  
µA  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
IIL3  
µA  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
IIH4  
µA  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
DC I/O Standards  
3.3 V LVTTL / 3.3 V LVCMOS  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
3.3 V PCI-X  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Notes:  
1. Commercial range (0°C < T < 70°C)  
A
2. Industrial range (–40°C < T < 85°C)  
A
3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN <  
VIL.  
4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI.  
Input current is larger when operating outside recommended ranges.  
Revision 13  
2-17  
ProASIC3E DC and Switching Characteristics  
Summary of I/O Timing Characteristics – Default I/O Software  
Settings  
Table 2-15 • Summary of AC Measuring Points  
Input Reference Voltage Board Termination Measuring Trip Point  
Standard  
3.3 LVTTL  
LVCMOS  
(VREF_TYP)  
Voltage (VTT_REF)  
(Vtrip)  
V
/
3.3  
V
1.4 V  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
1.4 V  
1.2 V  
0.90 V  
0.75 V  
0.285 * VCCI (RR)  
0.615 * VCCI (FF))  
3.3 V PCI-X  
0.285 * VCCI (RR)  
0.615 * VCCI (FF)  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
0.8 V  
0.8 V  
1.0 V  
1.0 V  
0.75 V  
0.75 V  
1.25 V  
1.25 V  
1.5 V  
1.5 V  
1.2 V  
1.2 V  
1.5 V  
1.5 V  
0.75 V  
0.75 V  
1.25 V  
1.25 V  
1.485 V  
1.485 V  
VREF  
VREF  
VREF  
VREF  
VREF  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
LVDS  
VREF  
VREF  
VREF  
VREF  
VREF  
Cross point  
Cross point  
LVPECL  
Table 2-16 • I/O AC Parameter Definitions  
Parameter  
Definition  
Data to Pad delay through the Output Buffer  
tDP  
tPY  
Pad to Data delay through the Input Buffer with Schmitt trigger disabled  
Data to Output Buffer delay through the I/O interface  
tDOUT  
tEOUT  
tDIN  
tPYS  
tHZ  
Enable to Output Buffer Tristate Control delay through the I/O interface  
Input Buffer to Data delay through the I/O interface  
Pad to Data delay through the Input Buffer with Schmitt trigger enabled  
Enable to Pad delay through the Output Buffer—High to Z  
tZH  
Enable to Pad delay through the Output Buffer—Z to High  
tLZ  
Enable to Pad delay through the Output Buffer—Low to Z  
tZL  
Enable to Pad delay through the Output Buffer—Z to Low  
tZHS  
tZLS  
Enable to Pad delay through the Output Buffer with delayed enable—Z to High  
Enable to Pad delay through the Output Buffer with delayed enable—Z to Low  
2-18  
Revision 13  
ProASIC3E Flash Family FPGAs  
Table 2-17 • Summary of I/O Timing Characteristics—Software Default Settings  
–2 Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V  
Equivalent  
Software  
Drive  
Default  
Strength  
Drive  
(mA)  
Strength  
Option)1  
I/O Standard  
3.3 V LVTTL /  
3.3 V LVCMOS  
12  
12  
12  
High 35  
High 35  
0.49 2.74 0.03 0.90 1.17 0.32 2.79 2.14 2.45 2.70 4.46 3.81  
0.49 4.24 0.03 1.36 1.78 0.32 4.24 3.25 3.78 4.17 6.77 5.79  
3.3 V LVCMOS 100 µA  
Wide Range2  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
12  
12  
12  
12  
12  
12  
High 35  
High 35  
High 35  
0.49 2.80 0.03 1.13 1.24 0.32 2.85 2.61 2.51 2.61 4.52 4.28  
0.49 2.83 0.03 1.08 1.42 0.32 2.89 2.31 2.79 3.16 4.56 3.98  
0.49 3.30 0.03 1.27 1.60 0.32 3.36 2.70 2.96 3.27 5.03 4.37  
Per PCI  
spec  
High 10 25 3 0.49 2.09 0.03 0.78 1.17 0.32 2.13 1.49 2.45 2.70 3.80 3.16  
3.3 V PCI-X  
Per PCI-X  
spec  
High 10 253 0.49 2.09 0.03 0.78 1.17 0.32 2.13 1.49 2.45 2.70 3.80 3.16  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
20 4  
20 4  
35  
High 10  
High 10  
High 10  
High 10  
High 20  
High 20  
High 30  
High 30  
High 30  
High 30  
25 0.45 1.55 0.03 2.19  
25 0.45 1.59 0.03 1.83  
25 0.45 1.53 0.03 1.19  
25 0.45 1.65 0.03 1.13  
50 0.49 2.37 0.03 1.59  
25 0.49 2.26 0.03 1.59  
50 0.49 1.59 0.03 1.00  
25 0.49 1.62 0.03 1.00  
50 0.49 1.72 0.03 0.93  
25 0.49 1.54 0.03 0.93  
0.32 1.52 1.55  
0.32 1.61 1.59  
0.32 1.56 1.53  
0.32 1.68 1.57  
0.32 2.42 2.35  
0.32 2.30 2.03  
0.32 1.62 1.38  
0.32 1.65 1.32  
0.32 1.75 1.37  
0.32 1.57 1.25  
3.19 3.22  
3.28 3.26  
3.23 3.20  
3.35 3.24  
4.09 4.02  
3.97 3.70  
3.29 3.05  
3.32 2.99  
3.42 3.04  
3.24 2.92  
33  
8
HSTL (II)  
15 4  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
15  
18  
14  
21  
LVDS/B-LVDS/  
M-LVDS  
24  
High  
0.49 1.40 0.03 1.36  
LVPECL  
24  
High  
0.49 1.36 0.03 1.22  
Notes:  
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3V wide range as specified in the JESD8b specification.  
3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-37 for  
connectivity. This resistor is not required during normal operation.  
4. Output drive strength is below JEDEC specification.  
5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5..  
Revision 13  
2-19  
ProASIC3E DC and Switching Characteristics  
Detailed I/O DC Characteristics  
Table 2-18 • Input Capacitance  
Symbol  
CIN  
Definition  
Conditions  
Min. Max. Units  
Input capacitance  
VIN = 0, f = 1.0 MHz  
VIN = 0, f = 1.0 MHz  
8
8
pF  
pF  
CINCLK  
Input capacitance on the clock pin  
Table 2-19 • I/O Output Buffer Maximum Resistances1  
Standard  
Drive Strength  
4 mA  
RPULL-DOWN ()2  
RPULL-UP ()3  
3.3 V LVTTL / 3.3 V LVCMOS  
100  
50  
25  
17  
11  
300  
150  
75  
8 mA  
12 mA  
16 mA  
50  
24 mA  
33  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
100 µA  
Same as regular  
3.3 V LVCMOS  
Same as regular  
3.3 V LVCMOS  
4 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
100  
50  
200  
100  
50  
25  
20  
40  
11  
22  
1.8 V LVCMOS  
200  
100  
50  
225  
112  
56  
50  
56  
20  
22  
20  
22  
1.5 V LVCMOS  
3.3 V PCI/PCI-X  
200  
100  
67  
224  
112  
75  
33  
37  
33  
37  
Per PCI/PCI-X  
specification  
25  
75  
3.3 V GTL  
2.5 V GTL  
Notes:  
20 mA 4  
20 mA 4  
11  
14  
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance  
values depend on VCCI, drive strength selection, temperature, and process. For board design  
considerations and detailed output buffer resistances, use the corresponding IBIS models located on the  
Microsemi SoC Products Group website at www.microsemi.com/soc/techdocs/models/ibis.html.  
2.  
3.  
R
R
= (VOLspec) / IOLspec  
(PULL-DOWN-MAX)  
= (VCCImax – VOHspec) / IOHspec  
(PULL-UP-MAX)  
4. Output drive strength is below JEDEC specification.  
2-20  
Revision 13  
ProASIC3E Flash Family FPGAs  
Table 2-19 • I/O Output Buffer Maximum Resistances1 (continued)  
Standard  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
Drive Strength  
35 mA  
R
PULL-DOWN ()2  
RPULL-UP ()3  
12  
15  
50  
25  
27  
13  
44  
18  
33 mA  
8 mA  
50  
25  
31  
15  
69  
32  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Notes:  
15 mA 4  
15 mA  
18 mA  
14 mA  
21 mA  
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance  
values depend on VCCI, drive strength selection, temperature, and process. For board design  
considerations and detailed output buffer resistances, use the corresponding IBIS models located on the  
Microsemi SoC Products Group website at www.microsemi.com/soc/techdocs/models/ibis.html.  
2.  
3.  
R
R
= (VOLspec) / IOLspec  
(PULL-DOWN-MAX)  
= (VCCImax – VOHspec) / IOHspec  
(PULL-UP-MAX)  
4. Output drive strength is below JEDEC specification.  
Table 2-20 • I/O Weak Pull-Up/Pull-Down Resistances  
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values  
1
2
R((WEAK PULL-UP)  
R(WEAK PULL-DOWN)  
()  
()  
VCCI  
Min.  
Max.  
45 k  
45 k  
Min.  
10 k  
10 k  
Max.  
45 k  
45 k  
3.3 V  
10 k  
10 k  
3.3 V (Wide  
Range I/Os)  
2.5 V  
1.8 V  
1.5 V  
Notes:  
11 k  
18 k  
19 k  
55 k  
70 k  
90 k  
12 k  
17 k  
19 k  
74 k  
110 k  
140 k  
1.  
2.  
R
R
= (VCCImax – VOHspec) / I  
(WEAK PULL-UP-MAX)  
(WEAK PULL-UP-MIN)  
(WEAK PULL-DOWN-MIN)  
= (VOLspec) / I  
(WEAK PULL-DOWN-MAX)  
Revision 13  
2-21  
ProASIC3E DC and Switching Characteristics  
Table 2-21 • I/O Short Currents IOSH/IOSL  
Drive Strength  
4 mA  
IOSH (mA)*  
IOSL (mA)*  
3.3 V LVTTL / 3.3 V LVCMOS  
25  
51  
27  
54  
8 mA  
12 mA  
103  
132  
268  
109  
127  
181  
16 mA  
24 mA  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
100 µA  
Same as regular  
3.3 V LVCMOS  
Same as regular  
3.3 V LVCMOS  
4 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16  
32  
65  
83  
169  
9
18  
37  
74  
87  
124  
11  
1.8 V LVCMOS  
17  
35  
45  
91  
91  
13  
25  
32  
66  
66  
22  
44  
51  
74  
74  
16  
33  
39  
55  
55  
1.5 V LVCMOS  
Notes:  
1. T = 100°C  
J
2. Applicable to 3.3 V LVCMOS Wide Range. IOSL/IOSH dependent on the I/O buffer drive strength  
selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide  
range as specified in the JESD8b specification.  
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The  
reliability data below is based on a 3.3 V, 36 mA I/O setting, which is the worst case for this type of  
analysis.  
For example, at 100°C, the short current condition would have to be sustained for more than six months  
to cause a reliability concern. The I/O design does not contain any short circuit protection, but such  
protection would only be needed in extremely prolonged stress conditions.  
Table 2-22 • Duration of Short Circuit Event Before Failure  
Temperature  
–40°C  
0°C  
Time before Failure  
> 20 years  
> 20 years  
> 20 years  
5 years  
25°C  
70°C  
85°C  
2 years  
100°C  
6 months  
2-22  
Revision 13  
ProASIC3E Flash Family FPGAs  
Table 2-23 • Schmitt Trigger Input Hysteresis  
Hysteresis Voltage Value (typ.) for Schmitt Mode Input Buffers  
Input Buffer Configuration  
Hysteresis Value (typ.)  
240 mV  
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)  
2.5 V LVCMOS (Schmitt trigger mode)  
1.8 V LVCMOS (Schmitt trigger mode)  
1.5 V LVCMOS (Schmitt trigger mode)  
140 mV  
80 mV  
60 mV  
Table 2-24 • I/O Input Rise Time, Fall Time, and Related I/O Reliability*  
Input Rise/Fall Time  
Input Buffer  
(min.)  
Input Rise/Fall Time (max.)  
10 ns *  
Reliability  
LVTTL/LVCMOS  
(Schmitt trigger disabled)  
No requirement  
20 years  
(110°C)  
LVTTL/LVCMOS  
(Schmitt trigger enabled)  
No requirement No requirement, but input noise 20 years  
voltage cannot exceed Schmitt (110°C)  
hysteresis.  
HSTL/SSTL/GTL  
No requirement  
10 ns *  
10 years  
(100°C)  
LVDS/B-LVDS/M-LVDS/  
LVPECL  
No requirement  
10 ns *  
10 years  
(100°C)  
Note: *For clock signals and similar edge-generating signals, refer to the "ProASIC3/E SSO and Pin  
Placement Guidelines" chapter of the ProASIC3E FPGA Fabric User’s Guide. The maximum input  
rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the  
rise time and fall time of input buffers can be increased beyond the maximum value. The longer the  
rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends  
signal integrity evaluation/characterization of the system to ensure that there is no excessive noise  
coupling into input signals.  
Revision 13  
2-23  
ProASIC3E DC and Switching Characteristics  
Single-Ended I/O Characteristics  
3.3 V LVTTL / 3.3 V LVCMOS  
Low-Voltage Transistor–Transistor Logic is a general-purpose standard (EIA/JESD) for 3.3 V  
applications. It uses an LVTTL input buffer and push-pull output buffer. The 3.3 V LVCMOS standard is  
supported as part of the 3.3 V LVTTL support.  
Table 2-25 • Minimum and Maximum DC Input and Output Levels  
3.3 V LVTTL /  
3.3 V LVCMOS  
VIL  
VIH  
VOL  
VOH IOL IOH  
Min.  
IOSL  
IOSH  
IIL1 IIH2  
Min.  
V
Max.  
V
Min.,  
V
Max.  
V
Max.  
V
Max.  
mA3  
Max.  
mA3  
Drive Strength  
4 mA  
V
mA mA  
µA4 µA4  
10 10  
10 10  
10 10  
10 10  
10 10  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
2
3.6  
3.6  
3.6  
3.6  
3.6  
0.4  
0.4  
0.4  
0.4  
0.4  
2.4  
2.4  
2.4  
2.4  
2.4  
4
8
4
8
27  
54  
25  
51  
8 mA  
12 mA  
12 12  
16 16  
24 24  
109  
127  
181  
103  
132  
268  
16 mA  
24 mA  
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V< VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
5. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ / tZH / tZHS  
Test Point  
35 pF  
Enable Path  
35 pF for tZH / tZHS / tZL / tZLS  
35 pF for tHZ / tLZ  
Figure 2-6 • AC Loading  
Table 2-26 • 3.3 V LVTTL / 3.3 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V)  
C
LOAD (pF)  
0
3.3  
1.4  
35  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
2-24  
Revision 13  
ProASIC3E Flash Family FPGAs  
Timing Characteristics  
Table 2-27 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.66 7.88 0.04 1.20 1.57 0.43 8.03 6.70 2.69 2.59 10.26 8.94  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.56 6.71 0.04 1.02 1.33 0.36 6.83 5.70 2.29 2.20 8.73  
0.49 5.89 0.03 0.90 1.17 0.32 6.00 5.01 2.01 1.93 7.67  
0.66 5.08 0.04 1.20 1.57 0.43 5.17 4.14 3.05 3.21 7.41  
0.56 4.32 0.04 1.02 1.33 0.36 4.40 3.52 2.59 2.73 6.30  
0.49 3.79 0.03 0.90 1.17 0.32 3.86 3.09 2.28 2.40 5.53  
0.66 3.67 0.04 1.20 1.57 0.43 3.74 2.87 3.28 3.61 5.97  
0.56 3.12 0.04 1.02 1.33 0.36 3.18 2.44 2.79 3.07 5.08  
0.49 2.74 0.03 0.90 1.17 0.32 2.79 2.14 2.45 2.70 4.46  
0.66 3.46 0.04 1.20 1.57 0.43 3.53 2.61 3.33 3.72 5.76  
0.56 2.95 0.04 1.02 1.33 0.36 3.00 2.22 2.83 3.17 4.90  
0.49 2.59 0.03 0.90 1.17 0.32 2.63 1.95 2.49 2.78 4.30  
0.66 3.21 0.04 1.20 1.57 0.43 3.27 2.16 3.39 4.13 5.50  
0.56 2.73 0.04 1.02 1.33 0.36 2.78 1.83 2.88 3.51 4.68  
0.49 2.39 0.03 0.90 1.17 0.32 2.44 1.61 2.53 3.08 4.11  
7.60  
6.67  
6.38  
5.43  
4.76  
5.11  
4.34  
3.81  
4.84  
4.12  
3.62  
4.39  
3.74  
3.28  
–2  
8 mA  
Std.  
–1  
–2  
12 mA  
16 mA  
24 mA  
Notes:  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Table 2-28 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
tDIN tPY tPYS tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.66 11.01 0.04 1.20 1.57 0.43 11.21 9.05 2.69 2.44 13.45 11.29  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
9.36 0.04 1.02 1.33 0.36  
8.22 0.03 0.90 1.17 0.32  
7.86 0.04 1.20 1.57 0.43  
6.69 0.04 1.02 1.33 0.36  
5.87 0.03 0.90 1.17 0.32  
6.03 0.04 1.20 1.57 0.43  
5.13 0.04 1.02 1.33 0.36  
4.50 0.03 0.90 1.17 0.32  
5.62 0.04 1.20 1.57 0.43  
4.78 0.04 1.02 1.33 0.36  
4.20 0.03 0.90 1.17 0.32  
5.24 0.04 1.20 1.57 0.43  
4.46 0.04 1.02 1.33 0.36  
3.92 0.03 0.90 1.17 0.32  
9.54  
8.37  
8.01  
6.81  
5.98  
6.14  
5.22  
4.58  
5.72  
4.87  
4.27  
5.34  
4.54  
3.99  
7.70 2.29 2.08 11.44 9.60  
6.76 2.01 1.82 10.04 8.43  
6.44 3.04 3.06 10.24 8.68  
–2  
8 mA  
Std.  
–1  
5.48 2.58 2.61 8.71  
4.81 2.27 2.29 7.65  
5.02 3.28 3.47 8.37  
4.27 2.79 2.95 7.12  
3.75 2.45 2.59 6.25  
4.72 3.32 3.58 7.96  
4.02 2.83 3.04 6.77  
3.53 2.48 2.67 5.94  
4.69 3.39 3.96 7.58  
3.99 2.88 3.37 6.44  
3.50 2.53 2.96 5.66  
7.38  
6.48  
7.26  
6.17  
5.42  
6.96  
5.92  
5.20  
6.93  
5.89  
5.17  
–2  
12 mA  
16 mA  
24 mA  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Revision 13  
2-25  
ProASIC3E DC and Switching Characteristics  
3.3 V LVCMOS Wide Range  
Table 2-29 • Minimum and Maximum DC Input and Output Levels  
3.3 V  
LVCMOS  
Wide  
Range  
Equivalent  
Software  
Default  
Drive  
VIL  
VIH  
Max.  
VOL  
VOH  
IOL IOH IOSL  
IOSH IIL2 IIH3  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Min.  
V
Max.  
Max.  
Strength Option1  
V
µA µA mA4  
mA4 µA5 µA5  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
2 mA  
4 mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
2
2
2
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.2 VDD – 0.2 100 100  
0.2 VDD – 0.2 100 100  
0.2 VDD – 0.2 100 100  
0.2 VDD – 0.2 100 100  
27  
27  
54  
54  
25  
25  
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
6 mA  
51  
8 mA  
51  
12 mA  
16 mA  
24 mA  
0.2 VDD – 0.2 100 100 109  
0.2 VDD – 0.2 100 100 127  
0.2 VDD – 0.2 100 100 181  
103  
132  
268  
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is  
larger when operating outside recommended ranges.  
4. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
5. Currents are measured at 85°C junction temperature.  
6. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ / tZH / tZHS  
Test Point  
35 pF  
Enable Path  
35 pF for tZH / tZHS / tZL / tZLS  
35 pF for tHZ / tLZ  
Figure 2-7 • AC Loading  
Table 2-30 • 3.3 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V)  
C
LOAD (pF)  
0
3.3  
1.4  
35  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
2-26  
Revision 13  
ProASIC3E Flash Family FPGAs  
Timing Characteristics  
Table 2-31 • 3.3 V LVCMOS Wide Range High Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V  
Equivalent  
Software  
Default  
Drive  
Drive  
Strength  
Speed  
Strength Option1  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ tHZ tZLS tZHS Units  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
4 mA  
8 mA  
Std. 0.66 12.19 0.04 1.83 2.38 0.43 12.19 10.17 4.16 4.00 15.58 13.57 ns  
–1  
–2  
0.56 10.37 0.04 1.55 2.02 0.36 10.37 8.66 3.54 3.41 13.26 11.54 ns  
0.49 9.10 0.03 1.36 1.78 0.32 9.10 7.60 3.11 2.99 11.64 10.13 ns  
Std. 0.66 7.85 0.04 1.83 2.38 0.43 7.85 6.29 4.71 4.97 11.24 9.68  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–1  
–2  
0.56 6.68 0.04 1.55 2.02 0.36 6.68 5.35 4.01 4.22 9.57 8.24  
0.49 5.86 0.03 1.36 1.78 0.32 5.86 4.70 3.52 3.71 8.40 7.23  
12 mA  
16 mA  
24 mA  
Std. 0.66 5.67 0.04 1.83 2.38 0.43 5.67 4.36 5.06 5.59 9.07 7.75  
–1  
–2  
0.56 4.82 0.04 1.55 2.02 0.36 4.82 3.71 4.31 4.75 7.71 6.59  
0.49 4.24 0.03 1.36 1.78 0.32 4.24 3.25 3.78 4.17 6.77 5.79  
Std. 0.66 5.35 0.04 1.83 2.38 0.43 5.35 3.96 5.15 5.76 8.75 7.35  
–1  
–2  
0.56 4.55 0.04 1.55 2.02 0.36 4.55 3.36 4.38 4.90 7.44 6.25  
0.49 4.00 0.03 1.36 1.78 0.32 4.00 2.95 3.85 4.30 6.53 5.49  
Std. 0.66 4.96 0.04 1.83 2.38 0.43 4.96 3.27 5.23 6.38 8.35 6.67  
–1  
–2  
0.56 4.22 0.04 1.55 2.02 0.36 4.22 2.78 4.45 5.43 7.11 5.67  
0.49 3.70 0.03 1.36 1.78 0.32 3.70 2.44 3.91 4.76 6.24 4.98  
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. Software default selection highlighted in gray.  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Revision 13  
2-27  
ProASIC3E DC and Switching Characteristics  
Table 2-32 • 3.3 V LVCMOS Wide Range Low Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V  
Equivalent  
Software  
Default  
Drive  
Drive  
Strength  
Speed  
Strength Option1  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH tLZ tHZ tZLS tZHS Units  
100 µA  
100 µA  
100µA  
100 µA  
100 µA  
Notes:  
4 mA  
8 mA  
Std. 0.66 17.02 0.04 1.83 2.38 0.43 17.02 13.74 4.16 3.78 20.42 17.14 ns  
–1  
–2  
0.56 14.48 0.04 1.55 2.02 0.36 14.48 11.69 3.54 3.21 17.37 14.58 ns  
0.49 12.71 0.03 1.36 1.78 0.32 12.71 10.26 3.11 2.82 15.25 12.80 ns  
Std. 0.66 12.16 0.04 1.83 2.38 0.43 12.16 9.78 4.70 4.74 15.55 13.17 ns  
–1  
–2  
0.56 10.34 0.04 1.55 2.02 0.36 10.34 8.32 4.00 4.03 13.23 11.20 ns  
0.49 9.08 0.03 1.36 1.78 0.32 9.08 7.30 3.51 3.54 11.61 9.84 ns  
12 mA  
16 mA  
24 mA  
Std. 0.66 9.32 0.04 1.83 2.38 0.43 9.32 7.62 5.06 5.36 12.71 11.02 ns  
–1  
–2  
0.56 7.93 0.04 1.55 2.02 0.36 7.93 6.48 4.31 4.56 10.81 9.37  
0.49 6.96 0.03 1.36 1.78 0.32 6.96 5.69 3.78 4.00 9.49 8.23  
ns  
ns  
Std. 0.66 8.69 0.04 1.83 2.38 0.43 8.69 7.17 5.14 5.53 12.08 10.57 ns  
–1  
–2  
0.56 7.39 0.04 1.55 2.02 0.36 7.39 6.10 4.37 4.71 10.28 8.99  
0.49 6.49 0.03 1.36 1.78 0.32 6.49 5.36 3.83 4.13 9.02 7.89  
ns  
ns  
Std. 0.66 8.11 0.04 1.83 2.38 0.43 8.11 7.13 5.23 6.13 11.50 10.52 ns  
–1  
–2  
0.56 6.90 0.04 1.55 2.02 0.36 6.90 6.06 4.45 5.21 9.78 8.95  
0.49 6.05 0.03 1.36 1.78 0.32 6.05 5.32 3.91 4.57 8.59 7.86  
ns  
ns  
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. Software default selection highlighted in gray.  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
2-28  
Revision 13  
ProASIC3E Flash Family FPGAs  
2.5 V LVCMOS  
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 2.5 V applications.  
Table 2-33 • Minimum and Maximum DC Input and Output Levels  
2.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH IOL IOH  
Min.  
IOSL  
IOSH  
IIL1 IIH2  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.,  
V
Max.  
mA3  
Max.  
mA3  
V
mA mA  
µA4 µA4  
10 10  
10 10  
10 10  
10 10  
10 10  
4 mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
3.6  
3.6  
3.6  
3.6  
3.6  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
4
8
4
8
18  
37  
16  
32  
8 mA  
12 mA  
16 mA  
24 mA  
Notes:  
12 12  
16 16  
24 24  
74  
65  
87  
83  
124  
169  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
5. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ / tZH / tZHS  
Test Point  
35 pF  
Enable Path  
35 pF for tZH / tZHS / tZL / tZLS  
35 pF for tHZ / tLZ  
Figure 2-8 • AC Loading  
Table 2-34 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V)  
C
LOAD (pF)  
0
2.5  
1.2  
35  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
Revision 13  
2-29  
ProASIC3E DC and Switching Characteristics  
Timing Characteristics  
Table 2-35 • 2.5 V LVCMOS High Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Speed  
Strength Grade tDOUT tZHS Units  
Drive  
tDP  
tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
4 mA  
Std.  
–1  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
8.82 0.04 1.51 1.66 0.43 8.13 8.82 2.72 2.29 10.37 11.05  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7.50 0.04 1.29 1.41 0.36 6.92 7.50 2.31 1.95 8.82  
6.58 0.03 1.13 1.24 0.32 6.07 6.58 2.03 1.71 7.74  
5.27 0.04 1.51 1.66 0.43 5.27 5.27 3.10 3.03 7.50  
4.48 0.04 1.29 1.41 0.36 4.48 4.48 2.64 2.58 6.38  
3.94 0.03 1.13 1.24 0.32 3.93 3.94 2.32 2.26 5.60  
3.74 0.04 1.51 1.66 0.43 3.81 3.49 3.37 3.49 6.05  
3.18 0.04 1.29 1.41 0.36 3.24 2.97 2.86 2.97 5.15  
2.80 0.03 1.13 1.24 0.32 2.85 2.61 2.51 2.61 4.52  
3.53 0.04 1.51 1.66 0.43 3.59 3.12 3.42 3.62 5.83  
3.00 0.04 1.29 1.41 0.36 3.06 2.65 2.91 3.08 4.96  
2.63 0.03 1.13 1.24 0.32 2.68 2.33 2.56 2.71 4.35  
3.26 0.04 1.51 1.66 0.43 3.32 2.48 3.49 4.11 5.56  
2.77 0.04 1.29 1.41 0.36 2.83 2.11 2.97 3.49 4.73  
2.44 0.03 1.13 1.24 0.32 2.48 1.85 2.61 3.07 4.15  
9.40  
8.25  
7.51  
6.38  
5.61  
5.73  
4.87  
4.28  
5.35  
4.55  
4.00  
4.72  
4.01  
3.52  
–2  
8 mA  
Std.  
–1  
–2  
12 mA  
16 mA  
24 mA  
Notes:  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
2-30  
Revision 13  
ProASIC3E Flash Family FPGAs  
Table 2-36 • 2.5 V LVCMOS Low Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
tDIN tPY tPYS tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.66 12.00 0.04 1.51 1.66 0.43 12.23 11.61 2.72 2.20 14.46 13.85  
0.56 10.21 0.04 1.29 1.41 0.36 10.40 9.88 2.31 1.87 12.30 11.78  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–2  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
8.96 0.03 1.13 1.24 0.32  
8.73 0.04 1.51 1.66 0.43  
7.43 0.04 1.29 1.41 0.36  
6.52 0.03 1.13 1.24 0.32  
6.77 0.04 1.51 1.66 0.43  
5.76 0.04 1.29 1.41 0.36  
5.06 0.03 1.13 1.24 0.32  
6.31 0.04 1.51 1.66 0.43  
5.37 0.04 1.29 1.41 0.36  
4.71 0.03 1.13 1.24 0.32  
5.93 0.04 1.51 1.66 0.43  
5.05 0.04 1.29 1.41 0.36  
4.43 0.03 1.13 1.24 0.32  
9.13  
8.89  
7.57  
6.64  
6.90  
5.87  
5.15  
6.42  
5.46  
4.80  
6.04  
5.14  
4.51  
8.67 2.03 1.64 10.80 10.34  
8.01 3.10 2.93 11.13 10.25  
8 mA  
Std.  
–1  
6.82 2.64 2.49 9.47  
5.98 2.32 2.19 8.31  
6.11 3.37 3.39 9.14  
5.20 2.86 2.89 7.77  
4.56 2.51 2.53 6.82  
5.73 3.42 3.52 8.66  
4.87 2.91 3.00 7.37  
4.28 2.56 2.63 6.47  
5.70 3.49 4.00 8.28  
4.85 2.97 3.40 7.04  
4.26 2.61 2.99 6.18  
8.72  
7.65  
8.34  
7.10  
6.23  
7.96  
6.77  
5.95  
7.94  
6.75  
5.93  
–2  
12 mA  
16 mA  
24 mA  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Revision 13  
2-31  
ProASIC3E DC and Switching Characteristics  
1.8 V LVCMOS  
Low-Voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.  
Table 2-37 • Minimum and Maximum DC Input and Output Levels  
1.8 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
mA mA  
IOSL  
IOSH  
IIL1 IIH2  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
mA3  
Max.  
mA3  
µA4 µA4  
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
2 mA  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
3.6  
3.6  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
2
4
6
8
2
4
6
8
11  
22  
44  
51  
74  
74  
9
4 mA  
17  
35  
45  
91  
91  
6 mA  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6  
8 mA  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
3.6  
3.6  
3.6  
12 mA  
16 mA  
Notes:  
0.45 VCCI – 0.45 12 12  
0.45 VCCI – 0.45 16 16  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
5. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ / tZH / tZHS  
Test Point  
35 pF  
Enable Path  
35 pF for tZH / tZHS / tZL / tZLS  
35 pF for tHZ / tLZ  
Figure 2-9 • AC Loading  
Table 2-38 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V)  
C
LOAD (pF)  
0
1.8  
0.9  
35  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
2-32  
Revision 13  
ProASIC3E Flash Family FPGAs  
Timing Characteristics  
Table 2-39 • 1.8 V LVCMOS High Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
tDIN tPY tPYS tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
Std.  
–1  
0.66 12.10 0.04 1.45 1.91 0.43  
0.56 10.30 0.04 1.23 1.62 0.36  
9.59 12.10 2.78 1.64 11.83 14.34  
8.16 10.30 2.37 1.39 10.06 12.20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–2  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
9.04 0.03 1.08 1.42 0.32  
7.05 0.04 1.45 1.91 0.43  
6.00 0.04 1.23 1.62 0.36  
5.27 0.03 1.08 1.42 0.32  
4.52 0.04 1.45 1.91 0.43  
3.85 0.04 1.23 1.62 0.36  
3.38 0.03 1.08 1.42 0.32  
4.12 0.04 1.45 1.91 0.43  
3.51 0.04 1.23 1.62 0.36  
3.08 0.03 1.08 1.42 0.32  
3.80 0.04 1.45 1.91 0.43  
3.23 0.04 1.23 1.62 0.36  
2.83 0.03 1.08 1.42 0.32  
3.80 0.04 1.45 1.91 0.43  
3.23 0.04 1.23 1.62 0.36  
2.83 0.03 1.08 1.42 0.32  
7.16  
6.20  
5.28  
4.63  
4.47  
3.80  
3.33  
4.20  
3.57  
3.14  
3.87  
3.29  
2.89  
3.87  
3.29  
2.89  
9.04 2.08 1.22 8.83 10.71  
4 mA  
Std.  
–1  
7.05 3.25 2.86 8.44  
6.00 2.76 2.44 7.18  
5.27 2.43 2.14 6.30  
4.52 3.57 3.47 6.70  
3.85 3.04 2.95 5.70  
3.38 2.66 2.59 5.00  
3.99 3.63 3.62 6.43  
3.40 3.09 3.08 5.47  
2.98 2.71 2.71 4.81  
3.09 3.73 4.24 6.10  
2.63 3.18 3.60 5.19  
2.31 2.79 3.16 4.56  
3.09 3.73 4.24 6.10  
2.63 3.18 3.60 5.19  
2.31 2.79 3.16 4.56  
9.29  
7.90  
6.94  
6.76  
5.75  
5.05  
6.23  
5.30  
4.65  
5.32  
4.53  
3.98  
5.32  
4.53  
3.98  
–2  
6 mA  
Std.  
–1  
–2  
8 mA  
Std.  
–1  
–2  
12 mA  
16 mA  
Notes:  
Std.  
–1  
–2  
Std.  
–1  
–2  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Revision 13  
2-33  
ProASIC3E DC and Switching Characteristics  
Table 2-40 • 1.8 V LVCMOS Low Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Speed  
Strength Grade tDOUT tZHS Units  
Drive  
tDP  
tDIN tPY tPYS tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Std.  
–1  
0.66 15.84 0.04 1.45 1.91 0.43 15.65 15.84 2.78 1.58 17.89 18.07  
0.56 13.47 0.04 1.23 1.62 0.36 13.31 13.47 2.37 1.35 15.22 15.37  
0.49 11.83 0.03 1.08 1.42 0.32 11.69 11.83 2.08 1.18 13.36 13.50  
0.66 11.39 0.04 1.45 1.91 0.43 11.60 10.76 3.26 2.77 13.84 12.99  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–2  
Std.  
–1  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
9.69 0.04 1.23 1.62 0.36  
8.51 0.03 1.08 1.42 0.32  
8.97 0.04 1.45 1.91 0.43  
7.63 0.04 1.23 1.62 0.36  
6.70 0.03 1.08 1.42 0.32  
8.35 0.04 1.45 1.91 0.43  
7.10 0.04 1.23 1.62 0.36  
6.24 0.03 1.08 1.42 0.32  
7.94 0.04 1.45 1.91 0.43  
6.75 0.04 1.23 1.62 0.36  
5.93 0.03 1.08 1.42 0.32  
7.94 0.04 1.45 1.91 0.43  
6.75 0.04 1.23 1.62 0.36  
5.93 0.03 1.08 1.42 0.32  
9.87  
8.66  
9.14  
7.77  
6.82  
8.50  
7.23  
6.35  
8.09  
6.88  
6.04  
8.09  
6.88  
6.04  
9.15 2.77 2.36 11.77 11.05  
8.03 2.43 2.07 10.33 9.70  
8.10 3.57 3.36 11.37 10.33  
–2  
Std.  
–1  
6.89 3.04 2.86 9.67  
6.05 2.66 2.51 8.49  
8.79  
7.72  
–2  
Std.  
–1  
7.59 3.64 3.52 10.74 9.82  
6.45 3.10 3.00 9.14  
5.66 2.72 2.63 8.02  
8.35  
7.33  
–2  
Std.  
–1  
7.56 3.74 4.11 10.32 9.80  
6.43 3.18 3.49 8.78  
5.65 2.79 3.07 7.71  
8.33  
7.32  
–2  
Std.  
–1  
7.56 3.74 4.11 10.32 9.80  
6.43 3.18 3.49 8.78  
5.65 2.79 3.07 7.71  
8.33  
7.32  
–2  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
2-34  
Revision 13  
ProASIC3E Flash Family FPGAs  
1.5 V LVCMOS (JESD8-11)  
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.  
Table 2-41 • Minimum and Maximum DC Input and Output Levels  
1.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL IOSH IIL1 IIH2  
Max. Max.  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
mA mA mA3  
mA3 µA4 µA4  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
–0.3 0.30 * VCCI 0.7 * VCCI 3.6  
–0.3 0.30 * VCCI 0.7 * VCCI 3.6  
–0.3 0.30 * VCCI 0.7 * VCCI 3.6  
–0.3 0.30 * VCCI 0.7 * VCCI 3.6  
–0.3 0.30 * VCCI 0.7 * VCCI 3.6  
0.25 * VCCI 0.75 * VCCI  
0.25 * VCCI 0.75 * VCCI  
0.25 * VCCI 0.75 * VCCI  
0.25 * VCCI 0.75 * VCCI  
2
4
6
8
2
4
6
8
16  
33  
39  
55  
55  
13  
25  
32  
66  
66  
10 10  
10 10  
10 10  
10 10  
10 10  
0.25 * VCCI 0.75 * VCCI 12 12  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V< VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
5. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ / tZH / tZHS  
Test Point  
35 pF  
Enable Path  
35 pF for tZH / tZHS / tZL / tZLS  
35 pF for tHZ / tLZ  
Figure 2-10 • AC Loading  
Table 2-42 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V)  
C
LOAD (pF)  
0
1.5  
0.75  
35  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
Revision 13  
2-35  
ProASIC3E DC and Switching Characteristics  
Timing Characteristics  
Table 2-43 • 1.5 V LVCMOS High Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Speed  
Strength Grade tDOUT tZHS Units  
Drive  
tDP  
tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
Std.  
–1  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
8.53 0.04 1.70 2.14 0.43 7.26 8.53 3.39 2.79 9.50 10.77  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7.26 0.04 1.44 1.82 0.36 6.18 7.26 2.89 2.37 8.08  
6.37 0.03 1.27 1.60 0.32 5.42 6.37 2.53 2.08 7.09  
5.41 0.04 1.70 2.14 0.43 5.22 5.41 3.75 3.48 7.45  
4.60 0.04 1.44 1.82 0.36 4.44 4.60 3.19 2.96 6.34  
4.04 0.03 1.27 1.60 0.32 3.89 4.04 2.80 2.60 5.56  
4.80 0.04 1.70 2.14 0.43 4.89 4.75 3.83 3.67 7.13  
4.09 0.04 1.44 1.82 0.36 4.16 4.04 3.26 3.12 6.06  
3.59 0.03 1.27 1.60 0.32 3.65 3.54 2.86 2.74 5.32  
4.42 0.04 1.70 2.14 0.43 4.50 3.62 3.96 4.37 6.74  
3.76 0.04 1.44 1.82 0.36 3.83 3.08 3.37 3.72 5.73  
3.30 0.03 1.27 1.60 0.32 3.36 2.70 2.96 3.27 5.03  
4.42 0.04 1.70 2.14 0.43 4.50 3.62 3.96 4.37 6.74  
3.76 0.04 1.44 1.82 0.36 3.83 3.08 3.37 3.72 5.73  
3.30 0.03 1.27 1.60 0.32 3.36 2.70 2.96 3.27 5.03  
9.16  
8.04  
7.65  
6.50  
5.71  
6.98  
5.94  
5.21  
5.86  
4.98  
4.37  
5.86  
4.98  
4.37  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Table 2-44 • 1.5 V LVCMOS Low Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
tDIN tPY tPYS tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Std.  
–1  
0.66 14.11 0.04 1.70 2.14 0.43 14.37 13.14 3.40 2.68 16.61 15.37  
0.56 12.00 0.04 1.44 1.82 0.36 12.22 11.17 2.90 2.28 14.13 13.08  
0.49 10.54 0.03 1.27 1.60 0.32 10.73 9.81 2.54 2.00 12.40 11.48  
0.66 11.23 0.04 1.70 2.14 0.43 11.44 9.87 3.77 3.36 13.68 12.10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–2  
Std.  
–1  
0.56  
0.49  
9.55 0.04 1.44 1.82 0.36  
8.39 0.03 1.27 1.60 0.32  
9.73  
8.54  
8.39 3.21 2.86 11.63 10.29  
7.37 2.81 2.51 10.21 9.04  
–2  
Std.  
–1  
0.66 10.45 0.04 1.70 2.14 0.43 10.65 9.24 3.84 3.55 12.88 11.48  
0.56  
0.49  
8.89 0.04 1.44 1.82 0.36  
7.81 0.03 1.27 1.60 0.32  
9.06  
7.95  
7.86 3.27 3.02 10.96 9.76  
6.90 2.87 2.65 9.62 8.57  
–2  
Std.  
–1  
0.66 10.02 0.04 1.70 2.14 0.43 10.20 9.23 3.97 4.22 12.44 11.47  
0.56  
0.49  
8.52 0.04 1.44 1.82 0.36  
7.48 0.03 1.27 1.60 0.32  
8.68  
7.62  
7.85 3.38 3.59 10.58 9.75  
6.89 2.97 3.15 9.29 8.56  
–2  
Std.  
–1  
0.66 10.02 0.04 1.70 2.14 0.43 10.20 9.23 3.97 4.22 12.44 11.47  
0.56  
0.49  
8.52 0.04 1.44 1.82 0.36  
7.48 0.03 1.27 1.60 0.32  
8.68  
7.62  
7.85 3.38 3.59 10.58 9.75  
6.89 2.97 3.15 9.29 8.56  
–2  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
2-36  
Revision 13  
ProASIC3E Flash Family FPGAs  
3.3 V PCI, 3.3 V PCI-X  
Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus  
applications.  
Table 2-45 • Minimum and Maximum DC Input and Output Levels  
3.3 V PCI/PCI-X  
VIL  
VIH  
VOL  
VOH IOL IOH  
IOSL  
IOSH  
IIL1 IIH2  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
mA3  
Max.  
mA3  
Drive Strength  
Per PCI specification  
Notes:  
mA mA  
µA4 µA4  
Per PCI curves  
10 10  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V< VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable  
path characterization are described in Figure 2-11.  
R to VCCI for tLZ / tZL / tZLS  
R to GND for tHZ / tZH / tZHS  
R to VCCI for tDP (F)  
R to GND for tDP (R)  
R = 25  
Test Point  
Datapath  
R = 1 k  
Test Point  
Enable Path  
10 pF for tZH / tZHS / tZL / tZLS  
10 pF for tHZ / tLZ  
Figure 2-11 • AC Loading  
AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is  
described in Table 2-46.  
Table 2-46 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V)  
CLOAD (pF)  
0
3.3  
0.285 * VCCI for tDP(R)  
0.615 * VCCI for tDP(F)  
10  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
Timing Characteristics  
Table 2-47 • 3.3 V PCI/PCI-X  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Speed  
Grade  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tPYS  
1.67  
1.42  
1.25  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
Std.  
–1  
2.81  
2.39  
2.09  
1.05  
0.89  
0.78  
2.86  
2.43  
2.13  
2.00  
1.70  
1.49  
3.28  
2.79  
2.45  
3.61  
3.07  
2.70  
5.09 4.23  
4.33 3.60  
3.80 3.16  
ns  
–2  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Revision 13  
2-37  
ProASIC3E DC and Switching Characteristics  
Voltage-Referenced I/O Characteristics  
3.3 V GTL  
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier  
input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.  
Table 2-48 • Minimum and Maximum DC Input and Output Levels  
3.3 V GTL  
VIL  
VIH  
VOL  
VOH IOL IOH IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
mA1  
Max.  
mA1  
mA mA  
µA2 µA2  
20 mA3  
–0.3 VREF – 0.05 VREF + 0.05  
3.6  
0.4  
20 20  
181  
268  
10 10  
Notes:  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Output drive strength is below JEDEC specification.  
VTT  
GTL  
25  
Test Point  
10 pF  
Figure 2-12 • AC Loading  
Table 2-49 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
C
LOAD (pF)  
10  
VREF – 0.05  
VREF + 0.05  
0.8  
0.8  
1.2  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
Timing Characteristics  
Table 2-50 • 3.3 V GTL  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V VREF = 0.8 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.60  
0.51  
0.45  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.27  
3.63  
3.19  
tZHS  
4.31  
3.67  
3.22  
Units  
ns  
2.08  
1.77  
1.55  
2.93  
2.50  
2.19  
2.04  
1.73  
1.52  
2.08  
1.77  
1.55  
ns  
–2  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
2-38  
Revision 13  
ProASIC3E Flash Family FPGAs  
2.5 V GTL  
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier  
input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.  
Table 2-51 • Minimum and Maximum DC Input and Output Levels  
2.5 GTL  
VIL  
VIH  
VOL  
VOH IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min.,  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
mA1  
Max.  
mA1  
mA mA  
µA2 µA2  
20 mA3  
–0.3 VREF – 0.05 VREF + 0.05  
3.6  
0.4  
20 20  
124  
169  
10 10  
Notes:  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Output drive strength is below JEDEC specification.  
VTT  
GTL  
25  
Test Point  
10 pF  
Figure 2-13 • AC Loading  
Table 2-52 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
C
LOAD (pF)  
10  
VREF – 0.05  
VREF + 0.05  
0.8  
0.8  
1.2  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
Timing Characteristics  
Table 2-53 • 2.5 V GTL  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V VREF = 0.8 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.60  
0.51  
0.45  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.40  
3.74  
3.28  
tZHS  
4.36  
3.71  
3.26  
Units  
ns  
2.13  
1.81  
1.59  
2.46  
2.09  
1.83  
2.16  
1.84  
1.61  
2.13  
1.81  
1.59  
ns  
–2  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Revision 13  
2-39  
ProASIC3E DC and Switching Characteristics  
3.3 V GTL+  
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential  
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.  
Table 2-54 • Minimum and Maximum DC Input and Output Levels  
3.3 V GTL+  
VIL  
VIH  
VOL  
VOH IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
mA1  
Max.  
mA1  
mA mA  
µA2 µA2  
35 mA  
–0.3 VREF – 0.1 VREF + 0.1  
3.6  
0.6  
35 35  
181  
268  
10 10  
Notes:  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
VTT  
GTL+  
25  
Test Point  
10 pF  
Figure 2-14 • AC Loading  
Table 2-55 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
C
LOAD (pF)  
10  
VREF – 0.1  
VREF + 0.1  
1.0  
1.0  
1.5  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
Timing Characteristics  
Table 2-56 • 3.3 V GTL+  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.0 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.60  
0.51  
0.45  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.33  
3.68  
3.23  
tZHS  
4.29  
3.65  
3.20  
Units  
ns  
2.06  
1.75  
1.53  
1.59  
1.35  
1.19  
2.09  
1.78  
1.56  
2.06  
1.75  
1.53  
ns  
–2  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
2-40  
Revision 13  
ProASIC3E Flash Family FPGAs  
2.5 V GTL+  
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential  
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.  
Table 2-57 • Minimum and Maximum DC Input and Output Levels  
2.5 V GTL+  
VIL  
VIH  
VOL  
VOH IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
mA1  
Max.  
mA1  
mA mA  
µA2 µA2  
33 mA  
–0.3 VREF – 0.1 VREF + 0.1  
3.6  
0.6  
33 33  
124  
169  
10 10  
Notes:  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
VTT  
GTL+  
25  
Test Point  
10 pF  
Figure 2-15 • AC Loading  
Table 2-58 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
C
LOAD (pF)  
10  
VREF – 0.1  
VREF + 0.1  
1.0  
1.0  
1.5  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
Timing Characteristics  
Table 2-59 • 2.5 V GTL+  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.0 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.60  
0.51  
0.45  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.48  
3.81  
3.35  
tZHS  
4.34  
3.69  
3.24  
Units  
ns  
2.21  
1.88  
1.65  
1.51  
1.29  
1.13  
2.25  
1.91  
1.68  
2.10  
1.79  
1.57  
ns  
–2  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Revision 13  
2-41  
ProASIC3E DC and Switching Characteristics  
HSTL Class I  
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).  
ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull  
output buffer.  
Table 2-60 • Minimum and Maximum DC Input and Output Levels  
HSTL Class I  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
Max.  
mA1  
mA mA mA1  
µA2 µA2  
8 mA  
–0.3 VREF – 0.1 VREF + 0.1 3.6  
0.4  
VCCI – 0.4  
8
8
39  
32  
10 10  
Notes:  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
VTT  
HSTL  
Class I  
50  
Test Point  
20 pF  
Figure 2-16 • AC Loading  
Table 2-61 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring Point*  
Input Low (V)  
Input High (V)  
(V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.1  
VREF + 0.1  
0.75  
0.75  
0.75  
20  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
Timing Characteristics  
Table 2-62 • HSTL Class I  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = .4 V, VREF = 0.75 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
5.47  
4.66  
4.09  
tZHS  
5.38  
4.58  
4.02  
Units  
ns  
3.18  
2.70  
2.37  
2.12  
1.81  
1.59  
3.24  
2.75  
2.42  
3.14  
2.67  
2.35  
ns  
–2  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
2-42  
Revision 13  
ProASIC3E Flash Family FPGAs  
HSTL Class II  
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).  
ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull  
output buffer.  
Table 2-63 • Minimum and Maximum DC Input and Output Levels  
HSTL Class II  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL  
IOSH  
Max.  
IIL IIH  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max. Max.,  
Min.  
V
Max.  
V
V
mA mA mA1  
mA1 µA2 µA2  
15 mA3  
–0.3 VREF – 0.1 VREF + 0.1 3.6  
0.4 VCCI – 0.4 15 15  
55  
66  
10 10  
Notes:  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Output drive strength is below JEDEC specification.  
VTT  
HSTL  
Class II  
25  
Test Point  
20 pF  
Figure 2-17 • AC Loading  
Table 2-64 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.1  
VREF + 0.1  
0.75  
0.75  
0.75  
20  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
Timing Characteristics  
Table 2-65 • HSTL Class II  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 1.4 V, VREF = 0.75 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
5.32  
4.52  
3.97  
tZHS  
4.95  
4.21  
3.70  
Units  
3.02  
2.57  
2.26  
2.12  
1.81  
1.59  
3.08  
2.62  
2.30  
2.71  
2.31  
2.03  
ns  
ns  
ns  
–2  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Revision 13  
2-43  
ProASIC3E DC and Switching Characteristics  
SSTL2 Class I  
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). ProASIC3E devices support  
Class I. This provides a differential amplifier input buffer and a push-pull output buffer.  
Table 2-66 • Minimum and Maximum DC Input and Output Levels  
SSTL2 Class I  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL  
IOSH IIL IIH  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
Max.  
mA mA mA1  
mA1 µA2 µA2  
15 mA  
–0.3 VREF – 0.2 VREF + 0.2 3.6  
0.54 VCCI – 0.62 15 15  
87  
83  
10 10  
Notes:  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
VTT  
SSTL2  
Class I  
50  
Test Point  
25  
30 pF  
Figure 2-18 • AC Loading  
Table 2-67 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
C
LOAD (pF)  
30  
VREF – 0.2  
VREF + 0.2  
1.25  
1.25  
1.25  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
Timing Characteristics  
Table 2-68 • SSTL 2 Class I  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.25 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.40  
3.74  
3.29  
tZHS  
4.08  
3.47  
3.05  
Units  
ns  
2.13  
1.81  
1.59  
1.33  
1.14  
1.00  
2.17  
1.84  
1.62  
1.85  
1.57  
1.38  
ns  
–2  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
2-44  
Revision 13  
ProASIC3E Flash Family FPGAs  
SSTL2 Class II  
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). ProASIC3E devices support  
Class II. This provides a differential amplifier input buffer and a push-pull output buffer.  
Table 2-69 • Minimum and Maximum DC Input and Output Levels  
SSTL2 Class II  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL  
IOSH  
Max.  
IIL IIH  
Drive  
Strength  
Min.  
V
Max.  
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
V
mA mA mA1  
mA1 µA2 µA2  
18 mA  
–0.3 VREF – 0.2 VREF + 0.2 3.6  
0.35 VCCI – 0.43 18 18  
124  
169  
10 10  
Notes:  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
VTT  
SSTL2  
Class II  
25  
Test Point  
25  
30 pF  
Figure 2-19 • AC Loading  
Table 2-70 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
C
LOAD (pF)  
30  
VREF – 0.2  
VREF + 0.2  
1.25  
1.25  
1.25  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
Timing Characteristics  
Table 2-71 • SSTL 2 Class II  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.25 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
2.17  
1.84  
1.62  
tPY  
tEOUT  
1.33  
1.14  
1.00  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
4.44  
3.78  
3.32  
Units  
ns  
0.66  
0.56  
0.49  
0.04  
0.04  
0.03  
0.43  
0.36  
0.32  
2.21  
1.88  
1.65  
1.77  
1.51  
1.32  
ns  
–2  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Revision 13  
2-45  
ProASIC3E DC and Switching Characteristics  
SSTL3 Class I  
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). ProASIC3E devices support  
Class I. This provides a differential amplifier input buffer and a push-pull output buffer.  
Table 2-72 • Minimum and Maximum DC Input and Output Levels  
SSTL3 Class I  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL  
Max.  
IOSH IIL IIH  
Drive  
Strength  
Min.  
V
Max.  
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
V
mA mA  
mA1  
mA1 µA2 µA2  
14 mA  
–0.3 VREF – 0.2 VREF + 0.2 3.6  
0.7  
VCCI – 1.1 14 14  
54  
51  
10 10  
Notes:  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
VTT  
SSTL3  
Class I  
50  
Test Point  
25  
30 pF  
Figure 2-20 • AC Loading  
Table 2-73 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
C
LOAD (pF)  
30  
VREF – 0.2  
VREF + 0.2  
1.5  
1.5  
1.485  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
Timing Characteristics  
Table 2-74 • SSTL3 Class I  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.5 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.59  
3.90  
3.42  
tZHS  
4.07  
3.46  
3.04  
Units  
ns  
2.31  
1.96  
1.72  
1.25  
1.06  
0.93  
2.35  
2.00  
1.75  
1.84  
1.56  
1.37  
ns  
–2  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
2-46  
Revision 13  
ProASIC3E Flash Family FPGAs  
SSTL3 Class II  
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). ProASIC3E devices support  
Class II. This provides a differential amplifier input buffer and a push-pull output buffer.  
Table 2-75 • Minimum and Maximum DC Input and Output Levels  
SSTL3 Class II  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL  
IOSH IIL IIH  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
Max.  
mA mA mA1  
mA1 µA2 µA2  
21 mA  
–0.3 VREF – 0.2 VREF + 0.2  
3.6  
0.5  
VCCI – 0.9 21 21  
109  
103  
10 10  
Notes:  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
VTT  
SSTL3  
Class II  
25  
Test Point  
25  
30 pF  
Figure 2-21 • AC Loading  
Table 2-76 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
C
LOAD (pF)  
30  
VREF – 0.2  
VREF + 0.2  
1.5  
1.5  
1.485  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
Timing Characteristics  
Table 2-77 • SSTL3 Class II  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.5 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.34  
3.69  
3.24  
tZHS  
3.91  
3.32  
2.92  
Units  
ns  
2.07  
1.76  
1.54  
1.25  
1.06  
0.93  
2.10  
1.79  
1.57  
1.67  
1.42  
1.25  
ns  
–2  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Revision 13  
2-47  
ProASIC3E DC and Switching Characteristics  
Differential I/O Characteristics  
Physical Implementation  
Configuration of the I/O modules as a differential pair is handled by the Designer software when the user  
instantiates a differential I/O macro in the design.  
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output  
Register (OutReg), Enable Register (EnReg), and DDR. However, there is no support for bidirectional  
I/Os or tristates with the LVPECL standards.  
LVDS  
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It  
requires that one data bit be carried through two signal lines, so two pins are needed. It also requires  
external resistor termination.  
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-22. The  
building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three  
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver  
resistors are different from those used in the LVPECL implementation because the output standard  
specifications are different.  
Along with LVDS I/O, ProASIC3E also supports Bus LVDS structure and Multipoint LVDS (M-LVDS)  
configuration (up to 40 nodes).  
Bourns Part Number: CAT16-LV4F12  
FPGA  
FPGA  
OUTBUF_LVDS  
P
P
N
165  
165   
Z0 = 50   
140   
Z0 = 50   
INBUF_LVDS  
+
100   
N
Figure 2-22 • LVDS Circuit Diagram and Board-Level Implementation  
2-48  
Revision 13  
ProASIC3E Flash Family FPGAs  
Table 2-78 • LVDS Minimum and Maximum DC Input and Output Levels  
DC Parameter  
VCCI  
Description  
Supply Voltage  
Min.  
2.375  
0.9  
Typ.  
2.5  
Max.  
2.625  
1.25  
1.6  
Units  
V
VOL  
Output Low Voltage  
1.075  
1.425  
0.91  
0.91  
V
VOH  
Output High Voltage  
1.25  
0.65  
0.65  
0
V
IOL1  
Output Lower Current  
1.16  
1.16  
2.925  
10  
mA  
mA  
V
IOH1  
Output High Current  
VI  
Input Voltage  
IIH2  
Input High Leakage Current  
Input Low Leakage Current  
Differential Output Voltage  
Output Common Mode Voltage  
Input Common Mode Voltage  
Input Differential Voltage 2  
µA  
µA  
mV  
V
IIL2  
10  
VODIFF  
VOCM  
VICM  
VIDIFF  
Notes:  
250  
1.125  
0.05  
100  
350  
1.25  
1.25  
350  
450  
1.375  
2.35  
V
mV  
1. IOL/ IOH defined by VODIFF/(Resistor Network).  
2. Currents are measured at 85°C junction temperature.  
Table 2-79 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
Cross point  
VREF (typ.) (V)  
1.075  
1.325  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
Revision 13  
2-49  
ProASIC3E DC and Switching Characteristics  
Timing Characteristics  
Table 2-80 • LVDS  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case  
VCCI = 2.3 V  
Speed Grade  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
Units  
ns  
Std.  
–1  
1.87  
1.59  
1.40  
1.82  
1.55  
1.36  
ns  
–2  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for  
derating values.  
B-LVDS/M-LVDS  
Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to  
high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain  
any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive  
current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series  
terminations for better signal quality and to control voltage swing. Termination is also required at both  
ends of the bus since the driver can be located anywhere on the bus. These configurations can be  
implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations.  
Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20  
loads. A sample application is given in Figure 2-23. The input and output buffer delays are available in  
the LVDS section in Table 2-80.  
Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required  
differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: RS = 60 and  
RT = 70 , given Z0 = 50 (2") and Zstub = 50 (~1.5").  
Receiver  
Transceiver  
Driver  
D
Receiver  
Transceiver  
EN  
EN  
EN  
EN  
EN  
BIBUF_LVDS  
R
T
R
T
+
-
+
-
+
-
+
-
+
-
RS RS  
RS RS  
RS RS  
Zstub  
RS RS  
RS RS  
Zstub  
Z0  
Zstub  
Zstub  
Z0  
Zstub  
Zstub  
Z0  
Zstub  
Z0  
Zstub  
...  
Z0  
Z0  
Z0  
Z0  
RT  
RT  
Z0  
Z0  
Z0  
Z0  
Figure 2-23 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers  
2-50  
Revision 13  
ProASIC3E Flash Family FPGAs  
LVPECL  
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires  
that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires  
external resistor termination.  
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-24. The  
building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three  
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver  
resistors are different from those used in the LVDS implementation because the output standard  
specifications are different.  
Bourns Part Number: CAT16-PC4F12  
FPGA  
FPGA  
P
P
N
OUTBUF_LVPECL  
100  
100   
Z = 50   
0
INBUF_LVPECL  
+
187 W  
Z = 50   
100   
0
N
Figure 2-24 • LVPECL Circuit Diagram and Board-Level Implementation  
Table 2-81 • Minimum and Maximum DC Input and Output Levels  
DC Parameter  
VCCI  
Description  
Supply Voltage  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Units  
3.0  
3.3  
3.6  
V
VOL  
Output Low Voltage  
0.96  
1.8  
0
1.27  
2.11  
3.6  
1.06  
1.92  
0
1.43  
2.28  
3.6  
1.30  
2.13  
0
1.57  
2.41  
3.6  
V
V
VOH  
Output High Voltage  
VIL, VIH  
VODIFF  
VOCM  
VICM  
Input Low, Input High Voltages  
Differential Output Voltage  
Output Common-Mode Voltage  
Input Common-Mode Voltage  
Input Differential Voltage  
V
0.625 0.97 0.625 0.97 0.625 0.97  
1.762 1.98 1.762 1.98 1.762 1.98  
V
V
1.01  
300  
2.57  
1.01  
300  
2.57  
1.01  
300  
2.57  
V
VIDIFF  
mV  
Table 2-82 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V)  
1.64  
1.94  
Cross point  
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.  
Timing Characteristics  
Table 2-83 • LVPECL  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Speed Grade  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
Units  
ns  
Std.  
–1  
1.83  
1.55  
1.36  
1.63  
1.39  
1.22  
ns  
–2  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Revision 13  
2-51  
ProASIC3E DC and Switching Characteristics  
I/O Register Specifications  
Fully Registered I/O Buffers with Synchronous Enable and  
Asynchronous Preset  
Preset  
L
D
DOUT  
Data_out  
PRE  
F
PRE  
Y
E
Core  
Array  
Data  
Enable  
CLK  
D
Q
D
Q
C
DFN1E1P1  
DFN1E1P1  
G
E
E
EOUT  
B
A
H
I
PRE  
J
D
Q
DFN1E1P1  
K
Data Input I/O Register with:  
Active High Enable  
E
Active High Preset  
Positive-Edge Triggered  
Data Output Register and  
Enable Output Register with:  
Active High Enable  
Active High Preset  
CLKBUF  
INBUF  
INBUF  
Postive-Edge Triggered  
Figure 2-25 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset  
2-52  
Revision 13  
ProASIC3E Flash Family FPGAs  
Table 2-84 • Parameter Definition and Measuring Nodes  
Measuring Nodes  
(from, to)*  
Parameter Name  
tOCLKQ  
tOSUD  
Parameter Definition  
Clock-to-Q of the Output Data Register  
H, DOUT  
F, H  
Data Setup Time for the Output Data Register  
Data Hold Time for the Output Data Register  
Enable Setup Time for the Output Data Register  
Enable Hold Time for the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
tOHD  
F, H  
tOSUE  
G, H  
tOHE  
G, H  
tOPRE2Q  
tOREMPRE  
tORECPRE  
tOECLKQ  
tOESUD  
tOEHD  
L, DOUT  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
L, H  
L, H  
H, EOUT  
J, H  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
J, H  
tOESUE  
tOEHE  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
K, H  
K, H  
I, EOUT  
I, H  
tOEPRE2Q  
tOEREMPRE  
tOERECPRE  
tICLKQ  
I, H  
A, E  
tISUD  
Data Setup Time for the Input Data Register  
C, A  
C, A  
B, A  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
B, A  
tIPRE2Q  
tIREMPRE  
tIRECPRE  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
D, E  
D, A  
D, A  
Note: *See Figure 2-25 on page 2-52 for more information.  
Revision 13  
2-53  
ProASIC3E DC and Switching Characteristics  
Fully Registered I/O Buffers with Synchronous Enable and  
Asynchronous Clear  
DOUT  
FF  
Data_out  
Y
Core  
D
Q
D
Q
Data  
Array  
CC  
EE  
DFN1E1C1  
DFN1E1C1  
GG  
EOUT  
E
E
Enable  
CLK  
CLR  
BB  
AA  
DD  
CLR  
LL  
HH  
JJ  
D
Q
CLR  
DFN1E1C1  
KK  
E
Data Input I/O Register with  
Active High Enable  
CLR  
Active High Clear  
Positive-Edge Triggered  
Data Output Register and  
Enable Output Register with  
Active High Enable  
Active High Clear  
Positive-Edge Triggered  
INBUF  
INBUF  
CLKBUF  
Figure 2-26 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear  
2-54  
Revision 13  
ProASIC3E Flash Family FPGAs  
Table 2-85 • Parameter Definition and Measuring Nodes  
Measuring Nodes  
(from, to)*  
Parameter Name  
tOCLKQ  
tOSUD  
Parameter Definition  
Clock-to-Q of the Output Data Register  
HH, DOUT  
FF, HH  
Data Setup Time for the Output Data Register  
Data Hold Time for the Output Data Register  
tOHD  
FF, HH  
tOSUE  
Enable Setup Time for the Output Data Register  
Enable Hold Time for the Output Data Register  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
GG, HH  
GG, HH  
LL, DOUT  
LL, HH  
tOHE  
tOCLR2Q  
tOREMCLR  
tORECCLR  
tOECLKQ  
tOESUD  
tOEHD  
LL, HH  
HH, EOUT  
JJ, HH  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Clear-to-Q of the Output Enable Register  
JJ, HH  
tOESUE  
tOEHE  
KK, HH  
KK, HH  
II, EOUT  
tOECLR2Q  
tOEREMCLR  
tOERECCLR  
tICLKQ  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
II, HH  
II, HH  
AA, EE  
CC, AA  
CC, AA  
BB, AA  
BB, AA  
DD, EE  
DD, AA  
DD, AA  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
tICLR2Q  
tIREMCLR  
tIRECCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Note: *See Figure 2-26 on page 2-54 for more information.  
Revision 13  
2-55  
ProASIC3E DC and Switching Characteristics  
Input Register  
tICKMPWH tICKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
tIHD  
tISUD  
50%  
50%  
1
0
Data  
tIREMPRE  
tIRECPRE  
tIWPRE  
Enable  
Preset  
50%  
tIHE  
tISUE  
50%  
50%  
50%  
tIWCLR  
tIRECCLR  
50%  
tIREMCLR  
50%  
50%  
Clear  
tIPRE2Q  
50%  
50%  
tICLKQ  
50%  
Out_1  
tICLR2Q  
Figure 2-27 • Input Register Timing Diagram  
Timing Characteristics  
Table 2-86 • Input Data Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tICLKQ  
Description  
–2  
–1 Std. Units  
Clock-to-Q of the Input Data Register  
0.24 0.27 0.32  
0.26 0.30 0.35  
0.00 0.00 0.00  
0.37 0.42 0.50  
0.00 0.00 0.00  
0.45 0.52 0.61  
0.45 0.52 0.61  
0.00 0.00 0.00  
0.22 0.25 0.30  
0.00 0.00 0.00  
0.22 0.25 0.30  
0.22 0.25 0.30  
0.22 0.25 0.30  
0.36 0.41 0.48  
0.32 0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
tICLR2Q  
tIPRE2Q  
tIREMCLR  
tIRECCLR  
tIREMPRE  
tIRECPRE  
tIWCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
Asynchronous Clear Minimum Pulse Width for the Input Data Register  
Asynchronous Preset Minimum Pulse Width for the Input Data Register  
Clock Minimum Pulse Width High for the Input Data Register  
Clock Minimum Pulse Width Low for the Input Data Register  
tIWPRE  
tICKMPWH  
tICKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
2-56  
Revision 13  
ProASIC3E Flash Family FPGAs  
Output Register  
tOCKMPWH tOCKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
tOSUD tOHD  
50%  
50%  
1
0
Data_out  
tOREMPRE  
Enable  
Preset  
50%  
tOWPRE tORECPRE  
50%  
tOHE  
50%  
50%  
tOSUE  
tOREMCLR  
50%  
tORECCLR  
50%  
tOWCLR  
50%  
Clear  
tOPRE2Q  
50%  
tOCLKQ  
50%  
50%  
DOUT  
tOCLR2Q  
Figure 2-28 • Output Register Timing Diagram  
Timing Characteristics  
Table 2-87 • Output Data Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tOCLKQ  
Description  
–2  
–1 Std. Units  
Clock-to-Q of the Output Data Register  
0.59 0.67 0.79  
0.31 0.36 0.42  
0.00 0.00 0.00  
0.44 0.50 0.59  
0.00 0.00 0.00  
0.80 0.91 1.07  
0.80 0.91 1.07  
0.00 0.00 0.00  
0.22 0.25 0.30  
0.00 0.00 0.00  
0.22 0.25 0.30  
0.22 0.25 0.30  
0.22 0.25 0.30  
0.36 0.41 0.48  
0.32 0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOSUD  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOSUE  
Enable Setup Time for the Output Data Register  
tOHE  
Enable Hold Time for the Output Data Register  
tOCLR2Q  
tOPRE2Q  
tOREMCLR  
tORECCLR  
tOREMPRE  
tORECPRE  
tOWCLR  
tOWPRE  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Asynchronous Clear Minimum Pulse Width for the Output Data Register  
Asynchronous Preset Minimum Pulse Width for the Output Data Register  
tOCKMPWH Clock Minimum Pulse Width High for the Output Data Register  
tOCKMPWL Clock Minimum Pulse Width Low for the Output Data Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Revision 13  
2-57  
ProASIC3E DC and Switching Characteristics  
Output Enable Register  
tOECKMPWH tOECKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
tOESUD OEHD  
t
50% 50%  
1
0
D_Enable  
50%  
Enable  
Preset  
tOEWPRE  
50%  
tOEREMPRE  
tOERECPRE  
50%  
50%  
tOESUEOEHE  
t
tOEREMCLR  
50%  
tOEWCLR tOERECCLR  
50%  
50%  
Clear  
tOECLR2Q  
50%  
tOEPRE2Q  
50%  
50%  
tOECLKQ  
EOUT  
Figure 2-29 • Output Enable Register Timing Diagram  
Timing Characteristics  
Table 2-88 • Output Enable Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tOECLKQ  
tOESUD  
Description  
–2  
–1 Std. Units  
Clock-to-Q of the Output Enable Register  
0.59 0.67 0.79  
0.31 0.36 0.42  
0.00 0.00 0.00  
0.44 0.50 0.58  
0.00 0.00 0.00  
0.67 0.76 0.89  
0.67 0.76 0.89  
0.00 0.00 0.00  
0.22 0.25 0.30  
0.00 0.00 0.00  
0.22 0.25 0.30  
0.22 0.25 0.30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
tOEHD  
tOESUE  
tOEHE  
tOECLR2Q  
tOEPRE2Q  
tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register  
tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register  
tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register  
tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register  
tOEWCLR  
tOEWPRE  
Asynchronous Clear Minimum Pulse Width for the Output Enable Register  
Asynchronous Preset Minimum Pulse Width for the Output Enable Register 0.22 0.25 0.30  
tOECKMPWH Clock Minimum Pulse Width High for the Output Enable Register  
tOECKMPWL Clock Minimum Pulse Width Low for the Output Enable Register  
0.36 0.41 0.48  
0.32 0.37 0.43  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
2-58  
Revision 13  
ProASIC3E Flash Family FPGAs  
DDR Module Specifications  
Input DDR Module  
Input DDR  
INBUF  
A
D
Out_QF  
(to core)  
Data  
FF1  
B
E
Out_QR  
(to core)  
CLK  
CLKBUF  
FF2  
C
CLR  
INBUF  
DDR_IN  
Figure 2-30 • Input DDR Timing Model  
Table 2-89 • Parameter Definitions  
Parameter Name  
Parameter Definition  
Clock-to-Out Out_QR  
Clock-to-Out Out_QF  
Measuring Nodes (from, to)  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD  
B, D  
B, E  
A, B  
A, B  
C, D  
C, E  
C, B  
C, B  
Data Setup Time of DDR input  
Data Hold Time of DDR input  
Clear-to-Out Out_QR  
Clear-to-Out Out_QF  
Clear Removal  
tDDRIHD  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
Clear Recovery  
Revision 13  
2-59  
ProASIC3E DC and Switching Characteristics  
CLK  
tDDRISUD  
6
tDDRIHD  
8
Data  
CLR  
1
2
3
4
5
7
9
tDDRIRECCLR  
tDDRIREMCLR  
tDDRICLKQ1  
tDDRICLR2Q1  
Out_QF  
Out_QR  
6
2
4
tDDRICLKQ2  
tDDRICLR2Q2  
7
3
5
Figure 2-31 • Input DDR Timing Diagram  
Timing Characteristics  
Table 2-90 • Input DDR Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD  
Description  
–2  
–1  
Std. Units  
Clock-to-Out Out_QR for Input DDR  
Clock-to-Out Out_QF for Input DDR  
Data Setup for Input DDR  
0.39 0.44 0.52  
0.27 0.31 0.37  
0.28 0.32 0.38  
0.00 0.00 0.00  
0.57 0.65 0.76  
0.46 0.53 0.62  
0.00 0.00 0.00  
0.22 0.25 0.30  
0.22 0.25 0.30  
0.36 0.41 0.48  
0.32 0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDDRIHD  
Data Hold for Input DDR  
tDDRICLR2Q1  
tDDRICLR2Q2  
Asynchronous Clear to Out Out_QR for Input DDR  
Asynchronous Clear-to-Out Out_QF for Input DDR  
tDDRIREMCLR  
tDDRIRECCLR  
tDDRIWCLR  
Asynchronous Clear Removal Time for Input DDR  
Asynchronous Clear Recovery Time for Input DDR  
Asynchronous Clear Minimum Pulse Width for Input DDR  
Clock Minimum Pulse Width High for Input DDR  
Clock Minimum Pulse Width Low for Input DDR  
Maximum Frequency for Input DDR  
tDDRICKMPWH  
tDDRICKMPWL  
FDDRIMAX  
1404 1232 1048 MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
2-60  
Revision 13  
ProASIC3E Flash Family FPGAs  
Output DDR Module  
Output DDR  
A
B
Data_F  
(from core)  
X
X
FF1  
Out  
0
1
CLK  
E
X
CLKBUF  
C
X
OUTBUF  
D
Data_R  
(from core)  
X
FF2  
B
X
CLR  
INBUF  
C
X
DDR_OUT  
Figure 2-32 • Output DDR Timing Model  
Table 2-91 • Parameter Definitions  
Parameter Name  
tDDROCLKQ  
Parameter Definition  
Clock-to-Out  
Measuring Nodes (from, to)  
B, E  
C, E  
C, B  
C, B  
A, B  
D, B  
A, B  
D, B  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROSUD1  
Asynchronous Clear-to-Out  
Clear Removal  
Clear Recovery  
Data Setup Data_F  
Data Setup Data_R  
Data Hold Data_F  
Data Hold Data_R  
tDDROSUD2  
tDDROHD1  
tDDROHD2  
Revision 13  
2-61  
ProASIC3E DC and Switching Characteristics  
CLK  
t
t
DDROHD2  
DDROSUD2  
4
9
5
Data_F  
1
2
3
t
t
DDROHD1  
DDROREMCLR  
Data_R 6  
CLR  
7
8
10  
11  
t
DDRORECCLR  
t
DDROREMCLR  
t
t
DDROCLKQ  
DDROCLR2Q  
Out  
7
2
8
3
9
4
10  
Figure 2-33 • Output DDR Timing Diagram  
Timing Characteristics  
Table 2-92 • Output DDR Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tDDROCLKQ  
tDDROSUD1  
tDDROSUD2  
tDDROHD1  
Description  
–2  
–1  
Std. Units  
Clock-to-Out of DDR for Output DDR  
Data_F Data Setup for Output DDR  
Data_R Data Setup for Output DDR  
Data_F Data Hold for Output DDR  
0.70 0.80 0.94  
0.38 0.43 0.51  
0.38 0.43 0.51  
0.00 0.00 0.00  
0.00 0.00 0.00  
0.80 0.91 1.07  
0.00 0.00 0.00  
0.22 0.25 0.30  
0.22 0.25 0.30  
0.36 0.41 0.48  
0.32 0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDDROHD2  
Data_R Data Hold for Output DDR  
tDDROCLR2Q  
Asynchronous Clear-to-Out for Output DDR  
tDDROREMCLR  
tDDRORECCLR  
tDDROWCLR1  
Asynchronous Clear Removal Time for Output DDR  
Asynchronous Clear Recovery Time for Output DDR  
Asynchronous Clear Minimum Pulse Width for Output DDR  
tDDROCKMPWH Clock Minimum Pulse Width High for the Output DDR  
tDDROCKMPWL  
FDDOMAX  
Clock Minimum Pulse Width Low for the Output DDR  
Maximum Frequency for the Output DDR  
1404 1232 1048 MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
2-62  
Revision 13  
ProASIC3E Flash Family FPGAs  
VersaTile Characteristics  
VersaTile Specifications as a Combinatorial Module  
The ProASIC3E library offers all combinations of LUT-3 combinatorial functions. In this section, timing  
characteristics are presented for a sample of the library. For more details, refer to the Fusion, IGLOO®/e,  
and ProASIC3/E Macro Library Guide.  
A
Y
Y
INV  
A
A
B
NOR2  
OR2  
Y
B
A
B
A
B
Y
AND2  
Y
NAND2  
A
B
C
A
B
Y
XOR3  
XOR2  
Y
A
B
C
A
MAJ3  
0
Y
A
B
C
MUX2  
Y
B
S
NAND3  
1
Figure 2-34 • Sample of Combinatorial Cells  
Revision 13  
2-63  
ProASIC3E DC and Switching Characteristics  
tPD  
A
B
NAND2 or  
Any Combinatorial  
Logic  
Y
tPD = MAX(tPD(RR), tPD(RF), tPD(FF), tPD(FR)  
)
where edges are applicable for the particular  
combinatorial cell  
VCC  
50%  
50%  
A, B, C  
GND  
50%  
VCC  
50%  
OUT  
GND  
tPD  
tPD  
(FF)  
(RR)  
VCC  
OUT  
tPD  
(FR)  
50%  
50%  
tPD  
GND  
(RF)  
Figure 2-35 • Timing Model and Waveforms  
2-64  
Revision 13  
ProASIC3E Flash Family FPGAs  
Timing Characteristics  
Table 2-93 • Combinatorial Cell Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Combinatorial Cell  
INV  
Equation  
Y = !A  
Parameter  
tPD  
–2  
–1  
Std.  
0.54  
0.63  
0.63  
0.65  
0.65  
0.99  
0.93  
1.17  
0.68  
0.75  
Units  
ns  
0.40  
0.47  
0.47  
0.49  
0.49  
0.74  
0.70  
0.87  
0.51  
0.56  
0.46  
0.54  
0.54  
0.55  
0.55  
0.84  
0.79  
1.00  
0.58  
0.64  
AND2  
Y = A · B  
tPD  
ns  
NAND2  
OR2  
Y = !(A · B)  
Y = A + B  
tPD  
ns  
tPD  
ns  
NOR2  
Y = !(A + B)  
Y = A B  
Y = MAJ(A , B, C)  
Y = A B C  
Y = A !S + B S  
Y = A · B · C  
tPD  
ns  
XOR2  
tPD  
ns  
MAJ3  
tPD  
ns  
XOR3  
tPD  
ns  
MUX2  
tPD  
ns  
AND3  
tPD  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
VersaTile Specifications as a Sequential Module  
The ProASIC3E library offers a wide variety of sequential cells, including flip-flops and latches. Each has  
a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for  
a representative sample from the library. For more details, refer to the Fusion, IGLOO/e, and ProASIC3/E  
Macro Library Guide.  
Data  
CLK  
Out  
Data  
Out  
D
Q
D
Q
En  
DFN1  
DFN1E1  
CLK  
PRE  
Data  
Data  
Out  
Out  
Q
D
D
Q
En  
DFN1C1  
DFI1E1P1  
CLK  
CLK  
CLR  
Figure 2-36 • Sample of Sequential Cells  
Revision 13  
2-65  
ProASIC3E DC and Switching Characteristics  
tCKMPWH CKMPWL  
t
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
tHD  
tSUD  
50%  
50%  
Data  
EN  
0
50%  
tRECPRE  
50%  
tWPRE  
tREMPRE  
tHE  
50%  
50%  
tSUE  
PRE  
CLR  
Out  
tREMCLR  
tRECCLR  
50%  
tWCLR  
50%  
50%  
tPRE2Q  
50%  
tCLR2Q  
50%  
50%  
tCLKQ  
Figure 2-37 • Timing Model and Waveforms  
Timing Characteristics  
Table 2-94 • Register Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tCLKQ  
Description  
–2  
–1 Std. Units  
Clock-to-Q of the Core Register  
0.55 0.63 0.74  
0.43 0.49 0.57  
0.00 0.00 0.00  
0.45 0.52 0.61  
0.00 0.00 0.00  
0.40 0.45 0.53  
0.40 0.45 0.53  
0.00 0.00 0.00  
0.22 0.25 0.30  
0.00 0.00 0.00  
0.22 0.25 0.30  
0.22 0.25 0.30  
0.22 0.25 0.30  
0.32 0.37 0.43  
0.36 0.41 0.48  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSUD  
Data Setup Time for the Core Register  
tHD  
Data Hold Time for the Core Register  
tSUE  
Enable Setup Time for the Core Register  
tHE  
Enable Hold Time for the Core Register  
tCLR2Q  
tPRE2Q  
tREMCLR  
tRECCLR  
tREMPRE  
tRECPRE  
tWCLR  
Asynchronous Clear-to-Q of the Core Register  
Asynchronous Preset-to-Q of the Core Register  
Asynchronous Clear Removal Time for the Core Register  
Asynchronous Clear Recovery Time for the Core Register  
Asynchronous Preset Removal Time for the Core Register  
Asynchronous Preset Recovery Time for the Core Register  
Asynchronous Clear Minimum Pulse Width for the Core Register  
Asynchronous Preset Minimum Pulse Width for the Core Register  
Clock Minimum Pulse Width High for the Core Register  
Clock Minimum Pulse Width Low for the Core Register  
tWPRE  
tCKMPWH  
tCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
2-66  
Revision 13  
ProASIC3E Flash Family FPGAs  
Global Resource Characteristics  
A3PE600 Clock Tree Topology  
Clock delays are device-specific. Figure 2-38 is an example of a global tree used for clock routing. The  
global tree presented in Figure 2-38 is driven by a CCC located on the west side of the A3PE600 device.  
It is used to drive all D-flip-flops in the device.  
Central  
Global Rib  
CCC  
VersaTile  
Rows  
Global Spine  
Figure 2-38 • Example of Global Tree Use in an A3PE600 Device for Clock Routing  
Global Tree Timing Characteristics  
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not  
include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven  
and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer  
to the "Clock Conditioning Circuits" section on page 2-69. Table 2-95 on page 2-68, Table 2-96 on  
page 2-68, and Table 2-97 on page 2-68 present minimum and maximum global clock delays within the  
device. Minimum and maximum delays are measured with minimum and maximum loading.  
Revision 13  
2-67  
ProASIC3E DC and Switching Characteristics  
Timing Characteristics  
Table 2-95 • A3PE600 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
–2  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Input High Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2 Units  
0.83 1.04 0.94 1.18 1.11 1.39  
0.81 1.06 0.93 1.21 1.09 1.42  
ns  
ns  
ns  
ns  
ns  
tRCKH  
tRCKMPWH Minimum Pulse Width High for Global Clock  
tRCKMPWL Minimum Pulse Width Low for Global Clock  
0.75  
0.85  
0.85  
0.96  
1.00  
1.13  
tRCKSW  
Maximum Skew for Global Clock  
0.25  
0.28  
0.33  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully  
loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Table 2-96 • A3PE1500 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
–2  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Input High Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2 Units  
1.07 1.29 1.22 1.47 1.43 1.72  
1.06 1.32 1.21 1.50 1.42 1.76  
ns  
ns  
ns  
ns  
ns  
tRCKH  
tRCKMPWH Minimum Pulse Width High for Global Clock  
tRCKMPWL Minimum Pulse Width Low for Global Clock  
0.75  
0.85  
0.85  
0.96  
1.00  
1.13  
tRCKSW  
Maximum Skew for Global Clock  
0.26  
0.29  
0.34  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully  
loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Table 2-97 • A3PE3000 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
–2  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Input High Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2 Units  
1.41 1.62 1.60 1.85 1.88 2.17  
1.40 1.66 1.59 1.89 1.87 2.22  
ns  
ns  
ns  
ns  
ns  
tRCKH  
tRCKMPWH Minimum Pulse Width High for Global Clock  
tRCKMPWL Minimum Pulse Width Low for Global Clock  
0.75  
0.85  
0.85  
0.96  
1.00  
1.13  
tRCKSW  
Maximum Skew for Global Clock  
0.26  
0.29  
0.35  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully  
loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
2-68  
Revision 13  
ProASIC3E Flash Family FPGAs  
Clock Conditioning Circuits  
CCC Electrical Specifications  
Timing Characteristics  
Table 2-98 • ProASIC3E CCC/PLL Specification  
Parameter  
Minimum  
1.5  
Typical  
Maximum  
350  
Units  
MHz  
MHz  
ps  
Clock Conditioning Circuitry Input Frequency fIN_CCC  
Clock Conditioning Circuitry Output Frequency fOUT_CCC  
Delay Increments in Programmable Delay Blocks 1, 2  
Serial Clock (SCLK) for Dynamic PLL4  
0.75  
350  
1603  
125  
32  
MHz  
Number of Programmable Values in Each  
Programmable Delay Block  
Input Period Jitter  
1.5  
ns  
CCC Output Peak-to-Peak Period Jitter FCCC_OUT  
Max Peak-to-Peak Period Jitter  
3 Global  
1 Global  
Network Used  
Networks Used  
0.70%  
1.20%  
2.00%  
5.60%  
300  
0.75 MHz to 24 MHz  
24 MHz to 100 MHz  
100 MHz to 250 MHz  
250 MHz to 350 MHz  
0.50%  
1.00%  
1.75%  
2.50%  
Acquisition Time  
Tracking Jitter 5  
Output Duty Cycle  
LockControl = 0  
LockControl = 1  
LockControl = 0  
LockControl = 1  
µs  
ms  
ns  
ns  
%
6.0  
1.6  
0.8  
48.5  
0.6  
51.5  
Delay Range in Block: Programmable Delay 1 1, 2  
Delay Range in Block: Programmable Delay 2 1,2  
Delay Range in Block: Fixed Delay1,4  
Notes:  
5.56  
ns  
ns  
ns  
0.025  
5.56  
2.2  
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-5 for deratings  
2. T = 25°C, VCC = 1.5 V.  
J
3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay  
increments are available. Refer to the Libero SoC Online Help for more information.  
4. Maximum value obtained for a –2 speed-grade device in worst-case commercial conditions. For specific junction  
temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock  
edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter  
parameter.  
Revision 13  
2-69  
ProASIC3E DC and Switching Characteristics  
Output Signal  
Tperiod_max  
Tperiod_min  
Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min  
.
Figure 2-39 • Peak-to-Peak Jitter Definition  
2-70  
Revision 13  
ProASIC3E Flash Family FPGAs  
Embedded SRAM and FIFO Characteristics  
SRAM  
RAM4K9  
RAM512X18  
RADDR8  
RADDR7  
RD17  
RD16  
ADDRA11 DOUTA8  
DOUTA7  
DOUTA0  
ADDRA10  
ADDRA0  
DINA8  
RADDR0  
RD0  
DINA7  
RW1  
RW0  
DINA0  
WIDTHA1  
WIDTHA0  
PIPEA  
PIPE  
WMODEA  
BLKA  
WENA  
REN  
RCLK  
CLKA  
ADDRB11 DOUTB8  
ADDRB10 DOUTB7  
WADDR8  
WADDR7  
ADDRB0  
DOUTB0  
WADDR0  
WD17  
WD16  
DINB8  
DINB7  
WD0  
DINB0  
WW1  
WW0  
WIDTHB1  
WIDTHB0  
PIPEB  
WMODEB  
BLKB  
WEN  
WCLK  
WENB  
CLKB  
RESET  
RESET  
Figure 2-40 • RAM Models  
Revision 13  
2-71  
ProASIC3E DC and Switching Characteristics  
Timing Waveforms  
tCYC  
tCKH  
tCKL  
CLK  
[R|W]ADDR  
BLK  
tAS tAH  
A0  
A1  
A2  
tBKS  
tBKH  
tENS  
tENH  
WEN  
tCKQ1  
Dn  
D0  
D1  
D2  
DOUT|RD  
tDOH1  
Figure 2-41 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18.  
tCYC  
tCKH  
tCKL  
CLK  
[R|W]ADDR  
BLK  
tAS tAH  
A0  
A1  
A2  
tBKS  
tBKH  
tENH  
tENS  
WEN  
tCKQ2  
Dn  
D0  
D1  
DOUT|RD  
tDOH2  
Figure 2-42 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.  
2-72  
Revision 13  
ProASIC3E Flash Family FPGAs  
tCYC  
tCKH  
tCKL  
CLK  
[R|W]ADDR  
BLK  
tAS  
tAH  
A0  
tBKS  
A1  
A2  
tBKH  
tENS  
tENH  
WEN  
tDS  
tDH  
DI1  
DI0  
DIN|WD  
DOUT|RD  
Dn  
D2  
Figure 2-43 • RAM Write, Output Retained. Applicable to Both RAM4K9 and RAM512x18.  
tCYC  
tCKH  
tCKL  
CLK  
ADDR  
BLK  
tAS tAH  
A0  
tBKS  
A1  
A2  
tBKH  
tENS  
WEN  
DIN  
tDS tDH  
DI1  
DI0  
DI2  
DOUT  
Dn  
DI0  
DI1  
(pass-through)  
DOUT  
DI0  
Dn  
DI1  
(pipelined)  
Figure 2-44 • RAM Write, Output as Write Data. Applicable to RAM4K9 Only.  
Revision 13  
2-73  
ProASIC3E DC and Switching Characteristics  
tCYC  
tCKH  
tCKL  
CLK  
RESET  
tRSTBQ  
Dm  
Dn  
DOUT|RD  
Figure 2-45 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.  
2-74  
Revision 13  
ProASIC3E Flash Family FPGAs  
Timing Characteristics  
Table 2-99 • RAM4K9  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tAS  
Description  
Address setup time  
–2  
–1 Std. Units  
0.25 0.28 0.33  
0.00 0.00 0.00  
0.14 0.16 0.19  
0.10 0.11 0.13  
0.23 0.27 0.31  
0.02 0.02 0.02  
0.18 0.21 0.25  
0.00 0.00 0.00  
1.79 2.03 2.39  
2.36 2.68 3.15  
0.89 1.02 1.20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAH  
Address hold time  
tENS  
tENH  
tBKS  
tBKH  
tDS  
REN, WEN setup time  
REN, WEN hold time  
BLK setup time  
BLK hold time  
Input data (DIN) setup time  
tDH  
Input data (DIN) hold time  
tCKQ1  
Clock High to new data valid on DOUT (output retained, WMODE = 0)  
Clock High to new data valid on DOUT (flow-through, WMODE = 1)  
Clock High to new data valid on DOUT (pipelined)  
tCKQ2  
1
tC2CWWL  
Address collision clk-to-clk delay for reliable write after write on same 0.33 0.28 0.25  
address—Applicable to Closing Edge  
1
tC2CWWH  
Address collision clk-to-clk delay for reliable write after write on same 0.30 0.26 0.23  
address—Applicable to Rising Edge  
ns  
ns  
ns  
1
tC2CRWH  
Address collision clk-to-clk delay for reliable read access after write on same 0.45 0.38 0.34  
address—Applicable to Opening Edge  
1
tC2CWRH  
Address collision clk-to-clk delay for reliable write access after read on same 0.49 0.42 0.37  
address— Applicable to Opening Edge  
tRSTBQ  
RESET Low to data out Low on DO (flow-through)  
RESET Low to Data Out Low on DO (pipelined)  
RESET removal  
0.92 1.05 1.23  
0.92 1.05 1.23  
0.29 0.33 0.38  
1.50 1.71 2.01  
0.21 0.24 0.29  
3.23 3.68 4.32  
ns  
ns  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
RESET recovery  
RESET minimum pulse width  
Clock cycle time  
FMAX  
Maximum frequency  
310 272 231 MHz  
Notes:  
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-  
Based cSoCs and FPGAs.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Revision 13  
2-75  
ProASIC3E DC and Switching Characteristics  
Table 2-100 • RAM512X18  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tAS  
Description  
–2  
–1 Std. Units  
Address setup time  
0.25 0.28 0.33  
0.00 0.00 0.00  
0.18 0.20 0.24  
0.06 0.07 0.08  
0.18 0.21 0.25  
0.00 0.00 0.00  
2.16 2.46 2.89  
0.90 1.02 1.20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAH  
Address hold time  
tENS  
REN, WEN setup time  
REN, WEN hold time  
Input data (WD) setup time  
Input data (WD) hold time  
tENH  
tDS  
tDH  
tCKQ1  
tCKQ2  
Clock High to new data valid on RD (output retained)  
Clock High to new data valid on RD (pipelined)  
1
tC2CRWH  
Address collision clk-to-clk delay for reliable read access after write on same 0.50 0.43 0.38  
address—Applicable to Opening Edge  
1
tC2CWRH  
Address collision clk-to-clk delay for reliable write access after read on same 0.59 0.50 0.44  
address— Applicable to Opening Edge  
ns  
tRSTBQ  
RESET Low to data out Low on RD (flow-through)  
RESET Low to data out Low on RD (pipelined)  
RESET removal  
0.92 1.05 1.23  
0.92 1.05 1.23  
0.29 0.33 0.38  
1.50 1.71 2.01  
0.21 0.24 0.29  
3.23 3.68 4.32  
ns  
ns  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
RESET recovery  
RESET minimum pulse width  
Clock cycle time  
FMAX  
Maximum frequency  
310 272 231 MHz  
Notes:  
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-  
Based cSoCs and FPGAs.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
2-76  
Revision 13  
ProASIC3E Flash Family FPGAs  
FIFO  
FIFO4K18  
RW2  
RW1  
RW0  
RD17  
RD16  
WW2  
WW1  
WW0  
RD0  
ESTOP  
FSTOP  
FULL  
AFULL  
EMPTY  
AEVAL11  
AEVAL10  
AEMPTY  
AEVAL0  
AFVAL11  
AFVAL10  
AFVAL0  
REN  
RBLK  
RCLK  
WD17  
WD16  
WD0  
WEN  
WBLK  
WCLK  
RPIPE  
RESET  
Figure 2-46 • FIFO Model  
Revision 13  
2-77  
ProASIC3E DC and Switching Characteristics  
Timing Waveforms  
tCYC  
RCLK  
tENH  
tENS  
REN  
tBKS  
tBKH  
RBLK  
tCKQ1  
RD  
D1  
Dn  
D0  
D2  
(flow-through)  
tCKQ2  
RD  
Dn  
D0  
D1  
(pipelined)  
Figure 2-47 • FIFO Read  
tCYC  
WCLK  
tENS  
tENH  
WEN  
tBKS  
tBKH  
WBLK  
tDS  
tDH  
DI1  
DI0  
WD  
Figure 2-48 • FIFO Write  
2-78  
Revision 13  
ProASIC3E Flash Family FPGAs  
RCLK/  
WCLK  
tMPWRSTB  
tRSTCK  
RESET  
EMPTY  
AEMPTY  
FULL  
tRSTFG  
tRSTAF  
tRSTFG  
tRSTAF  
AFULL  
WA/RA  
MATCH (A0)  
(Address Counter)  
Figure 2-49 • FIFO Reset  
tCYC  
RCLK  
tRCKEF  
EMPTY  
tCKAF  
AEMPTY  
WA/RA  
NO MATCH  
NO MATCH  
Dist = AEF_TH  
MATCH (EMPTY)  
(Address Counter)  
Figure 2-50 • FIFO EMPTY Flag and AEMPTY Flag Assertion  
Revision 13  
2-79  
ProASIC3E DC and Switching Characteristics  
t
CYC  
WCLK  
FULL  
t
WCKFF  
t
CKAF  
AFULL  
WA/RA  
NO MATCH  
NO MATCH  
Dist = AFF_TH  
MATCH (FULL)  
(Address Counter)  
Figure 2-51 • FIFO FULL Flag and AFULL Flag Assertion  
WCLK  
MATCH  
WA/RA  
NO MATCH  
NO MATCH  
2nd Rising  
Edge  
After 1st  
Write  
NO MATCH  
NO MATCH  
Dist = AEF_TH + 1  
(Address Counter)  
(EMPTY)  
1st Rising  
Edge  
After 1st  
Write  
RCLK  
EMPTY  
t
RCKEF  
t
CKAF  
AEMPTY  
Figure 2-52 • FIFO EMPTY Flag and AEMPTY Flag Deassertion  
RCLK  
WA/RA  
(Address Counter)  
Dist = AFF_TH – 1  
MATCH (FULL)  
1st Rising  
NO MATCH  
NO MATCH  
1st Rising  
Edge  
After 2nd  
Read  
NO MATCH  
NO MATCH  
Edge  
After 1st  
Read  
WCLK  
FULL  
t
WCKF  
t
CKAF  
AFULL  
Figure 2-53 • FIFO FULL Flag and AFULL Flag Deassertion  
2-80  
Revision 13  
ProASIC3E Flash Family FPGAs  
Timing Characteristics  
Table 2-101 • FIFO  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Parameter  
tENS  
Description  
–2  
–1  
Std. Units  
REN, WEN Setup Time  
1.38 1.57 1.84  
0.02 0.02 0.02  
0.19 0.22 0.26  
0.00 0.00 0.00  
0.18 0.21 0.25  
0.00 0.00 0.00  
2.36 2.68 3.15  
0.89 1.02 1.20  
1.72 1.96 2.30  
1.63 1.86 2.18  
6.19 7.05 8.29  
1.69 1.93 2.27  
6.13 6.98 8.20  
0.92 1.05 1.23  
0.92 1.05 1.23  
0.29 0.33 0.38  
1.50 1.71 2.01  
0.21 0.24 0.29  
3.23 3.68 4.32  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
tENH  
REN, WEN Hold Time  
tBKS  
BLK Setup Time  
tBKH  
BLK Hold Time  
tDS  
Input Data (WD) Setup Time  
tDH  
Input Data (WD) Hold Time  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock High to New Data Valid on RD (pass-through)  
Clock High to New Data Valid on RD (pipelined)  
RCLK High to Empty Flag Valid  
WCLK High to Full Flag Valid  
Clock High to Almost Empty/Full Flag Valid  
RESET Low to Empty/Full Flag Valid  
RESET Low to Almost Empty/Full Flag Valid  
RESET Low to Data Out Low on RD (pass-through)  
RESET Low to Data Out Low on RD (pipelined)  
RESET Removal  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
RESET Recovery  
RESET Minimum Pulse Width  
Clock Cycle Time  
FMAX  
Maximum Frequency  
310  
272  
231  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
Revision 13  
2-81  
ProASIC3E DC and Switching Characteristics  
Embedded FlashROM Characteristics  
tSU  
tSU  
tSU  
CLK  
tHOLD  
tHOLD  
tHOLD  
Address  
A0  
A1  
tCKQ2  
D0  
tCKQ2  
tCKQ2  
D1  
D0  
Data  
Figure 2-54 • Timing Diagram  
Timing Characteristics  
Table 2-102 • Embedded FlashROM Access Time  
Parameter  
tSU  
Description  
Address Setup Time  
–2  
–1  
Std.  
Units  
ns  
0.53  
0.00  
16.23  
15  
0.61  
0.00  
18.48  
15  
0.71  
0.00  
21.73  
15  
tHOLD  
tCK2Q  
Address Hold Time  
Clock to Out  
ns  
ns  
FMAX  
Maximum Clock Frequency  
MHz  
JTAG 1532 Characteristics  
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to  
the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O  
Characteristics" section on page 2-12 for more details.  
Timing Characteristics  
Table 2-103 • JTAG 1532  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Parameter  
tDISU  
Description  
–2  
–1  
Std.  
0.67  
1.33  
0.67  
1.33  
8.00  
Units  
ns  
Test Data Input Setup Time  
Test Data Input Hold Time  
Test Mode Select Setup Time  
Test Mode Select Hold Time  
Clock to Q (data out)  
0.50 0.57  
1.00 1.13  
0.50 0.57  
1.00 1.13  
6.00 6.80  
tDIHD  
ns  
tTMSSU  
ns  
tTMDHD  
ns  
tTCK2Q  
ns  
tRSTB2Q  
FTCKMAX  
tTRSTREM  
tTRSTREC  
tTRSTMPW  
Reset to Q (data out)  
20.00 22.67 26.67  
25.00 22.00 19.00  
ns  
TCK Maximum Frequency  
ResetB Removal Time  
MHz  
ns  
0.00 0.00  
0.20 0.23  
TBD TBD  
0.00  
0.27  
TBD  
ResetB Recovery Time  
ns  
ResetB Minimum Pulse  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.  
2-82  
Revision 13  
3 – Pin Descriptions and Packaging  
Supply Pins  
GND  
Ground supply voltage to the core, I/O outputs, and I/O logic.  
GNDQ Ground (quiet)  
Ground  
Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is  
decoupled from the simultaneous switching noise originated from the output buffer ground domain. This  
minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always  
be connected to GND on the board.  
VCC  
Core Supply Voltage  
Supply voltage to the FPGA core, nominally 1.5 V. VCC is required for powering the JTAG state machine  
in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices,  
both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.  
VCCIBx  
I/O Supply Voltage  
Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to  
eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a  
separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V,  
1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied  
to GND.  
VMVx  
I/O Supply Voltage (quiet)  
Quiet supply voltage to the input buffers of each I/O bank. x is the bank number. Within the package, the  
VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within  
the package and improves input signal integrity. Each bank must have at least one VMV connection, and  
no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to  
provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5 V, 1.8 V, 2.5 V, or  
3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV  
and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to  
the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).  
VCCPLA/B/C/D/E/F  
PLL Supply Voltage  
Supply voltage to analog PLL, nominally 1.5 V.  
When the PLLs are not used, the place-and-route tool automatically disables the unused PLLs to lower  
power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi  
recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the  
PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in Low  
Power Flash Devices and Mixed Signal FPGAs" chapter of the ProASIC3E FPGA Fabric User’s Guide  
for a complete board solution for the PLL analog power supply and ground.  
There are six VCCPLX pins on ProASIC3E devices.  
VCOMPLA/B/C/D/E/F  
PLL Ground  
Ground to analog PLL power supplies. When the PLLs are not used, the place-and-route tool  
automatically disables the unused PLLs to lower power consumption. The user should tie unused  
VCCPLx and VCOMPLx pins to ground.  
There are six VCOMPL pins (PLL ground) on ProASIC3E devices.  
VJTAG  
JTAG Supply Voltage  
Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run  
at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank  
gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG  
interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to  
GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is  
Revision 13  
3-1  
Pin Descriptions and Packaging  
insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can  
be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals  
will not be able to transition the device, even in bypass mode.  
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent  
filtering capacitors rather than supplying them from a common rail.  
VPUMP  
Programming Supply Voltage  
For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left  
floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming  
power supply voltage (VPUMP) range is listed in the datasheet.  
When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of  
oscillation from the charge pump circuitry.  
For proper programming, 0.01 µF and 0.33 µF capacitors (both rated at 16 V) are to be connected in  
parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.  
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent  
filtering capacitors rather than supplying them from a common rail.  
User-Defined Supply Pins  
VREF  
I/O Voltage Reference  
Reference voltage for I/O minibanks. VREF pins are configured by the user from regular I/Os, and any  
I/O in a bank, except JTAG I/Os, can be designated the voltage reference I/O. Only certain I/O standards  
require a voltage reference—HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and (II), and GTL/GTL+. One  
VREF pin can support the number of I/Os available in its minibank.  
User Pins  
I/O  
User Input/Output  
The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are  
compatible with the I/O standard selected.  
During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC  
supplies continuously powered up, when the device transitions from programming to operating mode, the  
I/Os are instantly configured to the desired user configuration.  
Unused I/Os are configured as follows:  
Output buffer is disabled (with tristate value of high impedance)  
Input buffer is disabled (with tristate value of high impedance)  
Weak pull-up is programmed  
GL  
Globals  
GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the  
global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have  
identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.  
See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power  
Flash Devices and Mixed Signal FPGAs" chapter of the ProASIC3E FPGA Fabric User’s Guide. All  
inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an  
input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled  
GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals.  
The inputs to the global network are multiplexed, and only one input can be used as a global input.  
Refer to the I/O Structure section of the ProASIC3E FPGA Fabric User’s Guide for an explanation of the  
naming of global pins.  
3-2  
Revision 13  
ProASIC3E Flash Family FPGAs  
JTAG Pins  
Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run  
at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to  
operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the  
part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a  
separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB  
design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST  
pin could be tied to GND.  
TCK  
Test Clock  
Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-  
up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor  
placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.  
Note that to operate at all VJTAG voltages, 500 W to 1 kwill satisfy the requirements. Refer to  
Table 3-1 for more information.  
Table 3-1 • Recommended Tie-Off Values for the TCK and TRST Pins  
VJTAG  
Tie-Off Resistance  
200 to 1 k  
200 to 1 k  
500 to 1 k  
500 to 1 k  
VJTAG at 3.3 V  
VJTAG at 2.5 V  
VJTAG at 1.8 V  
VJTAG at 1.5 V  
Notes:  
1. Equivalent parallel resistance if more than one device is on the JTAG chain  
2. The TCK pin can be pulled up/down.  
3. The TRST pin is pulled down.  
TDI  
Test Data Input  
Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor  
on the TDI pin.  
TDO  
Serial output for JTAG boundary scan, ISP, and UJTAG usage.  
TMS Test Mode Select  
Test Data Output  
The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an  
internal weak pull-up resistor on the TMS pin.  
TRST  
Boundary Scan Reset Pin  
The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan  
circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-  
down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor  
values must be chosen from Table 3-1 and must satisfy the parallel resistance value requirement. The  
values in Table 3-1 correspond to the resistor recommended when a single device is used, and the  
equivalent parallel resistor when multiple devices are connected via a JTAG chain.  
In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In  
such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA  
pin.  
Note that to operate at all VJTAG voltages, 500 to 1 kwill satisfy the requirements.  
Revision 13  
3-3  
Pin Descriptions and Packaging  
Special Function Pins  
NC  
No Connect  
This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be  
left floating with no effect on the operation of the device.  
DC  
Do Not Connect  
This pin should not be connected to any signals on the PCB. These pins should be left unconnected.  
Packaging  
Semiconductor technology is constantly shrinking in size while growing in capability and functional  
integration. To enable next-generation silicon technologies, semiconductor packages have also evolved  
to provide improved performance and flexibility.  
Microsemi consistently delivers packages that provide the necessary mechanical and environmental  
protection to ensure consistent reliability and performance. Microsemi IC packaging technology  
efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible  
enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition,  
Microsemi offers a variety of packages designed to meet your most demanding application and economic  
requirements for today's embedded and mobile systems.  
Related Documents  
User’s Guides  
ProASIC3E FPGA Fabric User’s Guide  
http://www.microsemi.com/soc/documents/PA3E_UG.pdf  
Packaging  
The following documents provide packaging information and device selection for low power flash  
devices.  
Product Catalog  
http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf  
Lists devices currently recommended for new designs and the packages available for each member of  
the family. Use this document or the datasheet tables to determine the best package for your design, and  
which package drawing to use.  
Package Mechanical Drawings  
http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf  
This document contains the package mechanical drawings for all packages currently or previously  
supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.  
Additional packaging materials: http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
3-4  
Revision 13  
4 – Package Pin Assignments  
PQ208  
208  
1
208-Pin PQFP  
Note: This is the top view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
Revision 13  
4-1  
Package Pin Assignments  
PQ208  
PQ208  
PQ208  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
1
GND  
37  
38  
39  
40  
41  
42  
43  
44  
45  
IO112PDB6V1  
IO112NDB6V1  
IO108PSB6V0  
VCCIB6  
72  
73  
VCCIB5  
IO85NPB5V0  
IO84NPB5V0  
IO85PPB5V0  
IO84PPB5V0  
IO83NPB5V0  
IO82NPB5V0  
IO83PPB5V0  
IO82PPB5V0  
GND  
2
GNDQ  
3
VMV7  
74  
4
GAB2/IO133PSB7V1  
GAA2/IO134PDB7V1  
IO134NDB7V1  
GAC2/IO132PDB7V1  
IO132NDB7V1  
IO130PDB7V1  
IO130NDB7V1  
IO127PDB7V1  
IO127NDB7V1  
IO126PDB7V0  
IO126NDB7V0  
IO124PSB7V0  
VCC  
75  
5
GND  
76  
6
IO106PDB6V0  
IO106NDB6V0  
GEC1/IO104PDB6V0  
77  
7
78  
8
79  
9
GEC0/IO104NDB6V  
0
80  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
81  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
GEB1/IO103PPB6V0  
GEA1/IO102PPB6V0  
GEB0/IO103NPB6V0  
GEA0/IO102NPB6V0  
VMV6  
82  
IO80NDB4V1  
IO80PDB4V1  
IO79NPB4V1  
IO78NPB4V1  
IO79PPB4V1  
IO78PPB4V1  
VCC  
83  
84  
85  
86  
GNDQ  
87  
GND  
GND  
88  
VMV5  
VCCIB7  
89  
VCCIB4  
GNDQ  
IO122PPB7V0  
IO121PSB7V0  
IO122NPB7V0  
GFC1/IO120PSB7V0  
GFB1/IO119PDB7V0  
GFB0/IO119NDB7V0  
VCOMPLF  
90  
IO76NDB4V1  
IO76PDB4V1  
IO72NDB4V0  
IO72PDB4V0  
IO70NDB4V0  
GDC2/IO70PDB4V0  
IO68NDB4V0  
GND  
IO101NDB5V2  
GEA2/IO101PDB5V2  
IO100NDB5V2  
GEB2/IO100PDB5V2  
IO99NDB5V2  
GEC2/IO99PDB5V2  
IO98PSB5V2  
VCCIB5  
91  
92  
93  
94  
95  
96  
GFA0/IO118NPB6V1  
VCCPLF  
97  
98  
GDA2/IO68PDB4V0  
GDB2/IO69PSB4V0  
GNDQ  
IO96PSB5V2  
IO94NDB5V1  
GND  
GFA1/IO118PPB6V1  
GND  
99  
100  
101  
102  
103  
104  
105  
106  
107  
GFA2/IO117PDB6V1  
IO117NDB6V1  
GFB2/IO116PPB6V1  
GFC2/IO115PPB6V1  
IO116NPB6V1  
IO115NPB6V1  
VCC  
TCK  
IO94PDB5V1  
IO92NDB5V1  
IO92PDB5V1  
IO88NDB5V0  
IO88PDB5V0  
VCC  
TDI  
TMS  
VMV4  
GND  
VPUMP  
GNDQ  
4-2  
Revision 13  
ProASIC3E Flash Family FPGAs  
PQ208  
PQ208  
PQ208  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
TDO  
TRST  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
IO47PDB2V1  
IO44NDB2V1  
IO44PDB2V1  
IO43NDB2V0  
IO43PDB2V0  
IO40NDB2V0  
IO40PDB2V0  
GBC2/IO38PSB2V0  
GBA2/IO36PSB2V0  
GBB2/IO37PSB2V0  
VMV2  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
IO19NPB0V2  
IO18NPB0V2  
IO17PPB0V2  
IO16PPB0V2  
IO17NPB0V2  
IO16NPB0V2  
VCCIB0  
VJTAG  
VMV3  
GDA0/IO67NPB3V1  
GDB0/IO66NPB3V1  
GDA1/IO67PPB3V1  
GDB1/IO66PPB3V1  
GDC0/IO65NDB3V1  
GDC1/IO65PDB3V1  
IO62NDB3V1  
IO62PDB3V1  
IO58NDB3V0  
IO58PDB3V0  
GND  
VCC  
IO15PDB0V2  
IO15NDB0V2  
IO13PDB0V2  
IO13NDB0V2  
IO11PSB0V1  
IO09PDB0V1  
IO09NDB0V1  
GND  
GNDQ  
GND  
VMV1  
GNDQ  
VCCIB3  
GBA1/IO35PDB1V1  
GBA0/IO35NDB1V1  
GBB1/IO34PDB1V1  
GND  
GCC2/IO55PSB3V0  
GCB2/IO54PSB3V0  
NC  
IO07PDB0V1  
IO07NDB0V1  
IO05PDB0V0  
IO05NDB0V0  
VCCIB0  
IO53NDB3V0  
GCA2/IO53PDB3V0  
GCA1/IO52PPB3V0  
GND  
GBB0/IO34NDB1V1  
GBC1/IO33PDB1V1  
GBC0/IO33NDB1V1  
IO31PDB1V1  
IO31NDB1V1  
IO27PDB1V0  
IO27NDB1V0  
VCCIB1  
GAC1/IO02PDB0V0  
GAC0/IO02NDB0V0  
GAB1/IO01PDB0V0  
GAB0/IO01NDB0V0  
GAA1/IO00PDB0V0  
GAA0/IO00NDB0V0  
GNDQ  
VCCPLC  
GCA0/IO52NPB3V0  
VCOMPLC  
GCB0/IO51NDB2V1  
GCB1/IO51PDB2V1  
GCC1/IO50PSB2V1  
IO49NDB2V1  
IO49PDB2V1  
IO48PSB2V1  
VCCIB2  
VCC  
IO23PPB1V0  
IO22PSB1V0  
IO23NPB1V0  
IO21PDB1V0  
IO21NDB1V0  
IO19PPB0V2  
GND  
VMV0  
GND  
VCC  
IO47NDB2V1  
IO18PPB0V2  
Revision 13  
4-3  
Package Pin Assignments  
PQ208  
PQ208  
PQ208  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
1
GND  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
IO184PDB6V2  
IO184NDB6V2  
IO180PSB6V1  
VCCIB6  
73  
74  
IO145NDB5V1  
IO145PDB5V1  
IO143NDB5V1  
IO143PDB5V1  
IO137NDB5V0  
IO137PDB5V0  
IO135NDB5V0  
IO135PDB5V0  
GND  
2
GNDQ  
3
VMV7  
75  
4
GAB2/IO220PSB7V3  
GAA2/IO221PDB7V3  
IO221NDB7V3  
GAC2/IO219PDB7V3  
IO219NDB7V3  
IO215PDB7V3  
IO215NDB7V3  
IO212PDB7V2  
IO212NDB7V2  
IO208PDB7V2  
IO208NDB7V2  
IO204PSB7V1  
VCC  
76  
5
GND  
77  
6
IO176PDB6V1  
IO176NDB6V1  
GEC1/IO169PDB6V0  
GEC0/IO169NDB6V0  
GEB1/IO168PPB6V0  
GEA1/IO167PPB6V0  
GEB0/IO168NPB6V0  
GEA0/IO167NPB6V0  
VMV6  
78  
7
79  
8
80  
9
81  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
82  
IO131NDB4V2  
IO131PDB4V2  
IO129NDB4V2  
IO129PDB4V2  
IO127NDB4V2  
IO127PDB4V2  
VCC  
83  
84  
85  
86  
GNDQ  
87  
GND  
88  
GND  
VMV5  
89  
VCCIB4  
VCCIB7  
GNDQ  
90  
IO121NDB4V1  
IO121PDB4V1  
IO119NDB4V1  
IO119PDB4V1  
IO113NDB4V0  
GDC2/IO113PDB4V0  
IO112NDB4V0  
GND  
IO200PDB7V1  
IO200NDB7V1  
IO196PSB7V0  
GFC1/IO192PSB7V0  
GFB1/IO191PDB7V0  
GFB0/IO191NDB7V0  
VCOMPLF  
IO166NDB5V3  
GEA2/IO166PDB5V3  
IO165NDB5V3  
GEB2/IO165PDB5V3  
IO164NDB5V3  
GEC2/IO164PDB5V3  
IO163PSB5V3  
VCCIB5  
91  
92  
93  
94  
95  
96  
97  
GFA0/IO190NPB6V2  
VCCPLF  
98  
GDB2/IO112PDB4V0  
GDA2/IO111PSB4V0  
GNDQ  
IO161PSB5V3  
IO157NDB5V2  
GND  
99  
GFA1/IO190PPB6V2  
GND  
100  
101  
102  
103  
104  
105  
106  
107  
108  
TCK  
GFA2/IO189PDB6V2  
IO189NDB6V2  
GFB2/IO188PPB6V2  
GFC2/IO187PPB6V2  
IO188NPB6V2  
IO187NPB6V2  
VCC  
IO157PDB5V2  
IO153NDB5V2  
IO153PDB5V2  
IO149NDB5V1  
IO149PDB5V1  
VCC  
TDI  
TMS  
VMV4  
GND  
VPUMP  
GNDQ  
VCCIB5  
TDO  
4-4  
Revision 13  
ProASIC3E Flash Family FPGAs  
PQ208  
PQ208  
PQ208  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
TRST  
VJTAG  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
IO71NDB2V2  
IO71PDB2V2  
IO67NDB2V1  
IO67PDB2V1  
IO65NDB2V1  
IO65PDB2V1  
GBC2/IO60PSB2V0  
GBA2/IO58PSB2V0  
GBB2/IO59PSB2V0  
VMV2  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
IO29NDB0V3  
IO27PDB0V3  
IO27NDB0V3  
IO23PDB0V2  
IO23NDB0V2  
VCCIB0  
VMV3  
GDA0/IO110NPB3V2  
GDB0/IO109NPB3V2  
GDA1/IO110PPB3V2  
GDB1/IO109PPB3V2  
GDC0/IO108NDB3V2  
GDC1/IO108PDB3V2  
IO105NDB3V2  
IO105PDB3V2  
IO101NDB3V1  
IO101PDB3V1  
GND  
VCC  
IO18PDB0V2  
IO18NDB0V2  
IO15PDB0V1  
IO15NDB0V1  
IO12PSB0V1  
IO11PDB0V1  
IO11NDB0V1  
GND  
GNDQ  
GND  
VMV1  
GNDQ  
VCCIB3  
GBA1/IO57PDB1V3  
GBA0/IO57NDB1V3  
GBB1/IO56PDB1V3  
GND  
GCC2/IO90PSB3V0  
GCB2/IO89PSB3V0  
NC  
IO08PDB0V1  
IO08NDB0V1  
IO05PDB0V0  
IO05NDB0V0  
VCCIB0  
IO88NDB3V0  
GCA2/IO88PDB3V0  
GCA1/IO87PPB3V0  
GND  
GBB0/IO56NDB1V3  
GBC1/IO55PDB1V3  
GBC0/IO55NDB1V3  
IO51PDB1V2  
IO51NDB1V2  
IO47PDB1V1  
IO47NDB1V1  
VCCIB1  
GAC1/IO02PDB0V0  
GAC0/IO02NDB0V0  
GAB1/IO01PDB0V0  
GAB0/IO01NDB0V0  
GAA1/IO00PDB0V0  
GAA0/IO00NDB0V0  
GNDQ  
VCCPLC  
GCA0/IO87NPB3V0  
VCOMPLC  
GCB0/IO86NDB2V3  
GCB1/IO86PDB2V3  
GCC1/IO85PSB2V3  
IO83NDB2V3  
IO83PDB2V3  
IO81PSB2V3  
VCCIB2  
VCC  
IO43PSB1V1  
IO41PDB1V1  
IO41NDB1V1  
IO35PDB1V0  
IO35NDB1V0  
IO31PDB0V3  
GND  
VMV0  
GND  
VCC  
IO73NDB2V2  
IO73PDB2V2  
IO31NDB0V3  
IO29PDB0V3  
Revision 13  
4-5  
Package Pin Assignments  
PQ208  
PQ208  
PQ208  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
1
GND  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
VCCIB6  
GND  
79  
80  
IO194NDB5V0  
IO194PDB5V0  
GND  
2
GNDQ  
3
VMV7  
IO244PDB6V1  
IO244NDB6V1  
GEC1/IO236PDB6V0  
GEC0/IO236NDB6V0  
GEB1/IO235PPB6V0  
GEA1/IO234PPB6V0  
GEB0/IO235NPB6V0  
GEA0/IO234NPB6V0  
VMV6  
81  
4
GAB2/IO308PSB7V4  
GAA2/IO309PDB7V4  
IO309NDB7V4  
GAC2/IO307PDB7V4  
IO307NDB7V4  
IO303PDB7V3  
IO303NDB7V3  
IO299PDB7V3  
IO299NDB7V3  
IO295PDB7V2  
IO295NDB7V2  
IO291PSB7V2  
VCC  
82  
IO184NDB4V3  
IO184PDB4V3  
IO180NDB4V3  
IO180PDB4V3  
IO176NDB4V2  
IO176PDB4V2  
VCC  
5
83  
6
84  
7
85  
8
86  
9
87  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
88  
89  
VCCIB4  
GNDQ  
90  
IO170NDB4V2  
IO170PDB4V2  
IO166NDB4V1  
IO166PDB4V1  
IO156NDB4V0  
GDC2/IO156PDB4V0  
IO154NPB4V0  
GND  
GND  
91  
VMV5  
92  
GNDQ  
93  
IO233NDB5V4  
GEA2/IO233PDB5V4  
IO232NDB5V4  
GEB2/IO232PDB5V4  
IO231NDB5V4  
GEC2/IO231PDB5V4  
IO230PSB5V4  
VCCIB5  
94  
GND  
95  
VCCIB7  
96  
IO285PDB7V1  
IO285NDB7V1  
IO279PSB7V0  
GFC1/IO275PSB7V0  
GFB1/IO274PDB7V0  
GFB0/IO274NDB7V0  
VCOMPLF  
97  
98  
GDB2/IO155PSB4V0  
GDA2/IO154PPB4V0  
GNDQ  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
TCK  
IO218NDB5V3  
IO218PDB5V3  
GND  
TDI  
TMS  
GFA0/IO273NPB6V4  
VCCPLF  
VMV4  
IO214PSB5V2  
IO212NDB5V2  
IO212PDB5V2  
IO208NDB5V1  
IO208PDB5V1  
VCC  
GND  
GFA1/IO273PPB6V4  
GND  
VPUMP  
GNDQ  
GFA2/IO272PDB6V4  
IO272NDB6V4  
GFB2/IO271PPB6V4  
GFC2/IO270PPB6V4  
IO271NPB6V4  
IO270NPB6V4  
VCC  
TDO  
TRST  
VJTAG  
VCCIB5  
VMV3  
IO202NDB5V1  
IO202PDB5V1  
IO198NDB5V0  
IO198PDB5V0  
IO197NDB5V0  
IO197PDB5V0  
GDA0/IO153NPB3V4  
GDB0/IO152NPB3V4  
GDA1/IO153PPB3V4  
GDB1/IO152PPB3V4  
GDC0/IO151NDB3V4  
GDC1/IO151PDB3V4  
IO252PDB6V2  
IO252NDB6V2  
IO248PSB6V1  
4-6  
Revision 13  
ProASIC3E Flash Family FPGAs  
PQ208  
PQ208  
PQ208  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
IO134NDB3V2  
IO134PDB3V2  
IO132NDB3V2  
IO132PDB3V2  
GND  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
VMV1  
GNDQ  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
IO11PDB0V1  
IO11NDB0V1  
GBA1/IO81PDB1V4  
GBA0/IO81NDB1V4  
GBB1/IO80PDB1V4  
GND  
IO08PDB0V0  
IO08NDB0V0  
VCCIB0  
VCCIB3  
GAC1/IO02PDB0V0  
GAC0/IO02NDB0V0  
GAB1/IO01PDB0V0  
GAB0/IO01NDB0V0  
GAA1/IO00PDB0V0  
GAA0/IO00NDB0V0  
GNDQ  
GCC2/IO117PSB3V0  
GCB2/IO116PSB3V0  
NC  
GBB0/IO80NDB1V4  
GBC1/IO79PDB1V4  
GBC0/IO79NDB1V4  
IO74PDB1V4  
IO74NDB1V4  
IO70PDB1V3  
IO70NDB1V3  
VCCIB1  
IO115NDB3V0  
GCA2/IO115PDB3V0  
GCA1/IO114PPB3V0  
GND  
VMV0  
VCCPLC  
GCA0/IO114NPB3V0  
VCOMPLC  
VCC  
IO56PSB1V1  
IO55PDB1V1  
IO55NDB1V1  
IO54PDB1V1  
IO54NDB1V1  
IO40PDB0V4  
GND  
GCB0/IO113NDB2V3  
GCB1/IO113PDB2V3  
GCC1/IO112PSB2V3  
IO110NDB2V3  
IO110PDB2V3  
IO106PSB2V3  
VCCIB2  
IO40NDB0V4  
IO37PDB0V4  
IO37NDB0V4  
IO35PDB0V4  
IO35NDB0V4  
IO32PDB0V3  
IO32NDB0V3  
VCCIB0  
GND  
VCC  
IO99NDB2V2  
IO99PDB2V2  
IO96NDB2V1  
IO96PDB2V1  
IO91NDB2V1  
IO91PDB2V1  
IO88NDB2V0  
IO88PDB2V0  
GBC2/IO84PSB2V0  
GBA2/IO82PSB2V0  
GBB2/IO83PSB2V0  
VMV2  
VCC  
IO28PDB0V3  
IO28NDB0V3  
IO24PDB0V2  
IO24NDB0V2  
IO21PSB0V2  
IO16PDB0V1  
IO16NDB0V1  
GND  
GNDQ  
GND  
Revision 13  
4-7  
Package Pin Assignments  
FG256  
A1 Ball Pad Corner  
16 15 14 13 12 11 10 9  
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
4-8  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG256  
FG256  
FG256  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
A1  
A2  
GND  
C5  
C6  
GAC0/IO02NDB0V0  
GAC1/IO02PDB0V0  
IO15NDB0V2  
IO15PDB0V2  
IO20PDB1V0  
IO25NDB1V0  
IO27PDB1V0  
GBC0/IO33NDB1V1  
VCCPLB  
E9  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
F1  
IO21NDB1V0  
VCCIB1  
GAA0/IO00NDB0V0  
GAA1/IO00PDB0V0  
GAB0/IO01NDB0V0  
IO05PDB0V0  
A3  
C7  
VCCIB1  
A4  
C8  
VMV1  
A5  
C9  
GBC2/IO38PDB2V0  
IO37NDB2V0  
IO41NDB2V0  
IO41PDB2V0  
IO124PDB7V0  
IO125PDB7V0  
IO126PDB7V0  
IO130NDB7V1  
VCCIB7  
A6  
IO10PDB0V1  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
D1  
A7  
IO12PDB0V2  
A8  
IO16NDB0V2  
IO23NDB1V0  
IO23PDB1V0  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
VMV2  
F2  
IO28NDB1V1  
IO28PDB1V1  
IO36NDB2V0  
IO42PDB2V0  
IO128PDB7V1  
IO129PDB7V1  
GAC2/IO132PDB7V1  
VCOMPLA  
F3  
F4  
GBB1/IO34PDB1V1  
GBA0/IO35NDB1V1  
GBA1/IO35PDB1V1  
GND  
F5  
D2  
F6  
GND  
D3  
F7  
VCC  
D4  
F8  
VCC  
GAB2/IO133PDB7V1  
GAA2/IO134PDB7V1  
GNDQ  
D5  
GNDQ  
F9  
VCC  
B2  
D6  
IO09NDB0V1  
IO09PDB0V1  
IO13PDB0V2  
IO21PDB1V0  
IO25PDB1V0  
IO27NDB1V0  
GNDQ  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
VCC  
B3  
D7  
GND  
B4  
GAB1/IO01PDB0V0  
IO05NDB0V0  
IO10NDB0V1  
IO12NDB0V2  
IO16PDB0V2  
D8  
VCCIB2  
B5  
D9  
IO38NDB2V0  
IO40NDB2V0  
IO40PDB2V0  
IO45PSB2V1  
IO124NDB7V0  
IO125NDB7V0  
IO126NDB7V0  
GFC1/IO120PPB7V0  
VCCIB7  
B6  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
B7  
B8  
B9  
IO20NDB1V0  
IO24NDB1V0  
IO24PDB1V0  
VCOMPLB  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
GBB2/IO37PDB2V0  
IO39PDB2V0  
IO39NDB2V0  
IO128NDB7V1  
IO129NDB7V1  
IO132NDB7V1  
IO130PDB7V1  
VMV0  
G2  
G3  
GBC1/IO33PDB1V1  
GBB0/IO34NDB1V1  
GNDQ  
G4  
G5  
E2  
G6  
VCC  
GBA2/IO36PDB2V0  
IO42NDB2V0  
IO133NDB7V1  
IO134NDB7V1  
VMV7  
E3  
G7  
GND  
E4  
G8  
GND  
E5  
G9  
GND  
C2  
E6  
VCCIB0  
G10  
G11  
G12  
GND  
C3  
E7  
VCCIB0  
VCC  
C4  
VCCPLA  
E8  
IO13NDB0V2  
VCCIB2  
Revision 13  
4-9  
Package Pin Assignments  
FG256  
FG256  
FG256  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
G13  
G14  
G15  
G16  
H1  
GCC1/IO50PPB2V1  
IO44NDB2V1  
IO44PDB2V1  
IO49NSB2V1  
GFB0/IO119NPB7V0  
GFA0/IO118NDB6V1  
GFB1/IO119PPB7V0  
VCOMPLF  
K1  
K2  
GFC2/IO115PSB6V1  
IO113PPB6V1  
IO112PDB6V1  
IO112NDB6V1  
VCCIB6  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
N1  
VMV5  
VCCIB5  
K3  
VCCIB5  
K4  
IO84NDB5V0  
IO84PDB5V0  
VCCIB4  
K5  
H2  
K6  
VCC  
H3  
K7  
GND  
VCCIB4  
H4  
K8  
GND  
VMV3  
H5  
GFC0/IO120NPB7V0  
VCC  
K9  
GND  
VCCPLD  
H6  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
GND  
GDB1/IO66PPB3V1  
GDC1/IO65PDB3V1  
IO61NDB3V1  
IO105PDB6V0  
IO105NDB6V0  
GEC1/IO104PPB6V0  
VCOMPLE  
H7  
GND  
VCC  
H8  
GND  
VCCIB3  
H9  
GND  
IO54NPB3V0  
IO57NPB3V0  
IO55NPB3V0  
IO57PPB3V0  
IO113NPB6V1  
IO109PPB6V0  
IO108PDB6V0  
IO108NDB6V0  
VCCIB6  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
GND  
N2  
VCC  
N3  
GCC0/IO50NPB2V1  
GCB1/IO51PPB2V1  
GCA0/IO52NPB3V0  
VCOMPLC  
N4  
N5  
GNDQ  
L2  
N6  
GEA2/IO101PPB5V2  
IO92NDB5V1  
IO90NDB5V1  
IO82NDB5V0  
IO74NDB4V1  
IO74PDB4V1  
GNDQ  
L3  
N7  
GCB0/IO51NPB2V1  
GFA2/IO117PSB6V1  
GFA1/IO118PDB6V1  
VCCPLF  
L4  
N8  
L5  
N9  
J2  
L6  
GND  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
J3  
L7  
VCC  
J4  
IO116NDB6V1  
GFB2/IO116PDB6V1  
VCC  
L8  
VCC  
J5  
L9  
VCC  
VCOMPLD  
J6  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
M2  
M3  
M4  
VCC  
VJTAG  
J7  
GND  
GND  
GDC0/IO65NDB3V1  
GDA1/IO67PDB3V1  
GEB1/IO103PDB6V0  
GEB0/IO103NDB6V0  
VMV6  
J8  
GND  
VCCIB3  
J9  
GND  
GDB0/IO66NPB3V1  
IO60NDB3V1  
IO60PDB3V1  
IO61PDB3V1  
IO109NPB6V0  
IO106NDB6V0  
IO106PDB6V0  
GEC0/IO104NPB6V0  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
GND  
P2  
VCC  
P3  
GCB2/IO54PPB3V0  
GCA1/IO52PPB3V0  
GCC2/IO55PPB3V0  
VCCPLC  
P4  
VCCPLE  
P5  
IO101NPB5V2  
IO95PPB5V1  
IO92PDB5V1  
IO90PDB5V1  
P6  
P7  
GCA2/IO53PSB3V0  
P8  
4-10  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG256  
FG256  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
IO82PDB5V0  
IO76NDB4V1  
IO76PDB4V1  
VMV4  
T13  
T14  
T15  
T16  
IO68NDB4V0  
GDA2/IO68PDB4V0  
TMS  
GND  
TCK  
VPUMP  
TRST  
GDA0/IO67NDB3V1  
GEA1/IO102PDB6V0  
GEA0/IO102NDB6V0  
GNDQ  
R2  
R3  
R4  
GEC2/IO99PDB5V2  
IO95NPB5V1  
IO91NDB5V1  
IO91PDB5V1  
IO83NDB5V0  
IO83PDB5V0  
IO77NDB4V1  
IO77PDB4V1  
IO69NDB4V0  
GDB2/IO69PDB4V0  
TDI  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
GNDQ  
TDO  
GND  
T2  
IO100NDB5V2  
GEB2/IO100PDB5V2  
IO99NDB5V2  
IO88NDB5V0  
IO88PDB5V0  
IO89NSB5V0  
IO80NSB4V1  
IO81NDB4V1  
IO81PDB4V1  
IO70NDB4V0  
GDC2/IO70PDB4V0  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
Revision 13  
4-11  
Package Pin Assignments  
FG324  
A1 Ball Pad Corner  
1
9
7
6
4
3
2
18 17 16 15 14 13 12 11 10  
8
5
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
4-12  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG324  
FG324  
FG324  
Pin Number  
A1  
A3PE3000 FBGA  
GND  
Pin Number  
C1  
A3PE3000 FBGA  
IO305NDB7V3  
IO308NDB7V4  
GAA2/IO309PPB7V4  
GAA1/IO00PPB0V0  
VMV0  
Pin Number  
A3PE3000 FBGA  
IO303NDB7V3  
GNDQ  
E1  
E2  
A2  
IO08NDB0V0  
IO08PDB0V0  
IO10NDB0V1  
IO10PDB0V1  
IO12PDB0V1  
GND  
C2  
A3  
C3  
E3  
VMV7  
A4  
C4  
E4  
IO307NPB7V4  
VCCPLA  
A5  
C5  
E5  
A6  
C6  
IO14NDB0V1  
IO18PDB0V2  
IO40NDB0V4  
IO40PDB0V4  
IO44PDB1V0  
IO56NDB1V1  
IO64NDB1V2  
IO64PDB1V2  
VMV1  
E6  
GAB0/IO01NPB0V0  
VCCIB0  
A7  
C7  
E7  
A8  
IO32NDB0V3  
IO32PDB0V3  
IO42PPB1V0  
IO52NPB1V1  
GND  
C8  
E8  
GND  
A9  
C9  
E9  
IO28NDB0V3  
IO48PDB1V0  
GND  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
B1  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
D1  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
F1  
VCCIB1  
IO66NDB1V3  
IO72NDB1V3  
IO72PDB1V3  
IO74NDB1V4  
IO74PDB1V4  
GND  
IO60NPB1V2  
VCCPLB  
GBC0/IO79NDB1V4  
GBC1/IO79PDB1V4  
GBB2/IO83PPB2V0  
IO88NDB2V0  
IO303PDB7V3  
VCCIB7  
IO82NDB2V0  
VMV2  
GNDQ  
IO90NDB2V1  
IO299NDB7V3  
IO299PDB7V3  
IO295PDB7V2  
IO295NDB7V2  
VCOMPLA  
IO305PDB7V3  
GAB2/IO308PDB7V4  
GAA0/IO00NPB0V0  
VCCIB0  
B2  
D2  
F2  
B3  
D3  
GAC2/IO307PPB7V4  
IO309NPB7V4  
GAB1/IO01PPB0V0  
IO14PDB0V1  
IO24NDB0V2  
IO24PDB0V2  
IO28PDB0V3  
IO48NDB1V0  
IO56PDB1V1  
IO60PPB1V2  
F3  
B4  
D4  
F4  
B5  
GNDQ  
D5  
F5  
B6  
IO12NDB0V1  
IO18NDB0V2  
VCCIB0  
D6  
F6  
IO291PPB7V2  
GAC0/IO02NDB0V0  
GAC1/IO02PDB0V0  
IO26PDB0V3  
IO34PDB0V4  
IO58NDB1V2  
IO58PDB1V2  
IO94PPB2V1  
VCOMPLB  
B7  
D7  
F7  
B8  
D8  
F8  
B9  
IO42NPB1V0  
IO44NDB1V0  
VCCIB1  
D9  
F9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
IO52PPB1V1  
IO66PDB1V3  
GNDQ  
GBB0/IO80NDB1V4  
GBB1/IO80PDB1V4  
GBA2/IO82PDB2V0  
IO83NPB2V0  
VCCIB2  
VCCIB1  
GBC2/IO84PDB2V0  
IO84NDB2V0  
IO92NDB2V1  
IO92PDB2V1  
GBA0/IO81NDB1V4  
GBA1/IO81PDB1V4  
IO88PDB2V0  
IO90PDB2V1  
Revision 13  
4-13  
Package Pin Assignments  
FG324  
FG324  
FG324  
Pin Number  
G1  
A3PE3000 FBGA  
Pin Number  
J1  
A3PE3000 FBGA  
IO267NDB6V4  
GFA0/IO273NDB6V4  
VCOMPLF  
Pin Number  
L1  
A3PE3000 FBGA  
IO263NDB6V3  
VCCIB6  
GND  
IO287PDB7V1  
IO287NDB7V1  
IO283PPB7V1  
VCCIB7  
G2  
J2  
L2  
G3  
J3  
L3  
IO259PDB6V3  
IO259NDB6V3  
GND  
G4  
J4  
GFA2/IO272PDB6V4  
GFB0/IO274NPB7V0  
GFC0/IO275NDB7V0  
GFC1/IO275PDB7V0  
GND  
L4  
G5  
J5  
L5  
G6  
IO279PDB7V0  
IO291NPB7V2  
VCC  
J6  
L6  
IO270NPB6V4  
VCC  
G7  
J7  
L7  
G8  
J8  
L8  
VCC  
G9  
IO26NDB0V3  
IO34NDB0V4  
VCC  
J9  
GND  
L9  
GND  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
H1  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
K1  
GND  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
M1  
GND  
GND  
VCC  
IO94NPB2V1  
IO98PDB2V2  
VCCIB2  
GCA2/IO115PDB3V0  
GCA1/IO114PDB3V0  
GCA0/IO114NDB3V0  
GCB0/IO113NDB2V3  
VCOMPLC  
VCC  
IO132PDB3V2  
GND  
GCC0/IO112NPB2V3  
IO104PDB2V2  
IO104NDB2V2  
GND  
IO117NDB3V0  
IO128NPB3V1  
VCCIB3  
IO120NPB3V0  
IO108NDB2V3  
IO263PDB6V3  
GFA1/IO273PDB6V4  
VCCPLF  
IO124PPB3V1  
GND  
IO267PDB6V4  
VCCIB7  
H2  
K2  
M2  
IO255PDB6V2  
IO255NDB6V2  
IO251PPB6V2  
VCCIB6  
H3  
IO283NPB7V1  
GFB1/IO274PPB7V0  
GND  
K3  
M3  
H4  
K4  
IO272NDB6V4  
GFC2/IO270PPB6V4  
GFB2/IO271PDB6V4  
IO271NDB6V4  
GND  
M4  
H5  
K5  
M5  
H6  
IO279NDB7V0  
VCC  
K6  
M6  
GEB0/IO235NDB6V0  
GEB1/IO235PDB6V0  
VCC  
H7  
K7  
M7  
H8  
VCC  
K8  
M8  
H9  
GND  
K9  
GND  
M9  
IO192PPB4V4  
IO154NPB4V0  
VCC  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
GND  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
GND  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
VCC  
GND  
VCC  
IO115NDB3V0  
GCB2/IO116PDB3V0  
IO116NDB3V0  
GCC2/IO117PDB3V0  
VCCPLC  
GDA0/IO153NPB3V4  
IO132NDB3V2  
VCCIB3  
IO98NDB2V2  
GND  
GCB1/IO113PDB2V3  
GCC1/IO112PPB2V3  
VCCIB2  
IO134NDB3V2  
IO134PDB3V2  
IO128PPB3V1  
GND  
IO124NPB3V1  
IO120PPB3V0  
IO108PDB2V3  
4-14  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG324  
FG324  
FG324  
Pin Number  
N1  
A3PE3000 FBGA  
IO247NDB6V1  
IO247PDB6V1  
IO251NPB6V2  
GEC0/IO236NDB6V0  
VCOMPLE  
Pin Number  
R1  
A3PE3000 FBGA  
IO245NDB6V1  
VCCIB6  
Pin Number  
A3PE3000 FBGA  
IO241NDB6V0  
GEA2/IO233PPB5V4  
GEC2/IO231PPB5V4  
VCCIB5  
U1  
U2  
N2  
R2  
N3  
R3  
GEA1/IO234PPB6V0  
IO232NDB5V4  
GEB2/IO232PDB5V4  
IO214NDB5V2  
IO202PDB5V1  
IO194PDB5V0  
IO186PDB4V4  
IO178PDB4V3  
IO168NSB4V1  
IO164PDB4V1  
GDC2/IO156PDB4V0  
TCK  
U3  
N4  
R4  
U4  
N5  
R5  
U5  
GNDQ  
N6  
IO212NDB5V2  
IO212PDB5V2  
IO192NPB4V4  
IO174PDB4V2  
IO170PDB4V2  
GDA2/IO154PPB4V0  
GDB2/IO155PPB4V0  
GDA1/IO153PPB3V4  
VCOMPLD  
R6  
U6  
IO208PDB5V1  
IO198PPB5V0  
VCCIB5  
N7  
R7  
U7  
N8  
R8  
U8  
N9  
R9  
U9  
IO182NPB4V3  
IO180NPB4V3  
VCCIB4  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
P1  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
T1  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
V1  
IO166PPB4V1  
IO162PDB4V1  
GNDQ  
GDB0/IO152NDB3V4  
GDB1/IO152PDB3V4  
IO138NDB3V3  
IO138PDB3V3  
IO245PDB6V1  
GNDQ  
VPUMP  
VCCIB4  
TRST  
TMS  
VCCIB3  
VMV3  
IO142NDB3V3  
IO241PDB6V0  
GEA0/IO234NPB6V0  
IO233NPB5V4  
IO231NPB5V4  
VMV5  
IO146NDB3V4  
GND  
P2  
T2  
V2  
IO218NDB5V3  
IO218PDB5V3  
IO206NDB5V1  
IO206PDB5V1  
IO198NPB5V0  
GND  
P3  
VMV6  
T3  
V3  
P4  
GEC1/IO236PDB6V0  
VCCPLE  
T4  
V4  
P5  
T5  
V5  
P6  
IO214PDB5V2  
VCCIB5  
T6  
IO208NDB5V1  
IO202NDB5V1  
IO194NDB5V0  
IO186NDB4V4  
IO178NDB4V3  
IO166NPB4V1  
IO164NDB4V1  
IO156NDB4V0  
VMV4  
V6  
P7  
T7  
V7  
P8  
GND  
T8  
V8  
IO190NDB4V4  
IO190PDB4V4  
IO182PPB4V3  
IO180PPB4V3  
GND  
P9  
IO174NDB4V2  
IO170NDB4V2  
GND  
T9  
V9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
VCCIB4  
IO155NPB4V0  
VCCPLD  
IO162NDB4V1  
IO160NDB4V0  
IO160PDB4V0  
IO158NDB4V0  
IO158PDB4V0  
GND  
VJTAG  
TDI  
GDC0/IO151NDB3V4  
GDC1/IO151PDB3V4  
IO142PDB3V3  
GNDQ  
TDO  
IO146PDB3V4  
Revision 13  
4-15  
Package Pin Assignments  
FG484  
A1 Ball Pad Corner  
22 21 20 19 18 17 16 15 14 13 12 11 10 9  
8
7
6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
4-16  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG484  
FG484  
FG484  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
A1  
A2  
GND  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AB1  
NC  
IO71NDB4V0  
IO71PDB4V0  
NC  
B7  
B8  
IO07PDB0V1  
IO11NDB0V1  
IO17NDB0V2  
IO14PDB0V2  
IO19PDB0V2  
IO22NDB1V0  
IO26NDB1V0  
NC  
GND  
A3  
VCCIB0  
B9  
A4  
IO06NDB0V1  
IO06PDB0V1  
IO08NDB0V1  
IO08PDB0V1  
IO11PDB0V1  
IO17PDB0V2  
IO18NDB0V2  
IO18PDB0V2  
IO22PDB1V0  
IO26PDB1V0  
IO29NDB1V1  
IO29PDB1V1  
IO31NDB1V1  
IO31PDB1V1  
IO32NDB1V1  
NC  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C1  
A5  
NC  
A6  
NC  
A7  
VCCIB3  
A8  
GND  
A9  
GND  
NC  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AB2  
GND  
IO30NDB1V1  
IO30PDB1V1  
IO32PDB1V1  
NC  
AB3  
VCCIB5  
AB4  
IO97NDB5V2  
IO97PDB5V2  
IO93NDB5V1  
IO93PDB5V1  
IO87NDB5V0  
IO87PDB5V0  
NC  
AB5  
AB6  
NC  
AB7  
VCCIB2  
GND  
AB8  
AB9  
VCCIB7  
NC  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
B1  
C2  
NC  
C3  
NC  
VCCIB1  
IO75NDB4V1  
IO75PDB4V1  
IO72NDB4V0  
IO72PDB4V0  
IO73NDB4V0  
IO73PDB4V0  
NC  
C4  
NC  
GND  
C5  
GND  
GND  
C6  
IO04NDB0V0  
IO04PDB0V0  
VCC  
GND  
C7  
VCCIB6  
C8  
NC  
C9  
VCC  
IO98PDB5V2  
IO96NDB5V2  
IO96PDB5V2  
IO86NDB5V0  
IO86PDB5V0  
IO85PDB5V0  
IO85NDB5V0  
IO78PPB4V1  
IO79NDB4V1  
IO79PDB4V1  
NC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
IO14NDB0V2  
IO19NDB0V2  
NC  
NC  
VCCIB4  
GND  
NC  
GND  
VCC  
GND  
VCC  
B2  
VCCIB7  
NC  
B3  
NC  
NC  
B4  
IO03NDB0V0  
IO03PDB0V0  
IO07NDB0V1  
GND  
B5  
NC  
B6  
NC  
Revision 13  
4-17  
Package Pin Assignments  
FG484  
FG484  
FG484  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
C21  
C22  
D1  
NC  
VCCIB2  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
F1  
IO24NDB1V0  
IO24PDB1V0  
GBC1/IO33PDB1V1  
GBB0/IO34NDB1V1  
GNDQ  
G5  
G6  
IO129PDB7V1  
GAC2/IO132PDB7V1  
VCOMPLA  
GNDQ  
NC  
G7  
D2  
NC  
G8  
D3  
NC  
G9  
IO09NDB0V1  
IO09PDB0V1  
IO13PDB0V2  
IO21PDB1V0  
IO25PDB1V0  
IO27NDB1V0  
GNDQ  
D4  
GND  
GBA2/IO36PDB2V0  
IO42NDB2V0  
GND  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
H1  
D5  
GAA0/IO00NDB0V0  
GAA1/IO00PDB0V0  
GAB0/IO01NDB0V0  
IO05PDB0V0  
IO10PDB0V1  
IO12PDB0V2  
IO16NDB0V2  
IO23NDB1V0  
IO23PDB1V0  
IO28NDB1V1  
IO28PDB1V1  
GBB1/IO34PDB1V1  
GBA0/IO35NDB1V1  
GBA1/IO35PDB1V1  
GND  
D6  
D7  
NC  
D8  
NC  
D9  
NC  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E1  
F2  
IO131NDB7V1  
IO131PDB7V1  
IO133NDB7V1  
IO134NDB7V1  
VMV7  
VCOMPLB  
GBB2/IO37PDB2V0  
IO39PDB2V0  
IO39NDB2V0  
IO43PDB2V0  
IO43NDB2V0  
NC  
F3  
F4  
F5  
F6  
F7  
VCCPLA  
F8  
GAC0/IO02NDB0V0  
GAC1/IO02PDB0V0  
IO15NDB0V2  
IO15PDB0V2  
IO20PDB1V0  
IO25NDB1V0  
IO27PDB1V0  
GBC0/IO33NDB1V1  
VCCPLB  
F9  
NC  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
G1  
H2  
NC  
H3  
VCC  
NC  
H4  
IO128NDB7V1  
IO129NDB7V1  
IO132NDB7V1  
IO130PDB7V1  
VMV0  
NC  
H5  
NC  
H6  
NC  
H7  
E2  
NC  
H8  
E3  
GND  
VMV2  
H9  
VCCIB0  
E4  
GAB2/IO133PDB7V1  
GAA2/IO134PDB7V1  
GNDQ  
IO36NDB2V0  
IO42PDB2V0  
NC  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
VCCIB0  
E5  
IO13NDB0V2  
IO21NDB1V0  
VCCIB1  
E6  
E7  
GAB1/IO01PDB0V0  
IO05NDB0V0  
IO10NDB0V1  
IO12NDB0V2  
IO16PDB0V2  
IO20NDB1V0  
NC  
E8  
NC  
VCCIB1  
E9  
IO127NDB7V1  
IO127PDB7V1  
NC  
VMV1  
E10  
E11  
E12  
G2  
GBC2/IO38PDB2V0  
IO37NDB2V0  
IO41NDB2V0  
G3  
G4  
IO128PDB7V1  
4-18  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG484  
FG484  
FG484  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
H19  
H20  
H21  
H22  
J1  
IO41PDB2V0  
VCC  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
L1  
GND  
GND  
M3  
M4  
IO117NDB6V1  
GFA2/IO117PDB6V1  
GFA1/IO118PDB6V1  
VCCPLF  
NC  
GND  
M5  
NC  
VCC  
M6  
IO123NDB7V0  
IO123PDB7V0  
NC  
VCCIB2  
M7  
IO116NDB6V1  
GFB2/IO116PDB6V1  
VCC  
J2  
GCC1/IO50PPB2V1  
IO44NDB2V1  
IO44PDB2V1  
IO49NPB2V1  
IO45NPB2V1  
IO48NDB2V1  
IO46NDB2V1  
NC  
M8  
J3  
M9  
J4  
IO124PDB7V0  
IO125PDB7V0  
IO126PDB7V0  
IO130NDB7V1  
VCCIB7  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
N1  
GND  
J5  
GND  
J6  
GND  
J7  
GND  
J8  
VCC  
J9  
GND  
GCB2/IO54PPB3V0  
GCA1/IO52PPB3V0  
GCC2/IO55PPB3V0  
VCCPLC  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
K1  
VCC  
L2  
IO122PDB7V0  
IO122NDB7V0  
GFB0/IO119NPB7V0  
GFA0/IO118NDB6V1  
GFB1/IO119PPB7V0  
VCOMPLF  
VCC  
L3  
VCC  
L4  
VCC  
L5  
GCA2/IO53PDB3V0  
IO53NDB3V0  
IO56PDB3V0  
NC  
GND  
L6  
VCCIB2  
L7  
IO38NDB2V0  
IO40NDB2V0  
IO40PDB2V0  
IO45PPB2V1  
NC  
L8  
GFC0/IO120NPB7V0  
VCC  
L9  
IO114PPB6V1  
IO111NDB6V1  
NC  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
M1  
GND  
N2  
GND  
N3  
GND  
N4  
GFC2/IO115PPB6V1  
IO113PPB6V1  
IO112PDB6V1  
IO112NDB6V1  
VCCIB6  
IO48PDB2V1  
IO46PDB2V1  
IO121NDB7V0  
IO121PDB7V0  
NC  
GND  
N5  
VCC  
N6  
GCC0/IO50NPB2V1  
GCB1/IO51PPB2V1  
GCA0/IO52NPB3V0  
VCOMPLC  
N7  
K2  
N8  
K3  
N9  
VCC  
K4  
IO124NDB7V0  
IO125NDB7V0  
IO126NDB7V0  
GFC1/IO120PPB7V0  
VCCIB7  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
GND  
K5  
GCB0/IO51NPB2V1  
IO49PPB2V1  
IO47NDB2V1  
IO47PDB2V1  
NC  
GND  
K6  
GND  
K7  
GND  
K8  
VCC  
K9  
VCC  
VCCIB3  
K10  
GND  
M2  
IO114NPB6V1  
IO54NPB3V0  
Revision 13  
4-19  
Package Pin Assignments  
FG484  
FG484  
FG484  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
N17  
N18  
N19  
N20  
N21  
N22  
P1  
IO57NPB3V0  
IO55NPB3V0  
IO57PPB3V0  
NC  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
T1  
VCCIB5  
VCCIB5  
U1  
U2  
NC  
IO107PDB6V0  
IO107NDB6V0  
GEB1/IO103PDB6V0  
GEB0/IO103NDB6V0  
VMV6  
IO84NDB5V0  
IO84PDB5V0  
VCCIB4  
U3  
U4  
IO56NDB3V0  
IO58PDB3V0  
NC  
U5  
VCCIB4  
U6  
VMV3  
U7  
VCCPLE  
P2  
IO111PDB6V1  
IO115NPB6V1  
IO113NPB6V1  
IO109PPB6V0  
IO108PDB6V0  
IO108NDB6V0  
VCCIB6  
VCCPLD  
U8  
IO101NPB5V2  
IO95PPB5V1  
IO92PDB5V1  
IO90PDB5V1  
IO82PDB5V0  
IO76NDB4V1  
IO76PDB4V1  
VMV4  
P3  
GDB1/IO66PPB3V1  
GDC1/IO65PDB3V1  
IO61NDB3V1  
VCC  
U9  
P4  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
V1  
P5  
P6  
P7  
IO59NDB3V0  
IO62PDB3V1  
NC  
P8  
P9  
GND  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
R1  
VCC  
T2  
IO110NDB6V0  
NC  
TCK  
VCC  
T3  
VPUMP  
VCC  
T4  
IO105PDB6V0  
IO105NDB6V0  
GEC1/IO104PPB6V0  
VCOMPLE  
TRST  
VCC  
T5  
GDA0/IO67NDB3V1  
NC  
GND  
T6  
VCCIB3  
T7  
IO64NDB3V1  
IO63PDB3V1  
NC  
GDB0/IO66NPB3V1  
IO60NDB3V1  
IO60PDB3V1  
IO61PDB3V1  
NC  
T8  
GNDQ  
T9  
GEA2/IO101PPB5V2  
IO92NDB5V1  
IO90NDB5V1  
IO82NDB5V0  
IO74NDB4V1  
IO74PDB4V1  
GNDQ  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
V2  
NC  
V3  
GND  
V4  
GEA1/IO102PDB6V0  
GEA0/IO102NDB6V0  
GNDQ  
IO59PDB3V0  
IO58NDB3V0  
NC  
V5  
V6  
V7  
GEC2/IO99PDB5V2  
IO95NPB5V1  
IO91NDB5V1  
IO91PDB5V1  
IO83NDB5V0  
IO83PDB5V0  
IO77NDB4V1  
IO77PDB4V1  
R2  
IO110PDB6V0  
VCC  
VCOMPLD  
V8  
R3  
VJTAG  
V9  
R4  
IO109NPB6V0  
IO106NDB6V0  
IO106PDB6V0  
GEC0/IO104NPB6V0  
VMV5  
GDC0/IO65NDB3V1  
GDA1/IO67PDB3V1  
NC  
V10  
V11  
V12  
V13  
V14  
R5  
R6  
R7  
IO64PDB3V1  
IO62NDB3V1  
R8  
4-20  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG484  
FG484  
Pin Number A3PE600 Function  
Pin Number A3PE600 Function  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W1  
IO69NDB4V0  
GDB2/IO69PDB4V0  
TDI  
Y7  
IO94PDB5V1  
VCC  
Y8  
Y9  
VCC  
GNDQ  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
IO89PDB5V0  
IO80PDB4V1  
IO78NPB4V1  
NC  
TDO  
GND  
NC  
IO63NDB3V1  
NC  
VCC  
VCC  
W2  
NC  
NC  
W3  
NC  
NC  
W4  
GND  
GND  
W5  
IO100NDB5V2  
GEB2/IO100PDB5V2  
IO99NDB5V2  
IO88NDB5V0  
IO88PDB5V0  
IO89NDB5V0  
IO80NDB4V1  
IO81NDB4V1  
IO81PDB4V1  
IO70NDB4V0  
GDC2/IO70PDB4V0  
IO68NDB4V0  
GDA2/IO68PDB4V0  
TMS  
NC  
W6  
NC  
W7  
NC  
W8  
VCCIB3  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y1  
GND  
NC  
NC  
NC  
VCCIB6  
Y2  
NC  
Y3  
NC  
Y4  
IO98NDB5V2  
GND  
Y5  
Y6  
IO94NDB5V1  
Revision 13  
4-21  
Package Pin Assignments  
FG484  
FG484  
FG484  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
A1  
A2  
GND  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AB1  
NC  
B7  
B8  
IO10PDB0V1  
IO15NDB0V1  
IO17NDB0V2  
IO20PDB0V2  
IO29PDB0V3  
IO32NDB1V0  
IO43NDB1V1  
NC  
GND  
IO117NDB4V0  
IO117PDB4V0  
IO115NDB4V0  
IO115PDB4V0  
NC  
A3  
VCCIB0  
B9  
A4  
IO05NDB0V0  
IO05PDB0V0  
IO11NDB0V1  
IO11PDB0V1  
IO15PDB0V1  
IO17PDB0V2  
IO27NDB0V3  
IO27PDB0V3  
IO32PDB1V0  
IO43PDB1V1  
IO47NDB1V1  
IO47PDB1V1  
IO51NDB1V2  
IO51PDB1V2  
IO54NDB1V3  
NC  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C1  
A5  
A6  
A7  
VCCIB3  
A8  
GND  
A9  
GND  
NC  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AB2  
GND  
IO53NDB1V2  
IO53PDB1V2  
IO54PDB1V3  
NC  
AB3  
VCCIB5  
AB4  
IO159NDB5V3  
IO159PDB5V3  
IO149NDB5V1  
IO149PDB5V1  
IO138NDB5V0  
IO138PDB5V0  
NC  
AB5  
AB6  
NC  
AB7  
VCCIB2  
GND  
AB8  
AB9  
VCCIB7  
NC  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
B1  
C2  
NC  
C3  
NC  
VCCIB1  
IO127NDB4V2  
IO127PDB4V2  
IO125NDB4V1  
IO125PDB4V1  
IO122NDB4V1  
IO122PDB4V1  
NC  
C4  
NC  
GND  
C5  
GND  
GND  
C6  
IO07NDB0V0  
IO07PDB0V0  
VCC  
GND  
C7  
VCCIB6  
C8  
NC  
C9  
VCC  
IO161PDB5V3  
IO155NDB5V2  
IO155PDB5V2  
IO154NDB5V2  
IO154PDB5V2  
IO143PDB5V1  
IO143NDB5V1  
IO131PPB4V2  
IO129NDB4V2  
IO129PDB4V2  
NC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
IO20NDB0V2  
IO29NDB0V3  
NC  
NC  
VCCIB4  
GND  
NC  
GND  
VCC  
GND  
VCC  
B2  
VCCIB7  
NC  
B3  
NC  
NC  
B4  
IO03NDB0V0  
IO03PDB0V0  
IO10NDB0V1  
GND  
B5  
NC  
B6  
NC  
4-22  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG484  
FG484  
FG484  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
C21  
C22  
D1  
NC  
VCCIB2  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
F1  
IO41NDB1V1  
IO41PDB1V1  
GBC1/IO55PDB1V3  
GBB0/IO56NDB1V3  
GNDQ  
G5  
G6  
IO217PDB7V3  
GAC2/IO219PDB7V3  
VCOMPLA  
GNDQ  
NC  
G7  
D2  
NC  
G8  
D3  
NC  
G9  
IO19NDB0V2  
IO19PDB0V2  
IO25PDB0V3  
IO33PDB1V0  
IO39PDB1V0  
IO45NDB1V1  
GNDQ  
D4  
GND  
GBA2/IO58PDB2V0  
IO63NDB2V0  
GND  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
H1  
D5  
GAA0/IO00NDB0V0  
GAA1/IO00PDB0V0  
GAB0/IO01NDB0V0  
IO09PDB0V1  
IO13PDB0V1  
IO21PDB0V2  
IO31NDB0V3  
IO37NDB1V0  
IO37PDB1V0  
IO49NDB1V2  
IO49PDB1V2  
GBB1/IO56PDB1V3  
GBA0/IO57NDB1V3  
GBA1/IO57PDB1V3  
GND  
D6  
D7  
IO69NDB2V1  
NC  
D8  
D9  
IO218NPB7V3  
IO216NDB7V3  
IO216PDB7V3  
IO220NDB7V3  
IO221NDB7V3  
VMV7  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E1  
F2  
VCOMPLB  
GBB2/IO59PDB2V0  
IO62PDB2V0  
IO62NDB2V0  
IO71PDB2V2  
IO71NDB2V2  
NC  
F3  
F4  
F5  
F6  
F7  
VCCPLA  
F8  
GAC0/IO02NDB0V0  
GAC1/IO02PDB0V0  
IO23NDB0V2  
IO23PDB0V2  
IO35PDB1V0  
IO39NDB1V0  
IO45PDB1V1  
GBC0/IO55NDB1V3  
VCCPLB  
F9  
IO209PSB7V2  
NC  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
G1  
H2  
H3  
VCC  
NC  
H4  
IO214NDB7V3  
IO217NDB7V3  
IO219NDB7V3  
IO215PDB7V3  
VMV0  
IO69PDB2V1  
NC  
H5  
H6  
NC  
H7  
E2  
IO218PPB7V3  
GND  
H8  
E3  
VMV2  
H9  
VCCIB0  
E4  
GAB2/IO220PDB7V3  
GAA2/IO221PDB7V3  
GNDQ  
IO58NDB2V0  
IO63PDB2V0  
NC  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
VCCIB0  
E5  
IO25NDB0V3  
IO33NDB1V0  
VCCIB1  
E6  
E7  
GAB1/IO01PDB0V0  
IO09NDB0V1  
IO13NDB0V1  
IO21NDB0V2  
IO31PDB0V3  
IO35NDB1V0  
NC  
E8  
NC  
VCCIB1  
E9  
IO211NDB7V2  
IO211PDB7V2  
NC  
VMV1  
E10  
E11  
E12  
G2  
GBC2/IO60PDB2V0  
IO59NDB2V0  
IO67NDB2V1  
G3  
G4  
IO214PDB7V3  
Revision 13  
4-23  
Package Pin Assignments  
FG484  
FG484  
FG484  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
H19  
H20  
H21  
H22  
J1  
IO67PDB2V1  
VCC  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
L1  
GND  
GND  
M3  
M4  
IO189NDB6V2  
GFA2/IO189PDB6V2  
GFA1/IO190PDB6V2  
VCCPLF  
VMV2  
GND  
M5  
IO74PSB2V2  
IO212NDB7V2  
IO212PDB7V2  
VMV7  
VCC  
M6  
VCCIB2  
M7  
IO188NDB6V2  
GFB2/IO188PDB6V2  
VCC  
J2  
GCC1/IO85PPB2V3  
IO73NDB2V2  
IO73PDB2V2  
IO81NPB2V3  
IO75NPB2V2  
IO77NDB2V2  
IO79NDB2V3  
NC  
M8  
J3  
M9  
J4  
IO206PDB7V1  
IO204PDB7V1  
IO210PDB7V2  
IO215NDB7V3  
VCCIB7  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
N1  
GND  
J5  
GND  
J6  
GND  
J7  
GND  
J8  
VCC  
J9  
GND  
GCB2/IO89PPB3V0  
GCA1/IO87PPB3V0  
GCC2/IO90PPB3V0  
VCCPLC  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
K1  
VCC  
L2  
IO196PDB7V0  
IO196NDB7V0  
GFB0/IO191NPB7V0  
GFA0/IO190NDB6V2  
GFB1/IO191PPB7V0  
VCOMPLF  
VCC  
L3  
VCC  
L4  
VCC  
L5  
GCA2/IO88PDB3V0  
IO88NDB3V0  
IO93PDB3V0  
NC  
GND  
L6  
VCCIB2  
L7  
IO60NDB2V0  
IO65NDB2V1  
IO65PDB2V1  
IO75PPB2V2  
GNDQ  
L8  
GFC0/IO192NPB7V0  
VCC  
L9  
IO185PPB6V2  
IO183NDB6V2  
VMV6  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
M1  
GND  
N2  
GND  
N3  
GND  
N4  
GFC2/IO187PPB6V2  
IO184PPB6V2  
IO186PDB6V2  
IO186NDB6V2  
VCCIB6  
IO77PDB2V2  
IO79PDB2V3  
IO200NDB7V1  
IO200PDB7V1  
GNDQ  
GND  
N5  
VCC  
N6  
GCC0/IO85NPB2V3  
GCB1/IO86PPB2V3  
GCA0/IO87NPB3V0  
VCOMPLC  
N7  
K2  
N8  
K3  
N9  
VCC  
K4  
IO206NDB7V1  
IO204NDB7V1  
IO210NDB7V2  
GFC1/IO192PPB7V0  
VCCIB7  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
GND  
K5  
GCB0/IO86NPB2V3  
IO81PPB2V3  
IO83NDB2V3  
IO83PDB2V3  
GNDQ  
GND  
K6  
GND  
K7  
GND  
K8  
VCC  
K9  
VCC  
VCCIB3  
K10  
GND  
M2  
IO185NPB6V2  
IO89NPB3V0  
4-24  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG484  
FG484  
FG484  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
N17  
N18  
N19  
N20  
N21  
N22  
P1  
IO91NPB3V0  
IO90NPB3V0  
IO91PPB3V0  
GNDQ  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
T1  
VCCIB5  
VCCIB5  
U1  
U2  
IO175PPB6V1  
IO173PDB6V0  
IO173NDB6V0  
GEB1/IO168PDB6V0  
GEB0/IO168NDB6V0  
VMV6  
IO135NDB5V0  
IO135PDB5V0  
VCCIB4  
U3  
U4  
IO93NDB3V0  
IO95PDB3V1  
NC  
U5  
VCCIB4  
U6  
VMV3  
U7  
VCCPLE  
P2  
IO183PDB6V2  
IO187NPB6V2  
IO184NPB6V2  
IO176PPB6V1  
IO182PDB6V1  
IO182NDB6V1  
VCCIB6  
VCCPLD  
U8  
IO166NPB5V3  
IO157PPB5V2  
IO145PDB5V1  
IO141PDB5V0  
IO139PDB5V0  
IO121NDB4V1  
IO121PDB4V1  
VMV4  
P3  
GDB1/IO109PPB3V2  
GDC1/IO108PDB3V2  
IO99NDB3V1  
VCC  
U9  
P4  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
V1  
P5  
P6  
P7  
IO98NDB3V1  
IO101PDB3V1  
NC  
P8  
P9  
GND  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
R1  
VCC  
T2  
IO177NDB6V1  
NC  
TCK  
VCC  
T3  
VPUMP  
VCC  
T4  
IO171PDB6V0  
IO171NDB6V0  
GEC1/IO169PPB6V0  
VCOMPLE  
TRST  
VCC  
T5  
GDA0/IO110NDB3V2  
NC  
GND  
T6  
VCCIB3  
T7  
IO103NDB3V2  
IO105PDB3V2  
NC  
GDB0/IO109NPB3V2  
IO97NDB3V1  
IO97PDB3V1  
IO99PDB3V1  
VMV3  
T8  
GNDQ  
T9  
GEA2/IO166PPB5V3  
IO145NDB5V1  
IO141NDB5V0  
IO139NDB5V0  
IO119NDB4V1  
IO119PDB4V1  
GNDQ  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
V2  
IO175NPB6V1  
GND  
V3  
V4  
GEA1/IO167PDB6V0  
GEA0/IO167NDB6V0  
GNDQ  
IO98PDB3V1  
IO95NDB3V1  
NC  
V5  
V6  
V7  
GEC2/IO164PDB5V3  
IO157NPB5V2  
IO151NDB5V2  
IO151PDB5V2  
IO137NDB5V0  
IO137PDB5V0  
IO123NDB4V1  
IO123PDB4V1  
R2  
IO177PDB6V1  
VCC  
VCOMPLD  
V8  
R3  
VJTAG  
V9  
R4  
IO176NPB6V1  
IO174NDB6V0  
IO174PDB6V0  
GEC0/IO169NPB6V0  
VMV5  
GDC0/IO108NDB3V2  
GDA1/IO110PDB3V2  
NC  
V10  
V11  
V12  
V13  
V14  
R5  
R6  
R7  
IO103PDB3V2  
IO101NDB3V1  
R8  
Revision 13  
4-25  
Package Pin Assignments  
FG484  
FG484  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W1  
IO112NDB4V0  
GDB2/IO112PDB4V0  
TDI  
Y7  
IO163PDB5V3  
Y8  
VCC  
Y9  
VCC  
GNDQ  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
IO147PDB5V1  
TDO  
IO133PDB4V2  
GND  
IO131NPB4V2  
NC  
NC  
IO105NDB3V2  
NC  
VCC  
VCC  
NC  
W2  
NC  
W3  
NC  
NC  
W4  
GND  
GND  
NC  
W5  
IO165NDB5V3  
GEB2/IO165PDB5V3  
IO164NDB5V3  
IO153NDB5V2  
IO153PDB5V2  
IO147NDB5V1  
IO133NDB4V2  
IO130NDB4V2  
IO130PDB4V2  
IO113NDB4V0  
GDC2/IO113PDB4V0  
IO111NDB4V0  
GDA2/IO111PDB4V0  
TMS  
W6  
NC  
W7  
NC  
W8  
VCCIB3  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y1  
GND  
NC  
NC  
NC  
VCCIB6  
Y2  
NC  
Y3  
NC  
Y4  
IO161NDB5V3  
GND  
Y5  
Y6  
IO163NDB5V3  
4-26  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG484  
FG484  
FG484  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
A1  
A2  
GND  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AB1  
IO170PDB4V2  
IO166NDB4V1  
IO166PDB4V1  
IO160NDB4V0  
IO160PDB4V0  
IO158NPB4V0  
VCCIB3  
B7  
B8  
IO14PDB0V1  
IO18NDB0V2  
IO24NDB0V2  
IO34PDB0V4  
IO40PDB0V4  
IO46NDB1V0  
IO54NDB1V1  
IO62NDB1V2  
IO62PDB1V2  
IO68NDB1V3  
IO68PDB1V3  
IO72PDB1V3  
IO74PDB1V4  
IO76NPB1V4  
VCCIB2  
GND  
A3  
VCCIB0  
B9  
A4  
IO10NDB0V1  
IO10PDB0V1  
IO16NDB0V1  
IO16PDB0V1  
IO18PDB0V2  
IO24PDB0V2  
IO28NDB0V3  
IO28PDB0V3  
IO46PDB1V0  
IO54PDB1V1  
IO56NDB1V1  
IO56PDB1V1  
IO64NDB1V2  
IO64PDB1V2  
IO72NDB1V3  
IO74NDB1V4  
VCCIB1  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C1  
A5  
A6  
A7  
A8  
GND  
A9  
GND  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AB2  
GND  
AB3  
VCCIB5  
AB4  
IO216NDB5V2  
IO216PDB5V2  
IO210NDB5V2  
IO210PDB5V2  
IO208NDB5V1  
IO208PDB5V1  
IO197NDB5V0  
IO197PDB5V0  
IO174NDB4V2  
IO174PDB4V2  
IO172NDB4V2  
IO172PDB4V2  
IO168NDB4V1  
IO168PDB4V1  
IO162NDB4V1  
IO162PDB4V1  
VCCIB4  
AB5  
AB6  
AB7  
AB8  
GND  
AB9  
VCCIB7  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
B1  
C2  
IO303PDB7V3  
IO305PDB7V3  
IO06NPB0V0  
GND  
C3  
C4  
GND  
C5  
GND  
C6  
IO12NDB0V1  
IO12PDB0V1  
VCC  
GND  
C7  
VCCIB6  
C8  
IO228PDB5V4  
IO224PDB5V3  
IO218NDB5V3  
IO218PDB5V3  
IO212NDB5V2  
IO212PDB5V2  
IO198PDB5V0  
IO198NDB5V0  
IO188PPB4V4  
IO180NDB4V3  
IO180PDB4V3  
IO170NDB4V2  
C9  
VCC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
IO34NDB0V4  
IO40NDB0V4  
IO48NDB1V0  
IO48PDB1V0  
VCC  
GND  
GND  
GND  
VCC  
B2  
VCCIB7  
IO70NDB1V3  
IO70PDB1V3  
GND  
B3  
IO06PPB0V0  
IO08NDB0V0  
IO08PDB0V0  
IO14NDB0V1  
B4  
B5  
IO76PPB1V4  
IO88NDB2V0  
B6  
Revision 13  
4-27  
Package Pin Assignments  
FG484  
FG484  
FG484  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
C21  
C22  
D1  
IO94PPB2V1  
VCCIB2  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
F1  
IO58NDB1V2  
IO58PDB1V2  
GBC1/IO79PDB1V4  
GBB0/IO80NDB1V4  
GNDQ  
G5  
G6  
IO297PDB7V2  
GAC2/IO307PDB7V4  
VCOMPLA  
IO293PDB7V2  
IO303NDB7V3  
IO305NDB7V3  
GND  
G7  
D2  
G8  
GNDQ  
D3  
G9  
IO26NDB0V3  
IO26PDB0V3  
IO36PDB0V4  
IO42PDB1V0  
IO50PDB1V1  
IO60NDB1V2  
GNDQ  
D4  
GBA2/IO82PDB2V0  
IO86NDB2V0  
GND  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
H1  
D5  
GAA0/IO00NDB0V0  
GAA1/IO00PDB0V0  
GAB0/IO01NDB0V0  
IO20PDB0V2  
IO22PDB0V2  
IO30PDB0V3  
IO38NDB0V4  
IO52NDB1V1  
IO52PDB1V1  
IO66NDB1V3  
IO66PDB1V3  
GBB1/IO80PDB1V4  
GBA0/IO81NDB1V4  
GBA1/IO81PDB1V4  
GND  
D6  
D7  
IO90NDB2V1  
IO98PDB2V2  
IO299NPB7V3  
IO301NDB7V3  
IO301PDB7V3  
IO308NDB7V4  
IO309NDB7V4  
VMV7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E1  
F2  
VCOMPLB  
F3  
GBB2/IO83PDB2V0  
IO92PDB2V1  
IO92NDB2V1  
IO102PDB2V2  
IO102NDB2V2  
IO105NDB2V2  
IO286PSB7V1  
IO291NPB7V2  
VCC  
F4  
F5  
F6  
F7  
VCCPLA  
F8  
GAC0/IO02NDB0V0  
GAC1/IO02PDB0V0  
IO32NDB0V3  
IO32PDB0V3  
IO44PDB1V0  
IO50NDB1V1  
IO60PDB1V2  
GBC0/IO79NDB1V4  
VCCPLB  
F9  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
G1  
H2  
H3  
IO88PDB2V0  
IO90PDB2V1  
IO94NPB2V1  
IO293NDB7V2  
IO299PPB7V3  
GND  
H4  
IO295NDB7V2  
IO297NDB7V2  
IO307NDB7V4  
IO287PDB7V1  
VMV0  
H5  
H6  
H7  
E2  
H8  
E3  
VMV2  
H9  
VCCIB0  
E4  
GAB2/IO308PDB7V4  
GAA2/IO309PDB7V4  
GNDQ  
IO82NDB2V0  
IO86PDB2V0  
IO96PDB2V1  
IO96NDB2V1  
IO98NDB2V2  
IO289NDB7V1  
IO289PDB7V1  
IO291PPB7V2  
IO295PDB7V2  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
VCCIB0  
E5  
IO36NDB0V4  
IO42NDB1V0  
VCCIB1  
E6  
E7  
GAB1/IO01PDB0V0  
IO20NDB0V2  
IO22NDB0V2  
IO30NDB0V3  
IO38PDB0V4  
IO44NDB1V0  
E8  
VCCIB1  
E9  
VMV1  
E10  
E11  
E12  
G2  
GBC2/IO84PDB2V0  
IO83NDB2V0  
IO100NDB2V2  
G3  
G4  
4-28  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG484  
FG484  
FG484  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
H19  
H20  
H21  
H22  
J1  
IO100PDB2V2  
VCC  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
L1  
GND  
GND  
M3  
M4  
IO272NDB6V4  
GFA2/IO272PDB6V4  
GFA1/IO273PDB6V4  
VCCPLF  
VMV2  
GND  
M5  
IO105PDB2V2  
IO285NDB7V1  
IO285PDB7V1  
VMV7  
VCC  
M6  
VCCIB2  
M7  
IO271NDB6V4  
GFB2/IO271PDB6V4  
VCC  
J2  
GCC1/IO112PPB2V3  
IO108NDB2V3  
IO108PDB2V3  
IO110NPB2V3  
IO106NPB2V3  
IO109NDB2V3  
IO107NDB2V3  
IO257PSB6V2  
IO276PDB7V0  
IO276NDB7V0  
GFB0/IO274NPB7V0  
GFA0/IO273NDB6V4  
GFB1/IO274PPB7V0  
VCOMPLF  
M8  
J3  
M9  
J4  
IO279PDB7V0  
IO283PDB7V1  
IO281PDB7V0  
IO287NDB7V1  
VCCIB7  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
N1  
GND  
J5  
GND  
J6  
GND  
J7  
GND  
J8  
VCC  
J9  
GND  
GCB2/IO116PPB3V0  
GCA1/IO114PPB3V0  
GCC2/IO117PPB3V0  
VCCPLC  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
K1  
VCC  
L2  
VCC  
L3  
VCC  
L4  
VCC  
L5  
GCA2/IO115PDB3V0  
IO115NDB3V0  
IO126PDB3V1  
IO124PSB3V1  
IO255PPB6V2  
IO253NDB6V2  
VMV6  
GND  
L6  
VCCIB2  
L7  
IO84NDB2V0  
IO104NDB2V2  
IO104PDB2V2  
IO106PPB2V3  
GNDQ  
L8  
GFC0/IO275NPB7V0  
VCC  
L9  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
M1  
GND  
N2  
GND  
N3  
GND  
N4  
GFC2/IO270PPB6V4  
IO261PPB6V3  
IO263PDB6V3  
IO263NDB6V3  
VCCIB6  
IO109PDB2V3  
IO107PDB2V3  
IO277NDB7V0  
IO277PDB7V0  
GNDQ  
GND  
N5  
VCC  
N6  
GCC0/IO112NPB2V3  
GCB1/IO113PPB2V3  
GCA0/IO114NPB3V0  
VCOMPLC  
N7  
K2  
N8  
K3  
N9  
VCC  
K4  
IO279NDB7V0  
IO283NDB7V1  
IO281NDB7V0  
GFC1/IO275PPB7V0  
VCCIB7  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
GND  
K5  
GCB0/IO113NPB2V3  
IO110PPB2V3  
IO111NDB2V3  
IO111PDB2V3  
GNDQ  
GND  
K6  
GND  
K7  
GND  
K8  
VCC  
K9  
VCC  
VCCIB3  
K10  
GND  
M2  
IO255NPB6V2  
IO116NPB3V0  
Revision 13  
4-29  
Package Pin Assignments  
FG484  
FG484  
FG484  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
N17  
N18  
N19  
N20  
N21  
N22  
P1  
IO132NPB3V2  
IO117NPB3V0  
IO132PPB3V2  
GNDQ  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
T1  
VCCIB5  
VCCIB5  
U1  
U2  
IO240PPB6V0  
IO238PDB6V0  
IO238NDB6V0  
GEB1/IO235PDB6V0  
GEB0/IO235NDB6V0  
VMV6  
IO196NDB5V0  
IO196PDB5V0  
VCCIB4  
U3  
U4  
IO126NDB3V1  
IO128PDB3V1  
IO247PDB6V1  
IO253PDB6V2  
IO270NPB6V4  
IO261NPB6V3  
IO249PPB6V1  
IO259PDB6V3  
IO259NDB6V3  
VCCIB6  
U5  
VCCIB4  
U6  
VMV3  
U7  
VCCPLE  
P2  
VCCPLD  
U8  
IO233NPB5V4  
IO222PPB5V3  
IO206PDB5V1  
IO202PDB5V1  
IO194PDB5V0  
IO176NDB4V2  
IO176PDB4V2  
VMV4  
P3  
GDB1/IO152PPB3V4  
GDC1/IO151PDB3V4  
IO138NDB3V3  
VCC  
U9  
P4  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
V1  
P5  
P6  
P7  
IO130NDB3V2  
IO134PDB3V2  
IO243PPB6V1  
IO245NDB6V1  
IO243NPB6V1  
IO241PDB6V0  
IO241NDB6V0  
GEC1/IO236PPB6V0  
VCOMPLE  
P8  
P9  
GND  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
R1  
VCC  
T2  
TCK  
VCC  
T3  
VPUMP  
VCC  
T4  
TRST  
VCC  
T5  
GDA0/IO153NDB3V4  
IO144NDB3V3  
IO140NDB3V3  
IO142PDB3V3  
IO239PDB6V0  
IO240NPB6V0  
GND  
GND  
T6  
VCCIB3  
T7  
GDB0/IO152NPB3V4  
IO136NDB3V2  
IO136PDB3V2  
IO138PDB3V3  
VMV3  
T8  
GNDQ  
T9  
GEA2/IO233PPB5V4  
IO206NDB5V1  
IO202NDB5V1  
IO194NDB5V0  
IO186NDB4V4  
IO186PDB4V4  
GNDQ  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
V2  
V3  
V4  
GEA1/IO234PDB6V0  
GEA0/IO234NDB6V0  
GNDQ  
IO130PDB3V2  
IO128NDB3V1  
IO247NDB6V1  
IO245PDB6V1  
VCC  
V5  
V6  
V7  
GEC2/IO231PDB5V4  
IO222NPB5V3  
IO204NDB5V1  
IO204PDB5V1  
IO195NDB5V0  
IO195PDB5V0  
IO178NDB4V3  
IO178PDB4V3  
R2  
VCOMPLD  
V8  
R3  
VJTAG  
V9  
R4  
IO249NPB6V1  
IO251NDB6V2  
IO251PDB6V2  
GEC0/IO236NPB6V0  
VMV5  
GDC0/IO151NDB3V4  
GDA1/IO153PDB3V4  
IO144PDB3V3  
IO140PDB3V3  
IO134NDB3V2  
V10  
V11  
V12  
V13  
V14  
R5  
R6  
R7  
R8  
4-30  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG484  
FG484  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W1  
IO155NDB4V0  
GDB2/IO155PDB4V0  
TDI  
Y7  
IO220PDB5V3  
VCC  
Y8  
Y9  
VCC  
GNDQ  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
IO200PDB5V0  
IO192PDB4V4  
IO188NPB4V4  
IO187PSB4V4  
VCC  
TDO  
GND  
IO146PDB3V4  
IO142NDB3V3  
IO239NDB6V0  
IO237PDB6V0  
IO230PSB5V4  
GND  
VCC  
W2  
IO164NDB4V1  
IO164PDB4V1  
GND  
W3  
W4  
W5  
IO232NDB5V4  
GEB2/IO232PDB5V4  
IO231NDB5V4  
IO214NDB5V2  
IO214PDB5V2  
IO200NDB5V0  
IO192NDB4V4  
IO184NDB4V3  
IO184PDB4V3  
IO156NDB4V0  
GDC2/IO156PDB4V0  
IO154NDB4V0  
GDA2/IO154PDB4V0  
TMS  
IO158PPB4V0  
IO150PDB3V4  
IO148NPB3V4  
VCCIB3  
W6  
W7  
W8  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y1  
GND  
IO150NDB3V4  
IO146NDB3V4  
IO148PPB3V4  
VCCIB6  
Y2  
IO237NDB6V0  
IO228NDB5V4  
IO224NDB5V3  
GND  
Y3  
Y4  
Y5  
Y6  
IO220NDB5V3  
Revision 13  
4-31  
Package Pin Assignments  
FG676  
A1 Ball Pad Corner  
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9  
8
7
6
5
4
3
2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
4-32  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG676  
FG676  
FG676  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
A1  
A2  
GND  
GND  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AB1  
IO153NDB5V2  
IO147NDB5V1  
IO139NDB5V0  
IO137NDB5V0  
IO123NDB4V1  
IO123PDB4V1  
IO117NDB4V0  
IO117PDB4V0  
GDB2/IO112PDB4V0  
GNDQ  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
AC1  
TCK  
TRST  
A3  
GAA0/IO00NDB0V0  
GAA1/IO00PDB0V0  
IO06NDB0V0  
IO09NDB0V1  
IO09PDB0V1  
IO14NDB0V1  
IO14PDB0V1  
IO22NDB0V2  
IO22PDB0V2  
IO26NDB0V3  
IO26PDB0V3  
IO30NDB0V3  
IO30PDB0V3  
IO34NDB1V0  
IO34PDB1V0  
IO38NDB1V0  
IO38PDB1V0  
IO41PDB1V1  
IO44PDB1V1  
IO49PDB1V2  
IO50PDB1V2  
GBC1/IO55PDB1V3  
GND  
GDC0/IO108NDB3V2  
GDC1/IO108PDB3V2  
IO104NDB3V2  
IO104PDB3V2  
IO170PDB6V0  
GEB0/IO168NPB6V0  
IO166NPB5V3  
GNDQ  
A4  
A5  
A6  
A7  
A8  
AC2  
A9  
AC3  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AC4  
TDO  
AC5  
GND  
GND  
AC6  
IO160PDB5V3  
IO161PDB5V3  
IO154PDB5V2  
GND  
GND  
AC7  
IO102NDB3V1  
IO102PDB3V1  
IO98NDB3V1  
IO174NDB6V0  
IO171NDB6V0  
GEB1/IO168PPB6V0  
GEA0/IO167NPB6V0  
VCCPLE  
AC8  
AC9  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AD1  
IO150NDB5V1  
IO155NDB5V2  
IO142NDB5V0  
IO138NDB5V0  
IO138PDB5V0  
IO132NDB4V2  
IO129NDB4V2  
IO121NDB4V1  
IO119PDB4V1  
IO118NDB4V0  
IO118PDB4V0  
IO114PPB4V0  
TMS  
AB2  
AB3  
AB4  
AB5  
AB6  
GND  
AB7  
GND  
AB8  
IO156NDB5V2  
IO156PDB5V2  
IO150PDB5V1  
IO155PDB5V2  
IO142PDB5V0  
IO135NDB5V0  
IO135PDB5V0  
IO132PDB4V2  
IO129PDB4V2  
IO121PDB4V1  
IO119NDB4V1  
IO112NDB4V0  
VMV4  
AB9  
GND  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
IO174PDB6V0  
IO171PDB6V0  
GEA1/IO167PPB6V0  
GEC0/IO169NPB6V0  
VCOMPLE  
VJTAG  
VMV3  
IO106NDB3V2  
IO106PDB3V2  
IO170NDB6V0  
GEA2/IO166PPB5V3  
VMV5  
GND  
IO165NDB5V3  
GEB2/IO165PDB5V3  
IO163PDB5V3  
IO159NDB5V3  
AD2  
AD3  
AD4  
GEC2/IO164PDB5V3  
Revision 13  
4-33  
Package Pin Assignments  
FG676  
FG676  
FG676  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
AD5  
AD6  
IO162PDB5V3  
IO160NDB5V3  
IO161NDB5V3  
IO154NDB5V2  
IO148PDB5V1  
IO151PDB5V2  
IO144PDB5V1  
IO140PDB5V0  
IO143PDB5V1  
IO141PDB5V0  
IO134PDB4V2  
IO133PDB4V2  
IO127PDB4V2  
IO130PDB4V2  
IO126PDB4V1  
IO124PDB4V1  
IO120PDB4V1  
IO114NPB4V0  
TDI  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AF1  
IO134NDB4V2  
IO133NDB4V2  
IO127NDB4V2  
IO130NDB4V2  
IO126NDB4V1  
IO124NDB4V1  
IO120NDB4V1  
IO116PDB4V0  
GDC2/IO113PDB4V0  
GDA2/IO111PDB4V0  
GND  
AF25  
AF26  
B1  
GND  
GND  
AD7  
GND  
AD8  
B2  
GND  
AD9  
B3  
GND  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AE1  
B4  
GND  
B5  
IO06PDB0V0  
IO04NDB0V0  
IO07NDB0V0  
IO11NDB0V1  
IO10NDB0V1  
IO16NDB0V2  
IO20NDB0V2  
IO24NDB0V3  
IO23NDB0V2  
IO28NDB0V3  
IO31NDB0V3  
IO32PDB1V0  
IO36PDB1V0  
IO37PDB1V0  
IO42NPB1V1  
IO41NDB1V1  
IO44NDB1V1  
IO49NDB1V2  
IO50NDB1V2  
GBC0/IO55NDB1V3  
GND  
B6  
B7  
B8  
B9  
GND  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
C1  
GND  
AF2  
GND  
AF3  
GND  
AF4  
GND  
AF5  
IO158NPB5V2  
IO157NPB5V2  
IO152NPB5V2  
IO146NDB5V1  
IO146PDB5V1  
IO149NDB5V1  
IO149PDB5V1  
IO145NDB5V1  
IO145PDB5V1  
IO136NDB5V0  
IO136PDB5V0  
IO131NDB4V2  
IO131PDB4V2  
IO128NDB4V2  
IO128PDB4V2  
IO122NDB4V1  
IO122PDB4V1  
IO116NDB4V0  
IO113NDB4V0  
IO111NDB4V0  
AF6  
AF7  
GNDQ  
AF8  
GDA0/IO110NDB3V2  
GDA1/IO110PDB3V2  
GND  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AE2  
GND  
AE3  
GND  
AE4  
IO164NDB5V3  
IO162NDB5V3  
IO158PPB5V2  
IO157PPB5V2  
IO152PPB5V2  
IO148NDB5V1  
IO151NDB5V2  
IO144NDB5V1  
IO140NDB5V0  
IO143NDB5V1  
IO141NDB5V0  
AE5  
AE6  
GND  
AE7  
GND  
AE8  
C2  
GND  
AE9  
C3  
GND  
AE10  
AE11  
AE12  
AE13  
AE14  
C4  
GND  
C5  
GAA2/IO221PDB7V3  
IO04PDB0V0  
IO07PDB0V0  
IO11PDB0V1  
C6  
C7  
C8  
4-34  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG676  
FG676  
FG676  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
D1  
IO10PDB0V1  
IO16PDB0V2  
IO20PDB0V2  
IO24PDB0V3  
IO23PDB0V2  
IO28PDB0V3  
IO31PDB0V3  
IO32NDB1V0  
IO36NDB1V0  
IO37NDB1V0  
IO45NDB1V1  
IO42PPB1V1  
IO46NPB1V1  
IO48NPB1V2  
GBB0/IO56NPB1V3  
VMV1  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
E1  
IO45PDB1V1  
IO46PPB1V1  
IO48PPB1V2  
GBA0/IO57NPB1V3  
GNDQ  
F3  
F4  
IO213NDB7V2  
IO213PDB7V2  
GND  
F5  
F6  
VCCPLA  
F7  
GAB0/IO01NDB0V0  
GNDQ  
GBB1/IO56PPB1V3  
GBB2/IO59PDB2V0  
IO59NDB2V0  
IO212PDB7V2  
IO211NDB7V2  
IO211PDB7V2  
IO220NPB7V3  
GNDQ  
F8  
F9  
IO03PDB0V0  
IO13PDB0V1  
IO15PDB0V1  
IO19PDB0V2  
IO21PDB0V2  
IO27NDB0V3  
IO35PDB1V0  
IO39NDB1V0  
IO51PDB1V2  
IO53PDB1V2  
IO54PDB1V3  
VMV2  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
G1  
E2  
E3  
E4  
E5  
E6  
GAB2/IO220PPB7V3  
GAB1/IO01PDB0V0  
IO05PDB0V0  
IO08NDB0V1  
IO12PDB0V1  
IO18PDB0V2  
IO17PDB0V2  
IO25PDB0V3  
IO29PDB0V3  
IO33PDB1V0  
IO40NDB1V1  
IO43PDB1V1  
IO47NDB1V1  
IO54NDB1V3  
IO52NDB1V2  
IO52PDB1V2  
VCCPLB  
E7  
E8  
GBC2/IO60PDB2V0  
IO60NDB2V0  
IO218NDB7V3  
IO218PDB7V3  
GND  
E9  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
F1  
VCOMPLB  
D2  
IO61PDB2V0  
IO61NDB2V0  
IO66PDB2V1  
IO66NDB2V1  
IO68NDB2V1  
IO203NPB7V1  
IO207NDB7V2  
IO207PDB7V2  
IO216NDB7V3  
IO216PDB7V3  
VCOMPLA  
D3  
D4  
VMV7  
D5  
IO221NDB7V3  
GAC0/IO02NDB0V0  
GAC1/IO02PDB0V0  
IO05NDB0V0  
IO08PDB0V1  
IO12NDB0V1  
IO18NDB0V2  
IO17NDB0V2  
IO25NDB0V3  
IO29NDB0V3  
IO33NDB1V0  
IO40PDB1V1  
IO43NDB1V1  
IO47PDB1V1  
D6  
D7  
D8  
G2  
D9  
G3  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
G4  
G5  
G6  
GBA1/IO57PPB1V3  
IO63PDB2V0  
IO63NDB2V0  
IO68PDB2V1  
IO212NDB7V2  
IO203PPB7V1  
G7  
VMV0  
G8  
VCC  
G9  
IO03NDB0V0  
IO13NDB0V1  
IO15NDB0V1  
IO19NDB0V2  
G10  
G11  
G12  
F2  
Revision 13  
4-35  
Package Pin Assignments  
FG676  
FG676  
FG676  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
G25  
G26  
H1  
IO21NDB0V2  
IO27PDB0V3  
IO35NDB1V0  
IO39PDB1V0  
IO51NDB1V2  
IO53NDB1V2  
VCCIB1  
H23  
H24  
H25  
H26  
J1  
IO69PDB2V1  
IO76PDB2V2  
IO76NDB2V2  
IO78NDB2V2  
IO197NDB7V0  
IO197PDB7V0  
VMV7  
K7  
K8  
IO217NDB7V3  
VCCIB7  
VCC  
K9  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
K25  
K26  
L1  
GND  
GND  
J2  
GND  
J3  
GND  
GBA2/IO58PPB2V0  
GNDQ  
J4  
IO215NDB7V3  
IO215PDB7V3  
IO214PDB7V3  
IO214NDB7V3  
VCCIB7  
GND  
J5  
GND  
IO64NDB2V1  
IO64PDB2V1  
IO72PDB2V2  
IO72NDB2V2  
IO78PDB2V2  
IO208NDB7V2  
IO208PDB7V2  
IO209NDB7V2  
IO209PDB7V2  
IO219NDB7V3  
GAC2/IO219PDB7V3  
VCCIB7  
J6  
GND  
J7  
GND  
J8  
VCC  
J9  
VCC  
VCCIB2  
IO65PDB2V1  
IO65NDB2V1  
IO74PDB2V2  
IO74NDB2V2  
IO75PDB2V2  
IO75NDB2V2  
IO84PDB2V3  
IO195NDB7V0  
IO198PPB7V0  
GNDQ  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
K1  
VCC  
VCC  
H2  
VCC  
H3  
VCC  
H4  
VCC  
H5  
VCC  
H6  
VCC  
H7  
VCC  
H8  
VCC  
VCC  
L2  
H9  
VCCIB0  
VCCIB2  
L3  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
VCCIB0  
IO62PDB2V0  
IO62NDB2V0  
IO70NDB2V1  
IO69NDB2V1  
VMV2  
L4  
IO201PDB7V1  
IO201NDB7V1  
IO210NDB7V2  
IO210PDB7V2  
VCCIB7  
VCC  
VCCIB0  
L5  
VCCIB0  
L6  
VCCIB0  
L7  
VCCIB1  
L8  
VCCIB1  
IO80PDB2V3  
IO80NDB2V3  
IO195PDB7V0  
IO199NDB7V1  
IO199PDB7V1  
IO205NDB7V1  
IO205PDB7V1  
IO217PDB7V3  
L9  
VCCIB1  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
GND  
VCCIB1  
GND  
VCCIB1  
K2  
GND  
VCC  
K3  
GND  
VCC  
K4  
GND  
IO58NPB2V0  
IO70PDB2V1  
K5  
GND  
K6  
GND  
4-36  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG676  
FG676  
FG676  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L25  
L26  
M1  
GND  
VCC  
N1  
N2  
GFB0/IO191NPB7V0  
VCOMPLF  
GFB1/IO191PPB7V0  
IO196PDB7V0  
GFA0/IO190NDB6V2  
IO200PDB7V1  
IO200NDB7V1  
VCCIB7  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
R1  
GND  
GND  
VCCIB2  
N3  
GND  
IO67PDB2V1  
IO67NDB2V1  
IO71PDB2V2  
IO71NDB2V2  
GNDQ  
N4  
GND  
N5  
GND  
N6  
GND  
N7  
GND  
N8  
VCC  
IO82PDB2V3  
IO84NDB2V3  
IO198NPB7V0  
IO202PDB7V1  
IO202NDB7V1  
IO206NDB7V1  
IO206PDB7V1  
IO204NDB7V1  
IO204PDB7V1  
VCCIB7  
N9  
VCC  
VCCIB3  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
N25  
N26  
P1  
GND  
GCC0/IO85NDB2V3  
GCC1/IO85PDB2V3  
GCB1/IO86PPB2V3  
IO88NPB3V0  
GCA1/IO87PDB3V0  
VCCPLC  
GND  
M2  
GND  
M3  
GND  
M4  
GND  
M5  
GND  
M6  
GND  
VCOMPLC  
IO189NDB6V2  
IO185PDB6V2  
IO187NPB6V2  
IO193NPB7V0  
GFC2/IO187PPB6V2  
GFC1/IO192PDB7V0  
GFC0/IO192NDB7V0  
VCCIB6  
M7  
GND  
M8  
VCC  
R2  
M9  
VCC  
VCCIB2  
R3  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
M25  
M26  
GND  
IO79PDB2V3  
IO79NDB2V3  
GCA2/IO88PPB3V0  
IO81NPB2V3  
GCA0/IO87NDB3V0  
GCB0/IO86NPB2V3  
IO83NDB2V3  
GFA2/IO189PDB6V2  
VCCPLF  
R4  
GND  
R5  
GND  
R6  
GND  
R7  
GND  
R8  
GND  
R9  
VCC  
GND  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
GND  
GND  
GND  
VCC  
P2  
GND  
VCCIB2  
P3  
IO193PPB7V0  
IO196NDB7V0  
GFA1/IO190PDB6V2  
IO194PDB7V0  
IO194NDB7V0  
VCCIB6  
GND  
IO73NDB2V2  
IO73PDB2V2  
IO81PPB2V3  
IO77PDB2V2  
IO77NDB2V2  
IO82NDB2V3  
IO83PDB2V3  
P4  
GND  
P5  
GND  
P6  
GND  
P7  
GND  
P8  
VCC  
P9  
VCC  
VCCIB3  
P10  
GND  
NC  
Revision 13  
4-37  
Package Pin Assignments  
FG676  
FG676  
FG676  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
Pin Number A3PE1500 Function  
R21  
R22  
R23  
R24  
R25  
R26  
T1  
IO89NDB3V0  
GCB2/IO89PDB3V0  
IO90NDB3V0  
GCC2/IO90PDB3V0  
IO91PDB3V0  
IO91NDB3V0  
IO186PDB6V2  
IO185NDB6V2  
GNDQ  
U5  
U6  
IO182PDB6V1  
IO178PDB6V1  
IO178NDB6V1  
VCCIB6  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
V23  
V24  
V25  
V26  
W1  
VCC  
VCC  
U7  
VCC  
U8  
VCC  
U9  
VCC  
VCCIB3  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
U23  
U24  
U25  
U26  
V1  
GND  
IO107PDB3V2  
IO107NDB3V2  
IO103NDB3V2  
IO103PDB3V2  
VMV3  
GND  
T2  
GND  
T3  
GND  
T4  
IO180PDB6V1  
IO180NDB6V1  
IO188NDB6V2  
GFB2/IO188PDB6V2  
VCCIB6  
GND  
T5  
GND  
IO95NDB3V1  
IO94PDB3V0  
IO179NDB6V1  
IO179PDB6V1  
IO177NDB6V1  
IO177PDB6V1  
IO172PDB6V0  
IO172NDB6V0  
VCC  
T6  
GND  
T7  
GND  
T8  
VCC  
W2  
T9  
VCC  
VCCIB3  
W3  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
T25  
T26  
U1  
GND  
NC  
W4  
GND  
IO101NDB3V1  
IO101PDB3V1  
IO92NDB3V0  
IO92PDB3V0  
IO95PDB3V1  
IO93NPB3V0  
IO183PDB6V2  
IO183NDB6V2  
VMV6  
W5  
GND  
W6  
GND  
W7  
GND  
W8  
VCC  
GND  
W9  
VCCIB5  
GND  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
W23  
W24  
VCCIB5  
GND  
VCCIB5  
VCC  
V2  
VCCIB5  
VCCIB3  
V3  
VCCIB5  
IO99PDB3V1  
IO99NDB3V1  
IO97PDB3V1  
IO97NDB3V1  
GNDQ  
V4  
IO181PDB6V1  
IO181NDB6V1  
IO176PDB6V1  
IO176NDB6V1  
VCCIB6  
VCCIB4  
V5  
VCCIB4  
V6  
VCCIB4  
V7  
VCCIB4  
V8  
VCCIB4  
IO93PPB3V0  
NC  
V9  
VCC  
VCC  
V10  
V11  
V12  
V13  
V14  
VCC  
VCCIB3  
IO186NDB6V2  
IO184NDB6V2  
IO184PDB6V2  
IO182NDB6V1  
VCC  
GDB0/IO109NDB3V2  
GDB1/IO109PDB3V2  
IO105NDB3V2  
IO105PDB3V2  
U2  
VCC  
U3  
VCC  
U4  
VCC  
4-38  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG676  
Pin Number A3PE1500 Function  
W25  
W26  
Y1  
IO96PDB3V1  
IO94NDB3V0  
IO175NDB6V1  
IO175PDB6V1  
IO173NDB6V0  
IO173PDB6V0  
GEC1/IO169PPB6V0  
GNDQ  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
VMV6  
Y8  
VCCIB5  
Y9  
IO163NDB5V3  
IO159PDB5V3  
IO153PDB5V2  
IO147PDB5V1  
IO139PDB5V0  
IO137PDB5V0  
IO125NDB4V1  
IO125PDB4V1  
IO115NDB4V0  
IO115PDB4V0  
VCC  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
VPUMP  
VCOMPLD  
VCCPLD  
IO100NDB3V1  
IO100PDB3V1  
IO96NDB3V1  
IO98PDB3V1  
Revision 13  
4-39  
Package Pin Assignments  
FG896  
A1 Ball Pad Corner  
30 29 28 27 26 2524 23 22 21 20 1918 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
4-40  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG896  
FG896  
FG896  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
A2  
A3  
GND  
GND  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA30  
AB1  
GEB1/IO235PPB6V0  
VCC  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AC1  
IO198PDB5V0  
IO192NDB4V4  
IO192PDB4V4  
IO178NDB4V3  
IO178PDB4V3  
IO174NDB4V2  
IO162NPB4V1  
VCC  
A4  
IO14NPB0V1  
GND  
IO226PPB5V4  
VCCIB5  
A5  
A6  
IO07NPB0V0  
GND  
VCCIB5  
A7  
VCCIB5  
A8  
IO09NDB0V1  
IO17NDB0V2  
IO17PDB0V2  
IO21NDB0V2  
IO21PDB0V2  
IO33NDB0V4  
IO33PDB0V4  
IO35NDB0V4  
IO35PDB0V4  
IO41NDB1V0  
IO43NDB1V0  
IO43PDB1V0  
IO45NDB1V0  
IO45PDB1V0  
IO57NDB1V2  
IO57PDB1V2  
GND  
VCCIB5  
A9  
VCCIB4  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
VCCIB4  
VCCPLD  
VCCIB4  
VCCIB3  
VCCIB4  
IO150PDB3V4  
IO148PDB3V4  
IO147NDB3V4  
IO145PDB3V3  
IO143PDB3V3  
IO137PDB3V2  
IO254PDB6V2  
IO254NDB6V2  
IO240PDB6V0  
GEC1/IO236PDB6V0  
IO237PDB6V0  
IO237NDB6V0  
VCOMPLE  
IO174PDB4V2  
VCC  
IO142NPB3V3  
IO144NDB3V3  
IO144PDB3V3  
IO146NDB3V4  
IO146PDB3V4  
IO147PDB3V4  
IO139NDB3V3  
IO139PDB3V3  
IO133NDB3V2  
IO256NDB6V2  
IO244PDB6V1  
IO244NDB6V1  
IO241PDB6V0  
IO241NDB6V0  
IO243NPB6V1  
VCCIB6  
AC2  
AC3  
AC4  
AC5  
AC6  
AC7  
IO69PPB1V3  
GND  
AB2  
AC8  
GND  
AB3  
AC9  
IO226NPB5V4  
IO222NDB5V3  
IO216NPB5V2  
IO210NPB5V2  
IO204NDB5V1  
IO204PDB5V1  
IO194NDB5V0  
IO188NDB4V4  
IO188PDB4V4  
IO182PPB4V3  
IO170NPB4V2  
IO164NDB4V1  
GBC1/IO79PPB1V4  
GND  
AB4  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AB5  
GND  
AB6  
IO256PDB6V2  
IO248PDB6V1  
IO248NDB6V1  
IO246NDB6V1  
GEA1/IO234PDB6V0  
GEA0/IO234NDB6V0  
IO243PPB6V1  
IO245NDB6V1  
AB7  
AB8  
VCCPLE  
AB9  
VCC  
AB10  
AB11  
AB12  
AB13  
AB14  
IO222PDB5V3  
IO218PPB5V3  
IO206NDB5V1  
IO206PDB5V1  
IO198NDB5V0  
Revision 13  
4-41  
Package Pin Assignments  
FG896  
FG896  
FG896  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AD1  
IO164PDB4V1  
IO162PPB4V1  
GND  
AD27  
AD28  
AD29  
AD30  
AE1  
GDA0/IO153NDB3V4  
GDC0/IO151NDB3V4  
GDC1/IO151PDB3V4  
GND  
AF3  
AF4  
VCCIB6  
IO220NPB5V3  
VCC  
AF5  
VCOMPLD  
AF6  
IO228NDB5V4  
VCCIB5  
IO150NDB3V4  
IO148NDB3V4  
GDA1/IO153PDB3V4  
IO145NDB3V3  
IO143NDB3V3  
IO137NDB3V2  
GND  
IO242PPB6V1  
VCC  
AF7  
AE2  
AF8  
IO230PDB5V4  
IO229NDB5V4  
IO229PDB5V4  
IO214PPB5V2  
IO208NDB5V1  
IO208PDB5V1  
IO200PDB5V0  
IO196NDB5V0  
IO186NDB4V4  
IO186PDB4V4  
IO180NDB4V3  
IO180PDB4V3  
IO168NDB4V1  
IO168PDB4V1  
IO160NDB4V0  
IO158NPB4V0  
VCCIB4  
AE3  
IO239PDB6V0  
IO239NDB6V0  
VMV6  
AF9  
AE4  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF30  
AG1  
AG2  
AG3  
AG4  
AG5  
AG6  
AG7  
AE5  
AE6  
GND  
AE7  
GNDQ  
AD2  
IO242NPB6V1  
IO240NDB6V0  
GEC0/IO236NDB6V0  
VCCIB6  
AE8  
IO230NDB5V4  
IO224NPB5V3  
IO214NPB5V2  
IO212NDB5V2  
IO212PDB5V2  
IO202NPB5V1  
IO200NDB5V0  
IO196PDB5V0  
IO190NDB4V4  
IO184PDB4V3  
IO184NDB4V3  
IO172PDB4V2  
IO172NDB4V2  
IO166NDB4V1  
IO160PDB4V0  
GNDQ  
AD3  
AE9  
AD4  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE30  
AF1  
AD5  
AD6  
GNDQ  
AD7  
VCC  
AD8  
VMV5  
AD9  
VCCIB5  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
IO224PPB5V3  
IO218NPB5V3  
IO216PPB5V2  
IO210PPB5V2  
IO202PPB5V1  
IO194PDB5V0  
IO190PDB4V4  
IO182NPB4V3  
IO176NDB4V2  
IO176PDB4V2  
IO170PPB4V2  
IO166PDB4V1  
VCCIB4  
IO154NPB4V0  
VCC  
TDO  
VCCIB3  
GNDQ  
VMV4  
GND  
GND  
IO238NPB6V0  
VCC  
GDB0/IO152NDB3V4  
GDB1/IO152PDB3V4  
VMV3  
IO232NPB5V4  
GND  
TCK  
VCC  
IO220PPB5V3  
IO228PDB5V4  
IO231NDB5V4  
GEC2/IO231PDB5V4  
VCC  
IO149PDB3V4  
GND  
TRST  
VCCIB3  
AF2  
IO238PPB6V0  
AG8  
4-42  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG896  
FG896  
FG896  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
AG9  
AG10  
AG11  
AG12  
AG13  
AG14  
AG15  
AG16  
AG17  
AG18  
AG19  
AG20  
AG21  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
AG28  
AG29  
AG30  
AH1  
IO225NPB5V3  
IO223NPB5V3  
IO221PDB5V3  
IO221NDB5V3  
IO205NPB5V1  
IO199NDB5V0  
IO199PDB5V0  
IO187NDB4V4  
IO187PDB4V4  
IO181NDB4V3  
IO171PPB4V2  
IO165NPB4V1  
IO161NPB4V0  
IO159NDB4V0  
IO159PDB4V0  
IO158PPB4V0  
GDB2/IO155PDB4V0  
GDA2/IO154PPB4V0  
GND  
AH15  
AH16  
AH17  
AH18  
AH19  
AH20  
AH21  
AH22  
AH23  
AH24  
AH25  
AH26  
AH27  
AH28  
AH29  
AH30  
AJ1  
IO195NDB5V0  
IO185NDB4V3  
IO185PDB4V3  
IO181PDB4V3  
IO177NDB4V2  
IO171NPB4V2  
IO165PPB4V1  
IO161PPB4V0  
IO157NDB4V0  
IO157PDB4V0  
IO155NDB4V0  
VCCIB4  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
AJ30  
AK2  
IO173PDB4V2  
IO163NDB4V1  
IO163PDB4V1  
IO167NPB4V1  
VCC  
IO156NPB4V0  
VCC  
TMS  
GND  
GND  
GND  
AK3  
GND  
TDI  
AK4  
IO217PPB5V2  
GND  
VCC  
AK5  
VPUMP  
AK6  
IO215PPB5V2  
GND  
GND  
AK7  
GND  
AK8  
IO207NDB5V1  
IO207PDB5V1  
IO201NDB5V0  
IO201PDB5V0  
IO193NDB4V4  
IO193PDB4V4  
IO197PDB5V0  
IO191NDB4V4  
IO191PDB4V4  
IO189NDB4V4  
IO189PDB4V4  
IO179PPB4V3  
IO175NDB4V2  
IO175PDB4V2  
IO169NDB4V1  
IO169PDB4V1  
GND  
AJ2  
GND  
AK9  
AJ3  
GEA2/IO233PPB5V4  
VCC  
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
AK16  
AK17  
AK18  
AK19  
AK20  
AK21  
AK22  
AK23  
AK24  
AK25  
AK26  
AK27  
VJTAG  
AJ4  
VCC  
AJ5  
IO217NPB5V2  
VCC  
IO149NDB3V4  
GND  
AJ6  
AJ7  
IO215NPB5V2  
IO213NDB5V2  
IO213PDB5V2  
IO209NDB5V1  
IO209PDB5V1  
IO203NDB5V1  
IO203PDB5V1  
IO197NDB5V0  
IO195PDB5V0  
IO183NDB4V3  
IO183PDB4V3  
IO179NPB4V3  
IO177PDB4V2  
IO173NDB4V2  
AH2  
IO233NPB5V4  
VCC  
AJ8  
AH3  
AJ9  
AH4  
GEB2/IO232PPB5V4  
VCCIB5  
AJ10  
AJ11  
AJ12  
AJ13  
AJ14  
AJ15  
AJ16  
AJ17  
AJ18  
AJ19  
AJ20  
AH5  
AH6  
IO219NDB5V3  
IO219PDB5V3  
IO227NDB5V4  
IO227PDB5V4  
IO225PPB5V3  
IO223PPB5V3  
IO211NDB5V2  
IO211PDB5V2  
IO205PPB5V1  
AH7  
AH8  
AH9  
AH10  
AH11  
AH12  
AH13  
AH14  
IO167PPB4V1  
GND  
GDC2/IO156PPB4V0  
Revision 13  
4-43  
Package Pin Assignments  
FG896  
FG896  
FG896  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
AK28  
AK29  
B1  
GND  
GND  
C5  
C6  
VCCIB0  
IO03PDB0V0  
IO03NDB0V0  
GAB1/IO01PDB0V0  
IO05PDB0V0  
IO15NPB0V1  
IO25NDB0V3  
IO25PDB0V3  
IO31NPB0V3  
IO27NDB0V3  
IO39NDB0V4  
IO39PDB0V4  
IO55PPB1V1  
IO51PDB1V1  
IO59NDB1V2  
IO63NDB1V2  
IO63PDB1V2  
IO67NDB1V3  
IO67PDB1V3  
IO75NDB1V4  
IO75PDB1V4  
VCCIB1  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
E1  
IO11PDB0V1  
IO23NDB0V2  
IO23PDB0V2  
IO27PDB0V3  
IO40PDB0V4  
IO47NDB1V0  
IO47PDB1V0  
IO55NPB1V1  
IO65NDB1V3  
IO65PDB1V3  
IO71NDB1V3  
IO71PDB1V3  
IO73NDB1V4  
IO73PDB1V4  
IO74NDB1V4  
GBB0/IO80NPB1V4  
GND  
GND  
C7  
B2  
GND  
C8  
B3  
GAA2/IO309PPB7V4  
VCC  
C9  
B4  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
D1  
B5  
IO14PPB0V1  
VCC  
B6  
B7  
IO07PPB0V0  
IO09PDB0V1  
IO15PPB0V1  
IO19NDB0V2  
IO19PDB0V2  
IO29NDB0V3  
IO29PDB0V3  
IO31PPB0V3  
IO37NDB0V4  
IO37PDB0V4  
IO41PDB1V0  
IO51NDB1V1  
IO59PDB1V2  
IO53PDB1V1  
IO53NDB1V1  
IO61NDB1V2  
IO61PDB1V2  
IO69NPB1V3  
VCC  
B8  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
C1  
GBA0/IO81NPB1V4  
VCC  
GBA2/IO82PPB2V0  
GND  
E2  
IO303NPB7V3  
VCCIB7  
IO64PPB1V2  
VCC  
E3  
E4  
IO305PPB7V3  
VCC  
GBA1/IO81PPB1V4  
GND  
E5  
E6  
GAC0/IO02NDB0V0  
VCCIB0  
IO303PPB7V3  
VCC  
E7  
GBC0/IO79NPB1V4  
VCC  
D2  
E8  
IO06PPB0V0  
IO24NDB0V2  
IO24PDB0V2  
IO13NDB0V1  
IO13PDB0V1  
IO34NDB0V4  
IO34PDB0V4  
IO40NDB0V4  
IO49NDB1V1  
D3  
IO305NPB7V3  
GND  
E9  
IO64NPB1V2  
GND  
D4  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
D5  
GAA1/IO00PPB0V0  
GAC1/IO02PDB0V0  
IO06NPB0V0  
GAB0/IO01NDB0V0  
IO05NDB0V0  
IO11NDB0V1  
GND  
D6  
GND  
D7  
C2  
IO309NPB7V4  
VCC  
D8  
C3  
D9  
C4  
GAA0/IO00NPB0V0  
D10  
4-44  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG896  
FG896  
FG896  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
E30  
F1  
IO49PDB1V1  
IO50PDB1V1  
IO58PDB1V2  
IO60NDB1V2  
IO77PDB1V4  
IO68NDB1V3  
IO68PDB1V3  
VCCIB1  
F23  
F24  
F25  
F26  
F27  
F28  
F29  
F30  
G1  
IO72PDB1V3  
GNDQ  
G29  
G30  
H1  
IO100PPB2V2  
GND  
GND  
IO294PDB7V2  
IO294NDB7V2  
IO300NDB7V3  
IO300PDB7V3  
IO295PDB7V2  
IO299PDB7V3  
VCOMPLA  
VMV2  
H2  
IO86PDB2V0  
IO92PDB2V1  
VCC  
H3  
H4  
H5  
IO100NPB2V2  
GND  
H6  
IO74PDB1V4  
VCC  
H7  
G2  
IO296NPB7V2  
IO306NDB7V4  
IO297NDB7V2  
VCCIB7  
H8  
GND  
GBB1/IO80PPB1V4  
VCCIB2  
G3  
H9  
IO08NDB0V0  
IO08PDB0V0  
IO18PDB0V2  
IO26NPB0V3  
IO28NDB0V3  
IO28PDB0V3  
IO38PPB0V4  
IO42NDB1V0  
IO52NDB1V1  
IO52PDB1V1  
IO62NDB1V2  
IO62PDB1V2  
IO70NDB1V3  
IO70PDB1V3  
GND  
G4  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H29  
H30  
J1  
IO82NPB2V0  
GND  
G5  
G6  
GNDQ  
IO296PPB7V2  
VCC  
G7  
VCC  
F2  
G8  
VMV0  
F3  
IO306PDB7V4  
IO297PDB7V2  
VMV7  
G9  
VCCIB0  
F4  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
G25  
G26  
G27  
G28  
IO10NDB0V1  
IO16NDB0V1  
IO22PDB0V2  
IO26PPB0V3  
IO38NPB0V4  
IO36NDB0V4  
IO46NDB1V0  
IO46PDB1V0  
IO56NDB1V1  
IO56PDB1V1  
IO66NDB1V3  
IO66PDB1V3  
VCCIB1  
F5  
F6  
GND  
F7  
GNDQ  
F8  
IO12NDB0V1  
IO12PDB0V1  
IO10PDB0V1  
IO16PDB0V1  
IO22NDB0V2  
IO30NDB0V3  
IO30PDB0V3  
IO36PDB0V4  
IO48NDB1V0  
IO48PDB1V0  
IO50NDB1V1  
IO58NDB1V2  
IO60PDB1V2  
IO77NDB1V4  
IO72NDB1V3  
F9  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
VCOMPLB  
GBC2/IO84PDB2V0  
IO84NDB2V0  
IO96PDB2V1  
IO96NDB2V1  
IO89PDB2V0  
IO89NDB2V0  
IO290NDB7V2  
IO290PDB7V2  
IO302NDB7V3  
IO302PDB7V3  
VMV1  
VCC  
GNDQ  
VCCIB2  
J2  
IO86NDB2V0  
IO92NDB2V1  
J3  
J4  
Revision 13  
4-45  
Package Pin Assignments  
FG896  
FG896  
FG896  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
J5  
J6  
IO295NDB7V2  
IO299NDB7V3  
VCCIB7  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
L1  
IO04PPB0V0  
VCCIB0  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L30  
M1  
VCC  
VCC  
J7  
VCCIB0  
VCC  
J8  
VCCPLA  
VCCIB0  
VCC  
J9  
VCC  
VCCIB0  
IO78NPB1V4  
IO104NPB2V2  
IO98NDB2V2  
IO98PDB2V2  
IO87PDB2V0  
IO87NDB2V0  
IO97PDB2V1  
IO101PDB2V2  
IO103PDB2V2  
IO119NDB3V0  
IO282NDB7V1  
IO282PDB7V1  
IO292NDB7V2  
IO292PDB7V2  
IO283NDB7V1  
IO285PDB7V1  
IO287PDB7V1  
IO289PDB7V1  
IO289NDB7V1  
VCCIB7  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
K1  
IO04NPB0V0  
IO18NDB0V2  
IO20NDB0V2  
IO20PDB0V2  
IO32NDB0V3  
IO32PDB0V3  
IO42PDB1V0  
IO44NDB1V0  
IO44PDB1V0  
IO54NDB1V1  
IO54PDB1V1  
IO76NPB1V4  
VCC  
VCCIB1  
VCCIB1  
VCCIB1  
VCCIB1  
IO76PPB1V4  
VCC  
IO78PPB1V4  
IO88NDB2V0  
IO88PDB2V0  
IO94PDB2V1  
IO94NDB2V1  
IO85PDB2V0  
IO85NDB2V0  
IO93PDB2V1  
IO93NDB2V1  
IO286NDB7V1  
IO286PDB7V1  
IO298NDB7V3  
IO298PDB7V3  
IO283PDB7V1  
IO291NDB7V2  
IO291PDB7V2  
IO293PDB7V2  
IO293NDB7V2  
IO307NPB7V4  
VCC  
M2  
M3  
M4  
VCCPLB  
M5  
VCCIB2  
M6  
IO90PDB2V1  
IO90NDB2V1  
GBB2/IO83PDB2V0  
IO83NDB2V0  
IO91PDB2V1  
IO91NDB2V1  
IO288NDB7V1  
IO288PDB7V1  
IO304NDB7V3  
IO304PDB7V3  
GAB2/IO308PDB7V4  
IO308NDB7V4  
IO301PDB7V3  
IO301NDB7V3  
GAC2/IO307PPB7V4  
VCC  
M7  
L2  
M8  
L3  
M9  
L4  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
L5  
VCC  
L6  
GND  
L7  
GND  
K2  
L8  
GND  
K3  
L9  
GND  
K4  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
GND  
K5  
GND  
K6  
VCC  
GND  
K7  
VCC  
GND  
K8  
VCC  
VCC  
K9  
VCC  
VCCIB2  
K10  
VCC  
NC  
4-46  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG896  
FG896  
FG896  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M30  
N1  
IO104PPB2V2  
IO102PDB2V2  
IO102NDB2V2  
IO95PDB2V1  
IO97NDB2V1  
IO101NDB2V2  
IO103NDB2V2  
IO119PDB3V0  
IO276PDB7V0  
IO278PDB7V0  
IO280PDB7V0  
IO284PDB7V1  
IO279PDB7V0  
IO285NDB7V1  
IO287NDB7V1  
IO281NDB7V0  
IO281PDB7V0  
VCCIB7  
N29  
N30  
P1  
IO107PDB2V3  
IO107NDB2V3  
IO276NDB7V0  
IO278NDB7V0  
IO280NDB7V0  
IO284NDB7V1  
IO279NDB7V0  
GFC1/IO275PDB7V0  
GFC0/IO275NDB7V0  
IO277PDB7V0  
IO277NDB7V0  
VCCIB7  
R5  
R6  
GFB0/IO274NPB7V0  
IO271NDB6V4  
GFB2/IO271PDB6V4  
IO269PDB6V4  
IO269NDB6V4  
VCCIB7  
R7  
P2  
R8  
P3  
R9  
P4  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
T1  
P5  
VCC  
P6  
GND  
P7  
GND  
N2  
P8  
GND  
N3  
P9  
GND  
N4  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
R1  
GND  
N5  
VCC  
GND  
N6  
GND  
GND  
N7  
GND  
GND  
N8  
GND  
VCC  
N9  
GND  
VCCIB2  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
N25  
N26  
N27  
N28  
GND  
GCC0/IO112NDB2V3  
GCB2/IO116PDB3V0  
IO118PDB3V0  
IO111PPB2V3  
IO122PPB3V1  
GCA0/IO114NPB3V0  
VCOMPLC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
GND  
VCCIB2  
GND  
GCC1/IO112PDB2V3  
IO110PDB2V3  
IO110NDB2V3  
IO109PPB2V3  
IO111NPB2V3  
IO105PDB2V2  
IO105NDB2V2  
GCC2/IO117PDB3V0  
IO117NDB3V0  
GFC2/IO270PDB6V4  
GFB1/IO274PPB7V0  
VCOMPLF  
GND  
GCB1/IO113PPB2V3  
IO115NPB3V0  
IO270NDB6V4  
VCCPLF  
GND  
GND  
VCC  
T2  
VCCIB2  
T3  
GFA2/IO272PPB6V4  
GFA1/IO273PDB6V4  
IO272NPB6V4  
IO267NDB6V4  
IO267PDB6V4  
IO265PDB6V3  
IO263PDB6V3  
VCCIB6  
IO106NDB2V3  
IO106PDB2V3  
IO108PDB2V3  
IO108NDB2V3  
IO95NDB2V1  
IO99NDB2V2  
IO99PDB2V2  
T4  
T5  
T6  
T7  
R2  
T8  
R3  
T9  
R4  
GFA0/IO273NDB6V4  
T10  
Revision 13  
4-47  
Package Pin Assignments  
FG896  
FG896  
FG896  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
Pin Number A3PE3000 Function  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
U1  
VCC  
GND  
U17  
U18  
U19  
U20  
U21  
U22  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
V1  
GND  
GND  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V30  
W1  
IO128NDB3V1  
IO132PDB3V2  
IO130PPB3V2  
IO126NDB3V1  
IO129NDB3V1  
IO127NDB3V1  
IO125NDB3V1  
IO123PDB3V1  
IO266NDB6V4  
IO262NDB6V3  
IO260NDB6V3  
IO252NDB6V2  
IO251NDB6V2  
IO251PDB6V2  
IO255NDB6V2  
IO249PPB6V1  
IO253PDB6V2  
VCCIB6  
GND  
GND  
GND  
VCC  
GND  
VCCIB3  
GND  
IO120PDB3V0  
IO128PDB3V1  
IO124PDB3V1  
IO124NDB3V1  
IO126PDB3V1  
IO129PDB3V1  
IO127PDB3V1  
IO125PDB3V1  
IO121NDB3V0  
IO268NDB6V4  
IO262PDB6V3  
IO260PDB6V3  
IO252PDB6V2  
IO257NPB6V2  
IO261NPB6V3  
IO255PDB6V2  
IO259PDB6V3  
IO259NDB6V3  
VCCIB6  
GND  
GND  
GND  
VCC  
W2  
VCCIB3  
W3  
IO109NPB2V3  
IO116NDB3V0  
IO118NDB3V0  
IO122NPB3V1  
GCA1/IO114PPB3V0  
GCB0/IO113NPB2V3  
GCA2/IO115PPB3V0  
VCCPLC  
W4  
W5  
W6  
W7  
V2  
W8  
V3  
W9  
V4  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
W23  
W24  
W25  
W26  
W27  
W28  
V5  
VCC  
IO121PDB3V0  
IO268PDB6V4  
IO264NDB6V3  
IO264PDB6V3  
IO258PDB6V3  
IO258NDB6V3  
IO257PPB6V2  
IO261PPB6V3  
IO265NDB6V3  
IO263NDB6V3  
VCCIB6  
V6  
GND  
V7  
GND  
U2  
V8  
GND  
U3  
V9  
GND  
U4  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
GND  
U5  
VCC  
GND  
U6  
GND  
GND  
U7  
GND  
GND  
U8  
GND  
VCC  
U9  
GND  
VCCIB3  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
GND  
IO134PDB3V2  
IO138PDB3V3  
IO132NDB3V2  
IO136NPB3V2  
IO130NPB3V2  
IO141PDB3V3  
IO135PDB3V2  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
GND  
VCCIB3  
GND  
IO120NDB3V0  
4-48  
Revision 13  
ProASIC3E Flash Family FPGAs  
FG896  
Pin Number A3PE3000 Function  
W29  
W30  
Y1  
IO131PDB3V2  
IO123NDB3V1  
IO266PDB6V4  
IO250PDB6V2  
IO250NDB6V2  
IO246PDB6V1  
IO247NDB6V1  
IO247PDB6V1  
IO249NPB6V1  
IO245PDB6V1  
IO253NDB6V2  
GEB0/IO235NPB6V0  
VCC  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
Y9  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
IO142PPB3V3  
IO134NDB3V2  
IO138NDB3V3  
IO140NDB3V3  
IO140PDB3V3  
IO136PPB3V2  
IO141NDB3V3  
IO135NDB3V2  
IO131NDB3V2  
IO133PDB3V2  
Revision 13  
4-49  
5 – Datasheet Information  
List of Changes  
The following table lists critical changes that were made in each revision of the ProASIC3E datasheet.  
Revision  
Changes  
Page  
Revision 13  
(January 2013)  
In the "Features and Benefits" section, updated the Clock Conditioning Circuit  
(CCC) and PLL Wide Input Frequency Range from ’1.5 MHz to 200 MHz’ to  
’1.5MHz to 350 MHz’ based on Table 2-98 • ProASIC3E CCC/PLL Specification  
(SAR 22196).  
1-I  
The "ProASIC3E Ordering Information" section has been updated to mention "Y"  
as "Blank" mentioning "Device Does Not Include License to Implement IP Based  
on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43220).  
1-III  
Added a note to Table 2-2 • Recommended Operating Conditions 1 (SAR 42716):  
The programming temperature range supported is Tambient = 0°C to 85°C.  
2-2  
The note in Table 2-98 • ProASIC3E CCC/PLL Specification referring the reader  
to SmartGen was revised to refer instead to the online help associated with the  
core (SAR 42571).  
2-69  
Libero Integrated Design Environment (IDE) was changed to Libero System-on-  
Chip (SoC) throughout the document (SAR 40285).  
NA  
1-1  
Live at Power-Up (LAPU) has been replaced with ’Instant On’.  
Revision 12  
(September 2012)  
The "Security" section was modified to clarify that Microsemi does not support  
read-back of programmed data.  
Revision 11  
(August 2012)  
Added a Note stating "VMV pins must be connected to the corresponding VCCI pins.  
See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further  
information." to Table 2-1 • Absolute Maximum Ratings and Table 2-2  
• Recommended Operating Conditions 1 (SAR 38322).  
2-1  
2-2  
The drive strength, IOL, and IOH value for 3.3 V GTL and 2.5 V GTL was  
changed from 25 mA to 20 mA in the following tables (SAR 31924):  
2-16  
2-19  
2-20  
2-38  
2-39  
Table 2-13 • Summary of Maximum and Minimum DC Input and Output Levels  
Table 2-17 • Summary of I/O Timing Characteristics—Software Default Settings  
Table 2-19 • I/O Output Buffer Maximum Resistances1  
Table 2-48 • Minimum and Maximum DC Input and Output Levels (3.3 V GTL)  
Table 2-51 • Minimum and Maximum DC Input and Output Levels (2.5 V GTL)  
Also added note stating "Output drive strength is below JEDEC specification." for  
Tables 2-17 and 2-19.  
Additionally, the IOL and IOH values for 3.3 V GTL+ and 2.5 V GTL+ were  
corrected from 51 to 35 (for 3.3 V GTL+) and from 40 to 33 (for 2.5 V GTL+) in  
table Table 2-13 (SAR 39714).  
Table 2-22 • Duration of Short Circuit Event Before Failure was revised to change  
the maximum temperature from 110°C to 100°C, with an example of six months  
instead of three months (SAR 37934).  
2-22  
2-29  
The following sentence was deleted from the "2.5 V LVCMOS" section (SAR  
34796):  
"It uses a 5 V–tolerant input buffer and push-pull output buffer." This change was  
made in revision 10 and omitted from the change table in error.  
Revision 13  
5-1  
Datasheet Information  
Revision  
Changes  
Page  
Revision 11  
(continued)  
Figure 2-11 • AC Loading was updated to match tables in the "Summary of I/O  
Timing Characteristics – Default I/O Software Settings" section (SAR 34889).  
2-37  
In Table 2-81 • Minimum and Maximum DC Input and Output Levels, VIL and VIH  
were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR  
37222).  
2-51  
Figure 2-47 • FIFO Read and Figure 2-48 • FIFO Write are new (SAR 34848).  
2-78  
3-1  
The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)"  
section in the "Pin Descriptions and Packaging" chapter: "Within the package, the  
VMV plane is decoupled from the simultaneous switching noise originating from  
the output buffer VCCI domain" and replaced with “Within the package, the VMV  
plane biases the input stage of the I/Os in the I/O banks” (SAR 38322). The  
datasheet mentions that "VMV pins must be connected to the corresponding  
VCCI pins" for an ESD enhancement.  
Revision 10  
(March 2012)  
The "In-System Programming (ISP) and Security" section and "Security" section  
were revised to clarify that although no existing security measures can give an  
absolute guarantee, Microsemi FPGAs implement the best security available in  
the industry (SAR 34669).  
I, 1-1  
III  
The Y security option and Licensed DPA Logo were added to the "ProASIC3E  
Ordering Information" section. The trademarked Licensed DPA Logo identifies  
that a product is covered by a DPA counter-measures license from Cryptography  
Research (SAR 34727).  
The following sentence was removed from the "Advanced Architecture" section:  
1-3  
"In addition, extensive on-chip programming circuitry allows for rapid, single-  
voltage (3.3 V) programming of IGLOOe devices via an IEEE 1532 JTAG  
interface" (SAR 34689).  
The "Specifying I/O States During Programming" section is new (SAR 34699).  
1-6  
2-2  
VCCPLL in Table 2-2 • Recommended Operating Conditions 1 was corrected  
from "1.4 to 1.6 V" to "1.425 to 1.575 V" (SAR 33851).  
The TJ symbol was added to the table and notes regarding TA and TJ were  
removed. The second of two parameters in the VCCI and VMV row, called "3.3 V  
DC supply voltage," was corrected to "3.0 V DC supply voltage" (SAR 37227).  
The reference to guidelines for global spines and VersaTile rows, given in the  
"Global Clock Contribution—PCLOCK" section, was corrected to the "Spine  
Architecture" section of the Global Resources chapter in the ProASIC3E  
FPGA Fabric User's Guide (SAR 34735).  
2-9  
t
DOUT was corrected to tDIN in Figure 2-3 • Input Buffer Timing Model and Delays  
2-13  
2-19  
(example) (SAR 37109).  
The typo related to the values for 3.3 V LVCMOS Wide Range in Table 2-17  
• Summary of I/O Timing Characteristics—Software Default Settings was  
corrected (SAR 37227).  
The notes regarding drive strength in the "Summary of I/O Timing Characteristics 2-18, 2-26  
– Default I/O Software Settings" section and "3.3 V LVCMOS Wide Range"  
section and tables were revised for clarification. They now state that the minimum  
drive strength for the default software configuration when run in wide range is  
±100 µA. The drive strength displayed in software is supported in normal range  
only. For a detailed I/V curve, refer to the IBIS models (SAR 34763).  
5-2  
Revision 13  
ProASIC3E Flash Family FPGAs  
Revision  
Changes  
Page  
Revision 10  
(continued)  
"TBD" for 3.3 V LVCMOS Wide Range in Table 2-19 • I/O Output Buffer Maximum  
Resistances1 and Table 2-21 • I/O Short Currents IOSH/IOSL was replaced by  
"Same as regular 3.3 V LVCMOS" (SAR 33853).  
2-20,  
2-22  
3.3 V LVCMOS Wide Range information was separated from regular 3.3 V  
LVCMOS and placed into its own new section, "3.3 V LVCMOS Wide Range".  
Values of IOSH and IOSL were added in Table 2-29 • Minimum and Maximum DC  
Input and Output Levels (SAR 33853).  
The formulas in the table notes for Table 2-20 • I/O Weak Pull-Up/Pull-Down  
Resistances were corrected (SAR 34755).  
2-21  
2-24  
The AC Loading figures in the "Single-Ended I/O Characteristics" section were  
updated to match tables in the "Summary of I/O Timing Characteristics – Default  
I/O Software Settings" section (SAR 34889).  
The titles and subtitles for Table 2-31 • 3.3 V LVCMOS Wide Range High Slew 2-27, 2-28  
and Table 2-32 • 3.3 V LVCMOS Wide Range Low Slew were corrected (SAR  
37227).  
The following notes were removed from Table 2-78 • LVDS Minimum and  
Maximum DC Input and Output Levels (SAR 34812):  
2-49  
±5%  
Differential input voltage = ±350 mV  
Minimum pulse width High and Low values were added to the tables in the  
"Global Tree Timing Characteristics" section. The maximum frequency for global  
clock parameter was removed from these tables because a frequency on the  
global is only an indication of what the global network can do. There are other  
limiters such as the SRAM, I/Os, and PLL. SmartTime software should be used to  
determine the design frequency (SAR 36957).  
2-67  
A note was added to Table 2-98 • ProASIC3E CCC/PLL Specification indicating  
that when the CCC/PLL core is generated by Microsemi core generator software,  
not all delay values of the specified delay increments are available (SAR 34824).  
2-69  
The following figures were deleted. Reference was made to a new application  
note, Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based  
cSoCs and FPGAs, which covers these cases in detail (SAR 34872).  
2-72,  
2-75,  
2-79,  
2-81  
Figure 2-44 • Write Access after Write onto Same Address  
Figure 2-45 • Read Access after Write onto Same Address  
Figure 2-46 • Write Access after Read onto Same Address  
The port names in the SRAM "Timing Waveforms", SRAM "Timing  
Characteristics" tables, Figure 2-49 • FIFO Reset, and the FIFO "Timing  
Characteristics" tables were revised to ensure consistency with the software  
names (SAR 35750).  
The "Pin Descriptions and Packaging" chapter is new (SAR 34771).  
3-1  
4-1  
Package names used in the "Package Pin Assignments" section were revised to  
match standards given in Package Mechanical Drawings (SAR 34771).  
Pin E6 for the FG256 package was corrected from VvB0 to VCCIB0 (SARs  
30364, 31597, 26243).  
4-9  
July 2010  
The versioning system for datasheets has been changed. Datasheets are  
assigned a revision number that increments each time the datasheet is revised.  
The "ProASIC3E Device Status" table on page II indicates the status for each  
device in the device family.  
N/A  
Revision 13  
5-3  
Datasheet Information  
Revision  
Changes  
Page  
Revision 9 (Aug 2009) All references to speed grade –F have been removed from this document.  
N/A  
Product Brief v1.2  
The "Pro I/Os with Advanced I/O Standards" section was revised to add  
definitions of hot-swap and cold-sparing.  
1-6  
DC and Switching 3.3 V LVCMOS and 1.2 V LVCMOS Wide Range support was added to the  
N/A  
Characteristics v1.3  
datasheet. This affects all tables that contained 3.3 V LVCMOS and 1.2 V  
LVCMOS data.  
IIL and IIH input leakage current information was added to all "Minimum and  
Maximum DC Input and Output Levels" tables.  
N/A  
–F was removed from the datasheet. The speed grade is no longer supported.  
N/A  
2-2  
In the Table 2-2 • Recommended Operating Conditions 1 "3.0 V DC supply  
voltage" and note 4 are new.  
The Table 2-4 • Overshoot and Undershoot Limits 1 table was updated.  
2-3  
2-5  
The Table 2-6 Temperature and Voltage Derating Factors for Timing Delays  
table was updated.  
There are new parameters and data was updated in the Table 2-99 • RAM4K9  
table.  
2-75  
2-76  
1-II  
There are new parameters and data was updated in the Table 2-100  
• RAM512X18 table.  
Revision 8 (Feb 2008) Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions is new.  
Product Brief v1.1  
Revision 7 (Jun 2008) The title of Table 2-4 • Overshoot and Undershoot Limits 1 was modified to  
2-3  
remove "as measured on quiet I/Os." Table note 2 was revised to remove  
"estimated SSO density over cycles." Table note 3 was deleted.  
Characteristics v1.2  
DC and Switching  
Table 2-78 • LVDS Minimum and Maximum DC Input and Output Levels was  
updated.  
2-49  
4-17  
4-17  
Revision 6 (Jun 2008) The A3PE600 "FG484" table was missing G22. The pin and its function were  
added to the table.  
Revision 5 (Jun 2008) The naming conventions changed for the following pins in the "FG484" for the  
A3PE600:  
Packaging v1.4  
Pin Number  
New Function Name  
IO45PPB2V1  
J19  
K20  
M2  
N1  
IO45NPB2V1  
IO114NPB6V1  
IO114PPB6V1  
N4  
GFC2/IO115PPB6V1  
IO115NPB6V1  
P3  
Revision 4 (Apr 2008) The product brief portion of the datasheet was divided into two sections and given  
N/A  
a version number, starting at v1.0. The first section of the document includes  
features, benefits, ordering information, and temperature and speed grade  
offerings. The second section is a device family overview.  
Product Brief v1.0  
Packaging v1.3  
The "FG324" package diagram was replaced.  
4-12  
5-4  
Revision 13  
ProASIC3E Flash Family FPGAs  
Revision  
Changes  
Page  
Revision 3 (Apr 2008) The following pins had duplicates and the extra pins were deleted from the  
4-6  
"PQ208" A3PE3000 table:  
Packaging v1.2  
36, 62, 171  
Note: There were no pin function changes in this update.  
The following pins had duplicates and the extra pins were deleted from the  
"FG324" table:  
4-12  
E2, E3, E16, E17, P2, P3, T16, U17  
Note: There were no pin function changes in this update.  
The "FG256" pin table was updated for the A3PE600 device because the old PAT  
were based on the IFX die, and this is the final UMC die version.  
4-9  
The "FG484" was updated for the A3PE600 device because the old PAT were  
based on the IFX die, and this is the final UMC die version.  
4-17  
4-41  
The following pins had duplicates and the extra pins were deleted from the  
"FG896" table:  
AD6, AE5, AE28, AF29, F5, F26, G6, G25  
Note: There were no pin function changes in this update.  
Revision 2 (Mar 2008) The FG324 package was added to the "ProASIC3E Product Family" table, the I, II, IV  
"I/Os Per Package1" table, and the "Temperature Grade Offerings" table for  
A3PE3000.  
Product Brief rev. 1  
Revision 1 (Feb 2008) In Table 2-3 • Flash Programming Limits – Retention, Storage and Operating  
2-2  
Temperature 1, Maximum Operating Junction Temperature was changed from  
110°C to 100°C for both commercial and industrial grades.  
Characteristics v1.1  
DC and Switching  
The "PLL Behavior at Brownout Condition" section is new.  
2-4  
In the "PLL Contribution—PPLL" section, the following was deleted:  
FCLKIN is the input clock frequency.  
2-10  
In Table 2-14 • Summary of Maximum and Minimum DC Input Levels, the note  
was incorrect. It previously said TJ and it was corrected and changed to TA.  
2-17  
2-69  
2-82  
In Table 2-98 • ProASIC3E CCC/PLL Specification, the SCLK parameter and note  
1 are new.  
Table 2-103 • JTAG 1532 was populated with the parameter data, which was not  
in the previous version of the document.  
Revision 1 (cont’d)  
The "PQ208" pin table for A3PE3000 was updated.  
The "FG324" pin table for A3PE3000 is new.  
The "FG484" pin table for A3PE3000 is new.  
The "FG896" pin table for A3PE3000 is new.  
4-6  
4-13  
4-27  
4-41  
N/A  
Packaging v1.1  
Revision 0 (Jan 2008) This document was previously in datasheet v2.1. As a result of moving to the  
handbook format, Actel has restarted the version numbers. The new version  
number is 51700098-001-0.  
v2.1  
CoreMP7 information was removed from the "Features and Benefits" section.  
i
(July 2007)  
The M1 device part numbers have been updated in Table 4 • ProASIC3E  
Product Family, "Packaging Tables", "Temperature Grade Offerings", "Speed  
Grade and Temperature Grade Matrix", and "Speed Grade and Temperature  
Grade Matrix".  
ii, iii,  
iv, iv  
Revision 13  
5-5  
Datasheet Information  
Revision  
Changes  
Page  
v2.1  
(continued)  
The words "ambient temperature" were added to the temperature range in the iii, iv, iv  
"Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix",  
and "Speed Grade and Temperature Grade Matrix" sections.  
The "Clock Conditioning Circuit (CCC) and PLL" section was updated.  
i
The caption "Main (chip)" in Figure 2-9 • Overview of Automotive ProASIC3  
VersaNet Global Network was changed to "Chip (main)."  
2-9  
The TJ parameter in Table 3-2 • Recommended Operating Conditions was  
changed to TA, ambient temperature, and table notes 4–6 were added.  
3-2  
2-15  
iii  
The "PLL Macro" section was updated to add information on the VCO and PLL  
outputs during power-up.  
v2.0  
(April 2007)  
In the "Temperature Grade Offerings" section, Ambient was deleted.  
Ambient was deleted from "Temperature Grade Offerings".  
iii  
Ambient was deleted from the "Speed Grade and Temperature Grade Matrix".  
The "PLL Macro" section was updated to include power-up information.  
Table 2-13 • ProASIC3E CCC/PLL Specification was updated.  
Figure 2-19 • Peak-to-Peak Jitter Definition is new.  
iv  
2-15  
2-30  
2-18  
2-21  
The "SRAM and FIFO" section was updated with operation and timing  
requirement information.  
The "RESET" section was updated with read and write information.  
The "RESET" section was updated with read and write information.  
2-25  
2-25  
2-28  
The "Introduction" in the "Advanced I/Os" section was updated to include  
information on input and output buffers being disabled.  
In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance  
descriptions were updated for levels 3 and 4.  
2-34  
2-64  
2-40  
Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E  
Devices was updated.  
Notes 3, 4, and 5 were added to Table 2-17 • Comparison Table for 5 V–  
Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum  
current was updated from 4 x 52.7 to 5 x 52.7.  
The "VCCPLF PLL Supply Voltage" section was updated.  
2-50  
2-50  
2-51  
The "VPUMP Programming Supply Voltage" section was updated.  
The "GL Globals" section was updated to include information about direct input  
into quadrant clocks.  
VJTAG was deleted from the "TCK Test Clock" section.  
2-51  
2-51  
In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK  
was changed to TCK in note 2. Note 3 was also updated.  
Ambient was deleted from Table 3-2 • Recommended Operating Conditions.  
VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".  
3-2  
3-2  
3-5  
Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on  
quiet I/Os).  
In EQ 3-2, 150 was changed to 110 and the result changed to 5.88.  
5-6  
Revision 13  
ProASIC3E Flash Family FPGAs  
Revision  
Changes  
Page  
v2.0  
(continued)  
Table 3-6 • Temperature and Voltage Derating Factors for Timing Delays was  
updated.  
3-5  
Table 3-5 • Package Thermal Resistivities was updated.  
3-5  
3-8  
Table 3-10 • Different Components Contributing to the Dynamic Power  
Consumption in ProASIC3E Devices was updated.  
tWRO and tCCKH were added to Table 3-94 • RAM4K9 and Table 3-74 to  
3-95 • RAM512X18.  
3-74  
The note in Table 3-24 • I/O Input Rise Time, Fall Time, and Related I/O  
Reliability was updated.  
3-23  
Figure 3-43 • Write Access After Write onto Same Address, Figure 3-44 • Read 3-71 to 3-  
Access After Write onto Same Address, and Figure 3-45 • Write Access After  
Read onto Same Address are new.  
73  
Figure 3-53 • Timing Diagram was updated.  
3-80  
N/A  
Notes were added to the package diagrams identifying if they were top or bottom  
view.  
The A3PE1500 "208-Pin PQFP" table is new.  
The A3PE1500 "484-Pin FBGA" table is new.  
The A3PE1500 "A3PE1500 Function" table is new.  
4-4  
4-18  
4-24  
ii  
Advance v0.6  
(January 2007)  
In the "Packaging Tables" table, the number of I/Os for the A3PE1500 was  
changed for the FG484 and FG676 packages.  
Advance v0.5  
(April 2006)  
B-LVDS and M-LDVS are new I/O standards added to the datasheet.  
N/A  
The term flow-through was changed to pass-through.  
Figure 2-8 • Very-Long-Line Resources was updated.  
The footnotes in Figure 2-27 • CCC/PLL Macro were updated.  
N/A  
2-8  
2-28  
2-24  
The Delay Increments in the Programmable Delay Blocks specification in Figure  
2-24 • ProASIC3E CCC Options.  
The "SRAM and FIFO" section was updated.  
The "RESET" section was updated.  
2-21  
2-25  
2-25  
2-25  
2-27  
N/A  
The "WCLK and RCLK" section was updated.  
The "RESET" section was updated.  
The "RESET" section was updated.  
B-LVDS and M-LDVS are new I/O standards added to the datasheet.  
The term flow-through was changed to pass-through.  
Figure 2-8 • Very-Long-Line Resources was updated.  
The footnotes in Figure 2-27 • CCC/PLL Macro were updated.  
N/A  
2-8  
2-28  
2-24  
The Delay Increments in the Programmable Delay Blocks specification in Figure  
2-24 • ProASIC3E CCC Options.  
The "SRAM and FIFO" section was updated.  
The "RESET" section was updated.  
2-21  
2-25  
2-25  
The "WCLK and RCLK" section was updated.  
Revision 13  
5-7  
Datasheet Information  
Revision  
Changes  
Page  
Advance v0.5  
(continued)  
The "RESET" section was updated.  
The "RESET" section was updated.  
2-25  
2-27  
2-28  
2-29  
The "Introduction" of the "Introduction" section was updated.  
PCI-X 3.3 V was added to the Compatible Standards for 3.3 V in Table 2-  
11 • VCCI Voltages and Compatible Standards  
Table 2-35 • ProASIC3E I/O Features was updated.  
2-54  
2-32  
The "Double Data Rate (DDR) Support" section was updated to include  
information concerning implementation of the feature.  
The "Electrostatic Discharge (ESD) Protection" section was updated to include  
testing information.  
2-35  
2-64  
2-64  
2-41  
2-55  
Level 3 and 4 descriptions were updated in Table 2-43 • I/O Hot-Swap and 5 V  
Input Tolerance Capabilities in ProASIC3 Devices.  
The notes in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in  
ProASIC3E Devices were updated.  
The "Simultaneous Switching Outputs (SSOs) and Printed Circuit Board Layout"  
section is new.  
A footnote was added to Table 2-37 • Maximum I/O Frequency for Single-Ended  
and Differential I/Os in All Banks in ProASIC3E Devices (maximum drive strength  
and high slew selected).  
Table 2-48 • ProASIC3E I/O Attributes vs. I/O Standard Applications  
2-81  
2-85  
Table 2-55 • ProASIC3 I/O Standards—SLEW and Output Drive (OUT_DRIVE)  
Settings  
The "x" was updated in the "Pin Descriptions" section.  
2-50  
2-50  
2-50  
The "VCC Core Supply Voltage" pin description was updated.  
The "VMVx I/O Supply Voltage (quiet)" pin description was updated to include  
information concerning leaving the pin unconnected.  
EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options.  
2-24  
2-30  
The CCC Output Peak-to-Peak Period Jitter FCCC_OUT was updated in Table  
2-13 • ProASIC3E CCC/PLL Specification.  
EXTFB was removed from Figure 2-27 • CCC/PLL Macro.  
2-28  
2-64  
The LVPECL specification in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance  
Capabilities in ProASIC3E Devices was updated.  
Table 2-15 • Levels of Hot-Swap Support was updated.  
The "Cold-Sparing Support" section was updated.  
2-34  
2-34  
2-35  
2-50  
"Electrostatic Discharge (ESD) Protection" section was updated.  
The VJTAG and I/O pin descriptions were updated in the "Pin Descriptions"  
section.  
The "VJTAG JTAG Supply Voltage" pin description was updated.  
2-50  
2-50  
The "VPUMP Programming Supply Voltage" pin description was updated to  
include information on what happens when the pin is tied to ground.  
5-8  
Revision 13  
ProASIC3E Flash Family FPGAs  
Revision  
Changes  
Page  
Advance v0.5  
(continued)  
The "I/O User Input/Output" pin description was updated to include information on  
what happens when the pin is unused.  
2-50  
2-51  
2-53  
2-54  
The "JTAG Pins" section was updated to include information on what happens  
when the pin is unused.  
The "Programming" section was updated to include information concerning  
serialization.  
The "JTAG 1532" section was updated to include SAMPLE/PRELOAD  
information.  
The "DC and Switching Characteristics" chapter was updated with new Starting  
information.  
on page  
3-1  
Table 3-6 was updated.  
3-5  
3-8  
In Table 3-10, PAC4 was updated.  
Table 3-19 was updated.  
3-20  
3-23  
The note in Table 3-24 was updated.  
All Timing Characteristics tables were updated from LVTTL to Register Delays  
3-26 to  
3-64  
The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated.  
3-74 to  
3-79  
FTCKMAX was updated in Table 3-98.  
3-80  
ii  
Advance v0.4  
(October 2005)  
The "Packaging Tables" table was updated.  
Advance v0.3  
Figure 2-11 was updated.  
2-9  
2-9  
The "Clock Resources (VersaNets)" section was updated.  
The "VersaNet Global Networks and Spine Access" section was updated.  
The "PLL Macro" section was updated.  
Figure 2-27 was updated.  
2-9  
2-15  
2-28  
2-19  
2-25  
2-25  
2-27  
2-51  
2-31  
2-34  
2-64  
2-81  
2-51  
2-50  
3-6  
Figure 2-20 was updated.  
Table 2-5 was updated.  
Table 2-6 was updated.  
The "FIFO Flag Usage Considerations" section was updated.  
Table 2-33 was updated.  
Figure 2-24 was updated.  
The "Cold-Sparing Support" section is new.  
Table 2-45 was updated.  
Table 2-48 was updated.  
Pin descriptions in the "JTAG Pins" section were updated.  
The "Pin Descriptions" section was updated.  
Table 3-7 was updated.  
Revision 13  
5-9  
Datasheet Information  
Revision  
Changes  
The "Methodology" section was updated.  
Page  
3-9  
Advance v0.3  
(continued)  
The A3PE3000 "208-Pin PQFP" pin table was updated.  
4-6  
5-10  
Revision 13  
ProASIC3E Flash Family FPGAs  
Datasheet Categories  
Categories  
In order to provide the latest information to designers, some datasheet parameters are published before  
data has been fully characterized from silicon devices. The data provided for a given device, as  
highlighted in the "ProASIC3E Device Status" table on page II, is designated as either "Product Brief,"  
"Advance," "Preliminary," or "Production." The definitions of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advance or production) and contains general  
product information. This document gives an overview of specific device and family information.  
Advance  
This version contains initial estimated information based on simulation, other products, devices, or speed  
grades. This information can be used as estimates, but not for production. This label only applies to the  
DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not  
been fully characterized.  
Preliminary  
The datasheet contains information based on simulation and/or initial characterization. The information is  
believed to be correct, but changes are possible.  
Production  
This version contains information that is considered to be final.  
Export Administration Regulations (EAR)  
The products described in this document are subject to the Export Administration Regulations (EAR).  
They could require an approved export license prior to export from the United States. An export includes  
release of product or disclosure of technology to a foreign national inside or outside the United States.  
Safety Critical, Life Support, and High-Reliability Applications  
Policy  
The products described in this advance status document may not have completed the Microsemi  
qualification process. Products may be amended or enhanced during the product introduction and  
qualification process, resulting in changes in device functionality or performance. It is the responsibility of  
each customer to ensure the fitness of any product (but especially a new product) for a particular  
purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications.  
Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating  
to life-support applications. A reliability report covering all of the SoC Products Group’s products is  
available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety  
of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for  
additional reliability information.  
Revision 13  
5-11  
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor  
solutions for: aerospace, defense and security; enterprise and communications; and industrial  
and alternative energy markets. Products include high-performance, high-reliability analog and  
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and  
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at  
www.microsemi.com.  
Microsemi Corporate Headquarters  
One Enterprise, Aliso Viejo CA 92656 USA  
Within the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of  
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.  
Fax: +1 (949) 215-4996  
51700097-13/01.13  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY