AGLN020V5-UCG100 [MICROSEMI]

IGLOO nano Low Power Flash FPGAs with Flash*Freeze Technology; IGLOO纳米低功耗快闪FPGA和Flash * Freeze技术
AGLN020V5-UCG100
型号: AGLN020V5-UCG100
厂家: Microsemi    Microsemi
描述:

IGLOO nano Low Power Flash FPGAs with Flash*Freeze Technology
IGLOO纳米低功耗快闪FPGA和Flash * Freeze技术

文件: 总150页 (文件大小:7699K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Revision 17  
IGLOO nano Low Power Flash FPGAs  
with Flash*Freeze Technology  
High-Performance Routing Hierarchy  
Features and Benefits  
Segmented, Hierarchical Routing and Clock Structure  
Low Power  
Advanced I/Os  
nanoPower Consumption—Industry’s Lowest Power  
1.2 V to 1.5 V Core Voltage Support for Low Power  
Supports Single-Voltage System Operation  
1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation  
Bank-Selectable I/O Voltages—up to 4 Banks per Chip  
Single-Ended I/O Standards: LVTTL, LVCMOS  
3.3 V / 2.5 V / 1.8 V / 1.5 V / 1.2 V  
Low Power Active FPGA Operation  
Flash*Freeze Technology Enables Ultra-Low Power  
Consumption while Maintaining FPGA Content  
Easy Entry to / Exit from Ultra-Low Power Flash*Freeze Mode  
Wide Range Power Supply Voltage Support per JESD8-B,  
Allowing I/Os to Operate from 2.7 V to 3.6 V  
Wide Range Power Supply Voltage Support per JESD8-12,  
Allowing I/Os to Operate from 1.14 V to 1.575 V  
I/O Registers on Input, Output, and Enable Paths  
Selectable Schmitt Trigger Inputs  
Small Footprint Packages  
As Small as 3x3 mm in Size  
Wide Range of Features  
Hot-Swappable and Cold-Sparing I/Os  
Programmable Output Slew Rate and Drive Strength  
Weak Pull-Up/-Down  
10,000 to 250,000 System Gates  
Up to 36 kbits of True Dual-Port SRAM  
Up to 71 User I/Os  
IEEE 1149.1 (JTAG) Boundary Scan Test  
®
Pin-Compatible Packages across the IGLOO Family  
Reprogrammable Flash Technology  
Clock Conditioning Circuit (CCC) and PLL†  
130-nm, 7-Layer Metal, Flash-Based CMOS Process  
Instant On Level 0 Support  
Up to Six CCC Blocks, One with an Integrated PLL  
Configurable Phase Shift, Multiply/Divide, Delay  
Capabilities, and External Feedback  
Single-Chip Solution  
Retains Programmed Design When Powered Off  
250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System  
Performance  
Wide Input Frequency Range (1.5 MHz up to 250 MHz)  
Embedded Memory  
In-System Programming (ISP) and Security  
1 kbit of FlashROM User Nonvolatile Memory  
SRAMs and FIFOs with Variable-Aspect-Ratio 4,608-Bit RAM  
ISP Using On-Chip 128-Bit Advanced Encryption Standard  
(AES) Decryption via JTAG (IEEE 1532–compliant)  
Blocks (×1, ×2, ×4, ×9, and ×18 organizations)  
True Dual-Port SRAM (except × 18 organization)  
®
FlashLock Designed to Secure FPGA Contents  
1.2 V Programming  
Enhanced Commercial Temperature Range  
Tj = -20°C to +85°C  
AGLN010 AGLN0151 AGLN020  
AGLN060  
AGLN125  
AGLN250  
IGLOO nano Devices  
IGLOO nano-Z Devices  
System Gates  
1
AGLN030Z1 AGLN060Z1 AGLN125Z1 AGLN250Z1  
10,000  
15,000  
20,000  
30,000  
60,000  
512  
1,536  
10  
125,000  
250,000  
Typical Equivalent Macrocells  
VersaTiles (D-flip-flops)  
86  
260  
2
128  
384  
4
172  
520  
4
256  
768  
5
1,024  
3,072  
16  
36  
8
2,048  
6,144  
24  
36  
8
Flash*Freeze Mode (typical, µW)  
2
RAM Kbits (1,024 bits)  
18  
2
4,608-Bit Blocks  
4
FlashROM Kbits (1,024 bits)  
1
1
1
1
1
1
1
2
Secure (AES) ISP  
Yes  
1
Yes  
1
Yes  
1
2,3  
Integrated PLL in CCCs  
VersaNet Globals  
4
4
4
6
18  
18  
2
18  
4
I/O Banks  
2
3
3
2
2
Maximum User I/Os (packaged device)  
Maximum User I/Os (Known Good Die)  
34  
34  
49  
52  
52  
77  
83  
71  
71  
71  
68  
68  
71  
Package Pins  
UC/CS  
UC36  
QN48  
UC81,  
CS81  
QN68  
UC81, CS81  
QN48, QN68  
VQ100  
CS81  
CS81  
CS81  
QFN  
VQFP  
QN68  
VQ100  
VQ100  
VQ100  
Notes:  
1. Not recommended for new designs.  
2. AGLN030 and smaller devices do not support this feature.  
3. AGLN060, AGLN125, and AGLN250 in the CS81 package do not support PLLs.  
4. For higher densities and support of additional features, refer to the IGLOO and IGLOOe datasheets.  
† AGLN030 and smaller devices do not support this feature.  
June 2013  
I
© 2013 Microsemi Corporation  
I/Os Per Package  
IGLOO nano Devices  
AGLN010  
AGLN0151 AGLN020  
AGLN060  
AGLN125  
AGLN250  
IGLOO nano-Z Devices1  
AGLN030Z1 AGLN060Z1 AGLN125Z1 AGLN250Z1  
Known Good Die  
UC36  
34  
23  
34  
52  
83  
71  
71  
68  
QN48  
34  
49  
66  
66  
77  
QN68  
49  
49  
52  
52  
UC81  
CS81  
60  
71  
60  
71  
60  
68  
VQ100  
Notes:  
1. Not recommended for new designs.  
2. When considering migrating your design to a lower- or higher-density device, refer to the IGLOO datasheet and IGLOO FPGA  
Fabric User’s Guide to ensure compliance with design and board migration requirements.  
3. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not used as a regular I/O, the number of single-  
ended user I/Os available is reduced by one.  
4. "G" indicates RoHS-compliant packages. Refer to "IGLOO nano Ordering Information" on page III for the location of the "G" in  
the part number. For nano devices, the VQ100 package is offered in both leaded and RoHS-compliant versions. All other  
packages are RoHS-compliant only.  
Table 1 • IGLOO nano FPGAs Package Sizes Dimensions  
Packages  
UC36  
3 x 3  
9
UC81  
4 x 4  
16  
CS81  
5 x 5  
36  
QN48  
6 x 6  
36  
QN68  
8 x 8  
64  
VQ100  
14 x 14  
196  
Length × Width (mm\mm)  
Nominal Area (mm2)  
Pitch (mm)  
0.4  
0.4  
0.5  
0.4  
0.4  
0.5  
Height (mm)  
0.80  
0.80  
0.80  
0.90  
0.90  
1.20  
IGLOO nano Device Status  
IGLOO nano Devices  
Status  
IGLOO nano-Z Devices  
Status  
AGLN010  
Production  
AGLN015  
AGLN020  
Not recommended for new designs.  
Production  
AGLN030Z  
AGLN060Z  
AGLN125Z  
AGLN250Z  
Not recommended for new designs.  
Not recommended for new designs.  
Not recommended for new designs.  
Not recommended for new designs.  
AGLN060  
AGLN125  
AGLN250  
Production  
Production  
Production  
II  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
IGLOO nano Ordering Information  
_
AGLN250  
V2  
Z
VQ  
G
100  
Y
I
Application (Temperature Range)  
Blank = Enhanced Commercial (20°C to +85°C Junction Temperature)  
I = Industrial (40°C to +100°C Junction Temperature)  
PP= Pre-Production  
ES= Engineering Sample (Room Temperature Only)  
Security Feature  
Y = Device Includes License to Implement IP Based on the  
Cryptography Research, Inc. (CRI) Patent Portfolio  
Blank = Device Does Not Include License to Implement IP Based  
on the Cryptography Research, Inc. (CRI) Patent Portfolio  
Package Lead Count  
Lead-Free Packaging  
Blank = Standard Packaging  
G= RoHS-Compliant Packaging  
Package Type  
=
=
=
=
UC  
CS  
QN  
VQ  
Micro Chip Scale Package (0.4 mm pitch)  
Chip Scale Package (0.5 mm pitch)  
Quad Flat Pack No Leads (0.4 mm and 0.5 mm pitches)  
Very Thin Quad Flat Pack (0.5 mm pitch)  
=
DIELOT Known Good Die  
Z = nano devices without enhanced features1  
Blank = Standard  
Supply Voltage  
2 = 1.2 V to 1.5 V  
5 = 1.5 V only  
Part Number  
IGLOO nano Devices  
AGLN010 = 10,000 System Gates  
AGLN015 = 15,000 System Gates (AGLN015 is not recommended for new designs)  
AGLN020 = 20,000 System Gates  
AGLN030 = 30,000 System Gates  
AGLN060 = 60,000 System Gates  
AGLN125 = 125,000 System Gates  
AGLN250 = 250,000 System Gates  
Notes:  
1. Z-feature grade devices AGLN060Z, AGLN125Z, and AGLN250Z do not support the enhanced nano features of Schmitt Trigger  
input, bus hold (hold previous I/O state in Flash*Freeze mode), cold-sparing, hot-swap I/O capability and 1.2 V programming.  
The AGLN030 Z feature grade does not support Schmitt trigger input, bus hold and 1.2 V programming. For the VQ100, CS81,  
UC81, QN68, and QN48 packages, the Z feature grade and the N part number are not marked on the device. Z feature grade  
devices are not recommended for new designs.  
2. AGLN030 is available in the Z feature grade only.  
3. Marking Information: IGLOO nano V2 devices do not have a V2 marking, but IGLOO nano V5 devices are marked with a V5  
designator.  
Devices Not Recommended For New Designs  
AGLN015, AGLN030Z, AGLN060Z, AGLN125Z, and AGLN250Z are not recommended for new designs.  
Device Marking  
Microsemi normally topside marks the full ordering part number on each device. There are some exceptions to this, such as some of  
the Z feature grade nano devices, the V2 designator for IGLOO devices, and packages where space is physically limited. Packages  
that have limited characters available are UC36, UC81, CS81, QN48, QN68, and QFN132. On these specific packages, a subset of  
the device marking will be used that includes the required legal information and as much of the part number as allowed by character  
limitation of the device. In this case, devices will have a truncated device marking and may exclude the applications markings, such  
as the I designator for Industrial Devices or the ES designator for Engineering Samples.  
Revision 17  
III  
Figure 1 shows an example of device marking based on the AGL030V5-UCG81. The actual mark will vary by the device/package  
combination ordered.  
Country of Origin  
ACTELXXX  
Device Name  
(six characters)  
Date Code  
AGL030YWW  
Package  
UCG81XXXX  
XXXXXXXX  
Customer Mark  
(if applicable)  
Wafer Lot #  
Figure 1 •  
Example of Device Marking for Small Form Factor Packages  
IGLOO nano Products Available in the Z Feature Grade  
IGLOO nano-Z Devices  
AGLN030Z*  
QN48  
AGLN060Z*  
AGLN125Z*  
AGLN250Z*  
QN68  
UC81  
CS81  
CS81  
VQ100  
CS81  
VQ100  
CS81  
VQ100  
Packages  
VQ100  
Note: *Not recommended for new designs.  
Temperature Grade Offerings  
AGLN010  
AGLN015*  
AGLN020  
AGLN060  
AGLN125  
AGLN250  
Package  
UC36  
AGLN030Z*  
AGLN060Z*  
AGLN125Z*  
AGLN250Z*  
C, I  
C, I  
QN48  
QN68  
UC81  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
CS81  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
VQ100  
Note: * Not recommended for new designs.  
C = Enhanced Commercial temperature range: –20°C to +85°C junction temperature  
I = Industrial temperature range: –40°C to +100°C junction temperature  
Contact your local Microsemi representative for device availability: http://www.microsemi.com/soc/contact/default.aspx.  
IV  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Table of Contents  
IGLOO nano Device Overview  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
IGLOO nano DC and Switching Characteristics  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15  
VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-57  
Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63  
Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70  
Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-73  
Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-87  
JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-88  
Pin Descriptions  
Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
User Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
Package Pin Assignments  
UC36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
UC81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  
CS81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
QN48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15  
QN68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18  
VQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22  
Datasheet Information  
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8  
Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8  
Revision 17  
V
1 – IGLOO nano Device Overview  
General Description  
The IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a  
single-chip solution, small footprint packages, reprogrammability, and an abundance of advanced  
features.  
The Flash*Freeze technology used in IGLOO nano devices enables entering and exiting an ultra-low  
power mode that consumes nanoPower while retaining SRAM and register data. Flash*Freeze  
technology simplifies power management through I/O and clock management with rapid recovery to  
operation mode.  
The Low Power Active capability (static idle) allows for ultra-low power consumption while the IGLOO  
nano device is completely functional in the system. This allows the IGLOO nano device to control system  
power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming  
minimal power.  
Nonvolatile flash technology gives IGLOO nano devices the advantage of being a secure, low power,  
single-chip solution that is Instant On. The IGLOO nano device is reprogrammable and offers time-to-  
market benefits at an ASIC-level unit cost.  
These features enable designers to create high-density systems using existing ASIC or FPGA design  
flows and tools.  
IGLOO nano devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as  
clock conditioning circuitry based on an integrated phase-locked loop (PLL). The AGLN030 and smaller  
devices have no PLL or RAM support. IGLOO nano devices have up to 250 k system gates, supported  
with up to 36 kbits of true dual-port SRAM and up to 71 user I/Os.  
IGLOO nano devices increase the breadth of the IGLOO product line by adding new features and  
packages for greater customer value in high volume consumer, portable, and battery-backed markets.  
Features such as smaller footprint packages designed with two-layer PCBs in mind, power consumption  
measured in nanoPower, Schmitt trigger, and bus hold (hold previous I/O state in Flash*Freeze mode)  
functionality make these devices ideal for deployment in applications that require high levels of flexibility  
and low cost.  
Flash*Freeze Technology  
The IGLOO nano device offers unique Flash*Freeze technology, allowing the device to enter and exit  
ultra-low power Flash*Freeze mode. IGLOO nano devices do not need additional components to turn off  
I/Os or clocks while retaining the design information, SRAM content, and registers. Flash*Freeze  
technology is combined with in-system programmability, which enables users to quickly and easily  
upgrade and update their designs in the final stages of manufacturing or in the field. The ability of IGLOO  
nano V2 devices to support a wide range of core voltage (1.2 V to 1.5 V) allows further reduction in  
power consumption, thus achieving the lowest total system power.  
During Flash*Freeze mode, each I/O can be set to the following configurations: hold previous state,  
tristate, HIGH, or LOW.  
The availability of low power modes, combined with reprogrammability, a single-chip and single-voltage  
solution, and small-footprint packages make IGLOO nano devices the best fit for portable electronics.  
Revision 17  
1-1  
IGLOO nano Device Overview  
Flash Advantages  
Low Power  
Flash-based IGLOO nano devices exhibit power characteristics similar to those of an ASIC, making them  
an ideal choice for power-sensitive applications. IGLOO nano devices have only a very limited power-on  
current surge and no high-current transition period, both of which occur on many FPGAs.  
IGLOO nano devices also have low dynamic power consumption to further maximize power savings;  
power is reduced even further by the use of a 1.2 V core voltage.  
Low dynamic power consumption, combined with low static power consumption and Flash*Freeze  
technology, gives the IGLOO nano device the lowest total system power offered by any FPGA.  
Security  
Nonvolatile, flash-based IGLOO nano devices do not require a boot PROM, so there is no vulnerable  
external bitstream that can be easily copied. IGLOO nano devices incorporate FlashLock, which provides  
a unique combination of reprogrammability and design security without external overhead, advantages  
that only an FPGA with nonvolatile flash programming can offer.  
IGLOO nano devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest  
level of security in the FPGA industry for programmed intellectual property and configuration data. In  
addition, all FlashROM data in IGLOO nano devices can be encrypted prior to loading, using the  
industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the  
National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard.  
IGLOO nano devices have a built-in AES decryption engine and a flash-based AES key that make them  
the most comprehensive programmable logic device security solution available today. IGLOO nano  
devices with AES-based security provide a high level of protection for remote field updates over public  
networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of  
system overbuilders, system cloners, and IP thieves.  
Security, built into the FPGA fabric, is an inherent component of IGLOO nano devices. The flash cells are  
located beneath seven metal layers, and many device design and layout techniques have been used to  
make invasive attacks extremely difficult. IGLOO nano devices, with FlashLock and AES security, are  
unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected  
with industry-standard security, making remote ISP possible. An IGLOO nano device provides the best  
available security for programmable logic designs.  
Single Chip  
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the  
configuration data is an inherent part of the FPGA structure, and no external configuration data needs to  
be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based IGLOO nano  
FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load  
device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and  
system reliability.  
Instant On  
Microsemi flash-based IGLOO nano devices support Level 0 of the Instant On classification standard.  
This feature helps in system component initialization, execution of critical tasks before the processor  
wakes up, setup and configuration of memory blocks, clock generation, and bus activity management.  
The Instant On feature of flash-based IGLOO nano devices greatly simplifies total system design and  
reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs. In addition,  
glitches and brownouts in system power will not corrupt the IGLOO nano device's flash configuration,  
and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored.  
This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor,  
brownout detection, and clock generator devices from the PCB design. Flash-based IGLOO nano  
devices simplify total system design and reduce cost and design risk while increasing system reliability  
and improving system initialization time.  
IGLOO nano flash FPGAs enable the user to quickly enter and exit Flash*Freeze mode. This is done  
almost instantly (within 1 µs) and the device retains configuration and data in registers and RAM. Unlike  
SRAM-based FPGAs, the device does not need to reload configuration and design state from external  
memory components; instead it retains all necessary information to resume operation immediately.  
1-2  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Reduced Cost of Ownership  
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike  
SRAM-based FPGAs, flash-based IGLOO nano devices allow all functionality to be Instant On; no  
external boot PROM is required. On-board security mechanisms prevent access to all the programming  
information and enable secure remote updates of the FPGA logic.  
Designers can perform secure remote in-system reprogramming to support future design iterations and  
field upgrades with confidence that valuable intellectual property cannot be compromised or copied.  
Secure ISP can be performed using the industry-standard AES algorithm. The IGLOO nano device  
architecture mitigates the need for ASIC migration at higher user volumes. This makes IGLOO nano  
devices cost-effective ASIC replacement solutions, especially for applications in the consumer,  
networking/communications, computing, and avionics markets.  
With a variety of devices under $1, IGLOO nano FPGAs enable cost-effective implementation of  
programmable logic and quick time to market.  
Firm-Error Immunity  
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike  
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the  
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These  
errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a  
complete system failure. Firm errors do not exist in the configuration memory of IGLOO nano flash-based  
FPGAs. Once it is programmed, the flash cell configuration element of IGLOO nano FPGAs cannot be  
altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in  
the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and  
correction (EDAC) circuitry built into the FPGA fabric.  
Advanced Flash Technology  
The IGLOO nano device offers many benefits, including nonvolatility and reprogrammability, through an  
advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design  
techniques are used to implement logic and control functions. The combination of fine granularity,  
enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization  
without compromising device routability or performance. Logic functions within the device are  
interconnected through a four-level routing hierarchy.  
IGLOO nano FPGAs utilize design and process techniques to minimize power consumption in all modes  
of operation.  
Advanced Architecture  
The proprietary IGLOO nano architecture provides granularity comparable to standard-cell ASICs. The  
IGLOO nano device consists of five distinct and programmable architectural features (Figure 1-3 on  
page 1-5 to Figure 1-4 on page 1-5):  
Flash*Freeze technology  
FPGA VersaTiles  
Dedicated FlashROM  
Dedicated SRAM/FIFO memory†  
Extensive CCCs and PLLs†  
Advanced I/O structure  
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic  
function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch  
interconnections. The versatility of the IGLOO nano core tile as either a three-input lookup table (LUT)  
equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile  
capability is unique to the ProASIC® family of third-generation-architecture flash FPGAs. VersaTiles are  
connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the  
device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is  
possible for virtually any design.  
† The AGLN030 and smaller devices do not support PLL or SRAM.  
Revision 17  
1-3  
IGLOO nano Device Overview  
Bank 1*  
I/Os  
VersaTile  
CCC-GL  
User Nonvolatile  
FlashROM  
Flash*Freeze  
Technology  
Charge  
Pumps  
Bank 1  
Note: *Bank 0 for the AGLN030 device  
Figure 1-1 • IGLOO Device Architecture Overview with Two I/O Banks and No RAM (AGLN010 and AGLN030)  
Bank 1  
I/Os  
VersaTile  
User Nonvolatile  
FlashRom  
Flash*Freeze  
Technology  
Charge  
Pumps  
CCC-GL  
Bank 1  
Figure 1-2 • IGLOO Device Architecture Overview with Three I/O Banks and No RAM (AGLN015 and  
AGLN020)  
1-4  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
.
Bank 0  
CCC  
RAM Block  
4,608-Bit Dual-Port  
SRAM or FIFO Block  
I/Os  
VersaTile  
ISP AES  
Decryption  
User Nonvolatile  
FlashRom  
Flash*Freeze  
Technology  
Charge  
Pumps  
Bank 1  
Figure 1-3 • IGLOO Device Architecture Overview with Two I/O Banks (AGLN060, AGLN125)  
Bank 0  
CCC  
RAM Block  
4,608-Bit Dual-Port  
SRAM or FIFO Block  
I/Os  
VersaTile  
ISP AES  
Decryption  
User Nonvolatile  
FlashRom  
Flash*Freeze  
Technology  
Charge  
Pumps  
Bank 2  
Figure 1-4 • IGLOO Device Architecture Overview with Four I/O Banks (AGLN250)  
Revision 17  
1-5  
IGLOO nano Device Overview  
Flash*Freeze Technology  
The IGLOO nano device has an ultra-low power static mode, called Flash*Freeze mode, which retains all  
SRAM and register information and can still quickly return to normal operation. Flash*Freeze technology  
enables the user to quickly (within 1 µs) enter and exit Flash*Freeze mode by activating the  
Flash*Freeze pin while all power supplies are kept at their original values. I/Os, global I/Os, and clocks  
can still be driven and can be toggling without impact on power consumption, and the device retains all  
core registers, SRAM information, and I/O states. I/Os can be individually configured to either hold their  
previous state or be tristated during Flash*Freeze mode.  
Alternatively, I/Os can be set to a specific state using weak pull-up or pull-down I/O attribute  
configuration. No power is consumed by the I/O banks, clocks, JTAG pins, or PLL, and the device  
consumes as little as 2 µW in this mode.  
Flash*Freeze technology allows the user to switch to Active mode on demand, thus simplifying the power  
management of the device.  
The Flash*Freeze pin (active low) can be routed internally to the core to allow the user's logic to decide  
when it is safe to transition to this mode. Refer to Figure 1-5 for an illustration of entering/exiting  
Flash*Freeze mode. It is also possible to use the Flash*Freeze pin as a regular I/O if Flash*Freeze mode  
usage is not planned.  
IGLOO nano  
FPGA  
Flash*Freeze  
Mode Control  
Flash*Freeze Pin  
Figure 1-5 • IGLOO nano Flash*Freeze Mode  
VersaTiles  
The IGLOO nano core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS®  
core tiles. The IGLOO nano VersaTile supports the following:  
All 3-input logic functions—LUT-3 equivalent  
Latch with clear or set  
D-flip-flop with clear or set  
Enable D-flip-flop with clear or set  
Refer to Figure 1-6 for VersaTile configurations.  
Enable D-Flip-Flop with Clear or Set  
D-Flip-Flop with Clear or Set  
LUT-3 Equivalent  
X1  
Data  
Y
Data  
CLK  
CLR  
Y
X2  
X3  
LUT-3  
Y
D-FF  
CLK  
D-FF  
Enable  
CLR  
Figure 1-6 • VersaTile Configurations  
1-6  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
User Nonvolatile FlashROM  
IGLOO nano devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can  
be used in diverse system applications:  
Internet protocol addressing (wireless or fixed)  
System calibration settings  
Device serialization and/or inventory control  
Subscription-based business models (for example, set-top boxes)  
Secure key storage for secure communications algorithms  
Asset management/tracking  
Date stamping  
Version management  
The FlashROM is written using the standard IGLOO nano IEEE 1532 JTAG programming interface. The  
core can be individually programmed (erased and written), and on-chip AES decryption can be used  
selectively to securely load data over public networks (except in the AGLN030 and smaller devices), as  
in security keys stored in the FlashROM for a user design.  
The FlashROM can be programmed via the JTAG programming interface, and its contents can be read  
back either through the JTAG programming interface or via direct FPGA core addressing. Note that the  
FlashROM can only be programmed from the JTAG interface and cannot be programmed from the  
internal logic array.  
The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte  
basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks  
and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the  
FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM  
address define the byte.  
The IGLOO nano development software solutions, Libero® System-on-Chip (SoC) and Designer, have  
extensive support for the FlashROM. One such feature is auto-generation of sequential programming  
files for applications requiring a unique serial number in each part. Another feature enables the inclusion  
of static data for system version control. Data for the FlashROM can be generated quickly and easily  
using Microsemi Libero SoC and Designer software tools. Comprehensive programming file support is  
also included to allow for easy programming of large numbers of parts with differing FlashROM contents.  
SRAM and FIFO  
IGLOO nano devices (except the AGLN030 and smaller devices) have embedded SRAM blocks along  
their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available  
memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have  
independent read and write ports that can be configured with different bit widths on each port. For  
example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM  
blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro  
(except in the AGLN030 and smaller devices).  
In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM  
block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width  
and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and  
Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control  
unit contains the counters necessary for generation of the read and write address pointers. The  
embedded SRAM/FIFO blocks can be cascaded to create larger configurations.  
PLL and CCC  
Higher density IGLOO nano devices using either the two I/O bank or four I/O bank architectures provide  
designers with very flexible clock conditioning capabilities. AGLN060, AGLN125, and AGLN250 contain  
six CCCs. One CCC (center west side) has a PLL. The AGLN030 and smaller devices use different  
CCCs in their architecture (CCC-GL). These CCC-GLs contain a global MUX but do not have any PLLs  
or programmable delays.  
For devices using the six CCC block architecture, these are located at the four corners and the centers of  
the east and west sides. All six CCC blocks are usable; the four corner CCCs and the east CCC allow  
simple clock delay operations as well as clock spine access.  
Revision 17  
1-7  
IGLOO nano Device Overview  
The inputs of the six CCC blocks are accessible from the FPGA core or from dedicated connections to  
the CCC block, which are located near the CCC.  
The CCC block has these key features:  
Wide input frequency range (fIN_CCC) = 1.5 MHz up to 250 MHz  
Output frequency range (fOUT_CCC) = 0.75 MHz up to 250 MHz  
2 programmable delay types for clock skew minimization  
Clock frequency synthesis (for PLL only)  
Additional CCC specifications:  
Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider  
configuration (for PLL only).  
Output duty cycle = 50% ± 1.5% or better (for PLL only)  
Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global  
network used (for PLL only)  
Maximum acquisition time is 300 µs (for PLL only)  
Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns (for PLL only)  
Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz /  
f
OUT_CCC (for PLL only)  
Global Clocking  
IGLOO nano devices have extensive support for multiple clocking domains. In addition to the CCC and  
PLL support described above, there is a comprehensive global clock distribution network.  
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant  
global networks. The VersaNets can be driven by the CCC or directly accessed from the core via  
multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid  
distribution of high-fanout nets.  
I/Os with Advanced I/O Standards  
IGLOO nano FPGAs feature a flexible I/O structure, supporting a range of voltages (1.2 V, 1.2 V wide  
range, 1.5 V, 1.8 V, 2.5 V, 3.0 V wide range, and 3.3 V).  
The I/Os are organized into banks with two, three, or four banks per device. The configuration of these  
banks determines the I/O standards supported.  
Each I/O module contains several input, output, and enable registers. These registers allow the  
implementation of various single-data-rate applications for all versions of nano devices and double-data-  
rate applications for the AGLN060, AGLN125, and AGLN250 devices.  
IGLOO nano devices support LVTTL and LVCMOS I/O standards, are hot-swappable, and support cold-  
sparing and Schmitt trigger.  
Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card  
in a powered-up system.  
Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed  
when the system is powered up, while the component itself is powered down, or when power supplies  
are floating.  
Wide Range I/O Support  
IGLOO nano devices support JEDEC-defined wide range I/O operation. IGLOO nano devices support  
both the JESD8-B specification, covering both 3 V and 3.3 V supplies, for an effective operating range of  
2.7 V to 3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to  
1.575 V.  
Wider I/O range means designers can eliminate power supplies or power conditioning components from  
the board or move to less costly components with greater tolerances. Wide range eases I/O bank  
management and provides enhanced protection from system voltage spikes, while providing the flexibility  
to easily run custom voltage applications.  
1-8  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Specifying I/O States During Programming  
You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for  
PDB files generated from Designer v8.5 or greater. See the FlashPro User’s Guide for more information.  
Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have  
limited display of Pin Numbers only.  
1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during  
programming.  
2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator  
window appears.  
3. Click the Specify I/O States During Programming button to display the Specify I/O States During  
Programming dialog box.  
4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header.  
Select the I/Os you wish to modify (Figure 1-7 on page 1-9).  
5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings  
for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state  
settings:  
1 – I/O is set to drive out logic High  
0 – I/O is set to drive out logic Low  
Last Known State – I/O is set to the last value that was driven out prior to entering the  
programming mode, and then held at that value during programming  
Z -Tri-State: I/O is tristated  
Figure 1-7 • I/O States During Programming Window  
Revision 17  
1-9  
IGLOO nano Device Overview  
6. Click OK to return to the FlashPoint – Programming File Generator window.  
Note: I/O States During programming are saved to the ADB and resulting programming files after  
completing programming file generation.  
1-10  
Revision 17  
2 – IGLOO nano DC and Switching Characteristics  
General Specifications  
The Z feature grade does not support the enhanced nano features of Schmitt trigger input, Flash*Freeze  
bus hold (hold previous I/O state in Flash*Freeze mode), cold-sparing, and hot-swap I/O capability. Refer  
to "IGLOO nano Ordering Information" on page III for more information.  
Operating Conditions  
Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any  
other conditions beyond those listed under the Recommended Operating Conditions specified in  
Table 2-2 on page 2-2 is not implied.  
Table 2-1 • Absolute Maximum Ratings  
Symbol  
VCC  
Parameter  
DC core supply voltage  
Limits  
–0.3 to 1.65  
–0.3 to 3.75  
–0.3 to 3.75  
–0.3 to 1.65  
–0.3 to 3.75  
–0.3 V to 3.6 V  
–65 to +150  
+125  
Units  
V
VJTAG  
VPUMP  
VCCPLL  
VCCI  
JTAG DC voltage  
V
Programming voltage  
Analog power supply (PLL)  
DC I/O buffer supply voltage  
I/O input voltage  
V
V
V
VI1  
V
2
TSTG  
Storage temperature  
Junction temperature  
°C  
°C  
2
TJ  
Notes:  
1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may  
undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.  
2. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-2, and for recommended operating  
limits, refer to Table 2-2 on page 2-2.  
Revision 17  
2-1  
IGLOO nano DC and Switching Characteristics  
Table 2-2 • Recommended Operating Conditions 1  
Extended  
Symbol  
TJ  
Parameter  
Commercial  
Industrial  
–40 to +1002  
1.425 to 1.575  
1.14 to 1.575  
1.4 to 3.6  
Units  
°C  
V
Junction temperature  
–20 to + 852  
1.425 to 1.575  
1.14 to 1.575  
1.4 to 3.6  
VCC  
1.5 V DC core supply voltage3  
1.2 V–1.5 V wide range core voltage4,5  
JTAG DC voltage  
V
VJTAG  
V
VPUMP 6 Programming voltage Programming mode  
3.15 to 3.45  
0 to 3.6  
3.15 to 3.45  
0 to 3.6  
V
Operation  
V
VCCPLL7 Analog power supply 1.5 V DC core supply voltage3  
1.425 to 1.575  
1.14 to 1.575  
1.425 to 1.575  
1.14 to 1.575  
V
(PLL)  
1.2 V–1.5 V wide range core  
V
supply voltage4  
VCCI and 1.2 V DC supply voltage 4  
1.14 to 1.26  
1.14 to 1.575  
1.425 to 1.575  
1.7 to 1.9  
1.14 to 1.26  
1.14 to 1.575  
1.425 to 1.575  
1.7 to 1.9  
V
V
V
V
V
V
V
VMV 8,9  
1.2 V DC wide range supply voltage 4  
1.5 V DC supply voltage  
1.8 V DC supply voltage  
2.5 V DC supply voltage  
3.3 V DC supply voltage  
3.3 V DC wide range supply voltage 10  
Notes:  
2.3 to 2.7  
2.3 to 2.7  
3.0 to 3.6  
3.0 to 3.6  
2.7 to 3.6  
2.7 to 3.6  
1. All parameters representing voltages are measured with respect to GND unless otherwise specified.  
2. Default Junction Temperature Range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to  
+85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures,  
Microsemi recommends using custom settings for temperature range before running timing and power analysis tools.  
For more information regarding custom settings, refer to the New Project Dialog Box in the Libero Online Help.  
®
3. For IGLOO nano V5 devices  
4. For IGLOO nano V2 devices only, operating at VCCI VCC  
5. IGLOO nano V5 devices can be programmed with the VCC core voltage at 1.5 V only. IGLOO nano V2 devices can be  
programmed with the VCC core voltage at 1.2 V (with FlashPro4 only) or 1.5 V. If you are using FlashPro3 and want to  
do in-system programming using 1.2 V, please contact the factory.  
6.  
V
can be left floating during operation (not programming mode).  
PUMP  
7. VCCPLL pins should be tied to VCC pins. See the "Pin Descriptions" chapter for further information.  
8. VMV pins must be connected to the corresponding VCCI pins. See the Pin Descriptions chapter of the IGLOO nano  
FPGA Fabric User’s Guide for further information.  
9. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O  
standard are given in Table 2-21 on page 2-19. VCCI should be at the same voltage within a given I/O bank.  
10. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.  
Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature1  
Product  
Grade  
Programming  
Cycles  
Program Retention  
Maximum Storage  
Maximum Operating Junction  
Temperature TJ (°C) 2  
(biased/unbiased) Temperature TSTG (°C) 2  
Commercial  
Industrial  
Notes:  
500  
500  
20 years  
20 years  
110  
110  
100  
100  
1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.  
2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating  
conditions and absolute limits.  
2-2  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Table 2-4 • Overshoot and Undershoot Limits 1  
Average VCCI–GND Overshoot or  
Undershoot Duration  
Maximum Overshoot/  
Undershoot2  
VCCI  
as a Percentage of Clock Cycle2  
2.7 V or less  
10%  
5%  
1.4 V  
1.49 V  
1.1 V  
3 V  
10%  
5%  
1.19 V  
0.79 V  
0.88 V  
0.45 V  
0.54 V  
3.3 V  
3.6 V  
Notes:  
10%  
5%  
10%  
5%  
1. Based on reliability requirements at 85°C.  
2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the  
maximum overshoot/undershoot has to be reduced by 0.15 V.  
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset  
(Commercial and Industrial)  
Sophisticated power-up management circuitry is designed into every IGLOO nano device. These circuits  
ensure easy transition from the powered-off state to the powered-up state of the device. The many  
different supplies can power up in any sequence with minimized current spikes or surges. In addition, the  
I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1  
on page 2-4.  
There are five regions to consider during power-up.  
IGLOO nano I/Os are activated only if ALL of the following three conditions are met:  
1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 and Figure 2-2 on  
page 2-5).  
2. VCCI > VCC – 0.75 V (typical)  
3. Chip is in the operating mode.  
VCCI Trip Point:  
Ramping up (V5 devices): 0.6 V < trip_point_up < 1.2 V  
Ramping down (V5 devices): 0.5 V < trip_point_down < 1.1 V  
Ramping up (V2 devices): 0.75 V < trip_point_up < 1.05 V  
Ramping down (V2 devices): 0.65 V < trip_point_down < 0.95 V  
VCC Trip Point:  
Ramping up (V5 devices): 0.6 V < trip_point_up < 1.1 V  
Ramping down (V5 devices): 0.5 V < trip_point_down < 1.0 V  
Ramping up (V2 devices): 0.65 V < trip_point_up < 1.05 V  
Ramping down (V2 devices): 0.55 V < trip_point_down < 0.95 V  
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically  
built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:  
During programming, I/Os become tristated and weakly pulled up to VCCI.  
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O  
behavior.  
Revision 17  
2-3  
IGLOO nano DC and Switching Characteristics  
PLL Behavior at Brownout Condition  
Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-  
up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout  
activation levels (see Figure 2-1 and Figure 2-2 on page 2-5 for more details).  
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V ± 0.25  
V for V5 devices, and 0.75 V ± 0.2 V for V2 devices), the PLL output lock signal goes LOW and/or the  
output clock is lost. Refer to the "Brownout Voltage" section in the "Power-Up/-Down Behavior of Low  
Power Flash Devices" chapter of the IGLOO nano FPGA Fabric User’s Guide for information on clock  
and lock recovery.  
Internal Power-Up Activation Sequence  
1. Core  
2. Input buffers  
3. Output buffers, after 200 ns delay from input buffer activation  
To make sure the transition from input buffers to output buffers is clean, ensure that there is no path  
longer than 100 ns from input buffer to output buffer in your design.  
VCC = VCCI + VT  
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)  
VCC  
VCC = 1.575 V  
Region 4: I/O  
Region 5: I/O buffers are ON  
and power supplies are within  
specification.  
Region 1: I/O Buffers are OFF  
buffers are ON.  
I/Os are functional  
I/Os meet the entire datasheet  
but slower because VCCI  
and timer specifications for  
is below specification. For the  
same reason, input buffers do not  
meet VIH / VIL levels, and output  
speed, VIH / VIL , VOH / VOL , etc.  
buffers do not meet VOH/VOL levels.  
VCC = 1.425 V  
Region 2: I/O buffers are ON.  
I/Os are functional but slower because  
VCCI / VCC are below specification. For the  
Region 3: I/O buffers are ON.  
I/Os are functional; I/O DC  
specifications are met,  
but I/Os are slower because  
the VCC is below specification.  
same reason, input buffers do not meet  
VIH/VIL levels, and output buffers to not  
meet VOH / VOL levels.  
Activation trip point:  
Va = 0.85 V ± 0.25 V  
Deactivation trip point:  
Vd = 0.75 V ± 0.25 V  
Region 1: I/O buffers are OFF  
VCCI  
Activation trip point:  
Min VCCI datasheet specification  
Va = 0.9 V ± 0.3 V  
Deactivation trip point:  
Vd = 0.8 V ± 0.3 V  
voltage at a selected I/O  
standard; i.e., 1.425 V or 1.7 V  
or 2.3 V or 3.0 V  
Figure 2-1 • V5 Devices – I/O State as a Function of VCCI and VCC Voltage Levels  
2-4  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
VCC = VCCI + VT  
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)  
VCC  
V
= 1.575 V  
CC  
Region 5: I/O buffers are ON  
and power supplies are within  
specification.  
Region 4: I/O  
Region 1: I/O Buffers are OFF  
buffers are ON.  
I/Os are functional  
I/Os meet the entire datasheet  
but slower because VCCI  
and timer specifications for  
speed, VIH / VIL , VOH / VOL , etc.  
is below specification. For the  
same reason, input buffers do not  
meet VIH / VIL levels, and output  
buffers do not meet VOH / VOL levels.  
VCC = 1.14 V  
Region 2: I/O buffers are ON.  
I/Os are functional but slower because  
Region 3: I/O buffers are ON.  
I/Os are functional; I/O DC  
specifications are met,  
but I/Os are slower because  
the VCC is below specification.  
VCCI / VCC are below specification. For the  
same reason, input buffers do not meet  
VIH / VIL levels, and output buffers do not  
meet VOH/VOL levels.  
Activation trip point:  
V = 0.85 V ± 0.2 V  
a
Deactivation trip point:  
Region 1: I/O buffers are OFF  
V
= 0.75 V ± 0.2 V  
d
VCCI  
Min VCCI datasheet specification  
Activation trip point:  
voltage at a selected I/O  
standard; i.e., 1.14 V,1.425 V, 1.7 V,  
2.3 V, or 3.0 V  
V = 0.9 V ± 0.15 V  
Deactivation trip point:  
a
V
= 0.8 V ± 0.15 V  
d
Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels  
Revision 17  
2-5  
IGLOO nano DC and Switching Characteristics  
Thermal Characteristics  
Introduction  
The temperature variable in the Microsemi Designer software refers to the junction temperature, not the  
ambient temperature. This is an important distinction because dynamic and static power consumption  
cause the chip junction temperature to be higher than the ambient temperature.  
EQ 1 can be used to calculate junction temperature.  
TJ = Junction Temperature = T + TA  
EQ 1  
where:  
TA = Ambient temperature  
T = Temperature gradient between junction (silicon) and ambient T = ja * P  
ja = Junction-to-ambient of the package. ja numbers are located in Figure 2-5.  
P = Power dissipation  
Package Thermal Characteristics  
The device junction-to-case thermal resistivity is jc and the junction-to-ambient air thermal resistivity is  
ja. The thermal characteristics for ja are shown for two air flow rates. The maximum operating junction  
temperature is 100°C. EQ 2 shows a sample calculation of the maximum operating power dissipation  
allowed for a 484-pin FBGA package at commercial temperature and in still air.  
Max. junction temp. (C) Max. ambient temp. (C) 100C 70C  
------------------------------------------------------------------------------------------------------------------------------------------ ------------------------------------  
Maximum Power Allowed =  
=
= 1.46 W  
EQ 2  
ja(C/W)  
20.5°C/W  
Table 2-5 • Package Thermal Resistivities  
ja  
Pin  
Count  
200 ft./  
min.  
500 ft./  
Package Type  
jc  
Still Air  
TBD  
min.  
TBD  
TBD  
TBD  
TBD  
TBD  
27.1  
Units  
Chip Scale Package (CSP)  
36  
81  
TBD  
TBD  
TBD  
TBD  
TBD  
10.0  
TBD  
TBD  
TBD  
TBD  
TBD  
29.4  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
TBD  
Quad Flat No Lead (QFN)  
48  
TBD  
68  
TBD  
100  
100  
TBD  
Very Thin Quad Flat Pack (VQFP)  
35.3  
Temperature and Voltage Derating Factors  
Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 70°C,  
VCC = 1.425 V)  
For IGLOO nano V2 or V5 Devices, 1.5 V DC Core Supply Voltage  
Junction Temperature (°C)  
Array Voltage  
VCC (V)  
1.425  
1.5  
–40°C  
0.947  
0.875  
0.821  
–20°C  
0.956  
0.883  
0.829  
0°C  
25°C  
0.978  
0.904  
0.848  
70°C  
1.000  
0.925  
0.868  
85°C  
1.009  
0.932  
0.875  
100°C  
1.013  
0.937  
0.879  
0.965  
0.892  
0.837  
1.575  
2-6  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 70°C,  
VCC = 1.14 V)  
For IGLOO nano V2, 1.2 V DC Core Supply Voltage  
Junction Temperature (°C)  
0°C 25°C 70°C  
Array Voltage  
VCC (V)  
–40°C  
0.968  
0.863  
0.792  
–20°C  
0.974  
0.868  
0.797  
85°C  
1.006  
0.898  
0.824  
100°C  
1.009  
0.901  
0.827  
1.14  
0.979  
0.873  
0.801  
0.991  
0.884  
0.811  
1.000  
0.892  
0.819  
1.2  
1.26  
Calculating Power Dissipation  
Quiescent Supply Current  
Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages  
(VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power mode usage.  
Microsemi recommends using the Power Calculator and SmartPower software estimation tools to  
evaluate the projected static and active power based on the user design, power mode usage, operating  
voltage, and temperature.  
Table 2-8 • Power Supply State per Mode  
Power Supply Configurations  
Modes/Power Supplies  
Flash*Freeze  
VCC  
On  
VCCPLL  
VCCI  
On  
VJTAG  
VPUMP  
On/off/floating  
Off  
On  
Off  
Off  
On  
On  
Off  
Off  
On  
Sleep  
Off  
On  
Shutdown  
Off  
Off  
Off  
No Flash*Freeze  
Note: Off: Power Supply level = 0 V  
On  
On  
On/off/floating  
Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Flash*Freeze Mode*  
Core  
Voltage  
AGLN010 AGLN015 AGLN020 AGLN060 AGLN125 AGLN250 Units  
Typical (25°C)  
1.2 V  
1.9  
5.8  
3.3  
6
3.3  
6
8
13  
18  
20  
34  
µA  
µA  
1.5 V  
10  
Note: *IDD includes VCC, VPUMP, VCCI, VCCPLL, and VMV currents. Values do not include I/O static contribution,  
which is shown in Table 2-13 on page 2-9 through Table 2-14 on page 2-9 and Table 2-15 on page 2-10  
through Table 2-18 on page 2-11 (PDC6 and PDC7).  
Revision 17  
2-7  
IGLOO nano DC and Switching Characteristics  
Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Sleep Mode*  
Core  
Voltage AGLN010 AGLN015 AGLN020 AGLN060 AGLN125 AGLN250 Units  
VCCI= 1.2 V (per bank) 1.2 V  
Typical (25°C)  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
µA  
µA  
µA  
µA  
µA  
VCCI  
Typical (25°C)  
=
1.5 V (per bank) 1.2 V /  
1.5 V  
VCCI = 1.8 V (per bank) 1.2 V /  
Typical (25°C) 1.5 V  
VCCI = 2.5 V (per bank) 1.2 V /  
Typical (25°C) 1.5 V  
VCCI = 3.3 V (per bank) 1.2 V /  
Typical (25°C)  
1.5 V  
Note: *IDD = NBANKS * ICCI  
.
Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Shutdown Mode  
Core Voltage AGLN010 AGLN015 AGLN020 AGLN060  
1.2 V / 1.5 V  
AGLN125  
AGLN250  
Units  
Typical  
(25°C)  
0
0
0
0
0
0
µA  
Table 2-12 • Quiescent Supply Current (IDD), No IGLOO nano Flash*Freeze Mode1  
Core  
Voltage AGLN010 AGLN015 AGLN020 AGLN060 AGLN125 AGLN250 Units  
ICCA Current2  
Typical (25°C)  
1.2 V  
1.5 V  
3.7  
8
5
5
10  
20  
13  
28  
18  
44  
µA  
µA  
14  
14  
ICCI or IJTAG Current  
VCCI / VJTAG = 1.2 V (per  
bank) Typical (25°C)  
1.2 V  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
µA  
µA  
µA  
µA  
µA  
VCCI / VJTAG = 1.5 V (per 1.2 V / 1.5 V  
bank) Typical (25°C)  
VCCI / VJTAG = 1.8 V (per 1.2 V / 1.5 V  
bank) Typical (25°C)  
VCCI / VJTAG = 2.5 V (per 1.2 V / 1.5 V  
bank) Typical (25°C)  
VCCI / VJTAG = 3.3 V (per 1.2 V / 1.5 V  
bank) Typical (25°C)  
Notes:  
1. IDD = N  
* ICCI + ICCA. JTAG counts as one bank when powered.  
BANKS  
2. Includes VCC, VCCPLL, and VPUMP currents.  
2-8  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Power per I/O Pin  
Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings  
Applicable to IGLOO nano I/O Banks  
Dynamic Power  
VCCI (V)  
PAC9 (µW/MHz) 1  
Single-Ended  
3.3 V LVTTL / 3.3 V LVCMOS  
3.3 V LVTTL / 3.3 V LVCMOS – Schmitt Trigger  
3.3 V LVCMOS Wide Range2  
3.3 V LVCMOS Wide Range – Schmitt Trigger  
2.5 V LVCMOS  
3.3  
3.3  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
1.5  
1.5  
1.2  
1.2  
1.2  
1.2  
16.38  
18.89  
16.38  
18.89  
4.71  
6.13  
1.64  
1.79  
0.97  
0.96  
0.57  
0.52  
0.57  
0.52  
2.5 V LVCMOS – Schmitt Trigger  
1.8 V LVCMOS  
1.8 V LVCMOS – Schmitt Trigger  
1.5 V LVCMOS (JESD8-11)  
1.5 V LVCMOS (JESD8-11) – Schmitt Trigger  
1.2 V LVCMOS3  
1.2 V LVCMOS – Schmitt Trigger3  
1.2 V LVCMOS Wide Range3  
1.2 V LVCMOS Wide Range – Schmitt Trigger3  
Notes:  
1. PAC9 is the total dynamic power measured on V  
.
CCI  
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.  
3. Applicable to IGLOO nano V2 devices operating at VCCI VCC.  
Table 2-14 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1  
Applicable to IGLOO nano I/O Banks  
Dynamic Power  
CLOAD (pF)  
VCCI (V)  
PAC10 (µW/MHz)2  
Single-Ended  
3.3 V LVTTL / 3.3 V LVCMOS  
3.3 V LVCMOS Wide Range3  
2.5 V LVCMOS  
5
5
5
5
5
5
3.3  
3.3  
2.5  
1.8  
1.5  
1.2  
107.98  
107.98  
61.24  
31.28  
21.50  
15.22  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
1.2 V LVCMOS4  
Notes:  
1. Dynamic power consumption is given for standard load and software default drive strength and output slew.  
2. PAC10 is the total dynamic power measured on VCCI.  
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.  
4. Applicable for IGLOO nano V2 devices operating at VCCI VCC.  
Revision 17  
2-9  
IGLOO nano DC and Switching Characteristics  
Power Consumption of Various Internal Resources  
Table 2-15 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices  
For IGLOO nano V2 or V5 Devices, 1.5 V Core Supply Voltage  
Device Specific Dynamic Power (µW/MHz)  
Parameter  
PAC1  
Definition  
AGLN250 AGLN125 AGLN060 AGLN020 AGLN015 AGLN010  
Clock contribution of a Global Rib  
Clock contribution of a Global Spine  
4.421  
2.704  
4.493  
1.976  
1.504  
0.153  
2.700  
1.982  
1.511  
0.153  
0
0
0
PAC2  
4.002  
1.346  
0.148  
4.002  
1.346  
0.148  
2.633  
1.340  
0.143  
PAC3  
Clock contribution of a VersaTile row 1.496  
PAC4  
Clock contribution of a VersaTile 0.152  
used as a sequential module  
PAC5  
PAC6  
PAC7  
First contribution of a VersaTile used  
as a sequential module  
0.057  
Second contribution of a VersaTile  
used as a sequential module  
0.207  
0.17  
0.7  
Contribution of a VersaTile used as  
a combinatorial module  
PAC8  
PAC9  
Average contribution of a routing net  
Contribution of an I/O input pin  
(standard-dependent)  
See Table 2-13 on page 2-9.  
PAC10  
PAC11  
PAC12  
PAC13  
Contribution of an I/O output pin  
(standard-dependent)  
See Table 2-14.  
Average contribution of a RAM block  
during a read operation  
25.00  
30.00  
2.70  
N/A  
N/A  
N/A  
Average contribution of a RAM block  
during a write operation  
Dynamic contribution for PLL  
Table 2-16 • Different Components Contributing to the Static Power Consumption in IGLOO nano Devices  
For IGLOO nano V2 or V5 Devices, 1.5 V Core Supply Voltage  
Device -Specific Static Power (mW)  
Parameter  
PDC1  
Definition  
AGLN250 AGLN125 AGLN060 AGLN020 AGLN015 AGLN010  
See Table 2-12 on page 2-8  
Array static power in Active mode  
PDC2  
Array static power in Static (Idle)  
mode  
See Table 2-12 on page 2-8  
PDC3  
Array static power in Flash*Freeze  
mode  
See Table 2-9 on page 2-7  
PDC4 1  
PDC5  
Static PLL contribution  
1.84  
N/A  
Bank quiescent power  
(VCCI-dependent)2  
See Table 2-12 on page 2-8  
Notes:  
1. Minimum contribution of the PLL when running at lowest frequency.  
2. For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet  
calculator or the SmartPower tool in Libero SoC.  
2-10  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Table 2-17 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices  
For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage  
Device-Specific Dynamic Power (µW/MHz)  
Parameter  
PAC1  
Definition  
AGLN250 AGLN125 AGLN060 AGLN020 AGLN015 AGLN010  
Clock contribution of a Global Rib  
Clock contribution of a Global Spine  
Clock contribution of a VersaTile row  
2.829  
1.731  
0.957  
2.875  
1.265  
0.963  
0.098  
1.728  
1.268  
0.967  
0.098  
0
0
0
PAC2  
2.562  
0.862  
0.094  
2.562  
0.862  
0.094  
1.685  
0.858  
0.091  
PAC3  
PAC4  
Clock contribution of a VersaTile used 0.098  
as a sequential module  
PAC5  
PAC6  
PAC7  
First contribution of a VersaTile used  
as a sequential module  
0.045  
Second contribution of a VersaTile  
used as a sequential module  
0.186  
0.11  
Contribution of a VersaTile used as a  
combinatorial module  
PAC8  
PAC9  
Average contribution of a routing net  
0.45  
Contribution of an I/O input pin  
(standard-dependent)  
See Table 2-13 on page 2-9  
PAC10  
PAC11  
PAC12  
PAC13  
Contribution of an I/O output pin  
(standard-dependent)  
See Table 2-14 on page 2-9  
Average contribution of a RAM block  
during a read operation  
25.00  
N/A  
N/A  
N/A  
Average contribution of a RAM block  
during a write operation  
30.00  
2.10  
Dynamic contribution for PLL  
Table 2-18 • Different Components Contributing to the Static Power Consumption in IGLOO nano Devices  
For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage  
Device-Specific Static Power (mW)  
Parameter  
PDC1  
Definition  
AGLN250 AGLN125 AGLN060 AGLN020 AGLN015 AGLN010  
See Table 2-12 on page 2-8  
Array static power in Active mode  
PDC2  
Array static power in Static (Idle)  
mode  
See Table 2-12 on page 2-8  
PDC3  
Array static power in Flash*Freeze  
mode  
See Table 2-9 on page 2-7  
PDC4 1  
PDC5  
Static PLL contribution  
0.90  
N/A  
Bank quiescent power  
(VCCI-dependent)2  
See Table 2-12 on page 2-8  
Notes:  
1. Minimum contribution of the PLL when running at lowest frequency.  
2. For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet  
calculator or the SmartPower tool in Libero SoC.  
Revision 17  
2-11  
IGLOO nano DC and Switching Characteristics  
Power Calculation Methodology  
This section describes a simplified method to estimate power consumption of an application. For more  
accurate and detailed power estimations, use the SmartPower tool in Libero SoC software.  
The power calculation methodology described below uses the following variables:  
The number of PLLs as well as the number and the frequency of each output clock generated  
The number of combinatorial and sequential cells used in the design  
The internal clock frequencies  
The number and the standard of I/O pins used in the design  
The number of RAM blocks used in the design  
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-19 on  
page 2-14.  
Enable rates of output buffers—guidelines are provided for typical applications in Table 2-20 on  
page 2-14.  
Read rate and write rate to the memory—guidelines are provided for typical applications in  
Table 2-20 on page 2-14. The calculation should be repeated for each clock domain defined in the  
design.  
Methodology  
Total Power Consumption—P  
TOTAL  
PTOTAL = PSTAT + PDYN  
PSTAT is the total static power consumption.  
DYN is the total dynamic power consumption.  
Total Static Power Consumption—P  
P
STAT  
PSTAT = (PDC1 or PDC2 or PDC3) + NBANKS * PDC5  
NBANKS is the number of I/O banks powered in the design.  
Total Dynamic Power Consumption—P  
DYN  
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL  
Global Clock Contribution—P  
CLOCK  
PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL* PAC4) * FCLK  
NSPINE is the number of global spines used in the user design—guidelines are provided in  
the "Spine Architecture" section of the IGLOO nano FPGA Fabric User's Guide.  
N
ROW is the number of VersaTile rows used in the design—guidelines are provided in the  
"Spine Architecture" section of the IGLOO nano FPGA Fabric User's Guide.  
CLK is the global clock signal frequency.  
S-CELL is the number of VersaTiles used as sequential modules in the design.  
PAC1, PAC2, PAC3, and PAC4 are device-dependent.  
F
N
Sequential Cells Contribution—P  
S-CELL  
PS-CELL = NS-CELL * (PAC5 + 1 / 2 * PAC6) * FCLK  
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a  
multi-tile sequential cell is used, it should be accounted for as 1.  
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on  
page 2-14.  
FCLK is the global clock signal frequency.  
2-12  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Combinatorial Cells Contribution—P  
C-CELL  
PC-CELL = NC-CELL* 1 / 2 * PAC7 * FCLK  
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.  
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on  
page 2-14.  
F
CLK is the global clock signal frequency.  
Routing Net Contribution—P  
NET  
PNET = (NS-CELL + NC-CELL) * 1 / 2 * PAC8 * FCLK  
NS-CELL is the number of VersaTiles used as sequential modules in the design.  
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.  
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on  
page 2-14.  
FCLK is the global clock signal frequency.  
I/O Input Buffer Contribution—P  
INPUTS  
PINPUTS = NINPUTS * 2 / 2 * PAC9 * FCLK  
NINPUTS is the number of I/O input buffers used in the design.  
2 is the I/O buffer toggle rate—guidelines are provided in Table 2-19 on page 2-14.  
F
CLK is the global clock signal frequency.  
I/O Output Buffer Contribution—P  
OUTPUTS  
POUTPUTS = NOUTPUTS * 2 / 2 * 1 * PAC10 * FCLK  
NOUTPUTS is the number of I/O output buffers used in the design.  
2 is the I/O buffer toggle rate—guidelines are provided in Table 2-19 on page 2-14.  
1 is the I/O buffer enable rate—guidelines are provided in Table 2-20 on page 2-14.  
F
CLK is the global clock signal frequency.  
RAM Contribution—P  
MEMORY  
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * 2 + PAC12 * NBLOCK * FWRITE-CLOCK * 3  
NBLOCKS is the number of RAM blocks used in the design.  
F
READ-CLOCK is the memory read clock frequency.  
2 is the RAM enable rate for read operations.  
WRITE-CLOCK is the memory write clock frequency.  
F
3 is the RAM enable rate for write operations—guidelines are provided in Table 2-20 on  
page 2-14.  
PLL Contribution—P  
PLL  
PPLL = PDC4 + PAC13 *FCLKOUT  
FCLKOUT is the output clock frequency.1  
1. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding  
contribution (PAC13* FCLKOUT product) to the total PLL contribution.  
Revision 17  
2-13  
IGLOO nano DC and Switching Characteristics  
Guidelines  
Toggle Rate Definition  
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the  
toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are  
some examples:  
The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the  
clock frequency.  
The average toggle rate of an 8-bit counter is 25%:  
Bit 0 (LSB) = 100%  
Bit 1  
Bit 2  
= 50%  
= 25%  
Bit 7 (MSB) = 0.78125%  
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8  
Enable Rate Definition  
Output enable rate is the average percentage of time during which tristate outputs are enabled. When  
nontristate output buffers are used, the enable rate should be 100%.  
Table 2-19 • Toggle Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
Toggle rate of VersaTile outputs  
I/O buffer toggle rate  
Guideline  
10%  
1  
2  
10%  
Table 2-20 • Enable Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
I/O output buffer enable rate  
Guideline  
100%  
1  
2  
3  
RAM enable rate for read operations  
RAM enable rate for write operations  
12.5%  
12.5%  
2-14  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
User I/O Characteristics  
Timing Model  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
Combinational Cell  
Y
LVCMOS 2.5 V Output Drive  
Strength = 8 mA High Slew Rate  
t
= 1.18 ns  
t
= 0.90 ns  
PD  
PD  
t
= 1.99 ns  
DP  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
Output drive strength = 4 mA  
High slew rate  
LVTTL  
t
= 2.35 ns  
DP  
t
= 1.60 ns  
PD  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
I/O Module  
(Registered)  
Output drive strength = 8 mA  
High slew rate  
LVTTL  
t
= 1.06 ns  
PY  
t
= 1.96 ns  
DP  
t
= 1.17 ns  
PD  
I/O Module  
(Non-Registered)  
Input LVCMOS 2.5 V  
D
Q
Combinational Cell  
Y
Output drive strength = 2 mA  
High slew rate  
LVCMOS 1.5 V  
t
t
= 0.42 ns  
= 0.47 ns  
ICLKQ  
ISUD  
t
= 2.65 ns  
DP  
t
= 0.87 ns  
PD  
Input LVTTL  
Clock  
I/O Module  
Register Cell  
(Registered)  
Register Cell  
Combinational Cell  
Y
t
= 0.85 ns  
PY  
D
Q
D
Q
D
t
Q
LVTTL 3.3 V Output drive  
strength = 8 mA High slew rate  
I/O Module  
t
= 0.91 ns  
PD  
t
= 1.96 ns  
(Non-Registered)  
DP  
t
t
= 0.89 ns  
= 0.81 ns  
= 1.00 ns  
= 0.51 ns  
CLKQ  
SUD  
t
t
= 0.89 ns  
= 0.81 ns  
OCLKQ  
CLKQ  
t
LVCMOS 1.5 V  
OSUD  
SUD  
Input LVTTL  
Clock  
Input LVTTL  
Clock  
t
= 1.15 ns  
PY  
t
= 0.85 ns  
t
= 0.85 ns  
PY  
PY  
Figure 2-3 • Timing Model  
Operating Conditions: STD Speed, Commercial Temperature Range (TJ = 70°C), Worst-Case  
VCC = 1.425 V, for DC 1.5 V Core Voltage, Applicable to V2 and V5 Devices  
Revision 17  
2-15  
IGLOO nano DC and Switching Characteristics  
tPY  
tDIN  
D
Q
PAD  
DIN  
Y
CLK  
To Array  
I/O Interface  
t
t
PY = MAX(tPY(R), tPY(F))  
DIN = MAX(tDIN(R), tDIN(F))  
VIH  
Vtrip  
Vtrip  
VIL  
PAD  
VCC  
50%  
50%  
Y
GND  
tPY  
(R)  
tPY  
(F)  
VCC  
50%  
50%  
DIN  
tDIN  
(R)  
GND  
tDIN  
(F)  
Figure 2-4 • Input Buffer Timing Model and Delays (example)  
2-16  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
tDOUT  
D Q  
tDP  
PAD  
DOUT  
CLK  
Std  
Load  
D
From Array  
tDP = MAX(tDP(R), tDP(F))  
tDOUT = MAX(tDOUT(R), tDOUT(F))  
I/O Interface  
tDOUT  
(R)  
tDOUT  
(F)  
VCC  
50%  
50%  
VCC  
D
0 V  
50%  
50%  
DOUT  
PAD  
0 V  
VOH  
Vtrip  
VOL  
Vtrip  
tDP  
(R)  
tDP  
(F)  
Figure 2-5 • Output Buffer Model and Delays (example)  
Revision 17  
2-17  
IGLOO nano DC and Switching Characteristics  
t
EOUT  
D
Q
CLK  
t
, t , t , t , t , t  
E
ZL ZH HZ LZ ZLS ZHS  
EOUT  
D
Q
PAD  
DOUT  
CLK  
D
t
= MAX(t  
(r), t (f))  
EOUT  
I/O Interface  
EOUT  
EOUT  
VCC  
D
E
VCC  
50%  
t
50%  
t
EOUT (F)  
EOUT (R)  
VCC  
50%  
50%  
50%  
ZH  
50%  
t
LZ  
EOUT  
PAD  
t
t
t
ZL  
HZ  
VCCI  
90% VCCI  
Vtrip  
Vtrip  
VOL  
10% V  
CCI  
VCC  
D
E
VCC  
50%  
50%  
50%  
t
t
EOUT (F)  
EOUT (R)  
VCC  
50%  
EOUT  
PAD  
50%  
VOH  
t
ZHS  
t
ZLS  
Vtrip  
Vtrip  
VOL  
Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example)  
2-18  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Overview of I/O Performance  
Summary of I/O DC Input and Output Levels – Default I/O Software  
Settings  
Table 2-21 • Summary of Maximum and Minimum DC Input and Output Levels  
Applicable to Commercial and Industrial Conditions—Software Default Settings  
Equivalent  
Software  
Default  
VIL  
VIH  
VOL  
VOH  
IOL1 IOH1  
Drive  
Drive  
Slew Min.  
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
I/O Standard  
Strength Strength2 Rate  
V
mA mA  
3.3 V LVTTL /  
3.3 V LVCMOS  
8 mA  
8 mA  
8 mA  
High –0.3  
High –0.3  
High –0.3  
0.8  
2
3.6  
3.6  
3.6  
0.4  
2.4  
8
8
3.3 V LVCMOS 100 µA  
Wide Range3  
0.8  
0.7  
2
0.2  
VCCI – 0.2 100 100  
µA µA  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
8 mA  
4 mA  
2 mA  
8 mA  
4 mA  
2 mA  
1 mA  
1 mA  
1.7  
0.7  
1.7  
8
4
2
1
8
4
2
1
High –0.3 0.35 * VCCI 0.65 * VCCI 3.6  
0.45  
VCCI – 0.45  
High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI  
High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI  
1.2 V LVCMOS4 1 mA  
1.2 V LVCMOS 100 µA  
Wide Range4,5  
High –0.3 0.3 * VCCI 0.7 * VCCI 3.6  
0.1  
VCCI – 0.1 100 100  
µA µA  
Notes:  
1. Currents are measured at 85°C junction temperature.  
2. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is  
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the  
IBIS models.  
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range, as specified in the JESD8-B specification.  
4. Applicable to IGLOO nano V2 devices operating at VCCI VCC.  
5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range, as specified in the JESD8-12 specification.  
Table 2-22 • Summary of Maximum and Minimum DC Input Levels  
Applicable to Commercial and Industrial Conditions  
Commercial1  
Industrial2  
IIL 3  
µA  
10  
10  
10  
10  
10  
10  
10  
IIH 4  
µA  
10  
IIL 3  
µA  
15  
15  
15  
15  
15  
15  
15  
IIH 4  
µA  
15  
DC I/O Standards  
3.3 V LVTTL / 3.3 V LVCMOS  
3.3 V LVCOMS Wide Range  
2.5 V LVCMOS  
10  
15  
10  
15  
1.8 V LVCMOS  
10  
15  
1.5 V LVCMOS  
1.2 V LVCMOS5  
1.2 V LVCMOS Wide Range5  
10  
15  
10  
15  
10  
15  
Notes:  
1. Commercial range (–20°C < T < 70°C)  
A
2. Industrial range (–40°C < T < 85°C)  
A
3.  
I
is the input leakage current per I/O pin over recommended operating conditions, where VIH < VIN < VCCI. Input  
IH  
current is larger when operating outside recommended ranges.  
4.  
I
is the input leakage current per I/O pin over recommended operating conditions, where –0.3 V < VIN < VIL.  
IL  
5. Applicable to IGLOO nano V2 devices operating at VCCI VCC.  
Revision 17  
2-19  
IGLOO nano DC and Switching Characteristics  
Summary of I/O Timing Characteristics – Default I/O Software Settings  
Table 2-23 • Summary of AC Measuring Points  
Standard  
Measuring Trip Point (Vtrip)  
3.3 V LVTTL / 3.3 V LVCMOS  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
1.4 V  
1.4 V  
1.2 V  
1.8 V LVCMOS  
0.90 V  
0.75 V  
0.60 V  
0.60 V  
1.5 V LVCMOS  
1.2 V LVCMOS  
1.2 V LVCMOS Wide Range  
Table 2-24 • I/O AC Parameter Definitions  
Parameter  
Parameter Definition  
Data to Pad delay through the Output Buffer  
tDP  
tPY  
Pad to Data delay through the Input Buffer  
tDOUT  
tEOUT  
tDIN  
tHZ  
Data to Output Buffer delay through the I/O interface  
Enable to Output Buffer Tristate Control delay through the I/O interface  
Input Buffer to Data delay through the I/O interface  
Enable to Pad delay through the Output Buffer—HIGH to Z  
Enable to Pad delay through the Output Buffer—Z to HIGH  
Enable to Pad delay through the Output Buffer—LOW to Z  
tZH  
tLZ  
tZL  
Enable to Pad delay through the Output Buffer—Z to LOW  
tZHS  
tZLS  
Enable to Pad delay through the Output Buffer with delayed enable—Z to HIGH  
Enable to Pad delay through the Output Buffer with delayed enable—Z to LOW  
2-20  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Applies to IGLOO nano at 1.5 V Core Operating Conditions  
Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings  
STD Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V  
3.3 V LVTTL /  
8 mA 8 mA High 5 pF 0.97 1.79 0.19 0.86 1.16 0.66 1.83 1.45 1.98 2.38 ns  
3.3 V LVCMOS  
3.3 V LVCMOS 100 µA 8 mA High 5 pF 0.97 2.56 0.19 1.20 1.66 0.66 2.57 2.02 2.82 3.31 ns  
Wide Range2  
2.5 V LVCMOS 8 mA 8 mA High 5 pF 0.97 1.81 0.19 1.10 1.24 0.66 1.85 1.63 1.97 2.26 ns  
1.8 V LVCMOS 4 mA 4 mA High 5 pF 0.97 2.08 0.19 1.03 1.44 0.66 2.12 1.95 1.99 2.19 ns  
1.5 V LVCMOS 2 mA 2 mA High 5 pF 0.97 2.39 0.19 1.19 1.52 0.66 2.44 2.24 2.02 2.15 ns  
Notes:  
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is  
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the  
IBIS models.  
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range, as specified in the JESD8-B specification.  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 17  
2-21  
IGLOO nano DC and Switching Characteristics  
Applies to IGLOO nano at 1.2 V Core Operating Conditions  
Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings  
STD Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 3.0 V  
3.3 V LVTTL /  
8 mA 8 mA High 5 pF 1.55 2.31 0.26 0.97 1.36 1.10 2.34 1.90 2.43 3.14 ns  
3.3 V LVCMOS  
3.3 V LVCMOS 100 µA 8 mA High 5 pF 1.55 3.25 0.26 1.31 1.91 1.10 3.25 2.61 3.38 4.27 ns  
Wide Range2  
2.5 V LVCMOS 8 mA 8 mA High 5 pF 1.55 2.30 0.26 1.21 1.39 1.10 2.33 2.04 2.41 2.99 ns  
1.8 V LVCMOS 4 mA 4 mA High 5 pF 1.55 2.49 0.26 1.13 1.59 1.10 2.53 2.34 2.42 2.81 ns  
1.5 V LVCMOS 2 mA 2 mA High 5 pF 1.55 2.78 0.26 1.27 1.77 1.10 2.82 2.62 2.44 2.74 ns  
1.2 V LVCMOS 1 mA 1 mA High 5 pF 1.55 3.50 0.26 1.56 2.27 1.10 3.37 3.10 2.55 2.66 ns  
1.2 V LVCMOS 100 µA 1 mA High 5 pF 1.55 3.50 0.26 1.56 2.27 1.10 3.37 3.10 2.55 2.66 ns  
Wide Range3  
Notes:  
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is  
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to  
the IBIS models..  
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range, as specified in the JESD8-B specification.  
3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V side range as specified in the JESD8-12 specification.  
4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-22  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Detailed I/O DC Characteristics  
Table 2-27 • Input Capacitance  
Symbol  
CIN  
Definition  
Conditions  
Min.  
Max.  
Units  
pF  
Input capacitance  
Input capacitance on the clock pin  
VIN = 0, f = 1.0 MHz  
VIN = 0, f = 1.0 MHz  
8
8
CINCLK  
pF  
Table 2-28 • I/O Output Buffer Maximum Resistances 1  
RPULL-DOWN  
RPULL-UP  
Standard  
Drive Strength  
2 mA  
()2  
()3  
3.3 V LVTTL / 3.3V LVCMOS  
100  
100  
50  
300  
300  
150  
150  
4 mA  
6 mA  
8 mA  
50  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
100 µA  
2 mA  
Same as equivalent software default drive  
100  
100  
50  
200  
200  
100  
100  
225  
112  
224  
315  
315  
4 mA  
6 mA  
8 mA  
50  
1.8 V LVCMOS  
2 mA  
200  
100  
200  
315  
315  
4 mA  
1.5 V LVCMOS  
2 mA  
1.2 V LVCMOS 4  
1.2 V LVCMOS Wide Range 4  
Notes:  
1 mA  
100 µA  
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend  
on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer  
resistances, use the corresponding IBIS models posted at http://www.microsemi.com/soc/download/ibis/default.aspx.  
2.  
R
= (VOLspec) / IOLspec  
(PULL-DOWN-MAX)  
3.  
R
= (VCCImax – VOHspec) / I  
(PULL-UP-MAX)  
OHspec  
4. Applicable to IGLOO nano V2 devices operating at VCCI VCC.  
Revision 17  
2-23  
IGLOO nano DC and Switching Characteristics  
Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances  
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values  
R(WEAK PULL-UP)1 () R(WEAK PULL-DOWN)2 ()  
Min.  
VCCI  
Max.  
45 K  
45 K  
55 K  
70 K  
90 K  
110 K  
110 K  
Min.  
Max.  
45 K  
3.3 V  
10 K  
10 K  
11 K  
18 K  
19 K  
25 K  
19 K  
10 K  
10 K  
12 K  
17 K  
19 K  
25 K  
19 K  
3.3 V (wide range I/Os)  
45 K  
2.5 V  
74 K  
1.8 V  
110 K  
140 K  
150 K  
150 K  
1.5 V  
1.2 V  
1.2 V (wide range I/Os)  
Notes:  
1.  
2.  
R
R
= (VCCImax VOHspec) / I  
)
(WEAK PULL-UP-MAX)  
(WEAK PULL-UP-MIN  
= (VOLspec) / I  
(WEAK PULL-DOWN-MAX)  
(WEAK PULL-DOWN-MIN)  
Table 2-30 • I/O Short Currents IOSH/IOSL  
Drive Strength  
IOSL (mA)*  
IOSH (mA)*  
3.3 V LVTTL / 3.3 V LVCMOS  
2 mA  
4 mA  
6 mA  
8 mA  
25  
25  
51  
51  
27  
27  
54  
54  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
100 µA  
2 mA  
4 mA  
6 mA  
8 mA  
2 mA  
4 mA  
2 mA  
1 mA  
100 µA  
Same as equivalent software default drive  
16  
16  
32  
32  
9
18  
18  
37  
37  
11  
22  
16  
13  
13  
1.8 V LVCMOS  
17  
13  
10  
10  
1.5 V LVCMOS  
1.2 V LVCMOS  
1.2 V LVCMOS Wide Range  
Note: *TJ = 100°C  
2-24  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The  
reliability data below is based on a 3.3 V, 8 mA I/O setting, which is the worst case for this type of  
analysis.  
For example, at 100°C, the short current condition would have to be sustained for more than six months  
to cause a reliability concern. The I/O design does not contain any short circuit protection, but such  
protection would only be needed in extremely prolonged stress conditions.  
Table 2-31 • Duration of Short Circuit Event before Failure  
Temperature  
–40°C  
–20°C  
0°C  
Time before Failure  
> 20 years  
> 20 years  
> 20 years  
> 20 years  
5 years  
25°C  
70°C  
85°C  
2 years  
100°C  
6 months  
Table 2-32 • Schmitt Trigger Input Hysteresis  
Hysteresis Voltage Value (Typ.) for Schmitt Mode Input Buffers  
Input Buffer Configuration  
Hysteresis Value (typ.)  
3.3 V LVTTL / LVCMOS (Schmitt trigger mode)  
2.5 V LVCMOS (Schmitt trigger mode)  
1.8 V LVCMOS (Schmitt trigger mode)  
1.5 V LVCMOS (Schmitt trigger mode)  
1.2 V LVCMOS (Schmitt trigger mode)  
240 mV  
140 mV  
80 mV  
60 mV  
40 mV  
Table 2-33 • I/O Input Rise Time, Fall Time, and Related I/O Reliability  
Input Rise/Fall  
Time (min.)  
Input Rise/Fall Time  
(max.)  
Input Buffer  
Reliability  
LVTTL/LVCMOS (Schmitt trigger  
disabled)  
No requirement  
10 ns *  
20 years (100°C)  
LVTTL/LVCMOS (Schmitt trigger  
enabled)  
No requirement  
No requirement, but  
input noise voltage  
cannot exceed Schmitt  
hysteresis.  
20 years (100°C)  
Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the  
noise is low, then the rise time and fall time of input buffers can be increased beyond the  
maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board  
noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure  
that there is no excessive noise coupling into input signals.  
Revision 17  
2-25  
IGLOO nano DC and Switching Characteristics  
Single-Ended I/O Characteristics  
3.3 V LVTTL / 3.3 V LVCMOS  
Low-Voltage Transistor–Transistor Logic (LVTTL) is a general purpose standard (EIA/JESD) for 3.3 V  
applications. It uses an LVTTL input buffer and push-pull output buffer.  
Table 2-34 • Minimum and Maximum DC Input and Output Levels  
3.3 V LVTTL /  
3.3 V LVCMOS  
VIL  
VIH  
VOL  
VOH IOL IOH  
Min.  
IOSL  
IOSH  
IIL 1 IIH 2  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Max.  
mA3  
Max.  
mA3  
V
mA mA  
µA4 µA4  
10 10  
10 10  
10 10  
10 10  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
3.6  
3.6  
3.6  
3.6  
0.4  
0.4  
0.4  
0.4  
2.4  
2.4  
2.4  
2.4  
2
4
6
8
2
25  
25  
51  
51  
27  
27  
54  
54  
4
6
8
1.  
2.  
I
I
is the input leakage current per I/O pin over recommended operating conditions where –0.3 < VIN < VIL.  
is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input  
IL  
IH  
current is larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
5. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ / tZH / tZHS  
Test Point  
5 pF  
Enable Path  
5 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-7 • AC Loading  
Table 2-35 • 3.3 V LVTTL/LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
C
LOAD (pF)  
0
3.3  
1.4  
5
Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.  
2-26  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Timing Characteristics  
Applies to 1.5 V DC Core Voltage  
Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
0.97 3.52 0.19 0.86 1.16  
0.97 3.52 0.19 0.86 1.16  
0.97 2.90 0.19 0.86 1.16  
0.97 2.90 0.19 0.86 1.16  
0.66 3.59 3.42 1.75 1.90  
0.66 3.59 3.42 1.75 1.90  
0.66 2.96 2.83 1.98 2.29  
0.66 2.96 2.83 1.98 2.29  
ns  
ns  
ns  
ns  
4 mA  
6 mA  
8 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
0.97 2.16 0.19 0.86 1.16  
0.97 2.16 0.19 0.86 1.16  
0.97 1.79 0.19 0.86 1.16  
0.97 1.79 0.19 0.86 1.16  
0.66 2.20 1.80 1.75 1.99  
0.66 2.20 1.80 1.75 1.99  
0.66 1.83 1.45 1.98 2.38  
0.66 1.83 1.45 1.98 2.38  
ns  
ns  
ns  
ns  
4 mA  
6 mA  
8 mA  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 17  
2-27  
IGLOO nano DC and Switching Characteristics  
Applies to 1.2 V DC Core Voltage  
Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
1.55 4.09 0.26 0.97 1.36  
1.55 4.09 0.26 0.97 1.36  
1.55 3.45 0.26 0.97 1.36  
1.55 3.45 0.26 0.97 1.36  
1.10 4.16 3.91 2.19 2.64  
1.10 4.16 3.91 2.19 2.64  
1.10 3.51 3.32 2.43 3.03  
1.10 3.51 3.32 2.43 3.03  
ns  
ns  
ns  
ns  
4 mA  
6 mA  
8 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
1.55 2.68 0.26 0.97 1.36  
1.55 2.68 0.26 0.97 1.36  
1.55 2.31 0.26 0.97 1.36  
1.55 2.31 0.26 0.97 1.36  
1.10 2.72 2.26 2.19 2.74  
1.10 2.72 2.26 2.19 2.74  
1.10 2.34 1.90 2.43 3.14  
1.10 2.34 1.90 2.43 3.14  
ns  
ns  
ns  
ns  
4 mA  
6 mA  
8 mA  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-28  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
3.3 V LVCMOS Wide Range  
Table 2-40 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range  
3.3 V LVCMOS Equivalent  
Wide Range1  
Software  
Default  
VIL  
VIH  
VOL  
VOH  
IOL  
IOH IIL 2 IIH 3  
Drive  
Drive  
Strength  
Strength Min.  
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Option4  
V
µA  
µA µA5 µA5  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
2 mA  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
3.6  
3.6  
3.6  
3.6  
0.2  
0.2  
0.2  
0.2  
VCCI – 0.2 100  
VCCI – 0.2 100  
VCCI – 0.2 100  
VCCI – 0.2 100  
100  
100  
100  
100  
10  
10  
10  
10  
10  
10  
10  
10  
4 mA  
6 mA  
8 mA  
1. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V Wide Range, as specified in the JEDEC JESD8-B  
specification.  
2.  
I
is the input leakage current per I/O pin over recommended operating conditions where –0.3 < VIN < VIL.  
IL  
3.  
I
is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input  
IH  
current is larger when operating outside recommended ranges.  
4. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
5. Currents are measured at 85°C junction temperature.  
6. Software default selection is highlighted in gray.  
Revision 17  
2-29  
IGLOO nano DC and Switching Characteristics  
Timing Characteristics  
Applies to 1.5 V DC Core Voltage  
Table 2-41 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V  
Equivalent  
Software  
Default  
Drive  
Drive  
Strength  
Speed  
Grade  
Strength Option1  
tDOUT tDP  
tDIN  
tPY  
tPYS  
tEOUT tZL  
tZH  
tLZ  
tHZ Units  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
2 mA  
4 mA  
6 mA  
8 mA  
STD  
STD  
STD  
STD  
0.97  
0.97  
0.97  
0.97  
5.23 0.19 1.20 1.66  
5.23 0.19 1.20 1.66  
4.27 0.19 1.20 1.66  
4.27 0.19 1.20 1.66  
0.66 5.24 5.00 2.47 2.56  
0.66 5.24 5.00 2.47 2.56  
0.66 4.28 4.12 2.83 3.16  
0.66 4.28 4.12 2.83 3.16  
ns  
ns  
ns  
ns  
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-42 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V  
Equivalent  
Software  
Default  
Drive  
Drive  
Strength  
Speed  
Grade  
Strength Option1  
tDOUT tDP  
tDIN  
tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
2 mA  
4 mA  
6 mA  
8 mA  
STD  
STD  
STD  
STD  
0.97  
0.97  
0.97  
0.97  
3.11 0.19 1.20 1.66  
3.11 0.19 1.20 1.66  
2.56 0.19 1.20 1.66  
2.56 0.19 1.20 1.66  
0.66 3.13 2.55 2.47 2.70  
0.66 3.13 2.55 2.47 2.70  
0.66 2.57 2.02 2.82 3.31  
0.66 2.57 2.02 2.82 3.31  
ns  
ns  
ns  
ns  
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
3. Software default selection highlighted in gray.  
2-30  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Applies to 1.2 V DC Core Voltage  
Table 2-43 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V  
Equivalent  
Software  
Default  
Drive  
Drive  
Strength  
Speed  
Grade  
Strength Option1  
tDOUT tDP  
tDIN  
tPY  
tPYS  
tEOUT tZL  
tZH  
tLZ  
tHZ Units  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
2 mA  
4 mA  
6 mA  
8 mA  
STD  
STD  
STD  
STD  
1.55  
1.55  
1.55  
1.55  
6.01 0.26 1.31 1.91  
6.01 0.26 1.31 1.91  
5.02 0.26 1.31 1.91  
5.02 0.26 1.31 1.91  
1.10 6.01 5.66 3.02 3.49  
1.10 6.01 5.66 3.02 3.49  
1.10 5.02 4.76 3.38 4.10  
1.10 5.02 4.76 3.38 4.10  
ns  
ns  
ns  
ns  
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-44 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V  
Equivalent  
Software  
Default  
Drive  
Drive  
Strength  
Speed  
Grade  
Strength Option1  
tDOUT tDP  
tDIN  
tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
2 mA  
4 mA  
6 mA  
8 mA  
STD  
STD  
STD  
STD  
1.55  
1.55  
1.55  
1.55  
3.82 0.26 1.31 1.91  
3.82 0.26 1.31 1.91  
3.25 0.26 1.31 1.91  
3.25 0.26 1.31 1.91  
1.10 3.82 3.15 3.01 3.65  
1.10 3.82 3.15 3.01 3.65  
1.10 3.25 2.61 3.38 4.27  
1.10 3.25 2.61 3.38 4.27  
ns  
ns  
ns  
ns  
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
3. Software default selection highlighted in gray.  
Revision 17  
2-31  
IGLOO nano DC and Switching Characteristics  
2.5 V LVCMOS  
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general  
purpose 2.5 V applications.  
Table 2-45 • Minimum and Maximum DC Input and Output Levels  
2.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH IOL IOH  
IOSL  
IOSH  
IIL 1 IIH 2  
Drive  
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA3 Max., mA3 µA4 µA4  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
–0.3  
–0.3  
–0.3  
–0.3  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
3.6  
3.6  
3.6  
3.6  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
2
2
16  
16  
32  
32  
18  
18  
37  
37  
10 10  
10 10  
10 10  
10 10  
4
4
6
6
8
8
1.  
2.  
I
I
is the input leakage current per I/O pin over recommended operating conditions where –0.3 < VIN < VIL.  
is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input  
IL  
IH  
current is larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
5. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ / tZH / tZHS  
Test Point  
5 pF  
Enable Path  
5 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-8 • AC Loading  
Table 2-46 • 2.5 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
C
LOAD (pF)  
0
2.5  
1.2  
5
Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.  
2-32  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Timing Characteristics  
Applies to 1.5 V DC Core Voltage  
Table 2-47 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ Units  
STD  
STD  
STD  
STD  
0.97 4.13 0.19 1.10 1.24  
0.97 4.13 0.19 1.10 1.24  
0.97 3.39 0.19 1.10 1.24  
0.97 3.39 0.19 1.10 1.24  
0.66 4.01 4.13 1.73 1.74  
0.66 4.01 4.13 1.73 1.74  
0.66 3.31 3.39 1.98 2.19  
0.66 3.31 3.39 1.98 2.19  
ns  
ns  
ns  
ns  
4 mA  
8 mA  
8 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-48 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
0.97 2.19 0.19 1.10 1.24  
0.97 2.19 0.19 1.10 1.24  
0.97 1.81 0.19 1.10 1.24  
0.97 1.81 0.19 1.10 1.24  
0.66 2.23 2.11 1.72 1.80  
0.66 2.23 2.11 1.72 1.80  
0.66 1.85 1.63 1.97 2.26  
0.66 1.85 1.63 1.97 2.26  
ns  
ns  
ns  
ns  
4 mA  
6 mA  
8 mA  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 17  
2-33  
IGLOO nano DC and Switching Characteristics  
Applies to 1.2 V DC Core Voltage  
Table 2-49 • 2.5 LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
1.55 4.61 0.26 1.21 1.39  
1.55 4.61 0.26 1.21 1.39  
1.55 3.86 0.26 1.21 1.39  
1.55 3.86 0.26 1.21 1.39  
1.10 4.55 4.61 2.15 2.43  
1.10 4.55 4.61 2.15 2.43  
1.10 3.82 3.86 2.41 2.89  
1.10 3.82 3.86 2.41 2.89  
ns  
ns  
ns  
ns  
4 mA  
6 mA  
8 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-50 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
1.55 2.68 0.26 1.21 1.39  
1.55 2.68 0.26 1.21 1.39  
1.55 2.30 0.26 1.21 1.39  
1.55 2.30 0.26 1.21 1.39  
1.10 2.72 2.54 2.15 2.51  
1.10 2.72 2.54 2.15 2.51  
1.10 2.33 2.04 2.41 2.99  
1.10 2.33 2.04 2.41 2.99  
ns  
ns  
ns  
ns  
4 mA  
6 mA  
8 mA  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-34  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
1.8 V LVCMOS  
Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general  
purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.  
Table 2-51 • Minimum and Maximum DC Input and Output Levels  
1.8 V  
LVCMOS  
VIL  
Max.  
VIH  
VOL  
VOH  
IOL IOH  
mA mA  
IOSL  
IOSH  
IIL 1 IIH 2  
Drive  
Strength  
Min.  
V
Min.  
V
Max. Max.  
Min.  
V
Max.  
mA3  
Max.  
mA3  
V
V
V
µA4 µA4  
10 10  
10 10  
2 mA  
4 mA  
Notes:  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
2
4
2
4
9
11  
22  
17  
1.  
2.  
I
I
is the input leakage current per I/O pin over recommended operating conditions where –0.3 < VIN < VIL.  
is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input  
IL  
IH  
current is larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
5. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ / tZH / tZHS  
Test Point  
5 pF  
Enable Path  
5 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-9 • AC Loading  
Table 2-52 • 1.8 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
C
LOAD (pF)  
0
1.8  
0.9  
5
Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.  
Revision 17  
2-35  
IGLOO nano DC and Switching Characteristics  
Timing Characteristics  
Applies to 1.5 V DC Core Voltage  
Table 2-53 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
STD  
STD  
0.97 5.44 0.19 1.03 1.44  
0.97 4.44 0.19 1.03 1.44  
0.66 5.25 5.44 1.69 1.35  
0.66 4.37 4.44 1.99 2.11  
4 mA  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-54 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
0.97 2.64 0.19 1.03 1.44  
0.97 2.08 0.19 1.03 1.44  
0.66 2.59 2.64 1.69 1.40  
0.66 2.12 1.95 1.99 2.19  
ns  
ns  
4 mA  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Applies to 1.2 V DC Core Voltage  
Table 2-55 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ Units  
STD  
STD  
1.55 5.92 0.26 1.13 1.59  
1.55 4.91 0.26 1.13 1.59  
1.10 5.72 5.92 2.11 1.95  
1.10 4.82 4.91 2.42 2.73  
ns  
ns  
4 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-56 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
1.55 3.05 0.26 1.13 1.59  
1.55 2.49 0.26 1.13 1.59  
1.10 3.01 3.05 2.10 2.00  
1.10 2.53 2.34 2.42 2.81  
ns  
ns  
4 mA  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-36  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
1.5 V LVCMOS (JESD8-11)  
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general  
purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.  
Table 2-57 • Minimum and Maximum DC Input and Output Levels  
1.5 V  
LVCMOS  
VIL  
Max.  
VIH  
Min.  
VOL  
VOH  
IOL IOH IOSL  
IOSH IIL 1 IIH 2  
Drive  
Strength  
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
Max.  
V
V
mA mA mA3  
mA3 µA4 µA4  
2 mA  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI  
2
2
13  
16  
10 10  
Notes:  
1.  
I is the input leakage current per I/O pin over recommended operating conditions where –0.3 < VIN < VIL.  
IL  
2. IIH is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
5. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ / tZH / tZHS  
Test Point  
5 pF  
Enable Path  
5 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-10 • AC Loading  
Table 2-58 • 1.5 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
C
LOAD (pF)  
0
1.5  
0.75  
5
Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.  
Revision 17  
2-37  
IGLOO nano DC and Switching Characteristics  
Timing Characteristics  
Applies to 1.5 V DC Core Voltage  
Table 2-59 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Drive Strength  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
ns  
2 mA  
STD 0.97 5.39 0.19 1.19 1.62  
0.66 5.48 5.39 2.02 2.06  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-60 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
ns  
STD 0.97 2.39 0.19 1.19 1.62  
0.66 2.44 2.24 2.02 2.15  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Applies to 1.2 V DC Core Voltage  
Table 2-61 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Drive Strength  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
ns  
2 mA  
STD 1.55 5.87 0.26 1.27 1.77  
1.10 5.92 5.87 2.45 2.65  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-62 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
ns  
STD 1.55 2.78 0.26 1.27 1.77  
1.10 2.82 2.62 2.44 2.74  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-38  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
1.2 V LVCMOS (JESD8-12A)  
Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose 1.2 V  
applications. It uses a 1.2 V input buffer and a push-pull output buffer.  
Table 2-63 • Minimum and Maximum DC Input and Output Levels  
1.2 V  
LVCMOS  
VIL  
Max.  
VIH  
Min.  
VOL  
VOH  
IOL IOH IOSL IOSH IIL 1 IIH 2  
Drive  
Strength  
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
Max.  
V
V
mA mA mA3  
mA3 µA4 µA4  
1 mA  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI  
1
1
10  
13  
10 10  
Notes:  
1.  
2.  
I
I
is the input leakage current per I/O pin over recommended operating conditions where –0.3 < VIN < VIL.  
is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input  
IL  
IH  
current is larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
5. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ / tZH / tZHS  
Test Point  
5 pF  
Enable Path  
5 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-11 • AC Loading  
Table 2-64 • 1.2 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
C
LOAD (pF)  
0
1.2  
0.6  
5
Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.  
Timing Characteristics  
Applies to 1.2 V DC Core Voltage  
Table 2-65 • 1.2 V LVCMOS Low Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V  
Drive Strength  
Speed Grade tDOUT  
STD 1.55  
tDP  
tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
ns  
1 mA  
8.30 0.26 1.56 2.27  
1.10 7.97 7.54 2.56 2.55  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-66 • 1.2 V LVCMOS High Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V  
Drive Strength  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
ns  
1 mA  
STD 1.55 3.50 0.26 1.56 2.27  
1.10 3.37 3.10 2.55 2.66  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 17  
2-39  
IGLOO nano DC and Switching Characteristics  
1.2 V LVCMOS Wide Range  
Table 2-67 • Minimum and Maximum DC Input and Output Levels  
1.2 V  
LVCMOS  
Wide  
Range  
VIL  
Max.  
VIH  
Min.  
VOL  
VOH  
IOL IOH  
mA mA  
IOSL  
IOSH IIL 1 IIH 2  
Max.  
Drive  
Strength  
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
mA3  
V
V
mA3  
µA4 µA4  
1 mA  
–0.3 0.3 * VCCI 0.7 * VCCI 3.6  
0.1  
VCCI – 0.1 100 100  
10  
13  
10 10  
Notes:  
1.  
2.  
I
I
is the input leakage current per I/O pin over recommended operating conditions where –0.3 < VIN < VIL.  
is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input  
IL  
IH  
current is larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
5. Applicable to IGLOO nano V2 devices operating at VCCI VCC.  
6. Software default selection highlighted in gray.  
Timing Characteristics  
Applies to 1.2 V DC Core Voltage  
Table 2-68 • 1.2 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V  
Equivalent  
Software  
Default  
Drive  
Drive  
Strength  
Speed  
Grade  
Strength Option1  
tDOUT tDP  
tDIN  
tPY  
tPYS  
tEOUT tZL  
tZH  
tLZ  
tHZ Units  
ns  
100 µA  
1 mA  
STD  
1.55 8.30 0.26 1.56 2.27  
1.10 7.97 7.54 2.56 2.55  
Notes:  
1. The minimum drive strength for any LVCMOS 1.2 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-69 • 1.2 V LVCMOS Wide Range HIgh Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V  
Equivalent  
Software  
Default  
Drive  
Drive  
Strength  
Speed  
Grade  
Strength Option1  
tDOUT tDP  
tDIN  
tPY  
tPYS  
tEOUT tZL  
tZH  
tLZ  
tHZ Units  
ns  
100 µA  
1 mA  
STD  
1.55 3.50 0.26 1.56 2.27  
1.10 3.37 3.10 2.55 2.66  
Notes:  
1. The minimum drive strength for any LVCMOS 1.2 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
3. Software default selection highlighted in gray.  
2-40  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
I/O Register Specifications  
Fully Registered I/O Buffers with Asynchronous Preset  
Preset  
Data  
L
D
DOUT  
Data_out  
PRE  
F
PRE  
Y
E
Core  
Array  
D
Q
D
Q
C
DFN1P1  
DFN1P1  
EOUT  
H
I
CLK  
A
PRE  
J
D
Q
DFN1P1  
Data Input I/O Register with:  
Active High Preset  
Positive-Edge Triggered  
Data Output Register and  
Enable Output Register with:  
Active High Preset  
Postive-Edge Triggered  
CLKBUF  
INBUF  
Figure 2-12 • Timing Model of Registered I/O Buffers with Asynchronous Preset  
Revision 17  
2-41  
IGLOO nano DC and Switching Characteristics  
Table 2-70 • Parameter Definition and Measuring Nodes  
Measuring Nodes  
(from, to)*  
Parameter Name  
tOCLKQ  
Parameter Definition  
Clock-to-Q of the Output Data Register  
H, DOUT  
F, H  
tOSUD  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
F, H  
tOPRE2Q  
tOREMPRE  
tORECPRE  
tOECLKQ  
tOESUD  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
L, DOUT  
L, H  
L, H  
H, EOUT  
J, H  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
tOEHD  
J, H  
tOEPRE2Q  
tOEREMPRE  
tOERECPRE  
tICLKQ  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
I, EOUT  
I, H  
I, H  
A, E  
tISUD  
Data Setup Time for the Input Data Register  
C, A  
tIHD  
Data Hold Time for the Input Data Register  
C, A  
tIPRE2Q  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
D, E  
tIREMPRE  
tIRECPRE  
D, A  
D, A  
Note: *See Figure 2-12 on page 2-41 for more information.  
2-42  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Fully Registered I/O Buffers with Asynchronous Clear  
DOUT  
FF  
Data_out  
Y
Core  
D
Q
D
Q
Data  
Array  
CC  
EE  
DFN1C1  
DFN1C1  
EOUT  
CLR  
CLR  
LL  
HH  
CLK  
CLR  
AA  
DD  
JJ  
D
Q
DFN1C1  
Data Input I/O Register with  
Active High Clear  
CLR  
Positive-Edge Triggered  
Data Output Register and  
Enable Output Register with  
Active High Clear  
Positive-Edge Triggered  
INBUF  
CLKBUF  
Figure 2-13 • Timing Model of the Registered I/O Buffers with Asynchronous Clear  
Revision 17  
2-43  
IGLOO nano DC and Switching Characteristics  
Table 2-71 • Parameter Definition and Measuring Nodes  
Measuring Nodes  
(from, to)*  
Parameter Name  
tOCLKQ  
Parameter Definition  
Clock-to-Q of the Output Data Register  
HH, DOUT  
FF, HH  
FF, HH  
LL, DOUT  
LL, HH  
LL, HH  
HH, EOUT  
JJ, HH  
tOSUD  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOCLR2Q  
tOREMCLR  
tORECCLR  
tOECLKQ  
tOESUD  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
tOEHD  
JJ, HH  
tOECLR2Q  
tOEREMCLR  
tOERECCLR  
tICLKQ  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
II, EOUT  
II, HH  
II, HH  
AA, EE  
CC, AA  
CC, AA  
DD, EE  
DD, AA  
DD, AA  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tICLR2Q  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
tIREMCLR  
tIRECCLR  
Note: *See Figure 2-13 on page 2-43 for more information.  
2-44  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Input Register  
tICKMPWH tICKMPWL  
50%  
tISUD  
50%  
50%  
50%  
50%  
50%  
50%  
1
CLK  
Data  
tIHD  
50%  
50%  
tIWPRE  
0
tIREMPRE  
tIRECPRE  
Preset  
50%  
50%  
50%  
tIWCLR  
tIRECCLR  
50%  
tIREMCLR  
50%  
50%  
Clear  
tIPRE2Q  
50%  
50%  
tICLKQ  
50%  
Out_1  
tICLR2Q  
Figure 2-14 • Input Register Timing Diagram  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-72 • Input Data Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tICLKQ  
Description  
Std. Units  
Clock-to-Q of the Input Data Register  
0.42  
0.47  
0.00  
0.79  
0.79  
0.00  
0.24  
0.00  
0.24  
0.19  
0.19  
0.31  
0.28  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tICLR2Q  
tIPRE2Q  
tIREMCLR  
tIRECCLR  
tIREMPRE  
tIRECPRE  
tIWCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
Asynchronous Clear Minimum Pulse Width for the Input Data Register  
Asynchronous Preset Minimum Pulse Width for the Input Data Register  
Clock Minimum Pulse Width HIGH for the Input Data Register  
Clock Minimum Pulse Width LOW for the Input Data Register  
tIWPRE  
tICKMPWH  
tICKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 17  
2-45  
IGLOO nano DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-73 • Input Data Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Description  
Clock-to-Q of the Input Data Register  
Parameter  
tICLKQ  
Std. Units  
0.68  
0.97  
0.00  
1.19  
1.19  
0.00  
0.24  
0.00  
0.24  
0.19  
0.19  
0.31  
0.28  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tICLR2Q  
tIPRE2Q  
tIREMCLR  
tIRECCLR  
tIREMPRE  
tIRECPRE  
tIWCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
Asynchronous Clear Minimum Pulse Width for the Input Data Register  
Asynchronous Preset Minimum Pulse Width for the Input Data Register  
Clock Minimum Pulse Width HIGH for the Input Data Register  
Clock Minimum Pulse Width LOW for the Input Data Register  
tIWPRE  
tICKMPWH  
tICKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.  
2-46  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Output Register  
t
t
OCKMPWH OCKMPWL  
50%  
t
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
t
OSUD OHD  
50%  
50%  
t
1
0
Data_out  
Preset  
t
OREMPRE  
t
OWPRE  
ORECPRE  
50%  
50%  
50%  
t
t
OREMCLR  
t
ORECCLR  
OWCLR  
50%  
50%  
50%  
Clear  
t
OPRE2Q  
50%  
50%  
50%  
DOUT  
t
OCLR2Q  
t
OCLKQ  
Figure 2-15 • Output Register Timing Diagram  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-74 • Output Data Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tOCLKQ  
Description  
Std. Units  
Clock-to-Q of the Output Data Register  
1.00  
0.51  
0.00  
1.34  
1.34  
0.00  
0.24  
0.00  
0.24  
0.19  
0.19  
0.31  
0.28  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOSUD  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOCLR2Q  
tOPRE2Q  
tOREMCLR  
tORECCLR  
tOREMPRE  
tORECPRE  
tOWCLR  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Asynchronous Clear Minimum Pulse Width for the Output Data Register  
tOWPRE  
Asynchronous Preset Minimum Pulse Width for the Output Data Register  
Clock Minimum Pulse Width HIGH for the Output Data Register  
Clock Minimum Pulse Width LOW for the Output Data Register  
tOCKMPWH  
tOCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 17  
2-47  
IGLOO nano DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-75 • Output Data Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Parameter  
tOCLKQ  
Description  
Clock-to-Q of the Output Data Register  
Std. Units  
1.52  
1.15  
0.00  
1.96  
1.96  
0.00  
0.24  
0.00  
0.24  
0.19  
0.19  
0.31  
0.28  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOSUD  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOCLR2Q  
tOPRE2Q  
tOREMCLR  
tORECCLR  
tOREMPRE  
tORECPRE  
tOWCLR  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Asynchronous Clear Minimum Pulse Width for the Output Data Register  
Asynchronous Preset Minimum Pulse Width for the Output Data Register  
Clock Minimum Pulse Width HIGH for the Output Data Register  
Clock Minimum Pulse Width LOW for the Output Data Register  
tOWPRE  
tOCKMPWH  
tOCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.  
2-48  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Output Enable Register  
t
t
OECKMPWH OECKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
t
t
OESUD OEHD  
50%  
50%  
0
1
D_Enable  
t
t
OEWPRE  
OEREMPRE  
t
OERECPRE  
50%  
50%  
50%  
Preset  
Clear  
t
t
t
OERECCLR  
OEREMCLR  
OEWCLR  
50%  
50%  
50%  
t
t
OECLR2Q  
OEPRE2Q  
50%  
50%  
50%  
EOUT  
t
OECLKQ  
Figure 2-16 • Output Enable Register Timing Diagram  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-76 • Output Enable Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tOECLKQ  
Description  
Std. Units  
Clock-to-Q of the Output Enable Register  
0.75  
0.51  
0.00  
1.13  
1.13  
0.00  
0.24  
0.00  
0.24  
0.19  
0.19  
0.31  
0.28  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOESUD  
Data Setup Time for the Output Enable Register  
tOEHD  
Data Hold Time for the Output Enable Register  
tOECLR2Q  
tOEPRE2Q  
tOEREMCLR  
tOERECCLR  
tOEREMPRE  
tOERECPRE  
tOEWCLR  
tOEWPRE  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
Asynchronous Clear Minimum Pulse Width for the Output Enable Register  
Asynchronous Preset Minimum Pulse Width for the Output Enable Register  
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register  
tOECKMPWL Clock Minimum Pulse Width LOW for the Output Enable Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 17  
2-49  
IGLOO nano DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-77 • Output Enable Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Parameter  
tOECLKQ  
Description  
Clock-to-Q of the Output Enable Register  
Std. Units  
1.10  
1.15  
0.00  
1.65  
1.65  
0.00  
0.24  
0.00  
0.24  
0.19  
0.19  
0.31  
0.28  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOESUD  
Data Setup Time for the Output Enable Register  
tOEHD  
Data Hold Time for the Output Enable Register  
tOECLR2Q  
tOEPRE2Q  
tOEREMCLR  
tOERECCLR  
tOEREMPRE  
tOERECPRE  
tOEWCLR  
tOEWPRE  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
Asynchronous Clear Minimum Pulse Width for the Output Enable Register  
Asynchronous Preset Minimum Pulse Width for the Output Enable Register  
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register  
tOECKMPWL Clock Minimum Pulse Width LOW for the Output Enable Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.  
2-50  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
DDR Module Specifications  
Note: DDR is not supported for AGLN010, AGLN015, and AGLN020 devices.  
Input DDR Module  
Input DDR  
INBUF  
A
D
Out_QF  
(to core)  
Data  
FF1  
B
C
E
Out_QR  
(to core)  
CLK  
CLKBUF  
INBUF  
FF2  
CLR  
DDR_IN  
Figure 2-17 • Input DDR Timing Model  
Table 2-78 • Parameter Definitions  
Parameter Name  
Parameter Definition  
Clock-to-Out Out_QR  
Clock-to-Out Out_QF  
Measuring Nodes (from, to)  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD  
B, D  
B, E  
A, B  
A, B  
C, D  
C, E  
C, B  
C, B  
Data Setup Time of DDR input  
Data Hold Time of DDR input  
Clear-to-Out Out_QR  
Clear-to-Out Out_QF  
Clear Removal  
tDDRIHD  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
Clear Recovery  
Revision 17  
2-51  
IGLOO nano DC and Switching Characteristics  
CLK  
tDDRISUD  
6
tDDRIHD  
8
Data  
CLR  
1
2
3
4
5
7
9
tDDRIRECCLR  
tDDRIREMCLR  
tDDRICLKQ1  
tDDRICLR2Q1  
Out_QF  
Out_QR  
6
2
4
tDDRICLKQ2  
tDDRICLR2Q2  
7
3
5
Figure 2-18 • Input DDR Timing Diagram  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-79 • Input DDR Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.25 V  
Parameter  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD1  
Description  
Std.  
0.48  
0.65  
0.50  
0.40  
0.00  
0.00  
0.82  
0.98  
0.00  
0.23  
0.19  
0.31  
0.28  
250.00  
Units  
ns  
Clock-to-Out Out_QR for Input DDR  
Clock-to-Out Out_QF for Input DDR  
ns  
Data Setup for Input DDR (negedge)  
ns  
tDDRISUD2  
Data Setup for Input DDR (posedge)  
ns  
tDDRIHD1  
Data Hold for Input DDR (negedge)  
ns  
tDDRIHD2  
Data Hold for Input DDR (posedge)  
ns  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
tDDRIWCLR  
tDDRICKMPWH  
tDDRICKMPWL  
FDDRIMAX  
Asynchronous Clear-to-Out Out_QR for Input DDR  
Asynchronous Clear-to-Out Out_QF for Input DDR  
Asynchronous Clear Removal Time for Input DDR  
Asynchronous Clear Recovery Time for Input DDR  
Asynchronous Clear Minimum Pulse Width for Input DDR  
Clock Minimum Pulse Width HIGH for Input DDR  
Clock Minimum Pulse Width LOW for Input DDR  
Maximum Frequency for Input DDR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.  
2-52  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
1.2 V DC Core Voltage  
Table 2-80 • Input DDR Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Description  
Clock-to-Out Out_QR for Input DDR  
Parameter  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD1  
Std.  
0.76  
0.94  
0.93  
0.84  
0.00  
0.00  
1.23  
1.42  
0.00  
0.24  
0.19  
0.31  
0.28  
160.00  
Units  
ns  
Clock-to-Out Out_QF for Input DDR  
ns  
Data Setup for Input DDR (negedge)  
ns  
tDDRISUD2  
Data Setup for Input DDR (posedge)  
ns  
tDDRIHD1  
Data Hold for Input DDR (negedge)  
ns  
tDDRIHD2  
Data Hold for Input DDR (posedge)  
ns  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
tDDRIWCLR  
tDDRICKMPWH  
tDDRICKMPWL  
FDDRIMAX  
Asynchronous Clear-to-Out Out_QR for Input DDR  
Asynchronous Clear-to-Out Out_QF for Input DDR  
Asynchronous Clear Removal Time for Input DDR  
Asynchronous Clear Recovery Time for Input DDR  
Asynchronous Clear Minimum Pulse Width for Input DDR  
Clock Minimum Pulse Width HIGH for Input DDR  
Clock Minimum Pulse Width LOW for Input DDR  
Maximum Frequency for Input DDR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.  
Revision 17  
2-53  
IGLOO nano DC and Switching Characteristics  
Output DDR Module  
Output DDR  
A
Data_F  
(from core)  
X
X
FF1  
Out  
B
0
1
CLK  
E
X
CLKBUF  
C
X
OUTBUF  
D
Data_R  
(from core)  
X
FF2  
B
X
CLR  
INBUF  
C
X
DDR_OUT  
Figure 2-19 • Output DDR Timing Model  
Table 2-81 • Parameter Definitions  
Parameter Name  
tDDROCLKQ  
Parameter Definition  
Clock-to-Out  
Measuring Nodes (from, to)  
B, E  
C, E  
C, B  
C, B  
A, B  
D, B  
A, B  
D, B  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROSUD1  
Asynchronous Clear-to-Out  
Clear Removal  
Clear Recovery  
Data Setup Data_F  
Data Setup Data_R  
Data Hold Data_F  
Data Hold Data_R  
tDDROSUD2  
tDDROHD1  
tDDROHD2  
2-54  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
CLK  
t
t
DDROHD2  
DDROSUD2  
4
9
5
Data_F  
1
2
3
t
t
DDROHD1  
DDROREMCLR  
Data_R 6  
CLR  
7
8
10  
11  
t
DDRORECCLR  
t
DDROREMCLR  
t
t
DDROCLKQ  
DDROCLR2Q  
Out  
7
2
8
3
9
4
10  
Figure 2-20 • Output DDR Timing Diagram  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-82 • Output DDR Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tDDROCLKQ  
tDDROSUD1  
tDDROSUD2  
tDDROHD1  
Description  
Std.  
1.07  
0.67  
0.67  
0.00  
0.00  
1.38  
0.00  
0.23  
0.19  
0.31  
0.28  
250.00  
Units  
ns  
Clock-to-Out of DDR for Output DDR  
Data_F Data Setup for Output DDR  
ns  
Data_R Data Setup for Output DDR  
ns  
Data_F Data Hold for Output DDR  
ns  
tDDROHD2  
Data_R Data Hold for Output DDR  
ns  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROWCLR1  
tDDROCKMPWH  
tDDROCKMPWL  
FDDOMAX  
Asynchronous Clear-to-Out for Output DDR  
Asynchronous Clear Removal Time for Output DDR  
Asynchronous Clear Recovery Time for Output DDR  
Asynchronous Clear Minimum Pulse Width for Output DDR  
Clock Minimum Pulse Width HIGH for the Output DDR  
Clock Minimum Pulse Width LOW for the Output DDR  
Maximum Frequency for the Output DDR  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 17  
2-55  
IGLOO nano DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-83 • Output DDR Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Description  
Clock-to-Out of DDR for Output DDR  
Parameter  
tDDROCLKQ  
tDDROSUD1  
tDDROSUD2  
tDDROHD1  
Std.  
1.60  
1.09  
1.16  
0.00  
0.00  
1.99  
0.00  
0.24  
0.19  
0.31  
0.28  
Units  
ns  
Data_F Data Setup for Output DDR  
ns  
Data_R Data Setup for Output DDR  
ns  
Data_F Data Hold for Output DDR  
ns  
tDDROHD2  
Data_R Data Hold for Output DDR  
ns  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROWCLR1  
tDDROCKMPWH  
tDDROCKMPWL  
FDDOMAX  
Asynchronous Clear-to-Out for Output DDR  
Asynchronous Clear Removal Time for Output DDR  
Asynchronous Clear Recovery Time for Output DDR  
Asynchronous Clear Minimum Pulse Width for Output DDR  
Clock Minimum Pulse Width HIGH for the Output DDR  
Clock Minimum Pulse Width LOW for the Output DDR  
Maximum Frequency for the Output DDR  
ns  
ns  
ns  
ns  
ns  
ns  
160.00 MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.  
2-56  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
VersaTile Characteristics  
VersaTile Specifications as a Combinatorial Module  
The IGLOO nano library offers all combinations of LUT-3 combinatorial functions. In this section, timing  
characteristics are presented for a sample of the library. For more details, refer to the Fusion, IGLOO/e,  
and ProASIC3/ E Macro Library Guide.  
A
Y
Y
INV  
A
A
B
NOR2  
OR2  
Y
B
A
B
A
B
Y
AND2  
Y
NAND2  
A
B
C
A
B
Y
XOR3  
XOR2  
Y
A
B
C
A
MAJ3  
0
Y
A
B
C
MUX2  
Y
B
S
NAND3  
1
Figure 2-21 • Sample of Combinatorial Cells  
Revision 17  
2-57  
IGLOO nano DC and Switching Characteristics  
tPD  
Fanout = 4  
A
B
Net  
Y
NAND2 or Any  
Combinatorial  
Logic  
Length = 1 VersaTile  
tPD = MAX(tPD(RR), tPD(RF),  
tPD(FF), tPD(FR)) where edges are  
applicable for a particular  
combinatorial cell  
A
Net  
Y
NAND2 or Any  
Combinatorial  
Logic  
Length = 1 VersaTile  
B
A
Net  
Y
Y
NAND2 or Any  
Combinatorial  
Logic  
Length = 1 VersaTile  
B
A
Net  
NAND2 or Any  
Combinatorial  
Logic  
Length = 1 VersaTile  
B
VCC  
50%  
50%  
VCC  
A, B, C  
GND  
50%  
50%  
OUT  
GND  
tPD  
tPD  
(FF)  
(RR)  
VCC  
tPD  
(FR)  
OUT  
50%  
50%  
tPD  
GND  
(RF)  
Figure 2-22 • Timing Model and Waveforms  
2-58  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-84 • Combinatorial Cell Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Combinatorial Cell  
INV  
Equation  
Y = !A  
Parameter  
tPD  
Std.  
0.76  
0.87  
0.91  
0.90  
0.94  
1.39  
1.44  
1.60  
1.17  
1.18  
Units  
ns  
AND2  
Y = A · B  
tPD  
ns  
NAND2  
OR2  
Y = !(A · B)  
Y = A + B  
tPD  
ns  
tPD  
ns  
NOR2  
Y = !(A + B)  
Y = A B  
Y = MAJ(A, B, C)  
Y = A B C  
Y = A !S + B S  
Y = A · B · C  
tPD  
ns  
XOR2  
tPD  
ns  
MAJ3  
tPD  
ns  
XOR3  
tPD  
ns  
MUX2  
tPD  
ns  
AND3  
tPD  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
1.2 V DC Core Voltage  
Table 2-85 • Combinatorial Cell Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Combinatorial Cell  
INV  
Equation  
Y = !A  
Parameter  
tPD  
Std.  
1.33  
1.48  
1.58  
1.53  
1.63  
2.34  
2.59  
2.74  
2.03  
2.11  
Units  
ns  
AND2  
Y = A · B  
tPD  
ns  
NAND2  
OR2  
Y = !(A · B)  
Y = A + B  
tPD  
ns  
tPD  
ns  
NOR2  
Y = !(A + B)  
Y = A B  
Y = MAJ(A, B, C)  
Y = A B C  
Y = A !S + B S  
Y = A · B · C  
tPD  
ns  
XOR2  
tPD  
ns  
MAJ3  
tPD  
ns  
XOR3  
tPD  
ns  
MUX2  
tPD  
ns  
AND3  
tPD  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.  
Revision 17  
2-59  
IGLOO nano DC and Switching Characteristics  
VersaTile Specifications as a Sequential Module  
The IGLOO nano library offers a wide variety of sequential cells, including flip-flops and latches. Each  
has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented  
for a representative sample from the library. For more details, refer to the Fusion, IGLOO/e, and  
ProASIC3/E Macro Library Guide.  
Data  
CLK  
Out  
Data  
Out  
D
Q
D
Q
En  
DFN1  
DFN1E1  
CLK  
PRE  
Data  
Data  
Out  
Out  
Q
D
D
Q
En  
DFN1C1  
DFI1E1P1  
CLK  
CLK  
CLR  
Figure 2-23 • Sample of Sequential Cells  
2-60  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
tCKMPWH CKMPWL  
t
50%  
tSUD  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
tHD  
50%  
50%  
Data  
EN  
0
50%  
tRECPRE  
50%  
tWPRE  
tREMPRE  
50%  
tHE  
50%  
tSUE  
PRE  
CLR  
Out  
tREMCLR  
tRECCLR  
50%  
tWCLR  
50%  
50%  
tPRE2Q  
50%  
tCLR2Q  
50%  
50%  
tCLKQ  
Figure 2-24 • Timing Model and Waveforms  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-86 • Register Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tCLKQ  
Description  
Std. Units  
Clock-to-Q of the Core Register  
0.89  
0.81  
0.00  
0.73  
0.00  
0.60  
0.62  
0.00  
0.24  
0.00  
0.23  
0.30  
0.30  
0.56  
0.56  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSUD  
Data Setup Time for the Core Register  
tHD  
Data Hold Time for the Core Register  
tSUE  
Enable Setup Time for the Core Register  
tHE  
Enable Hold Time for the Core Register  
tCLR2Q  
tPRE2Q  
tREMCLR  
tRECCLR  
tREMPRE  
tRECPRE  
tWCLR  
Asynchronous Clear-to-Q of the Core Register  
Asynchronous Preset-to-Q of the Core Register  
Asynchronous Clear Removal Time for the Core Register  
Asynchronous Clear Recovery Time for the Core Register  
Asynchronous Preset Removal Time for the Core Register  
Asynchronous Preset Recovery Time for the Core Register  
Asynchronous Clear Minimum Pulse Width for the Core Register  
Asynchronous Preset Minimum Pulse Width for the Core Register  
Clock Minimum Pulse Width HIGH for the Core Register  
Clock Minimum Pulse Width LOW for the Core Register  
tWPRE  
tCKMPWH  
tCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 17  
2-61  
IGLOO nano DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-87 • Register Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Parameter  
tCLKQ  
Description  
Std. Units  
Clock-to-Q of the Core Register  
1.61  
1.17  
0.00  
1.29  
0.00  
0.87  
0.89  
0.00  
0.24  
0.00  
0.24  
0.46  
0.46  
0.95  
0.95  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSUD  
Data Setup Time for the Core Register  
tHD  
Data Hold Time for the Core Register  
tSUE  
Enable Setup Time for the Core Register  
tHE  
Enable Hold Time for the Core Register  
tCLR2Q  
tPRE2Q  
tREMCLR  
tRECCLR  
tREMPRE  
tRECPRE  
tWCLR  
Asynchronous Clear-to-Q of the Core Register  
Asynchronous Preset-to-Q of the Core Register  
Asynchronous Clear Removal Time for the Core Register  
Asynchronous Clear Recovery Time for the Core Register  
Asynchronous Preset Removal Time for the Core Register  
Asynchronous Preset Recovery Time for the Core Register  
Asynchronous Clear Minimum Pulse Width for the Core Register  
Asynchronous Preset Minimum Pulse Width for the Core Register  
Clock Minimum Pulse Width HIGH for the Core Register  
Clock Minimum Pulse Width LOW for the Core Register  
tWPRE  
tCKMPWH  
tCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.  
2-62  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Global Resource Characteristics  
AGLN125 Clock Tree Topology  
Clock delays are device-specific. Figure 2-25 is an example of a global tree used for clock routing. The  
global tree presented in Figure 2-25 is driven by a CCC located on the west side of the AGLN125 device.  
It is used to drive all D-flip-flops in the device.  
Central  
Global Rib  
CCC  
VersaTile  
Rows  
Global Spine  
Figure 2-25 • Example of Global Tree Use in an AGLN125 Device for Clock Routing  
Revision 17  
2-63  
IGLOO nano DC and Switching Characteristics  
Global Tree Timing Characteristics  
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not  
include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven  
and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer  
to the "Clock Conditioning Circuits" section on page 2-70. Table 2-88 to Table 2-96 on page 2-68 present  
minimum and maximum global clock delays within each device. Minimum and maximum delays are  
measured with minimum and maximum loading.  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-88 • AGLN010 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Std.  
Max.2  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Min.1  
1.13  
1.15  
1.40  
1.65  
Units  
ns  
1.42  
1.50  
tRCKH  
Input High Delay for Global Clock  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Notes:  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.35  
ns  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully  
loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-89 • AGLN015 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Min.1  
1.21  
1.23  
1.40  
1.65  
Max.2  
Units  
ns  
1.55  
tRCKH  
Input HIgh Delay for Global Clock  
1.65  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Notes:  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.42  
ns  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully  
loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-64  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Table 2-90 • AGLN020 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Min.1  
1.21  
1.23  
1.40  
1.65  
Max.2  
Units  
ns  
1.55  
tRCKH  
Input High Delay for Global Clock  
1.65  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Notes:  
Minimum Pulse Width High for Global Clock  
Minimum Pulse Width Low for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.42  
ns  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully  
loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-91 • AGLN060 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Min.1  
1.32  
1.34  
1.40  
1.65  
Max.2  
Units  
ns  
1.62  
tRCKH  
Input High Delay for Global Clock  
1.71  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Notes:  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.38  
ns  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully  
loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 17  
2-65  
IGLOO nano DC and Switching Characteristics  
Table 2-92 • AGLN125 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Std.  
Max.2  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Min.1  
1.36  
1.39  
1.40  
1.65  
Units  
ns  
1.71  
1.82  
tRCKH  
Input High Delay for Global Clock  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Notes:  
Minimum Pulse Width High for Global Clock  
Minimum Pulse Width Low for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.43  
ns  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully  
loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-93 • AGLN250 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Min.1  
1.39  
1.41  
1.40  
1.65  
Max.2  
Units  
ns  
1.73  
tRCKH  
Input High Delay for Global Clock  
1.84  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Notes:  
Minimum Pulse Width High for Global Clock  
Minimum Pulse Width Low for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.43  
ns  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully  
loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-66  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
1.2 V DC Core Voltage  
Table 2-94 • AGLN010 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Min.1  
1.71  
1.78  
1.40  
1.65  
Max.2  
Units  
ns  
2.09  
tRCKH  
Input High Delay for Global Clock  
2.31  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Notes:  
Minimum Pulse Width High for Global Clock  
Minimum Pulse Width Low for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.53  
ns  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully  
loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.  
Table 2-95 • AGLN015 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Min.1  
1.81  
1.90  
1.40  
1.65  
Max.2  
Units  
ns  
2.26  
tRCKH  
Input High Delay for Global Clock  
2.51  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Notes:  
Minimum Pulse Width High for Global Clock  
Minimum Pulse Width Low for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.61  
ns  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully  
loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.  
Revision 17  
2-67  
IGLOO nano DC and Switching Characteristics  
Table 2-96 • AGLN020 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Std.  
Max.2  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Min.1  
1.81  
1.90  
1.40  
1.65  
Units  
ns  
2.26  
2.51  
tRCKH  
Input High Delay for Global Clock  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Notes:  
Minimum Pulse Width High for Global Clock  
Minimum Pulse Width Low for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.61  
ns  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully  
loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.  
Table 2-97 • AGLN060 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Min.1  
2.02  
2.09  
1.40  
1.65  
Max.2  
Units  
ns  
2.42  
tRCKH  
Input High Delay for Global Clock  
2.65  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Notes:  
Minimum Pulse Width High for Global Clock  
Minimum Pulse Width Low for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.56  
ns  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully  
loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.  
2-68  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Table 2-98 • AGLN125 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Min.1  
2.08  
2.15  
1.40  
1.65  
Max.2  
Units  
ns  
2.54  
tRCKH  
Input High Delay for Global Clock  
2.77  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Notes:  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.62  
ns  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully  
loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.  
Table 2-99 • AGLN250 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Min.1  
2.11  
2.19  
1.40  
1.65  
Max.2  
Units  
ns  
2.57  
tRCKH  
Input High Delay for Global Clock  
2.81  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Notes:  
Minimum Pulse Width High for Global Clock  
Minimum Pulse Width Low for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.62  
ns  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully  
loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.  
Revision 17  
2-69  
IGLOO nano DC and Switching Characteristics  
Clock Conditioning Circuits  
CCC Electrical Specifications  
Timing Characteristics  
Table 2-100 • IGLOO nano CCC/PLL Specification  
For IGLOO nano V2 OR V5 Devices, 1.5 V DC Core Supply Voltage  
Parameter  
Min.  
1.5  
Typ.  
Max.  
250  
Units  
MHz  
MHz  
ps  
Clock Conditioning Circuitry Input Frequency fIN_CCC  
Clock Conditioning Circuitry Output Frequency fOUT_CCC  
Delay Increments in Programmable Delay Blocks 1, 2  
Number of Programmable Values in Each Programmable Delay Block  
Serial Clock (SCLK) for Dynamic PLL 4,9  
Input Cycle-to-Cycle Jitter (peak magnitude)  
Acquisition Time  
0.75  
250  
3603  
32  
100  
1
MHz  
ns  
LockControl = 0  
300  
6.0  
µs  
LockControl = 1  
ms  
Tracking Jitter 5  
LockControl = 0  
2.5  
1.5  
ns  
ns  
%
LockControl = 1  
Output Duty Cycle  
48.5  
1.25  
51.5  
15.65  
15.65  
Delay Range in Block: Programmable Delay 1 1, 2  
Delay Range in Block: Programmable Delay 2 1, 2,  
ns  
ns  
ns  
0.025  
Delay Range in Block: Fixed Delay 1, 2  
3.5  
6
VCO Output Peak-to-Peak Period Jitter FCCC_OUT  
Max Peak-to-Peak Jitter Data 6,7,8  
SSO 2  
0.50  
SSO 4 SSO 8 SSO 16  
0.75 MHz to 50 MHz  
50 MHz to 250 MHz  
Notes:  
0.60  
4.00  
0.80  
6.00  
1.20  
%
%
2.50  
12.00  
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-7 for deratings.  
2. T = 25°C, VCC = 1.5 V  
J
3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay  
increments are available. Refer to the Libero SoC Online Help associated with the core for more information.  
4. Maximum value obtained for a STD speed grade device in Worst-Case Commercial conditions. For specific junction  
temperature and voltage supply levels, refer to Table 2-6 on page 2-6 and Table 2-7 on page 2-7 for derating values.  
5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge.  
Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.  
6. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying  
the VCO period by the % jitter. The VCO jitter (in ps) applies to CCC_OUT, regardless of the output divider settings. For  
example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, no matter what the settings are for the  
output divider.  
7. Measurements done with LVTTL 3.3 V 8 mA I/O drive strength and high slew rate. VCC/VCCPLL = 1.425 V,  
VCCI = 3.3 V, VQ/PQ/TQ type of packages, 20 pF load.  
8. SSOs are outputs that are synchronous to a single clock domain and have their clock-to-out times within ±200 ps of  
each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and  
Printed Circuit Board Layout" section in the IGLOO nano FPGA Fabric User’s Guide.  
9. The AGLN010, AGLN015, and AGLN020 devices do not support PLLs.  
2-70  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Table 2-101 • IGLOO nano CCC/PLL Specification  
For IGLOO nano V2 Devices, 1.2 V DC Core Supply Voltage  
Parameter  
Min.  
1.5  
Typ.  
Max.  
160  
Units  
MHz  
MHz  
ps  
Clock Conditioning Circuitry Input Frequency fIN_CCC  
Clock Conditioning Circuitry Output Frequency fOUT_CCC  
Delay Increments in Programmable Delay Blocks 1, 2  
Number of Programmable Values in Each Programmable Delay Block  
Serial Clock (SCLK) for Dynamic PLL 4,9  
Input Cycle-to-Cycle Jitter (peak magnitude)  
Acquisition Time  
0.75  
160  
5803  
32  
60  
0.25  
ns  
LockControl = 0  
300  
6.0  
µs  
LockControl = 1  
ms  
Tracking Jitter 5  
LockControl = 0  
4
ns  
ns  
%
LockControl = 1  
3
Output Duty Cycle  
48.5  
2.3  
51.5  
20.86  
20.86  
Delay Range in Block: Programmable Delay 1 1, 2  
Delay Range in Block: Programmable Delay 2 1, 2  
Delay Range in Block: Fixed Delay 1, 2  
ns  
ns  
ns  
0.025  
5.7  
Max Peak-to-Peak Period Jitter 6,7,8  
6
VCO Output Peak-to-Peak Period Jitter FCCC_OUT  
SSO 2  
SSO 4 SSO 8 SSO 16  
0.75 MHz to 50MHz  
50 MHz to 100 MHz  
0.50  
2.50  
1.20  
5.00  
2.00  
7.00  
3.00  
%
%
15.00  
Notes:  
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-7 for deratings.  
2. T = 25°C, V = 1.2 V.  
J
CC  
3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay  
increments are available. Refer to the Libero SoC Online Help associated with the core for more information.  
4. Maximum value obtained for a STD speed grade device in Worst-Case Commercial conditions. For specific junction  
temperature and voltage supply levels, refer to Table 2-6 on page 2-6 and Table 2-7 on page 2-7 for derating values.  
5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock  
edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter  
parameter.  
6. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying  
the VCO period by the % jitter. The VCO jitter (in ps) applies to CCC_OUT, regardless of the output divider settings. For  
example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, no matter what the settings are for the  
output divider.  
7. Measurements done with LVTTL 3.3 V 8 mA I/O drive strength and high slew rate. VCC/VCCPLL = 1.14 V,  
VCCI = 3.3 V, VQ/PQ/TQ type of packages, 20 pF load.  
8. SSOs are outputs that are synchronous to a single clock domain and have their clock-to-out times within ±200 ps of  
each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and  
Printed Circuit Board Layout" section in the IGLOO nano FPGA Fabric User’s Guide.  
9. The AGLN010, AGLN015, and AGLN020 devices do not support PLLs.  
Revision 17  
2-71  
IGLOO nano DC and Switching Characteristics  
Output Signal  
Tperiod_max  
Tperiod_min  
Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min  
.
Figure 2-26 • Peak-to-Peak Jitter Definition  
2-72  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Embedded SRAM and FIFO Characteristics  
SRAM  
RAM4K9  
RAM512X18  
RADDR8  
RD17  
RD16  
ADDRA11 DOUTA8  
RADDR7  
DOUTA7  
DOUTA0  
ADDRA10  
ADDRA0  
DINA8  
RADDR0  
RD0  
DINA7  
RW1  
RW0  
DINA0  
WIDTHA1  
WIDTHA0  
PIPEA  
PIPE  
WMODEA  
BLKA  
WENA  
REN  
RCLK  
CLKA  
ADDRB11 DOUTB8  
ADDRB10 DOUTB7  
WADDR8  
WADDR7  
ADDRB0  
DOUTB0  
WADDR0  
WD17  
WD16  
DINB8  
DINB7  
WD0  
DINB0  
WW1  
WW0  
WIDTHB1  
WIDTHB0  
PIPEB  
WMODEB  
BLKB  
WEN  
WCLK  
WENB  
CLKB  
RESET  
RESET  
Figure 2-27 • RAM Models  
Revision 17  
2-73  
IGLOO nano DC and Switching Characteristics  
Timing Waveforms  
tCYC  
tCKH  
tCKL  
CLK  
tAS tAH  
A0  
tBKS  
A1  
A2  
[R|W]ADDR  
BLK  
tBKH  
tENS  
tENH  
WEN  
tCKQ1  
Dn  
D0  
D1  
D2  
DOUT|RD  
tDOH1  
Figure 2-28 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18.  
tCYC  
tCKH  
tCKL  
CLK  
[R|W]ADDR  
BLK  
tAS tAH  
A0  
A1  
A2  
tBKS  
tBKH  
tENH  
tENS  
WEN  
tCKQ2  
Dn  
D0  
D1  
DOUT|RD  
tDOH2  
Figure 2-29 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.  
2-74  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
tCYC  
tCKH  
tCKL  
CLK  
[R|W]ADDR  
BLK  
tAS  
tAH  
A0  
tBKS  
A1  
A2  
tBKH  
tENS  
tENH  
WEN  
tDS  
tDH  
DI1  
DI0  
DIN|WD  
DOUT|RD  
Dn  
D2  
Figure 2-30 • RAM Write, Output Retained (WMODE = 0). Applicable to Both RAM4K9 and RAM512x18.  
tCYC  
tCKH  
tCKL  
CLK  
ADDR  
BLK  
tAS tAH  
A0  
tBKS  
A1  
A2  
tBKH  
tENS  
WEN  
DIN  
tDS tDH  
DI1  
DI0  
DI2  
DOUT  
Dn  
DI0  
DI1  
(pass-through)  
DOUT  
DI0  
Dn  
DI1  
(pipelined)  
Figure 2-31 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only.  
Revision 17  
2-75  
IGLOO nano DC and Switching Characteristics  
tCYC  
tCKH  
tCKL  
CLK  
RESET  
tRSTBQ  
Dm  
Dn  
DOUT|RD  
Figure 2-32 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.  
2-76  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-102 • RAM4K9  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tAS  
Description  
Address setup time  
Std. Units  
0.69 ns  
0.13 ns  
0.68 ns  
0.13 ns  
1.37 ns  
0.13 ns  
0.59 ns  
0.30 ns  
2.94 ns  
2.55 ns  
1.51 ns  
tAH  
Address hold time  
tENS  
tENH  
tBKS  
tBKH  
tDS  
REN, WEN setup time  
REN, WEN hold time  
BLK setup time  
BLK hold time  
Input data (DIN) setup time  
tDH  
Input data (DIN) hold time  
tCKQ1  
Clock HIGH to new data valid on DOUT (output retained, WMODE = 0)  
Clock HIGH to new data valid on DOUT (flow-through, WMODE = 1)  
Clock HIGH to new data valid on DOUT (pipelined)  
tCKQ2  
1
tC2CWWL  
Address collision clk-to-clk delay for reliable write after write on same address; applicable 0.23 ns  
to closing edge  
1
tC2CRWH  
Address collision clk-to-clk delay for reliable read access after write on same address; 0.35 ns  
applicable to opening edge  
1
tC2CWRH  
Address collision clk-to-clk delay for reliable write access after read on same address; 0.41 ns  
applicable to opening edge  
tRSTBQ  
RESET Low to data out Low on DOUT (flow-through)  
RESET Low to data out Low on DOUT (pipelined)  
1.72 ns  
1.72 ns  
0.51 ns  
2.68 ns  
0.68 ns  
6.24 ns  
160 MHz  
tREMRSTB RESET removal  
tRECRSTB RESET recovery  
tMPWRSTB RESET minimum pulse width  
tCYC  
Clock cycle time  
FMAX  
Notes:  
Maximum frequency  
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-  
Based cSoCs and FPGAs.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 17  
2-77  
IGLOO nano DC and Switching Characteristics  
Table 2-103 • RAM512X18  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tAS  
Description  
Std. Units  
0.69 ns  
0.13 ns  
0.61 ns  
0.07 ns  
0.59 ns  
0.30 ns  
3.51 ns  
1.43 ns  
Address setup time  
tAH  
Address hold time  
tENS  
REN, WEN setup time  
REN, WEN hold time  
Input data (WD) setup time  
Input data (WD) hold time  
tENH  
tDS  
tDH  
tCKQ1  
tCKQ2  
Clock HIGH to new data valid on RD (output retained)  
Clock HIGH to new data valid on RD (pipelined)  
1
tC2CRWH  
Address collision clk-to-clk delay for reliable read access after write on same address; 0.35  
applicable to opening edge  
ns  
1
tC2CWRH  
Address collision clk-to-clk delay for reliable write access after read on same address; 0.42  
applicable to opening edge  
ns  
tRSTBQ  
RESET Low to data out Low on RD (flow-through)  
RESET Low to data out Low on RD (pipelined)  
1.72 ns  
1.72 ns  
0.51 0.51  
2.68 ns  
0.68 ns  
6.24 ns  
160 MHz  
tREMRSTB RESET removal  
tRECRSTB RESET recovery  
tMPWRSTB RESET minimum pulse width  
tCYC  
Clock cycle time  
FMAX  
Notes:  
Maximum frequency  
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-  
Based cSoCs and FPGAs.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-78  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
1.2 V DC Core Voltage  
Table 2-104 • RAM4K9  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Parameter  
tAS  
Description  
Address setup time  
Std. Units  
1.28  
0.25  
1.25  
0.25  
2.54  
0.25  
1.10  
0.55  
5.51  
4.77  
2.82  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAH  
Address hold time  
tENS  
tENH  
tBKS  
tBKH  
tDS  
REN, WEN setup time  
REN, WEN hold time  
BLK setup time  
BLK hold time  
Input data (DIN) setup time  
tDH  
Input data (DIN) hold time  
tCKQ1  
Clock HIGH to new data valid on DOUT (output retained, WMODE = 0)  
Clock HIGH to new data valid on DOUT (flow-through, WMODE = 1)  
Clock HIGH to new data valid on DOUT (pipelined)  
tCKQ2  
1
tC2CWWL  
Address collision clk-to-clk delay for reliable write after write on same address; 0.30  
applicable to closing edge  
1
tC2CRWH  
Address collision clk-to-clk delay for reliable read access after write on same address; 0.89  
applicable to opening edge  
ns  
ns  
1
tC2CWRH  
Address collision clk-to-clk delay for reliable write access after read on same address; 1.01  
applicable to opening edge  
tRSTBQ  
RESET LOW to data out LOW on DOUT (flow-through)  
RESET LOW to data out LOW on DO (pipelined)  
3.21  
3.21  
0.93  
4.94  
1.18  
10.90  
92  
ns  
ns  
tREMRSTB RESET removal  
tRECRSTB RESET recovery  
tMPWRSTB RESET minimum pulse width  
ns  
ns  
ns  
tCYC  
Clock cycle time  
ns  
FMAX  
Notes:  
Maximum frequency  
MHz  
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-  
Based cSoCs and FPGAs.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.  
Revision 17  
2-79  
IGLOO nano DC and Switching Characteristics  
Table 2-105 • RAM512X18  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Parameter  
tAS  
Description  
Std. Units  
Address setup time  
1.28  
0.25  
1.13  
0.13  
1.10  
0.55  
6.56  
2.67  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAH  
Address hold time  
tENS  
REN, WEN setup time  
REN, WEN hold time  
Input data (WD) setup time  
Input data (WD) hold time  
tENH  
tDS  
tDH  
tCKQ1  
tCKQ2  
Clock High to new data valid on RD (output retained)  
Clock High to new data valid on RD (pipelined)  
1
tC2CRWH  
Address collision clk-to-clk delay for reliable read access after write on same address; 0.87  
applicable to opening edge  
1
tC2CWRH  
Address collision clk-to-clk delay for reliable write access after read on same address; 1.04  
applicable to opening edge  
ns  
tRSTBQ  
RESET LOW to data out LOW on RD (flow through)  
RESET LOW to data out LOW on RD (pipelined)  
3.21  
3.21  
0.93  
4.94  
1.18  
ns  
ns  
ns  
ns  
ns  
tREMRSTB RESET removal  
tRECRSTB RESET recovery  
tMPWRSTB RESET minimum pulse width  
tCYC  
Clock cycle time  
10.90 ns  
92 MHz  
FMAX  
Notes:  
Maximum frequency  
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-  
Based cSoCs and FPGAs.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.  
2-80  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
FIFO  
FIFO4K18  
RW2  
RW1  
RW0  
RD17  
RD16  
WW2  
WW1  
WW0  
RD0  
ESTOP  
FSTOP  
FULL  
AFULL  
EMPTY  
AEVAL11  
AEVAL10  
AEMPTY  
AEVAL0  
AFVAL11  
AFVAL10  
AFVAL0  
REN  
RBLK  
RCLK  
WD17  
WD16  
WD0  
WEN  
WBLK  
WCLK  
RPIPE  
RESET  
Figure 2-33 • FIFO Model  
Revision 17  
2-81  
IGLOO nano DC and Switching Characteristics  
Timing Waveforms  
tCYC  
RCLK  
tENH  
tENS  
REN  
tBKS  
tBKH  
RBLK  
tCKQ1  
RD  
D1  
Dn  
D0  
D2  
(flow-through)  
tCKQ2  
RD  
(pipelined)  
Dn  
D0  
D1  
Figure 2-34 • FIFO Read  
tCYC  
WCLK  
tENS  
tENH  
WEN  
tBKS  
tBKH  
WBLK  
tDS  
tDH  
DI1  
DI0  
WD  
Figure 2-35 • FIFO Write  
2-82  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
RCLK/  
WCLK  
t
t
MPWRSTB  
RSTCK  
RESET  
EMPTY  
AEMPTY  
FULL  
t
RSTFG  
t
RSTAF  
t
RSTFG  
t
RSTAF  
AFULL  
WA/RA  
MATCH (A )  
(Address Counter)  
0
Figure 2-36 • FIFO Reset  
t
CYC  
RCLK  
t
RCKEF  
EMPTY  
t
CKAF  
AEMPTY  
WA/RA  
(Address Counter)  
NO MATCH  
NO MATCH  
Dist = AEF_TH  
MATCH (EMPTY)  
Figure 2-37 • FIFO EMPTY Flag and AEMPTY Flag Assertion  
Revision 17  
2-83  
IGLOO nano DC and Switching Characteristics  
tCYC  
WCLK  
FULL  
tWCKFF  
tCKAF  
AFULL  
WA/RA  
NO MATCH  
NO MATCH  
Dist = AFF_TH  
MATCH (FULL)  
(Address Counter)  
Figure 2-38 • FIFO FULL Flag and AFULL Flag Assertion  
WCLK  
MATCH  
WA/RA  
NO MATCH  
NO MATCH  
2nd Rising  
Edge  
After 1st  
Write  
NO MATCH  
NO MATCH  
Dist = AEF_TH + 1  
(Address Counter)  
(EMPTY)  
1st Rising  
Edge  
After 1st  
Write  
RCLK  
EMPTY  
t
RCKEF  
t
CKAF  
AEMPTY  
Figure 2-39 • FIFO EMPTY Flag and AEMPTY Flag Deassertion  
RCLK  
WA/RA  
(Address Counter)  
Dist = AFF_TH – 1  
MATCH (FULL)  
1st Rising  
NO MATCH  
NO MATCH  
1st Rising  
Edge  
After 2nd  
Read  
NO MATCH  
NO MATCH  
Edge  
After 1st  
Read  
WCLK  
FULL  
tWCKF  
tCKAF  
AFULL  
Figure 2-40 • FIFO FULL Flag and AFULL Flag Deassertion  
2-84  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-106 • FIFO  
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Parameter  
tENS  
Description  
Std.  
1.66  
0.13  
0.30  
0.00  
0.63  
0.20  
2.77  
1.50  
2.94  
2.79  
10.71  
2.90  
10.60  
1.68  
1.68  
0.51  
2.68  
0.68  
6.24  
160  
Units  
ns  
REN, WEN Setup Time  
tENH  
REN, WEN Hold Time  
ns  
tBKS  
BLK Setup Time  
ns  
tBKH  
BLK Hold Time  
ns  
tDS  
Input Data (WD) Setup Time  
ns  
tDH  
Input Data (WD) Hold Time  
ns  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock High to New Data Valid on RD (flow-through)  
Clock High to New Data Valid on RD (pipelined)  
RCLK High to Empty Flag Valid  
WCLK High to Full Flag Valid  
ns  
ns  
ns  
ns  
Clock High to Almost Empty/Full Flag Valid  
RESET Low to Empty/Full Flag Valid  
RESET Low to Almost Empty/Full Flag Valid  
RESET Low to Data Out LOW on RD (flow-through)  
RESET Low to Data Out LOW on RD (pipelined)  
RESET Removal  
ns  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET Recovery  
ns  
RESET Minimum Pulse Width  
Clock Cycle Time  
ns  
ns  
FMAX  
Maximum Frequency for FIFO  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 17  
2-85  
IGLOO nano DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-107 • FIFO  
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Parameter  
tENS  
Description  
Std.  
3.44  
0.26  
0.30  
0.00  
1.30  
0.41  
5.67  
3.02  
6.02  
5.71  
22.17  
5.93  
21.94  
3.41  
4.09  
1.02  
5.48  
1.18  
10.90  
92  
Units  
ns  
REN, WEN Setup Time  
REN, WEN Hold Time  
BLK Setup Time  
tENH  
ns  
tBKS  
ns  
tBKH  
BLK Hold Time  
ns  
tDS  
Input Data (DI) Setup Time  
Input Data (DI) Hold Time  
ns  
tDH  
ns  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock High to New Data Valid on RD (flow-through)  
Clock High to New Data Valid on RD (pipelined)  
RCLK High to Empty Flag Valid  
ns  
ns  
ns  
WCLK High to Full Flag Valid  
ns  
Clock High to Almost Empty/Full Flag Valid  
RESET LOW to Empty/Full Flag Valid  
RESET LOW to Almost Empty/Full Flag Valid  
RESET LOW to Data Out Low on RD (flow-through)  
RESET LOW to Data Out Low on RD (pipelined)  
RESET Removal  
ns  
ns  
ns  
ns  
3.41  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
RESET Recovery  
ns  
RESET Minimum Pulse Width  
ns  
Clock Cycle Time  
ns  
FMAX  
Maximum Frequency for FIFO  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.  
2-86  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Embedded FlashROM Characteristics  
t
t
t
SU  
SU  
SU  
CLK  
t
t
t
HOLD  
HOLD  
HOLD  
Address  
A
A
1
0
t
t
t
CKQ2  
CKQ2  
CKQ2  
D
D
D
Data  
0
0
1
Figure 2-41 • Timing Diagram  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-108 • Embedded FlashROM Access Time  
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Parameter  
tSU  
Description  
Address Setup Time  
Std.  
0.57  
0.00  
Units  
ns  
tHOLD  
tCK2Q  
Address Hold Time  
ns  
Clock to Out  
20.90  
15  
ns  
FMAX  
Maximum Clock Frequency  
MHz  
1.2 V DC Core Voltage  
Table 2-109 • Embedded FlashROM Access Time  
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Parameter  
tSU  
Description  
Std.  
0.59  
0.00  
35.74  
10  
Units  
ns  
Address Setup Time  
Address Hold Time  
Clock to Out  
tHOLD  
tCK2Q  
ns  
ns  
FMAX  
Maximum Clock Frequency  
MHz  
Revision 17  
2-87  
JTAG 1532 Characteristics  
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to  
the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O  
Characteristics" section on page 2-15 for more details.  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-110 • JTAG 1532  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tDISU  
Description  
Std.  
1.00  
2.00  
1.00  
2.00  
8.00  
25.00  
15  
Units  
ns  
Test Data Input Setup Time  
Test Data Input Hold Time  
Test Mode Select Setup Time  
Test Mode Select Hold Time  
Clock to Q (data out)  
tDIHD  
ns  
tTMSSU  
ns  
tTMDHD  
ns  
tTCK2Q  
ns  
tRSTB2Q  
FTCKMAX  
tTRSTREM  
tTRSTREC  
tTRSTMPW  
Reset to Q (data out)  
ns  
TCK Maximum Frequency  
ResetB Removal Time  
MHz  
ns  
0.58  
0.00  
TBD  
ResetB Recovery Time  
ns  
ResetB Minimum Pulse  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
1.2 V DC Core Voltage  
Table 2-111 • JTAG 1532  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Parameter  
tDISU  
Description  
Test Data Input Setup Time  
Std.  
1.50  
3.00  
1.50  
3.00  
11.00  
30.00  
9.00  
1.18  
0.00  
TBD  
Units  
ns  
tDIHD  
Test Data Input Hold Time  
Test Mode Select Setup Time  
Test Mode Select Hold Time  
Clock to Q (data out)  
ns  
tTMSSU  
ns  
tTMDHD  
ns  
tTCK2Q  
ns  
tRSTB2Q  
FTCKMAX  
tTRSTREM  
tTRSTREC  
tTRSTMPW  
Reset to Q (data out)  
ns  
TCK Maximum Frequency  
ResetB Removal Time  
ResetB Recovery Time  
ResetB Minimum Pulse  
MHz  
ns  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
3 – Pin Descriptions  
Supply Pins  
GND  
Ground  
Ground supply voltage to the core, I/O outputs, and I/O logic.  
GNDQ  
Ground (quiet)  
Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is  
decoupled from the simultaneous switching noise originated from the output buffer ground domain. This  
minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always  
be connected to GND on the board.  
VCC  
Core Supply Voltage  
Supply voltage to the FPGA core, nominally 1.5 V for IGLOO nano V5 devices, and 1.2 V or 1.5 V for  
IGLOO nano V2 devices. VCC is required for powering the JTAG state machine in addition to VJTAG.  
Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG  
must remain powered to allow JTAG signals to pass through the device.  
VCCIBx  
I/O Supply Voltage  
Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to  
eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a  
separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.2 V,  
1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI  
pins tied to GND.  
VMVx  
I/O Supply Voltage (quiet)  
Quiet supply voltage to the input buffers of each I/O bank. x is the bank number. Within the package, the  
VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within  
the package and improves input signal integrity. Each bank must have at least one VMV connection, and  
no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to  
provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2 V, 1.5 V, 1.8 V,  
2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND.  
VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be  
connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1,  
etc.).  
VCCPLA/B/C/D/E/F  
PLL Supply Voltage  
Supply voltage to analog PLL, nominally 1.5 V or 1.2 V.  
When the PLLs are not used, the Microsemi Designer place-and-route tool automatically disables the  
unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to  
ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple  
VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning  
Circuits in IGLOO and ProASIC3 Devices" chapter in the IGLOO nano FPGA Fabric User’s Guide for a  
complete board solution for the PLL analog power supply and ground.  
There is one VCCPLF pin on IGLOO nano devices.  
VCOMPLA/B/C/D/E/F  
PLL Ground  
Ground to analog PLL power supplies. When the PLLs are not used, the Microsemi Designer place-and-  
route tool automatically disables the unused PLLs to lower power consumption. The user should tie  
unused VCCPLx and VCOMPLx pins to ground.  
There is one VCOMPLF pin on IGLOO nano devices.  
VJTAG  
JTAG Supply Voltage  
Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run  
at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank  
gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG  
Revision 17  
3-1  
Pin Descriptions  
interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to  
GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is  
insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can  
be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals  
will not be able to transition the device, even in bypass mode.  
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent  
filtering capacitors rather than supplying them from a common rail.  
VPUMP  
Programming Supply Voltage  
IGLOO nano devices support single-voltage ISP of the configuration flash and FlashROM. For  
programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left  
floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming  
power supply voltage (VPUMP) range is listed in the datasheet.  
When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of  
oscillation from the charge pump circuitry.  
For proper programming, 0.01 µF and 0.33 µF capacitors (both rated at 16 V) are to be connected in  
parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.  
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent  
filtering capacitors rather than supplying them from a common rail.  
User Pins  
I/O  
User Input/Output  
The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are  
compatible with the I/O standard selected.  
During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC  
supplies continuously powered up, when the device transitions from programming to operating mode, the  
I/Os are instantly configured to the desired user configuration.  
Unused I/Os are configured as follows:  
Output buffer is disabled (with tristate value of high impedance)  
Input buffer is disabled (with tristate value of high impedance)  
Weak pull-up is programmed  
GL  
Globals  
GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the  
global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have  
identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.  
See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in IGLOO  
and ProASIC3 Devices" chapter in the IGLOO nano FPGA Fabric User’s Guide. All inputs labeled  
GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and  
GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs  
into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global  
network are multiplexed, and only one input can be used as a global input.  
Refer to the "I/O Structures in nano Devices" chapter of the IGLOO nano FPGA Fabric User’s Guide for  
an explanation of the naming of global pins.  
FF  
Flash*Freeze Mode Activation Pin  
Flash*Freeze is available on IGLOO nano devices. The FF pin is a dedicated input pin used to enter and  
exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O,  
and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the  
FF pin is available as a regular I/O.  
When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering  
Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.  
The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in  
which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin  
3-2  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
should be treated as a sensitive asynchronous signal. When defining pin placement and board layout,  
simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be  
considered.  
Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both  
Flash*Freeze mode and normal operation mode. No user intervention is required.  
Table 3-1 shows the Flash*Freeze pin location on the available packages for IGLOO nano devices. The  
Flash*Freeze pin location is independent of device (except for a PQ208 package), allowing migration to  
larger or smaller IGLOO nano devices while maintaining the same pin location on the board. Refer to the  
"Flash*Freeze Technology and Low Power Modes" chapter of the IGLOO nano FPGA Fabric User’s  
Guide for more information on I/O states during Flash*Freeze mode.  
Table 3-1 • Flash*Freeze Pin Locations for IGLOO nano Devices  
Package  
CS81/UC81  
QN48  
Flash*Freeze Pin  
H2  
14  
18  
27  
E2  
QN68  
VQ100  
UC36  
JTAG Pins  
Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run  
at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to  
operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the  
part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a  
separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB  
design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST  
pin could be tied to GND.  
TCK  
Test Clock  
Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal  
pull-up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a  
resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired  
state.  
Note that to operate at all VJTAG voltages, 500 to 1 kwill satisfy the requirements. Refer to Table 3-2  
for more information.  
Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pins  
VJTAG  
Tie-Off Resistance 1,2  
VJTAG at 3.3 V  
VJTAG at 2.5 V  
VJTAG at 1.8 V  
VJTAG at 1.5 V  
Notes:  
200 to 1 k  
200 to 1 k  
500 to 1 k  
500 to 1 k  
1. The TCK pin can be pulled-up or pulled-down.  
2. The TRST pin is pulled-down.  
3. Equivalent parallel resistance if more than one device is on the JTAG chain  
Revision 17  
3-3  
Pin Descriptions  
Table 3-3 • TRST and TCK Pull-Down Recommendations  
VJTAG  
Tie-Off Resistance*  
200 to 1 k  
200 to 1 k  
500 to 1 k  
500 to 1 k  
VJTAG at 3.3 V  
VJTAG at 2.5 V  
VJTAG at 1.8 V  
VJTAG at 1.5 V  
Note: Equivalent parallel resistance if more than one device is on the JTAG chain  
TDI Test Data Input  
Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor  
on the TDI pin.  
TDO  
Serial output for JTAG boundary scan, ISP, and UJTAG usage.  
TMS Test Mode Select  
Test Data Output  
The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an  
internal weak pull-up resistor on the TMS pin.  
TRST  
Boundary Scan Reset Pin  
The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan  
circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external  
pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The  
resistor values must be chosen from Table 3-2 and must satisfy the parallel resistance value  
requirement. The values in Table 3-2 correspond to the resistor recommended when a single device is  
used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.  
In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In  
such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA  
pin.  
Note that to operate at all VJTAG voltages, 500 to 1 kwill satisfy the requirements.  
Special Function Pins  
NC  
No Connect  
This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be  
left floating with no effect on the operation of the device.  
DC  
Do Not Connect  
This pin should not be connected to any signals on the PCB. These pins should be left unconnected.  
Packaging  
Semiconductor technology is constantly shrinking in size while growing in capability and functional  
integration. To enable next-generation silicon technologies, semiconductor packages have also evolved  
to provide improved performance and flexibility.  
Microsemi consistently delivers packages that provide the necessary mechanical and environmental  
protection to ensure consistent reliability and performance. Microsemi IC packaging technology  
efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible  
enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition,  
Microsemi offers a variety of packages designed to meet your most demanding application and economic  
requirements for today's embedded and mobile systems.  
3-4  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Related Documents  
User’s Guides  
IGLOO nano FPGA Fabric User’s Guide  
http://www.microsemi.com/soc/documents/IGLOO_nano_UG.pdf  
Packaging Documents  
The following documents provide packaging information and device selection for low power flash  
devices.  
Product Catalog  
http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf  
Lists devices currently recommended for new designs and the packages available for each member of  
the family. Use this document or the datasheet tables to determine the best package for your design, and  
which package drawing to use.  
Package Mechanical Drawings  
http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf  
This document contains the package mechanical drawings for all packages currently or previously  
supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.  
Additional packaging materials are on the Microsemi SoC Products Group website:  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
Revision 17  
3-5  
4 – Package Pin Assignments  
UC36  
Pin 1 Pad Corner  
6
5
4
3
2
1
A
B
C
D
E
F
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
Revision 17  
4-1  
Package Pin Assignments  
UC36  
UC36  
AGLN010  
AGLN010  
Function  
Pin Number  
A1  
Function  
IO21RSB1  
IO18RSB1  
IO13RSB1  
GDC0/IO00RSB0  
IO06RSB0  
GDA0/IO04RSB0  
GEC0/IO37RSB1  
IO20RSB1  
IO15RSB1  
IO09RSB0  
IO08RSB0  
IO07RSB0  
IO22RSB1  
GEA0/IO34RSB1  
GND  
Pin Number  
F5  
F6  
TMS  
TDO  
A2  
A3  
A4  
A5  
A6  
B1  
B2  
B3  
B4  
B5  
B6  
C1  
C2  
C3  
C4  
C5  
C6  
D1  
D2  
D3  
D4  
D5  
D6  
E1  
GND  
VCCIB0  
IO02RSB0  
IO33RSB1  
VCCIB1  
VCC  
VCC  
IO10RSB0  
IO11RSB0  
IO32RSB1  
FF/IO31RSB1  
TCK  
E2  
E3  
E4  
VPUMP  
E5  
TRST  
E6  
VJTAG  
F1  
IO29RSB1  
IO25RSB1  
IO23RSB1  
TDI  
F2  
F3  
F4  
4-2  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
UC81  
A1 Ball Pad Corner  
9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
Revision 17  
4-3  
Package Pin Assignments  
UC81  
UC81  
UC81  
Pin Number AGLN020 Function  
Pin Number AGLN020 Function  
Pin Number AGLN020 Function  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
IO64RSB2  
IO54RSB2  
IO57RSB2  
IO36RSB1  
IO32RSB1  
IO24RSB1  
IO20RSB1  
IO04RSB0  
IO08RSB0  
IO59RSB2  
IO55RSB2  
IO62RSB2  
IO34RSB1  
IO28RSB1  
IO22RSB1  
IO18RSB1  
IO00RSB0  
IO03RSB0  
IO51RSB2  
IO50RSB2  
NC  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
GEC0/IO48RSB2  
GEA0/IO47RSB2  
NC  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
IO38RSB1  
IO37RSB1  
IO33RSB1  
IO30RSB1  
IO27RSB1  
IO23RSB1  
TCK  
VCCIB1  
VCC  
VCCIB0  
NC  
GDA0/IO15RSB0  
GDC0/IO14RSB0  
IO46RSB2  
IO45RSB2  
NC  
TMS  
VPUMP  
GND  
VCCIB1  
NC  
NC  
IO16RSB0  
IO17RSB0  
IO43RSB2  
IO42RSB2  
IO41RSB2  
IO31RSB1  
NC  
NC  
NC  
NC  
IO21RSB1  
NC  
NC  
IO10RSB0  
IO07RSB0  
IO49RSB2  
IO44RSB2  
NC  
VJTAG  
TRST  
IO40RSB2  
FF/IO39RSB1  
IO35RSB1  
IO29RSB1  
IO26RSB1  
IO25RSB1  
IO19RSB1  
TDI  
VCC  
VCCIB2  
GND  
NC  
IO13RSB0  
IO12RSB0  
TDO  
4-4  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
UC81  
AGLN030Z  
UC81  
AGLN030Z  
UC81  
AGLN030Z  
Pin Number  
A1  
Function  
IO00RSB0  
IO02RSB0  
IO06RSB0  
IO11RSB0  
IO16RSB0  
IO19RSB0  
IO22RSB0  
IO24RSB0  
IO26RSB0  
IO81RSB1  
IO04RSB0  
IO10RSB0  
IO13RSB0  
IO15RSB0  
IO20RSB0  
IO21RSB0  
IO28RSB0  
IO25RSB0  
IO79RSB1  
IO80RSB1  
IO08RSB0  
IO12RSB0  
IO17RSB0  
IO14RSB0  
IO18RSB0  
IO29RSB0  
IO27RSB0  
IO74RSB1  
IO76RSB1  
IO77RSB1  
VCC  
Pin Number  
D9  
E1  
Function  
IO30RSB0  
GEB0/IO71RSB1  
GEA0/IO72RSB1  
GEC0/IO73RSB1  
VCCIB1  
Pin Number  
Function  
H8  
H9  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
TDI  
A2  
TDO  
A3  
E2  
IO63RSB1  
IO61RSB1  
IO59RSB1  
IO56RSB1  
IO52RSB1  
IO44RSB1  
TCK  
A4  
E3  
A5  
E4  
A6  
E5  
VCC  
A7  
E6  
VCCIB0  
A8  
E7  
GDC0/IO32RSB0  
GDA0/IO33RSB0  
GDB0/IO34RSB0  
IO68RSB1  
IO67RSB1  
IO64RSB1  
GND  
A9  
E8  
B1  
E9  
TMS  
B2  
F1  
VPUMP  
B3  
F2  
B4  
F3  
B5  
F4  
B6  
F5  
VCCIB1  
B7  
F6  
IO47RSB1  
IO36RSB0  
IO38RSB0  
IO40RSB0  
IO65RSB1  
IO66RSB1  
IO57RSB1  
IO53RSB1  
IO49RSB1  
IO45RSB1  
IO46RSB1  
VJTAG  
B8  
F7  
B9  
F8  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
F9  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
TRST  
IO62RSB1  
FF/IO60RSB1  
IO58RSB1  
IO54RSB1  
IO48RSB1  
IO43RSB1  
IO42RSB1  
VCCIB0  
GND  
IO23RSB0  
IO31RSB0  
Revision 17  
4-5  
Package Pin Assignments  
CS81  
A1 Ball Pad Corner  
9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
4-6  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
CS81  
CS81  
CS81  
Pin Number AGLN020 Function  
Pin Number AGLN020 Function  
Pin Number AGLN020 Function  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
IO64RSB2  
IO54RSB2  
IO57RSB2  
IO36RSB1  
IO32RSB1  
IO24RSB1  
IO20RSB1  
IO04RSB0  
IO08RSB0  
IO59RSB2  
IO55RSB2  
IO62RSB2  
IO34RSB1  
IO28RSB1  
IO22RSB1  
IO18RSB1  
IO00RSB0  
IO03RSB0  
IO51RSB2  
IO50RSB2  
NC  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
GEC0/IO48RSB2  
GEA0/IO47RSB2  
NC  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
IO38RSB1  
IO37RSB1  
IO33RSB1  
IO30RSB1  
IO27RSB1  
IO23RSB1  
TCK  
VCCIB1  
VCC  
VCCIB0  
NC  
GDA0/IO15RSB0  
GDC0/IO14RSB0  
IO46RSB2  
IO45RSB2  
NC  
TMS  
VPUMP  
GND  
VCCIB1  
NC  
NC  
IO16RSB0  
IO17RSB0  
IO43RSB2  
IO42RSB2  
IO41RSB2  
IO31RSB1  
NC  
NC  
NC  
NC  
IO21RSB1  
NC  
NC  
IO10RSB0  
IO07RSB0  
IO49RSB2  
IO44RSB2  
NC  
VJTAG  
TRST  
IO40RSB2  
FF/IO39RSB1  
IO35RSB1  
IO29RSB1  
IO26RSB1  
IO25RSB1  
IO19RSB1  
TDI  
VCC  
VCCIB2  
GND  
NC  
IO13RSB0  
IO12RSB0  
TDO  
Revision 17  
4-7  
Package Pin Assignments  
CS81  
CS81  
AGLN030Z  
CS81  
AGLN030Z  
AGLN030Z  
Pin Number  
A1  
Function  
IO00RSB0  
IO02RSB0  
IO06RSB0  
IO11RSB0  
IO16RSB0  
IO19RSB0  
IO22RSB0  
IO24RSB0  
IO26RSB0  
IO81RSB1  
IO04RSB0  
IO10RSB0  
IO13RSB0  
IO15RSB0  
IO20RSB0  
IO21RSB0  
IO28RSB0  
IO25RSB0  
IO79RSB1  
IO80RSB1  
IO08RSB0  
IO12RSB0  
IO17RSB0  
IO14RSB0  
IO18RSB0  
IO29RSB0  
IO27RSB0  
IO74RSB1  
IO76RSB1  
IO77RSB1  
VCC  
Pin Number  
D9  
E1  
Function  
IO30RSB0  
GEB0/IO71RSB1  
GEA0/IO72RSB1  
GEC0/IO73RSB1  
VCCIB1  
Pin Number  
Function  
H8  
H9  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
TDI  
A2  
TDO  
A3  
E2  
IO63RSB1  
IO61RSB1  
IO59RSB1  
IO56RSB1  
IO52RSB1  
IO45RSB1  
TCK  
A4  
E3  
A5  
E4  
A6  
E5  
VCC  
A7  
E6  
VCCIB0  
A8  
E7  
GDC0/IO32RSB0  
GDA0/IO33RSB0  
GDB0/IO34RSB0  
IO68RSB1  
IO67RSB1  
IO64RSB1  
GND  
A9  
E8  
B1  
E9  
TMS  
B2  
F1  
VPUMP  
B3  
F2  
B4  
F3  
B5  
F4  
B6  
F5  
VCCIB1  
B7  
F6  
IO47RSB1  
IO36RSB0  
IO38RSB0  
IO40RSB0  
IO65RSB1  
IO66RSB1  
IO57RSB1  
IO53RSB1  
IO49RSB1  
IO44RSB1  
IO46RSB1  
VJTAG  
B8  
F7  
B9  
F8  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
F9  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
TRST  
IO62RSB1  
FF/IO60RSB1  
IO58RSB1  
IO54RSB1  
IO48RSB1  
IO43RSB1  
IO42RSB1  
VCCIB0  
GND  
IO23RSB0  
IO31RSB0  
4-8  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
CS81  
CS81  
CS81  
Pin Number AGLN060 Function  
Pin Number AGLN060 Function  
Pin Number AGLN060 Function  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
GAA0/IO02RSB0  
GAA1/IO03RSB0  
GAC0/IO06RSB0  
IO09RSB0  
D8  
D9  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
F11  
F21  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
H1  
H2  
H3  
H4  
H5  
GCC1/IO35RSB0  
GCC0/IO36RSB0  
GFB0/IO83RSB1  
GFB1/IO84RSB1  
GFA1/IO81RSB1  
VCCIB1  
H6  
H72  
H8  
H9  
J1  
IO56RSB1  
GDA2/IO51RSB1  
TDI  
TDO  
IO13RSB0  
GEA2/IO68RSB1  
GEC2/IO66RSB1  
IO64RSB1  
IO61RSB1  
IO58RSB1  
IO55RSB1  
TCK  
IO18RSB0  
J2  
GBB0/IO21RSB0  
GBA1/IO24RSB0  
GBA2/IO25RSB0  
GAA2/IO95RSB1  
GAB0/IO04RSB0  
GAC1/IO07RSB0  
IO08RSB0  
VCC  
J3  
VCCIB0  
J4  
GCA1/IO39RSB0  
GCA0/IO40RSB0  
GCB2/IO42RSB0  
VCCPLF  
J5  
J6  
J7  
J8  
TMS  
VCOMPLF  
J9  
VPUMP  
IO15RSB0  
GND  
GBC0/IO19RSB0  
GBB1/IO22RSB0  
IO26RSB0  
GND  
VCCIB1  
GND  
GBB2/IO27RSB0  
GAB2/IO93RSB1  
IO94RSB1  
GDA1/IO49RSB0  
GDC1/IO45RSB0  
GDC0/IO46RSB0  
GEA0/IO69RSB1  
GEC1/IO74RSB1  
GEB1/IO72RSB1  
IO63RSB1  
GND  
IO10RSB0  
IO17RSB0  
GND  
GBA0/IO23RSB0  
GBC2/IO29RSB0  
IO31RSB0  
IO60RSB1  
IO54RSB1  
GDB2/IO52RSB1  
VJTAG  
GAC2/IO91RSB1  
IO92RSB1  
TRST  
GFA2/IO80RSB1  
VCC  
GEA1/IO70RSB1  
FF/GEB2/IO67RSB1  
IO65RSB1  
VCCIB0  
GND  
IO62RSB1  
GCC2/IO43RSB0  
IO59RSB1  
Notes:  
1. Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN060-CS81.  
2. The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin H7 in AGLN060-CS81.  
Revision 17  
4-9  
Package Pin Assignments  
CS81  
CS81  
CS81  
Pin Number AGLN060Z Function  
Pin Number AGLN060Z Function  
Pin Number AGLN060Z Function  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
GAA0/IO02RSB0  
GAA1/IO03RSB0  
GAC0/IO06RSB0  
IO09RSB0  
D8  
D9  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
F11  
F21  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
H1  
H2  
H3  
H4  
H5  
GCC1/IO35RSB0  
GCC0/IO36RSB0  
GFB0/IO83RSB1  
GFB1/IO84RSB1  
GFA1/IO81RSB1  
VCCIB1  
H6  
H72  
H8  
H9  
J1  
IO56RSB1  
GDA2/IO51RSB1  
TDI  
TDO  
IO13RSB0  
GEA2/IO68RSB1  
GEC2/IO66RSB1  
IO64RSB1  
IO61RSB1  
IO58RSB1  
IO55RSB1  
TCK  
IO18RSB0  
J2  
GBB0/IO21RSB0  
GBA1/IO24RSB0  
GBA2/IO25RSB0  
GAA2/IO95RSB1  
GAB0/IO04RSB0  
GAC1/IO07RSB0  
IO08RSB0  
VCC  
J3  
VCCIB0  
J4  
GCA1/IO39RSB0  
GCA0/IO40RSB0  
GCB2/IO42RSB0  
VCCPLF  
J5  
J6  
J7  
J8  
TMS  
VCOMPLF  
J9  
VPUMP  
IO15RSB0  
GND  
GBC0/IO19RSB0  
GBB1/IO22RSB0  
IO26RSB0  
GND  
VCCIB1  
GND  
GBB2/IO27RSB0  
GAB2/IO93RSB1  
IO94RSB1  
GDA1/IO49RSB0  
GDC1/IO45RSB0  
GDC0/IO46RSB0  
GEA0/IO69RSB1  
GEC1/IO74RSB1  
GEB1/IO72RSB1  
IO63RSB1  
GND  
IO10RSB0  
IO17RSB0  
GND  
GBA0/IO23RSB0  
GBC2/IO29RSB0  
IO31RSB0  
IO60RSB1  
IO54RSB1  
GDB2/IO52RSB1  
VJTAG  
GAC2/IO91RSB1  
IO92RSB1  
TRST  
GFA2/IO80RSB1  
VCC  
GEA1/IO70RSB1  
FF/GEB2/IO67RSB1  
IO65RSB1  
VCCIB0  
GND  
IO62RSB1  
GCC2/IO43RSB0  
IO59RSB1  
Notes:  
1. Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN060Z-CS81.  
2. The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin H7 in AGLN060Z-CS81.  
4-10  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
CS81  
CS81  
CS81  
Pin Number AGLN125 Function  
Pin Number AGLN125 Function  
Pin Number AGLN125 Function  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
GAC0/IO04RSB0  
IO13RSB0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
F1*  
F2*  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
GFB0/IO120RSB1  
GFB1/IO121RSB1  
GFA1/IO118RSB1  
VCCIB1  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
GEA2/IO103RSB1  
GEC2/IO101RSB1  
IO97RSB1  
IO93RSB1  
IO90RSB1  
IO78RSB1  
TCK  
IO22RSB0  
VCC  
IO32RSB0  
VCCIB0  
GBB0/IO37RSB0  
GBA1/IO40RSB0  
GBA2/IO41RSB0  
GAA2/IO132RSB1  
GAB0/IO02RSB0  
GAC1/IO05RSB0  
IO11RSB0  
GCA0/IO56RSB0  
GCA1/IO55RSB0  
GCB2/IO58RSB0  
VCCPLF  
TMS  
VPUMP  
VCOMPLF  
GND  
GND  
IO25RSB0  
VCCIB1  
GBC0/IO35RSB0  
GBB1/IO38RSB0  
IO42RSB0  
GND  
GDA1/IO65RSB0  
GDC1/IO61RSB0  
GDC0/IO62RSB0  
GEA0/IO104RSB1  
GEC0/IO108RSB1  
GEB1/IO107RSB1  
IO96RSB1  
GBB2/IO43RSB0  
GAB2/IO130RSB1  
IO131RSB1  
GND  
IO15RSB0  
IO28RSB0  
IO92RSB1  
GND  
IO72RSB1  
GBA0/IO39RSB0  
GBC2/IO45RSB0  
IO47RSB0  
GDB2/IO68RSB1  
VJTAG  
TRST  
GAC2/IO128RSB1  
IO129RSB1  
GEA1/IO105RSB1  
FF/GEB2/IO102RSB1  
IO99RSB1  
GFA2/IO117RSB1  
VCC  
IO94RSB1  
VCCIB0  
IO91RSB1  
GND  
IO81RSB1  
GCC2/IO59RSB0  
GCC1/IO51RSB0  
GCC0/IO52RSB0  
GDA2/IO67RSB1  
TDI  
TDO  
Note: * Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN125-CS81.  
Revision 17  
4-11  
Package Pin Assignments  
CS8  
CS8  
CS8  
Pin Number AGLN125Z Function  
Pin Number AGLN125Z Function  
Pin Number AGLN125Z Function  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
GAC0/IO04RSB0  
IO13RSB0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
F1*  
F2*  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
GFB0/IO120RSB1  
GFB1/IO121RSB1  
GFA1/IO118RSB1  
VCCIB1  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
GEA2/IO103RSB1  
GEC2/IO101RSB1  
IO97RSB1  
IO93RSB1  
IO90RSB1  
IO78RSB1  
TCK  
IO22RSB0  
VCC  
IO32RSB0  
VCCIB0  
GBB0/IO37RSB0  
GBA1/IO40RSB0  
GBA2/IO41RSB0  
GAA2/IO132RSB1  
GAB0/IO02RSB0  
GAC1/IO05RSB0  
IO11RSB0  
GCA0/IO56RSB0  
GCA1/IO55RSB0  
GCB2/IO58RSB0  
VCCPLF  
TMS  
VPUMP  
VCOMPLF  
GND  
GND  
IO25RSB0  
VCCIB1  
GBC0/IO35RSB0  
GBB1/IO38RSB0  
IO42RSB0  
GND  
GDA1/IO65RSB0  
GDC1/IO61RSB0  
GDC0/IO62RSB0  
GEA0/IO104RSB1  
GEC0/IO108RSB1  
GEB1/IO107RSB1  
IO96RSB1  
GBB2/IO43RSB0  
GAB2/IO130RSB1  
IO131RSB1  
GND  
IO15RSB0  
IO28RSB0  
IO92RSB1  
GND  
IO72RSB1  
GBA0/IO39RSB0  
GBC2/IO45RSB0  
IO47RSB0  
GDB2/IO68RSB1  
VJTAG  
TRST  
GAC2/IO128RSB1  
IO129RSB1  
GEA1/IO105RSB1  
FF/GEB2/IO102RSB1  
IO99RSB1  
GFA2/IO117RSB1  
VCC  
IO94RSB1  
VCCIB0  
IO91RSB1  
GND  
IO81RSB1  
GCC2/IO59RSB0  
GCC1/IO51RSB0  
GCC0/IO52RSB0  
GDA2/IO67RSB1  
TDI  
TDO  
Note: * Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN125Z-CS81.  
4-12  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
CS81  
CS81  
CS81  
Pin Number AGLN250 Function  
Pin Number AGLN250 Function  
Pin Number AGLN250 Function  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
GAC0/IO04RSB0  
IO13RSB0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
F1*  
F2*  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
GFB0/IO109NDB3  
GFB1/IO109PDB3  
GFA1/IO108PSB3  
VCCIB3  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
GEA2/IO97RSB2  
GEC2/IO95RSB2  
IO92RSB2  
IO88RSB2  
IO84RSB2  
IO74RSB2  
TCK  
IO21RSB0  
VCC  
IO27RSB0  
VCCIB1  
GBB0/IO37RSB0  
GBA1/IO40RSB0  
GBA2/IO41PPB1  
GAA2/IO118UPB3  
GAB0/IO02RSB0  
GAC1/IO05RSB0  
IO11RSB0  
GCA0/IO50NDB1  
GCA1/IO50PDB1  
GCB2/IO52PPB1  
VCCPLF  
TMS  
VPUMP  
VCOMPLF  
GND  
GND  
IO23RSB0  
VCCIB2  
GBC0/IO35RSB0  
GBB1/IO38RSB0  
IO41NPB1  
GND  
GDA1/IO60USB1  
GDC1/IO58UDB1  
GDC0/IO58VDB1  
GEA0/IO98NDB3  
GEC1/IO100PDB3  
GEC0/IO100NDB3  
IO91RSB2  
GBB2/IO42PSB1  
GAB2/IO117UPB3  
IO118VPB3  
GND  
IO15RSB0  
IO25RSB0  
IO86RSB2  
GND  
IO71RSB2  
GBA0/IO39RSB0  
GBC2/IO43B1  
IO43NDB1  
GDB2/IO62RSB2  
VJTAG  
TRST  
GAC2/IO116USB3  
IO117VPB3  
GEA1/IO98PDB3  
FF/GEB2/IO96RSB2  
IO93RSB2  
GFA2/IO107PSB3  
VCC  
IO90RSB2  
VCCIB0  
IO85RSB2  
GND  
IO77RSB2  
IO52NPB1  
GDA2/IO61RSB2  
TDI  
GCC1/IO48PDB1  
GCC0/IO48NDB1  
TDO  
Note: * Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN250-CS81.  
Revision 17  
4-13  
Package Pin Assignments  
CS81  
CS81  
CS81  
Pin Number AGLN250Z Function  
Pin Number AGLN250Z Function  
Pin Number AGLN250Z Function  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
GAC0/IO04RSB0  
IO07RSB0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
F1*  
F2*  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
GFB0/IO59RSB3  
GFB1/IO60RSB3  
GFA1/IO58RSB3  
VCCIB3  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
GEA2/IO50RSB2  
GEC2/IO48RSB2  
IO46RSB2  
IO43RSB2  
IO40RSB2  
IO38RSB2  
TCK  
IO09RSB0  
VCC  
IO12RSB0  
VCCIB1  
GBB0/IO16RSB0  
GBA1/IO19RSB0  
GBA2/IO20RSB1  
GAA2/IO67RSB3  
GAB0/IO02RSB0  
GAC1/IO05RSB0  
IO06RSB0  
GCA0/IO28RSB1  
GCA1/IO27RSB1  
GCB2/IO29RSB1  
VCCPLF  
TMS  
VPUMP  
VCOMPLF  
GND  
GND  
IO10RSB0  
VCCIB2  
GBC0/IO14RSB0  
GBB1/IO17RSB0  
IO21RSB1  
GND  
GDA1/IO33RSB1  
GDC1/IO31RSB1  
GDC0/IO32RSB1  
GEA0/IO51RSB3  
GEC1/IO54RSB3  
GEC0/IO53RSB3  
IO45RSB2  
GBB2/IO22RSB1  
GAB2/IO65RSB3  
IO66RSB3  
GND  
IO08RSB0  
IO11RSB0  
IO42RSB2  
GND  
IO37RSB2  
GBA0/IO18RSB0  
GBC2/IO23RSB1  
IO24RSB1  
GDB2/IO35RSB2  
VJTAG  
TRST  
GAC2/IO63RSB3  
IO64RSB3  
GEA1/IO52RSB3  
FF/GEB2/IO49RSB2  
IO47RSB2  
GFA2/IO56RSB3  
VCC  
IO44RSB2  
VCCIB0  
IO41RSB2  
GND  
IO39RSB2  
IO30RSB1  
GDA2/IO34RSB2  
TDI  
GCC1/IO25RSB1  
GCC0/IO26RSB1  
TDO  
Note: * Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN250Z-CS81.  
4-14  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
QN48  
Pin 1  
48  
1
Notes:  
1. This is the bottom view of the package.  
2. The die attach paddle of the package is tied to ground (GND).  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
Revision 17  
4-15  
Package Pin Assignments  
QN48  
QN48  
AGLN010  
AGLN010  
Function  
Pin Number  
Function  
GEC0/IO37RSB1  
IO36RSB1  
GEA0/IO34RSB1  
IO22RSB1  
GND  
Pin Number  
1
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
IO07RSB0  
IO06RSB0  
2
3
GDA0/IO05RSB0  
IO03RSB0  
4
5
GDC0/IO01RSB0  
IO12RSB1  
6
VCCIB1  
7
IO24RSB1  
IO33RSB1  
IO26RSB1  
IO32RSB1  
IO27RSB1  
IO29RSB1  
IO30RSB1  
FF/IO31RSB1  
IO28RSB1  
IO25RSB1  
IO23RSB1  
VCC  
IO13RSB1  
8
IO15RSB1  
9
IO16RSB1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
IO18RSB1  
IO19RSB1  
IO20RSB1  
IO21RSB1  
VCCIB1  
IO17RSB1  
IO14RSB1  
TCK  
TDI  
TMS  
VPUMP  
TDO  
TRST  
VJTAG  
IO11RSB0  
IO10RSB0  
IO09RSB0  
IO08RSB0  
VCCIB0  
GND  
VCC  
4-16  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
QN48  
QN48  
Pin Number AGLN030Z Function  
Pin Number AGLN030Z Function  
1
IO82RSB1  
GEC0/IO73RSB1  
GEA0/IO72RSB1  
GEB0/IO71RSB1  
GND  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
IO24RSB0  
IO22RSB0  
IO20RSB0  
IO18RSB0  
IO16RSB0  
IO14RSB0  
IO10RSB0  
IO08RSB0  
IO06RSB0  
IO04RSB0  
IO02RSB0  
IO00RSB0  
2
3
4
5
6
VCCIB1  
7
IO68RSB1  
IO67RSB1  
IO66RSB1  
IO65RSB1  
IO64RSB1  
IO62RSB1  
IO61RSB1  
FF/IO60RSB1  
IO57RSB1  
IO55RSB1  
IO53RSB1  
VCC  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
VCCIB1  
IO46RSB1  
IO42RSB1  
TCK  
TDI  
TMS  
VPUMP  
TDO  
TRST  
VJTAG  
IO38RSB0  
GDB0/IO34RSB0  
GDA0/IO33RSB0  
GDC0/IO32RSB0  
VCCIB0  
GND  
VCC  
IO25RSB0  
Revision 17  
4-17  
Package Pin Assignments  
QN68  
Pin A1 Mark  
68  
1
Notes:  
1. This is the bottom view of the package.  
2. The die attach paddle of the package is tied to ground (GND).  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
4-18  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
QN68  
QN68  
AGLN015  
Function  
AGLN015  
Function  
Pin Number  
Pin Number  
36  
1
IO60RSB2  
IO54RSB2  
IO52RSB2  
IO50RSB2  
IO49RSB2  
TDO  
TRST  
2
37  
3
38  
VJTAG  
4
39  
IO17RSB0  
IO16RSB0  
5
40  
6
GEC0/IO48RSB2  
GEA0/IO47RSB2  
VCC  
41  
GDA0/IO15RSB0  
GDC0/IO14RSB0  
IO13RSB0  
VCCIB0  
7
42  
8
43  
9
GND  
44  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
VCCIB2  
45  
GND  
IO46RSB2  
IO45RSB2  
IO44RSB2  
IO43RSB2  
IO42RSB2  
IO41RSB2  
IO40RSB2  
FF/IO39RSB1  
IO37RSB1  
IO35RSB1  
IO33RSB1  
IO31RSB1  
IO30RSB1  
VCC  
46  
VCC  
47  
IO12RSB0  
IO11RSB0  
IO09RSB0  
IO05RSB0  
IO00RSB0  
IO07RSB0  
IO03RSB0  
IO18RSB1  
IO20RSB1  
IO22RSB1  
IO24RSB1  
IO28RSB1  
NC  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
GND  
60  
GND  
VCCIB1  
61  
NC  
IO27RSB1  
IO25RSB1  
IO23RSB1  
IO21RSB1  
IO19RSB1  
TCK  
62  
IO32RSB1  
IO34RSB1  
IO36RSB1  
IO61RSB2  
IO58RSB2  
IO56RSB2  
IO63RSB2  
63  
64  
65  
66  
67  
TDI  
68  
TMS  
VPUMP  
Revision 17  
4-19  
Package Pin Assignments  
QN68  
QN68  
AGLN020  
AGLN020  
Function  
Pin Number  
Function  
IO60RSB2  
IO54RSB2  
IO52RSB2  
IO50RSB2  
IO49RSB2  
GEC0/IO48RSB2  
GEA0/IO47RSB2  
VCC  
Pin Number  
36  
1
TDO  
TRST  
2
37  
3
38  
VJTAG  
4
39  
IO17RSB0  
IO16RSB0  
5
40  
6
41  
GDA0/IO15RSB0  
GDC0/IO14RSB0  
IO13RSB0  
VCCIB0  
7
42  
8
43  
9
GND  
44  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
VCCIB2  
45  
GND  
IO46RSB2  
IO45RSB2  
IO44RSB2  
IO43RSB2  
IO42RSB2  
IO41RSB2  
IO40RSB2  
FF/IO39RSB1  
IO37RSB1  
IO35RSB1  
IO33RSB1  
IO31RSB1  
IO30RSB1  
VCC  
46  
VCC  
47  
IO12RSB0  
IO11RSB0  
IO09RSB0  
IO05RSB0  
IO00RSB0  
IO07RSB0  
IO03RSB0  
IO18RSB1  
IO20RSB1  
IO22RSB1  
IO24RSB1  
IO28RSB1  
NC  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
GND  
60  
GND  
VCCIB1  
61  
NC  
IO27RSB1  
IO25RSB1  
IO23RSB1  
IO21RSB1  
IO19RSB1  
TCK  
62  
IO32RSB1  
IO34RSB1  
IO36RSB1  
IO61RSB2  
IO58RSB2  
IO56RSB2  
IO63RSB2  
63  
64  
65  
66  
67  
TDI  
68  
TMS  
VPUMP  
4-20  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
QN68  
AGLN030Z  
QN68  
AGLN030Z  
Pin Number  
Function  
IO82RSB1  
IO80RSB1  
IO78RSB1  
IO76RSB1  
GEC0/IO73RSB1  
GEA0/IO72RSB1  
GEB0/IO71RSB1  
VCC  
Pin Number  
36  
Function  
1
TDO  
2
37  
TRST  
3
38  
VJTAG  
4
39  
IO40RSB0  
IO37RSB0  
GDB0/IO34RSB0  
GDA0/IO33RSB0  
GDC0/IO32RSB0  
VCCIB0  
5
40  
6
41  
7
42  
8
43  
9
GND  
44  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
VCCIB1  
45  
GND  
IO68RSB1  
IO67RSB1  
IO66RSB1  
IO65RSB1  
IO64RSB1  
IO63RSB1  
IO62RSB1  
FF/IO60RSB1  
IO58RSB1  
IO56RSB1  
IO54RSB1  
IO52RSB1  
IO51RSB1  
VCC  
46  
VCC  
47  
IO31RSB0  
IO29RSB0  
IO28RSB0  
IO27RSB0  
IO25RSB0  
IO24RSB0  
IO22RSB0  
IO21RSB0  
IO19RSB0  
IO17RSB0  
IO15RSB0  
IO14RSB0  
VCCIB0  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
GND  
60  
GND  
VCCIB1  
61  
VCC  
IO50RSB1  
IO48RSB1  
IO46RSB1  
IO44RSB1  
IO42RSB1  
TCK  
62  
IO12RSB0  
IO10RSB0  
IO08RSB0  
IO06RSB0  
IO04RSB0  
IO02RSB0  
IO00RSB0  
63  
64  
65  
66  
67  
TDI  
68  
TMS  
VPUMP  
Revision 17  
4-21  
Package Pin Assignments  
VQ100  
100  
1
Note: This is the top view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
4-22  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
VQ100  
AGLN030Z  
VQ100  
AGLN030Z  
VQ100  
AGLN030Z  
Pin Number  
Function  
Pin Number  
36  
Function  
IO51RSB1  
VCC  
Pin Number  
71  
Function  
IO29RSB0  
IO28RSB0  
IO27RSB0  
IO26RSB0  
IO25RSB0  
IO24RSB0  
IO23RSB0  
IO22RSB0  
IO21RSB0  
IO20RSB0  
IO19RSB0  
IO18RSB0  
IO17RSB0  
IO16RSB0  
IO15RSB0  
IO14RSB0  
VCCIB0  
1
GND  
2
IO82RSB1  
IO81RSB1  
IO80RSB1  
IO79RSB1  
IO78RSB1  
IO77RSB1  
IO76RSB1  
GND  
37  
72  
3
38  
GND  
73  
4
39  
VCCIB1  
74  
5
40  
IO49RSB1  
IO47RSB1  
IO46RSB1  
IO45RSB1  
IO44RSB1  
IO43RSB1  
IO42RSB1  
TCK  
75  
6
41  
76  
7
42  
77  
8
43  
78  
9
44  
79  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
IO75RSB1  
IO74RSB1  
GEC0/IO73RSB1  
GEA0/IO72RSB1  
GEB0/IO71RSB1  
IO70RSB1  
IO69RSB1  
VCC  
45  
80  
46  
81  
47  
82  
48  
TDI  
83  
49  
TMS  
84  
50  
NC  
85  
51  
GND  
86  
52  
VPUMP  
87  
VCCIB1  
53  
NC  
88  
GND  
IO68RSB1  
IO67RSB1  
IO66RSB1  
IO65RSB1  
IO64RSB1  
IO63RSB1  
IO62RSB1  
IO61RSB1  
FF/IO60RSB1  
IO59RSB1  
IO58RSB1  
IO57RSB1  
IO56RSB1  
IO55RSB1  
IO54RSB1  
IO53RSB1  
IO52RSB1  
54  
TDO  
89  
VCC  
55  
TRST  
90  
IO12RSB0  
IO10RSB0  
IO08RSB0  
IO07RSB0  
IO06RSB0  
IO05RSB0  
IO04RSB0  
IO03RSB0  
IO02RSB0  
IO01RSB0  
IO00RSB0  
56  
VJTAG  
91  
57  
IO41RSB0  
IO40RSB0  
IO39RSB0  
IO38RSB0  
IO37RSB0  
IO36RSB0  
GDB0/IO34RSB0  
GDA0/IO33RSB0  
GDC0/IO32RSB0  
VCCIB0  
92  
58  
93  
59  
94  
60  
95  
61  
96  
62  
97  
63  
98  
64  
99  
65  
100  
66  
67  
GND  
68  
VCC  
69  
IO31RSB0  
IO30RSB0  
70  
Revision 17  
4-23  
Package Pin Assignments  
VQ100  
VQ100  
VQ100  
Pin Number AGLN060 Function  
Pin Number AGLN060 Function  
Pin Number AGLN060 Function  
1
GND  
GAA2/IO51RSB1  
IO52RSB1  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45*  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
IO61RSB1  
VCC  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
GBB2/IO27RSB0  
IO26RSB0  
2
3
GND  
GBA2/IO25RSB0  
VMV0  
4
GAB2/IO53RSB1  
IO95RSB1  
VCCIB1  
5
IO60RSB1  
IO59RSB1  
IO58RSB1  
IO57RSB1  
GDC2/IO56RSB1  
GDB2/IO55RSB1  
GDA2/IO54RSB1  
TCK  
GNDQ  
6
GAC2/IO94RSB1  
IO93RSB1  
GBA1/IO24RSB0  
GBA0/IO23RSB0  
GBB1/IO22RSB0  
GBB0/IO21RSB0  
GBC1/IO20RSB0  
GBC0/IO19RSB0  
IO18RSB0  
7
8
IO92RSB1  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
GFB1/IO87RSB1  
GFB0/IO86RSB1  
VCOMPLF  
GFA0/IO85RSB1  
VCCPLF  
TDI  
IO17RSB0  
TMS  
IO15RSB0  
GFA1/IO84RSB1  
GFA2/IO83RSB1  
VCC  
VMV1  
IO13RSB0  
GND  
IO11RSB0  
VPUMP  
VCCIB0  
VCCIB1  
NC  
GND  
GEC1/IO77RSB1  
GEB1/IO75RSB1  
GEB0/IO74RSB1  
GEA1/IO73RSB1  
GEA0/IO72RSB1  
VMV1  
TDO  
VCC  
TRST  
IO10RSB0  
VJTAG  
IO09RSB0  
GDA1/IO49RSB0  
GDC0/IO46RSB0  
GDC1/IO45RSB0  
GCC2/IO43RSB0  
GCB2/IO42RSB0  
GCA0/IO40RSB0  
GCA1/IO39RSB0  
GCC0/IO36RSB0  
GCC1/IO35RSB0  
VCCIB0  
IO08RSB0  
GAC1/IO07RSB0  
GAC0/IO06RSB0  
GAB1/IO05RSB0  
GAB0/IO04RSB0  
GAA1/IO03RSB0  
GAA0/IO02RSB0  
IO01RSB0  
GNDQ  
GEA2/IO71RSB1  
FF/GEB2/IO70RSB1  
GEC2/IO69RSB1  
IO68RSB1  
IO67RSB1  
IO00RSB0  
IO66RSB1  
IO65RSB1  
GND  
IO64RSB1  
VCC  
IO63RSB1  
IO31RSB0  
GBC2/IO29RSB0  
IO62RSB1  
Note: *The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin 45 in AGLN060-  
VQ100.  
4-24  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
VQ100  
VQ100  
VQ100  
Pin Number AGLN060Z Function  
Pin Number AGLN060Z Function  
Pin Number AGLN060Z Function  
1
GND  
GAA2/IO51RSB1  
IO52RSB1  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45*  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
IO62RSB1  
IO61RSB1  
VCC  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
IO31RSB0  
GBC2/IO29RSB0  
GBB2/IO27RSB0  
IO26RSB0  
2
3
4
GAB2/IO53RSB1  
IO95RSB1  
GND  
5
VCCIB1  
GBA2/IO25RSB0  
VMV0  
6
GAC2/IO94RSB1  
IO93RSB1  
IO60RSB1  
IO59RSB1  
IO58RSB1  
IO57RSB1  
GDC2/IO56RSB1  
GDB2/IO55RSB1  
GDA2/IO54RSB1  
TCK  
7
GNDQ  
8
IO92RSB1  
GBA1/IO24RSB0  
GBA0/IO23RSB0  
GBB1/IO22RSB0  
GBB0/IO21RSB0  
GBC1/IO20RSB0  
GBC0/IO19RSB0  
IO18RSB0  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
GFB1/IO87RSB1  
GFB0/IO86RSB1  
VCOMPLF  
GFA0/IO85RSB1  
VCCPLF  
TDI  
GFA1/IO84RSB1  
GFA2/IO83RSB1  
VCC  
TMS  
IO17RSB0  
VMV1  
IO15RSB0  
GND  
IO13RSB0  
VCCIB1  
VPUMP  
IO11RSB0  
GEC1/IO77RSB1  
GEB1/IO75RSB1  
GEB0/IO74RSB1  
GEA1/IO73RSB1  
GEA0/IO72RSB1  
VMV1  
NC  
VCCIB0  
TDO  
GND  
TRST  
VCC  
VJTAG  
IO10RSB0  
GDA1/IO49RSB0  
GDC0/IO46RSB0  
GDC1/IO45RSB0  
GCC2/IO43RSB0  
GCB2/IO42RSB0  
GCA0/IO40RSB0  
GCA1/IO39RSB0  
GCC0/IO36RSB0  
GCC1/IO35RSB0  
VCCIB0  
IO09RSB0  
IO08RSB0  
GNDQ  
GAC1/IO07RSB0  
GAC0/IO06RSB0  
GAB1/IO05RSB0  
GAB0/IO04RSB0  
GAA1/IO03RSB0  
GAA0/IO02RSB0  
IO01RSB0  
GEA2/IO71RSB1  
FF/GEB2/IO70RSB1  
GEC2/IO69RSB1  
IO68RSB1  
IO67RSB1  
IO66RSB1  
IO65RSB1  
IO00RSB0  
IO64RSB1  
GND  
IO63RSB1  
VCC  
Note: *The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin 45 in AGLN060Z-  
VQ100.  
Revision 17  
4-25  
Package Pin Assignments  
VQ100  
VQ100  
VQ100  
Pin Number AGLN125 Function  
Pin Number AGLN125 Function  
Pin Number AGLN125 Function  
1
GND  
GAA2/IO67RSB1  
IO68RSB1  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
VCC  
GND  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
GBA2/IO41RSB0  
VMV0  
2
3
VCCIB1  
GNDQ  
4
GAB2/IO69RSB1  
IO132RSB1  
IO87RSB1  
IO84RSB1  
IO81RSB1  
IO75RSB1  
GDC2/IO72RSB1  
GDB2/IO71RSB1  
GDA2/IO70RSB1  
TCK  
GBA1/IO40RSB0  
GBA0/IO39RSB0  
GBB1/IO38RSB0  
GBB0/IO37RSB0  
GBC1/IO36RSB0  
GBC0/IO35RSB0  
IO32RSB0  
5
6
GAC2/IO131RSB1  
IO130RSB1  
7
8
IO129RSB1  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
GFB1/IO124RSB1  
GFB0/IO123RSB1  
VCOMPLF  
IO28RSB0  
TDI  
IO25RSB0  
GFA0/IO122RSB1  
VCCPLF  
TMS  
IO22RSB0  
VMV1  
IO19RSB0  
GFA1/IO121RSB1  
GFA2/IO120RSB1  
VCC  
GND  
VCCIB0  
VPUMP  
GND  
NC  
VCC  
VCCIB1  
TDO  
IO15RSB0  
GEC0/IO111RSB1  
GEB1/IO110RSB1  
GEB0/IO109RSB1  
GEA1/IO108RSB1  
GEA0/IO107RSB1  
VMV1  
TRST  
IO13RSB0  
VJTAG  
IO11RSB0  
GDA1/IO65RSB0  
GDC0/IO62RSB0  
GDC1/IO61RSB0  
GCC2/IO59RSB0  
GCB2/IO58RSB0  
GCA0/IO56RSB0  
GCA1/IO55RSB0  
GCC0/IO52RSB0  
GCC1/IO51RSB0  
VCCIB0  
IO09RSB0  
IO07RSB0  
GAC1/IO05RSB0  
GAC0/IO04RSB0  
GAB1/IO03RSB0  
GAB0/IO02RSB0  
GAA1/IO01RSB0  
GAA0/IO00RSB0  
GNDQ  
GEA2/IO106RSB1  
FF/GEB2/IO105RSB1  
GEC2/IO104RSB1  
IO102RSB1  
IO100RSB1  
IO99RSB1  
GND  
IO97RSB1  
VCC  
IO96RSB1  
IO47RSB0  
GBC2/IO45RSB0  
GBB2/IO43RSB0  
IO42RSB0  
IO95RSB1  
IO94RSB1  
IO93RSB1  
4-26  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
VQ100  
VQ100  
VQ100  
Pin  
Pin  
Pin  
Number  
AGLN125Z Function  
GND  
Number  
AGLN125Z Function  
IO93RSB1  
VCC  
Number  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
AGLN125Z Function  
GBB2/IO43RSB0  
IO42RSB0  
1
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
2
GAA2/IO67RSB1  
IO68RSB1  
3
GND  
GBA2/IO41RSB0  
VMV0  
4
GAB2/IO69RSB1  
IO132RSB1  
VCCIB1  
5
IO87RSB1  
IO84RSB1  
IO81RSB1  
IO75RSB1  
GDC2/IO72RSB1  
GDB2/IO71RSB1  
GDA2/IO70RSB1  
TCK  
GNDQ  
6
GAC2/IO131RSB1  
IO130RSB1  
GBA1/IO40RSB0  
GBA0/IO39RSB0  
GBB1/IO38RSB0  
GBB0/IO37RSB0  
GBC1/IO36RSB0  
GBC0/IO35RSB0  
IO32RSB0  
7
8
IO129RSB1  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
GFB1/IO124RSB1  
GFB0/IO123RSB1  
VCOMPLF  
GFA0/IO122RSB1  
VCCPLF  
TDI  
IO28RSB0  
TMS  
IO25RSB0  
GFA1/IO121RSB1  
GFA2/IO120RSB1  
VCC  
VMV1  
IO22RSB0  
GND  
IO19RSB0  
VPUMP  
VCCIB0  
VCCIB1  
NC  
GND  
GEC0/IO111RSB1  
GEB1/IO110RSB1  
GEB0/IO109RSB1  
GEA1/IO108RSB1  
GEA0/IO107RSB1  
VMV1  
TDO  
VCC  
TRST  
IO15RSB0  
VJTAG  
IO13RSB0  
GDA1/IO65RSB0  
GDC0/IO62RSB0  
GDC1/IO61RSB0  
GCC2/IO59RSB0  
GCB2/IO58RSB0  
GCA0/IO56RSB0  
GCA1/IO55RSB0  
GCC0/IO52RSB0  
GCC1/IO51RSB0  
VCCIB0  
IO11RSB0  
IO09RSB0  
IO07RSB0  
GNDQ  
GAC1/IO05RSB0  
GAC0/IO04RSB0  
GAB1/IO03RSB0  
GAB0/IO02RSB0  
GAA1/IO01RSB0  
GAA0/IO00RSB0  
GEA2/IO106RSB1  
FF/GEB2/IO105RSB1  
GEC2/IO104RSB1  
IO102RSB1  
IO100RSB1  
IO99RSB1  
IO97RSB1  
GND  
IO96RSB1  
VCC  
IO95RSB1  
IO47RSB0  
GBC2/IO45RSB0  
IO94RSB1  
Revision 17  
4-27  
Package Pin Assignments  
VQ100  
VQ100  
VQ100  
Pin Number AGLN250 Function  
Pin Number AGLN250 Function  
Pin Number AGLN250 Function  
1
GND  
GAA2/IO67RSB3  
IO66RSB3  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
VCC  
GND  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
GBA2/IO20RSB1  
VMV1  
2
3
VCCIB2  
GNDQ  
4
GAB2/IO65RSB3  
IO64RSB3  
IO39RSB2  
IO38RSB2  
IO37RSB2  
GDC2/IO36RSB2  
GDB2/IO35RSB2  
GDA2/IO34RSB2  
GNDQ  
GBA1/IO19RSB0  
GBA0/IO18RSB0  
GBB1/IO17RSB0  
GBB0/IO16RSB0  
GBC1/IO15RSB0  
GBC0/IO14RSB0  
IO13RSB0  
5
6
GAC2/IO63RSB3  
IO62RSB3  
7
8
IO61RSB3  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
GFB1/IO60RSB3  
GFB0/IO59RSB3  
VCOMPLF  
TCK  
IO12RSB0  
TDI  
IO11RSB0  
GFA0/IO57RSB3  
VCCPLF  
TMS  
IO10RSB0  
VMV2  
IO09RSB0  
GFA1/IO58RSB3  
GFA2/IO56RSB3  
VCC  
GND  
VCCIB0  
VPUMP  
GND  
NC  
VCC  
VCCIB3  
TDO  
IO08RSB0  
GFC2/IO55RSB3  
GEC1/IO54RSB3  
GEC0/IO53RSB3  
GEA1/IO52RSB3  
GEA0/IO51RSB3  
VMV3  
TRST  
IO07RSB0  
VJTAG  
IO06RSB0  
GDA1/IO33RSB1  
GDC0/IO32RSB1  
GDC1/IO31RSB1  
IO30RSB1  
GCB2/IO29RSB1  
GCA1/IO27RSB1  
GCA0/IO28RSB1  
GCC0/IO26RSB1  
GCC1/IO25RSB1  
VCCIB1  
GAC1/IO05RSB0  
GAC0/IO04RSB0  
GAB1/IO03RSB0  
GAB0/IO02RSB0  
GAA1/IO01RSB0  
GAA0/IO00RSB0  
GNDQ  
GNDQ  
GEA2/IO50RSB2  
FF/GEB2/IO49RSB2  
GEC2/IO48RSB2  
IO47RSB2  
VMV0  
IO46RSB2  
IO45RSB2  
GND  
IO44RSB2  
VCC  
IO43RSB2  
IO24RSB1  
GBC2/IO23RSB1  
GBB2/IO22RSB1  
IO21RSB1  
IO42RSB2  
IO41RSB2  
IO40RSB2  
4-28  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
VQ100  
VQ100  
VQ100  
Pin Number AGLN250Z Function  
Pin Number AGLN250Z Function  
Pin Number AGLN250Z Function  
1
GND  
GAA2/IO67RSB3  
IO66RSB3  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
VCC  
GND  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
GBA2/IO20RSB1  
VMV1  
2
3
VCCIB2  
GNDQ  
4
GAB2/IO65RSB3  
IO64RSB3  
IO39RSB2  
IO38RSB2  
IO37RSB2  
GDC2/IO36RSB2  
GDB2/IO35RSB2  
GDA2/IO34RSB2  
GNDQ  
GBA1/IO19RSB0  
GBA0/IO18RSB0  
GBB1/IO17RSB0  
GBB0/IO16RSB0  
GBC1/IO15RSB0  
GBC0/IO14RSB0  
IO13RSB0  
5
6
GAC2/IO63RSB3  
IO62RSB3  
7
8
IO61RSB3  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
GFB1/IO60RSB3  
GFB0/IO59RSB3  
VCOMPLF  
TCK  
IO12RSB0  
TDI  
IO11RSB0  
GFA0/IO57RSB3  
VCCPLF  
TMS  
IO10RSB0  
VMV2  
IO09RSB0  
GFA1/IO58RSB3  
GFA2/IO56RSB3  
VCC  
GND  
VCCIB0  
VPUMP  
GND  
NC  
VCC  
VCCIB3  
TDO  
IO08RSB0  
GFC2/IO55RSB3  
GEC1/IO54RSB3  
GEC0/IO53RSB3  
GEA1/IO52RSB3  
GEA0/IO51RSB3  
VMV3  
TRST  
IO07RSB0  
VJTAG  
IO06RSB0  
GDA1/IO33RSB1  
GDC0/IO32RSB1  
GDC1/IO31RSB1  
IO30RSB1  
GCB2/IO29RSB1  
GCA1/IO27RSB1  
GCA0/IO28RSB1  
GCC0/IO26RSB1  
GCC1/IO25RSB1  
VCCIB1  
GAC1/IO05RSB0  
GAC0/IO04RSB0  
GAB1/IO03RSB0  
GAB0/IO02RSB0  
GAA1/IO01RSB0  
GAA0/IO00RSB0  
GNDQ  
GNDQ  
GEA2/IO50RSB2  
FF/GEB2/IO49RSB2  
GEC2/IO48RSB2  
IO47RSB2  
VMV0  
IO46RSB2  
IO45RSB2  
GND  
IO44RSB2  
VCC  
IO43RSB2  
IO24RSB1  
GBC2/IO23RSB1  
GBB2/IO22RSB1  
IO21RSB1  
IO42RSB2  
IO41RSB2  
IO40RSB2  
Revision 17  
4-29  
5 – Datasheet Information  
List of Changes  
The following table lists critical changes that were made in each version of the IGLOO nano datasheet.  
Revision  
Changes  
Page  
Revision 17  
(May 2013)  
Deleted details related to Ambient temperature from "Enhanced Commercial I, III, IV,  
Temperature Range", "IGLOO nano Ordering Information", "Temperature Grade and 2-2  
Offerings", and Table 2-2 • Recommended Operating Conditions 1 to remove ambiguities  
arising due to the same, and modified Note 2 (SAR 47063).  
Revision 16  
The "IGLOO nano Ordering Information" section has been updated to mention "Y" as  
III  
(December 2012) "Blank" mentioning "Device Does Not Include License to Implement IP Based on the  
Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43174).  
The note in Table 2-100 • IGLOO nano CCC/PLL Specification and Table 2-101 • IGLOO 2-70,  
nano CCC/PLL Specification referring the reader to SmartGen was revised to refer 2-71  
instead to the online help associated with the core (SAR 42565).  
Live at Power-Up (LAPU) has been replaced with ’Instant On’.  
NA  
II  
Revision 15  
The status of the AGLN125 device has been modified from ’Advance’ to ’Production’ in  
(September 2012) the "IGLOO nano Device Status" section (SAR 41416).  
Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip  
(SoC) throughout the document (SAR 40274).  
NA  
1-2  
Revision 14  
The "Security" section was modified to clarify that Microsemi does not support read-back  
(September 2012) of programmed data.  
Revision 13  
(June 2012)  
Figure Figure 2-34 • FIFO Read and Figure 2-35 • FIFO Write have been added (SAR 2-82  
34842).  
The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section  
in the "Pin Descriptions" section: "Within the package, the VMV plane is decoupled from  
the simultaneous switching noise originating from the output buffer VCCI domain" and  
replaced with “Within the package, the VMV plane biases the input stage of the I/Os in  
the I/O banks” (SAR 38319). The datasheet mentions that "VMV pins must be connected  
to the corresponding VCCI pins" for an ESD enhancement.  
3-1  
Revision 12  
(March 2012)  
The "In-System Programming (ISP) and Security" section and "Security" section were I, 1-2  
revised to clarify that although no existing security measures can give an absolute  
guarantee, Microsemi FPGAs implement the best security available in the industry (SAR  
34663).  
Notes indicating that AGLN015 is not recommended for new designs have been added II, III  
(SAR 35759).  
Notes indicating that nano-Z devices are not recommended for new designs have been  
added. The "Devices Not Recommended For New Designs" section is new (SAR  
36759).  
The Y security option and Licensed DPA Logo were added to the "IGLOO nano Ordering  
Information" section. The trademarked Licensed DPA Logo identifies that a product is  
covered by a DPA counter-measures license from Cryptography Research (SAR 34722).  
III  
The following sentence was removed from the "Advanced Architecture" section: "In  
addition, extensive on-chip programming circuitry enables rapid, single-voltage (3.3 V)  
programming of IGLOO nano devices via an IEEE 1532 JTAG interface" (SAR 34683).  
1-3  
Revision 17  
5-1  
Datasheet Information  
Revision  
Changes  
The "Specifying I/O States During Programming" section is new (SAR 34694).  
Page  
Revision 12  
(continued)  
1-9  
The reference to guidelines for global spines and VersaTile rows, given in the "Global 2-12  
Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture"  
section of the Global Resources chapter in the IGLOO nano FPGA Fabric User's  
Guide (SAR 34732).  
Figure 2-4 has been modified for DIN waveform; the Rise and Fall time label has been 2-16  
changed to tDIN (37106).  
The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated 2-26,  
to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software 2-20  
Settings" section (SAR 34885).  
The notes regarding drive strength in the "Summary of I/O Timing Characteristics – 2-20,  
Default I/O Software Settings" section, "3.3 V LVCMOS Wide Range" section and "1.2 V 2-29,  
LVCMOS Wide Range" section tables were revised for clarification. They now state that 2-40  
the minimum drive strength for the default software configuration when run in wide range  
is ±100 µA. The drive strength displayed in software is supported in normal range only.  
For a detailed I/V curve, refer to the IBIS models (SAR 34765).  
Added values for minimum pulse width and removed the FRMAX row from Table 2-88 2-64 to  
through Table 2-99 in the "Global Tree Timing Characteristics" section. Use the software 2-69  
to determine the FRMAX for the device you are using (SAR 36953).  
Table 2-100 • IGLOO nano CCC/PLL Specification and Table 2-101 • IGLOO nano 2-70  
CCC/PLL Specification were updated. A note was added indicating that when the  
and  
CCC/PLL core is generated by Mircosemi core generator software, not all delay values 2-71  
of the specified delay increments are available (SAR 34817).  
The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" 2-74,  
tables, Figure 2-36 • FIFO Reset, and the FIFO "Timing Characteristics" tables were 2-77,  
revised to ensure consistency with the software names (SAR 35754).  
2-85  
Reference was made to a new application note, Simultaneous Read-Write Operations in  
Dual-Port SRAM for Flash-Based cSoCs and FPGAs, which covers these cases in detail  
(SAR 34865).  
The "Pin Descriptions" chapter has been added (SAR 34770).  
3-1  
4-1  
Package names used in the "Package Pin Assignments" section were revised to match  
standards given in Package Mechanical Drawings (SAR 34770).  
Revision 11  
(Jul 2010)  
The status of the AGLN060 device has changed from Advance to Production.  
II  
The values for PAC1, PAC2, PAC3, and PAC4 were updated in Table 2-15 • Different 2-10  
Components Contributing to Dynamic Power Consumption in IGLOO nano Devices for  
1.5 V core supply voltage (SAR 26404).  
The values for PAC1, PAC2, PAC3, and PAC4 were updated in Table 2-17 • Different 2-11  
Components Contributing to Dynamic Power Consumption in IGLOO nano Devices for  
1.2 V core supply voltage (SAR 26404).  
July 2010  
The versioning system for datasheets has been changed. Datasheets are assigned a  
revision number that increments each time the datasheet is revised. The "IGLOO nano  
Device Status" table on page II indicates the status for each device in the device family.  
N/A  
5-2  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Revision  
Changes  
Page  
Revision 10  
(Apr 2010)  
References to differential inputs were removed from the datasheet, since IGLOO nano  
devices do not support differential inputs (SAR 21449).  
N/A  
N/A  
I
A parenthetical note, "hold previous I/O state in Flash*Freeze mode," was added to each  
occurrence of bus hold in the datasheet (SAR 24079).  
The "In-System Programming (ISP) and Security" section was revised to add 1.2 V  
programming.  
The note connected with the "IGLOO nano Ordering Information" table was revised to  
clarify features not available for Z feature grade devices.  
III  
The "IGLOO nano Device Status" table is new.  
II  
The definition of C in the "Temperature Grade Offerings" table was changed to "extended  
commercial temperature range."  
IV  
1.2 V wide range was added to the list of voltage ranges in the "I/Os with Advanced I/O  
Standards" section.  
1-8  
2-2  
A note was added to Table 2-2 • Recommended Operating Conditions 1 regarding  
switching from 1.2 V to 1.5 V core voltage for in-system programming. The VJTAG  
voltage was changed from "1.425 to 3.6" to "1.4 to 3.6" (SAR 24052). The note regarding  
voltage for programming V2 and V5 devices was revised (SAR 25213). The maximum  
value for VPUMP programming voltage (operation mode) was changed from 3.45 V to  
3.6 V (SAR 25220).  
Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to  
TJ = 70°C, VCC = 1.425 V) and Table 2-7 • Temperature and Voltage Derating Factors  
for Timing Delays (normalized to TJ = 70°C, VCC = 1.14 V) were updated. Table 2-8 •  
Power Supply State per Mode is new.  
2-6,  
2-7  
The tables in the "Quiescent Supply Current" section were updated (SAR 24882 and  
SAR 24112).  
2-7  
2-8  
2-8  
VJTAG was removed from Table 2-10 • Quiescent Supply Current (IDD) Characteristics,  
IGLOO nano Sleep Mode* (SARs 24112, 24882, and 79503).  
The note stating what was included in IDD was removed from Table 2-11 • Quiescent  
Supply Current (IDD) Characteristics, IGLOO nano Shutdown Mode. The note, "per  
VCCI or VJTAG bank" was removed from Table 2-12 • Quiescent Supply Current (IDD),  
No IGLOO nano Flash*Freeze Mode1. The note giving IDD was changed to "IDD  
NBANKS * ICCI + ICCA."  
=
The values in Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O  
Software Settings and Table 2-14 • Summary of I/O Output Buffer Power (per pin) –  
Default I/O Software Settings1 were updated. Wide range support information was  
added.  
2-9  
Revision 17  
5-3  
Datasheet Information  
Revision  
Changes  
Page  
Revision 10  
(continued)  
The following tables were updated with current available information. The equivalent 2-19  
software default drive strength option was added.  
through  
2-40  
Table 2-21 • Summary of Maximum and Minimum DC Input and Output Levels  
Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings  
Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings  
Table 2-28 • I/O Output Buffer Maximum Resistances 1  
Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances  
Table 2-30 • I/O Short Currents IOSH/IOSL  
Timing tables in the "Single-Ended I/O Characteristics" section, including new tables for  
3.3 V and 1.2 V LVCMOS wide range.  
Table 2-40 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V  
Wide Range  
Table 2-63 • Minimum and Maximum DC Input and Output Levels  
Table 2-67 • Minimum and Maximum DC Input and Output Levels (new)  
The formulas in the notes to Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances were 2-24  
revised (SAR 21348).  
The text introducing Table 2-31 • Duration of Short Circuit Event before Failure was 2-25  
revised to state six months at 100° instead of three months at 110° for reliability  
concerns. The row for 110° was removed from the table.  
The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 24916): "It 2-32  
uses a 5-V tolerant input buffer and push-pull output buffer."  
The FDDRIMAX and FDDOMAX values were added to tables in the "DDR Module 2-51  
Specifications" section (SAR 23919). A note was added stating that DDR is not  
supported for AGLN010, AGLN015, and AGLN020.  
Tables in the "Global Tree Timing Characteristics" section were updated with new 2-64  
information available.  
Table 2-100 • IGLOO nano CCC/PLL Specification and Table 2-101 • IGLOO nano 2-70,  
CCC/PLL Specification were revised (SAR 79390).  
2-71  
Tables in the SRAM "Timing Characteristics" section and FIFO "Timing Characteristics" 2-77,  
section were updated with new information available.  
2-85  
3-4  
Table 3-3 • TRST and TCK Pull-Down Recommendations is new.  
A note was added to the "CS81" pin tables for AGLN060, AGLN060Z, AGLN125,  
4-9,  
AGLN125Z, AGLN250, and AGLN250Z indicating that pins F1 and F2 must be grounded through  
(SAR 25007). 4-14  
A note was added to the "CS81" and "VQ100" pin tables for AGLN060 and AGLN060Z 4-9,  
stating that bus hold is not available for pin H7 or pin 45 (SAR 24079).  
4-24  
The AGLN250 function for pin C8 in the "CS81" table was revised (SAR 22134).  
4-13  
5-4  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Revision / Version  
Changes  
Page  
Revision 9 (Mar2010) All product tables and pin tables were updated to show clearly that AGLN030 is  
N/A  
available only in the Z feature grade at this time. The nano-Z feature grade  
devices are designated with a Z at the end of the part number.  
v0.9  
Product Brief Advance  
Packaging Advance  
v0.8  
Revision 8 (Jan 2009) The "Reprogrammable Flash Technology" section was revised to add "250 MHz  
I
(1.5 V systems) and 160 MHz (1.2 V systems) System Performance."  
Product Brief Advance The note for AGLN030 in the "IGLOO nano Devices" table and "I/Os Per  
II, II  
v0.8  
Package" table was revised to remove the statement regarding package  
compatibility with lower density nano devices.  
The "I/Os with Advanced I/O Standards" section was revised to add definitions for  
hot-swap and cold-sparing.  
1-8  
Packaging Advance  
v0.7  
The "UC81", "CS81", "QN48", and "QN68" pin tables for AGLN030 are new.  
4-5, 4-8,  
4-17,4-21  
The "CS81"pin table for AGLN060 is new.  
4-9  
The "CS81" and "VQ100" pin tables for AGLN060Z are new.  
The "CS8" and "VQ100" pin tables for AGLN125Z are new.  
The "CS81" and "VQ100" pin tables for AGLN250Z is new.  
4-10, 4-25  
4-12, 4-27  
4-14, 4-29  
N/A  
Revision 7 (Apr 2009) The –F speed grade is no longer offered for IGLOO nano devices and was  
removed from the datasheet.  
Product Brief Advance  
v0.7  
DC and Switching  
Characteristics  
Advance v0.3  
Revision 6 (Mar 2009) The "VQ100" pin table for AGLN030 is new.  
4-23  
N/A  
Packaging Advance  
v0.6  
Revision 5 (Feb 2009) The "100-Pin QFN" section was removed.  
Packaging Advance  
v0.5  
Revision 4 (Feb 2009) The QN100 package was removed for all devices.  
N/A  
II  
Product Brief Advance "IGLOO nano Devices" table was updated to change the maximum user I/Os for  
v0.6  
AGLN030 from 81 to 77.  
The "Device Marking" section is new.  
III  
II  
Revision 3 (Feb 2009) The following table note was removed from "IGLOO nano Devices" table: "Six  
chip (main) and three quadrant global networks are available for AGLN060 and  
above."  
v0.5  
Product Brief Advance  
The CS81 package was added for AGLN250 in the "IGLOO nano Products  
Available in the Z Feature Grade" table.  
IV  
Packaging Advance  
v0.4  
The "UC81" and "CS81" pin tables for AGLN020 are new.  
4-4, 4-7  
4-13  
The "CS81" pin table for AGLN250 is new.  
Revision 17  
5-5  
Datasheet Information  
Revision / Version  
Changes  
Page  
Revision 2 (Dec 2008) The second table note in "IGLOO nano Devices" table was revised to state,  
II  
"AGLN060, AGLN125, and AGLN250 in the CS81 package do not support PLLs.  
AGLN030 and smaller devices do not support this feature."  
Product Brief Advance  
v0.4  
The I/Os per package for CS81 were revised to 60 for AGLN060, AGLN125, and  
AGLN250 in the "I/Os Per Package"table.  
II  
4-2  
I
Packaging Advance  
v0.3  
The "UC36" pin table is new.  
Revision 1 (Nov 2008) The "Advanced I/Os" section was updated to include wide power supply voltage  
support for 1.14 V to 1.575 V.  
Product Brief Advance  
v0.3  
The AGLN030 device was added to product tables and replaces AGL030 entries  
that were formerly in the tables.  
IV  
II  
The "I/Os Per Package"table was updated for the CS81 package to change the  
number of I/Os for AGLN060, AGLN125, and AGLN250 from 66 to 64.  
The "Wide Range I/O Support" section is new.  
1-8  
2-2  
The table notes and references were revised in Table 2-2 • Recommended  
Operating Conditions 1. VMV was included with VCCI and a table note was added  
stating, "VMV pins must be connected to the corresponding VCCI pins. See Pin  
Descriptions for further information." Please review carefully.  
VJTAG was added to the list in the table note for Table 2-9 • Quiescent Supply  
Current (IDD) Characteristics, IGLOO nano Flash*Freeze Mode*. Values were  
added for AGLN010, AGLN015, and AGLN030 for 1.5 V.  
2-7  
VCCI was removed from the list in the table note for Table 2-10 • Quiescent  
Supply Current (IDD) Characteristics, IGLOO nano Sleep Mode*.  
2-8  
2-8  
Values for ICCA current were updated for AGLN010, AGLN015, and AGLN030 in  
Table 2-12 • Quiescent Supply Current (IDD), No IGLOO nano Flash*Freeze  
Mode1.  
Values for PAC1 and PAC2 were added to Table 2-15 • Different Components 2-10, 2-11  
Contributing to Dynamic Power Consumption in IGLOO nano Devices and Table  
2-17 • Different Components Contributing to Dynamic Power Consumption in  
IGLOO nano Devices.  
Table notes regarding wide range support were added to Table 2-21 • Summary of  
Maximum and Minimum DC Input and Output Levels.  
2-19  
1.2 V LVCMOS wide range values were added to Table 2-22 • Summary of 2-19, 2-20  
Maximum and Minimum DC Input Levels and Table 2-23 • Summary of AC  
Measuring Points.  
The following table note was added to Table 2-25 • Summary of I/O Timing  
Characteristics—Software Default Settings and Table 2-26 • Summary of I/O  
Timing Characteristics—Software Default Settings: "All LVCMOS 3.3 V software  
macros support LVCMOS 3.3 V wide range, as specified in the JESD8-B  
specification."  
2-21  
3.3 V LVCMOS Wide Range and 1.2 V Wide Range were added to Table 2-28 • 2-23, 2-24  
I/O Output Buffer Maximum Resistances 1 andTable 2-30 • I/O Short Currents  
IOSH/IOSL.  
5-6  
Revision 17  
IGLOO nano Low Power Flash FPGAs  
Revision / Version  
Revision 1 (cont’d)  
Changes  
The "QN48" pin diagram was revised.  
Page  
4-16  
Packaging Advance  
v0.2  
Note 2 for the "QN48", "QN68", and "100-Pin QFN" pin diagrams was changed to 4-16, 4-19  
"The die attach paddle of the package is tied to ground (GND)."  
The "VQ100" pin diagram was revised to move the pin IDs to the upper left corner  
instead of the upper right corner.  
4-23  
Revision 0 (Oct 2008) The following tables and sections were updated to add the UC81 and CS81  
N/A  
packages for AGL030:  
Product Brief Advance  
v0.2  
"IGLOO nano Devices"  
"I/Os Per Package"  
"IGLOO nano Products Available in the Z Feature Grade"  
"Temperature Grade Offerings"  
The "I/Os Per Package" table was updated to add the following information to  
table note 4: "For nano devices, the VQ100 package is offered in both leaded and  
RoHS-compliant versions. All other packages are RoHS-compliant only."  
II  
The "IGLOO nano Products Available in the Z Feature Grade" section was  
updated to remove QN100 for AGLN250.  
IV  
The device architecture figures, Figure 1-3 • IGLOO Device Architecture Overview  
1-4  
with Two I/O Banks (AGLN060, AGLN125) through Figure 1-4 • IGLOO Device through  
Architecture Overview with Four I/O Banks (AGLN250), were revised. Figure 1-1 •  
IGLOO Device Architecture Overview with Two I/O Banks and No RAM  
(AGLN010 and AGLN030) is new.  
1-5  
The "PLL and CCC" section was revised to include information about CCC-GLs in  
AGLN020 and smaller devices.  
1-7  
1-8  
The "I/Os with Advanced I/O Standards" section was revised to add information  
about IGLOO nano devices supporting double-data-rate applications.  
Revision 17  
5-7  
Datasheet Information  
Datasheet Categories  
Categories  
In order to provide the latest information to designers, some datasheet parameters are published before  
data has been fully characterized from silicon devices. The data provided for a given device, as  
highlighted in the "IGLOO nano Device Status" table on page II, is designated as either "Product Brief,"  
"Advance," "Preliminary," or "Production." The definitions of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advance or production) and contains general  
product information. This document gives an overview of specific device and family information.  
Advance  
This version contains initial estimated information based on simulation, other products, devices, or speed  
grades. This information can be used as estimates, but not for production. This label only applies to the  
DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not  
been fully characterized.  
Preliminary  
The datasheet contains information based on simulation and/or initial characterization. The information is  
believed to be correct, but changes are possible.  
Unmarked (production)  
This version contains information that is considered to be final.  
Export Administration Regulations (EAR)  
The products described in this document are subject to the Export Administration Regulations (EAR).  
They could require an approved export license prior to export from the United States. An export includes  
release of product or disclosure of technology to a foreign national inside or outside the United States.  
Safety Critical, Life Support, and High-Reliability Applications  
Policy  
The Microsemi products described in this advance status document may not have completed  
Microsemi’s qualification process. Microsemi may amend or enhance products during the product  
introduction and qualification process, resulting in changes in device functionality or performance. It is  
the responsibility of each customer to ensure the fitness of any Microsemi product (but especially a new  
product) for a particular purpose, including appropriateness for safety-critical, life-support, and other  
high-reliability applications. Consult Microsemi’s Terms and Conditions for specific liability exclusions  
relating to life-support applications. A reliability report covering all of the Microsemi SoC Products  
Group’s products is at http://www.microsemi.com/socdocuments/ORT_Report.pdf. Microsemi also offers  
a variety of enhanced qualification and lot acceptance screening procedures. Contact your local  
Microsemi sales office for additional reliability information.  
5-8  
Revision 17  
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor  
solutions for: aerospace, defense and security; enterprise and communications; and industrial  
and alternative energy markets. Products include high-performance, high-reliability analog and  
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and  
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at  
www.microsemi.com.  
Microsemi Corporate Headquarters  
One Enterprise, Aliso Viejo CA 92656 USA  
Within the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
© 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of  
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.  
Fax: +1 (949) 215-4996  
51700110-17/6.13  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY