AGLP030V5-FVQG128 [MICROSEMI]

Field Programmable Gate Array, 792 CLBs, 30000 Gates, 250MHz, 792-Cell, CMOS, PQFP128, 14 X 14 MM, 1 MM HEIGHT, 0.40 MM PITCH, ROHS COMPLIANT, VQFP-128;
AGLP030V5-FVQG128
型号: AGLP030V5-FVQG128
厂家: Microsemi    Microsemi
描述:

Field Programmable Gate Array, 792 CLBs, 30000 Gates, 250MHz, 792-Cell, CMOS, PQFP128, 14 X 14 MM, 1 MM HEIGHT, 0.40 MM PITCH, ROHS COMPLIANT, VQFP-128

文件: 总122页 (文件大小:3945K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v1.3  
®
IGLOO PLUS Low-Power Flash FPGAs  
with Flash*Freeze Technology  
High-Performance Routing Hierarchy  
Features and Benefits  
AdvSaegnmceendteId/O, Hierarchical Routing and Clock Structure  
Low Power  
• 1.2 V to 1.5 V Core Voltage Support for Low Power  
• Supports Single-Voltage System Operation  
• 5 µW Power Consumption in Flash*Freeze Mode  
• Low-Power Active FPGA Operation  
• 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation  
• Bank-Selectable I/O Voltages—4 Banks per Chip on All  
®
IGLOO PLUS Devices  
• Single-Ended  
I/O  
Standards:  
LVTTL,  
LVCMOS  
• Flash*Freeze Technology Enables Ultra-Low Power  
Consumption while Maintaining FPGA Content  
• Configurable Hold Previous State, Tristate, HIGH, or LOW  
State per I/O in Flash*Freeze Mode  
3.3 V / 2.5 V / 1.8 V / 1.5 V / 1.2 V  
• Selectable Schmitt Trigger Inputs  
• I/O Registers on Input, Output, and Enable Paths  
• Hot-Swappable and Cold-Sparing I/Os  
• Easy Entry To / Exit From Ultra-Low-Power Flash*Freeze Mode  
• Programmable Output Slew Rate and Drive Strength  
• Weak Pull-Up/-Down  
Feature Rich  
• 30 k to 125 k System Gates  
• Up to 36 kbits of True Dual-Port SRAM  
• Up to 212 User I/Os  
• IEEE 1149.1 (JTAG) Boundary Scan Test  
• Pin-Compatible Small-Footprint Packages across the IGLOO  
PLUS Family  
Clock Conditioning Circuit (CCC) and PLL†  
Reprogrammable Flash Technology  
• 130-nm, 7-Layer Metal, Flash-Based CMOS Process  
• Live-at-Power-Up (LAPU) Level 0 Support  
• Single-Chip Solution  
• Six CCC Blocks, One with an Integrated PLL  
• Configurable  
Phase  
Shift, Multiply/Divide,  
Delay  
Capabilities, and External Feedback  
• Retains Programmed Design When Powered Off  
• Wide Input Frequency Range (1.5 MHz up to 250 MHz)  
In-System Programming (ISP) and Security  
Embedded Memory  
• Secure ISP Using On-Chip 128-Bit Advanced Encryption  
• 1 kbit of FlashROM User Nonvolatile Memory  
Standard (AES) Decryption via JTAG (IEEE 1532–compliant)  
• SRAMs and FIFOs with Variable-Aspect-Ratio 4,608-Bit RAM  
®
• FlashLock to Secure FPGA Contents  
Blocks (×1, ×2, ×4, ×9, and ×18 organizations)  
• True Dual-Port SRAM (except ×18)  
Table 1-1 • IGLOO PLUS Product Family  
IGLOO PLUS Devices  
AGLP030  
AGLP060  
60 k  
512  
1,584  
10  
AGLP125  
125 k  
1,024  
3,120  
16  
System Gates  
30 k  
256  
792  
5
Typical Equivalent Macrocells  
VersaTiles (D-flip-flops)  
Flash*Freeze Mode (typical, µW)  
RAM kbits (1,024 bits)  
4,608-Bit Blocks  
18  
36  
4
8
Secure (AES) ISP  
Yes  
1 k  
1
Yes  
1 k  
FlashROM Bits  
1 k  
1
Integrated PLL in CCCs  
1
2
VersaNet Globals  
6
18  
18  
I/O Banks  
4
4
4
Maximum User I/Os  
120  
157  
212  
Package Pins  
CS  
VQ  
CS201, CS289  
VQ128  
CS201, CS289  
VQ176  
CS281, CS289  
Notes:  
1. AGLP060 in CS201 does not support the PLL.  
2. Six chip (main) and twelve quadrant global networks are available for AGLP060 and AGLP125.  
The AGLP030 device does not support this feature.  
December 2008  
I
© 2009 Actel Corporation  
1
I/Os Per Package  
IGLOO PLUS Devices  
Package  
CS201  
AGLP030  
AGLP060  
AGLP125  
Single-Ended I/Os  
120  
157  
212  
212  
CS281  
CS289  
120  
101  
157  
VQ128  
VQ176  
137  
Note: When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not used as a regular I/O, the number of  
single-ended user I/Os available is reduced by one.  
Table 1-2 • Package Dimensions  
Package  
CS201  
8 × 8  
64  
CS281  
10 × 10  
100  
CS289  
14 × 14  
196  
VQ128  
14 × 14  
196  
VQ176  
20 × 20  
400  
Length × Width (mm/mm)  
Nominal Area (mm2)  
Pitch (mm)  
0.5  
0.5  
0.8  
0.4  
0.4  
Height (mm)  
0.89  
1.05  
1.20  
1.0  
1.0  
II  
v1.3  
IGLOO PLUS Low-Power Flash FPGAs  
IGLOO PLUS Ordering Information  
_
AGLP125  
V2  
CS  
G
289  
I
Application (Temperature Range)  
Blank = Commercial (0°C to +70°C ambient temperature)  
I = Industrial (40°C to +85°C ambient temperature)  
PP = Pre-Production  
ES = Engineering Sample (room temperature only)  
Package Lead Count  
Lead-Free Packaging  
Blank = Standard Packaging  
G= RoHS-Compliant Packaging  
Package Type  
=
=
CS  
VQ  
Chip Scale Package (0.5 mm and 0.8 mm pitches)  
Very Thin Quad Flat Pack (0.4 mm pitch)  
Speed Grade  
F = 20% Slower than Standard*  
Blank = Standard  
Supply Voltage  
2 = 1.2 V to 1.5 V  
5 = 1.5 V only  
Part Number  
AGLP030 = 30,000 System Gates  
AGLP060 = 60,000 System Gates  
AGLP125 = 125,000 System Gates  
Notes:  
1. Marking information: IGLOO PLUS V2 devices do not have a V2 marking, but IGLOO PLUS V5 devices are marked  
accordingly.  
2. The DC and switching characteristics for the –F speed grade targets are based only on simulation.  
The characteristics provided for the –F speed grade are subject to change after establishing FPGA specifications. Some  
restrictions might be added and will be reflected in future revisions of this document. The –F speed grade is only  
supported in the Commercial temperature range.  
3. "G" indicates RoHS-compliant packages.  
v1.3  
III  
Temperature Grade Offerings  
Package  
CS201  
CS281  
CS289  
VQ128  
VQ176  
Notes:  
AGLP030  
AGLP060  
AGLP125  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
1. C = Commercial temperature range: 0°C to 70°C ambient temperature.  
2. I = Industrial temperature range: –40°C to 85°C ambient temperature.  
Speed Grade and Temperature Grade Matrix  
Temperature Grade  
–F 1  
Std.  
C 2  
3
I
Notes:  
1. The characteristics provided for the –F speed grade are subject to change after establishing FPGA specifications. Some  
restrictions might be added and will be reflected in future revisions of this document. The –F speed grade is only  
supported in the Commercial temperature range.  
2. C = Commercial temperature range: 0°C to 70°C ambient temperature.  
3. I = Industrial temperature range: –40°C to 85°C ambient temperature.  
Contact your local Actel representative for device availability:  
http://www.actel.com/company/contact/default.aspx.  
IV  
v1.3  
1 – IGLOO PLUS Device Family Overview  
General Description  
The IGLOO PLUS family of flash FPGAs, based on a 130 nm flash process, offers the lowest power  
FPGA, a single-chip solution, small-footprint packages, reprogrammability, and an abundance of  
advanced features.  
The Flash*Freeze technology used in IGLOO PLUS devices enables entering and exiting an ultra-  
low-power mode that consumes as little as 5 µW while retaining the design information, SRAM  
content, registers, and I/O states. Flash*Freeze technology simplifies power management through  
I/O and clock management with rapid recovery to operation mode.  
The Low Power Active capability (static idle) allows for ultra-low-power consumption while the  
IGLOO PLUS device is completely functional in the system. This allows the IGLOO PLUS device to  
control system power management based on external inputs (e.g., scanning for keyboard stimulus)  
while consuming minimal power.  
Nonvolatile flash technology gives IGLOO PLUS devices the advantage of being a secure, low-  
power, single-chip solution that is live at power-up (LAPU). IGLOO PLUS is reprogrammable and  
offers time-to-market benefits at an ASIC-level unit cost.  
These features enable designers to create high-density systems using existing ASIC or FPGA design  
flows and tools.  
IGLOO PLUS devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well  
as clock conditioning circuitry based on an integrated phase-locked loop (PLL). IGLOO PLUS devices  
have up to 125 k system gates, supported with up to 36 kbits of true dual-port SRAM and up to 212  
user I/Os. The AGLP030 devices have no PLL or RAM support.  
Flash*Freeze Technology  
The IGLOO PLUS device offers unique Flash*Freeze technology, allowing the device to enter and  
exit ultra-low-power Flash*Freeze mode. IGLOO PLUS devices do not need additional components  
to turn off I/Os or clocks while retaining the design information, SRAM content, registers, and I/O  
states. Flash*Freeze technology is combined with in-system programmability, which enables users  
to quickly and easily upgrade and update their designs in the final stages of manufacturing or in  
the field. The ability of IGLOO PLUS V2 devices to support a wide range of core and I/O voltages  
(1.2 V to 1.5 V) allows further reduction in power consumption, thus achieving the lowest total  
system power.  
During Flash*Freeze mode, each I/O can be set to the following configurations: hold previous state,  
tristate, or set as HIGH or LOW.  
The availability of low-power modes, combined with reprogrammability, a single-chip and single-  
voltage solution, and availability of small-footprint, high-pin-count packages, make IGLOO PLUS  
devices the best fit for portable electronics.  
Flash Advantages  
Low Power  
IGLOO PLUS devices exhibit power characteristics similar to those of an ASIC, making them an ideal  
choice for power-sensitive applications. IGLOO PLUS devices have only a very limited power-on  
current surge and no high-current transition period, both of which occur on many FPGAs.  
IGLOO PLUS devices also have low dynamic power consumption to further maximize power savings;  
power is even further reduced by the use of a 1.2 V core voltage.  
Low dynamic power consumption, combined with low static power consumption and Flash*Freeze  
technology, gives the IGLOO PLUS device the lowest total system power offered by any FPGA.  
v1.3  
1-1  
IGLOO PLUS Device Family Overview  
Security  
The nonvolatile, flash-based IGLOO PLUS devices do not require a boot PROM, so there is no  
vulnerable external bitstream that can be easily copied. IGLOO PLUS devices incorporate FlashLock,  
which provides a unique combination of reprogrammability and design security without external  
overhead, advantages that only an FPGA with nonvolatile flash programming can offer.  
IGLOO PLUS devices (except AGLP030) utilize a 128-bit flash-based lock and a separate AES key to  
secure programmed intellectual property and configuration data. In addition, all FlashROM data in  
IGLOO PLUS devices can be encrypted prior to loading, using the industry-leading AES-128  
(FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of  
Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOO PLUS devices  
have a built-in AES decryption engine and a flash-based AES key that make them the most  
comprehensive programmable logic device security solution available today. IGLOO PLUS devices  
with AES-based security allow for secure, remote field updates over public networks such as the  
Internet, and ensure that valuable IP remains out of the hands of system overbuilders, system  
cloners, and IP thieves. The contents of a programmed IGLOO PLUS device cannot be read back,  
although secure design verification is possible.  
Security, built into the FPGA fabric, is an inherent component of the IGLOO PLUS family. The flash  
cells are located beneath seven metal layers, and many device design and layout techniques have  
been used to make invasive attacks extremely difficult. The IGLOO PLUS family, with FlashLock and  
AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your  
valuable IP is protected and secure, making remote ISP possible. An IGLOO PLUS device provides  
the most impenetrable security for programmable logic designs.  
Single Chip  
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed,  
the configuration data is an inherent part of the FPGA structure, and no external configuration  
data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based  
IGLOO PLUS FPGAs do not require system configuration components such as EEPROMs or  
microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB  
area, and increases security and system reliability.  
The IGLOO PLUS devices can be operated with a 1.2 V or 1.5 V single-voltage supply for core and  
I/Os, eliminating the need for additional supplies while minimizing total power consumption.  
Live at Power-Up  
The Actel flash-based IGLOO PLUS devices support Level 0 of the LAPU classification standard. This  
feature helps in system component initialization, execution of critical tasks before the processor  
wakes up, setup and configuration of memory blocks, clock generation, and bus activity  
management. The LAPU feature of flash-based IGLOO PLUS devices greatly simplifies total system  
design and reduces total system cost, often eliminating the need for CPLDs and clock generation  
PLLs. In addition, glitches and brownouts in system power will not corrupt the IGLOO PLUS device's  
flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when  
system power is restored. This enables the reduction or complete removal of the configuration  
PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB  
design. Flash-based IGLOO PLUS devices simplify total system design and reduce cost and design  
risk while increasing system reliability and improving system initialization time.  
IGLOO PLUS flash FPGAs allow the user to quickly enter and exit Flash*Freeze mode. This is done  
almost instantly (within 1 µs), and the device retains configuration and data in registers and RAM.  
Unlike SRAM-based FPGAs, the device does not need to reload configuration and design state from  
external memory components; instead, it retains all necessary information to resume operation  
immediately.  
Reduced Cost of Ownership  
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike  
SRAM-based FPGAs, flash-based IGLOO PLUS devices allow all functionality to be live at power-up;  
no external boot PROM is required. On-board security mechanisms prevent access to all the  
programming information and enable secure remote updates of the FPGA logic. Designers can  
perform secure remote in-system reprogramming to support future design iterations and field  
1-2  
v1.3  
IGLOO PLUS Low-Power Flash FPGAs  
upgrades with confidence that valuable intellectual property cannot be compromised or copied.  
Secure ISP can be performed using the industry-standard AES algorithm. The IGLOO PLUS family  
device architecture mitigates the need for ASIC migration at higher user volumes. This makes the  
IGLOO PLUS family a cost-effective ASIC replacement solution, especially for applications in the  
consumer, networking/communications, computing, and avionics markets.  
Firm-Error Immunity  
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere,  
strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the  
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way.  
These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be  
a complete system failure. Firm errors do not exist in the configuration memory of IGLOO PLUS  
flash-based FPGAs. Once it is programmed, the flash cell configuration element of IGLOO PLUS  
FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable  
(or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by  
using error detection and correction (EDAC) circuitry built into the FPGA fabric.  
Advanced Flash Technology  
The IGLOO PLUS family offers many benefits, including nonvolatility and reprogrammability,  
through an advanced flash-based, 130 nm LVCMOS process with seven layers of metal. Standard  
CMOS design techniques are used to implement logic and control functions. The combination of  
fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very  
high logic utilization without compromising device routability or performance. Logic functions  
within the device are interconnected through a four-level routing hierarchy.  
IGLOO PLUS family FPGAs utilize design and process techniques to minimize power consumption in  
all modes of operation.  
Advanced Architecture  
The proprietary IGLOO PLUS architecture provides granularity comparable to standard-cell ASICs.  
The IGLOO PLUS device consists of five distinct and programmable architectural features  
(Figure 1-1 on page 1-4):  
Flash*Freeze technology  
FPGA VersaTiles  
Dedicated FlashROM  
Dedicated SRAM/FIFO memory†  
Extensive CCCs and PLLs†  
Advanced I/O structure  
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input  
logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate  
flash switch interconnections. The versatility of the IGLOO PLUS core tile as either a three-input  
lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA  
fabric. The VersaTile capability is unique to the Actel ProASIC family of third-generation-  
architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy.  
Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable  
interconnect programming. Maximum core utilization is possible for virtually any design.  
In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V)  
programming of IGLOO PLUS devices via an IEEE 1532 JTAG interface.  
The AGLP030 device does not support PLL or SRAM.  
v1.3  
1-3  
IGLOO PLUS Device Family Overview  
Bank 0  
CCC*  
RAM Block  
4,608-Bit Dual-Port  
SRAM or FIFO Block*  
I/Os  
VersaTile  
ISP AES  
Decryption*  
User Nonvolatile  
FlashRom  
Flash*Freeze  
Technology  
Charge  
Pumps  
Bank 2  
* Not supported by AGLP030 devices  
Figure 1-1 • IGLOO PLUS Device Architecture Overview with Four I/O Banks (AGLP030, AGLP060, and  
AGLP125)  
Flash*Freeze Technology  
The IGLOO PLUS device has an ultra-low-power static mode, called Flash*Freeze mode, which  
retains all SRAM and register information and can still quickly return to normal operation.  
Flash*Freeze technology enables the user to quickly (within 1 µs) enter and exit Flash*Freeze mode  
by activating the Flash*Freeze pin while all power supplies are kept at their original values. In  
addition, I/Os and global I/Os can still be driven and can be toggling without impact on power  
consumption, clocks can still be driven or can be toggling without impact on power consumption,  
and the device retains all core registers, SRAM information, and I/O states. I/Os can be individually  
configured to either hold their previous state or be tristated during Flash*Freeze mode.  
Alternatively, they can be set to a certain state using weak pull-up or pull-down I/O attribute  
configuration. No power is consumed by the I/O banks, clocks, JTAG pins, or PLL, and the device  
consumes as little as 5 µW in this mode.  
Flash*Freeze technology allows the user to switch to Active mode on demand, thus simplifying the  
power management of the device.  
The Flash*Freeze pin (active low) can be routed internally to the core to allow the user's logic to  
decide when it is safe to transition to this mode. Refer to Figure 1-2 for an illustration of  
1-4  
v1.3  
IGLOO PLUS Low-Power Flash FPGAs  
entering/exiting Flash*Freeze mode. It is also possible to use the Flash*Freeze pin as a regular I/O if  
Flash*Freeze mode usage is not planned.  
Actel  
IGLOO PLUS  
FPGA  
Flash*Freeze  
Mode Control  
Flash*Freeze Pin  
Figure 1-2 • IGLOO PLUS Flash*Freeze Mode  
VersaTiles  
The IGLOO PLUS core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS®  
core tiles. The IGLOO PLUS VersaTile supports the following:  
All 3-input logic functions—LUT-3 equivalent  
Latch with clear or set  
D-flip-flop with clear or set  
Enable D-flip-flop with clear or set  
Refer to Figure 1-3 for VersaTile configurations.  
Enable D-Flip-Flop with Clear or Set  
D-Flip-Flop with Clear or Set  
LUT-3 Equivalent  
X1  
Data  
Y
Data  
CLK  
CLR  
Y
X2  
X3  
LUT-3  
Y
D-FF  
CLK  
D-FF  
Enable  
CLR  
Figure 1-3 • VersaTile Configurations  
User Nonvolatile FlashROM  
Actel IGLOO PLUS devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The  
FlashROM can be used in diverse system applications:  
Internet protocol addressing (wireless or fixed)  
System calibration settings  
Device serialization and/or inventory control  
Subscription-based business models (for example, set-top boxes)  
Secure key storage for secure communications algorithms  
Asset management/tracking  
Date stamping  
Version management  
The FlashROM is written using the standard IGLOO PLUS IEEE 1532 JTAG programming interface.  
The core can be individually programmed (erased and written), and on-chip AES decryption can be  
used selectively to securely load data over public networks (except in AGLP030 devices), as in  
security keys stored in the FlashROM for a user design.  
v1.3  
1-5  
IGLOO PLUS Device Family Overview  
The FlashROM can be programmed via the JTAG programming interface, and its contents can be  
read back either through the JTAG programming interface or via direct FPGA core addressing. Note  
that the FlashROM can only be programmed from the JTAG interface and cannot be programmed  
from the internal logic array.  
The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-  
byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8  
banks and which of the 16 bytes within that bank are being read. The three most significant bits  
(MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of  
the FlashROM address define the byte.  
The Actel IGLOO PLUS development software solutions, Libero® Integrated Design Environment  
(IDE) and Designer, have extensive support for the FlashROM. One such feature is auto-generation  
of sequential programming files for applications requiring a unique serial number in each part.  
Another feature allows the inclusion of static data for system version control. Data for the  
FlashROM can be generated quickly and easily using Actel Libero IDE and Designer software tools.  
Comprehensive programming file support is also included to allow for easy programming of large  
numbers of parts with differing FlashROM contents.  
SRAM and FIFO  
IGLOO PLUS devices (except AGLP030 devices) have embedded SRAM blocks along their north side.  
Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are  
256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write  
ports that can be configured with different bit widths on each port. For example, data can be sent  
through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized  
via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in AGLP030  
devices).  
In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the  
SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The  
FIFO width and depth are programmable. The FIFO also features programmable Almost Empty  
(AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The  
embedded FIFO control unit contains the counters necessary for generation of the read and write  
address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.  
PLL and CCC  
IGLOO PLUS devices provide designers with very flexible clock conditioning circuit (CCC)  
capabilities. Each member of the IGLOO PLUS family contains six CCCs. One CCC (center west side)  
has a PLL. The AGLP030 device does not have a PLL or CCCs; it contains only inputs to six globals.  
The six CCC blocks are located at the four corners and the centers of the east and west sides. One  
CCC (center west side) has a PLL.  
The four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine  
access.  
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs  
located near the CCC that have dedicated connections to the CCC block.  
The CCC block has these key features:  
Wide input frequency range (fIN_CCC) = 1.5 MHz up to 250 MHz  
Output frequency range (fOUT_CCC) = 0.75 MHz up to 250 MHz  
2 programmable delay types for clock skew minimization  
Clock frequency synthesis (for PLL only)  
Additional CCC specifications:  
Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output  
divider configuration (for PLL only).  
Output duty cycle = 50% 1.5% or better (for PLL only)  
Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single  
global network used (for PLL only)  
Maximum acquisition time is 300 µs (for PLL only)  
1-6  
v1.3  
IGLOO PLUS Low-Power Flash FPGAs  
Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns (for PLL  
only)  
Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz /  
fOUT_CCC (for PLL only)  
Global Clocking  
IGLOO PLUS devices have extensive support for multiple clocking domains. In addition to the CCC  
and PLL support described above, there is a comprehensive global clock distribution network.  
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three  
quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the  
core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for  
rapid distribution of high-fanout nets.  
v1.3  
1-7  
IGLOO PLUS Device Family Overview  
I/Os with Advanced I/O Standards  
The IGLOO PLUS family of FPGAs features a flexible I/O structure, supporting a range of voltages  
(1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V). IGLOO PLUS FPGAs support many different I/O standards.  
The I/Os are organized into four banks. All devices in IGLOO PLUS have four banks. The  
configuration of these banks determines the I/O standards supported.  
Each I/O module contains several input, output, and output enable registers.  
Part Number and Revision Date  
Part Number 51700102-001-3  
Revised December 2008  
List of Changes  
The following table lists critical changes that were made in the current version of the document.  
Previous Version  
Changes in Current Version (v1.3)  
Page  
v1.2  
(August 2008)  
A note was added to Table 1-1 · IGLOO PLUS Product Family: "AGLP060 in  
CS201 does not support the PLL."  
I
Table 1-2 · Package Dimensions was updated to change the nominal size of  
VQ176 from 100 to 400 mm2.  
II  
v1.1  
(July 2008)  
The VQ128 and VQ176 packages were added to Table 1-1 · IGLOO PLUS I to IV  
Product Family, the "I/Os Per Package 1" table, Table 1-2 · Package  
Dimensions, "IGLOO PLUS Ordering Information", and the "Temperature  
Grade Offerings" table.  
v1.0  
(March 2008)  
As a result of the Libero IDE v8.4 release, Actel now offers a wide range of  
core voltage support. The document was updated to change 1.2 V / 1.5 V to  
1.2 V to 1.5 V.  
N/A  
1-8  
v1.3  
IGLOO PLUS Low-Power Flash FPGAs  
Datasheet Categories  
Categories  
In order to provide the latest information to designers, some datasheets are published before data  
has been fully characterized. Datasheets are designated as "Product Brief," "Advance,"  
"Preliminary," and "Production." The definitions of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advance or production) and contains  
general product information. This document gives an overview of specific device and family  
information.  
Advance  
This version contains initial estimated information based on simulation, other products, devices, or  
speed grades. This information can be used as estimates, but not for production. This label only  
applies to the DC and Switching Characteristics chapter of the datasheet and will only be used  
when the data has not been fully characterized.  
Preliminary  
The datasheet contains information based on simulation and/or initial characterization. The  
information is believed to be correct, but changes are possible.  
Unmarked (production)  
This version contains information that is considered to be final.  
Export Administration Regulations (EAR)  
The products described in this document are subject to the Export Administration Regulations  
(EAR). They could require an approved export license prior to export from the United States. An  
export includes release of product or disclosure of technology to a foreign national inside or  
outside the United States.  
Actel Safety Critical, Life Support, and High-Reliability  
Applications Policy  
The Actel products described in this advance status document may not have completed Actel’s  
qualification process. Actel may amend or enhance products during the product introduction and  
qualification process, resulting in changes in device functionality or performance. It is the  
responsibility of each customer to ensure the fitness of any Actel product (but especially a new  
product) for a particular purpose, including appropriateness for safety-critical, life-support, and  
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability  
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is  
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also  
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your  
local Actel sales office for additional reliability information.  
v1.3  
1-9  
2 – IGLOO PLUS DC and Switching Characteristics  
General Specifications  
DC and switching characteristics for –F speed grade targets are based only on simulation.  
The characteristics provided for the –F speed grade are subject to change after establishing  
FPGA specifications. Some restrictions might be added and will be reflected in future revisions  
of this document. The –F speed grade is only supported in the commercial temperature range.  
Operating Conditions  
Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or  
any other conditions beyond those listed under the Recommended Operating Conditions specified  
in Table 2-2 on page 2-2 is not implied.  
Table 2-1 • Absolute Maximum Ratings  
Symbol  
VCC  
Parameter  
DC core supply voltage  
JTAG DC voltage  
Limits  
Units  
–0.3 to 1.65  
V
V
V
V
V
V
VJTAG  
–0.3 to 3.75  
VPUMP Programming voltage  
–0.3 to 3.75  
VCCPLL Analog power supply (PLL)  
–0.3 to 1.65  
–0.3 to 3.75  
VCCI  
VI  
DC I/O buffer supply voltage  
I/O input voltage  
–0.3 V to 3.6 V (when I/O hot insertion mode is enabled)  
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower  
(when I/O hot-insertion mode is disabled)  
2
TSTG  
Storage temperature  
Junction temperature  
–65 to +150  
+125  
°C  
°C  
2
TJ  
Notes:  
1. The device should be operated within the limits specified by the datasheet. During transitions, the input  
signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.  
2. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-2, and for  
recommended operating limits, refer to Table 2-2 on page 2-2.  
Advance v0.4  
2-1  
IGLOO PLUS DC and Switching Characteristics  
Table 2-2 • Recommended Operating Conditions 4  
Symbol  
Parameter  
Commercial  
0 to +70 6  
0 to + 85  
Industrial  
–40 to +85 7  
–40 to +100  
Units  
°C  
°C  
V
TA  
TJ  
Ambient temperature  
Junction temperature 8  
VCC  
1.5 V DC core supply voltage 1  
1.2 V–1.5 V wide range core voltage 2  
JTAG DC voltage  
1.425 to 1.575 1.425 to 1.575  
1.14 to 1.575 1.14 to 1.575  
3
V
VJTAG  
1.4 to 3.6  
3.15 to 3.45  
0 to 3.45  
1.4 to 3.6  
3.15 to 3.45  
0 to 3.45  
V
5
VPUMP  
Programming voltage  
Programming mode  
Operation  
Analog power supply (PLL) 1.5 V DC core supply voltage1  
V
V
9
VCCPLL  
1.4 to 1.6  
1.4 to 1.6  
V
1.2 V–1.5 V wide range core 1.14 to 1.575 1.14 to 1.575  
voltage 2  
V
VCCI  
1.2 V DC supply voltage 2  
1.5 V DC supply voltage  
1.8 V DC supply voltage  
2.5 V DC supply voltage  
3.3 V DC supply voltage  
1.14 to 1.26  
1.14 to 1.26  
V
V
V
V
V
1.425 to 1.575 1.425 to 1.575  
1.7 to 1.9  
2.3 to 2.7  
3.0 to 3.6  
1.7 to 1.9  
2.3 to 2.7  
3.0 to 3.6  
Notes:  
1. For IGLOO® PLUS V5 devices  
2. For IGLOO PLUS V2 devices only, operating at VCCI VCC  
3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to  
each I/O standard are given in Table 2-20 on page 2-19. VCCI should be at the same voltage within a given  
I/O bank.  
4. All parameters representing voltages are measured with respect to GND unless otherwise specified.  
5. VPUMP can be left floating during operation (not programming mode).  
6. Maximum TJ = 85°C.  
7. Maximum TJ = 100°C.  
8. To ensure targeted reliability standards are met across ambient and junction operating temperatures,  
Actel recommends that the user follow best design practices using Actel’s timing and power simulation  
tools.  
9. VCCPLL pins should be tied to VCC pins. See Pin Descriptions for further information.  
Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature 1  
Program Retention  
Maximum Storage  
Maximum Operating Junction  
Temperature TJ (°C) 2  
Product Grade Programming Cycles (biased/unbiased) Temperature TSTG (°C) 2  
Commercial  
Industrial  
Notes:  
500  
500  
20 years  
20 years  
110  
110  
100  
100  
1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.  
2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device  
operating conditions and absolute limits.  
2-2  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Table 2-4 • Overshoot and Undershoot Limits 1  
Average VCCI–GND Overshoot or  
Undershoot Duration  
Maximum Overshoot/  
Undershoot2  
VCCI  
as a Percentage of Clock Cycle2  
2.7 V or less  
10%  
5%  
1.4 V  
1.49 V  
1.1 V  
3 V  
10%  
5%  
1.19 V  
0.79 V  
0.88 V  
0.45 V  
0.54 V  
3.3 V  
3.6 V  
Notes:  
10%  
5%  
10%  
5%  
1. Based on reliability requirements at 85°C.  
2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two  
cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.  
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset  
(Commercial and Industrial)  
Sophisticated power-up management circuitry is designed into every IGLOO PLUS device. These  
circuits ensure easy transition from the powered-off state to the powered-up state of the device.  
The many different supplies can power up in any sequence with minimized current spikes or surges.  
In addition, the I/O will be in a known state through the power-up sequence. The basic principle is  
shown in Figure 2-1 on page 2-4.  
There are five regions to consider during power-up.  
IGLOO PLUS I/Os are activated only if ALL of the following three conditions are met:  
1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 and Figure 2-2 on  
page 2-5).  
2. VCCI > VCC – 0.75 V (typical)  
3. Chip is in the operating mode.  
VCCI Trip Point:  
Ramping up (V5 devices): 0.6 V < trip_point_up < 1.2 V  
Ramping down (V5 devices): 0.5 V < trip_point_down < 1.1 V  
Ramping up (V2 devices): 0.75 V < trip_point_up < 1.05 V  
Ramping down (V2 devices): 0.65 V < trip_point_down < 0.95 V  
VCC Trip Point:  
Ramping up (V5 devices): 0.6 V < trip_point_up < 1.1 V  
Ramping down (V5 devices): 0.5 V < trip_point_down < 1.0 V  
Ramping up (V2 devices): 0.65 V < trip_point_up < 1.05 V  
Ramping down (V2 devices): 0.55 V < trip_point_down < 0.95 V  
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This  
specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note  
the following:  
During programming, I/Os become tristated and weakly pulled up to VCCI.  
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O  
behavior.  
Advance v0.4  
2-3  
IGLOO PLUS DC and Switching Characteristics  
PLL Behavior at Brownout Condition  
Actel recommends using monotonic power supplies or voltage regulators to ensure proper power-  
up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout  
activation levels (see Figure 2-1 and Figure 2-2 on page 2-5 for more details).  
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V  
0.25 V for V5 devices, and 0.75 V 0.2 V for V2 devices), the PLL output lock signal goes LOW  
and/or the output clock is lost. Refer to the "Brownout Voltage" section in the Power-Up/-Down  
Behavior of Low-Power Flash Devices chapter of the ProASIC3 and ProASIC3E handbooks for  
information on clock and lock recovery.  
Internal Power-Up Activation Sequence  
1. Core  
2. Input buffers  
3. Output buffers, after 200 ns delay from input buffer activation  
To make sure the transition from input buffers to output buffers is clean, ensure that there is no  
path longer than 100 ns from input buffer to output buffer in your design.  
VCC = VCCI + VT  
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)  
VCC  
VCC = 1.575 V  
Region 5: I/O buffers are ON  
and power supplies are within  
specification.  
Region 4: I/O  
buffers are ON.  
I/Os are functional  
Region 1: I/O Buffers are OFF  
I/Os meet the entire datasheet  
and timer specifications for  
speed, VIH/VIL , VOH/VOL , etc.  
(except differential inputs)  
but slower because VCCI is  
below specification. For the  
same reason, input buffers do not  
meet VIH/VIL levels, and output  
buffers do not meet VOH/VOL levels.  
VCC = 1.425 V  
Region 2: I/O buffers are ON.  
Region 3: I/O buffers are ON.  
I/Os are functional; I/O DC  
specifications are met,  
but I/Os are slower because  
the VCC is below specification.  
I/Os are functional (except differential inputs)  
but slower because VCCI/VCC are below  
specification. For the same reason, input  
buffers do not meet VIH/VIL levels, and  
output buffers do not meet VOH/VOL levels.  
Activation trip point:  
V
a = 0.85 V 0.25 V  
Deactivation trip point:  
d = 0.75 V 0.25 V  
Region 1: I/O buffers are OFF  
V
VCCI  
Activation trip point:  
Min VCCI datasheet specification  
Va = 0.9 V 0.3 V  
Deactivation trip point:  
Vd = 0.8 V 0.3 V  
voltage at a selected I/O  
standard; i.e., 1.425 V or 1.7 V  
or 2.3 V or 3.0 V  
Figure 2-1 • V5 Devices – I/O State as a Function of VCCI and VCC Voltage Levels  
2-4  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
VCC = VCCI + VT  
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)  
VCC  
V
CC = 1.575 V  
Region 5: I/O buffers are ON  
and power supplies are within  
specification.  
Region 4: I/O  
buffers are ON.  
I/Os are functional  
(except differential inputs)  
Region 1: I/O Buffers are OFF  
I/Os meet the entire datasheet  
and timer specifications for  
speed, VIH/VIL , VOH/VOL , etc.  
but slower because VCCI is  
below specification. For the  
same reason, input buffers do not  
meet VIH/VIL levels, and output  
buffers do not meet VOH/VOL levels.  
VCC = 1.14 V  
Region 2: I/O buffers are ON.  
Region 3: I/O buffers are ON.  
I/Os are functional; I/O DC  
specifications are met,  
but I/Os are slower because  
the VCC is below specification.  
I/Os are functional (except differential inputs)  
but slower because VCCI/VCC are below  
specification. For the same reason, input  
buffers do not meet VIH/VIL levels, and  
output buffers do not meet VOH/VOL levels.  
Activation trip point:  
Va = 0.85 V 0.2 V  
Deactivation trip point:  
Region 1: I/O buffers are OFF  
Vd = 0.75 V 0.2 V  
VCCI  
Activation trip point:  
Va = 0.9 V 0.15 V  
Deactivation trip point:  
Vd = 0.8 V 0.15 V  
Min VCCI datasheet specification  
voltage at a selected I/O  
standard; i.e., 1.14 V,1.425 V, 1.7 V,  
2.3 V, or 3.0 V  
Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels  
Advance v0.4  
2-5  
IGLOO PLUS DC and Switching Characteristics  
Thermal Characteristics  
Introduction  
The temperature variable in the Actel Designer software refers to the junction temperature, not  
the ambient temperature. This is an important distinction because dynamic and static power  
consumption cause the chip junction temperature to be higher than the ambient temperature.  
EQ 2-1 can be used to calculate junction temperature.  
TJ = Junction Temperature = T + TA  
EQ 2-1  
where:  
TA = Ambient temperature  
T = Temperature gradient between junction (silicon) and ambient T = θja * P  
θ
ja = Junction-to-ambient of the package. θja numbers are located in Figure 2-5.  
P = Power dissipation  
Package Thermal Characteristics  
The device junction-to-case thermal resistivity is θjc and the junction-to-ambient air thermal  
resistivity is θja. The thermal characteristics for θja are shown for two air flow rates. The maximum  
operating junction temperature is 100°C. EQ 2-2 shows a sample calculation of the maximum  
operating power dissipation allowed for a 484-pin FBGA package at commercial temperature and  
in still air.  
Max. junction temp. (° C) Max. ambient temp. (° C)  
100° C 70° C  
Maximum Power Allowed = ---------------------------------------------------------------------------------------------------------------------------------------- = -------------------------------------- = 1 . 4 6 W  
θja(° C/W)  
20.5°C/W  
EQ 2-2  
Table 2-5 • Package Thermal Resistivities  
θja  
Pin  
Count  
200 ft./  
min.  
500 ft./  
min.  
Package Type  
θjc  
Still Air  
TBD  
Units  
C/W  
C/W  
C/W  
Chip Scale Package (CSP)  
201  
281  
289  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Temperature and Voltage Derating Factors  
Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 70°C,  
CC = 1.425 V)  
V
For IGLOO PLUS V2 or V5 devices, 1.5 V DC Core Supply Voltage  
Junction Temperature (°C)  
Array Voltage  
VCC (V)  
1.425  
1.5  
–40°C  
0.95  
0.87  
0.81  
0°C  
0.97  
0.89  
0.83  
25°C  
0.98  
0.90  
0.84  
70°C  
1.00  
0.92  
0.86  
85°C  
1.01  
0.93  
0.87  
110°C  
1.02  
0.94  
0.87  
1.575  
2-6  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 70°C,  
VCC = 1.14 V)  
For IGLOO PLUS V2, 1.2 V DC Core Supply Voltage  
Junction Temperature (°C)  
Array Voltage  
VCC (V)  
1.14  
1.2  
–40°C  
0.97  
0.86  
0.79  
0°C  
0.98  
0.87  
0.80  
25°C  
0.99  
0.88  
0.81  
70°C  
1.00  
0.89  
0.81  
85°C  
1.01  
0.89  
0.82  
110°C  
1.01  
0.90  
0.82  
1.26  
Calculating Power Dissipation  
Quiescent Supply Current  
Quiescent supply current (IDD) calculation depends on multiple factors, including operating  
voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power mode  
usage. Actel recommends using the Power Calculator and SmartPower software estimation tools to  
evaluate the projected static and active power based on the user design, power mode usage,  
operating voltage, and temperature.  
Table 2-8 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Flash*Freeze Mode*  
Core Voltage  
1.2 V  
AGLP030  
AGLP060  
AGLP125  
Units  
µA  
Typical (25°C)  
4
6
8
13  
18  
1.5 V  
10  
µA  
* IDD includes VCC, VPUMP, VCCI, VJTAG, and VCCPLL currents.  
Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Sleep Mode (VCC = 0 V)*  
Core Voltage  
AGLP030 AGLP060 AGLP125 Units  
V
CCI/VJTAG = 1.2 V (per bank) Typical  
1.2 V  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
µA  
µA  
µA  
µA  
µA  
(25°C)  
VCCI/VJTAG = 1.5 V (per bank) Typical  
(25°C)  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
VCCI/VJTAG = 1.8 V (per bank) Typical  
(25°C)  
VCCI/VJTAG = 2.5 V (per bank) Typical  
(25°C)  
VCCI/VJTAG = 3.3 V (per bank) Typical  
(25°C)  
* IDD includes VCC, VPUMP, and VCCPLL currents.  
Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Shutdown Mode (VCC  
,
VCCI = 0 V)*  
Core Voltage  
AGLP030  
AGLP060  
AGLP125  
Units  
Typical (25°C)  
1.2 V / 1.5 V  
0
0
0
µA  
* IDD includes VCC, VPUMP, VCCI, VJTAG, and VCCPLL currents.  
Advance v0.4  
2-7  
IGLOO PLUS DC and Switching Characteristics  
Table 2-11 • Quiescent Supply Current (IDD), No IGLOO PLUS Flash*Freeze Mode 1  
Core Voltage AGLP030 AGLP060 AGLP125 Units  
ICCA Current 2  
Typical (25°C)  
1.2 V  
1.5 V  
6
10  
20  
13  
28  
µA  
µA  
16  
ICCI or IJTAG Current 3  
VCCI / VJTAG = 1.2 V (per bank)  
Typical (25°C)  
1.2 V  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
µA  
µA  
µA  
µA  
µA  
VCCI / VJTAG = 1.5 V (per bank)  
Typical (25°C)  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
VCCI / VJTAG = 1.8 V (per bank)  
Typical (25°C)  
VCCI / VJTAG = 2.5 V (per bank)  
Typical (25°C)  
VCCI / VJTAG = 3.3 V (per bank)  
Typical (25°C)  
Notes:  
1. To calculate total device IDD, multiply the number of banks used by ICCI and add ICCA  
contribution.  
2. Includes VCC, VCCPLL, and VPUMP currents.  
3. Per VCCI or VJTAG bank  
Power per I/O Pin  
Table 2-12 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings  
Dynamic Power  
VCCI (V)  
PAC9 (µW/MHz) 1  
Single-Ended  
3.3 V LVTTL / 3.3 V LVCMOS  
3.3 V LVTTL / 3.3 V LVCMOS – Schmitt Trigger  
2.5 V LVCMOS  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
1.5  
1.5  
1.2  
1.2  
16.88  
19.54  
5.20  
6.60  
2.22  
2.29  
1.57  
1.49  
0.55  
0.47  
2.5 V LVCMOS – Schmitt Trigger  
1.8 V LVCMOS  
1.8 V LVCMOS – Schmitt Trigger  
1.5 V LVCMOS (JESD8-11)  
1.5 V LVCMOS (JESD8-11) – Schmitt Trigger  
1.2 V LVCMOS 2  
1.2 V LVCMOS 2 – Schmitt Trigger  
Notes:  
1. PAC9 is the total dynamic power measured on VCCI  
2. Applicable to IGLOO PLUS V2 devices only.  
.
2-8  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Table 2-13 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1  
Dynamic Power  
PAC10 (µW/MHz)2  
C
LOAD (pF)  
VCCI (V)  
Single-Ended  
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
5
5
5
5
5
3.3  
2.5  
1.8  
1.5  
1.2  
128.60  
72.14  
36.94  
25.65  
15.22  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
1.2 V LVCMOS3  
Notes:  
1. Dynamic power consumption is given for standard load and software default drive strength and output  
slew.  
2. PAC10 is the total dynamic power measured on VCCI  
.
3. Applicable for IGLOO PLUS V2 devices only.  
Power Consumption of Various Internal Resources  
Table 2-14 • Different Components Contributing to Dynamic Power Consumption in IGLOO PLUS Devices  
For IGLOO PLUS V2 or V5 Devices, 1.5 V Core Supply Voltage  
Device Specific Dynamic Power  
(µW/MHz)  
Parameter  
PAC1  
Definition  
Clock contribution of a Global Rib  
AGLP125 AGLP060 AGLP030  
11.03  
0.81  
9.3  
0.81  
0.81  
0.11  
0.057  
0.207  
0.17  
0.7  
9.3  
PAC2  
Clock contribution of a Global Spine  
0.41  
PAC3  
Clock contribution of a VersaTile row  
PAC4  
Clock contribution of a VersaTile used as a sequential module  
First contribution of a VersaTile used as a sequential module  
Second contribution of a VersaTile used as a sequential module  
Contribution of a VersaTile used as a combinatorial module  
Average contribution of a routing net  
PAC5  
PAC6  
PAC7  
PAC8  
PAC9  
Contribution of an I/O input pin (standard-dependent)  
Contribution of an I/O output pin (standard-dependent)  
Average contribution of a RAM block during a read operation  
Average contribution of a RAM block during a write operation  
Dynamic contribution for PLL  
See Table 2-12 on page 2-8.  
PAC10  
PAC11  
PAC12  
PAC13  
See Table 2-13.  
25.00  
30.00  
2.70  
Advance v0.4  
2-9  
IGLOO PLUS DC and Switching Characteristics  
Table 2-15 • Different Components Contributing to the Static Power Consumption in IGLOO PLUS Devices  
For IGLOO PLUS V2 or V5 Devices, 1.5 V Core Supply Voltage  
Device -Specific Static Power (mW)  
Parameter  
PDC1  
Definition  
AGLP125  
AGLP060  
AGLP030  
Array static power in Active mode  
Array static power in Static (Idle) mode  
Array static power in Flash*Freeze mode  
Static PLL contribution  
See Table 2-11 on page 2-8  
See Table 2-11 on page 2-8  
See Table 2-8 on page 2-7  
1.84  
PDC2  
PDC3  
2
PDC4  
PDC5  
Bank quiescent power (VCCI-dependent)  
See Table 2-11 on page 2-8  
Notes:  
1. For a different output load, drive strength, or slew rate, Actel recommends using the Actel power  
spreadsheet calculator or the SmartPower tool in Actel Libero® Integrated Design Environment (IDE).  
2. Minimum contribution of the PLL when running at lowest frequency.  
Table 2-16 • Different Components Contributing to Dynamic Power Consumption in IGLOO PLUS Devices  
For IGLOO PLUS V2 Devices, 1.2 V Core Supply Voltage  
Device-Specific Dynamic Power  
(µW/MHz)  
Parameter  
PAC1  
Definition  
Clock contribution of a Global Rib  
AGLP125 AGLP060 AGLP030  
7.07  
0.52  
5.96  
0.52  
5.96  
0.26  
PAC2  
Clock contribution of a Global Spine  
PAC3  
Clock contribution of a VersaTile row  
0.52  
PAC4  
Clock contribution of a VersaTile used as a sequential module  
First contribution of a VersaTile used as a sequential module  
Second contribution of a VersaTile used as a sequential module  
Contribution of a VersaTile used as a combinatorial module  
Average contribution of a routing net  
0.07  
0.045  
0.186  
0.11  
PAC5  
PAC6  
PAC7  
PAC8  
0.45  
PAC9  
Contribution of an I/O input pin (standard-dependent)  
Contribution of an I/O output pin (standard-dependent)  
Average contribution of a RAM block during a read operation  
Average contribution of a RAM block during a write operation  
Dynamic contribution for PLL  
See Table 2-12 on page 2-8  
PAC10  
PAC11  
PAC12  
PAC13  
See Table 2-13 on page 2-9  
25.00  
30.00  
2.10  
2-10  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Table 2-17 • Different Components Contributing to the Static Power Consumption in IGLOO PLUS Devices  
For IGLOO PLUS V2 Devices, 1.2 V Core Supply Voltage  
Device-Specific Static Power (mW)  
Parameter  
PDC1  
Definition  
AGLP125  
AGLP060  
AGLP030  
Array static power in Active mode  
Array static power in Static (Idle) mode  
Array static power in Flash*Freeze mode  
Static PLL contribution  
See Table 2-11 on page 2-8  
See Table 2-11 on page 2-8  
See Table 2-8 on page 2-7  
0.90  
PDC2  
PDC3  
2
PDC4  
PDC5  
Bank quiescent power (VCCI-dependent)  
See Table 2-11 on page 2-8  
Notes:  
1. For a different output load, drive strength, or slew rate, Actel recommends using the Actel power  
spreadsheet calculator or the SmartPower tool in Actel Libero IDE.  
2. Minimum contribution of the PLL when running at lowest frequency.  
Advance v0.4  
2-11  
IGLOO PLUS DC and Switching Characteristics  
Power Calculation Methodology  
This section describes a simplified method to estimate power consumption of an application. For  
more accurate and detailed power estimations, use the SmartPower tool in Actel Libero IDE  
software.  
The power calculation methodology described below uses the following variables:  
The number of PLLs as well as the number and the frequency of each output clock  
generated  
The number of combinatorial and sequential cells used in the design  
The internal clock frequencies  
The number and the standard of I/O pins used in the design  
The number of RAM blocks used in the design  
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-18 on  
page 2-14.  
Enable rates of output buffers—guidelines are provided for typical applications in  
Table 2-19 on page 2-14.  
Read rate and write rate to the memory—guidelines are provided for typical applications in  
Table 2-19 on page 2-14. The calculation should be repeated for each clock domain defined  
in the design.  
Methodology  
Total Power Consumption—P  
TOTAL  
PTOTAL = PSTAT + PDYN  
PSTAT is the total static power consumption.  
PDYN is the total dynamic power consumption.  
Total Static Power Consumption—P  
STAT  
PSTAT = (PDC1 or PDC2 or PDC3) + NBANKS * PDC5  
NBANKS is the number of I/O banks powered in the design.  
Total Dynamic Power Consumption—P  
DYN  
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL  
Global Clock Contribution—P  
CLOCK  
PCLOCK = (PAC1 + NSPINE*PAC2 + NROW*PAC3 + NS-CELL* PAC4) * FCLK  
NSPINE is the number of global spines used in the user design—guidelines are provided  
in Table 2-18 on page 2-14.  
N
ROW is the number of VersaTile rows used in the design—guidelines are provided in  
Table 2-18 on page 2-14.  
CLK is the global clock signal frequency.  
S-CELL is the number of VersaTiles used as sequential modules in the design.  
AC1, PAC2, PAC3, and PAC4 are device-dependent.  
F
N
P
Sequential Cells Contribution—P  
S-CELL  
PS-CELL = NS-CELL * (PAC5 + α1 / 2 * PAC6) * FCLK  
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a  
multi-tile sequential cell is used, it should be accounted for as 1.  
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-18 on  
page 2-14.  
FCLK is the global clock signal frequency.  
2-12  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Combinatorial Cells Contribution—P  
C-CELL  
PC-CELL = NC-CELL* α1 / 2 * PAC7 * FCLK  
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.  
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-18 on  
page 2-14.  
FCLK is the global clock signal frequency.  
Routing Net Contribution—P  
NET  
PNET = (NS-CELL + NC-CELL) * α1 / 2 * PAC8 * FCLK  
NS-CELL is the number of VersaTiles used as sequential modules in the design.  
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.  
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-18 on  
page 2-14.  
FCLK is the global clock signal frequency.  
I/O Input Buffer Contribution—P  
INPUTS  
PINPUTS = NINPUTS * α2 / 2 * PAC9 * FCLK  
NINPUTS is the number of I/O input buffers used in the design.  
α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-18 on page 2-14.  
F
CLK is the global clock signal frequency.  
I/O Output Buffer Contribution—P  
OUTPUTS  
POUTPUTS = NOUTPUTS * α2 / 2 * β1 * PAC10 * FCLK  
NOUTPUTS is the number of I/O output buffers used in the design.  
α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-18 on page 2-14.  
β1 is the I/O buffer enable rate—guidelines are provided in Table 2-19 on page 2-14.  
F
CLK is the global clock signal frequency.  
RAM Contribution—P  
MEMORY  
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * β2 + PAC12 * NBLOCK * FWRITE-CLOCK * β3  
NBLOCKS is the number of RAM blocks used in the design.  
F
READ-CLOCK is the memory read clock frequency.  
β2 is the RAM enable rate for read operations.  
WRITE-CLOCK is the memory write clock frequency.  
F
β3 is the RAM enable rate for write operations—guidelines are provided in Table 2-19  
on page 2-14.  
PLL Contribution—P  
PLL  
PPLL = PDC4 + PAC13 *FCLKOUT  
FCLKOUT is the output clock frequency.1  
1. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its  
corresponding contribution (PAC13* FCLKOUT product) to the total PLL contribution.  
Advance v0.4  
2-13  
IGLOO PLUS DC and Switching Characteristics  
Guidelines  
Toggle Rate Definition  
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage.  
If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency.  
Below are some examples:  
The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at  
half of the clock frequency.  
The average toggle rate of an 8-bit counter is 25%:  
Bit 0 (LSB) = 100%  
Bit 1  
Bit 2  
= 50%  
= 25%  
Bit 7 (MSB) = 0.78125%  
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8  
Enable Rate Definition  
Output enable rate is the average percentage of time during which tristate outputs are enabled.  
When nontristate output buffers are used, the enable rate should be 100%.  
Table 2-18 • Toggle Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
Toggle rate of VersaTile outputs  
I/O buffer toggle rate  
Guideline  
10%  
α1  
α2  
10%  
Table 2-19 • Enable Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
I/O output buffer enable rate  
Guideline  
100%  
β1  
β2  
β3  
RAM enable rate for read operations  
RAM enable rate for write operations  
12.5%  
12.5%  
2-14  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
User I/O Characteristics  
Timing Model  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
Combinational Cell  
Y
LVCMOS 2.5V Output Drive  
Strength = 12 mA High Slew Rate  
t
= 1.40 ns  
t
= 0.89 ns  
PD  
PD  
t
= 1.62 ns  
DP  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
Output drive strength = 12 mA  
High slew rate  
LVTTL  
t
= 1.62 ns  
DP  
t
= 1.98 ns  
PD  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
I/O Module  
(Registered)  
Output drive strength = 8 mA  
High slew rate  
LVTTL  
t
= 1.06 ns  
PY  
t
= 1.70 ns  
DP  
t
= 1.24 ns  
PD  
I/O Module  
(Non-Registered)  
Input LVCMOS 2.5 V  
D
Q
Combinational Cell  
Y
Output drive strength = 4 mA  
High slew rate  
LVCMOS 1.5 V  
t
t
= 0.63 ns  
ICLKQ  
ISUD  
t
= 2.07 ns  
DP  
t
= 0.86 ns  
= 0.18 ns  
PD  
Input LVTTL  
Clock  
I/O Module  
(Registered)  
Register Cell  
Register Cell  
Combinational Cell  
Y
t
= 0.85 ns  
PY  
D
Q
D
Q
D
t
Q
LVTTL 3.3 V Output drive  
strength = 12 mA High slew rate  
I/O Module  
t
= 0.87 ns  
PD  
t
= 1.62 ns  
(Non-Registered)  
DP  
t
t
= 0.80 ns  
= 0.84 ns  
CLKQ  
= 0.89 ns  
= 0.18 ns  
t
t
= 0.80 ns  
= 0.84 ns  
OCLKQ  
CLKQ  
SUD  
t
LVCMOS 1.5 V  
OSUD  
SUD  
Input LVTTL  
Clock  
Input LVTTL  
Clock  
t
= 1.15 ns  
PY  
t
= 0.85 ns  
t
= 0.85 ns  
PY  
PY  
Figure 2-3 • Timing Model  
Operating Conditions: STD Speed, Commercial Temperature Range (TJ = 70°C), Worst-Case  
VCC = 1.425 V, for DC 1.5 V Core Voltage, Applicable to V2 and V5 Devices  
Advance v0.4  
2-15  
IGLOO PLUS DC and Switching Characteristics  
tPY  
tDIN  
D
Q
PAD  
DIN  
Y
CLK  
To Array  
I/O Interface  
tPY = MAX(tPY(R), tPY(F))  
tDIN = MAX(tDIN(R), tDIN(F))  
VIH  
Vtrip  
Vtrip  
VCC  
VIL  
PAD  
Y
50%  
50%  
GND  
tPY  
(R)  
tPY  
(F)  
VCC  
50%  
50%  
DIN  
GND  
tDOUT  
(R)  
tDOUT  
(F)  
Figure 2-4 • Input Buffer Timing Model and Delays (example)  
2-16  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
tDOUT  
D Q  
tDP  
PAD  
DOUT  
CLK  
Std  
Load  
D
From Array  
tDP = MAX(tDP(R), tDP(F))  
tDOUT = MAX(tDOUT(R), tDOUT(F))  
I/O Interface  
tDOUT  
tDOUT  
(F)  
VCC  
(R)  
50%  
50%  
D
0 V  
VCC  
50%  
50%  
DOUT  
PAD  
0 V  
VOH  
Vtrip  
Vtrip  
VOL  
tDP  
(R)  
tDP  
(F)  
Figure 2-5 • Output Buffer Model and Delays (example)  
Advance v0.4  
2-17  
IGLOO PLUS DC and Switching Characteristics  
t
EOUT  
D
Q
CLK  
t , t , t , t , t , t  
E
ZL ZH HZ LZ ZLS ZHS  
EOUT  
D
Q
PAD  
DOUT  
t
CLK  
D
= MAX(t  
(r), t  
(f))  
V
I/O Interface  
EOUT  
EOUT  
EOUT  
V
CC  
D
E
CC  
50%  
50%  
t
EOUT (F)  
t
EOUT (R)  
V
CC  
50%  
50%  
50%  
ZH  
50%  
t
LZ  
EOUT  
PAD  
t
t
t
ZL  
V
HZ  
CCI  
90% V  
CCI  
V
V
trip  
trip  
V
10% V  
OL  
CCI  
V
CC  
D
E
V
CC  
50%  
50%  
t
t
EOUT (F)  
EOUT (R)  
V
CC  
50%  
50%  
EOUT  
PAD  
50%  
t
ZHS  
t
V
ZLS  
OH  
V
V
trip  
trip  
V
OL  
Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example)  
2-18  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Overview of I/O Performance  
Summary of I/O DC Input and Output Levels – Default I/O Software  
Settings  
Table 2-20 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and  
Industrial Conditions—Software Default Settings  
VIL  
Max, V  
VIH  
Min, V  
VOL  
Max, V  
0.4  
VOH  
Min, V  
2.4  
IOL IOH  
mA mA  
12 12  
Drive  
Slew  
I/O Standard  
Strength Rate Min, V  
Max, V  
3.3 V LVTTL /  
3.3 V LVCMOS  
12 mA High  
–0.3  
–0.3  
0.8  
2
3.6  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
1.2 V LVCMOS2  
Notes:  
12 mA High  
0.7  
1.7  
2.7  
1.9  
0.7  
1.7  
12 12  
8 mA  
4 mA  
2 mA  
High  
High  
High  
–0.3 0.35 * VCCI 0.65 * VCCI  
0.45  
VCCI – 0.45  
8
4
2
8
4
2
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
1.26  
0.25 * VCCI 0.75 * VCCI  
1. Currents are measured at 85°C junction temperature.  
2. Applicable to IGLOO PLUS V2 devices operating at VCCI VCC  
Table 2-21 • Summary of Maximum and Minimum DC Input Levels  
Applicable to Commercial and Industrial Conditions  
Commercial1  
Industrial2  
IIL  
IIH  
µA  
10  
10  
10  
10  
10  
IIL  
µA  
15  
15  
15  
15  
15  
IIH  
µA  
15  
15  
15  
15  
15  
DC I/O Standards  
µA  
10  
10  
10  
10  
10  
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
1.2 V LVCMOS3  
Notes:  
1. Commercial range (0°C < TA < 70°C)  
2. Industrial range (–40°C < TA < 85°C)  
3. Applicable to IGLOO PLUS V2 devices operating at VCCI VCC  
Advance v0.4  
2-19  
IGLOO PLUS DC and Switching Characteristics  
Summary of I/O Timing Characteristics – Default I/O Software Settings  
Table 2-22 • Summary of AC Measuring Points  
Standard  
Measuring Trip Point (Vtrip  
)
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
1.4 V  
1.2 V  
1.8 V LVCMOS  
0.90 V  
0.75 V  
0.60 V  
1.5 V LVCMOS  
1.2 V LVCMOS  
Table 2-23 • I/O AC Parameter Definitions  
Parameter  
Parameter Definition  
Data to Pad delay through the Output Buffer  
Pad to Data delay through the Input Buffer  
tDP  
tPY  
tDOUT  
tEOUT  
tDIN  
tHZ  
Data to Output Buffer delay through the I/O interface  
Enable to Output Buffer Tristate Control delay through the I/O interface  
Input Buffer to Data delay through the I/O interface  
Enable to Pad delay through the Output Buffer—HIGH to Z  
Enable to Pad delay through the Output Buffer—Z to HIGH  
Enable to Pad delay through the Output Buffer—LOW to Z  
Enable to Pad delay through the Output Buffer—Z to LOW  
Enable to Pad delay through the Output Buffer with delayed enable—Z to HIGH  
Enable to Pad delay through the Output Buffer with delayed enable—Z to LOW  
tZH  
tLZ  
tZL  
tZHS  
tZLS  
2-20  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Table 2-24 • Summary of I/O Timing Characteristics—Software Default Settings, STD Speed Grade,  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
3.3 V LVTTL /  
12 mA High 5 pF  
0.97 1.62 0.18 0.85 1.14 0.66 1.65 1.27 2.20 2.64 ns  
3.3 V LVCMOS  
2.5 V LVCMOS 12 mA High 5 pF  
0.97 1.62 0.18 1.06 1.22 0.66 1.65 1.34 2.22 2.56 ns  
0.97 1.82 0.18 0.99 1.43 0.66 1.85 1.53 2.29 2.54 ns  
0.97 2.07 0.18 1.15 1.62 0.66 2.10 1.71 2.37 2.57 ns  
1.8 V LVCMOS  
1.5 V LVCMOS  
Notes:  
8 mA High 5 pF  
4 mA High 5 pF  
1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings, STD Speed Grade,  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
3.3 V LVTTL /  
12 mA High 5 pF  
0.98 2.16 0.19 0.99 1.37 0.67 2.20 1.74 2.64 3.37 ns  
3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
1.2 V LVCMOS2  
Notes:  
12 mA High 5 pF  
8 mA High 5 pF  
4 mA High 5 pF  
2 mA High 5 pF  
0.98 2.13 0.19 1.20 1.40 0.67 2.17 1.77 2.65 3.25 ns  
0.98 2.25 0.19 1.12 1.60 0.67 2.30 1.92 2.70 3.15 ns  
0.98 2.48 0.19 1.26 1.79 0.67 2.52 2.10 2.77 3.14 ns  
0.98 2.68 0.19 1.56 2.34 0.67 2.73 2.24 2.53 2.67 ns  
1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2. Applicable to IGLOO PLUS V2 devices operating at VCCI VCC  
.
Advance v0.4  
2-21  
IGLOO PLUS DC and Switching Characteristics  
Detailed I/O DC Characteristics  
Table 2-26 • Input Capacitance  
Symbol  
CIN  
Definition  
Conditions  
Min.  
Max.  
Units  
pF  
Input capacitance  
VIN = 0, f = 1.0 MHz  
VIN = 0, f = 1.0 MHz  
8
8
CINCLK  
Input capacitance on the clock pin  
pF  
Table 2-27 • I/O Output Buffer Maximum Resistances 1  
RPULL-DOWN  
RPULL-UP  
Standard  
3.3  
Drive Strength  
2 mA  
() 2  
() 3  
V
LVTTL  
/
3.3V  
100  
100  
50  
300  
300  
150  
150  
75  
LVCMOS  
4 mA  
6 mA  
8m A  
50  
12 mA  
16 mA  
2 mA  
25  
25  
75  
2.5 V LVCMOS  
100  
100  
50  
200  
200  
100  
100  
50  
4 mA  
6 mA  
8 mA  
50  
12 mA  
2 mA  
25  
1.8 V LVCMOS  
1.5 V LVCMOS  
200  
100  
50  
225  
112  
56  
4 mA  
6 mA  
8 mA  
50  
56  
2 mA  
200  
100  
TBD  
224  
112  
TBD  
4 mA  
1.2 V LVCMOS  
2 mA  
Notes:  
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance  
values depend on VCCI, drive strength selection, temperature, and process. For board design considerations  
and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at  
http://www.actel.com/download/ibis/default.aspx.  
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec  
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec  
2-22  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Table 2-28 • I/O Weak Pull-Up/Pull-Down Resistances  
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values  
1
2
R(WEAK PULL-UP)  
R(WEAK PULL-DOWN)  
()  
()  
VCCI  
Min.  
10 k  
11 k  
18 k  
19 k  
TBD  
Max.  
45 k  
55 k  
70 k  
90 k  
TBD  
Min.  
Max.  
45 k  
3.3 V  
2.5 V  
1.8 V  
1.5 V  
1.2 V  
Notes:  
10 k  
12 k  
17 k  
19 k  
TBD  
74 k  
110 k  
140 k  
TBD  
1. R(WEAK PULL-UP-MAX) = (VOLspec) / I(WEAK PULL-UP-MIN)  
2. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN)  
Table 2-29 • I/O Short Currents IOSH/IOSL  
Drive Strength  
IOSL (mA)*  
IOSH (mA)*  
3.3 V LVTTL / 3.3 V LVCMOS  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
2 mA  
4 mA  
6 mA  
8 mA  
2 mA  
4 mA  
2 mA  
25  
25  
51  
51  
103  
103  
16  
16  
32  
32  
65  
9
27  
27  
54  
54  
109  
109  
18  
2.5 V LVCMOS  
18  
37  
37  
74  
1.8 V LVCMOS  
1.5 V LVCMOS  
11  
17  
35  
35  
13  
25  
TBD  
22  
44  
44  
16  
33  
1.2 V LVCMOS  
TBD  
* TJ = 100°C  
Advance v0.4  
2-23  
IGLOO PLUS DC and Switching Characteristics  
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The  
reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of  
analysis.  
For example, at 110°C, the short current condition would have to be sustained for more than three  
months to cause a reliability concern. The I/O design does not contain any short circuit protection,  
but such protection would only be needed in extremely prolonged stress conditions.  
Table 2-30 • Duration of Short Circuit Event before Failure  
Temperature  
–40°C  
0°C  
Time before Failure  
> 20 years  
> 20 years  
> 20 years  
5 years  
25°C  
70°C  
85°C  
2 years  
100°C  
110°C  
6 months  
3 months  
Table 2-31 • Schmitt Trigger Input Hysteresis  
Hysteresis Voltage Value (Typ.) for Schmitt Mode Input Buffers  
Input Buffer Configuration  
Hysteresis Value (typ.)  
240 mV  
3.3 V LVTTL/LVCMOS (Schmitt trigger mode)  
2.5 V LVCMOS (Schmitt trigger mode)  
1.8 V LVCMOS (Schmitt trigger mode)  
1.5 V LVCMOS (Schmitt trigger mode)  
1.2 V LVCMOS (Schmitt trigger mode)  
140 mV  
80 mV  
60 mV  
40 mV  
Table 2-32 • I/O Input Rise Time, Fall Time, and Related I/O Reliability  
Input Rise/Fall Time Input Rise/Fall Time  
Input Buffer  
(min.)  
(max.)  
Reliability  
LVTTL/LVCMOS (Schmitt trigger  
disabled)  
No requirement  
10 ns *  
20 years (100°C)  
LVTTL/LVCMOS (Schmitt trigger  
enabled)  
No requirement  
No requirement, but  
input noise voltage  
cannot exceed  
20 years (100°C)  
Schmitt hysteresis.  
* The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the  
noise is low, then the rise time and fall time of input buffers can be increased beyond the  
maximum value. The longer the rise/fall times, the more susceptible the input signal is to the  
board noise. Actel recommends signal integrity evaluation/characterization of the system to  
ensure that there is no excessive noise coupling into input signals.  
2-24  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Single-Ended I/O Characteristics  
3.3 V LVTTL / 3.3 V LVCMOS  
Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V  
applications. It uses an LVTTL input buffer and push-pull output buffer.  
Table 2-33 • Minimum and Maximum DC Input and Output Levels  
3.3 V LVTTL /  
3.3 V LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Notes:  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
2
2
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2
4
6
2
25  
25  
27  
27  
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
4
6
51  
54  
8
8
51  
54  
12 12  
16 16  
103  
103  
109  
109  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
R to VCCI for tLZ/tZL/tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ/tZH/tZHS  
Test Point  
5 pF  
Enable Path  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 2-7 • AC Loading  
Table 2-34 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
CLOAD (pF)  
0
3.3  
1.4  
5
* Measuring point = Vtrip. See Table 2-22 on page 2-20 for a complete table of trip points.  
Advance v0.4  
2-25  
IGLOO PLUS DC and Switching Characteristics  
Timing Characteristics  
Applies to 1.5 V DC Core Voltage  
Table 2-35 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Drive Strength  
4 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
STD  
0.97 3.33 0.18 0.85 1.14  
0.97 2.83 0.18 0.85 1.14  
0.97 2.83 0.18 0.85 1.14  
0.97 2.48 0.18 0.85 1.14  
0.97 2.48 0.18 0.85 1.14  
0.66 3.39 2.95 1.82 1.87  
0.66 2.88 2.65 2.04 2.27  
0.66 2.88 2.65 2.04 2.27  
0.66 2.52 2.38 2.20 2.53  
0.66 2.52 2.38 2.20 2.53  
ns  
ns  
ns  
ns  
ns  
6 mA  
8 mA  
12 mA  
16 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Drive Strength  
4 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
STD  
0.97 1.84 0.18 0.85 1.14  
0.97 1.70 0.18 0.85 1.14  
0.97 1.70 0.18 0.85 1.14  
0.97 1.62 0.18 0.85 1.14  
0.97 1.62 0.18 0.85 1.14  
0.66 1.88 1.43 1.81 1.98  
0.66 1.73 1.32 2.04 2.38  
0.66 1.73 1.32 2.04 2.38  
0.66 1.65 1.27 2.20 2.64  
0.66 1.65 1.27 2.20 2.64  
ns  
ns  
ns  
ns  
ns  
6 mA  
8 mA  
12 mA  
16 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-26  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Applies to 1.2 V DC Core Voltage  
Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Drive Strength  
4 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
STD  
0.98 3.92 0.19 0.99 1.37  
0.98 3.40 0.19 0.99 1.37  
0.98 3.40 0.19 0.99 1.37  
0.98 3.04 0.19 0.99 1.37  
0.98 3.04 0.19 0.99 1.37  
0.67 3.99 3.47 2.25 2.56  
0.67 3.47 3.15 2.48 2.97  
0.67 3.47 3.15 2.48 2.97  
0.67 3.10 2.88 2.64 3.24  
0.67 3.10 2.88 2.64 3.24  
ns  
ns  
ns  
ns  
ns  
6 mA  
8 mA  
12 mA  
16 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Drive Strength  
4 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
STD  
0.98 2.39 0.19 0.99 1.37  
0.98 2.24 0.19 0.99 1.37  
0.98 2.24 0.19 0.99 1.37  
0.98 2.16 0.19 0.99 1.37  
0.98 2.16 0.19 0.99 1.37  
0.67 2.43 1.91 2.24 2.68  
0.67 2.28 1.80 2.48 3.10  
0.67 2.28 1.80 2.48 3.10  
0.67 2.20 1.74 2.64 3.37  
0.67 2.20 1.74 2.64 3.37  
ns  
ns  
ns  
ns  
ns  
6 mA  
8 mA  
12 mA  
16 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.4  
2-27  
IGLOO PLUS DC and Switching Characteristics  
2.5 V LVCMOS  
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 2.5 V applications. It uses a 5 V–tolerant input buffer and push-pull output buffer.  
Table 2-39 • Minimum and Maximum DC Input and Output Levels  
2.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSL  
IOSH  
IIL  
IIH  
Drive  
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
2.7  
2.7  
2.7  
2.7  
2.7  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
2
2
4
6
8
16  
16  
32  
32  
65  
18  
18  
37  
37  
74  
10 10  
10 10  
10 10  
10 10  
10 10  
4
6
8
12 12  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
R to VCCI for tLZ/tZL/tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ/tZH/tZHS  
Test Point  
5 pF  
Enable Path  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 2-8 • AC Loading  
Table 2-40 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
CLOAD (pF)  
0
2.5  
1.2  
5
* Measuring point = Vtrip. See Table 2-22 on page 2-20 for a complete table of trip points.  
2-28  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Timing Characteristics  
Applies to 1.5 V DC Core Voltage  
Table 2-41 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Drive Strength  
4 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
0.97 3.80 0.18 1.06 1.22  
0.97 3.21 0.18 1.06 1.22  
0.97 3.21 0.18 1.06 1.22  
0.97 2.80 0.18 1.06 1.22  
0.66 3.87 3.47 1.80 1.70  
0.66 3.27 3.11 2.05 2.17  
0.66 3.27 3.11 2.05 2.17  
0.66 2.85 2.79 2.22 2.48  
ns  
ns  
ns  
ns  
6 mA  
8 mA  
12 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-42 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Drive Strength  
4 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
0.97 1.90 0.18 1.06 1.22  
0.97 1.73 0.18 1.06 1.22  
0.97 1.73 0.18 1.06 1.22  
0.97 1.62 0.18 1.06 1.22  
0.66 1.93 1.57 1.79 1.77  
0.66 1.76 1.42 2.04 2.25  
0.66 1.76 1.42 2.04 2.25  
0.66 1.65 1.34 2.22 2.56  
ns  
ns  
ns  
ns  
6 mA  
8 mA  
12 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.4  
2-29  
IGLOO PLUS DC and Switching Characteristics  
Applies to 1.2 V DC Core Voltage  
Table 2-43 • 2.5 LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V  
Drive Strength  
4 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
0.98 4.37 0.19 1.20 1.40  
0.98 3.76 0.19 1.20 1.40  
0.98 3.76 0.19 1.20 1.40  
0.98 3.34 0.19 1.20 1.40  
0.67 4.45 3.95 2.21 2.35  
0.67 3.83 3.59 2.47 2.83  
0.67 3.83 3.59 2.47 2.83  
0.67 3.41 3.26 2.65 3.15  
ns  
ns  
ns  
ns  
6 mA  
8 mA  
12 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-44 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V  
Drive Strength  
4 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
0.98 2.42 0.19 1.20 1.40  
0.98 2.24 0.19 1.20 1.40  
0.98 2.24 0.19 1.20 1.40  
0.98 2.13 0.19 1.20 1.40  
0.67 2.46 2.01 2.21 2.44  
0.67 2.28 1.85 2.46 2.93  
0.67 2.28 1.85 2.46 2.93  
0.67 2.17 1.77 2.65 3.25  
ns  
ns  
ns  
ns  
6 mA  
8 mA  
12 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-30  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
1.8 V LVCMOS  
Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.  
Table 2-45 • Minimum and Maximum DC Input and Output Levels  
1.8 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength Min., V Max., V  
Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
–0.3 0.35 * VCCI 0.65 * VCCI  
1.9  
1.9  
1.9  
1.9  
0.45  
0.45  
0.45  
0.45  
VCCI – 0.45  
VCCI – 0.45  
VCCI – 0.45  
VCCI – 0.45  
2
4
2
4
9
11  
22  
44  
44  
10 10  
10 10  
10 10  
10 10  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
17  
35  
35  
6
6
8
8
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
R to VCCI for tLZ/tZL/tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ/tZH/tZHS  
Test Point  
5 pF  
Enable Path  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 2-9 • AC Loading  
Table 2-46 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
C
LOAD (pF)  
0
1.8  
0.9  
5
* Measuring point = Vtrip. See Table 2-22 on page 2-20 for a complete table of trip points.  
Advance v0.4  
2-31  
IGLOO PLUS DC and Switching Characteristics  
Timing Characteristics  
Applies to 1.5 V DC Core Voltage  
Table 2-47 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
STD  
STD  
STD  
STD  
0.97 5.11 0.18 0.99 1.43  
0.97 4.31 0.18 0.99 1.43  
0.97 3.78 0.18 0.99 1.43  
0.97 3.78 0.18 0.99 1.43  
0.66 5.20 4.48 1.78 1.30  
0.66 4.39 4.04 2.08 2.07  
0.66 3.85 3.63 2.29 2.46  
0.66 3.85 3.63 2.29 2.46  
4 mA  
ns  
6 mA  
ns  
8 mA  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-48 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
0.97 2.21 0.18 0.99 1.43  
0.97 1.97 0.18 0.99 1.43  
0.97 1.82 0.18 0.99 1.43  
0.97 1.82 0.18 0.99 1.43  
0.66 2.25 1.86 1.78 1.35  
0.66 2.01 1.64 2.08 2.15  
0.66 1.85 1.53 2.29 2.54  
0.66 1.85 1.53 2.29 2.54  
ns  
ns  
ns  
ns  
4 mA  
6 mA  
8 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-32  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Applies to 1.2 V DC Core Voltage  
Table 2-49 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
0.98 5.61 0.19 1.12 1.60  
0.98 4.80 0.19 1.12 1.60  
0.98 4.25 0.19 1.12 1.60  
0.98 4.25 0.19 1.12 1.60  
0.67 5.71 4.96 2.18 1.87  
0.67 4.89 4.50 2.49 2.67  
0.67 4.33 4.09 2.71 3.06  
0.67 4.33 4.09 2.71 3.06  
ns  
ns  
ns  
ns  
4 mA  
6 mA  
8 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-50 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
STD  
STD  
0.98 2.66 0.19 1.12 1.60  
0.98 2.41 0.19 1.12 1.60  
0.98 2.25 0.19 1.12 1.60  
0.98 2.25 0.19 1.12 1.60  
0.67 2.71 2.27 2.18 1.92  
0.67 2.46 2.04 2.49 2.75  
0.67 2.30 1.92 2.70 3.15  
0.67 2.30 1.92 2.70 3.15  
ns  
ns  
ns  
ns  
4 mA  
6 mA  
8 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.4  
2-33  
IGLOO PLUS DC and Switching Characteristics  
1.5 V LVCMOS (JESD8-11)  
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.  
Table 2-51 • Minimum and Maximum DC Input and Output Levels  
1.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min.,  
V
Max., V  
Min., V Max., V Max., V  
Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
Notes:  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI  
2
4
2
4
13  
25  
16  
33  
10 10  
10 10  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
R to VCCI for tLZ/tZL/tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ/tZH/tZHS  
Test Point  
5 pF  
Enable Path  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 2-10 • AC Loading  
Table 2-52 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
C
LOAD (pF)  
0
1.5  
0.75  
5
* Measuring point = Vtrip. See Table 2-22 on page 2-20 for a complete table of trip points.  
2-34  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Timing Characteristics  
Applies to 1.5 V DC Core Voltage  
Table 2-53 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
0.97 5.47 0.18 1.15 1.62  
0.97 4.82 0.18 1.15 1.62  
0.66 5.57 4.89 2.13 2.02  
0.66 4.91 4.42 2.37 2.47  
ns  
ns  
4 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-54 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
0.97 2.27 0.18 1.15 1.62  
0.97 2.07 0.18 1.15 1.62  
0.66 2.31 1.85 2.13 2.11  
0.66 2.10 1.71 2.37 2.57  
ns  
ns  
4 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.4  
2-35  
IGLOO PLUS DC and Switching Characteristics  
Applies to 1.2 V DC Core Voltage  
Table 2-55 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
0.98 5.94 0.19 1.26 1.79  
0.98 5.28 0.19 1.26 1.79  
0.67 6.05 5.36 2.53 2.58  
0.67 5.38 4.88 2.78 3.04  
ns  
ns  
4 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-56 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Drive Strength  
2 mA  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
STD  
STD  
0.98 2.68 0.19 1.26 1.79  
0.98 2.48 0.19 1.26 1.79  
0.67 2.73 2.24 2.53 2.67  
0.67 2.52 2.10 2.77 3.14  
ns  
ns  
4 mA  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-36  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
1.2 V LVCMOS (JESD8-12A)  
Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose  
1.2 V applications. It uses a 1.2 V input buffer and a push-pull output buffer.  
Table 2-57 • Minimum and Maximum DC Input and Output Levels  
1.2 V  
LVCMOS  
VIL  
Max.,  
VIH  
VOL  
VOH  
IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min.,  
V
V
Min., V Max., V Max., V  
Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
–0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI  
2
2
TBD  
TBD  
10 10  
Notes:  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 85°C junction temperature.  
3. Software default selection highlighted in gray.  
R to VCCI for tLZ/tZL/tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ/tZH/tZHS  
Test Point  
5 pF  
Enable Path  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 2-11 • AC Loading  
Table 2-58 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
C
LOAD (pF)  
0
1.2  
0.6  
5
* Measuring point = Vtrip. See Table 2-22 on page 2-20 for a complete table of trip points.  
Advance v0.4  
2-37  
IGLOO PLUS DC and Switching Characteristics  
Timing Characteristics  
Applies to 1.2 V DC Core Voltage  
Table 2-59 • 1.2 V LVCMOS Low Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V  
Drive Strength  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
ns  
2 mA  
STD 0.98 8.28 0.19 1.56 2.34  
0.67 3.24 2.76 3.00 3.25  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-60 • 1.2 V LVCMOS High Slew  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V  
Drive Strength  
Speed Grade tDOUT tDP tDIN tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ Units  
ns  
2 mA  
STD 0.98 2.68 0.19 1.56 2.34  
0.67 2.73 2.24 2.53 2.67  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-38  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
I/O Register Specifications  
Fully Registered I/O Buffers with Asynchronous Preset  
Preset  
Data  
L
D
DOUT  
EOUT  
Data_out  
PRE  
F
PRE  
DFN1P1  
Y
E
Core  
Array  
D
Q
D
Q
C
DFN1P1  
H
I
CLK  
A
PRE  
DFN1P1  
J
D
Q
Data Input I/O Register with:  
Active High Preset  
Positive-Edge Triggered  
Data Output Register and  
Enable Output Register with:  
Active High Preset  
Postive-Edge Triggered  
INBUF  
CLKBUF  
Figure 2-12 • Timing Model of Registered I/O Buffers with Asynchronous Preset  
Advance v0.4  
2-39  
IGLOO PLUS DC and Switching Characteristics  
Table 2-61 • Parameter Definition and Measuring Nodes  
Measuring Nodes  
(from, to)*  
Parameter Name  
tOCLKQ  
Parameter Definition  
Clock-to-Q of the Output Data Register  
H, DOUT  
F, H  
tOSUD  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
F, H  
tOPRE2Q  
tOREMPRE  
tORECPRE  
tOECLKQ  
tOESUD  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
L, DOUT  
L, H  
L, H  
H, EOUT  
J, H  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
tOEHD  
J, H  
tOEPRE2Q  
tOEREMPRE  
tOERECPRE  
tICLKQ  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
I, EOUT  
I, H  
I, H  
A, E  
tISUD  
Data Setup Time for the Input Data Register  
C, A  
tIHD  
Data Hold Time for the Input Data Register  
C, A  
tIPRE2Q  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
D, E  
tIREMPRE  
tIRECPRE  
D, A  
D, A  
* See Figure 2-12 on page 2-39 for more information.  
2-40  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Fully Registered I/O Buffers with Asynchronous Clear  
DOUT  
FF  
Data_out  
Y
Core  
D
Q
D
Q
Data  
Array  
CC  
EE  
DFN1C1  
DFN1C1  
EOUT  
CLR  
CLR  
LL  
HH  
CLK  
CLR  
AA  
JJ  
D
Q
DD  
DFN1C1  
Data Input I/O Register with  
Active High Clear  
CLR  
Positive-Edge Triggered  
Data Output Register and  
Enable Output Register with  
Active High Clear  
Positive-Edge Triggered  
INBUF  
CLKBUF  
Figure 2-13 • Timing Model of the Registered I/O Buffers with Asynchronous Clear  
Advance v0.4  
2-41  
IGLOO PLUS DC and Switching Characteristics  
Table 2-62 • Parameter Definition and Measuring Nodes  
Measuring Nodes  
(from, to)*  
Parameter Name  
tOCLKQ  
Parameter Definition  
Clock-to-Q of the Output Data Register  
HH, DOUT  
FF, HH  
tOSUD  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
FF, HH  
tOCLR2Q  
tOREMCLR  
tORECCLR  
tOECLKQ  
tOESUD  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
LL, DOUT  
LL, HH  
LL, HH  
HH, EOUT  
JJ, HH  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
tOEHD  
JJ, HH  
tOECLR2Q  
tOEREMCLR  
tOERECCLR  
tICLKQ  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
II, EOUT  
II, HH  
II, HH  
AA, EE  
CC, AA  
CC, AA  
DD, EE  
DD, AA  
DD, AA  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tICLR2Q  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
tIREMCLR  
tIRECCLR  
* See Figure 2-13 on page 2-41 for more information.  
2-42  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Input Register  
tICKMPWH tICKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
tIHD  
tISUD  
50%  
50%  
tIWPRE  
1
0
Data  
tIREMPRE  
tIRECPRE  
Preset  
50%  
50%  
50%  
tIWCLR  
tIRECCLR  
50%  
tIREMCLR  
50%  
50%  
Clear  
tIPRE2Q  
50%  
50%  
tICLKQ  
50%  
Out_1  
tICLR2Q  
Figure 2-14 • Input Register Timing Diagram  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-63 • Input Data Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tICLKQ  
Description  
Std. Units  
Clock-to-Q of the Input Data Register  
0.63  
0.18  
0.00  
0.46  
0.46  
0.00  
0.23  
0.00  
0.23  
0.19  
0.19  
0.28  
0.31  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tICLR2Q  
tIPRE2Q  
tIREMCLR  
tIRECCLR  
tIREMPRE  
tIRECPRE  
tIWCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
Asynchronous Clear Minimum Pulse Width for the Input Data Register  
Asynchronous Preset Minimum Pulse Width for the Input Data Register  
Clock Minimum Pulse Width HIGH for the Input Data Register  
Clock Minimum Pulse Width LOW for the Input Data Register  
tIWPRE  
tICKMPWH  
tICKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.4  
2-43  
IGLOO PLUS DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-64 • Input Data Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Description  
Clock-to-Q of the Input Data Register  
Parameter  
tICLKQ  
Std. Units  
0.99  
0.29  
0.00  
0.68  
0.68  
0.00  
0.24  
0.00  
0.24  
0.19  
0.19  
0.28  
0.31  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tICLR2Q  
tIPRE2Q  
tIREMCLR  
tIRECCLR  
tIREMPRE  
tIRECPRE  
tIWCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
Asynchronous Clear Minimum Pulse Width for the Input Data Register  
Asynchronous Preset Minimum Pulse Width for the Input Data Register  
Clock Minimum Pulse Width HIGH for the Input Data Register  
Clock Minimum Pulse Width LOW for the Input Data Register  
tIWPRE  
tICKMPWH  
tICKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2-44  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Output Register  
t
t
OCKMPWH OCKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
t
t
OSUD OHD  
50%  
50%  
1
0
Data_out  
Preset  
t
OREMPRE  
t
t
ORECPRE  
OWPRE  
50%  
50%  
50%  
t
t
OREMCLR  
t
ORECCLR  
OWCLR  
50%  
50%  
50%  
Clear  
t
OPRE2Q  
50%  
50%  
50%  
DOUT  
t
OCLR2Q  
t
OCLKQ  
Figure 2-15 • Output Register Timing Diagram  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-65 • Output Data Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tOCLKQ  
Description  
Std. Units  
Clock-to-Q of the Output Data Register  
0.89  
0.18  
0.00  
0.72  
0.78  
0.00  
0.23  
0.00  
0.23  
0.19  
0.19  
0.28  
0.31  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOSUD  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOCLR2Q  
tOPRE2Q  
tOREMCLR  
tORECCLR  
tOREMPRE  
tORECPRE  
tOWCLR  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Asynchronous Clear Minimum Pulse Width for the Output Data Register  
Asynchronous Preset Minimum Pulse Width for the Output Data Register  
Clock Minimum Pulse Width HIGH for the Output Data Register  
Clock Minimum Pulse Width LOW for the Output Data Register  
tOWPRE  
tOCKMPWH  
tOCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.4  
2-45  
IGLOO PLUS DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-66 • Output Data Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Description  
Clock-to-Q of the Output Data Register  
Parameter  
tOCLKQ  
Std. Units  
1.37  
0.22  
0.00  
1.05  
1.14  
0.00  
0.24  
0.00  
0.24  
0.19  
0.19  
0.28  
0.31  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOSUD  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOCLR2Q  
tOPRE2Q  
tOREMCLR  
tORECCLR  
tOREMPRE  
tORECPRE  
tOWCLR  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Asynchronous Clear Minimum Pulse Width for the Output Data Register  
Asynchronous Preset Minimum Pulse Width for the Output Data Register  
Clock Minimum Pulse Width HIGH for the Output Data Register  
Clock Minimum Pulse Width LOW for the Output Data Register  
tOWPRE  
tOCKMPWH  
tOCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2-46  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Output Enable Register  
t
t
OECKMPWH OECKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
t
t
OESUD OEHD  
50%  
50%  
0
1
D_Enable  
t
t
OEWPRE  
OEREMPRE  
t
OERECPRE  
50%  
50%  
50%  
Preset  
Clear  
EOUT  
t
t
t
OERECCLR  
OEREMCLR  
OEWCLR  
50%  
50%  
50%  
t
t
OECLR2Q  
OEPRE2Q  
50%  
50%  
50%  
t
OECLKQ  
Figure 2-16 • Output Enable Register Timing Diagram  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-67 • Output Enable Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tOECLKQ  
Description  
Std. Units  
Clock-to-Q of the Output Enable Register  
0.91  
0.18  
0.00  
0.74  
0.81  
0.00  
0.23  
0.00  
0.23  
0.19  
0.19  
0.28  
0.31  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOESUD  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
tOEHD  
tOECLR2Q  
tOEPRE2Q  
tOEREMCLR  
tOERECCLR  
tOEREMPRE  
tOERECPRE  
tOEWCLR  
tOEWPRE  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
Asynchronous Clear Minimum Pulse Width for the Output Enable Register  
Asynchronous Preset Minimum Pulse Width for the Output Enable Register  
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register  
tOECKMPWL Clock Minimum Pulse Width LOW for the Output Enable Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.4  
2-47  
IGLOO PLUS DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-68 • Output Enable Register Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Description  
Clock-to-Q of the Output Enable Register  
Parameter  
tOECLKQ  
Std. Units  
1.40  
0.22  
0.00  
1.08  
1.19  
0.00  
0.24  
0.00  
0.24  
0.19  
0.19  
0.28  
0.31  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOESUD  
Data Setup Time for the Output Enable Register  
tOEHD  
Data Hold Time for the Output Enable Register  
tOECLR2Q  
tOEPRE2Q  
tOEREMCLR  
tOERECCLR  
tOEREMPRE  
tOERECPRE  
tOEWCLR  
tOEWPRE  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
Asynchronous Clear Minimum Pulse Width for the Output Enable Register  
Asynchronous Preset Minimum Pulse Width for the Output Enable Register  
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register  
tOECKMPWL Clock Minimum Pulse Width LOW for the Output Enable Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2-48  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
VersaTile Characteristics  
VersaTile Specifications as a Combinatorial Module  
The IGLOO PLUS library offers all combinations of LUT-3 combinatorial functions. In this section,  
timing characteristics are presented for a sample of the library. For more details, refer to the  
Fusion, IGLOO/e, and ProASIC3/ E Macro Library Guide.  
A
Y
Y
INV  
A
A
B
NOR2  
OR2  
Y
B
A
B
A
B
Y
AND2  
Y
NAND2  
A
B
C
A
B
Y
XOR3  
XOR2  
Y
A
B
C
A
MAJ3  
0
Y
A
B
C
MUX2  
Y
B
S
NAND3  
1
Figure 2-17 • Sample of Combinatorial Cells  
Advance v0.4  
2-49  
IGLOO PLUS DC and Switching Characteristics  
t
PD  
Fanout = 4  
A
B
Net  
Y
NAND2 or Any  
Combinatorial  
Logic  
Length = 1 VersaTile  
t
= MAX(t  
, t  
,
PD  
PD(RR) PD(RF)  
t
, t  
) where edges are  
PD(FF) PD(FR)  
A
applicable for a particular  
combinatorial cell  
Net  
Y
Y
NAND2 or Any  
Combinatorial  
Logic  
Length = 1 VersaTile  
B
A
Net  
NAND2 or Any  
Combinatorial  
Logic  
Length = 1 VersaTile  
B
A
Net  
Y
NAND2 or Any  
Combinatorial  
Logic  
Length = 1 VersaTile  
B
VCC  
50%  
50%  
VCC  
A, B, C  
GND  
50%  
50%  
OUT  
OUT  
GND  
tPD  
tPD  
(FF)  
(RR)  
VCC  
tPD  
(FR)  
50%  
50%  
tPD  
GND  
(RF)  
Figure 2-18 • Timing Model and Waveforms  
2-50  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-69 • Combinatorial Cell Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Combinatorial Cell  
INV  
Equation  
Y = !A  
Parameter  
tPD  
Std.  
0.72  
0.86  
0.87  
0.89  
0.90  
1.35  
1.33  
1.98  
1.24  
1.40  
Units  
ns  
AND2  
Y = A · B  
tPD  
ns  
NAND2  
OR2  
Y = !(A · B)  
Y = A + B  
tPD  
ns  
tPD  
ns  
NOR2  
Y = !(A + B)  
Y = A B  
Y = MAJ(A, B, C)  
Y = A B C  
Y = A !S + B S  
Y = A · B · C  
tPD  
ns  
XOR2  
tPD  
ns  
MAJ3  
tPD  
ns  
XOR3  
tPD  
ns  
MUX2  
AND3  
tPD  
ns  
tPD  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
1.2 V DC Core Voltage  
Table 2-70 • Combinatorial Cell Propagation Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Combinatorial Cell  
INV  
Equation  
Y = !A  
Parameter  
tPD  
Std.  
1.27  
1.47  
1.52  
1.51  
1.57  
2.28  
2.39  
3.50  
2.21  
2.50  
Units  
ns  
AND2  
Y = A · B  
tPD  
ns  
NAND2  
OR2  
Y = !(A · B)  
Y = A + B  
tPD  
ns  
tPD  
ns  
NOR2  
Y = !(A + B)  
Y = A B  
Y = MAJ(A, B, C)  
Y = A B C  
Y = A !S + B S  
Y = A · B · C  
tPD  
ns  
XOR2  
tPD  
ns  
MAJ3  
tPD  
ns  
XOR3  
tPD  
ns  
MUX2  
AND3  
tPD  
ns  
tPD  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Advance v0.4  
2-51  
IGLOO PLUS DC and Switching Characteristics  
VersaTile Specifications as a Sequential Module  
The IGLOO PLUS library offers a wide variety of sequential cells, including flip-flops and latches.  
Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are  
presented for a representative sample from the library. For more details, refer to the Fusion,  
IGLOO/e, and ProASIC3/E Macro Library Guide.  
Data  
CLK  
Out  
Data  
Out  
D
Q
D
Q
En  
DFN1  
DFN1E1  
CLK  
PRE  
Data  
Out  
Data  
Out  
Q
D
D
Q
En  
DFN1C1  
DFI1E1P1  
CLK  
CLK  
CLR  
Figure 2-19 • Sample of Sequential Cells  
2-52  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
t
t
CKMPWH CKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
t
HD  
t
SUD  
50%  
50%  
Data  
EN  
0
50%  
t
t
RECPRE  
WPRE  
t
REMPRE  
t
HE  
50%  
50%  
50%  
t
PRE  
CLR  
Out  
SUE  
t
t
t
REMCLR  
RECCLR  
WCLR  
50%  
50%  
50%  
t
PRE2Q  
t
CLR2Q  
50%  
50%  
50%  
t
CLKQ  
Figure 2-20 • Timing Model and Waveforms  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-71 • Register Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tCLKQ  
Description  
Std. Units  
Clock-to-Q of the Core Register  
0.80  
0.84  
0.00  
0.73  
0.00  
0.62  
0.60  
0.00  
0.23  
0.00  
0.24  
0.30  
0.30  
0.56  
0.56  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSUD  
Data Setup Time for the Core Register  
tHD  
Data Hold Time for the Core Register  
tSUE  
Enable Setup Time for the Core Register  
tHE  
Enable Hold Time for the Core Register  
tCLR2Q  
tPRE2Q  
tREMCLR  
tRECCLR  
tREMPRE  
tRECPRE  
tWCLR  
Asynchronous Clear-to-Q of the Core Register  
Asynchronous Preset-to-Q of the Core Register  
Asynchronous Clear Removal Time for the Core Register  
Asynchronous Clear Recovery Time for the Core Register  
Asynchronous Preset Removal Time for the Core Register  
Asynchronous Preset Recovery Time for the Core Register  
Asynchronous Clear Minimum Pulse Width for the Core Register  
tWPRE  
Asynchronous Preset Minimum Pulse Width for the Core Register  
Clock Minimum Pulse Width HIGH for the Core Register  
Clock Minimum Pulse Width LOW for the Core Register  
tCKMPWH  
tCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.4  
2-53  
IGLOO PLUS DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-72 • Register Delays  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Parameter  
tCLKQ  
Description  
Std. Units  
Clock-to-Q of the Core Register  
1.40  
1.35  
0.00  
1.29  
0.00  
0.89  
0.87  
0.00  
0.24  
0.00  
0.24  
0.46  
0.46  
0.95  
0.95  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSUD  
Data Setup Time for the Core Register  
tHD  
Data Hold Time for the Core Register  
tSUE  
Enable Setup Time for the Core Register  
tHE  
Enable Hold Time for the Core Register  
tCLR2Q  
tPRE2Q  
tREMCLR  
tRECCLR  
tREMPRE  
tRECPRE  
tWCLR  
Asynchronous Clear-to-Q of the Core Register  
Asynchronous Preset-to-Q of the Core Register  
Asynchronous Clear Removal Time for the Core Register  
Asynchronous Clear Recovery Time for the Core Register  
Asynchronous Preset Removal Time for the Core Register  
Asynchronous Preset Recovery Time for the Core Register  
Asynchronous Clear Minimum Pulse Width for the Core Register  
Asynchronous Preset Minimum Pulse Width for the Core Register  
Clock Minimum Pulse Width HIGH for the Core Register  
Clock Minimum Pulse Width LOW for the Core Register  
tWPRE  
tCKMPWH  
tCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2-54  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Global Resource Characteristics  
AGLP125 Clock Tree Topology  
Clock delays are device-specific. Figure 2-21 is an example of a global tree used for clock routing.  
The global tree presented in Figure 2-21 is driven by a CCC located on the west side of the AGLP125  
device. It is used to drive all D-flip-flops in the device.  
Central  
Global Rib  
CCC  
VersaTile  
Rows  
Global Spine  
Figure 2-21 • Example of Global Tree Use in an AGLP125 Device for Clock Routing  
Advance v0.4  
2-55  
IGLOO PLUS DC and Switching Characteristics  
Global Tree Timing Characteristics  
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not  
include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be  
driven and conditioned internally by the CCC module. For more details on clock conditioning  
capabilities, refer to the "Clock Conditioning Circuits" section on page 2-59. Table 2-73 to  
Table 2-78 on page 2-58 present minimum and maximum global clock delays within each device.  
Minimum and maximum delays are measured with minimum and maximum loading.  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-73 • AGLP030 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Std.  
Max.2  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
1.21  
Units  
ns  
1.42  
1.49  
tRCKH  
Input HIGH Delay for Global Clock  
1.23  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.27  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-74 • AGLP060 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
1.32  
Max.2  
Units  
ns  
1.52  
tRCKH  
Input HIGH Delay for Global Clock  
1.34  
1.59  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.26  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-56  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Table 2-75 • AGLP125 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
1.31  
Max.2  
Units  
ns  
1.66  
tRCKH  
Input HIGH Delay for Global Clock  
1.29  
1.72  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.43  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
1.2 V DC Core Voltage  
Table 2-76 • AGLP030 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
1.80  
Max.2  
Units  
ns  
2.09  
tRCKH  
Input HIGH Delay for Global Clock  
1.88  
2.27  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.39  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Advance v0.4  
2-57  
IGLOO PLUS DC and Switching Characteristics  
Table 2-77 • AGLP060 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Std.  
Max.2  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
2.02  
Units  
ns  
2.30  
2.46  
tRCKH  
Input HIGH Delay for Global Clock  
2.09  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.37  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Table 2-78 • AGLP125 Global Resource  
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
2.08  
Max.2  
Units  
ns  
2.54  
tRCKH  
Input HIGH Delay for Global Clock  
2.15  
2.77  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.62  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2-58  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Clock Conditioning Circuits  
CCC Electrical Specifications  
Timing Characteristics  
Table 2-79 • IGLOO PLUS CCC/PLL Specification  
For IGLOO PLUS V2 or V5 devices, 1.5 V DC Core Supply Voltage  
Parameter  
Min.  
1.5  
Typ.  
Max.  
250  
Units  
MHz  
MHz  
ps  
Clock Conditioning Circuitry Input Frequency fIN_CCC  
Clock Conditioning Circuitry Output Frequency fOUT_CCC  
Delay Increments in Programmable Delay Blocks 1, 2  
Number of Programmable Values in Each Programmable Delay Block  
Input Cycle-to-Cycle Jitter (peak magnitude)  
CCC Output Peak-to-Peak Period Jitter FCCC_OUT  
0.75  
250  
360  
32  
100  
1
MHz  
ns  
Max Peak-to-Peak Period Jitter  
0.75 MHz to 24 MHz  
1 Global External 3 Global  
Network FB Used Networks  
Used  
0.50%  
1.00%  
2.50%  
Used  
0.70%  
1.20%  
2.75%  
300  
24 MHz to 100 MHz  
100 MHz to 250 MHz  
0.75%  
1.50%  
3.75%  
Acquisition Time  
LockControl = 0  
µs  
LockControl = 1  
6.0  
ms  
Tracking Jitter  
LockControl = 0  
2.5  
1.5  
LockControl = 1  
ns  
%
ns  
ns  
ns  
Output Duty Cycle  
48.5  
1.25  
51.5  
15.65  
15.65  
Delay Range in Block: Programmable Delay 1 1, 2, 3  
Delay Range in Block: Programmable Delay 2 1, 2, 3  
Delay Range in Block: Fixed Delay 1, 2  
Notes:  
0.025  
3.5  
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-7  
for deratings.  
2. TJ = 25°C, VCC = 1.5 V  
3. For definitions of Type 1 and Type 2, refer to the PLL Block Diagram in the Clock Conditioning Circuits in  
IGLOO and ProASIC3 Devices chapter of the handbook.  
4. The AGLP030 device does not support PLL.  
5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL  
input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by  
the period jitter parameter.  
Advance v0.4  
2-59  
IGLOO PLUS DC and Switching Characteristics  
Table 2-80 • IGLOO PLUS CCC/PLL Specification  
For IGLOO PLUS V2 Devices, 1.2 V DC Core Supply Voltage  
Parameter  
Min.  
1.5  
Typ.  
Max.  
160  
Units  
MHz  
MHz  
ps  
Clock Conditioning Circuitry Input Frequency fIN_CCC  
Clock Conditioning Circuitry Output Frequency fOUT_CCC  
Delay Increments in Programmable Delay Blocks 1, 2  
Number of Programmable Values in Each Programmable Delay Block  
Input Cycle-to-Cycle Jitter (peak magnitude)  
CCC Output Peak-to-Peak Period Jitter FCCC_OUT  
0.75  
160  
580  
32  
60  
MHz  
Max Peak-to-Peak Period Jitter  
1 Global External 3 Global  
Network FB Used Networks  
Used  
0.50%  
1.00%  
2.50%  
Used  
0.70%  
1.20%  
2.75%  
0.75 MHz to 24 MHz  
24 MHz to 100 MHz  
0.75%  
1.50%  
3.75%  
100 MHz to 160 MHz  
Acquisition Time  
LockControl = 0  
300  
6.0  
µs  
LockControl = 1  
ms  
Tracking Jitter  
LockControl = 0  
4
ns  
ns  
%
ns  
ns  
ns  
LockControl = 1  
3
Output Duty Cycle  
48.5  
2.3  
51.5  
20.86  
20.86  
Delay Range in Block: Programmable Delay 1 1, 2, 3  
Delay Range in Block: Programmable Delay 2 1, 2, 3  
Delay Range in Block: Fixed Delay 1, 2  
Notes:  
0.025  
5.7  
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-7  
for deratings.  
2. TJ = 25°C, VCC = 1.2 V  
3. For definitions of Type 1 and Type 2, refer to the PLL Block Diagram in the Clock Conditioning Circuits in  
IGLOO and ProASIC3 Devices chapter of the handbook.  
4. The AGLP030 device does not support PLL.  
5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input  
clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by period  
jitter parameter.  
Output Signal  
Tperiod_max  
Tperiod_min  
Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min  
.
Figure 2-22 • Peak-to-Peak Jitter Definition  
2-60  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Embedded SRAM and FIFO Characteristics  
SRAM  
RAM4K9  
RAM512X18  
RADDR8  
RD17  
RD16  
ADDRA11 DOUTA8  
RADDR7  
DOUTA7  
DOUTA0  
ADDRA10  
ADDRA0  
DINA8  
RADDR0  
RD0  
DINA7  
RW1  
RW0  
DINA0  
WIDTHA1  
WIDTHA0  
PIPEA  
PIPE  
WMODEA  
BLKA  
WENA  
REN  
RCLK  
CLKA  
ADDRB11 DOUTB8  
ADDRB10 DOUTB7  
WADDR8  
WADDR7  
ADDRB0  
DOUTB0  
WADDR0  
WD17  
WD16  
DINB8  
DINB7  
WD0  
DINB0  
WW1  
WW0  
WIDTHB1  
WIDTHB0  
PIPEB  
WMODEB  
BLKB  
WENB  
CLKB  
WEN  
WCLK  
RESET  
RESET  
Figure 2-23 • RAM Models  
Advance v0.4  
2-61  
IGLOO PLUS DC and Switching Characteristics  
Timing Waveforms  
tCYC  
tCKH  
tCKL  
CLK  
tAS tAH  
A0  
tBKS  
A1  
A2  
ADD  
BLK_B  
WEN_B  
DO  
tBKH  
tENS  
tENH  
tCKQ1  
Dn  
D0  
D1  
D2  
tDOH1  
Figure 2-24 • RAM Read for Pass-Through Output  
tCYC  
tCKH  
tCKL  
CLK  
tAS tAH  
A0  
A1  
A2  
ADD  
BLK_B  
WEN_B  
DO  
tBKS  
tBKH  
tENH  
tENS  
tCKQ2  
Dn  
D0  
D1  
tDOH2  
Figure 2-25 • RAM Read for Pipelined Output  
2-62  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
tCYC  
tCKH  
tAH  
tCKL  
CLK  
tAS  
A0  
A1  
A2  
ADD  
BLK_B  
WEN_B  
DI  
tBKS  
tBKH  
tENS  
tENH  
tDS  
tDH  
DI1  
DI0  
Dn  
D2  
DO  
Figure 2-26 • RAM Write, Output Retained (WMODE = 0)  
t
CYC  
t
t
CKH  
CKL  
CLK  
ADD  
t
t
AH  
AS  
A
A
A
2
0
1
t
BKS  
t
BKH  
BLK_B  
WEN_B  
DI  
t
ENS  
t
t
DH  
DS  
DI  
DI  
DI  
2
0
1
DO  
D
DI  
DI  
1
n
0
(pass-through)  
DO  
DI  
D
DI  
1
0
n
(pipelined)  
Figure 2-27 • RAM Write, Output as Write Data (WMODE = 1)  
Advance v0.4  
2-63  
IGLOO PLUS DC and Switching Characteristics  
CLK1  
tAS tAH  
ADD1  
DI1  
A0  
tDS tDH  
A1  
D2  
A3  
D3  
D1  
tCCKH  
CLK2  
WEN_B1  
WEN_B2  
tAS tAH  
A0  
A0  
D0  
A4  
D4  
ADD2  
DI2  
tCKQ1  
DO2  
(pass-through)  
Dn  
Dn  
D0  
tCKQ2  
DO2  
(pipelined)  
D0  
Figure 2-28 • Write Access after Write onto Same Address  
2-64  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
CLK1  
tAS tAH  
A0  
tDS tDH  
A2  
D2  
A3  
D3  
ADD1  
D0  
DI1  
tWRO  
CLK2  
WEN_B1  
WEN_B2  
ADD2  
tAS tAH  
A1  
A0  
tCKQ1  
A4  
DO2  
(pass-through)  
Dn  
D0  
D1  
tCKQ2  
DO2  
Dn  
D0  
(pipelined)  
Figure 2-29 • Read Access after Write onto Same Address  
Advance v0.4  
2-65  
IGLOO PLUS DC and Switching Characteristics  
CLK1  
t
t
AS  
AH  
A
t
A
A
t
ADD1  
0
1
0
WEN_B1  
CKQ1  
CKQ1  
DO1  
(pass-through)  
D
D
D
1
n
0
t
CKQ2  
DO1  
(pipelined)  
D
D
0
n
t
CCKH  
CLK2  
t
t
AH  
AS  
ADD2  
A
D
A
D
A
D
0
1
3
DI2  
1
2
3
WEN_B2  
Figure 2-30 • Write Access after Read onto Same Address  
tCYC  
tCKH  
tCKL  
CLK  
RESET_B  
DO  
tRSTBQ  
Dm  
Dn  
Figure 2-31 • RAM Reset  
2-66  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-81 • RAM4K9  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tAS  
Description  
Std. Units  
0.83 ns  
0.16 ns  
0.81 ns  
0.16 ns  
1.65 ns  
0.16 ns  
0.71 ns  
0.36 ns  
3.53 ns  
3.06 ns  
1.81 ns  
TBD ns  
Address setup time  
tAH  
Address hold time  
tENS  
REN_B, WEN_B setup time  
tENH  
tBKS  
tBKH  
tDS  
REN_B, WEN_B hold time  
BLK_B setup time  
BLK_B hold time  
Input data (DI) setup time  
tDH  
Input data (DI) hold time  
tCKQ1  
Clock HIGH to new data valid on DO (output retained, WMODE = 0)  
Clock HIGH to new data valid on DO (flow-through, WMODE = 1)  
Clock HIGH to new data valid on DO (pipelined)  
Address collision clk-to-clk delay for reliable read access after write on same address  
tCKQ2  
tWRO  
tCCKH  
Address collision clk-to-clk delay for reliable write access after write/read on same TBD ns  
address  
tRSTBQ  
RESET_B LOW to data out LOW on DO (flow-through)  
RESET_B LOW to data out LOW on DO (pipelined)  
RESET_B removal  
2.06 ns  
2.06 ns  
0.61 ns  
3.21 ns  
0.68 ns  
6.24 ns  
160 MHz  
tREMRSTB  
tRECRSTB  
RESET_B recovery  
tMPWRSTB RESET_B minimum pulse width  
tCYC  
Clock cycle time  
FMAX  
Maximum frequency  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.4  
2-67  
IGLOO PLUS DC and Switching Characteristics  
Table 2-82 • RAM512X18  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tAS  
Description  
Std. Units  
0.83 ns  
0.16 ns  
0.73 ns  
0.08 ns  
0.71 ns  
0.36 ns  
4.21 ns  
1.71 ns  
TBD ns  
Address setup time  
tAH  
Address hold time  
tENS  
REN_B, WEN_B setup time  
REN_B, WEN_B hold time  
Input data (DI) setup time  
Input data (DI) hold time  
tENH  
tDS  
tDH  
tCKQ1  
tCKQ2  
tWRO  
tCCKH  
Clock HIGH to new data valid on DO (output retained, WMODE = 0)  
Clock HIGH to new data valid on DO (pipelined)  
Address collision clk-to-clk delay for reliable read access after write on same address  
Address collision clk-to-clk delay for reliable write access after write/read on same TBD ns  
address  
tRSTBQ  
RESET_B LOW to data out LOW on DO (flow-through)  
RESET_B LOW to data out LOW on DO (pipelined)  
RESET_B removal  
2.06 ns  
2.06 ns  
0.61 ns  
3.21 ns  
0.68 ns  
6.24 ns  
160 MHz  
tREMRSTB  
tRECRSTB  
RESET_B recovery  
tMPWRSTB RESET_B minimum pulse width  
tCYC  
Clock cycle time  
FMAX  
Maximum frequency  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-68  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-83 • RAM4K9  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Parameter  
tAS  
Description  
Std. Units  
Address setup time  
1.53  
0.29  
1.50  
0.29  
3.05  
0.29  
1.33  
0.66  
6.61  
5.72  
3.38  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAH  
Address hold time  
tENS  
REN_B, WEN_B setup time  
tENH  
tBKS  
tBKH  
tDS  
REN_B, WEN_B hold time  
BLK_B setup time  
BLK_B hold time  
Input data (DI) setup time  
tDH  
Input data (DI) hold time  
tCKQ1  
Clock HIGH to new data valid on DO (output retained, WMODE = 0)  
Clock HIGH to new data valid on DO (flow-through, WMODE = 1)  
Clock HIGH to new data valid on DO (pipelined)  
tCKQ2  
tWRO  
tCCKH  
Address collision clk-to-clk delay for reliable read access after write on same address TBD  
Address collision clk-to-clk delay for reliable write access after write/read on same TBD  
address  
tRSTBQ  
RESET_B LOW to data out LOW on DO (flow-through)  
RESET_B LOW to data out LOW on DO (pipelined)  
RESET_B removal  
3.86  
3.86  
1.12  
5.93  
1.18  
10.90  
92  
ns  
ns  
tREMRSTB  
tRECRSTB  
ns  
RESET_B recovery  
ns  
tMPWRSTB RESET_B minimum pulse width  
ns  
tCYC  
Clock cycle time  
ns  
FMAX  
Maximum frequency  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Advance v0.4  
2-69  
IGLOO PLUS DC and Switching Characteristics  
Table 2-84 • RAM512X18  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Parameter  
tAS  
Description  
Std. Units  
Address setup time  
1.53  
0.29  
1.36  
0.15  
1.33  
0.66  
7.88  
3.20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAH  
Address hold time  
tENS  
REN_B, WEN_B setup time  
REN_B, WEN_B hold time  
Input data (DI) setup time  
Input data (DI) hold time  
tENH  
tDS  
tDH  
tCKQ1  
tCKQ2  
tWRO  
tCCKH  
Clock HIGH to new data valid on DO (output retained, WMODE = 0)  
Clock HIGH to new data valid on DO (pipelined)  
Address collision clk-to-clk delay for reliable read access after write on same address TBD  
Address collision clk-to-clk delay for reliable write access after write/read on same TBD  
address  
tRSTBQ  
RESET_B LOW to data out LOW on DO (flow through)  
RESET_B LOW to data out LOW on DO (pipelined)  
RESET_B removal  
3.86  
3.86  
1.12  
5.93  
1.18  
10.90  
92  
ns  
ns  
tREMRSTB  
tRECRSTB  
ns  
RESET_B recovery  
ns  
tMPWRSTB RESET_B minimum pulse width  
ns  
tCYC  
Clock cycle time  
ns  
FMAX  
Maximum frequency  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
2-70  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
FIFO  
FIFO4K18  
RW2  
RW1  
RW0  
RD17  
RD16  
WW2  
WW1  
WW0  
RD0  
ESTOP  
FSTOP  
FULL  
AFULL  
EMPTY  
AEVAL11  
AEVAL10  
AEMPTY  
AEVAL0  
AFVAL11  
AFVAL10  
AFVAL0  
REN  
RBLK  
RCLK  
WD17  
WD16  
WD0  
WEN  
WBLK  
WCLK  
RPIPE  
RESET  
Figure 2-32 • FIFO Model  
Advance v0.4  
2-71  
IGLOO PLUS DC and Switching Characteristics  
Timing Waveforms  
RCLK/  
WCLK  
tMPWRSTB  
tRSTCK  
RESET_B  
tRSTFG  
EMPTY  
tRSTAF  
AEMPTY  
FULL  
tRSTFG  
tRSTAF  
AFULL  
WA/RA  
(Address Counter)  
MATCH (A0)  
Figure 2-33 • FIFO Reset  
t
CYC  
RCLK  
t
RCKEF  
EMPTY  
tCKAF  
AEMPTY  
WA/RA  
NO MATCH  
NO MATCH  
Dist = AEF_TH  
MATCH (EMPTY)  
(Address Counter)  
Figure 2-34 • FIFO EMPTY Flag and AEMPTY Flag Assertion  
2-72  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
tCYC  
WCLK  
FULL  
tWCKFF  
tCKAF  
AFULL  
WA/RA  
NO MATCH  
NO MATCH  
Dist = AFF_TH  
MATCH (FULL)  
(Address Counter)  
Figure 2-35 • FIFO FULL Flag and AFULL Flag Assertion  
WCLK  
MATCH  
(EMPTY)  
WA/RA  
NO MATCH  
NO MATCH  
NO MATCH  
NO MATCH  
Dist = AEF_TH + 1  
(Address Counter)  
1st Rising  
2nd Rising  
Edge  
After 1st  
Write  
Edge  
After 1st  
Write  
RCLK  
EMPTY  
t
RCKEF  
t
CKAF  
AEMPTY  
Figure 2-36 • FIFO EMPTY Flag and AEMPTY Flag Deassertion  
RCLK  
WA/RA  
(Address Counter)  
Dist = AFF_TH – 1  
MATCH (FULL)  
NO MATCH  
NO MATCH  
1st Rising  
NO MATCH  
NO MATCH  
1st Rising  
Edge  
After 1st  
Read  
Edge  
After 2nd  
Read  
WCLK  
FULL  
tWCKF  
tCKAF  
AFULL  
Figure 2-37 • FIFO FULL Flag and AFULL Flag Deassertion  
Advance v0.4  
2-73  
IGLOO PLUS DC and Switching Characteristics  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-85 • FIFO  
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Parameter  
tENS  
Description  
Std.  
1.99  
0.16  
0.30  
0.00  
0.76  
0.25  
3.33  
1.80  
3.53  
3.35  
12.85  
3.48  
12.72  
2.02  
2.02  
0.61  
3.21  
0.68  
6.24  
160  
Units  
ns  
REN_B, WEN_B Setup Time  
REN_B, WEN_B Hold Time  
BLK_B Setup Time  
tENH  
ns  
tBKS  
ns  
tBKH  
BLK_B Hold Time  
ns  
tDS  
Input Data (DI) Setup Time  
Input Data (DI) Hold Time  
ns  
tDH  
ns  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock HIGH to New Data Valid on DO (flow-through)  
Clock HIGH to New Data Valid on DO (pipelined)  
RCLK HIGH to Empty Flag Valid  
ns  
ns  
ns  
WCLK HIGH to Full Flag Valid  
ns  
Clock HIGH to Almost Empty/Full Flag Valid  
RESET_B LOW to Empty/Full Flag Valid  
RESET_B LOW to Almost Empty/Full Flag Valid  
RESET_B LOW to Data Out LOW on DO (flow-through)  
RESET_B LOW to Data Out LOW on DO (pipelined)  
RESET_B Removal  
ns  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET_B Recovery  
ns  
RESET_B Minimum Pulse Width  
ns  
Clock Cycle Time  
ns  
FMAX  
Maximum Frequency for FIFO  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-74  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
1.2 V DC Core Voltage  
Table 2-86 • FIFO  
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Parameter  
tENS  
Description  
Std.  
4.13  
0.31  
0.30  
0.00  
1.56  
0.49  
6.80  
3.62  
7.23  
6.85  
26.61  
7.12  
26.33  
4.09  
4.09  
1.23  
6.58  
1.18  
10.90  
92  
Units  
ns  
REN_B, WEN_B Setup Time  
tENH  
REN_B, WEN_B Hold Time  
ns  
tBKS  
BLK_B Setup Time  
ns  
tBKH  
BLK_B Hold Time  
ns  
tDS  
Input Data (DI) Setup Time  
ns  
tDH  
Input Data (DI) Hold Time  
ns  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock HIGH to New Data Valid on DO (flow-through)  
Clock HIGH to New Data Valid on DO (pipelined)  
RCLK HIGH to Empty Flag Valid  
WCLK HIGH to Full Flag Valid  
ns  
ns  
ns  
ns  
Clock HIGH to Almost Empty/Full Flag Valid  
RESET_B LOW to Empty/Full Flag Valid  
RESET_B LOW to Almost Empty/Full Flag Valid  
RESET_B LOW to Data Out LOW on DO (flow-through)  
RESET_B LOW to Data Out LOW on DO (pipelined)  
RESET_B Removal  
ns  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET_B Recovery  
ns  
RESET_B Minimum Pulse Width  
Clock Cycle Time  
ns  
ns  
FMAX  
Maximum Frequency for FIFO  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating  
values.  
Advance v0.4  
2-75  
IGLOO PLUS DC and Switching Characteristics  
Embedded FlashROM Characteristics  
tSU  
tSU  
tSU  
CLK  
tHOLD  
tHOLD  
tHOLD  
Address  
A0  
A1  
tCKQ2  
D0  
tCKQ2  
tCKQ2  
D1  
D0  
Data  
Figure 2-38 • Timing Diagram  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-87 • Embedded FlashROM Access Time  
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V  
Parameter  
tSU  
Description  
Address Setup Time  
Std.  
0.57  
0.00  
33.14  
15  
Units  
ns  
tHOLD  
tCK2Q  
FMAX  
Address Hold Time  
ns  
Clock to Out  
ns  
Maximum Clock Frequency  
MHz  
1.2 V DC Core Voltage  
Table 2-88 • Embedded FlashROM Access Time  
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V  
Parameter  
tSU  
Description  
Std.  
0.59  
0.00  
52.04  
10  
Units  
ns  
Address Setup Time  
Address Hold Time  
Clock to Out  
tHOLD  
tCK2Q  
FMAX  
ns  
ns  
Maximum Clock Frequency  
MHz  
2-76  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
JTAG 1532 Characteristics  
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays  
to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O  
Characteristics" section on page 2-15 for more details.  
Timing Characteristics  
1.5 V DC Core Voltage  
Table 2-89 • JTAG 1532  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tDISU  
Description  
Std.  
1.00  
2.00  
1.00  
2.00  
8.00  
25.00  
15  
Units  
ns  
Test Data Input Setup Time  
Test Data Input Hold Time  
Test Mode Select Setup Time  
Test Mode Select Hold Time  
Clock to Q (data out)  
tDIHD  
ns  
tTMSSU  
ns  
tTMDHD  
tTCK2Q  
ns  
ns  
tRSTB2Q  
FTCKMAX  
tTRSTREM  
tTRSTREC  
tTRSTMPW  
Reset to Q (data out)  
ns  
TCK Maximum Frequency  
ResetB Removal Time  
MHz  
ns  
0.58  
0.00  
TBD  
ResetB Recovery Time  
ns  
ResetB Minimum Pulse  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
1.2 V DC Core Voltage  
Table 2-90 • JTAG 1532  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V  
Parameter  
tDISU  
Description  
Test Data Input Setup Time  
Std.  
1.50  
3.00  
1.50  
3.00  
11.00  
30.00  
9.00  
1.18  
0.00  
TBD  
Units  
ns  
tDIHD  
Test Data Input Hold Time  
Test Mode Select Setup Time  
Test Mode Select Hold Time  
Clock to Q (data out)  
ns  
tTMSSU  
ns  
tTMDHD  
tTCK2Q  
ns  
ns  
tRSTB2Q  
FTCKMAX  
tTRSTREM  
tTRSTREC  
tTRSTMPW  
Reset to Q (data out)  
ns  
TCK Maximum Frequency  
ResetB Removal Time  
MHz  
ns  
ResetB Recovery Time  
ns  
ResetB Minimum Pulse  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Advance v0.4  
2-77  
IGLOO PLUS DC and Switching Characteristics  
Part Number and Revision Date  
Part Number 51700102-002-3  
Revised October 2008  
List of Changes  
The following table lists critical changes that were made in the current version of the chapter.  
Previous Version  
Changes in Current Version (Advance v0.4)  
Page  
Advance v0.3  
(July 2008)  
Data was revised significantly in the following tables:  
2-21,  
2-30  
Table 2-24 · Summary of I/O Timing Characteristics—Software Default Settings,  
STD Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC  
1.425 V, Worst-Case VCCI = 3.0 V,  
=
Table 2-25 · Summary of I/O Timing Characteristics—Software Default Settings,  
STD Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC  
1.14 V, Worst-Case VCCI = 3.0 V  
=
Table 2-43 · 2.5 LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage  
Table 2-44 · 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage  
Advance v0.2  
(March 2008)  
As a result of the Libero IDE v8.4 release, Actel now offers a wide range of  
core voltage support. The document was updated to change 1.2 V / 1.5 V to  
1.2 V to 1.5 V.  
N/A  
N/A  
2-2  
Advance v0.1  
(January 2008)  
Tables have been updated to reflect default values in the software. The  
default I/O capacitance is 5 pF. Tables have been updated to include the  
LVCMOS 1.2 V I/O set.  
Table note 3 was updated in Table 2-2 · Recommended Operating Conditions 4  
to add the sentence, "VCCI should be at the same voltage within a given I/O  
bank." References to table notes 5, 6, 7, and 8 were added. Reference to table  
note 3 was removed from VPUMP Operation and placed next to VCC  
.
Table 2-4 · Overshoot and Undershoot Limits 1 was revised to remove "as  
measured on quiet I/Os" from the title. Table note 2 was revised to remove  
"estimated SSO density over cycles." Table note 3 was deleted.  
2-3  
2-7  
2-7  
2-7  
2-8  
The table note for Table 2-8 · Quiescent Supply Current (IDD) Characteristics,  
IGLOO PLUS Flash*Freeze Mode* to remove the sentence stating that values  
do not include I/O static contribution.  
The table note for Table 2-9 · Quiescent Supply Current (IDD) Characteristics,  
IGLOO PLUS Sleep Mode (VCC = 0 V)* was updated to remove VJTAG and VCCI  
and the statement that values do not include I/O static contribution.  
The table note for Table 2-10 · Quiescent Supply Current (IDD) Characteristics,  
IGLOO PLUS Shutdown Mode (VCC, VCCI = 0 V)* was updated to remove the  
statement that values do not include I/O static contribution.  
Note 2 of Table 2-11 · Quiescent Supply Current (IDD), No IGLOO PLUS  
Flash*Freeze Mode 1 was updated to include VCCPLL. Table note 4 was deleted.  
Table 2-12 · Summary of I/O Input Buffer Power (per pin) – Default I/O 2-8, 2-9  
Software Settings and Table 2-13 · Summary of I/O Output Buffer Power (per  
pin) – Default I/O Software Settings1 were updated to remove static power.  
The table notes were updated to reflect that power was measured on VCCI  
.
Table note 2 was added to Table 2-12 · Summary of I/O Input Buffer Power  
(per pin) – Default I/O Software Settings.  
2-78  
Advance v0.4  
IGLOO PLUS DC and Switching Characteristics  
Previous Version  
Changes in Current Version (Advance v0.4)  
Page  
Advance v0.1  
(continued)  
Table 2-15 · Different Components Contributing to the Static Power  
Consumption in IGLOO PLUS Devices and Table 2-17 · Different Components  
Contributing to the Static Power Consumption in IGLOO PLUS Devices were  
updated to change the definition for PDC5 from bank static power to bank  
quiescent power. Table subtitles were added for Table 2-15 · Different  
Components Contributing to the Static Power Consumption in IGLOO PLUS  
Devices, Table 2-16 · Different Components Contributing to Dynamic Power  
Consumption in IGLOO PLUS Devices, and Table 2-17 · Different Components  
Contributing to the Static Power Consumption in IGLOO PLUS Devices.  
2-10,  
2-11  
The "Total Static Power Consumption—PSTAT" section was revised.  
Table 2-31 · Schmitt Trigger Input Hysteresis is new.  
2-12  
2-24  
Actel Safety Critical, Life Support, and High-Reliability  
Applications Policy  
The Actel products described in this advance status datasheet may not have completed Actel’s  
qualification process. Actel may amend or enhance products during the product introduction and  
qualification process, resulting in changes in device functionality or performance. It is the  
responsibility of each customer to ensure the fitness of any Actel product (but especially a new  
product) for a particular purpose, including appropriateness for safety-critical, life-support, and  
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability  
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is  
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also  
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your  
local Actel sales office for additional reliability information.  
Advance v0.4  
2-79  
IGLOO PLUS Packaging  
3 – Package Pin Assignments  
128-Pin VQFP  
128  
1
128-Pin  
VQFP  
Note: This is the bottom view of the package.  
Figure 3-1 •  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
v1.5  
3-1  
Package Pin Assignments  
128-Pin VQFP  
Pin Number AGLP030 Function  
128-Pin VQFP  
128-Pin VQFP  
Pin Number AGLP030 Function  
Pin Number AGLP030 Function  
1
IO119RSB3  
IO118RSB3  
IO117RSB3  
IO115RSB3  
IO116RSB3  
IO113RSB3  
IO114RSB3  
GND  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
IO86RSB2  
IO84RSB2  
IO83RSB2  
GND  
73  
74  
GND  
IO55RSB1  
IO54RSB1  
IO53RSB1  
IO52RSB1  
IO51RSB1  
IO50RSB1  
IO49RSB1  
VCC  
2
3
75  
4
76  
5
V
CCIB2  
77  
6
IO82RSB2  
IO81RSB2  
IO79RSB2  
IO78RSB2  
IO77RSB2  
IO75RSB2  
IO74RSB2  
VCC  
78  
7
79  
8
80  
9
VCCIB3  
81  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
IO112RSB3  
IO111RSB3  
IO110RSB3  
IO109RSB3  
GEC0/IO108RSB3  
GEA0/IO107RSB3  
GEB0/IO106RSB3  
VCC  
82  
GDB0/IO48RSB1  
GDA0/IO47RSB1  
GDC0/IO46RSB1  
IO45RSB1  
IO44RSB1  
IO43RSB1  
IO42RSB1  
VCCIB1  
83  
84  
85  
IO73RSB2  
IO72RSB2  
IO70RSB2  
IO69RSB2  
IO68RSB2  
IO66RSB2  
IO65RSB2  
GND  
86  
87  
88  
89  
IO104RSB3  
IO103RSB3  
IO102RSB3  
IO101RSB3  
IO100RSB3  
IO99RSB3  
GND  
90  
GND  
91  
IO40RSB1  
IO41RSB1  
IO39RSB1  
IO38RSB1  
IO37RSB1  
IO36RSB1  
IO35RSB0  
IO34RSB0  
IO33RSB0  
IO32RSB0  
IO30RSB0  
IO28RSB0  
IO27RSB0  
VCCIB0  
92  
93  
VCCIB2  
94  
IO63RSB2  
IO61RSB2  
IO59RSB2  
TCK  
95  
96  
VCCIB3  
97  
IO97RSB3  
IO98RSB3  
IO95RSB3  
IO96RSB3  
IO94RSB3  
IO93RSB3  
IO92RSB3  
IO91RSB2  
FF/IO90RSB2  
IO89RSB2  
IO88RSB2  
98  
TDI  
99  
TMS  
100  
101  
102  
103  
104  
105  
106  
107  
108  
VPUMP  
TDO  
TRST  
IO58RSB1  
VJTAG  
GND  
IO56RSB1  
IO57RSB1  
VCCIB1  
IO26RSB0  
IO25RSB0  
IO23RSB0  
3-2  
v1.5  
IGLOO PLUS Packaging  
128-Pin VQFP  
Pin Number AGLP030 Function  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
IO22RSB0  
IO21RSB0  
IO19RSB0  
IO18RSB0  
VCC  
IO17RSB0  
IO16RSB0  
IO14RSB0  
IO13RSB0  
IO12RSB0  
IO10RSB0  
IO09RSB0  
VCCIB0  
GND  
IO07RSB0  
IO05RSB0  
IO03RSB0  
IO02RSB0  
IO01RSB0  
IO00RSB0  
v1.5  
3-3  
Package Pin Assignments  
176-Pin VQFP  
176  
1
176-Pin  
VQFP  
Note: This is the bottom view of the package.  
Figure 3-2 •  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
3-4  
v1.5  
IGLOO PLUS Packaging  
176-Pin VQFP  
176-Pin VQFP  
176-Pin VQFP  
Pin Number AGLP060 Function  
Pin Number AGLP060 Function  
Pin Number AGLP060 Function  
1
GAA2/IO156RSB3  
IO155RSB3  
GAB2/IO154RSB3  
IO153RSB3  
GAC2/IO152RSB3  
GND  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
GND  
72  
73  
IO87RSB2  
IO86RSB2  
IO85RSB2  
IO84RSB2  
GND  
2
V
CCIB3  
3
GEC1/IO116RSB3  
GEB1/IO114RSB3  
GEC0/IO115RSB3  
GEB0/IO113RSB3  
GEA1/IO112RSB3  
GEA0/IO111RSB3  
GEA2/IO110RSB2  
NC  
74  
4
75  
5
76  
6
77  
VCCIB2  
7
VCCIB3  
78  
IO83RSB2  
IO82RSB2  
GDC2/IO80RSB2  
IO81RSB2  
GDA2/IO78RSB2  
GDB2/IO79RSB2  
NC  
8
IO149RSB3  
IO147RSB3  
IO145RSB3  
IO144RSB3  
IO143RSB3  
VCC  
79  
9
80  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
81  
FF/GEB2/IO109RSB  
2
82  
83  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
GEC2/IO108RSB2  
IO106RSB2  
IO107RSB2  
IO104RSB2  
IO105RSB2  
IO102RSB2  
IO103RSB2  
GND  
84  
IO141RSB3  
GFC1/IO140RSB3  
GFB1/IO138RSB3  
GFB0/IO137RSB3  
VCOMPLF  
85  
NC  
86  
TCK  
87  
TDI  
88  
TMS  
89  
VPUMP  
GFA1/IO136RSB3  
VCCPLF  
90  
TDO  
91  
TRST  
VCCIB2  
GFA0/IO135RSB3  
GND  
92  
VJTAG  
IO101RSB2  
IO100RSB2  
IO99RSB2  
IO98RSB2  
IO97RSB2  
IO96RSB2  
IO95RSB2  
IO94RSB2  
IO93RSB2  
VCC  
93  
GDA1/IO76RSB1  
GDC0/IO73RSB1  
GDB1/IO74RSB1  
GDC1/IO72RSB1  
VCCIB1  
VCCIB3  
94  
GFA2/IO134RSB3  
GFB2/IO133RSB3  
GFC2/IO132RSB3  
IO131RSB3  
IO130RSB3  
IO129RSB3  
IO127RSB3  
IO126RSB3  
IO125RSB3  
IO123RSB3  
IO122RSB3  
IO121RSB3  
IO119RSB3  
95  
96  
97  
98  
GND  
99  
IO70RSB1  
IO69RSB1  
IO67RSB1  
IO66RSB1  
IO65RSB1  
IO63RSB1  
IO62RSB1  
IO61RSB1  
GCC2/IO60RSB1  
100  
101  
102  
103  
104  
105  
106  
107  
IO92RSB2  
IO91RSB2  
IO90RSB2  
IO89RSB2  
IO88RSB2  
v1.5  
3-5  
Package Pin Assignments  
176-Pin VQFP  
Pin Number AGLP060 Function  
176-Pin VQFP  
Pin Number AGLP060 Function  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
GCB2/IO59RSB1  
GCA2/IO58RSB1  
GCA0/IO57RSB1  
GCA1/IO56RSB1  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
IO27RSB0  
CCIB0  
V
GND  
IO26RSB0  
IO25RSB0  
IO24RSB0  
IO23RSB0  
IO22RSB0  
IO21RSB0  
IO20RSB0  
IO19RSB0  
IO18RSB0  
VCC  
VCCIB1  
GND  
GCB0/IO55RSB1  
GCB1/IO54RSB1  
GCC0/IO53RSB1  
GCC1/IO52RSB1  
IO51RSB1  
IO50RSB1  
VCC  
IO48RSB1  
IO17RSB0  
IO16RSB0  
IO15RSB0  
IO14RSB0  
IO13RSB0  
IO12RSB0  
IO11RSB0  
IO10RSB0  
IO09RSB0  
VCCIB0  
IO47RSB1  
IO45RSB1  
IO44RSB1  
IO43RSB1  
VCCIB1  
GND  
GBC2/IO40RSB1  
IO39RSB1  
GBB2/IO38RSB1  
IO37RSB1  
GND  
GBA2/IO36RSB1  
GBA1/IO35RSB0  
NC  
IO07RSB0  
IO08RSB0  
GAC1/IO05RSB0  
IO06RSB0  
GAB1/IO03RSB0  
GAC0/IO04RSB0  
GAB0/IO02RSB0  
GAA1/IO01RSB0  
GAA0/IO00RSB0  
GBA0/IO34RSB0  
NC  
GBB1/IO33RSB0  
NC  
GBC1/IO31RSB0  
GBB0/IO32RSB0  
GBC0/IO30RSB0  
IO29RSB0  
IO28RSB0  
3-6  
v1.5  
IGLOO PLUS Packaging  
201-Pin CSP  
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
Note: This is the bottom view of the package.  
Figure 3-3 •  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
v1.5  
3-7  
Package Pin Assignments  
201-Pin CSP  
Pin Number AGLP030 Function  
201-Pin CSP  
201-Pin CSP  
Pin Number AGLP030 Function  
Pin Number AGLP030 Function  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
B1  
NC  
C7  
C8  
IO23RSB0  
IO19RSB0  
IO28RSB0  
IO32RSB0  
IO35RSB0  
NC  
F6  
F7  
GND  
VCC  
IO04RSB0  
IO06RSB0  
IO09RSB0  
IO11RSB0  
IO13RSB0  
IO17RSB0  
IO18RSB0  
IO24RSB0  
IO26RSB0  
IO27RSB0  
IO31RSB0  
NC  
C9  
F8  
VCCIB0  
C10  
C11  
C12  
C13  
C14  
C15  
D1  
F9  
VCCIB0  
F10  
F12  
F13  
F14  
F15  
G1  
VCCIB0  
NC  
GND  
NC  
IO41RSB1  
IO37RSB1  
IO117RSB3  
IO118RSB3  
NC  
IO40RSB1  
IO38RSB1  
NC  
D2  
G2  
IO112RSB3  
IO110RSB3  
IO109RSB3  
VCCIB3  
GND  
D3  
G3  
D4  
GND  
G4  
NC  
D5  
IO01RSB0  
IO03RSB0  
IO10RSB0  
IO21RSB0  
IO25RSB0  
IO30RSB0  
IO33RSB0  
GND  
G6  
NC  
D6  
G7  
NC  
D7  
G8  
VCC  
B2  
NC  
D8  
G9  
GND  
B3  
IO08RSB0  
IO05RSB0  
IO07RSB0  
IO15RSB0  
IO14RSB0  
IO16RSB0  
IO20RSB0  
IO22RSB0  
IO34RSB0  
IO29RSB0  
NC  
D9  
G10  
G12  
G13  
G14  
G15  
H1  
GND  
B4  
D10  
D11  
D12  
D13  
D14  
D15  
E1  
NC  
B5  
NC  
B6  
IO42RSB1  
IO44RSB1  
NC  
B7  
NC  
B8  
IO36RSB1  
IO39RSB1  
IO115RSB3  
IO114RSB3  
NC  
B9  
H2  
GEB0/IO106RSB3  
GEC0/IO108RSB3  
NC  
B10  
B11  
B12  
B13  
B14  
B15  
C1  
H3  
E2  
H4  
E3  
H6  
VCCIB3  
GND  
E4  
NC  
H7  
NC  
E12  
E13  
E14  
E15  
F1  
NC  
H8  
VCC  
NC  
NC  
H9  
GND  
NC  
GDC0/IO46RSB1  
GDB0/IO48RSB1  
IO113RSB3  
IO116RSB3  
IO119RSB3  
IO111RSB3  
H10  
H12  
H13  
H14  
H15  
J1  
VCCIB1  
C2  
NC  
IO54RSB1  
GDA0/IO47RSB1  
IO45RSB1  
C3  
GND  
C4  
IO00RSB0  
IO02RSB0  
IO12RSB0  
F2  
C5  
F3  
IO43RSB1  
C6  
F4  
GEA0/IO107RSB3  
3-8  
v1.5  
IGLOO PLUS Packaging  
201-Pin CSP  
201-Pin CSP  
201-Pin CSP  
Pin Number AGLP030 Function  
Pin Number AGLP030 Function  
Pin Number AGLP030 Function  
J2  
J3  
IO105RSB3  
IO104RSB3  
IO102RSB3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
N1  
GND  
NC  
P10  
P11  
P12  
P13  
P14  
P15  
R1  
IO73RSB2  
IO76RSB2  
IO67RSB2  
IO64RSB2  
VPUMP  
J4  
IO79RSB2  
IO77RSB2  
IO72RSB2  
IO70RSB2  
IO61RSB2  
IO59RSB2  
GND  
J6  
VCCIB3  
J7  
GND  
VCC  
J8  
TRST  
J9  
GND  
NC  
J10  
J12  
J13  
J14  
J15  
K1  
K2  
K3  
K4  
K6  
K7  
K8  
K9  
K10  
K12  
K13  
K14  
K15  
L1  
VCCIB1  
NC  
R2  
NC  
R3  
IO91RSB2  
FF/IO90RSB2  
IO89RSB2  
IO83RSB2  
IO82RSB2  
IO85RSB2  
IO78RSB2  
IO69RSB2  
IO62RSB2  
IO60RSB2  
TMS  
NC  
NC  
R4  
IO52RSB1  
IO50RSB1  
IO103RSB3  
IO101RSB3  
IO99RSB3  
IO100RSB3  
GND  
IO55RSB1  
IO56RSB1  
NC  
R5  
R6  
R7  
N2  
NC  
R8  
N3  
GND  
R9  
N4  
NC  
R10  
R11  
R12  
R13  
R14  
R15  
N5  
IO88RSB2  
IO81RSB2  
IO75RSB2  
IO68RSB2  
IO66RSB2  
IO65RSB2  
IO71RSB2  
IO63RSB2  
GND  
VCCIB2  
N6  
VCCIB2  
N7  
VCCIB2  
VCCIB1  
N8  
TDI  
N9  
TCK  
NC  
N10  
N11  
N12  
N13  
N14  
N15  
P1  
IO57RSB1  
IO49RSB1  
IO53RSB1  
IO96RSB3  
IO98RSB3  
IO95RSB3  
IO94RSB3  
NC  
TDO  
L2  
VJTAG  
L3  
NC  
L4  
P2  
NC  
L12  
L13  
L14  
L15  
M1  
M2  
M3  
P3  
NC  
NC  
P4  
NC  
IO51RSB1  
IO58RSB1  
IO93RSB3  
IO92RSB3  
IO97RSB3  
P5  
IO87RSB2  
IO86RSB2  
IO84RSB2  
IO80RSB2  
IO74RSB2  
P6  
P7  
P8  
P9  
v1.5  
3-9  
Package Pin Assignments  
201-Pin CSP  
Pin Number AGLP060 Function  
201-Pin CSP  
201-Pin CSP  
Pin Number AGLP060 Function  
Pin Number AGLP060 Function  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
B1  
IO150RSB3  
GAA0/IO00RSB0  
GAC0/IO04RSB0  
IO08RSB0  
C7  
C8  
IO16RSB0  
IO21RSB0  
F6  
F7  
GND  
VCC  
C9  
IO28RSB0  
F8  
VCCIB0  
C10  
C11  
C12  
C13  
C14  
C15  
D1  
GBB1/IO33RSB0  
GBA1/IO35RSB0  
GBB2/IO38RSB1  
GND  
F9  
VCCIB0  
IO11RSB0  
F10  
F12  
F13  
F14  
F15  
G1*  
G2  
VCCIB0  
IO47RSB1  
IO45RSB1  
GCC1/IO52RSB1  
GCA1/IO56RSB1  
VCOMPLF  
IO15RSB0  
IO17RSB0  
IO18RSB0  
IO48RSB1  
IO22RSB0  
IO39RSB1  
IO26RSB0  
IO146RSB3  
IO144RSB3  
IO148RSB3  
GND  
IO29RSB0  
D2  
GFB0/IO137RSB3  
GFC0/IO139RSB3  
IO143RSB3  
VCCIB3  
GBC1/IO31RSB0  
GBA2/IO36RSB1  
IO41RSB1  
D3  
G3  
D4  
G4  
D5  
GAB0/IO02RSB0  
GAC1/IO05RSB0  
IO14RSB0  
G6  
NC  
D6  
G7  
GND  
IO151RSB3  
GAB2/IO154RSB3  
IO06RSB0  
D7  
G8  
VCC  
B2  
D8  
IO19RSB0  
G9  
GND  
B3  
D9  
GBC0/IO30RSB0  
GBB0/IO32RSB0  
GBA0/IO34RSB0  
GND  
G10  
G12  
G13  
G14  
G15  
H1*  
H2  
GND  
B4  
IO09RSB0  
D10  
D11  
D12  
D13  
D14  
D15  
E1  
IO50RSB1  
GCB1/IO54RSB1  
GCC2/IO60RSB1  
GCA2/IO58RSB1  
VCCPLF  
B5  
IO13RSB0  
B6  
IO10RSB0  
B7  
IO12RSB0  
GBC2/IO40RSB1  
IO51RSB1  
B8  
IO20RSB0  
B9  
IO23RSB0  
IO44RSB1  
GFA1/IO136RSB3  
GFB1/IO138RSB3  
NC  
B10  
B11  
B12  
B13  
B14  
B15  
C1  
IO25RSB0  
IO142RSB3  
IO149RSB3  
IO153RSB3  
GAC2/IO152RSB3  
IO43RSB1  
H3  
IO24RSB0  
E2  
H4  
IO27RSB0  
E3  
H6  
VCCIB3  
IO37RSB1  
E4  
H7  
GND  
IO46RSB1  
E12  
E13  
E14  
E15  
F1  
H8  
VCC  
IO42RSB1  
IO49RSB1  
H9  
GND  
IO155RSB3  
GAA2/IO156RSB3  
GND  
GCC0/IO53RSB1  
GCB0/IO55RSB1  
IO141RSB3  
GFC1/IO140RSB3  
IO145RSB3  
IO147RSB3  
H10  
H12  
H13  
H14  
H15  
J1  
VCCIB1  
C2  
GCB2/IO59RSB1  
GCA0/IO57RSB1  
IO64RSB1  
C3  
C4  
GAA1/IO01RSB0  
GAB1/IO03RSB0  
IO07RSB0  
F2  
C5  
F3  
IO62RSB1  
C6  
F4  
GFA2/IO134RSB3  
* Pin numbers G1 and H1 must be connected to ground because a PLL is not supported for AGLP060-CS/G201.  
3-10  
v1.5  
IGLOO PLUS Packaging  
201-Pin CSP  
201-Pin CSP  
201-Pin CSP  
Pin Number AGLP060 Function  
Pin Number AGLP060 Function  
Pin Number AGLP060 Function  
J2  
J3  
GFA0/IO135RSB3  
GFB2/IO133RSB3  
IO131RSB3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
N1  
GND  
IO125RSB3  
IO98RSB2  
P10  
P11  
P12  
P13  
P14  
P15  
R1  
IO92RSB2  
IO95RSB2  
J4  
IO86RSB2  
J6  
V
CCIB3  
IO96RSB2  
IO83RSB2  
J7  
GND  
VCC  
IO91RSB2  
VPUMP  
J8  
IO89RSB2  
TRST  
J9  
GND  
IO82RSB2  
IO118RSB3  
GEB0/IO113RSB3  
GEA2/IO110RSB2  
J10  
J12  
J13  
J14  
J15  
K1  
K2  
VCCIB1  
GDA2/IO78RSB2  
GND  
R2  
IO61RSB1  
IO63RSB1  
IO68RSB1  
IO66RSB1  
IO130RSB3  
GFC2/IO132RSB3  
IO127RSB3  
IO129RSB3  
GND  
R3  
GDA1/IO76RSB1  
GDA0/IO77RSB1  
GDB0/IO75RSB1  
IO117RSB3  
IO120RSB3  
GND  
R4  
FF/GEB2/IO109RSB  
2
R5  
R6  
GEC2/IO108RSB2  
IO102RSB2  
IO101RSB2  
IO104RSB2  
IO97RSB2  
IO88RSB2  
IO81RSB2  
GDB2/IO79RSB2  
TMS  
R7  
N2  
R8  
K3  
K4  
K6  
N3  
R9  
N4  
GEB1/IO114RSB3  
IO107RSB2  
IO100RSB2  
IO94RSB2  
R10  
R11  
R12  
R13  
R14  
R15  
N5  
K7  
K8  
K9  
K10  
K12  
K13  
K14  
K15  
L1  
VCCIB2  
N6  
VCCIB2  
N7  
VCCIB2  
VCCIB1  
N8  
IO87RSB2  
TDI  
N9  
IO85RSB2  
TCK  
IO65RSB1  
N10  
N11  
N12  
N13  
N14  
N15  
P1  
GDC2/IO80RSB2  
IO90RSB2  
IO67RSB1  
IO69RSB1  
IO84RSB2  
IO70RSB1  
GND  
IO126RSB3  
IO128RSB3  
IO121RSB3  
IO123RSB3  
GDB1/IO74RSB1  
GDC1/IO72RSB1  
IO71RSB1  
TDO  
L2  
VJTAG  
L3  
GEC0/IO115RSB3  
GEC1/IO116RSB3  
GEA0/IO111RSB3  
GEA1/IO112RSB3  
IO106RSB2  
IO105RSB2  
IO103RSB2  
IO99RSB2  
L4  
P2  
L12  
L13  
L14  
L15  
M1  
M2  
M3  
P3  
P4  
P5  
GDC0/IO73RSB1  
IO122RSB3  
IO124RSB3  
IO119RSB3  
P6  
P7  
P8  
P9  
IO93RSB2  
v1.5  
3-11  
Package Pin Assignments  
281-Pin CSP  
19 18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Note: This is the bottom view of the package.  
Figure 3-4 •  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx  
3-12  
v1.5  
IGLOO PLUS Packaging  
281-Pin CSP  
281-Pin CSP  
281-Pin CSP  
Pin Number AGLP125 Function  
Pin Number AGLP125 Function  
Pin Number AGLP125 Function  
A1  
A2  
GND  
GAB0/IO02RSB0  
GAC1/IO05RSB0  
IO09RSB0  
B18  
B19  
C1  
VCCIB1  
IO64RSB1  
E13  
E14  
E15  
E16  
E18  
E19  
F1  
IO48RSB0  
GBB1/IO60RSB0  
IO53RSB0  
A3  
GAB2/IO209RSB3  
IO210RSB3  
IO12RSB0  
A4  
C2  
IO69RSB1  
A5  
IO13RSB0  
C6  
IO68RSB1  
A6  
IO15RSB0  
C14  
C18  
C19  
D1  
IO47RSB0  
IO71RSB1  
A7  
IO18RSB0  
IO54RSB0  
IO198RSB3  
GND  
A8  
IO23RSB0  
GBB2/IO65RSB1  
IO206RSB3  
IO208RSB3  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
IO10RSB0  
F2  
A9  
IO25RSB0  
F3  
IO201RSB3  
IO204RSB3  
IO16RSB0  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
B1  
VCCIB0  
D2  
F4  
IO33RSB0  
D4  
F5  
IO41RSB0  
D5  
F15  
F16  
F17  
F18  
F19  
G1  
IO50RSB0  
IO43RSB0  
D6  
IO74RSB1  
IO46RSB0  
D7  
IO17RSB0  
IO72RSB1  
IO55RSB0  
D8  
IO24RSB0  
GND  
IO56RSB0  
D9  
IO27RSB0  
IO73RSB1  
GBC1/IO58RSB0  
GBA0/IO61RSB0  
GND  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D18  
D19  
E1  
GND  
IO195RSB3  
IO200RSB3  
IO202RSB3  
IO08RSB0  
IO31RSB0  
G2  
IO40RSB0  
G4  
GAA2/IO211RSB3  
VCCIB0  
IO49RSB0  
G5  
B2  
IO45RSB0  
G7  
GAC2/IO207RSB3  
VCCIB0  
B3  
GAB1/IO03RSB0  
GAC0/IO04RSB0  
IO11RSB0  
GBB0/IO59RSB0  
GBA2/IO63RSB1  
GBC2/IO67RSB1  
IO66RSB1  
G8  
B4  
G9  
IO26RSB0  
B5  
G10  
G11  
G12  
G13  
G15  
G16  
G18  
G19  
H1  
IO35RSB0  
B6  
GND  
IO44RSB0  
B7  
IO21RSB0  
IO203RSB3  
IO205RSB3  
IO07RSB0  
VCCIB0  
B8  
IO22RSB0  
E2  
IO51RSB0  
B9  
IO28RSB0  
E4  
IO70RSB1  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
IO32RSB0  
E5  
IO06RSB0  
IO75RSB1  
IO36RSB0  
E6  
IO14RSB0  
GCC0/IO80RSB1  
GCB1/IO81RSB1  
GFB0/IO191RSB3  
IO196RSB3  
GFC1/IO194RSB3  
GFB1/IO192RSB3  
VCCIB3  
IO39RSB0  
E7  
IO20RSB0  
IO42RSB0  
E8  
IO29RSB0  
GND  
E9  
IO34RSB0  
H2  
IO52RSB0  
E10  
E11  
E12  
IO30RSB0  
H4  
GBC0/IO57RSB0  
GBA1/IO62RSB0  
IO37RSB0  
H5  
IO38RSB0  
H7  
v1.5  
3-13  
Package Pin Assignments  
281-Pin CSP  
Pin Number AGLP125 Function  
281-Pin CSP  
281-Pin CSP  
Pin Number AGLP125 Function  
Pin Number AGLP125 Function  
H8  
H9  
VCC  
VCCIB0  
VCC  
K15  
K16  
K18  
K19  
L1  
IO89RSB1  
GND  
N4  
N5  
IO182RSB3  
IO161RSB2  
H10  
H11  
H12  
H13  
H15  
H16  
H18  
H19  
J1  
IO88RSB1  
N7  
GEA2/IO164RSB2  
V
CCIB0  
VCC  
VCCIB1  
N8  
VCCIB2  
GFB2/IO187RSB3  
IO185RSB3  
GFC2/IO186RSB3  
IO184RSB3  
IO199RSB3  
VCCIB3  
N9  
IO137RSB2  
IO135RSB2  
IO131RSB2  
VCCIB2  
VCCIB1  
IO77RSB1  
GCB0/IO82RSB1  
GCA1/IO83RSB1  
GCA2/IO85RSB1  
VCOMPLF  
L2  
N10  
N11  
N12  
N13  
N15  
N16  
N18  
N19  
P1  
L4  
L5  
L7  
VPUMP  
L8  
IO117RSB2  
IO96RSB1  
L9  
GND  
J2  
GFA0/IO189RSB3  
VCCPLF  
L10  
L11  
L12  
L13  
L15  
L16  
L18  
L19  
M1  
M2  
M4  
M5  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M15  
M16  
M18  
M19  
N1  
GND  
IO98RSB1  
J4  
GND  
IO94RSB1  
J5  
GFC0/IO193RSB3  
GFA2/IO188RSB3  
VCCIB3  
VCCIB1  
IO174RSB3  
GND  
J7  
IO95RSB1  
IO91RSB1  
NC  
P2  
J8  
P3  
IO176RSB3  
IO177RSB3  
GEA0/IO165RSB3  
IO111RSB2  
IO108RSB2  
GDC1/IO99RSB1  
GND  
J9  
GND  
P4  
J10  
J11  
J12  
J13  
J15  
J16  
J18  
J19  
K1  
GND  
IO90RSB1  
NC  
P5  
GND  
P15  
P16  
P17  
P18  
P19  
R1  
VCCIB1  
IO180RSB3  
IO179RSB3  
IO181RSB3  
IO183RSB3  
VCCIB3  
GCC1/IO79RSB1  
GCA0/IO84RSB1  
GCB2/IO86RSB1  
IO76RSB1  
IO78RSB1  
VCCIB3  
IO97RSB1  
IO173RSB3  
IO172RSB3  
GEC1/IO170RSB3  
GEB1/IO168RSB3  
IO154RSB2  
IO149RSB2  
IO146RSB2  
IO138RSB2  
IO134RSB2  
IO132RSB2  
IO130RSB2  
IO118RSB2  
IO112RSB2  
VCC  
R2  
VCCIB2  
R4  
K2  
GFA1/IO190RSB3  
GND  
VCC  
R5  
K4  
VCCIB2  
R6  
K5  
IO19RSB0  
IO197RSB3  
VCC  
VCC  
R7  
K7  
VCCIB1  
R8  
K8  
IO122RSB2  
IO93RSB1  
IO92RSB1  
NC  
R9  
K9  
GND  
R10  
R11  
R12  
R13  
R14  
K10  
K11  
K12  
K13  
GND  
GND  
VCC  
IO178RSB3  
IO175RSB3  
GCC2/IO87RSB1  
N2  
3-14  
v1.5  
IGLOO PLUS Packaging  
281-Pin CSP  
281-Pin CSP  
Pin Number AGLP125 Function  
Pin Number AGLP125 Function  
R15  
R16  
R18  
R19  
T1  
IO109RSB2  
GDA1/IO103RSB1  
GDB0/IO102RSB1  
GDC0/IO100RSB1  
IO171RSB3  
GEC0/IO169RSB3  
GEB0/IO167RSB3  
IO157RSB2  
IO158RSB2  
IO148RSB2  
IO145RSB2  
IO143RSB2  
GND  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
W1  
IO133RSB2  
IO127RSB2  
IO123RSB2  
IO120RSB2  
GND  
T2  
IO113RSB2  
GDA2/IO105RSB2  
TDI  
T4  
T5  
T6  
VCCIB2  
T7  
TDO  
T8  
GND  
T9  
W2  
FF/GEB2/IO163RSB2  
IO155RSB2  
IO152RSB2  
IO150RSB2  
IO147RSB2  
IO142RSB2  
IO139RSB2  
IO136RSB2  
VCCIB2  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T18  
T19  
U1  
W3  
IO129RSB2  
IO126RSB2  
IO125RSB2  
IO116RSB2  
GDC2/IO107RSB2  
TMS  
W4  
W5  
W6  
W7  
W8  
W9  
VJTAG  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
GDB1/IO101RSB1  
IO160RSB2  
GEA1/IO166RSB3  
IO151RSB2  
IO121RSB2  
TRST  
IO128RSB2  
IO124RSB2  
IO119RSB2  
IO115RSB2  
IO114RSB2  
IO110RSB2  
GDB2/IO106RSB2  
TCK  
U2  
U6  
U14  
U18  
U19  
V1  
GDA0/IO104RSB1  
IO159RSB2  
VCCIB3  
V2  
GND  
V3  
GEC2/IO162RSB2  
IO156RSB2  
IO153RSB2  
GND  
V4  
V5  
V6  
V7  
IO144RSB2  
IO141RSB2  
IO140RSB2  
V8  
V9  
v1.5  
3-15  
Package Pin Assignments  
289-Pin CSP  
A1 Ball Pad Corner  
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
Note: This is the bottom view of the package.  
Figure 3-5 •  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx .  
3-16  
v1.5  
IGLOO PLUS Packaging  
289-Pin CSP  
289-Pin CSP  
289-Pin CSP  
Pin Number AGLP030 Function  
Pin Number AGLP030 Function  
Pin Number AGLP030 Function  
A1  
A2  
IO03RSB0  
NC  
C5  
C6  
VCCIB0  
IO09RSB0  
IO13RSB0  
IO15RSB0  
IO21RSB0  
GND  
E9  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
F1  
IO22RSB0  
IO26RSB0  
A3  
NC  
C7  
VCCIB0  
A4  
GND  
C8  
NC  
A5  
IO10RSB0  
IO14RSB0  
IO16RSB0  
IO18RSB0  
GND  
C9  
IO33RSB0  
IO36RSB1  
IO38RSB1  
A6  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
D1  
A7  
IO29RSB0  
NC  
A8  
VCCIB1  
A9  
NC  
NC  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
B1  
IO23RSB0  
IO27RSB0  
NC  
NC  
IO111RSB3  
NC  
GND  
F2  
IO34RSB0  
NC  
F3  
IO116RSB3  
NC  
F4  
VCCIB3  
GND  
NC  
F5  
IO117RSB3  
NC  
NC  
D2  
IO119RSB3  
GND  
F6  
NC  
D3  
F7  
NC  
IO30RSB0  
IO01RSB0  
GND  
D4  
IO02RSB0  
NC  
F8  
IO08RSB0  
IO12RSB0  
NC  
D5  
F9  
B2  
D6  
NC  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
G1  
B3  
NC  
D7  
NC  
NC  
B4  
NC  
D8  
GND  
NC  
B5  
IO07RSB0  
NC  
D9  
IO20RSB0  
IO25RSB0  
NC  
NC  
B6  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
E1  
GND  
B7  
V
CCIB0  
NC  
B8  
IO17RSB0  
IO19RSB0  
IO24RSB0  
IO28RSB0  
NC  
IO37RSB1  
IO41RSB1  
IO110RSB3  
GND  
B9  
GND  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
C1  
IO32RSB0  
IO35RSB0  
NC  
G2  
V
CCIB0  
NC  
G3  
IO113RSB3  
NC  
NC  
G4  
NC  
V
CCIB3  
G5  
NC  
NC  
E2  
IO114RSB3  
IO115RSB3  
IO118RSB3  
IO05RSB0  
NC  
G6  
NC  
IO31RSB0  
GND  
E3  
G7  
GND  
E4  
G8  
GND  
NC  
E5  
G9  
VCC  
C2  
IO00RSB0  
IO04RSB0  
NC  
E6  
G10  
G11  
G12  
GND  
C3  
E7  
IO06RSB0  
IO11RSB0  
GND  
C4  
E8  
IO40RSB1  
v1.5  
3-17  
Package Pin Assignments  
289-Pin CSP  
Pin Number AGLP030 Function  
289-Pin CSP  
289-Pin CSP  
Pin Number AGLP030 Function  
Pin Number AGLP030 Function  
G13  
G14  
G15  
G16  
G17  
H1  
NC  
IO39RSB1  
IO44RSB1  
NC  
J17  
K1  
GDA0/IO47RSB1  
GND  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
N1  
IO98RSB3  
IO93RSB3  
IO97RSB3  
NC  
K2  
GEB0/IO106RSB3  
IO102RSB3  
IO104RSB3  
IO99RSB3  
NC  
K3  
GND  
K4  
NC  
NC  
K5  
IO71RSB2  
NC  
H2  
GEC0/IO108RSB3  
NC  
K6  
H3  
K7  
GND  
IO63RSB2  
NC  
H4  
IO112RSB3  
NC  
K8  
GND  
H5  
K9  
GND  
IO57RSB1  
NC  
H6  
IO109RSB3  
GND  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
L1  
GND  
H7  
GND  
NC  
H8  
GND  
NC  
NC  
H9  
GND  
NC  
VCCIB1  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
J1  
GND  
NC  
NC  
GND  
IO53RSB1  
GND  
N2  
NC  
NC  
N3  
IO95RSB3  
IO96RSB3  
GND  
NC  
IO49RSB1  
IO103RSB3  
IO101RSB3  
NC  
N4  
IO45RSB1  
N5  
V
CCIB1  
L2  
N6  
NC  
GDB0/IO48RSB1  
IO42RSB1  
L3  
N7  
IO85RSB2  
IO79RSB2  
IO77RSB2  
L4  
GND  
N8  
NC  
L5  
NC  
N9  
J2  
GEA0/IO107RSB3  
L6  
NC  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
P1  
V
CCIB2  
NC  
J3  
V
CCIB3  
L7  
GND  
J4  
IO105RSB3  
NC  
L8  
GND  
NC  
J5  
L9  
VCC  
IO59RSB2  
NC  
J6  
NC  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
M1  
M2  
M3  
GND  
J7  
VCC  
GND  
GND  
J8  
GND  
IO58RSB1  
IO54RSB1  
IO56RSB1  
IO55RSB1  
IO94RSB3  
NC  
J9  
GND  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
GND  
V
CCIB1  
NC  
VCC  
P2  
IO50RSB1  
IO43RSB1  
IO51RSB1  
IO52RSB1  
GDC0/IO46RSB1  
NC  
P3  
GND  
NC  
P4  
NC  
NC  
P5  
NC  
V
CCIB3  
P6  
IO87RSB2  
IO80RSB2  
IO100RSB3  
P7  
3-18  
v1.5  
IGLOO PLUS Packaging  
289-Pin CSP  
289-Pin CSP  
Pin Number AGLP030 Function  
Pin Number AGLP030 Function  
P8  
P9  
GND  
IO72RSB2  
IO67RSB2  
IO61RSB2  
NC  
T12  
T13  
T14  
T15  
T16  
T17  
U1  
IO64RSB2  
NC  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
R1  
GND  
NC  
TDI  
VCCIB2  
TDO  
NC  
FF/IO90RSB2  
GND  
IO60RSB2  
IO62RSB2  
VJTAG  
GND  
U2  
U3  
NC  
U4  
IO88RSB2  
IO86RSB2  
IO82RSB2  
GND  
U5  
R2  
IO91RSB2  
NC  
U6  
R3  
U7  
R4  
NC  
U8  
IO75RSB2  
IO73RSB2  
IO68RSB2  
IO66RSB2  
GND  
R5  
NC  
U9  
R6  
V
CCIB2  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
R7  
IO83RSB2  
IO78RSB2  
IO74RSB2  
IO70RSB2  
GND  
R8  
R9  
NC  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
T1  
NC  
NC  
NC  
TCK  
NC  
VPUMP  
NC  
NC  
TMS  
TRST  
IO92RSB3  
IO89RSB2  
NC  
T2  
T3  
T4  
GND  
T5  
NC  
T6  
IO84RSB2  
IO81RSB2  
IO76RSB2  
T7  
T8  
T9  
VCCIB2  
T10  
T11  
IO69RSB2  
IO65RSB2  
v1.5  
3-19  
Package Pin Assignments  
289-Pin CSP  
Pin Number AGLP060 Function  
289-Pin CSP  
289-Pin CSP  
Pin Number AGLP060 Function  
Pin Number AGLP060 Function  
A1  
A2  
GAB1/IO03RSB0  
NC  
C5  
C6  
VCCIB0  
IO09RSB0  
IO13RSB0  
IO15RSB0  
IO21RSB0  
GND  
E9  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
F1  
IO22RSB0  
IO26RSB0  
A3  
NC  
C7  
VCCIB0  
A4  
GND  
C8  
NC  
A5  
IO10RSB0  
IO14RSB0  
IO16RSB0  
IO18RSB0  
GND  
C9  
GBB1/IO33RSB0  
GBA2/IO36RSB1  
GBB2/IO38RSB1  
A6  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
D1  
A7  
IO29RSB0  
NC  
A8  
VCCIB1  
A9  
NC  
IO44RSB1  
GFC1/IO140RSB3  
IO142RSB3  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
B1  
IO23RSB0  
IO27RSB0  
NC  
NC  
GND  
F2  
GBA0/IO34RSB0  
IO39RSB1  
IO150RSB3  
IO151RSB3  
GND  
F3  
IO149RSB3  
NC  
F4  
VCCIB3  
GND  
F5  
GAB2/IO154RSB3  
IO153RSB3  
NC  
NC  
D2  
F6  
NC  
D3  
F7  
GBC0/IO30RSB0  
GAA1/IO01RSB0  
GND  
D4  
GAB0/IO02RSB0  
NC  
F8  
IO08RSB0  
IO12RSB0  
NC  
D5  
F9  
B2  
D6  
NC  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
G1  
B3  
NC  
D7  
NC  
NC  
B4  
NC  
D8  
GND  
NC  
B5  
IO07RSB0  
NC  
D9  
IO20RSB0  
IO25RSB0  
NC  
GBC2/IO40RSB1  
GND  
B6  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
E1  
B7  
V
CCIB0  
IO43RSB1  
IO46RSB1  
IO45RSB1  
GFC0/IO139RSB3  
GND  
B8  
IO17RSB0  
IO19RSB0  
IO24RSB0  
IO28RSB0  
VCCIB0  
NC  
B9  
GND  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
C1  
GBB0/IO32RSB0  
GBA1/IO35RSB0  
IO37RSB1  
IO42RSB1  
G2  
G3  
IO144RSB3  
IO145RSB3  
IO146RSB3  
IO148RSB3  
GND  
NC  
G4  
NC  
VCCIB3  
G5  
NC  
E2  
IO147RSB3  
GAC2/IO152RSB3  
GAA2/IO156RSB3  
GAC1/IO05RSB0  
NC  
G6  
GBC1/IO31RSB0  
GND  
E3  
G7  
E4  
G8  
GND  
IO155RSB3  
GAA0/IO00RSB0  
GAC0/IO04RSB0  
NC  
E5  
G9  
VCC  
C2  
E6  
G10  
G11  
G12  
GND  
C3  
E7  
IO06RSB0  
GND  
C4  
E8  
IO11RSB0  
IO48RSB1  
3-20  
v1.5  
IGLOO PLUS Packaging  
289-Pin CSP  
289-Pin CSP  
289-Pin CSP  
Pin Number AGLP060 Function  
Pin Number AGLP060 Function  
Pin Number AGLP060 Function  
G13  
G14  
G15  
G16  
G17  
H1  
IO41RSB1  
IO47RSB1  
IO49RSB1  
IO50RSB1  
GND  
J17  
K1  
GCA1/IO56RSB1  
GND  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
N1  
IO122RSB3  
GEB0/IO113RSB3  
GEB1/IO114RSB3  
NC  
K2  
GFA0/IO135RSB3  
GFB2/IO133RSB3  
IO128RSB3  
IO123RSB3  
IO125RSB3  
GND  
K3  
K4  
NC  
VCOMPLF  
K5  
IO90RSB2  
NC  
H2  
GFB0/IO137RSB3  
NC  
K6  
H3  
K7  
IO83RSB2  
NC  
H4  
IO141RSB3  
IO143RSB3  
GFB1/IO138RSB3  
GND  
K8  
GND  
H5  
K9  
GND  
GDA1/IO76RSB1  
GDA0/IO77RSB1  
IO71RSB1  
IO69RSB1  
H6  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
L1  
GND  
H7  
GND  
H8  
GND  
IO64RSB1  
IO61RSB1  
IO66RSB1  
IO65RSB1  
GND  
H9  
GND  
VCCIB1  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
J1  
GND  
IO119RSB3  
IO120RSB3  
GEC0/IO115RSB3  
GEA0/IO111RSB3  
GND  
GND  
N2  
GCC1/IO52RSB1  
IO51RSB1  
GCA0/IO57RSB1  
N3  
GCC2/IO60RSB1  
GFA2/IO134RSB3  
GFC2/IO132RSB3  
IO127RSB3  
GND  
N4  
N5  
V
CCIB1  
L2  
N6  
NC  
GCA2/IO58RSB1  
GCC0/IO53RSB1  
VCCPLF  
L3  
N7  
IO104RSB2  
IO98RSB2  
L4  
N8  
L5  
IO121RSB3  
GEC1/IO116RSB3  
GND  
N9  
IO96RSB2  
J2  
GFA1/IO136RSB3  
VCCIB3  
L6  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
P1  
VCCIB2  
J3  
L7  
NC  
J4  
IO131RSB3  
IO130RSB3  
IO129RSB3  
VCC  
L8  
GND  
NC  
J5  
L9  
VCC  
GDB2/IO79RSB2  
NC  
J6  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
M1  
M2  
M3  
GND  
J7  
GND  
GND  
J8  
GND  
GDC1/IO72RSB1  
GDB1/IO74RSB1  
GDB0/IO75RSB1  
GDC0/IO73RSB1  
IO118RSB3  
IO117RSB3  
GND  
J9  
GND  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
GND  
VCCIB1  
VCC  
IO70RSB1  
IO68RSB1  
IO67RSB1  
IO126RSB3  
P2  
GCB2/IO59RSB1  
GCB1/IO54RSB1  
IO62RSB1  
IO63RSB1  
GCB0/IO55RSB1  
P3  
P4  
NC  
P5  
NC  
VCCIB3  
P6  
IO106RSB2  
IO99RSB2  
IO124RSB3  
P7  
v1.5  
3-21  
Package Pin Assignments  
289-Pin CSP  
Pin Number AGLP060 Function  
289-Pin CSP  
Pin Number AGLP060 Function  
P8  
P9  
GND  
IO91RSB2  
IO86RSB2  
IO81RSB2  
NC  
T12  
T13  
T14  
T15  
T16  
T17  
U1  
IO82RSB2  
NC  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
R1  
GND  
NC  
TDI  
V
CCIB2  
NC  
TDO  
FF/GEB2/IO109RSB2  
GND  
GDA2/IO78RSB2  
U2  
GDC2/IO80RSB2  
U3  
NC  
VJTAG  
U4  
IO107RSB2  
IO105RSB2  
IO101RSB2  
GND  
GND  
U5  
R2  
GEA2/IO110RSB2  
U6  
R3  
NC  
NC  
NC  
U7  
R4  
U8  
IO94RSB2  
IO92RSB2  
IO87RSB2  
IO85RSB2  
GND  
R5  
U9  
R6  
V
CCIB2  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
R7  
IO102RSB2  
IO97RSB2  
IO93RSB2  
IO89RSB2  
GND  
R8  
R9  
NC  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
T1  
NC  
NC  
NC  
TCK  
NC  
VPUMP  
NC  
NC  
TMS  
TRST  
GEA1/IO112RSB3  
GEC2/IO108RSB2  
NC  
T2  
T3  
T4  
GND  
T5  
NC  
T6  
IO103RSB2  
IO100RSB2  
IO95RSB2  
T7  
T8  
T9  
VCCIB2  
T10  
T11  
IO88RSB2  
IO84RSB2  
3-22  
v1.5  
IGLOO PLUS Packaging  
289-Pin CSP  
289-Pin CSP  
289-Pin CSP  
Pin Number AGLP125 Function  
Pin Number AGLP125 Function  
Pin Number AGLP125 Function  
A1  
A2  
GAB1/IO03RSB0  
IO11RSB0  
IO08RSB0  
GND  
C5  
C6  
VCCIB0  
IO17RSB0  
IO23RSB0  
IO27RSB0  
IO33RSB0  
GND  
E9  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
F1  
IO32RSB0  
IO36RSB0  
A3  
C7  
VCCIB0  
A4  
C8  
IO56RSB0  
A5  
IO19RSB0  
IO24RSB0  
IO26RSB0  
IO30RSB0  
GND  
C9  
GBB1/IO60RSB0  
GBA2/IO63RSB1  
GBB2/IO65RSB1  
A6  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
D1  
A7  
IO43RSB0  
IO45RSB0  
IO50RSB0  
IO52RSB0  
GND  
A8  
VCCIB1  
A9  
IO73RSB1  
GFC1/IO194RSB3  
IO196RSB3  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
B1  
IO35RSB0  
IO38RSB0  
IO40RSB0  
IO42RSB0  
GND  
F2  
GBA0/IO61RSB0  
IO68RSB1  
IO204RSB3  
IO205RSB3  
GND  
F3  
IO202RSB3  
F4  
VCCIB3  
F5  
GAB2/IO209RSB3  
IO208RSB3  
IO14RSB0  
IO20RSB0  
IO25RSB0  
IO29RSB0  
IO51RSB0  
IO53RSB0  
GBC2/IO67RSB1  
GND  
IO48RSB0  
IO54RSB0  
GBC0/IO57RSB0  
GAA1/IO01RSB0  
GND  
D2  
F6  
D3  
F7  
D4  
GAB0/IO02RSB0  
IO07RSB0  
IO10RSB0  
IO18RSB0  
GND  
F8  
D5  
F9  
B2  
D6  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
G1  
B3  
IO06RSB0  
IO13RSB0  
IO15RSB0  
IO21RSB0  
D7  
B4  
D8  
B5  
D9  
IO34RSB0  
IO41RSB0  
IO47RSB0  
IO55RSB0  
GND  
B6  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
E1  
B7  
V
CCIB0  
IO75RSB1  
IO71RSB1  
IO77RSB1  
GFC0/IO193RSB3  
GND  
B8  
IO28RSB0  
IO31RSB0  
IO37RSB0  
IO39RSB0  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
C1  
GBB0/IO59RSB0  
GBA1/IO62RSB0  
IO66RSB1  
IO70RSB1  
G2  
V
CCIB0  
G3  
IO198RSB3  
IO203RSB3  
IO201RSB3  
IO206RSB3  
GND  
IO44RSB0  
IO46RSB0  
G4  
V
CCIB3  
G5  
IO49RSB0  
E2  
IO200RSB3  
GAC2/IO207RSB3  
GAA2/IO211RSB3  
GAC1/IO05RSB0  
IO12RSB0  
G6  
GBC1/IO58RSB0  
GND  
E3  
G7  
E4  
G8  
GND  
IO210RSB3  
GAA0/IO00RSB0  
GAC0/IO04RSB0  
IO09RSB0  
E5  
G9  
VCC  
C2  
E6  
G10  
G11  
G12  
GND  
C3  
E7  
IO16RSB0  
GND  
C4  
E8  
IO22RSB0  
IO72RSB1  
v1.5  
3-23  
Package Pin Assignments  
289-Pin CSP  
Pin Number AGLP125 Function  
289-Pin CSP  
289-Pin CSP  
Pin Number AGLP125 Function  
Pin Number AGLP125 Function  
G13  
G14  
G15  
G16  
G17  
H1  
IO64RSB1  
IO69RSB1  
IO78RSB1  
IO76RSB1  
GND  
J17  
K1  
GCA1/IO83RSB1  
GND  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
N1  
IO172RSB3  
GEB0/IO167RSB3  
GEB1/IO168RSB3  
IO159RSB2  
K2  
GFA0/IO189RSB3  
GFB2/IO187RSB3  
IO179RSB3  
IO175RSB3  
IO177RSB3  
GND  
K3  
K4  
IO161RSB2  
VCOMPLF  
K5  
IO135RSB2  
H2  
GFB0/IO191RSB3  
IO195RSB3  
IO197RSB3  
IO199RSB3  
GFB1/IO192RSB3  
GND  
K6  
IO128RSB2  
H3  
K7  
IO121RSB2  
H4  
K8  
GND  
IO113RSB2  
H5  
K9  
GND  
GDA1/IO103RSB1  
GDA0/IO104RSB1  
IO97RSB1  
H6  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
L1  
GND  
H7  
GND  
H8  
GND  
IO88RSB1  
IO94RSB1  
IO95RSB1  
IO93RSB1  
GND  
IO96RSB1  
H9  
GND  
VCCIB1  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
J1  
GND  
IO180RSB3  
IO178RSB3  
GEC0/IO169RSB3  
GEA0/IO165RSB3  
GND  
GND  
N2  
GCC1/IO79RSB1  
IO74RSB1  
GCA0/IO84RSB1  
N3  
GCC2/IO87RSB1  
GFA2/IO188RSB3  
GFC2/IO186RSB3  
IO182RSB3  
GND  
N4  
N5  
V
CCIB1  
L2  
N6  
IO156RSB2  
IO148RSB2  
IO144RSB2  
IO137RSB2  
GCA2/IO85RSB1  
GCC0/IO80RSB1  
VCCPLF  
L3  
N7  
L4  
N8  
L5  
IO173RSB3  
GEC1/IO170RSB3  
GND  
N9  
J2  
GFA1/IO190RSB3  
VCCIB3  
L6  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
P1  
VCCIB2  
J3  
L7  
IO119RSB2  
IO111RSB2  
GDB2/IO106RSB2  
IO109RSB2  
GND  
J4  
IO185RSB3  
IO183RSB3  
IO181RSB3  
VCC  
L8  
GND  
J5  
L9  
VCC  
J6  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
M1  
M2  
M3  
GND  
J7  
GND  
J8  
GND  
GDC1/IO99RSB1  
GDB1/IO101RSB1  
GDB0/IO102RSB1  
GDC0/IO100RSB1  
IO174RSB3  
IO171RSB3  
GND  
J9  
GND  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
GND  
VCCIB1  
VCC  
IO98RSB1  
IO92RSB1  
IO91RSB1  
IO184RSB3  
P2  
GCB2/IO86RSB1  
GCB1/IO81RSB1  
IO90RSB1  
IO89RSB1  
GCB0/IO82RSB1  
P3  
P4  
IO160RSB2  
IO157RSB2  
IO154RSB2  
IO152RSB2  
P5  
V
CCIB3  
P6  
IO176RSB3  
P7  
3-24  
v1.5  
IGLOO PLUS Packaging  
289-Pin CSP  
289-Pin CSP  
Pin Number AGLP125 Function  
Pin Number AGLP125 Function  
P8  
P9  
GND  
T12  
T13  
T14  
T15  
T16  
T17  
U1  
IO124RSB2  
IO122RSB2  
GND  
IO132RSB2  
IO125RSB2  
IO126RSB2  
IO112RSB2  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
R1  
IO115RSB2  
TDI  
VCCIB2  
TDO  
IO108RSB2  
GDA2/IO105RSB2  
GDC2/IO107RSB2  
VJTAG  
FF/GEB2/IO163RSB2  
GND  
U2  
U3  
IO151RSB2  
IO149RSB2  
IO146RSB2  
IO142RSB2  
GND  
U4  
GND  
U5  
R2  
GEA2/IO164RSB2  
IO158RSB2  
U6  
R3  
U7  
R4  
IO155RSB2  
U8  
IO138RSB2  
IO136RSB2  
IO133RSB2  
IO129RSB2  
GND  
R5  
IO150RSB2  
U9  
R6  
V
CCIB2  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
R7  
IO145RSB2  
IO141RSB2  
IO134RSB2  
IO130RSB2  
GND  
R8  
R9  
IO123RSB2  
IO120RSB2  
IO117RSB2  
TCK  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
T1  
IO118RSB2  
IO116RSB2  
IO114RSB2  
IO110RSB2  
TMS  
VPUMP  
TRST  
GEA1/IO166RSB3  
GEC2/IO162RSB2  
IO153RSB2  
GND  
T2  
T3  
T4  
T5  
IO147RSB2  
IO143RSB2  
IO140RSB2  
IO139RSB2  
T6  
T7  
T8  
T9  
VCCIB2  
T10  
T11  
IO131RSB2  
IO127RSB2  
v1.5  
3-25  
Package Pin Assignments  
Part Number and Revision Date  
Part Number 51700102-003-5  
Revised January 2009  
List of Changes  
The following table lists critical changes that were made in the current version of the chapter.  
Previous Version  
Changes in Current Version (v1.5)  
Page  
v1.4  
(August 2008)  
The "201-Pin CSP" pin table was revised to add a note regarding pins G1 and  
H1.  
3-10  
v1.3  
The "128-Pin VQFP" package drawing and pin table are new.  
The "176-Pin VQFP" package drawing and pin table are new.  
The "281-Pin CSP" package drawing is new.  
3-1  
3-4  
(June 2008)  
v1.2  
3-12  
3-13  
3-16  
(June 2008)  
The "281-Pin CSP" table for the AGLP125 device is new.  
The "289-Pin CSP" package drawing was incorrect. The graphic was showing  
the CS281 mechanical drawing and not the CS289 mechanical drawing. This  
has now been corrected.  
v1.1  
The "289-Pin CSP" table for the AGLP030 device is new.  
3-17  
(June 2008)  
v1.0  
The "289-Pin CSP" table for the AGLP060 device is new.  
The "289-Pin CSP" table for the AGLP125 device is new.  
3-20  
3-23  
(January 2008)  
3-26  
v1.5  
IGLOO PLUS Packaging  
Datasheet Categories  
Categories  
In order to provide the latest information to designers, some datasheets are published before data  
has been fully characterized. Datasheets are designated as "Product Brief," "Advance,"  
"Preliminary," and "Production." The definitions of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advance or production) and contains  
general product information. This document gives an overview of specific device and family  
information.  
Advance  
This version contains initial estimated information based on simulation, other products, devices, or  
speed grades. This information can be used as estimates, but not for production. This label only  
applies to the DC and Switching Characteristics chapter of the datasheet and will only be used  
when the data has not been fully characterized.  
Preliminary  
The datasheet contains information based on simulation and/or initial characterization. The  
information is believed to be correct, but changes are possible.  
Unmarked (production)  
This version contains information that is considered to be final.  
Export Administration Regulations (EAR)  
The products described in this document are subject to the Export Administration Regulations  
(EAR). They could require an approved export license prior to export from the United States. An  
export includes release of product or disclosure of technology to a foreign national inside or  
outside the United States.  
Actel Safety Critical, Life Support, and High-Reliability  
Applications Policy  
The Actel products described in this advance status document may not have completed Actel’s  
qualification process. Actel may amend or enhance products during the product introduction and  
qualification process, resulting in changes in device functionality or performance. It is the  
responsibility of each customer to ensure the fitness of any Actel product (but especially a new  
product) for a particular purpose, including appropriateness for safety-critical, life-support, and  
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability  
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is  
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also  
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your  
local Actel sales office for additional reliability information.  
v1.5  
3-27  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
Actel is the leader in low-power and mixed-signal FPGAs and offers the most comprehensive portfolio of  
system and power management solutions. Power Matters. Learn more at www.actel.com.  
Actel Corporation  
Actel Europe Ltd.  
Actel Japan  
Actel Hong Kong  
2061 Stierlin Court  
Mountain View, CA  
94043-4655 USA  
River Court,Meadows Business Park EXOS Ebisu Buillding 4F  
Room 2107, China Resources Building  
26 Harbour Road  
Wanchai, Hong Kong  
Station Approach, Blackwater  
Camberley Surrey GU17 9AB  
United Kingdom  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
Phone 650.318.4200  
Fax 650.318.4600  
Phone +81.03.3445.7671  
Fax +81.03.3445.7668  
Phone +852 2185 6460  
Fax +852 2185 6488  
Phone +44 (0) 1276 609 300  
Fax +44 (0) 1276 607 540  
http://jp.actel.com  
www.actel.com.cn  
51700102-005-8/1.09  

相关型号:

AGLP030V5-VQG128YC

Field Programmable Gate Array
MICROSEMI

AGLP060

IGLOO PLUS Low Power Flash FPGAs
MICROSEMI

AGLP060-V2CS289

IGLOO PLUS Low-Power Flash FPGAs with FlashFreeze Technology
ACTEL

AGLP060-V2CS289ES

IGLOO PLUS Low-Power Flash FPGAs with FlashFreeze Technology
ACTEL

AGLP060-V2CS289I

IGLOO PLUS Low-Power Flash FPGAs with FlashFreeze Technology
ACTEL

AGLP060-V2CS289PP

IGLOO PLUS Low-Power Flash FPGAs with FlashFreeze Technology
ACTEL

AGLP060-V2CSG289

IGLOO PLUS Low-Power Flash FPGAs with FlashFreeze Technology
ACTEL

AGLP060-V2CSG289ES

IGLOO PLUS Low-Power Flash FPGAs with FlashFreeze Technology
ACTEL

AGLP060-V2CSG289I

IGLOO PLUS Low-Power Flash FPGAs with FlashFreeze Technology
ACTEL

AGLP060-V2CSG289PP

IGLOO PLUS Low-Power Flash FPGAs with FlashFreeze Technology
ACTEL

AGLP060-V2FCS289

IGLOO PLUS Low-Power Flash FPGAs with FlashFreeze Technology
ACTEL

AGLP060-V2FCS289ES

IGLOO PLUS Low-Power Flash FPGAs with FlashFreeze Technology
ACTEL