APT68GA60LD40 [MICROSEMI]

High Speed PT IGBT; 高速PT IGBT
APT68GA60LD40
型号: APT68GA60LD40
厂家: Microsemi    Microsemi
描述:

High Speed PT IGBT
高速PT IGBT

双极性晶体管
文件: 总9页 (文件大小:243K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APT68GA60LD40  
600V  
High Speed PT IGBT  
POWER MOS 8® is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved  
through leading technology silicon design and lifetime control processes. A reduced Eoff  
-
VCE(ON) tradeoff results in superior efciency compared to other IGBT technologies. Low  
gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short  
delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the  
poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even  
when switching at high frequency.  
APT68GA60LD40  
Combi (IGBT and Diode)  
FEATURES  
TYPICAL APPLICATIONS  
• Fast switching with low EMI  
• Very Low Eoff for maximum efciency  
• Ultra low Cres for improved noise immunity  
• Low conduction loss  
• ZVS phase shifted and other full bridge  
• Half bridge  
• High power PFC boost  
• Welding  
• Low gate charge  
• UPS, solar, and other inverters  
• High frequency, high efciency industrial  
• Increased intrinsic gate resistance for low EMI  
• RoHS compliant  
Absolute Maximum Ratings  
Symbol Parameter  
Ratings  
Unit  
Collector Emitter Voltage  
600  
V
Vces  
IC1  
Continuous Collector Current @ TC = 25°C  
Continuous Collector Current @ TC = 100°C  
Pulsed Collector Current 1  
121  
68  
A
IC2  
ICM  
202  
VGE  
Gate-Emitter Voltage 2  
±30  
V
PD  
Total Power Dissipation @ TC = 25°C  
Switching Safe Operating Area @ TJ = 150°C  
Operating and Storage Junction Temperature Range  
520  
W
SSOA  
TJ, TSTG  
TL  
202A @ 600V  
-55 to 150  
°C  
Lead Temperature for Soldering: 0.063" from Case for 10 Seconds  
300  
Static Characteristics  
Symbol Parameter  
T = 25°C unless otherwise specied  
J
Test Conditions  
Min  
Typ  
Max  
Unit  
VBR(CES)  
Collector-Emitter Breakdown Voltage  
VGE = 0V, IC = 250μA  
600  
TJ = 25°C  
TJ = 125°C  
2.0  
1.9  
4.5  
2.5  
VGE = 15V,  
IC = 40A  
V
VCE(on)  
VGE(th)  
ICES  
Collector-Emitter On Voltage  
Gate Emitter Threshold Voltage  
Zero Gate Voltage Collector Current  
Gate-Emitter Leakage Current  
VGE =VCE , IC = 1mA  
3
6
TJ = 25°C  
275  
VCE = 600V,  
VGE = 0V  
μA  
TJ = 125°C  
3000  
±100  
IGES  
VGS = ±30V  
nA  
Microsemi Website - http://www.microsemi.com  
APT68GA60LD40  
Dynamic Characteristics  
T = 25°C unless otherwise specied  
J
Symbol  
Cies  
Parameter  
Test Conditions  
Capacitance  
Min  
Typ  
5230  
526  
59  
Max  
Unit  
Input Capacitance  
Output Capacitance  
Coes  
VGE = 0V, VCE = 25V  
pF  
Cres  
Reverse Transfer Capacitance  
Total Gate Charge  
f = 1MHz  
Gate Charge  
Qg3  
198  
32  
Qge  
Gate-Emitter Charge  
VGE = 15V  
VCE= 300V  
nC  
A
Qgc  
Gate- Collector Charge  
66  
IC = 40A  
TJ = 150°C, RG = 4.7Ω4, VGE = 15V,  
L= 100uH, VCE = 600V  
Inductive Switching (25°C)  
VCC = 400V  
202  
SSOA  
Switching Safe Operating Area  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
Current Rise Time  
21  
27  
ns  
μJ  
ns  
μJ  
Turn-Off Delay Time  
Current Fall Time  
133  
88  
VGE = 15V  
IC = 40A  
RG = 4.7Ω4  
Eon2  
Turn-On Switching Energy  
Turn-Off Switching Energy  
Turn-On Delay Time  
Current Rise Time  
715  
607  
20  
6
Eoff  
TJ = +25°C  
td(on)  
tr  
td(off)  
tf  
Inductive Switching (125°C)  
26  
VCC = 400V  
Turn-Off Delay Time  
Current Fall Time  
175  
129  
1117  
1025  
VGE = 15V  
IC = 40A  
RG = 4.7Ω4  
Eon2  
Turn-On Switching Energy  
Turn-Off Switching Energy  
6
Eoff  
TJ = +125°C  
Thermal and Mechanical Characteristics  
Symbol Characteristic  
Min  
Typ  
Max  
Unit  
RθJC  
Junction to Case Thermal Resistance (IGBT)  
-
-
.24  
°C/W  
RθJC  
WT  
Junction to Case Thermal Resistance (Diode)  
Package Weight  
.67  
-
-
6.1  
g
Torque  
Mounting Torque (TO-264 Package), 4-40 or M3 screw  
10  
in·lbf  
1
2
3
4
5
Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.  
Pulse test: Pulse Width < 380μs, duty cycle < 2%.  
See Mil-Std-750 Method 3471.  
RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)  
Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the  
clamping diode.  
Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.  
Microsemi reserves the right to change, without notice, the specications and information contained herein.  
6
Typical Performance Curves  
APT68GA60LD40  
350  
300  
250  
200  
150  
100  
50  
120  
V
= 15V  
GE  
15V  
13V  
TJ= 125°C  
100  
80  
60  
40  
20  
10V  
TJ= 55°C  
TJ= 150°C  
9V  
TJ= 25°C  
8V  
7V  
6V  
5V  
0
0
0
1
2
3
4
5
6
0
4
8
12 16  
20 24 28  
32  
V
, COLLECTOR-TO-EMITTER VOLTAGE (V)  
V
, COLLECTOR-TO-EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 1, Output Characteristics (T = 25°C)  
FIGURE 2, Output Characteristics (T = 25°C)  
J
J
240  
200  
160  
120  
80  
20  
15  
10  
5
250μs PULSE  
TEST<0.5 % DUTY  
CYCLE  
I
= 40A  
C
T
= 25°C  
J
V
= 120V  
CE  
V
= 300V  
CE  
V
= 480V  
CE  
TJ= 25°C  
40  
TJ= -55°C  
TJ= 125°C  
0
0
0
2
4
6
8
10  
12  
0
40  
80  
120  
160  
200  
GATE CHARGE (nC)  
V
, GATE-TO-EMITTER VOLTAGE (V)  
GE  
FIGURE 4, Gate charge  
FIGURE 3, Transfer Characteristics  
4
3
2
1
0
5
4
3
2
1
0
TJ = 25°C.  
250μs PULSE TEST  
<0.5 % DUTY CYCLE  
I
= 80A  
C
I
= 80A  
= 40A  
I
= 40A  
C
C
I
C
I
= 20A  
C
I
= 20A  
C
VGE = 15V.  
250μs PULSE TEST  
<0.5 % DUTY CYCLE  
6
8
10  
12  
14  
16  
0
25  
50  
75  
100  
125  
150  
V
, GATE-TO-EMITTER VOLTAGE (V)  
T , Junction Temperature (°C)  
GE  
J
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage  
FIGURE 6, On State Voltage vs Junction Temperature  
1.15  
140  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
120  
100  
80  
60  
40  
20  
0
-50 -25  
0
25 50 75 100 125 150  
25  
50  
75  
100  
125  
150  
T , JUNCTION TEMPERATURE  
T , Case Temperature (°C)  
J
C
FIGURE 7, Threshold Voltage vs Junction Temperature  
FIGURE 8, DC Collector Current vs Case Temperature  
Typical Performance Curves  
APT68GA60LD40  
250  
200  
150  
100  
50  
30  
VCE = 400V  
TJ = 25°C, or 125°C  
R
G = 4.7  
25  
20  
15  
10  
V
= 15V  
GE  
L = 100μH  
VGE =15V,TJ=125°C  
VGE =15V,TJ=25°C  
VCE = 400V  
RG = 4.7ꢀ  
L = 100μH  
5
0
0
0
20  
40  
60  
80  
0
10 20 30  
40 50  
60 70 80  
I
, COLLECTOR-TO-EMITTER CURRENT (A)  
I
, COLLECTOR-TO-EMITTER CURRENT (A)  
CE  
CE  
FIGURE 9, Turn-On Delay Time vs Collector Current  
FIGURE 10, Turn-Off Delay Time vs Collector Current  
160  
70  
60  
50  
40  
30  
20  
10  
0
R
G = 4.7, L = 100μH, VCE = 400V  
140  
120  
100  
80  
TJ = 125°C, VGE = 15V  
TJ = 25°C, VGE = 15V  
60  
40  
TJ = 25 or 125°C,VGE = 15V  
20  
RG = 4.7, L = 100μH, VCE = 400V  
0
0
I
10  
20 30 40  
50 60 70  
80  
0
10 20 30  
40 50  
60 70 80  
, COLLECTOR-TO-EMITTER CURRENT (A)  
I
, COLLECTOR-TO-EMITTER CURRENT (A)  
CE  
CE  
FIGURE 12, Current Fall Time vs Collector Current  
FIGURE 11, Current Rise Time vs Collector Current  
3000  
2000  
1000  
0
3000  
2500  
2000  
1500  
1000  
500  
V
V
=
=
400V  
+15V  
V
V
=
=
400V  
+15V  
CE  
GE  
CE  
GE  
R
=4.7ꢀ  
R
= 4.7ꢀ  
G
G
T
J = 125°C  
T
J = 125°C  
T
J = 25°C  
T
J = 25°C  
0
0
I
10 20 30  
, COLLECTOR-TO-EMITTER CURRENT (A)  
40 50 60  
70 80  
0
10 20  
30 40 50 60  
70  
80  
I
, COLLECTOR-TO-EMITTER CURRENT (A)  
CE  
CE  
FIGURE 13, Turn-On Energy Loss vs Collector Current  
FIGURE 14, Turn-Off Energy Loss vs Collector Current  
3000  
2500  
2000  
1500  
1000  
500  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
V
V
T
=
=
400V  
+15V  
V
V
=
=
400V  
+15V  
Eon2,80A  
CE  
GE  
CE  
GE  
Eon2,80A  
= 125°C  
R
= 4.7ꢀ  
J
G
Eoff,80A  
Eoff,80A  
Eon2,40A  
Eoff,40A  
Eon2,40A  
Eon2,20A  
Eoff,20A  
Eoff,40A  
Eon2,20A  
Eoff,20A  
0
0
0
25  
50  
75  
100  
125  
0
10  
20  
30  
40  
50  
T , JUNCTION TEMPERATURE (°C)  
R , GATE RESISTANCE (OHMS)  
J
G
FIGURE 16, Switching Energy Losses vs Junction Temperature  
FIGURE 15, Switching Energy Losses vs Gate Resistance  
Typical Performance Curves  
APT68GA60LD40  
10000  
1000  
100  
10  
Cies  
1000  
Coes  
100  
10  
1
Cres  
0.1  
1
10  
100  
800  
0
100  
200  
300  
400  
500  
V
, COLLECTOR-TO-EMITTER VOLTAGE  
V
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)  
CE  
CE  
FIGURE 18, Minimum Switching Safe Operating Area  
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage  
0.30  
0.25  
D = 0.9  
0.20  
0.7  
0.15  
0.5  
Note:  
t
1
0.10  
0.3  
t
2
0.05  
0.1  
t
1
t
/
2
Duty Factor D =  
Peak T = P x Z  
+ T  
C
J
DM  
θJC  
SINGLE PULSE  
10-3  
0.05  
0
10-4  
10-2  
10-5  
0.1  
1
RECTANGULAR PULSE DURATION (SECONDS)  
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration  
APT68GA60LD40  
10%  
Gate Voltage  
T
= 125°C  
J
td(on)  
90%  
APT30DQ60  
tr  
Collector Current  
Collector Voltage  
VCE  
VCC  
IC  
10%  
5%  
5%  
Switching Energy  
A
D.U.T.  
Figure 20, Inductive Switching Test Circuit  
Figure 21, Turn-on Switching Waveforms and Denitions  
T
= 125°C  
J
90%  
td(off)  
Gate Voltage  
Collector Voltage  
Collector Current  
tf  
10%  
0
Switching Energy  
Figure 22, Turn-off Switching Waveforms and Denitions  
ULTRAFAST SOFT RECOVERY RECTIFIER DIODE  
MAXIMUM RATINGS  
All Ratings: TC = 25°C unless otherwise specified.  
APT68GA60LD40  
Symbol Characteristic / Test Conditions  
Unit  
40  
63  
IF(AV)  
IF(RMS)  
IFSM  
Maximum Average Forward Current (TC = 111°C, Duty Cycle = 0.5)  
RMS Forward Current (Square wave, 50% duty)  
Amps  
320  
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms)  
STATIC ELECTRICAL CHARACTERISTICS  
Symbol Characteristic / Test Conditions  
Min  
Type  
2.0  
Max  
Unit  
IF = 40A  
IF = 80A  
Forward Voltage  
2.5  
Volts  
VF  
1.7  
IF = 40A, TJ = 125°C  
DYNAMIC CHARACTERISTICS  
Symbol Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
IF = 1A, diF/dt = -100A/µs ,  
VR = 30V, TJ = 25°C  
Reverse Recovery Time  
trr  
-
-
22  
ns  
Reverse Recovery Time  
trr  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
35  
3
IF = 40A, diF/dt = -200A/µs  
Reverse Recovery Charge  
Qrr  
nC  
Amps  
ns  
V
R = 400V, TC = 25°C  
Maximum Reverse Recovery Current  
IRRM  
trr  
Reverse Recovery Time  
160  
480  
6
IF = 40A, diF/dt = -200A/µs  
VR = 400V, TC = 125°C  
nC  
Reverse Recovery Charge  
Maximum Reverse Recovery Current  
Reverse Recovery Time  
Qrr  
IRRM  
trr  
Amps  
ns  
85  
920  
IF = 40A, diF/dt = -1000A/µs  
VR = 400V, TC = 125°C  
Reverse Recovery Charge  
nC  
Qrr  
Maximum Reverse Recovery Current  
-
-
Amps  
20  
IRRM  
0.70  
D = 0.9  
0.60  
0.50  
0.7  
0.40  
0.5  
Note:  
0.30  
t
1
0.3  
0.20  
t
2
t
1
t
Duty Factor D =  
/
2
0.10  
0
0.1  
Peak T = P  
x Z  
+ T  
C
SINGLE PULSE  
10-3  
J
DM  
θJC  
0.05  
10-5  
10-4  
10-2  
10-1  
1.0  
RECTANGULAR PULSE DURATION (seconds)  
FIGURE 1. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION  
l
Dynamic Characteristics  
T = 25°C unless otherwise specied  
J
APT68GA60LD40  
120  
180  
160  
140  
120  
100  
80  
T
V
= 125°C  
= 400V  
J
R
80A  
40A  
100  
80  
20A  
60  
T
= 125°C  
J
40  
20  
0
60  
T
= 175°C  
40  
20  
0
T
= 25°C  
J
J
T
= -55°C  
J
0
0.5  
1
1.5  
2
2.5  
3
0
200  
400  
600  
800 1000 1200  
V , ANODE-TO-CATHODE VOLTAGE (V)  
Figure 2. Forward Current vs. Forward Voltage  
-di /dt, CURRENT RATE OF CHANGE(A/µs)  
Figure 3. Reverse Recovery Time vs. Current Rate of Change  
F
F
25  
1400  
1200  
1000  
800  
600  
400  
200  
0
T
V
= 125°C  
= 400V  
T
V
= 125°C  
= 400V  
J
J
R
R
80A  
40A  
20  
15  
10  
5
80A  
40A  
20A  
20A  
0
0
200  
400  
600  
800 1000 1200  
0
200  
400  
600  
800 1000 1200  
-di /dt, CURRENT RATE OF CHANGE (A/µs)  
-di /dt, CURRENT RATE OF CHANGE (A/µs)  
F
F
Figure 4. Reverse Recovery Charge vs. Current Rate of Change  
Figure 5. Reverse Recovery Current vs. Current Rate of Change  
1.4  
80  
Duty cycle = 0.5  
T
= 175°C  
J
70  
60  
50  
40  
30  
20  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Q
rr  
t
rr  
I
RRM  
t
rr  
Q
rr  
10  
0
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
Case Temperature (°C)  
Figure 7. Maximum Average Forward Current vs. CaseTemperature  
100  
125  
150  
175  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 6. Dynamic Parameters vs. Junction Temperature  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
1
10  
100 200  
V , REVERSE VOLTAGE (V)  
R
Figure 8. Junction Capacitance vs. Reverse Voltage  
Dynamic Characteristics  
T = 25°C unless otherwise specied  
J
APT68GA60LD40  
V
r
diF/dt Adjust  
+18V  
0V  
D.U.T.  
t
Q
/
30μH  
rr rr  
Waveform  
PEARSON 2878  
CURRENT  
TRANSFORMER  
Figure 9. Diode Test Circuit  
1
2
IF - Forward Conduction Current  
1
4
5
diF/dt - Rate of Diode Current Change Through Zero Crossing.  
IRRM - Maximum Reverse Recovery Current.  
Zero  
3
4
0.25 I  
RRM  
t
- Reverse Recovery Time, measured from zero crossing where diode  
current goes from positive to negative, to the point at which the straight  
3
rr  
2
line through IRRM and 0.25 IRRM passes through zero.  
5
Q
- Area Under the Curve Defined by IRRM and t .  
rr  
rr  
Figure 10, Diode Reverse Recovery Waveform and Definitions  
TO-264 (L) Package Outline  
4.60 (.181)  
5.21 (.205)  
19.51 (.768)  
20.50 (.807)  
1.80 (.071)  
2.01 (.079)  
3.10 (.122)  
3.48 (.137)  
5.79 (.228)  
6.20 (.244)  
25.48 (1.003)  
26.49 (1.043)  
2.29 (.090)  
2.69 (.106)  
2.29 (.090)  
2.69 (.106)  
19.81 (.780)  
21.39 (.842)  
Gate  
(Cathode)  
Collector  
(Anode)  
Emitter  
0.48 (.019)  
0.84 (.033)  
2.59 (.102)  
3.00 (.118)  
0.76 (.030)  
1.30 (.051)  
2.79 (.110)  
3.18 (.125)  
5.45 (.215) BSC  
2-Plcs.  
Dimensions in Millimeters and (Inches)  
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583  
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262  
and foreign patents. US and Foreign patents pending. All Rights Reserved.  

相关型号:

APT68GA60S

High Speed PT IGBT
MICROSEMI

APT6GT60KR

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 13A I(C) | TO-220AB
ETC

APT6M100K

N-Channel MOSFET
MICROSEMI

APT6M100K_09

N-Channel MOSFET
MICROSEMI

APT6SC60G

Rectifier Diode
MICROSEMI

APT6SC60G

Rectifier Diode, Schottky, 1 Phase, 1 Element, 6A, 600V V(RRM), Silicon Carbide, TO-257AA, HERMETIC SEALED PACKAGE-3
ADPOW

APT6SC60GCT

Rectifier Diode, Schottky, 1 Phase, 2 Element, 6A, 600V V(RRM), Silicon Carbide, TO-257AA, HERMETIC SEALED, TO-257, 3 PIN
ADPOW

APT6SC60GCT

Rectifier Diode
MICROSEMI

APT6SC60K

Rectifier Diode, Schottky, 1 Phase, 1 Element, 6A, 600V V(RRM), Silicon Carbide, TO-220AC, TO-220, 2 PIN
ADPOW

APT6SC60K

Rectifier Diode
MICROSEMI

APT6SC60KCT

Rectifier Diode, Schottky, 6A, 600V V(RRM)
MICROSEMI

APT6SC60SA

Rectifier Diode, Schottky, 1 Phase, 1 Element, 6A, 600V V(RRM), Silicon Carbide, TO-263AB, TO-263, 2 PIN
ADPOW