EX128-CSG128A [MICROSEMI]

Field Programmable Gate Array,;
EX128-CSG128A
型号: EX128-CSG128A
厂家: Microsemi    Microsemi
描述:

Field Programmable Gate Array,

时钟 栅 可编程逻辑
文件: 总52页 (文件大小:2722K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Revision 5  
ex Automotive Family FPGAs  
Live on Power-Up  
Specifications  
No Power-Up/Down Sequence Required for Supply  
Voltages  
3,000 to 12,000 Available System Gates  
Maximum 512 Flip-Flops (Using CC Macros)  
0.22 μm CMOS Process Technology  
Configurable Weak Resistor Pull-Up or Pull-Down for  
Tristated Outputs during Power-Up  
Up to 132 User-Programmable I/O Pins  
Individual Output Slew-Rate Control  
2.5 V and 3.3 V I/Os  
Software Design Support with Designer and Libero®  
Features  
Integrated Design Environment (IDE) Tools  
250 MHz Internal Performance, Low-Power Antifuse  
FPGA  
Up to 100% Resource Utilization with 100% Pin Locking  
Deterministic Timing  
Advanced Small-Footprint Packages  
Unique In-System Diagnostic and Verification Capability  
with Silicon Explorer II  
Pin-to-Pin Compatibility with eX Commercial- and  
Industrial-Grade Devices  
Boundary Scan Testing in Compliance with IEEE  
Standard 1149.1 (JTAG)  
Hot-Swap Compliant I/Os  
Single-Chip Solution  
Nonvolatile  
FuseLock™ Secure Programming Technology Designed  
to Prevent Reverse Engineering and Design Theft  
Product Profile  
Device  
eX64  
eX128  
eX256  
Capacity  
3,000  
2,000  
6,000  
4,000  
12,000  
8,000  
System Gates  
Typical Gates  
Register Cells  
Dedicated Flip-Flops  
Maximum Flip-Flops  
64  
128  
128  
256  
256  
512  
Combinatorial Cells  
Maximum User I/Os  
128  
84  
256  
100  
512  
132  
Global Clocks  
Hardwired  
Routed  
1
2
1
2
1
2
Speed Grades*  
Std.  
A
Std.  
A
Std.  
A
Temperature Grades*  
Package (by pin count)  
TQ  
CS  
64, 100  
49, 128  
64, 100  
49, 128  
100  
128, 180  
Note: * The eX family is also offered in commercial and industrial temperature grades with –F, –P, and Std. speed grades. Refer to  
the eX Family FPGAs datasheet for more details.  
October 2012  
i
© 2012 Microsemi Corporation  
Ordering Information  
eX128  
TQ  
G
100  
A
Application (Ambient Temperature Range)  
A = Automotive (-40°C to 125°C)  
Blank = Commercial (0°C to 70°C)  
I = Industrial (-40°C to 85°C)  
Package Lead Count  
Lead-Free Packaging  
Blank = Standard Packaging  
G = RoHS Compliant Packaging  
Package Type  
=
TQ Thin Quad Flat Pack (1.4mm pitch)  
=
CS Chip-Scale Package (0.8mm pitch)  
Speed Grade  
Blank= Standard Speed  
P= Approximately 30% Faster than Standard  
F= Approximately 40% Slower than Standard  
Part Number  
eX64 64 Dedicated Flip-Flops (3,000 System Gates)  
=
eX128 = 128 Dedicated Flip-Flops (6,000 System Gates)  
eX256 = 256 Dedicated Flip-Flops (12,000 System Gates)  
Note: Automotive grade parts (A grade) devices are tested at room temperature to specifications that have been guard banded based  
on characterization across the recommended operating conditions. A-grade parts are not tested at extended temperatures. If  
testing to ensure guaranteed operation at extended temperatures is required, please contact your local Microsemi SoC  
Products Group Sales office to discuss testing options available.  
Plastic Device Resources  
User I/Os (Including Clock Buffers)  
Device  
eX64  
TQ 64  
41  
TQ100  
56  
CS49  
36  
CS128  
84  
CS180  
eX128  
eX256  
46  
70  
36  
100  
81  
100  
132  
Note: Package Definitions:TQ = Thin Quad Flat Pack, CS = Chip Scale Package  
Speed Grade and Temperature Grade Matrix  
Std.  
A
Note: Refer to the eX Family FPGAs datasheet for more details on commercial- and industrial-grade offerings.  
Contact your local Microsemi SoC Products Group representative for device availability.  
ii  
Revision 5  
ex Automotive Family FPGAs  
Table of Contents  
ex Automotive Family FPGAs  
ex Automotive Family FPGAs  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
eX Family Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Other Architectural Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15  
2.5 V LVCMOS2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16  
3.3 V LVTTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17  
CEQ Values for eX Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19  
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19  
eX Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20  
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24  
Temperature and Voltage Derating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24  
eX Family Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28  
Package Pin Assignments  
TQ64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
TQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
CS49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
CS128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
CS180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11  
Datasheet Information  
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
Export Administration Regulations (EAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
Revision 5  
iii  
1 – ex Automotive Family FPGAs  
General Description  
Based on a 0.22 µm CMOS process technology, the eX family of FPGAs is a low-cost solution for low-  
power, high-performance designs. With the automotive temperature grade support (–40ºC to 125ºC), the  
eX devices can address many in-cabin telematics and automobile interconnect applications. The low-  
power attributes inherent in antifuse technology make the eX devices ideal for designers who are looking  
to integrate low-density, power-sensitive automotive applications into a programmable logic solution,  
enabling quick time-to-market.  
eX Family Architecture  
The eX family is implemented on a high-voltage twin-well CMOS process using 0.22 µm design rules.  
The eX family architecture uses a “sea-of-modules” structure where the entire floor of the device is  
covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing.  
Interconnection among these logic modules is achieved using Microsemi’s patented metal-to-metal  
programmable antifuse interconnect elements. The antifuse interconnect is made up of a combination of  
amorphous silicon and dielectric material with barrier metals and has an "on" state resistance of 25 Ω  
with a capacitance of 1.0 fF for low-signal impedance. The antifuses are normally open circuit and, when  
programmed, form a permanent low-impedance connection. The eX family provides two types of logic  
modules, the register cell (R-cell) and the combinatorial cell (C-cell).  
The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable  
(using the S0 and S1 lines) control signals (Figure 1-1). The R-cell registers feature programmable clock  
polarity selectable on a register-by-register basis. This provides additional flexibility while allowing  
mapping of synthesized functions into the eX FPGA. The clock source for the R-cell can be chosen from  
either the hardwired clock or the routed clock.  
The C-cell implements a range of combinatorial functions up to five inputs (Figure 1-2 on page 1-2).  
Inclusion of the DB input and its associated inverter function enables the implementation of more than  
4,000 combinatorial functions in the eX architecture in a single module.  
Two C-cells can be combined together to create a flip-flop to imitate an R-cell via the use of the CC  
macro. This is particularly useful when implementing nontiming-critical paths and when the design  
engineer is running out of R-cells. For more information about the CC macro, refer to the Maximizing  
Logic Utilization in eX, SX and SX-A FPGA Devices Using CC Macros application note.  
Routed  
Data Input  
S1  
S0  
PSET  
DirectConnect  
Input  
D
Q
Y
HCLK  
CLKA,  
CLKB,  
Internal Logic  
CLR  
CKS  
CKP  
Figure 1-1 • R-Cell  
Revision 5  
1-1  
ex Automotive Family FPGAs  
Module Organization  
C-cell and R-cell logic modules are arranged into horizontal banks called Clusters, each of which  
contains two C-cells and one R-cell in a C-R-C configuration.  
Clusters are further organized into modules called SuperClusters for improved design efficiency and  
device performance, as shown in Figure 1-3 on page 1-3. Each SuperCluster is a two-wide grouping of  
Clusters.  
Routing Resources  
Clusters and SuperClusters can be connected through the use of two innovative local routing resources  
called FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of  
modules within Clusters and SuperClusters (Figure 1-4 on page 1-3). This routing architecture also  
dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest  
possible performance.  
DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring  
R-cell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable  
interconnection to achieve its fast signal propagation time of less than 0.1 ns.  
FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and  
vertical routing with the SuperCluster immediately below it. Only one programmable connection is used  
in a FastConnect path, delivering maximum pin-to-pin propagation of 0.6 ns.  
In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented  
routing resources, known as segmented routing and high-drive routing. Microsemi’s segmented routing  
structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact  
combination of track lengths and antifuses within each path is chosen by the fully automatic place-and-  
route software to minimize signal propagation delays.  
D0  
D1  
Y
D2  
D3  
Sa  
Sb  
DB  
A0 B0  
A1 B1  
Figure 1-2 • C-Cell  
1-2  
Revision 5  
ex Automotive Family FPGAs  
R-Cell  
C-Cell  
Routed  
Data Input  
D0  
D1  
S1  
S0  
PSET  
CLR  
Y
D2  
D3  
DirectConnect  
Input  
Q
D
Y
Sb  
Sa  
HCLK  
CLKA,  
DB  
CLKB,  
Internal Logic  
CKS  
CKP  
A0 B0  
A1 B1  
Cluster  
Cluster  
SuperCluster  
Figure 1-3 • Cluster Organization  
DirectConnect  
• No antifuses  
• 0.1 ns routing delay  
SuperClusters  
FastConnect  
• One antifuse  
• 0.6 ns routing delay  
Routing Segments  
• Typically 2 antifuses  
• Max. 5 antifuses  
Figure 1-4 • DirectConnect and FastConnect for SuperClusters  
Revision 5  
1-3  
ex Automotive Family FPGAs  
Clock Resources  
eX’s high-drive routing structure provides three clock networks. The first clock, called HCLK, is hardwired  
from the HCLK buffer to the clock select MUX in each R-cell. HCLK cannot be connected to  
combinational logic. This provides a dedicated propagation path for the clock signal for the automotive-  
grade eX devices. The hardwired clock is tuned to provide a clock skew of less than 0.1 ns worst case. If  
not used, the HCLK pin must be tied Low or High and must not be left floating. Figure 1-5 describes the  
clock circuit used for the constant load HCLK.  
HCLK does not function until the fourth clock cycle each time the device is powered up to prevent false  
output levels due to any possible slow power-on-reset signal and fast start-up clock circuit. To activate  
HCLK from the first cycle, the TRST pin must be reserved in the Designer software and the pin must be  
tied to GND on the board. (See the "TRST, I/O Boundary Scan Reset Pin" on page 1-29).  
The remaining two clocks (CLKA, CLKB) are global routed clock networks that can be sourced from  
external pins or from internal logic signals (via the CLKINT routed clock buffer) within the eX device.  
CLKA and CLKB may be connected to sequential cells or to combinational logic. If CLKA or CLKB is  
sourced from internal logic signals, the external clock pin cannot be used for any other input and must be  
tied Low or High and must not float. Figure 1-6 describes the CLKA and CLKB circuit used in eX devices.  
Table 1-1 describes the possible connections of the routed clock networks, CLKA and CLKB.  
Unused clock pins must not be left floating and must be tied to High or Low.  
Constant Load  
Clock Network  
HCLKBUF  
Figure 1-5 • eX HCLK Clock Pad  
Clock Network  
From Internal Logic  
CLKBUF  
CLKBUFI  
CLKINT  
CLKINTI  
Figure 1-6 • eX Routed Clock Buffer  
Table 1-1 • Connections of Routed Clock Networks, CLKA and CLKB  
Module  
C-Cell  
Pins  
A0, A1, B0 and B1  
CLKA, CLKB, S0, S1, PSET, and CLR  
EN  
R-Cell  
I/O Cell  
1-4  
Revision 5  
ex Automotive Family FPGAs  
Other Architectural Features  
Performance  
The combination of the various architectural features enables automotive-grade eX devices to operate  
with internal clock frequencies at 250 MHz for fast execution of complex logic functions.  
Automotive-grade eX devices are the optimal platforms upon which to integrate in-cabin telematics and  
automobile interconnect applications previously only contained in ASICs or gate arrays.  
eX devices meet the performance goals of gate arrays, and, at the same time, present significant  
improvements in cost and time to market. Using timing-driven place-and-route tools, designers can  
achieve highly deterministic device performance.  
User Security  
The FuseLock advantage is designed to prevent unauthorized users from being able to read back the  
contents of a Microsemi antifuse FPGA. In addition to the inherent strengths of the architecture, there is  
a special Security Fuse inside the eX device that is intended to disable the probing circuitry and prohibit  
further programming of the device. This Fuse cannot be accessed or bypassed without destroying  
access to the rest of the device, making Microsemi antifuse FPGAs highly resistant to both invasive and  
more subtle noninvasive attacks.  
Look for this symbol to ensure your valuable IP is protected with industry-standard security.  
FuseLock  
Figure 1-7 • FuseLock  
For more information, refer to the Implementation of Security in Actel Antifuse FPGAs application note.  
I/O Modules  
Each I/O on an eX device can be configured as an input, an output, a tristate output, or a bidirectional  
pin. I/O cells in eX devices do not contain embedded latches or flip-flops and can be inferred directly from  
HDL code. The device can easily interface with any other device in the system, which in turn enables  
parallel design of system components and reduces overall design time.  
All unused I/Os are configured as tristate outputs by Designer software, for maximum flexibility when  
designing new boards or migrating existing designs. However, it is still recommended to tie all unused I/O  
pins to GND on the board. Each I/O module has an available pull-up or pull-down resistor of  
approximately 50 kΩ that can configure the I/O in a known state during power-up. Just shortly before  
VCCA reaches 2.5 V, the resistors are disabled and the I/Os will be controlled by user logic.  
Table 1-2 describes the I/O features of eX devices. For more information on I/Os, refer to the Microsemi  
eX, SX-A, and RT54SX-S I/Os application note.  
The automotive eX devices support I/O operation at 2.5 V and 3.3 V.  
Revision 5  
1-5  
ex Automotive Family FPGAs  
The detailed description of the I/O pins in eX automotive devices can be found in "Pin Descriptions" on  
page 1-28.  
Table 1-2 • I/O Features  
Function  
Description  
Input Buffer Threshold • 3.3 V LVTTL  
Selection  
2.5 V LVCMOS2  
Nominal Output Drive  
3.3 V LVTTL  
2.5 V LVCMO 2  
Output Buffer  
“Hot-Swap” Capability  
I/O on an unpowered device does not sink current  
Can be used for “cold sparing”  
Selectable on an individual I/O basis  
Individually selectable low-slew option  
Power-Up  
Individually selectable pull-ups and pull-downs during power-up (default is to  
power-up in tristate)  
Enables deterministic power-up of device  
VCCA and VCCI can be powered in any order  
Hot Swapping  
eX I/Os are configured to be hot-swappable. During power-up/down (or partial up/down), all I/Os are  
tristated, provided VCCA ramps up within a diode drop of VCCI. VCCA and VCCI do not have to be  
stable during power-up/down, and they do not require a specific power-up or power-down sequence in  
order to avoid damage to the eX devices. In addition, all outputs can be programmed to have a weak  
resistor pull-up or pull-down for tristate output at power-up. After the eX device is plugged into an  
electrically active system, the device will not degrade the reliability of or cause damage to the host  
system. The device's output pins are driven to a high impedance state until normal chip operating  
conditions are reached. Please see the application note, Microsemi SX-A and RT54SX-S Devices in Hot-  
Swap and Cold-Sparing Applications, which also applies to eX devices, for more information on hot  
swapping.  
Power Requirements  
Power consumption is extremely low for the automotive-grade eX devices due to the low capacitance of  
the antifuse interconnects. The antifuse architecture does not require active circuitry to hold a charge (as  
do SRAM or EPROM), making it the lowest-power FPGA architecture available today.  
1-6  
Revision 5  
ex Automotive Family FPGAs  
Figure 1-8 through Figure 1-11 on page 1-8 show some sample power characteristics of eX devices.  
Notes:  
1. Device filled with 16-bit counters.  
2. VCCA, VCCI = 2.7 V, device tested at room temperature.  
Figure 1-8 • eX Dynamic Power Consumption – High Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
eX64  
eX128  
eX256  
0
10  
20  
30  
40  
50  
Frequency (MHz)  
Notes:  
1. Device filled with 16-bit counters.  
2. VCCA, VCCI = 2.7 V, device tested at room temperature.  
Figure 1-9 • eX Dynamic Power Consumption – Low Frequency  
Revision 5  
1-7  
ex Automotive Family FPGAs  
180  
160  
140  
120  
100  
80  
32-bit Decoder  
8 x 8-bit Counters  
SDRAM Controller  
60  
40  
20  
0
0
25  
50  
75  
100  
125  
150  
175  
200  
Frequency (MHz)  
Figure 1-10 • Total Dynamic Power (mW)  
12  
10  
8
5% DC  
10% DC  
15% DC  
6
4
2
0
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Figure 1-11 • System Power at 5%, 10%, and 15% Duty Cycle  
1-8  
Revision 5  
ex Automotive Family FPGAs  
Boundary Scan Testing (BST)  
All eX devices are IEEE 1149.1 compliant. eX devices offer superior diagnostic and testing capabilities by  
providing Boundary Scan Testing (BST) and probing capabilities. These functions are controlled through  
the special test pins (TMS, TDI, TCK, TDO and TRST). The functionality of each pin is defined by two  
available modes, Dedicated and Flexible, and is described in Table 1-3. In the dedicated test mode,  
TCK, TDI, and TDO are dedicated pins and cannot be used as regular I/Os. In flexible mode (default  
mode), TMS should be set High through a pull-up resistor of 10 kΩ. TMS can be pulled Low to initiate the  
test sequence.  
Table 1-3 • Boundary Scan Pin Functionality  
Dedicated Test Mode  
Flexible Mode  
TCK, TDI, TDO are dedicated BST pins  
TCK, TDI, TDO are flexible and may be used as I/Os  
No need for pull-up resistor for TMS and TDI Use a pull-up resistor of 10 kΩ on TMS  
Dedicated Test Mode  
In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An  
internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function  
as defined in the IEEE 1149.1 (JTAG) specification.  
To select Dedicated mode, users need to reserve the JTAG pins in Designer software by checking the  
"Reserve JTAG" box in "Device Selection Wizard" (Figure 1-12). JTAG pins comply with LVTTL/TTL I/O  
specification regardless of whether they are used as a user I/O or a JTAG I/O. Refer to the "3.3 V LVTTL  
Electrical Specifications" on page 1-16 for detailed specifications.  
Figure 1-12 • Device Selection Wizard  
Flexible Mode  
In Flexible mode, TDI, TCK and TDO may be used as either user I/Os or as JTAG input pins. The internal  
resistors on the TMS and TDI pins are disabled in flexible JTAG mode, and an external 10 kΩ pull-  
resistor to VCCI is required on the TMS pin.  
To select the Flexible mode, users need to uncheck the "Reserve JTAG" box in "Device Selection  
Wizard" in the Designer software. The functionality of TDI, TCK, and TDO pins is controlled by the BST  
TAP controller. The TAP controller receives two control inputs; TMS and TCK. Upon power-up, the TAP  
controller enters the Test-Logic-Reset state. In this state, TDI, TCK, and TDO function as user I/Os. The  
TDI, TCK, and TDO pins are transformed from user I/Os into BST pins when the TMS pin is Low at the  
first rising edge of TCK. The TDI, TCK, and TDO pins return to user I/Os when TMS is held High for at  
least five TCK cycles.  
Revision 5  
1-9  
ex Automotive Family FPGAs  
Table 1-4 describes the different configuration requirements of BST pins and their functionality in  
different modes.  
Table 1-4 • Boundary Scan Pin Configurations and Functions  
Mode  
Designer "Reserve JTAG" Selection  
TAP Controller State  
Any  
Dedicated (JTAG)  
Flexible (User I/O)  
Flexible (JTAG)  
Checked  
Unchecked  
Unchecked  
Test-Logic-Reset  
Any EXCEPT Test-Logic-Reset  
TRST Pin  
The TRST pin functions as a dedicated Boundary-Scan Reset pin when the "Reserve JTAG Test Reset"  
option is selected as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the  
TRST pin in this mode. It is recommended to connect this pin to GND in normal operation to keep the  
JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or be  
driven High.  
When the "Reserve JTAG Test Reset" option is not selected, this pin will function as a regular I/O. If  
unused as an I/O in the design, it will be configured as a tristated output.  
JTAG Instructions  
Table 1-5 lists the supported instructions with the corresponding IR codes for eX devices.  
Table 1-5 • JTAG Instruction Code  
Instructions (IR4: IR0)  
EXTEST  
Binary Code  
00000  
SAMPLE / PRELOAD  
INTEST  
00001  
00010  
USERCODE  
IDCODE  
00011  
00100  
HIGHZ  
01110  
CLAMP  
01111  
Diagnostic  
10000  
BYPASS  
11111  
Reserved  
All others  
Table 1-6 lists the codes returned after executing the IDCODE instruction for eX devices. Note that bit 0  
is always "1." Bits 11-1 are always "02F," which is Microsemi's manufacturer code.  
Table 1-6 • IDCODE for eX Devices  
Device  
eX64  
Revision  
Bits 31-28  
Bits 27-12  
40B2, 42B2  
40B0, 42B0  
40B5, 42B5  
40B2, 42B2  
40B0, 42B0  
40B5, 42B5  
0
0
0
1
1
1
8
9
eX128  
eX256  
eX64  
9
A
B
B
eX128  
eX256  
1-10  
Revision 5  
ex Automotive Family FPGAs  
Programming  
Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon  
Sculptor II is a compact, robust, single-site and multi-site device programmer for the PC.  
With standalone software, Silicon Sculptor II allows concurrent programming of multiple units from the  
same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon  
Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are  
programmed. Silicon Sculptor II also provides extensive hardware self-testing capability.  
The procedure for programming an eX device using Silicon Sculptor II is as follows:  
1. Load the *.AFM file  
2. Select the device to be programmed  
3. Begin programming  
When the design is ready to go to production, Microsemi offers device volume-programming services  
either through distribution partners or via in-house programming from the factory.  
For more details on programming eX Automotive devices, please refer to the Programming Antifuse  
Devices and the Silicon Sculptor II User's Guides.  
Probing Capabilities  
Automotive-grade eX devices provide internal probing capability that is accessed with the JTAG pins.  
The Silicon Explorer II Diagnostic hardware is used to control the TDI, TCK, TMS, and TDO pins to select  
the desired nets for debugging. The user assigns the selected internal nets in the Silicon Explorer II  
software to the PRA/PRB output pins for observation. Probing functionality is activated when the BST  
pins are in JTAG mode and the TRST pin is driven High or left floating. If the TRST pin is held Low, the  
TAP controller will remain in the Test-Logic-Reset state, so no probing can be performed. The Silicon  
Explorer II automatically places the device into JTAG mode, but the user must drive the TRST pin High or  
allow the internal pull-up resistor to pull TRST High.  
When you select the "Reserve Probe" box, as shown in Figure 1-12 on page 1-9, the Designer software  
reserves the PRA and PRB pins as dedicated outputs for probing. This "reserve" option is merely a  
guideline. If the Designer software requires that the PRA and PRB pins be user I/Os to achieve  
successful layout, the tool will use these pins for user I/Os. If you assign user I/Os to the PRA and PRB  
pins and select the "Reserve Probe" option, Designer Layout will override the option and place user  
I/Os on those pins.  
To allow for probing capabilities, the security fuse must not be programmed. Programming the security  
fuse will disable the probe circuitry. Table 1-7 on page 1-12 summarizes the possible device  
configurations for probing once the device leaves the "Test-Logic-Reset" JTAG state.  
Revision 5  
1-11  
ex Automotive Family FPGAs  
Silicon Explorer II Probe  
Silicon Explorer II is an integrated hardware and software solution that, in conjunction with Designer  
software tools, allows users to examine any of the internal nets of the device while it is operating in a  
prototype or a production system. The user can probe into an eX device via the PRA and PRB pins  
without changing the placement and routing of the design and without using any additional resources.  
Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the  
debug cycle.  
Silicon Explorer II does not require relayout or additional MUXes to bring signals out to an external pin,  
which is necessary when using programmable logic devices from other suppliers.  
Silicon Explorer II samples data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II  
attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer.  
Silicon Explorer II allows designers to complete the design verification process at their desks and  
reduces verification time from several hours per cycle to a few seconds.  
The Silicon Explorer II tool uses the boundary scan ports (TDI, TCK, TMS and TDO) to select the desired  
nets for verification. The selected internal nets are assigned to the PRA/PRB pins for observation.  
Figure 1-13 illustrates the interconnection between Silicon Explorer II and the automotive-grade eX  
device to perform in-circuit verification.  
Design Considerations  
The TDI, TCK, TDO, PRA, and PRB pins should not be used as input or bidirectional ports. Since these  
pins are active during probing, critical signals input through these pins are not available while probing. In  
addition, the Security Fuse should not be programmed because doing so disables the probe circuitry. It is  
recommended to use a 70Ω series termination resistor on every probe connector (TDI, TCK, TMS, TDO,  
PRA, PRB). The 70 Ω series termination is used to prevent data transmission corruption during probing  
and reading back the checksum.  
Table 1-7 • Device Configuration Options for Probe Capability (TRST pin reserved)  
JTAG  
Mode  
Security Fuse  
Programmed  
TRST1  
Low  
Low  
High  
High  
PRA, PRB2  
User I/O3  
User I/O3  
TDI, TCK, TDO2  
Probing Unavailable  
User I/O3  
Dedicated  
Flexible  
Dedicated  
Flexible  
No  
No  
No  
No  
Yes  
Probe Circuit Outputs  
Probe Circuit Outputs  
Probe Circuit Secured  
Probe Circuit Inputs  
Probe Circuit Inputs  
Probe Circuit Secured  
Notes:  
1. If TRST pin is not reserved, the device behaves according to TRST = High in the table.  
2. Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are  
active during probing, input signals will not pass through these pins and may cause contention.  
3. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. Unused pins are  
automatically tristated by Designer software.  
1-12  
Revision 5  
ex Automotive Family FPGAs  
16 Pin  
Connection  
eX FPGAs  
TDI  
TCK  
TMS  
TDO  
Serial  
Silicon Explorer II  
Connection  
PRA  
PRB  
22 Pin  
Connection  
Additional 16 Channels  
(Logic Analyzer)  
Figure 1-13 • Silicon Explorer II Probe Setup  
Development Tool Support  
The automotive-grade eX family of FPGAs is fully supported by both the Libero® Integrated Design  
Environment (IDE) and Designer FPGA Development software. Libero IDE is a design management  
environment, seamlessly integrating design tools while guiding the user through the design flow,  
managing all design and log files, and passing necessary design data among tools. Libero IDE allows  
users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a  
single environment. Libero IDE includes Synplify® for Actel from Synplicity®, ViewDraw® for Actel from  
Mentor Graphics®, ModelSim® HDL Simulator from Mentor Graphics, WaveFormer Lite™ from  
SynaptiCAD®, and Designer software from Microsemi. Refer to the Libero IDE flow (located on the  
Microsemi SoC Products Group website) diagram for more information.  
Designer software is a place-and-route tool and provides a comprehensive suite of backend support  
tools for FPGA development. The Designer software includes timing-driven place-and-route, and a  
world-class integrated static timing analyzer and constraints editor. With the Designer software, a user  
can select and lock package pins while only minimally impacting the results of place-and-route.  
Additionally, the back-annotation flow is compatible with all the major simulators and the simulation  
results can be cross-probed with Silicon Explorer II, Microsemi’s integrated verification and logic analysis  
tool. Another tool included in the Designer software is the SmartGen core builder, which easily creates  
popular and commonly used logic functions for implementation into your schematic or HDL design.  
Designer software is compatible with the most popular FPGA design entry and verification tools from  
companies such as Mentor Graphics, Synplicity, Synopsys®, and Cadence Design Systems. The  
Designer software is available for both the Windows and UNIX operating systems.  
Revision 5  
1-13  
ex Automotive Family FPGAs  
Related Documents  
Datasheet  
eX Family FPGAs  
www.microsemi.com/soc/documents/eX_DS.pdf  
Application Notes  
Maximizing Logic Utilization in eX, SX and SX-A FPGA Devices Using CC Macros  
www.microsemi.com/soc/documents/CC_Macro_AN.pdf  
Implementation of Security in Actel Antifuse FPGAs  
www.microsemi.com/soc/documents/Antifuse_Security_AN.pdf  
Microsemi eX, SX-A, and RT54SX-S I/Os  
www.microsemi.com/soc/documents/antifuseIO_AN.pdf  
Microsemi SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications  
www.microsemi.com/soc/documents/HotSwapColdSparing_AN.pdf  
Design for Low Power in Actel Antifuse FPGAs  
www.microsemi.com/soc/documents/Low_Power_AN.pdf  
Programming Antifuse Devices  
www.microsemi.com/soc/documents/AntifuseProgram_AN.pdf  
User Guides  
Silicon Sculptor II User's Guide  
www.microsemi.com/soc/techdocs/manuals/default.asp#programmers  
Miscellaneous  
Libero IDE flow  
www.microsemi.com/soc/products/tools/libero/flow.html  
1-14  
Revision 5  
ex Automotive Family FPGAs  
Operating Conditions  
Table 1-8 • Absolute Maximum Ratings*  
Symbol  
VCCI  
VCCA  
VI  
Parameter  
Limits  
Units  
V
DC Supply Voltage for I/Os  
DC Supply Voltage for Array  
Input Voltage  
–0.3 to +4.0  
–0.3 to +3.0  
V
–0.5 to VCCI + 0.5  
–0.5 to +VCCI  
–65 to +150  
V
VO  
Output Voltage  
V
TSTG  
Tj  
Storage Temperature  
Maximum Junction Temperature  
°C  
°C  
–65 to +150  
Note: *Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
Exposure to temperatures between absolute maximum and recommended operating conditions for extended  
periods may affect device reliability. Devices should not be operated outside the Recommended Operating  
Conditions.  
Table 1-9 • Recommended Operating Conditions  
Parameter  
Automotive  
–40 to +125  
2.3 to 2.7  
Units  
°C  
Temperature Range (Tj)  
2.5 V Power Supply Range  
(VCCA, VCCI)  
V
3.3 V Power Supply Range (VCCI)  
3.0 to 3.6  
V
Note: Automotive grade parts (A grade) devices are tested at room temperature to specifications that have been  
guard banded based on characterization across the recommended operating conditions. A-grade parts are not  
tested at extended temperatures. If testing to ensure guaranteed operation at extended temperatures is  
required, contact your local Microsemi SoC Products Group Sales office to discuss testing options available.  
Table 1-10 • Typical Automotive-Grade eX Standby Current at 25°C  
VCCA= 2.5 V  
VCCI = 2.5 V  
VCCA = 2.5 V  
VCCI = 3.3 V  
Product  
eX64  
397 µA  
696 µA  
698 µA  
497 µA  
795 µA  
796 µA  
eX128  
eX256  
Revision 5  
1-15  
ex Automotive Family FPGAs  
2.5 V LVCMOS2 Electrical Specifications  
Automotive  
Symbol  
VOH  
VOL  
Parameter  
Min.  
Max.  
Units  
V
VCCI = MIN, VI = VIH or VIL  
VCCI = MIN, VI = VIH or VIL  
Input Low Voltage, VOUT VOL(max)  
Input High Voltage, VOUT VOH(min)  
Input Leakage Current, VIN = VCCI or GND  
Tristate Output Leakage Current, VOUT = Tristate  
Input Transition Time tR, tF  
(IOH = –1 mA)  
(IOL= 1 mA)  
2.0  
0.4  
0.7  
V
VIL  
V
VIH  
1.7  
–20  
–20  
V
IIL / IIH  
IOZ  
20  
20  
10  
10  
25  
µA  
µA  
ns  
pF  
mA  
2
tR, tF1,  
CIN  
Input Capacitance  
ICC3  
Standby Current  
IV Curve  
Notes:  
Can be derived from the IBIS model at www.microsemi.com/soc/download/ibis/default.aspx.  
1.  
t is the transition time from 0.7 V to 1.7 V.  
R
2. t is the transition time from 1.7 V to 0.7 V.  
F
3. ICC = ICCI + ICCA  
3.3 V LVTTL Electrical Specifications  
Automotive  
Symbol  
VOH  
Parameter  
Min.  
Max.  
Units  
V
VCCI = MIN, VI = VIH or VIL  
VCCI = MIN, VI = VIH or VIL  
Input Low Voltage, VOUT VOL(max)  
Input High Voltage, VOUT VOH(min)  
Input Leakage Current, VIN = VCCI or GND  
Tristate Output Leakage Current, VOUT = Tristate  
Input Transition Time tR, tF  
(IOH = –3.5 mA)  
(IOL= 3.5 mA)  
2.4  
VOL  
0.4  
0.8  
V
VIL  
V
VIH  
2.0  
–20  
–20  
V
IIL / IIH  
IOZ  
20  
20  
10  
10  
35  
µA  
µA  
ns  
pF  
mA  
tR, tF1,2  
CIN  
Input Capacitance  
ICC3  
IV Curve  
Notes:  
Standby Current  
Can be derived from the IBIS model at www.microsemi.com/soc/download/ibis/default.aspx.  
1.  
t is the transition time from 0.8 V to 2.0 V.  
R
2. t is the transition time from 2.0 V to 0.8 V.  
F
3. ICC = ICCI + ICCA  
4. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.  
1-16  
Revision 5  
ex Automotive Family FPGAs  
5 V Tolerance of 3.3 V LVTTL I/Os Using a Tristate Buffer  
Input: 3.3 V LVTTL I/Os are 5-V-input tolerant only if the non-PCI mode is used (no clamp diode).  
Output: To configure an eX device to drive 5 V with VCCI = 3.3 V, users can utilize an Open Drain  
configuration of the I/O cell with an array inverter cell and an external pull-up resistor to 5 V. The  
recommended configuration is illustrated in Figure 1-14. The I/O configuration must be set to LVTTL to  
disable the PCI clamp diode. For the recommended resistor value in a specific application, please  
contact Microsemi SoC Products Group Technical Support. For more details, refer to the Design Tips  
section of the Microsemi eX, SX-A and RT54SX-S I/Os application note.  
Actel Open Drain Configuration  
5 V  
User Internal Signal  
E
PAD  
TRIBUFF  
Figure 1-14 • Open-Drain Configuration for eX  
Power Dissipation  
Power consumption for eX devices can be divided into two components: static and dynamic.  
Static Power Component  
The power due to standby current is typically a small component of the overall power. Typical standby  
current for eX devices is listed in Table 1-10 on page 1-15. For example, the typical static power for  
eX128 at 3.3 V VCCI is:  
ICC * VCCA = 795 µA x 2.5 V = 1.99 mW  
EQ 1  
Dynamic Power Component  
Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. This  
component is frequency-dependent and a function of the logic and the external I/O. Dynamic power  
dissipation results from charging internal chip capacitance. An additional component of the dynamic  
power dissipation is the totem pole current in the CMOS transistor pairs. The net effect can be associated  
with an equivalent capacitance that can be combined with frequency and voltage to represent dynamic  
power dissipation.  
Dynamic power dissipation = CEQ * VCCA2 x F  
EQ 2  
where:  
CEQ = Equivalent capacitance  
F
= switching frequency  
Revision 5  
1-17  
ex Automotive Family FPGAs  
Equivalent capacitance is calculated by measuring ICCA at a specified frequency and voltage for each  
circuit component of interest. Measurements have been made over a range of frequencies at a fixed  
value of VCCA. Equivalent capacitance is frequency-independent, so the results can be used over a wide  
range of operating conditions. Equivalent capacitance values are shown below.  
CEQ Values for eX Devices  
Combinatorial modules (Ceqcm)  
1.70 pF  
1.70 pF  
1.30 pF  
7.40 pF  
1.05 pF  
Sequential modules (Ceqsm)  
Input buffers (Ceqi)  
Output buffers (Ceqo)  
Routed array clocks (Ceqcr)  
The variable and fixed capacitance of other device components must also be taken into account when  
estimating the dynamic power dissipation.  
Table 1-11 shows the capacitance of the clock components of eX devices.  
Table 1-11 • Capacitance of Clock Components of eX Devices  
eX64  
eX128  
0.85 pF  
eX256  
0.85 pF  
Dedicated array clock – variable (Ceqhv)  
Dedicated array clock – fixed (Ceqhf)  
Routed array clock A (r1)  
0.85 pF  
18.00 pF  
23.00 pF  
23.00 pF  
20.00 pF  
28.00 pF  
28.00 pF  
25.00 pF  
35.00 pF  
35.00 pF  
Routed array clock B (r2)  
The estimation of the dynamic power dissipation is a piece-wise linear summation of the power  
dissipation of each component.  
Dynamic power dissipation  
= VCCA2 * [(mc * Ceqcm * fmC)Comb Modules + (ms * Ceqsm * fmS)Seq Modules + (n * Ceqi * fn)Input Buffers  
+
(0.5 * (q1 * Ceqcr * fq1) + (r1 * fq1))RCLKA + (0.5 * (q2 * Ceqcr * fq2) + (r2 * fq2))RCLKB + (0.5 * (s1 * Ceqhv  
* fs1)+(Ceqhf * fs1))HCLK] + VCCI2 * [(p * (Ceqo + CL) * fp)Output Buffers  
where:  
]
mc  
ms  
n
= Number of combinatorial cells switching at frequency fm, typically 20% of C-cells  
= Number of sequential cells switching at frequency fm, typically 20% of R-cells  
= Number of input buffers switching at frequency fn, typically number of inputs / 4  
= Number of output buffers switching at frequency fp, typically number of outputs / 4  
= Number of R-cells driven by routed array clock A  
= Number of R-cells driven by routed array clock B  
= Fixed capacitance due to routed array clock A  
p
q1  
q2  
r1  
r2  
s1  
= Fixed capacitance due to routed array clock B  
= Number of R-cells driven by dedicated array clock  
Ceqcm = Equivalent capacitance of combinatorial modules  
Ceqsm = Equivalent capacitance of sequential modules  
Ceqi  
= Equivalent capacitance of input buffers  
Ceqcr = Equivalent capacitance of routed array clocks  
Ceqhv = Variable capacitance of dedicated array clock  
Ceqhf = Fixed capacitance of dedicated array clock  
Ceqo = Equivalent capacitance of output buffers  
CL  
fmc  
fms  
fn  
= Average output loading capacitance, typically 10pF  
= Average C-cell switching frequency, typically F/10  
= Average R-cell switching frequency, typically F/10  
= Average input buffer switching frequency, typically F/5  
= Average output buffer switching frequency, typically F/5  
= Frequency of routed clock A  
fp  
fq1  
fq2  
fs1  
= Frequency of routed clock B  
= Frequency of dedicated array clock  
1-18  
Revision 5  
ex Automotive Family FPGAs  
The eX, SX-A and RTSX-S Power Calculator can be used to estimate the total power dissipation (static  
and dynamic) of eX devices and can be found at  
www.microsemi.com/soc/techdocs/calculators.aspx.  
Junction Temperature  
The temperature variable in the Designer software refers to the junction temperature, not the ambient  
temperature. This is an important distinction because the heat generated from dynamic power  
consumption is usually hotter than the ambient temperature. EQ , shown below, can be used to calculate  
junction temperature. Please refer to Table 1-9 on page 1-15 for the recommended operating conditions.  
Junction Temperature = ΔT + Ta(1)  
EQ 3  
Where:  
Ta = Ambient Temperature  
ΔT = Temperature gradient between junction (silicon) and ambient = θja * P  
P = Power  
θja = Junction to ambient of package. θja numbers are located in the "Package Thermal Characteristics"  
on page 1-19.  
Package Thermal Characteristics  
The device junction-to-case thermal characteristic is θjc, and the junction-to-ambient air characteristic is  
θja. The thermal characteristics for θja are shown with two different air flow rates. θjc is provided for reference.  
The maximum junction temperature is 150°C.  
The maximum power dissipation allowed for eX devices is a function of θja. A sample calculation of the  
absolute maximum power dissipation allowed for a TQFP 100-pin package at automotive temperature  
and still air is as follows:  
Max. junction temp. (°C) Max. ambient temp. (°C) 150°C 125°C  
------------------------------------------------------------------------------------------------------------------------------------------ ----------------------------------------  
Maximum Power Allowed =  
=
= 0.746 W  
θja(°C/W)  
33.5°C/W  
Table 1-12 • Package Thermal Characteristics  
θja  
θja 1.0 m/s  
36.3  
Package Type  
Pin Count  
64  
θjc  
Still Air  
42.4  
θja 2.5 m/s  
34.0  
Units  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Thin Quad Flat Pack  
Thin Quad Flat Pack  
Chip-Scale Package  
Chip-Scale Package  
Chip-Scale Package  
12.0  
14.0  
100  
33.5  
27.4  
25.0  
49  
72.2  
59.5  
54.1  
128  
54.1  
44.6  
40.6  
180  
57.8  
47.6  
43.3  
Revision 5  
1-19  
ex Automotive Family FPGAs  
eX Timing Model  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
Combinatorial  
Cell  
t
t
= 0.5 ns  
= 0.7 ns  
I/O Module  
I/O Module  
IRD1  
IRD2  
t
= 1.3 ns  
INYH  
t
= 4.9 ns  
DHL  
t
= 1.1 ns  
PD  
t
t
t
= 0.6 ns  
RD1  
= 1.1 ns  
RD4  
= 1.9 ns  
RD8  
I/O Module  
Register  
Cell  
t
= 4.0 ns  
ENZL  
D
Q
t
t
t
RD1  
= 0.8 ns  
= 0.6 ns  
SUD  
HD  
= 0.0 ns  
t
= 4.9 ns  
DHL  
Routed  
Clock  
t
= 2.3 ns  
RCKH  
t
= 1.0 ns  
(100% Load)  
RCO  
I/O Module  
Register  
Cell  
I/O Module  
t
= 1.3 ns  
t
= 4.0 ns  
INYH  
ENZL  
t
= 0.5 ns  
= 0.8 ns  
IRD1  
D
Q
t
t
t
RD1  
= 0.6 ns  
SUD  
= 0.0 ns  
HD  
t
= 4.9 ns  
DHL  
Hardwired  
Clock  
t
t
RCO  
= 1.8 ns  
= 1.0 ns  
HCKH  
Note: *Values shown for eX128, worst-case automotive conditions (2.3 V VCCA, 3.3 V VCCI, 35 pF Pad Load).  
Figure 1-15 • eX Timing Model  
Hardwired Clock  
External Setup = tINYH + tIRD1 + tSUD – tHCKH = 1.3 + 0.5 + 0.8 – 1.8 = 0.8 ns  
Clock-to-Out (Pad-to-Pad), typical = tHCKH + tRCO + tRD1 + tDHL = 1.8 + 1.0 + 0.6 + 4.9 = 8.3 ns  
Routed Clock  
External Setup = tINYH + tIRD2 + tSUD – tRCKH = 1.3 + 0.7 + 0.8 – 2.3 = 0.5 ns  
Clock-to-Out (Pad-to-Pad), typical = tRCKH + tRCO + tRD1 + tDHL = 2.3 + 1.0 + 0.6 + 4.9 = 8.8 ns  
1-20  
Revision 5  
ex Automotive Family FPGAs  
Output Buffer Delays  
E
D
PAD To AC test loads (shown below)  
TRIBUFF  
VCC  
VCC  
50%  
VCC  
50% 50%  
VCC  
In  
50%  
50%  
VOH  
1.5 V  
GND  
1.5 V  
50%  
GND  
10%  
En  
GND  
90%  
En  
VOH  
Out  
Out  
1.5 V  
1.5 V  
Out  
GND  
VOL  
VOL  
tENZL  
tDHL  
tDLH  
tENZH  
tENHZ  
tENLZ  
Table 1-13 • Output Buffer Delays  
AC Test Loads  
Load 3  
(Used to measure disable delays)  
Load 1  
(used to measure  
propagation delay)  
Load 2  
(Used to measure enable delays)  
GND  
GND  
VCC  
VCC  
To the output  
under test  
R to VCC for tPLZ  
R to GND for tPHZ  
R = 1 kΩ  
R to VCC for tPZL  
R to GND for tPHZ  
R = 1 kΩ  
35 pF  
To the output  
under test  
To the output  
under test  
35 pF  
5 pF  
Figure 1-16 • AC Test Loads  
Revision 5  
1-21  
ex Automotive Family FPGAs  
Input Buffer Delays  
Y
PAD  
INBUF  
3 V  
1.5 V 1.5 V  
VCC  
In  
0 V  
Out  
50%  
50%  
GND  
tINY  
tINY  
Table 1-14 • Input Buffer Delays  
C-Cell Delays  
S
A
B
Y
VCC  
50%  
VCC  
50%  
S, A, or B  
50%  
GND  
50%  
Out  
GND  
tPD  
50%  
tPD  
tPD  
GND  
tPD  
Out  
VCC  
50%  
Table 1-15 • C-Cell Delays  
1-22  
Revision 5  
ex Automotive Family FPGAs  
Cell Timing Characteristics  
D
Q
PRESET  
CLR  
CLK  
(Positive edge triggered)  
tHD  
D
tSUD  
CLK  
tHPWH  
tRPWH  
tHP  
tHPWL, tRPWL  
tRCO  
Q
tPRESET  
tCLR  
tWASYN  
CLR  
PRESET  
Figure 1-17 • Flip-Flops  
Revision 5  
1-23  
ex Automotive Family FPGAs  
Timing Characteristics  
Timing characteristics for eX devices fall into three categories: family-dependent, device-dependent, and  
design-dependent. The input and output buffer characteristics are common to all eX family members.  
Internal routing delays are device-dependent. Design dependency means actual delays are not  
determined until after placement and routing of the user’s design are complete. Delay values may then  
be determined by using the Timer tool in the Designer software or performing simulation with post-layout  
delays.  
Table 1-17 on page 1-25 lists sample timing characteristics for automotive eX devices.  
Critical Nets and Typical Nets  
Propagation delays are expressed only for typical nets, which are used for initial design performance  
evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are  
determined by net property assignment prior to placement and routing. Up to six percent of the nets in a  
design may be designated as critical.  
Long Tracks  
Some nets in the design use long tracks. Long tracks are special routing resources that span multiple  
rows, columns, or modules. Long tracks employ three to five antifuse connections. This increases  
capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically,  
no more than six percent of nets in a fully utilized device require long tracks. Long tracks contribute  
approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout  
routing delays.  
Timing Derating  
eX devices are manufactured with a CMOS process. Therefore, device performance varies according to  
temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating  
voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect  
minimum operating voltage, maximum operating temperature, and worst-case processing.  
Temperature and Voltage Derating Factors  
Table 1-16 • Temperature and Voltage Derating Factors  
(Normalized to Worst-Case Commercial, TJ = 125°C, VCCA = 2.3 V)  
Junction Temperature (TJ)  
VCCA  
2.3  
–55  
0.70  
0.65  
0.61  
–40  
0.70  
0.66  
0.62  
0
25  
70  
85  
125  
1.00  
0.93  
0.88  
0.77  
0.72  
0.67  
0.78  
0.73  
0.69  
0.88  
0.83  
0.78  
0.91  
0.85  
0.80  
2.5  
2.7  
1-24  
Revision 5  
ex Automotive Family FPGAs  
eX Family Timing Characteristics  
Table 1-17 • eX Family Timing Characteristics  
(Worst-Case Automotive Conditions, VCCA = 2.3 V, TJ = 125°C)  
‘Std.’ Speed  
Parameter  
Description  
Min.  
Max.  
Units  
C-Cell Propagation Delays1  
tPD  
Internal Array Module  
1.1  
ns  
Predicted Routing Delays2  
tDC  
FO = 1 Routing Delay, DirectConnect  
0.1  
0.6  
0.6  
0.7  
0.9  
1.1  
1.9  
2.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
FO = 1 Routing Delay, FastConnect  
FO = Routing Delay  
tRD1  
tRD2  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
FO = 12 Routing Delay  
tRD3  
tRD4  
tRD8  
tRD12  
R-Cell Timing  
tRCO  
Sequential Clock-to-Q  
1.0  
0.9  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
Asynchronous Recovery Time  
Asynchronous Hold Time  
tPRESET  
tSUD  
0.8  
0.0  
2.2  
0.6  
0.6  
tHD  
tWASYN  
tRECASYN  
tHASYN  
2.5 V Input Module Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y High  
Input Data Pad-to-Y Low  
1.1  
1.4  
ns  
ns  
3.3 V Input Module Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y High  
Input Data Pad-to-Y Low  
1.3  
1.6  
ns  
ns  
Input Module Predicted Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
0.5  
0.7  
0.9  
ns  
ns  
ns  
1. For dual-module macros, use t + t  
+ t  
, t  
+ t  
+ t  
or t  
+ t  
+ t  
, whichever is appropriate.  
PD  
RD1  
PDn RCO  
RD1  
PDn  
PD1  
RD1  
SUD  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for  
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case  
performance.  
3. Clock skew improves as the clock network becomes more heavily loaded.  
4. Delays based on 35 pF loading.  
Revision 5  
1-25  
ex Automotive Family FPGAs  
Table 1-17 • eX Family Timing Characteristics  
(Worst-Case Automotive Conditions, VCCA = 2.3 V, TJ = 125°C)  
‘Std.’ Speed  
Parameter  
tIRD4  
Description  
Min.  
Max.  
Units  
ns  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
1.1  
1.9  
2.8  
tIRD8  
ns  
tIRD12  
ns  
Dedicated (Hardwired) Array Clock Networks  
tHCKH  
Input Low to High  
(Pad to R-Cell Input)  
1.8  
1.8  
ns  
ns  
tHCKL  
Input High to Low  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
2.0  
2.0  
ns  
ns  
0.1  
ns  
Minimum Period  
4.0  
ns  
fHMAX  
Maximum Frequency  
250  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input Low to High (Light Load)  
(Pad to R-Cell Input)  
1.6  
1.6  
1.9  
1.9  
2.3  
2.3  
ns  
ns  
ns  
ns  
ns  
ns  
Input High to Low (Light Load)  
(Pad to R-Cell Input)  
Input Low to High (50% Load)  
(Pad to R-Cell Input)  
Input High to Low (50% Load)  
(Pad to R-Cell Input)  
Input Low to High (100% Load)  
(Pad to R-Cell Input)  
Input High to Low (100% Load)  
(Pad to R-Cell Input)  
tRPWH  
Min. Pulse Width High  
2.0  
2.0  
ns  
ns  
ns  
ns  
ns  
tRPWL  
Min. Pulse Width Low  
3
3
3
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.3  
0.2  
0.1  
2.5 V LVCMOS2 Output Module Timing4 (VCCI = 2.3 V)  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
5.9  
6.3  
ns  
ns  
tDHL  
Notes:  
1. For dual-module macros, use t + t  
+ t  
, t  
+ t  
+ t  
or t  
+ t  
+ t  
, whichever is appropriate.  
PD  
RD1  
PDn RCO  
RD1  
PDn  
PD1  
RD1  
SUD  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for  
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case  
performance.  
3. Clock skew improves as the clock network becomes more heavily loaded.  
4. Delays based on 35 pF loading.  
1-26  
Revision 5  
ex Automotive Family FPGAs  
Table 1-17 • eX Family Timing Characteristics  
(Worst-Case Automotive Conditions, VCCA = 2.3 V, TJ = 125°C)  
‘Std.’ Speed  
Parameter  
tDHLS  
tENZL  
Description  
Min.  
Max.  
20.8  
4.5  
Units  
ns  
Data-to-Pad High to Low—Low Slew  
Enable-to-Pad, Z to L  
ns  
tENZLS  
tENZH  
tENLZ  
Enable-to-Pad Z to L—Low Slew  
Enable-to-Pad, Z to H  
21.2  
6.1  
ns  
ns  
Enable-to-Pad, L to Z  
3.8  
ns  
tENHZ  
dTLH  
Enable-to-Pad, H to Z  
7.1  
ns  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
Delta Delay vs. Load High to Low—Low Slew  
0.058  
0.028  
0.090  
ns/pF  
ns/pF  
ns/pF  
dTHL  
dTHLS  
3.3 V LVTTL Output Module Timing1 (VCCI = 3.0 V)  
tDLH  
Data-to-Pad Low to High  
5.0  
4.9  
ns  
ns  
tDHL  
Data-to-Pad High to Low  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
Data-to-Pad High to Low—Low Slew  
Enable-to-Pad, Z to L  
17.4  
4.0  
ns  
ns  
Enable-to-Pad Z to L—Low Slew  
Enable-to-Pad, Z to H  
17.4  
5.0  
ns  
ns  
Enable-to-Pad, L to Z  
5.0  
ns  
Enable-to-Pad, H to Z  
4.8  
ns  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
Delta Delay vs. Load High to Low—Low Slew  
0.038  
0.028  
0.090  
ns/pF  
ns/pF  
ns/pF  
dTHL  
dTHLS  
Notes:  
1. For dual-module macros, use t + t  
+ t  
, t  
+ t  
+ t  
or t  
+ t  
+ t  
, whichever is appropriate.  
PD  
RD1  
PDn RCO  
RD1  
PDn  
PD1  
RD1  
SUD  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for  
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case  
performance.  
3. Clock skew improves as the clock network becomes more heavily loaded.  
4. Delays based on 35 pF loading.  
Revision 5  
1-27  
ex Automotive Family FPGAs  
Pin Descriptions  
CLKA/B  
Routed Clock A and B  
These pins are clock inputs for clock distribution networks. Input levels are compatible with LVTTL and  
LVCMOS specifications. The clock input is buffered prior to clocking the R-cells. If not used, this pin must  
be set Low or High on the board. It must not be left floating.  
GND  
Ground  
Low supply voltage.  
HCLK  
Dedicated (Hardwired) Array Clock  
This pin is the clock input for sequential modules. Input levels are compatible with LVTTL and LVCMOS  
specifications. This input is directly wired to each R-cell and offers clock speeds independent of the  
number of R-cells being driven. If not used, this pin must be set Low or High on the board. It must not be  
left floating.  
I/O  
Input/Output  
The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output levels are  
compatible with LVTTL and LVCMOS specifications. Unused I/O pins are automatically tristated by the  
Designer software. It is recommended to tie unused I/Os to Low on the board. This also applies to dual-  
purpose pins when configured as I/Os.  
NC  
No Connection  
This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be  
left floating with no effect on the operation of the device.  
PRA/PRB, I/O  
Probe A/B  
The Probe pin is used to output data from any user-defined design node within the device. This  
diagnostic pin can be used independently or in conjunction with the other probe pin to allow real-time  
diagnostic output of any signal path within the device. The Probe pin can be employed as a user-defined  
I/O when verification has been completed. The pin’s probe capabilities can be permanently disabled to  
protect programmed design confidentiality.  
TCK, I/O  
Test Clock  
Test clock input for diagnostic probe and device programming. In flexible mode, TCK becomes active  
when the TMS pin is set Low (refer to Table 1-3 on page 1-9). This pin functions as an I/O when the  
boundary scan state machine reaches the “logic reset” state.  
TDI, I/O  
Test Data Input  
Serial input for boundary scan testing and diagnostic probe. In flexible mode, TDI is active when the TMS  
pin is set Low (refer to Table 1-3 on page 1-9). This pin functions as an I/O when the boundary scan state  
machine reaches the “logic reset” state.  
TDO, I/O  
Test Data Output  
Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set Low  
(refer to Table 1-3 on page 1-9). This pin functions as an I/O when the boundary scan state machine  
reaches the "logic reset" state. When Silicon Explorer is being used, TDO will act as an output when the  
"checksum" command is run. It will return to a user I/O when "checksum" is complete.  
TMS  
Test Mode Select  
The TMS pin controls the use of the IEEE 1149.1 boundary scan pins (TCK, TDI, TDO, TRST). In flexible  
mode, when the TMS pin is set Low, the TCK, TDI, and TDO pins are boundary scan pins (refer to  
Table 1-3 on page 1-9). Once the boundary scan pins are in test mode, they will remain in that mode until  
the internal boundary scan state machine reaches the “logic reset” state. At this point, the boundary scan  
pins will be released and will function as regular I/O pins. The “logic reset” state is reached five TCK  
cycles after the TMS pin is set High. In dedicated test mode, TMS functions as specified in the IEEE  
1149.1 specifications.  
1-28  
Revision 5  
ex Automotive Family FPGAs  
TRST, I/O  
Boundary Scan Reset Pin  
Once it is configured as the JTAG Reset pin, the TRST pin functions as an active-low input to  
asynchronously initialize or reset the boundary scan circuit. The TRST pin is equipped with an internal  
pull-up resistor. This pin functions as an I/O when the “Reserve JTAG Reset Pin” is not selected in the  
Designer software.  
VCCI  
Supply Voltage  
Supply voltage for I/Os.  
VCCA  
Supply Voltage  
Supply voltage for Array.  
Revision 5  
1-29  
2 – Package Pin Assignments  
TQ64  
64  
1
TQ64  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/rescenter/package/index.html.  
Revision 5  
2-1  
Package Pin Assignments  
TQ64  
TQ64  
eX64  
eX64  
eX128  
eX128  
Pin Number  
Function  
GND  
TDI, I/O  
I/O  
Function  
Pin Number  
33  
Function  
GND  
I/O  
Function  
1
GND  
TDI, I/O  
I/O  
GND  
I/O  
2
34  
3
35  
I/O  
I/O  
4
TMS  
GND  
VCCI  
I/O  
TMS  
GND  
VCCI  
I/O  
36  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
5
37  
6
38  
7
39  
I/O  
I/O  
8
I/O  
I/O  
40  
NC  
I/O  
9
NC  
I/O  
41  
NC  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
NC  
I/O  
42  
I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
43  
I/O  
I/O  
44  
VCCA  
GND  
GND  
I/O  
VCCA  
GND  
GND  
I/O  
NC  
I/O  
45  
GND  
I/O  
GND  
I/O  
46  
47  
I/O  
I/O  
48  
I/O  
I/O  
I/O  
I/O  
49  
I/O  
I/O  
I/O  
I/O  
50  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
51  
I/O  
I/O  
52  
VCCI  
I/O  
VCCI  
I/O  
PRB, I/O  
VCCA  
GND  
I/O  
PRB, I/O  
VCCA  
GND  
I/O  
53  
54  
I/O  
I/O  
55  
CLKA  
CLKB  
VCCA  
GND  
PRA, I/O  
I/O  
CLKA  
CLKB  
VCCA  
GND  
PRA, I/O  
I/O  
56  
HCLK  
I/O  
HCLK  
I/O  
57  
58  
I/O  
I/O  
59  
I/O  
I/O  
60  
I/O  
I/O  
61  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
62  
I/O  
I/O  
63  
I/O  
I/O  
TDO, I/O  
TDO, I/O  
64  
TCK, I/O  
TCK, I/O  
2-2  
Revision 5  
ex Automotive Family FPGAs  
TQ100  
100  
1
TQ100  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/rescenter/package/index.html.  
Revision 5  
2-3  
ex Automotive Family FPGAs  
TQ100  
TQ100  
eX64  
eX128  
eX256  
eX64  
eX128  
eX256  
Pin Number  
Function  
GND  
TDI, I/O  
NC  
Function  
Function  
Pin Number  
36  
Function  
GND  
NC  
Function  
Function  
1
GND  
TDI, I/O  
NC  
GND  
TDI, I/O  
I/O  
GND  
NC  
GND  
NC  
2
37  
3
38  
I/O  
I/O  
I/O  
4
NC  
NC  
I/O  
39  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
5
NC  
NC  
I/O  
40  
6
I/O  
I/O  
I/O  
41  
I/O  
I/O  
I/O  
7
TMS  
VCCI  
GND  
NC  
TMS  
VCCI  
GND  
I/O  
TMS  
VCCI  
GND  
I/O  
42  
I/O  
I/O  
I/O  
8
43  
I/O  
I/O  
I/O  
9
44  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
45  
NC  
I/O  
I/O  
46  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
47  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
48  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
49  
TDO, I/O  
NC  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
NC  
I/O  
I/O  
50  
TRST, I/O  
NC  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
51  
GND  
NC  
GND  
NC  
GND  
I/O  
52  
I/O  
I/O  
I/O  
53  
NC  
NC  
I/O  
NC  
I/O  
I/O  
54  
NC  
NC  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
55  
I/O  
I/O  
I/O  
56  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
57  
VCCA  
VCCI  
NC  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
NC  
NC  
I/O  
58  
NC  
NC  
I/O  
59  
I/O  
I/O  
I/O  
60  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
61  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
62  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
63  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
64  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
65  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
66  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
67  
VCCA  
GND  
GND  
I/O  
VCCA  
GND  
GND  
I/O  
VCCA  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
68  
PRB, I/O  
VCCA  
PRB, I/O  
VCCA  
PRB, I/O  
VCCA  
69  
70  
Revision 5  
2-4  
ex Automotive Family FPGAs  
TQ100  
eX64  
eX128  
eX256  
Pin Number  
71  
Function  
Function  
Function  
I/O  
I/O  
I/O  
I/O  
I/O  
72  
NC  
73  
NC  
NC  
I/O  
74  
NC  
NC  
I/O  
75  
NC  
NC  
I/O  
76  
NC  
I/O  
I/O  
77  
I/O  
I/O  
I/O  
78  
I/O  
I/O  
I/O  
79  
I/O  
I/O  
I/O  
80  
I/O  
I/O  
I/O  
81  
I/O  
I/O  
I/O  
82  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
83  
84  
I/O  
I/O  
I/O  
85  
I/O  
I/O  
I/O  
86  
I/O  
I/O  
I/O  
87  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
88  
89  
90  
VCCA  
GND  
PRA, I/O  
I/O  
VCCA  
GND  
PRA, I/O  
I/O  
VCCA  
GND  
PRA, I/O  
I/O  
91  
92  
93  
94  
I/O  
I/O  
I/O  
95  
I/O  
I/O  
I/O  
96  
I/O  
I/O  
I/O  
97  
I/O  
I/O  
I/O  
98  
I/O  
I/O  
I/O  
99  
I/O  
I/O  
I/O  
100  
TCK, I/O  
TCK, I/O  
TCK, I/O  
Revision 5  
2-5  
Package Pin Assignments  
CS49  
A1 Ball Pad Corner  
1
2
3
5
6
7
4
A
B
C
D
E
F
G
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/rescenter/package/index.html.  
2-6  
Revision 5  
ex Automotive Family FPGAs  
CS49  
eX64  
CS49  
eX128  
eX64  
eX128  
Pin Number  
A1  
Function  
Function  
Pin Number  
D5  
Function  
Function  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
A2  
I/O  
D6  
A3  
I/O  
I/O  
D7  
I/O  
I/O  
A4  
I/O  
I/O  
E1  
I/O  
I/O  
A5  
VCCA  
I/O  
VCCA  
I/O  
E2  
TRST, I/O  
VCCI  
GND  
I/O  
TRST, I/O  
VCCI  
GND  
I/O  
A6  
E3  
A7  
I/O  
I/O  
E4  
B1  
TCK, I/O  
I/O  
TCK, I/O  
I/O  
E5  
B2  
E6  
I/O  
I/O  
B3  
I/O  
I/O  
E7  
VCCI  
I/O  
VCCI  
I/O  
B4  
PRA, I/O  
CLKA  
I/O  
PRA, I/O  
CLKA  
I/O  
F1  
B5  
F2  
I/O  
I/O  
B6  
F3  
I/O  
I/O  
B7  
GND  
I/O  
GND  
I/O  
F4  
I/O  
I/O  
C1  
F5  
HCLK  
I/O  
HCLK  
I/O  
C2  
TDI, I/O  
VCCI  
GND  
CLKB  
VCCA  
I/O  
TDI, I/O  
VCCI  
GND  
CLKB  
VCCA  
I/O  
F6  
C3  
F7  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
C4  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
C5  
I/O  
I/O  
C6  
I/O  
I/O  
C7  
PRB, I/O  
VCCA  
I/O  
PRB, I/O  
VCCA  
I/O  
D1  
I/O  
I/O  
D2  
TMS  
GND  
GND  
TMS  
GND  
GND  
D3  
I/O  
I/O  
D4  
Revision 5  
2-7  
Package Pin Assignments  
CS128  
A1 Ball Pad Corner  
2
3
4
5
6
8
12  
1
7
9
10  
11  
A
B
C
D
E
F
G
H
J
K
L
M
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/rescenter/package/index.html.  
2-8  
Revision 5  
ex Automotive Family FPGAs  
CS128  
CS128  
eX64  
Pin Number Function  
eX128  
Function  
eX256  
Function  
eX64  
Pin Number Function  
eX128  
Function  
eX256  
Function  
A1  
A2  
I/O  
TCK, I/O  
VCCI  
I/O  
I/O  
TCK, I/O  
VCCI  
I/O  
I/O  
TCK, I/O  
VCCI  
I/O  
C12  
D1  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
A3  
D2  
I/O  
I/O  
I/O  
A4  
D3  
I/O  
I/O  
I/O  
A5  
I/O  
I/O  
I/O  
D4  
I/O  
I/O  
I/O  
A6  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
D5  
I/O  
I/O  
I/O  
A7  
D6  
GND  
I/O  
GND  
I/O  
GND  
I/O  
A8  
I/O  
I/O  
I/O  
D7  
A9  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
D8  
GND  
I/O  
GND  
I/O  
GND  
I/O  
A10  
A11  
A12  
B1  
D9  
I/O  
I/O  
I/O  
D10  
D11  
D12  
E1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TMS  
I/O  
TMS  
I/O  
TMS  
I/O  
VCCI  
NC  
VCCI  
I/O  
VCCI  
I/O  
B2  
B3  
I/O  
I/O  
I/O  
E2  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
B4  
I/O  
I/O  
I/O  
E3  
B5  
I/O  
I/O  
I/O  
E4  
GND  
GND  
I/O  
GND  
GND  
I/O  
GND  
GND  
I/O  
B6  
PRA, I/O  
CLKB  
I/O  
PRA, I/O  
CLKB  
I/O  
PRA, I/O  
CLKB  
I/O  
E9  
B7  
E10  
E11  
E12  
F1  
B8  
GND  
VCCA  
NC  
GND  
VCCA  
I/O  
GND  
VCCA  
I/O  
B9  
I/O  
I/O  
I/O  
B10  
B11  
B12  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
F2  
NC  
I/O  
I/O  
F3  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
F4  
I/O  
I/O  
I/O  
TDI, I/O  
I/O  
TDI, I/O  
I/O  
TDI, I/O  
I/O  
F9  
GND  
NC  
GND  
I/O  
GND  
I/O  
F10  
F11  
F12  
G1  
G2  
G3  
G4  
G9  
G10  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKA  
I/O  
CLKA  
I/O  
CLKA  
I/O  
NC  
I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
NC  
GND  
GND  
I/O  
GND  
GND  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
Revision 5  
2-9  
Package Pin Assignments  
CS128  
CS128  
eX64  
eX128  
Function  
eX256  
Function  
eX64  
Pin Number Function  
eX128  
Function  
eX256  
Function  
Pin Number Function  
G11  
G12  
H1  
H2  
H3  
H4  
H9  
H10  
H11  
H12  
J1  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
K8  
K9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
K10  
K11  
K12  
L1  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
VCCI  
GND  
I/O  
VCCI  
GND  
I/O  
VCCI  
GND  
I/O  
I/O  
I/O  
I/O  
L2  
I/O  
I/O  
I/O  
VCCI  
VCCA  
NC  
VCCI  
VCCA  
I/O  
VCCI  
VCCA  
I/O  
L3  
NC  
I/O  
I/O  
L4  
I/O  
I/O  
I/O  
L5  
I/O  
I/O  
I/O  
NC  
NC  
VCCA  
I/O  
L6  
I/O  
I/O  
I/O  
J2  
I/O  
I/O  
L7  
I/O  
I/O  
I/O  
J3  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
L8  
I/O  
I/O  
I/O  
J4  
L9  
I/O  
I/O  
I/O  
J5  
I/O  
I/O  
I/O  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
I/O  
I/O  
I/O  
J6  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
J7  
GND  
I/O  
GND  
I/O  
GND  
I/O  
VCCI  
GND  
I/O  
VCCI  
GND  
I/O  
VCCI  
GND  
I/O  
J8  
J9  
GND  
I/O  
GND  
I/O  
GND  
I/O  
J10  
J11  
J12  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
HCLK  
PRB, I/O  
HCLK  
PRB, I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2-10  
Revision 5  
ex Automotive Family FPGAs  
CS180  
A1 Ball Pad Corner  
12  
1
2
3
4
5
6
7
9 10  
14  
13  
8
11  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/rescenter/package/index.html.  
Revision 5  
2-11  
Package Pin Assignments  
CS180  
CS180  
CS180  
CS180  
eX256  
Pin Number Function  
eX256  
Pin Number Function  
eX256  
Pin Number Function  
eX256  
Pin Number Function  
A1  
A2  
I/O  
I/O  
C6  
C7  
I/O  
PRA, I/O  
CLKB  
I/O  
E11  
E12  
E13  
E14  
F1  
I/O  
I/O  
H14  
J1  
I/O  
I/O  
A3  
GND  
NC  
C8  
VCCI  
I/O  
J2  
GND  
I/O  
A4  
C9  
J3  
A5  
NC  
C10  
C11  
C12  
C13  
C14  
D1  
I/O  
I/O  
J4  
VCCI  
GND  
I/O  
A6  
NC  
I/O  
F2  
I/O  
J5  
A7  
NC  
GND  
I/O  
F3  
VCCI  
I/O  
J10  
J11  
J12  
J13  
J14  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
K12  
K13  
K14  
L1  
A8  
NC  
F4  
VCCI  
VCCA  
I/O  
A9  
NC  
I/O  
F5  
GND  
GND  
I/O  
A10  
A11  
A12  
A13  
A14  
B1  
NC  
I/O  
F10  
F11  
F12  
F13  
F14  
G1  
NC  
D2  
I/O  
I/O  
I/O  
D3  
TDI, I/O  
I/O  
GND  
VCCA  
I/O  
I/O  
I/O  
D4  
VCCA  
I/O  
I/O  
D5  
I/O  
I/O  
D6  
I/O  
VCCA  
I/O  
VCCI  
I/O  
B2  
I/O  
D7  
CLKA  
I/O  
G2  
B3  
TCK, I/O  
VCCI  
I/O  
D8  
G3  
I/O  
I/O  
B4  
D9  
I/O  
G4  
I/O  
I/O  
B5  
D10  
D11  
D12  
D13  
D14  
E1  
I/O  
G5  
I/O  
GND  
I/O  
B6  
I/O  
I/O  
G10  
G11  
G12  
G13  
G14  
H1  
GND  
I/O  
B7  
VCCA  
I/O  
I/O  
GND  
I/O  
B8  
I/O  
I/O  
B9  
I/O  
I/O  
I/O  
I/O  
B10  
B11  
B12  
B13  
B14  
C1  
C2  
VCCI  
I/O  
I/O  
VCCA  
I/O  
I/O  
E2  
I/O  
I/O  
I/O  
E3  
I/O  
H2  
I/O  
I/O  
I/O  
E4  
I/O  
H3  
TRST, I/O  
I/O  
L2  
I/O  
I/O  
E5  
I/O  
H4  
L3  
I/O  
I/O  
E6  
I/O  
H5  
GND  
GND  
I/O  
L4  
I/O  
TMS  
I/O  
E7  
GND  
I/O  
H10  
H11  
H12  
H13  
L5  
I/O  
C3  
C4  
C5  
E8  
L6  
I/O  
I/O  
E9  
GND  
I/O  
I/O  
L7  
PRB, I/O  
HCLK  
I/O  
E10  
I/O  
L8  
2-12  
Revision 5  
ex Automotive Family FPGAs  
CS180  
CS180  
eX256  
Pin Number Function  
eX256  
Pin Number Function  
L9  
L10  
L11  
L12  
L13  
L14  
M1  
I/O  
I/O  
N14  
P1  
I/O  
I/O  
I/O  
P2  
I/O  
TDO, I/O  
I/O  
P3  
I/O  
P4  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GND  
I/O  
I/O  
P5  
I/O  
P6  
M2  
I/O  
P7  
M3  
I/O  
P8  
M4  
I/O  
P9  
M5  
I/O  
P10  
P11  
P12  
P13  
M6  
I/O  
M7  
I/O  
M8  
I/O  
M9  
I/O  
M10  
M11  
M12  
M13  
M14  
N1  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
N2  
GND  
I/O  
N3  
N4  
I/O  
N5  
I/O  
N6  
I/O  
N7  
I/O  
N8  
VCCA  
I/O  
N9  
N10  
N11  
N12  
N13  
I/O  
I/O  
I/O  
I/O  
Revision 5  
2-13  
3 – Datasheet Information  
List of Changes  
The following table lists critical changes that were made in the current version of the document.  
Revision  
Changes  
Page  
Revision 5  
(October 2012)  
The datasheet was updated for Microsemi, including hyperlinks to the Microsemi  
SoC Products Group website. The versioning system has been changed.  
Datasheets are assigned a revision number that increments each time the  
datasheet is revised.  
All  
The "Features" section and "User Security" section were updated to clarify that  
although no existing security measures can give an absolute guarantee,  
Microsemi FPGAs implement industry standard security (SAR 34676).  
i, 1-5  
i, 2-1  
ii  
Package names used in the product profile tables and "Package Pin Assignments"  
section section were revised to match standards given in Package Mechanical  
Drawings (SAR 34778).  
v3.2  
(June 2006)  
The "Ordering Information" section was updated to include RoHS information. The  
TQFP measurement was also updated.  
The "Dedicated Test Mode" section was updated.  
1-9  
1-16  
ii  
Note 4 was added to the"3.3 V LVTTL Electrical Specifications" table.  
A note was added to the "Ordering Information" section.  
v3.1  
(April 2006)  
The Junction temperature was added to Table 1-8 • Absolute Maximum Ratings*.  
The note was changed in Table 1-9 • Recommended Operating Conditions.  
1-15  
1-15  
1-16  
The IOH and IOL values were updated in the "3.3 V LVTTL Electrical  
Specifications" table.  
The "5 V Tolerance of 3.3 V LVTTL I/Os Using a Tristate Buffer" section is new.  
1-17  
1-15  
A reference to Table 1-9 • Recommended Operating Conditions was added to the  
"Junction Temperature".  
v3.0  
(June 2004)  
The "Speed Grade and Temperature Grade Matrix" table is new.  
Table 1-2 • I/O Features was updated.  
ii  
1-6  
Table 1-9 • Recommended Operating Conditions was updated.  
The "CEQ Values for eX Devices" section is new.  
The "Package Thermal Characteristics" section was updated.  
Table 1-14 • Input Buffer Delays was updated.  
1-15  
1-18  
1-19  
1-22  
1-20  
1-28  
Figure 1-15 • eX Timing Model was updated.  
The "Pin Descriptions" section was updated.  
Revision 5  
3-1  
Datasheet Information  
Datasheet Categories  
Categories  
In order to provide the latest information to designers, some datasheet parameters are published before  
data has been fully characterized from silicon devices. The data provided is designated as either  
"Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as  
follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advance or production) and contains general  
product information. This document gives an overview of specific device and family information.  
Advance  
This version contains initial estimated information based on simulation, other products, devices, or speed  
grades. This information can be used as estimates, but not for production. This label only applies to the  
DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not  
been fully characterized.  
Preliminary  
The datasheet contains information based on simulation and/or initial characterization. The information is  
believed to be correct, but changes are possible.  
Production  
This version contains information that is considered to be final.  
Export Administration Regulations (EAR)  
The product described in this datasheet is subject to the Export Administration Regulations (EAR). They  
could require an approved export license prior to export from the United States. An export includes  
release of product or disclosure of technology to a foreign national inside or outside the United States.  
3-2  
Revision 5  
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor  
solutions for: aerospace, defense and security; enterprise and communications; and industrial  
and alternative energy markets. Products include high-performance, high-reliability analog and  
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and  
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at  
www.microsemi.com.  
Microsemi Corporate Headquarters  
One Enterprise, Aliso Viejo CA 92656 USA  
Within the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of  
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.  
Fax: +1 (949) 215-4996  
51700017-5/10.12  

相关型号:

EX128-CSG128I

Field Programmable Gate Array
ACTEL

EX128-CSG49

Field Programmable Gate Array
ACTEL

EX128-FCS100

eX Family FPGAs
ACTEL

EX128-FCS100A

eX Family FPGAs
ACTEL

EX128-FCS100I

eX Automotive Family FPGAs
ACTEL

EX128-FCS100PP

eX Family FPGAs
ACTEL

EX128-FCS128

Field Programmable Gate Array, 256 CLBs, 6000 Gates, 178MHz, 384-Cell, CMOS, PBGA128, 0.80 MM PITCH, PLASTIC, CSP-128
ACTEL

EX128-FCS128A

Field Programmable Gate Array, 6000 Gates, CMOS, PBGA128, 0.8 MM PITCH, CSP-128
ACTEL

EX128-FCS128I

Field Programmable Gate Array, 6000 Gates, 178MHz, 384-Cell, CMOS, PBGA128, 0.8 MM PITCH, CSP-128
ACTEL

EX128-FCS128IX79

Field Programmable Gate Array, 178MHz, 384-Cell, CMOS, PBGA128,
ACTEL

EX128-FCS128PP

eX Family FPGAs
ETC

EX128-FCS128X79

Field Programmable Gate Array, 256 CLBs, 6000 Gates, 178MHz, 384-Cell, CMOS, PBGA128, 0.80 MM PITCH, PLASTIC, CSP-128
ACTEL