LX1555CPW-TR

更新时间:2024-09-18 19:03:11
品牌:MICROSEMI
描述:Switching Controller, Current-mode, 1A, 500kHz Switching Freq-Max, PDSO20, ROHS COMPLIANT, PLASTIC, TSSOP-20

LX1555CPW-TR 概述

Switching Controller, Current-mode, 1A, 500kHz Switching Freq-Max, PDSO20, ROHS COMPLIANT, PLASTIC, TSSOP-20 开关式稳压器或控制器

LX1555CPW-TR 规格参数

是否无铅: 不含铅是否Rohs认证: 符合
生命周期:Obsolete零件包装代码:TSSOP
包装说明:TSSOP, TSSOP20,.25针数:20
Reach Compliance Code:compliantECCN代码:EAR99
HTS代码:8542.39.00.01风险等级:5.73
模拟集成电路 - 其他类型:SWITCHING CONTROLLER控制模式:CURRENT-MODE
控制技术:PULSE WIDTH MODULATION最大输入电压:25 V
最小输入电压:12 V标称输入电压:15 V
JESD-30 代码:R-PDSO-G20JESD-609代码:e3
长度:6.5 mm功能数量:1
端子数量:20最高工作温度:70 °C
最低工作温度:最大输出电流:1 A
封装主体材料:PLASTIC/EPOXY封装代码:TSSOP
封装等效代码:TSSOP20,.25封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, THIN PROFILE, SHRINK PITCH峰值回流温度(摄氏度):NOT SPECIFIED
认证状态:Not Qualified座面最大高度:1.2 mm
子类别:Switching Regulator or Controllers表面贴装:YES
切换器配置:SINGLE最大切换频率:500 kHz
温度等级:COMMERCIAL端子形式:GULL WING
端子节距:0.65 mm端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED宽度:4.4 mm
Base Number Matches:1

LX1555CPW-TR 数据手册

通过下载LX1555CPW-TR数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
LX1552/3/4/5  
URRENT, C URRENT- MODE PWM  
U
LTRA- LOW  
S
TART- U  
P
C
P
R O D U C T I O N D A T A S H E E T  
T
H E  
I
N F I N I T E  
P
O W E R O F  
I N N O V A T I O N  
KEY FEATURES  
DESCRIPTION  
The LX155x family of ultra-low start-up current  
(250µA max), current mode control ICs offer new  
levels of energy efficiency for offline converter  
Additionally, the precise oscillator discharge  
current gives the power supply designer  
considerable flexibility in optimizing system duty  
cycle consistency.  
„
Ultra-Low Start-up Current (150µA  
Typical)  
Trimmed Oscillator Discharge  
Current (±2% Typical)  
Initial Oscillator Frequency Better  
Than ±4%  
Output Pulldown During UVLO  
Precision 2.5V Reference (±2  
maximum)  
Current Sense Delay to Output  
(150ns Typical)  
Automatic Feed Forward  
Compensation  
Pulse-by-Pulse Current Limiting  
Enhanced Load response  
Characteristics  
Under-Voltage Lockout with  
Hysteresis  
Double Pulse Suppression  
„
„
applications.  
They are ideally optimized for  
personal computer and CRT power supplies  
although they can be used in any number of off-line  
applications where energy efficiency is critical.  
Coupled with the fact that the LX155x series  
requires a minimal set of external components, the  
series offers an excellent value for cost conscious  
consumer applications.  
The current mode architecture demonstrates  
improved load regulation, pulse by pulse current  
limiting and inherent protection of the power  
supply output switch. The LX155x includes a  
bandgap reference trimmed to 1%, an error  
amplifier, a current sense comparator internally  
clamped to 1V, a high current totem pole output  
stage for fast switching of power MOSFETs, and  
an externally programmable oscillator to set  
operating frequency and maximum duty cycle.  
The under voltage lock-out circuitry is designed to  
operate with as little as 250µA of supply current  
permitting very efficient bootstrap designs.  
„
„
„
„
Optimizing energy efficiency, the LX155x series  
demonstrates  
a significant power reduction as  
„
„
compared with other similar off-line controllers.  
Table 1 compares the SG384x, UC384xA and the  
LX155x start-up resistor power dissipation. The  
LX155x offers an overall 4X reduction in power  
dissipation.  
„
„
„
High Current Totem Pole Output  
(±1A Peak)  
IMPORTANT: For the most current data, consult MICROSEMI’s website: http://www.microsemi.com  
„
500KHz Operation  
PRODUCT HIGHLIGHT  
APPLICATIONS  
Typical Application of LX155x Using Its MicroPower Start-Up Feature  
„
Economy Off-Line Flyback or  
Forward Converters  
DC-DC Buck or Boost Converters  
Low Cost DC Motor Control  
Design Using  
Max. Start-up Current  
SG384x UC384xA LX155x  
R
ST  
1000µA  
62K  
500µA  
124KΩ  
1.13W  
250µA  
248K  
0.56W  
„
„
Specification (IST  
Typical Start-up Resistor  
Value (RST  
)
)
I
ST  
AC  
Max. Start-up Resistor  
Power Dissipation (PR)  
INPUT  
2.26W  
V
CC  
Available Options Per part#  
Part #  
Start-Up  
Voltage  
16V  
8.4V  
16V  
Max. Duty  
Hysteresis  
Note: Calculation is done for universal AC input  
specification of VACMIN = 90VRMS to VACMAX = 256VRMS using  
the following equation: (resistor current is selected to be 2  
LX1552  
or  
Cycle  
<100%  
<100%  
<50%  
LX1552  
LX1553  
LX1554  
LX1555  
6V  
0.8V  
6V  
LX1554  
* IST @ VACMIN  
)
2VAC  
8.4V  
0.8V  
<50%  
VACMIN  
2 • IST  
2
MAX  
RST  
=
,P =  
R
RST  
PACKAGE ORDER INFO  
Ceramic DIP  
8-Pin  
Plastic TSSOP  
20-Pin  
RoHS Compliant / Pb-free  
Transition DC: 0442  
Plastic DIP  
8-Pin  
RoHS Compliant / Pb-free  
Transition DC: 0503  
Plastic SOIC  
8-Pin  
Plastic SOIC  
14-Pin  
M
DM  
D
Y
PW  
TA (°C)  
RoHS Compliant / Pb-free  
Transition DC: 0440  
RoHS Compliant / Pb-free  
Transition DC: 0440  
0 to 70  
-40 to 85  
-55 to 125  
LX155xCM  
LX155xIM  
-
LX155xCDM  
LX155xIDM  
-
LX155xCD  
LX155xID  
-
-
-
LX155xCPW  
-
-
LX155xMY  
Note: Available in Tape & Reel. Append the letters “TR” to the part number (i.e. LX1552CDM-TR).  
L
I N  
F
I N I T Y  
M
I C R O E L E C T R O N I C S  
I
N C .  
Copyright © 1994  
Rev. 1.0b,2005-03-01  
1
11861 WESTERN  
A
VENUE, GARDEN GROVE, CA. 92841, 714-898-8121, FAX: 714-893-2570  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1552/3/4/5  
U
LTRA-LOW  
S
TART-U  
P
CURRENT, CURRENT-MODE PWM  
P R O D U C T I O N D A T A S H E E T  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
PACKAGE PIN OUTS  
Supply Voltage (Low Impedance Source) .................................................................. 30V  
Supply Voltage (ICC < 30mA) ......................................................................... Self Limiting  
Output Current............................................................................................................. ±1A  
Output Energy (Capacitive Load) ................................................................................ 5µJ  
Analog Inputs (Pins 2, 3) ........................................................................... -0.3V to +6.3V  
Error Amp Output Sink Current............................................................................... 10mA  
Power Dissipation at TA = 25°C (DIL-8) ...................................................................... 1W  
Operating Junction Temperature  
1
2
3
4
8
7
6
5
COMP  
VFB  
ISENSE  
RT/CT  
VREF  
VCC  
OUTPUT  
GND  
M & Y PACKAGE  
(Top View)  
M Package RoHS / Pb-free 100% Matte Tin Lead Finish  
Ceramic (Y Package) ............................................................................................ 150°C  
Plastic (M, DM, D, PW Packages) ........................................................................ 150°C  
Storage Temperature Range .................................................................... -65°C to +150°C  
1
2
3
4
8
7
6
5
COMP  
VFB  
ISENSE  
RT/CT  
VREF  
VCC  
OUTPUT  
GND  
Lead Temperature (Soldering, 10 Seconds) ............................................................ 300°C  
Pb-free / RoHS Peak Package Solder Reflow Temp. (40 second max. exposure)................ 260°C (+0, -5)  
DM PACKAGE  
(Top View)  
RoHS / Pb-free 100% Matte Tin Lead Finish  
Note 1. Exceeding these ratings could cause damage to the device. All voltages are with respect  
to Ground. Currents are positive into, negative out of the specified terminal. Pin  
numbers refer to DIL packages only.  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
COMP  
N.C.  
VFB  
N.C.  
ISENSE  
N.C.  
RT/CT  
VREF  
N.C.  
VCC  
VC  
OUTPUT  
GND  
PWR GND  
THERMAL DATA  
M PACKAGE:  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
DM PACKAGE:  
95°C/W  
165°C/W  
120°C/W  
130°C/W  
144°C/W  
8
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
D PACKAGE:  
D PACKAGE  
(Top View)  
RoHS / Pb-free 100% Matte Tin Lead Finish  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
Y PACKAGE:  
N.C.  
N.C.  
COMP  
VFB  
N.C.  
ISENSE  
N.C.  
RT/CT  
N.C.  
N.C.  
N.C.  
N.C.  
VREF  
N.C.  
VCC  
VC  
OUTPUT  
GND  
PWR GND  
N.C.  
1
2
20  
19  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
PW PACKAGE:  
3
18  
17  
16  
15  
14  
13  
12  
11  
4
5
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
6
Junction Temperature Calculation: TJ = T + (PD x θJA).  
7
The θJA numbers are guidelines for the theArmal performance of the device/pc-board system.  
8
9
All of the above assume no ambient airflow  
10  
PW PACKAGE  
(Top View)  
RoHS / Pb-free 100% Matte Tin Lead Finish  
Copyright © 1994  
Rev. 1.0b  
2
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1552/3/4/5  
U
LTRA-LOW  
S
TART-U CURRENT, CURRENT-MODE PWM  
P
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise specified, these specifications apply over the operating ambient temperatures for LX155xC with 0°C TA 70°C, LX155xI with -40°C TA 85°C, LX155xM  
with -55°C TA 125°C; VCC=15V (Note 5); RT=10K; CT=3.3nF. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the  
ambient temperature.)  
LX155xI/155xM  
Min. Typ. Max. Min. Typ. Max.  
LX155xC  
Parameter  
Symbol  
Test Conditions  
Units  
Reference Section  
Output Voltage  
VREF  
TA = 25°C, IL = 1mA  
4.95 5.00 5.05 4.95 5.00 5.05  
V
Line Regulation  
12 VIN 25V  
1 IO 20mA  
6
6
20  
25  
6
6
20  
25  
mV  
mV  
Load Regulation  
0.2 0.4  
5.1 4.9  
0.2 0.4 mV/°C  
Temperature Stability (Note 2 & 7)  
Total Output Variation  
Output Noise Voltage (Note 2)  
Long Term Stability (Note 2)  
Output Short Circuit  
Over Line, Load, and Temperature  
10Hz f 10kHz, TA = 25°C  
TA = 125°C, t = 1000hrs  
4.9  
5.1  
V
50  
5
50  
5
µV  
mV  
mA  
VN  
ISC  
25  
25  
-30 -100 -180 -30 -100 -180  
Oscillator Section  
Initial Accuracy (Note 6)  
TA = 25°C  
48.5 50.5 52.5 48.5 50.5 52.5  
kHz  
kHz  
%
TA = 25°C, RT = 698, CT = 22nF, LX1552/3 only  
12 VCC 25V  
56  
58  
0.2  
5
60  
1
56  
58  
0.2  
5
60  
1
Voltage Stability  
%
Temperature Stability (Note 2)  
Amplitude (Note 2)  
Discharge Current  
TMIN TA TMAX  
VPIN 4 peak to peak  
1.7  
1.7  
V
mA  
mA  
8.0 8.3 8.6 8.0 8.3 8.6  
7.6 8.8 7.8 8.8  
ID  
TA = 25°C, VPIN 4 = 2V  
VPIN 4 = 2V, TMIN TA TMAX  
Error Amp Section  
Input Voltage  
Input Bias Current  
VPIN 1 = 2.5V  
2.45 2.50 2.55 2.45 2.50 2.55  
V
µA  
dB  
MHz  
dB  
mA  
mA  
V
IB  
-0.1  
90  
0.6  
70  
4
-1  
-0.1 -0.5  
65  
65  
90  
0.6  
70  
4
Open Loop Gain  
AVOL  
2 VO 4V  
UGBW TA = 25°C  
Unity Gain Bandwidth (Note 2)  
Power Supply Rejection Ratio (Note 3)  
Output Sink Current  
Output Source Current  
Output Voltage High Level  
Output Voltage Low Level  
60  
2
60  
2
PSRR  
IOL  
IOH  
12 VCC 25V  
VPIN 2 = 2.7V, VPIN 1 = 1.1V  
VPIN 2 = 2.3V, VPIN 1 = 5V  
-0.5 -0.8  
-0.5 -0.8  
5
6.5  
0.7 1.1  
5
6.5  
VOH  
VOL  
VPIN 2 = 2.3V, RL = 15K to ground  
VPIN 2 = 2.7V, RL = 15K to VREF  
0.7 1.1  
V
Current Sense Section  
Gain (Note 3 & 4)  
AVOL  
2.85  
0.9  
3
1
3.15 2.85  
1.1 0.9  
3
1
3.15  
1.1  
V/V  
V
Maximum Input Signal (Note 3)  
Power Supply Rejection Ratio (Note 3)  
Input Bias Current  
VPIN 1 = 5V  
12 VCC 25V  
PSRR  
IB  
TPD  
70  
-2  
70  
-2  
dB  
µA  
ns  
-10  
-5  
Delay to Output (Note 2)  
VPIN 3 = 0 to 2V  
150 300  
150 300  
Output Section  
Output Voltage Low Level  
VOL  
VOH  
ISINK = 20mA  
0.1 0.4  
1.5 2.2  
0.1 0.4  
1.5 2.2  
13 13.5  
V
V
V
ISINK = 200mA  
13 13.5  
12 13.5  
50  
Output Voltage High Level  
ISOURCE = 20mA  
ISOURCE = 200mA  
TA = 25°C, CL = 1nF  
TA = 25°C, CL = 1nF  
VCC = 5V, ISINK = 10mA  
12 13.5  
V
100  
100  
50  
50  
100  
100  
ns  
ns  
V
Rise Time (Note 2)  
Fall Time (Note 2)  
UVLO Saturation  
TR  
TF  
50  
0.7 1.2  
0.7 1.2  
VSAT  
(Electrical Characteristics continue next page.)  
Copyright © 1994  
Rev. 1.0b  
3
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1552/3/4/5  
U
LTRA-LOW  
S
TART-U  
P
CURRENT, CURRENT-MODE PWM  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS  
(Con't.)  
LX155xI/155xM  
Min. Typ. Max. Min. Typ. Max.  
LX155xC  
Parameter  
Symbol  
Test Conditions  
Units  
Under-Voltage Lockout Section  
Start Threshold  
VST  
1552/1554  
1553/1555  
1552/1554  
1553/1555  
15  
7.8 8.4 9.0 7.8 8.4 9.0  
10 11 10 11  
7.0 7.6 8.2 7.0 7.6 8.2  
16  
17  
15  
16  
17  
V
V
V
V
Min. Operation Voltage After Turn-On  
9
9
PWM Section  
Maximum Duty Cycle  
1552/1553  
1552/1553, RT = 698, CT = 22nF  
94  
47  
96  
50  
48  
94  
47  
96  
50  
48  
%
%
%
%
1554/1555  
0
0
Minimum Duty Cycle  
Power Consumption Section  
Start-Up Current  
Operating Supply Current  
VCC Zener Voltage  
IST  
ICC  
VZ  
150 250  
150 250  
µA  
mA  
V
11  
35  
17  
11  
35  
17  
ICC = 25mA  
30  
30  
Notes: 2. These parameters, although guaranteed, are not 100% tested in  
7. Temperature stability, sometimes referred to as average temperature  
coefficient, is described by the equation:  
production.  
3. Parameter measured at trip point of latch with VFB = 0.  
VREF (max.) - VREF (min.)  
Temp Stability =  
VCOMP  
4. Gain defined as: A =  
; 0 V  
0.8V.  
TA (max.) - TA (min.)  
ISENSE  
V  
ISENSE  
VREF (max.) & VREF (min.) are the maximum & minimum reference  
voltage measured over the appropriate temperature range. Note that the  
extremes in voltage do not necessarily occur at the extremes in  
temperature.  
5. Adjust VCC above the start threshold before setting at 15V.  
6. Output frequency equals oscillator frequency for the LX1552 and  
LX1553. Output frequency is one half oscillator frequency for the  
LX1554 and LX1555.  
BLOCK DIAGRAM  
VCC*  
34V  
UVLO  
5V  
REF  
VREF  
S / R  
GROUND**  
16V (1552/1554)  
8.4V (1553/1555)  
16V (1552/1554)  
8.4V (1553/1555)  
INTERNAL  
BIAS  
VREF  
GOOD LOGIC  
VC*  
OSCILLATOR  
ERROR AMP  
RT/CT  
T
OUTPUT  
***  
S
R
2R  
POWER GROUND**  
1V  
PWM  
LATCH  
VFB  
COMP  
ISENSE  
R
CURRENT SENSE  
COMPARATOR  
- VCC and VC are internally connected for 8 pin packages.  
- POWER GROUND and GROUND are internally connected for 8 pin packages.  
- Toggle flip flop used only in 1554 and 1555.  
*
**  
***  
Copyright © 1994  
Rev. 1.0b  
4
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1552/3/4/5  
U
LTRA-LOW  
S
TART-U  
P
CURRENT, CURRENT-MODE PWM  
P R O D U C T I O N D A T A S H E E T  
GRAPH / CURVE INDEX  
FIGURE INDEX  
Characteristic Curves  
Theory of Operation Section  
FIGURE #  
FIGURE #  
1. OSCILLATOR FREQUENCY vs. TIMING RESISTOR  
2. MAXIMUM DUTY CYCLE vs. TIMING RESISTOR  
3. OSCILLATOR DISCHARGE CURRENT vs. TEMPERATURE  
4. OSCILLATOR FREQUENCY vs. TEMPERATURE  
5. OUTPUT INITIAL ACCURACY vs. TEMPERATURE  
6. OUTPUT DUTY CYCLE vs. TEMPERATURE  
23. TYPICAL APPLICATION OF START-UP CIRCUITRY  
24. REFERENCE VOLTAGE vs. TEMPERATURE  
25. SIMPLIFIED SCHEMATIC OF OSCILLATOR SECTION  
26. DUTY CYCLE VARIATION vs. DISCHARGE CURRENT  
27. OSCILLATOR FREQUENCY vs. TIMING RESISTOR  
28. MAXIMUM DUTY CYCLE vs. TIMING RESISTOR  
29. CURRENT SENSE THRESHOLD vs. ERROR AMPLIFIER OUTPUT  
7. REFERENCE VOLTAGE vs. TEMPERATURE  
8. REFERENCE SHORT CIRCUIT CURRENT vs. TEMPERATURE  
9. E.A. INPUT VOLTAGE vs. TEMPERATURE  
Typical Applications Section  
10. START-UP CURRENT vs. TEMPERATURE  
FIGURE #  
11. START-UP CURRENT vs. SUPPLY VOLTAGE  
30. CURRENT SENSE SPIKE SUPPRESSION  
31. MOSFET PARASITIC OSCILLATIONS  
12. START-UP CURRENT vs. SUPPLY VOLTAGE  
13. DYNAMIC SUPPLY CURRENT vs. OSCILLATOR FREQUENCY  
14. CURRENT SENSE DELAY TO OUTPUT vs. TEMPERATURE  
15. CURRENT SENSE THRESHOLD vs. ERROR AMPLIFIER OUTPUT  
16. START-UP THRESHOLD vs. TEMPERATURE  
32. ADJUSTABLE BUFFERED REDUCTION OF CLAMP LEVEL  
WITH SOFT-START  
33. EXTERNAL DUTY CYCLE CLAMP AND MULTI-UNIT SYCHRONIZATION  
34. SLOPE COMPENSATION  
17. START-UP THRESHOLD vs. TEMPERATURE  
35. OPEN LOOP LABORATORY FIXTURE  
36. OFF-LINE FLYBACK REGULATOR  
18. MINIMUM OPERATING VOLTAGE vs. TEMPERATURE  
19. MINIMUM OPERATING VOLTAGE vs. TEMPERATURE  
20. LOW LEVEL OUTPUT SATURATION VOLTAGE DURING UNDER-  
VOLTAGE LOCKOUT  
21. OUTPUT SATURATION VOLTAGE vs. OUTPUT CURRENT and  
TEMPERATURE  
22. OUTPUT SATURATION VOLTAGE vs. OUTPUT CURRENT and  
TEMPERATURE  
Copyright © 1994  
Rev. 1.0b  
5
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1552/3/4/5  
U
LTRA-LOW  
S
TART-U CURRENT, CURRENT-MODE PWM  
P
P R O D U C T I O N D A T A S H E E T  
CHARACTERISTIC CURVES  
FIGURE 1. — OSCILLATOR FREQUENCY vs. TIMING RESISTOR  
FIGURE 2. — MAXIMUM DUTY CYCLE vs. TIMING RESISTOR  
100  
90  
80  
70  
60  
50  
40  
30  
20  
1000  
CT = 1nF  
CT = 3.3nF  
100  
CT = 6.8nF  
10  
CT = 22nF  
CT = 47nF  
1
CT = 0.1µF  
VCC = 15V  
TA = 25°C  
VCC = 15V  
TA = 25°C  
10  
0.1  
0.1  
0
1
10  
100  
0.1  
1
10  
100  
(RT) Timing Resistor - (k )  
(RT) Timing Resistor - (k )  
FIGURE 3. — OSCILLATOR DISCHARGE CURRENT vs.  
FIGURE 4. — OSCILLATOR FREQUENCY vs. TEMPERATURE  
TEMPERATURE  
8.50  
55  
VCC = 15V  
VPIN4 = 2V  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
VCC = 15V  
RT = 10k  
CT = 3.3nF  
8.40  
8.30  
8.20  
8.10  
8.00  
7.90  
7.80  
7.70  
-75  
-50  
-25  
0
25  
50  
75  
100 125  
-75  
-50  
-25  
0
25  
50  
75  
100 125  
(TA) Ambient Temperature - (°C)  
(TA) Ambient Temperature - (°C)  
Copyright © 1994  
Rev. 1.0b  
6
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1552/3/4/5  
U
LTRA-LOW  
S
TART-U CURRENT, CURRENT-MODE PWM  
P
P R O D U C T I O N D A T A S H E E T  
CHARACTERISTIC CURVES  
FIGURE 5. — OUTPUT INITIAL ACCURACY vs. TEMPERATURE  
FIGURE 6. — OUTPUT DUTY CYCLE vs. TEMPERATURE  
65.0  
48  
47  
46  
45  
44  
43  
42  
41  
40  
LX1552 and LX1553 only  
VCC = 15V  
RT = 698W  
CT = 22nF  
63.5  
62.0  
60.5  
59.0  
57.5  
56.0  
54.5  
53.0  
51.5  
50.0  
VCC = 15V  
RT = 698W  
CT = 22nF  
-75  
-50  
-25  
0
25  
50  
75  
100 125  
-75  
-50  
-25  
0
25  
50  
75  
100 125  
(TA) Ambient Temperature - (°C)  
(TA) Ambient Temperature - (°C)  
FIGURE 7. — REFERENCE VOLTAGE vs. TEMPERATURE  
FIGURE 8. — REFERENCE SHORT CIRCUIT CURRENT vs.  
TEMPERATURE  
5.03  
180  
165  
150  
135  
120  
105  
90  
VCC = 15V  
IL = 1mA  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
75  
60  
45  
30  
-75  
-50  
-25  
0
25  
50  
75  
100 125  
-75  
-50  
-25  
0
25  
50  
75  
100 125  
(TA) Ambient Temperature - (°C)  
(TA) Ambient Temperature - (°C)  
Copyright © 1994  
Rev. 1.0b  
7
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1552/3/4/5  
U
LTRA-LOW  
S
TART-U CURRENT, CURRENT-MODE PWM  
P
P R O D U C T I O N D A T A S H E E T  
CHARACTERISTIC CURVES  
FIGURE 9. — E.A. INPUT VOLTAGE vs. TEMPERATURE  
FIGURE 10. — START-UP CURRENT vs. TEMPERATURE  
2.55  
250  
225  
200  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
VCC = 15V  
LX1552/LX1554  
175  
150  
125  
100  
75  
50  
25  
0
LX1553/LX1555  
-75  
-50  
-25  
0
25  
50  
75  
100 125  
-75  
-50  
-25  
0
25  
50  
75  
100 125  
(TA) Ambient Temperature - (°C)  
(TA) Ambient Temperature - (°C)  
FIGURE 11. — START-UP CURRENT vs. SUPPLY VOLTAGE  
FIGURE 12. — START-UP CURRENT vs. SUPPLY VOLTAGE  
250  
250  
LX1553/LX1555  
TA = 25°C  
LX1552/LX1554  
TA = 25°C  
225  
225  
200  
200  
175  
150  
125  
100  
75  
175  
150  
125  
100  
75  
50  
50  
25  
25  
0
0
0
2
4
6
8
10 12 14  
16 18 20  
0
1
2
3
4
5
6
7
8
9
10  
(VCC) Supply Voltage - (V)  
(VCC) Supply Voltage - (V)  
Copyright © 1994  
Rev. 1.0b  
8
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1552/3/4/5  
U
LTRA-LOW  
S
TART-U CURRENT, CURRENT-MODE PWM  
P
P R O D U C T I O N D A T A S H E E T  
CHARACTERISTIC CURVES  
FIGURE 13. — DYNAMIC SUPPLY CURRENT vs.  
FIGURE 14. — CURRENT SENSE DELAY TO OUTPUT vs.  
TEMPERATURE  
OSCILLATOR FREQUENCY  
30  
300  
270  
240  
210  
180  
150  
120  
90  
VCC = 15V  
VPIN3 = 0V to 2V  
CL = 1nF  
27  
24  
21  
18  
15  
12  
9
TA = 25°C  
RT = 10k  
CL = 1000pF  
VIN = 16V  
VIN = 12V  
VIN = 10V  
60  
6
30  
3
0
0
-75  
-50  
-25  
0
25  
50  
75  
100 125  
10  
100  
1000  
(TA) Ambient Temperature - (°C)  
Oscillator Frequency - (kHz)  
FIGURE 15. — CURRENT SENSE THRESHOLD vs.  
FIGURE 16. — START-UP THRESHOLD vs. TEMPERATURE  
ERROR AMPLIFIER OUTPUT  
8.8  
1.1  
LX1553  
LX1555  
8.7  
1.0  
TA = 125°C  
8.6  
8.5  
8.4  
8.3  
8.2  
8.1  
8.0  
7.9  
7.8  
0.9  
0.8  
TA = 25°C  
0.7  
0.6  
TA = -55°C  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
-75  
-50  
-25  
0
25  
50  
75  
100 125  
Error Amplifier Output Voltage - (V)  
(TA) Ambient Temperature - (°C)  
Copyright © 1994  
Rev. 1.0b  
9
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1552/3/4/5  
U
LTRA-LOW  
S
TART-U CURRENT, CURRENT-MODE PWM  
P
P R O D U C T I O N D A T A S H E E T  
CHARACTERISTIC CURVES  
FIGURE 17. — START-UP THRESHOLD vs. TEMPERATURE  
FIGURE 18. — MINIMUM OPERATING VOLTAGE vs.  
TEMPERATURE  
17.0  
11.0  
LX1552  
LX1554  
LX1552  
LX1554  
16.8  
10.8  
16.6  
16.4  
16.2  
16.0  
15.8  
15.6  
15.4  
15.2  
15.0  
10.6  
10.4  
10.2  
10.0  
9.8  
9.6  
9.4  
9.2  
9.0  
-75  
-50  
-25  
0
25  
50  
75  
100 125  
-75  
-50  
-25  
0
25  
50  
75  
100 125  
(TA) Ambient Temperature - (°C)  
(TA) Ambient Temperature - (°C)  
FIGURE 19. — MINIMUM OPERATING VOLTAGE vs.  
FIGURE 20. — LOW LEVEL OUTPUT SATURATION VOLTAGE  
TEMPERATURE  
DURING UNDER-VOLTAGE LOCKOUT  
8.0  
1.20  
LX1553  
7.9  
1.08  
0.96  
0.84  
0.72  
0.60  
0.48  
0.36  
0.24  
0.12  
0.00  
VCC = 5V  
LX1555  
7.8  
7.7  
7.6  
7.5  
7.4  
7.3  
7.2  
7.1  
7.0  
TA = -55°C  
TA = 25°C  
TA = 125°C  
-75  
-50  
-25  
0
25  
50  
75  
100 125  
0.1  
1
10  
(TA) Ambient Temperature - (°C)  
Output Sink Current - (mA)  
Copyright © 1994  
Rev. 1.0b  
10  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1552/3/4/5  
U
LTRA-LOW  
S
TART-U CURRENT, CURRENT-MODE PWM  
P
P R O D U C T I O N D A T A S H E E T  
CHARACTERISTIC CURVES  
FIGURE 21. — OUTPUT SATURATION VOLTAGE vs.  
FIGURE 22. — OUTPUT SATURATION VOLTAGE vs.  
OUTPUT CURRENT and TEMPERATURE  
OUTPUT CURRENT and TEMPERATURE  
6.00  
5.40  
4.80  
4.20  
3.60  
3.00  
2.40  
1.80  
1.20  
0.60  
0.00  
6.0  
VCC = 5V  
Sink Transistor  
5.0  
VCC = 15V  
Source Transistor  
4.0  
3.0  
TA = -55°C  
TA = 25°C  
TA = -55°C  
2.0  
TA = 25°C  
TA = 125°C  
TA = 125°C  
1.0  
0.00  
10  
100  
1000  
10  
100  
1000  
Output Sink Current - (mA)  
Output Source Current - (mA)  
Copyright © 1994  
Rev. 1.0b  
11  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1552/3/4/5  
U
LTRA-LOW  
S
TART-U CURRENT, CURRENT-MODE PWM  
P
P R O D U C T I O N D A T A S H E E T  
THEORY OF OPERATION  
IC DESCRIPTION  
The start-up capacitor (C1) is charged by current through resistor  
(R1) minus the start-up current. Resistor (R1) is designed such  
that it provides more than 250µA of current (typically 2x IST(max)).  
Once this voltage reaches the start-up threshold, the IC turns on,  
starting the switching cycle. This causes an increase in IC  
operating current, resulting in discharging the start-up capacitor.  
During this time, the auxiliary winding flyback voltage gets  
rectified & filtered via (D1) and (C1) and provides sufficient  
voltage to continue to operate the IC and support its required  
supply current. The start-up capacitor must be large enough such  
that during the discharge period, the bootsrap voltage exceeds  
the shutdown threshold of the IC.  
The LX1552/3/4/5 series of current mode PWM controller IC's are  
designed to offer substantial improvements in the areas of start-  
up current and oscillator accuracy when compared to the first  
generation products, the UC184x series. While they can be used  
in most DC-DC applications, they are optimized for single-ended  
designs such as Flyback and Forward converters. The LX1552/  
54 series are best suited for off-line applications, whereas the  
1553/55 series are mostly used in power supplies with low input  
voltages. The IC can be divided into six main sections as shown  
in the Block Diagram (page 4): undervoltage lockout and start-  
up circuit; voltage reference; oscillator; current sense comparator  
and PWM latch; error amplifier; and the output stage. The  
operation of each section is described in the following sections.  
The differences between the members of this family are summa-  
rized in Table 1.  
Table 2 below shows a comparison of start-up resistor power  
dissipation vs. maximum start-up current for different devices.  
TABLE 2  
TABLE 1  
Design Using  
SG384x UC384xA LX155x  
UVLO  
MAXIMUM  
DUTY CYCLE  
Start-up Voltage Hysterises Voltage  
Max. Start-up Current  
Specification (IST)  
PART #  
1000µA  
62KΩ  
500µA  
124KΩ  
1.13W  
250µA  
248KΩ  
0.56W  
(VST)  
(VHYS  
)
LX1552  
LX1553  
LX1554  
LX1555  
16V  
8.4V  
16V  
6V  
<100%  
<100%  
<50%  
Typical Start-Up  
Resistor Value (RST)  
0.8V  
6V  
Max. Start-Up Resistor  
Power Dissipation (PR)  
8.4V  
0.8V  
<50%  
2.26W  
UNDERVOLTAGE LOCKOUT  
(Resistor R1 is designed such that it provides 2X maximum  
start-up current under low line conditions. Maximum power  
dissipation is calculated under maximum line conditions. Ex-  
ample assumes 90 to 265VAC universal input application.)  
The LX155x undervoltage lock-out is designed to maintain an  
ultra low quiescent current of less than 250µA, while guarantee-  
ing the IC is fully functional before the output stage is activated.  
Comparing this to the SG384x series, a 4x reduction in start-up  
current is achieved resulting in 75% less power dissipation in the  
start-up resistor. This is especially important in off-line power  
supplies which are designed to operate for universal input  
voltages of 90 to 265V AC.  
Figure 23 shows an efficient supply voltage using the ultra low  
start-up current of the LX1554 in conjunction with a bootstrap  
winding off of the power transformer. Circuit operation is as  
follows.  
DC BUS  
I1 > 250µA  
D1  
1ST < 250µA  
REF  
VIN  
C1  
RT  
LX1554  
VO  
RT/CT  
CT  
RS  
GND  
GND  
FIGURE 23 — TYPICAL APPLICATION OF START-UP CIRCUITRY  
Copyright © 1994  
Rev. 1.0b  
12  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1552/3/4/5  
U
LTRA-LOW  
S
TART-U CURRENT, CURRENT-MODE PWM  
P
P R O D U C T I O N D A T A S H E E T  
THEORY OF OPERATION  
VOLTAGE REFERENCE  
REF  
5V  
VP  
VV  
The voltage reference is a low drift bandgap design which  
provides +5.0V to supply charging current to the oscillator timing  
capacitor, as well as supporting internal circuitries. Initial  
accuracy for all devices are specified at ±1% max., which is a 2x  
improvement for the commercial product when compared to the  
SG384x series. The reference is capable of providing in excess  
of 20mA for powering any external control circuitries and has  
built-in short circuit protection.  
IR  
S2  
RT  
2.8V  
1.1V  
TO OUTPUT  
STAGE  
RT/CT  
A1  
S1  
5.03  
CT  
2
1
VCC = 15V  
IL = 1mA  
5.02  
OPEN  
ID = 8.3mA  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
FIGURE 25 — SIMPLIFIED SCHEMATIC OF OSCILLATOR SECTION  
variation is more pronounced when maximum duty cycle has to  
be limited to 50% or less. This is due to the fact that for longer  
output off time, capacitor discharge current (ID - IR) must be  
decreased by increasing IR. Consequently, this increases the  
sensitivity of the frequency and duty cycle to any small variations  
of the internal current source (ID), making this parameter more  
critical under those conditions. Because this is a desired feature  
in many applications, this parameter is trimmed to a nominal  
current value of 8.3±0.3mA at room temperature, and guaranteed  
to a maximum range of 7.8 to 8.8mA over the specified ambient  
temperature range. Figure 26 shows variation of oscillator duty  
cycle versus discharge current for LX155x and SG384x series  
-75  
-50  
-25  
0
25  
50  
75  
100 125  
(TA) Ambient Temperature - (°C)  
FIGURE 24 — REFERENCE VOLTAGE vs. TEMPERATURE  
devices.  
OSCILLATOR  
100  
The oscillator circuit is designed such that discharge current and  
valley voltage are trimmed independently. This results in more  
accurate initial oscillator frequency and maximum output duty  
cycle, especially important in LX1552/53 applications. The  
oscillator is programmed by the values selected for the timing  
TA = 25°C  
VP = 2.7V  
V = 1V  
VREF = 5V  
90  
Id = 9.3mA  
80  
Id = 8.6mA  
70  
components (RT) and (C ). A simplified schematic of the oscillator  
T
is shown in Figure 25. The operation is as follows; Capacitor (CT)  
is charged from the 5V reference thru resistor (RT) to a peak  
voltage of 2.7V nominally. Once the voltage reaches this  
threshold, comparator (A1) changes state, causing (S1) to switch  
to position (2) and (S2) to (VV) position. This will allow the  
capacitor to discharge with a current equal to the difference  
between a constant discharge current (ID) and current through  
charging resistor (IR), until the voltage drops down to 1V  
nominally and the comparator changes state again, repeating the  
cycle. Oscillator charge time results in the output to be in a high  
state (on time) and discharge time sets it to a low state (off time).  
Since the oscillator period is the sum of the charge and discharge  
time, any variations in either of them will ultimately affect stability  
of the output frequency and the maximum duty cycle. In fact, this  
60  
50  
40  
30  
20  
SG384x Upper Limit  
Id = 8.0mA  
Id = 7.5mA  
LX155x Limits  
SG384x Lower Limit  
600  
700  
800  
900  
1000  
(RT) Timing Resistor - ( )  
FIGURE 26 — DUTY CYCLE VARIATION vs. DISCHARGE CURRENT  
Copyright © 1994  
Rev. 1.0b  
13  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1552/3/4/5  
U
LTRA-LOW  
S
TART-U CURRENT, CURRENT-MODE PWM  
P
P R O D U C T I O N D A T A S H E E T  
THEORY OF OPERATION  
OSCILLATOR (continued)  
Given: frequency f; maximum duty-cycle Dm  
Calculate:  
The oscillator is designed such that many values of RT and C will  
give the same frequency, but only one combination will yiTeld a  
specific duty cycle at a given frequency. A set of charts as well  
as the timing equations are given to determine approximate  
values of timing components for a given frequency and duty  
1
(1.74) Dm -1  
1)  
R = 277  
(), 0.3 Dm 0.95  
1-Dm  
T
Dm  
cycle.  
(1.74)  
-1  
1000  
CT = 1nF  
Note: RT must always be greater than 520for proper  
CT = 3.3nF  
operation of oscillator circuit.  
100  
CT = 6.8nF  
1.81 Dm  
*
*
2)  
CT =  
(µf)  
f
R
T
10  
for duty cycles above 95% use:  
CT = 22nF  
1.81  
RTCT  
CT = 47nF  
1
3)  
f ≈  
where RT 5kΩ  
CT = 0.1µF  
Example: A flyback power supply design requires the duty cycle  
to be limited to less than 45%. If the output switching frequency  
VCC = 15V  
TA = 25°C  
is selected to be 100kHz, what are the values of R and CT for the  
0.1  
0.1  
T
1
10  
100  
a) LX1552/53, and the b) LX1554/55 ?  
a) LX1552/53  
(RT) Timing Resistor - (k )  
FIGURE 27 — OSCILLATOR FREQUENCY vs. TIMING RESISTOR  
Given: f = 100kHz  
Dm = 0.45  
1
.45  
100  
90  
80  
70  
60  
50  
40  
30  
20  
(1.74)  
(1.74)  
-1  
R = 267  
= 669Ω  
.55  
.45  
T
-1  
= .012 µf  
1.81 0.45  
*
CT =  
100x103 669  
*
b) LX1554/55  
fOUT = ½ fOSC (due to internal flip flop)  
fOSC = 200kHz  
select CT = 1000pf  
using Figure 27 or Equation 3: RT = 9.1k  
VCC = 15V  
TA = 25°C  
10  
0
0.1  
1
10  
100  
(RT) Timing Resistor - (k )  
FIGURE 28 — MAXIMUM DUTY CYCLE vs. TIMING RESISTOR  
Copyright © 1994  
Rev. 1.0b  
14  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1552/3/4/5  
U
LTRA-LOW  
S
TART-U CURRENT, CURRENT-MODE PWM  
P
P R O D U C T I O N D A T A S H E E T  
THEORY OF OPERATION  
CURRENT SENSE COMPARATOR AND PWM LATCH  
ERROR AMPLIFIER  
Switch current is sensed by an external sense resistor (or a current  
transformer), monitored by the C.S. pin and compared internally  
with voltage from error amplifier output. The comparator output  
resets the PWM latch ensuring that a single pulse appears at the  
output for any given oscillator cycle. The LX1554/55 series has  
an additional flip flop stage that limits the output to less than 50%  
duty cycle range as well as dividing its output frequency to half  
of the oscillator frequency. The current sense comparator  
threshold is internally clamped to 1V nominally which would  
limit peak switch current to:  
The error amplifier has a PNP input differential stage with access  
to the Inverting input and the output pin. The N.I. input is  
internally biased to 2.5 volts and is not available for any external  
connections. The maximum input bias current for the LX155XC  
series is 0.5µA, while LX155XI/155XM devices are rated for 1µA  
maximum over their specified range of ambient temperature.  
Low value resistor dividers should be used in order to avoid  
output voltage errors caused by the input bias current. The error  
amplifier can source 0.5mA and sink 2mA of current. A minimum  
feedback resistor (RF) value of is given by:  
V
Z
(1) ISP  
=
where:  
ISP Peak switch current  
3(1.1) + 1.8  
RS  
R
=
10K  
V internal zener  
FMIN  
Z
0.5mA  
0.9V VZ 1.1V  
Equation 1 is used to calculate the value of sense resistor during  
the current limit condition where switch current reaches its  
maximum level. In normal operation of the converter, the  
relationship between peak switch current and error voltage  
(voltage at pin 1) is given by:  
OUTPUT STAGE  
The output section has been specifically designed for direct drive  
of power MOSFETs. It has a totempole configuration which is  
capable of high peak current for fast charging and discharging of  
external MOSFET gate capacitance. This typically results in a rise  
and fall time of 50ns for a 1000pf capacitive load. Each output  
transistor (source and sink) is capable of supplying 200mA of  
continuous current with typical saturation voltages versus tem-  
perature as shown in Figures 21 & 22 of the characteristic curve  
section. All devices are designed to minimize the amount of  
shoot-thru current which is a result of momentary overlap of  
output transistors. This allows more efficient usage of the IC at  
higher frequencies, as well as improving the noise susceptibility  
of the device. Internal circuitry insures that the outputs are held  
off during VCC ramp-up. Figure 20, in the characteristic curves  
section, shows output sink saturation voltage vs. current at 5V.  
V - 2VF  
E
(1) ISP  
=
where: VE Voltage at pin 1  
V Diode - Forward voltage  
3
R
S
*
F
0.7V at TA = 25°C  
The above equation is plotted in Figure 29. Notice that the gain  
becomes non-linear above current sense voltages greater than ≈  
0.95 volts. It is therefore recommended to operate below this  
range during normal operation. This would insure that the overall  
closed loop gain of the system will not be affected by the change  
in the gain of the current sense stage.  
1.1  
1.0  
TA = 125°C  
0.9  
0.8  
TA = 25°C  
0.7  
0.6  
TA = -55°C  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Error Amplifier Output Voltage - (V)  
FIGURE 29 — CURRENT SENSE THRESHOLD vs. ERROR AMPLIFIER OUTPUT  
Copyright © 1994  
Rev. 1.0b  
15  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1552/3/4/5  
U
LTRA-LOW  
S
TART-U CURRENT, CURRENT-MODE PWM  
P
P R O D U C T I O N D A T A S H E E T  
TYPICAL APPLICATION CIRCUITS  
Unless otherwise specified, pin numbers refer to 8-pin package.  
FIGURE 30. — CURRENT SENSE SPIKE SUPPRESSION FIGURE 31. — MOSFET PARASITIC OSCILLATIONS  
VCC  
DC BUS  
VCC  
DC BUS  
7
7
Q1  
RS  
R1  
Q1  
LX155x  
LX155x  
6
6
5
IPK  
3
1.0V  
RS  
IPK(MAX)  
=
5
C
RS  
The RC low pass filter will eliminate the leading edge current spike  
caused by parasitics of Power MOSFET.  
A resistor (R1) in series with the MOSFET gate reduces overshoot &  
ringing caused by the MOSFET input capacitance and any inductance  
in series with the gate drive. (Note: It is very important to have a low  
inductance ground path to insure correct operation of the I.C. This  
can be done by making the ground paths as short and as wide as  
possible.)  
FIGURE 32. — ADJUSTABLE BUFFERED REDUCTION OF CLAMP  
FIGURE 33. — EXTERNAL DUTY CYCLE CLAMP AND MULTI-UNIT  
LEVEL WITH SOFT-START  
SYNCHRONIZATION  
VCC  
VIN  
8
7
8
4
RA  
RB  
8
4
2
1
7
6
LX155x  
Q1  
IPK  
555  
TIMER  
3
4
LX155x  
6
3
R2  
R1  
VCS  
RS  
2
5
1
MPSA63  
0.01  
5
C
5
To other  
LX155x devices  
R1  
VCS  
RS  
1.44  
f =  
IPK  
=
Where: VCS = 1.67 ( R +R ) and VC.S.MAX = 1V (Typ.)  
(RA + 2RB)C  
1
2
RB  
R1 R2  
R1+R2  
VEAO - 1.3  
f =  
tSOFTSTART = -ln 1 -  
(
) C  
RA + 2RB  
R1  
5 (  
)
R1+R2  
where; VEAO voltage at the Error Amp Output under  
minimum line and maximum load conditions.  
Soft start and adjustable peak current can be done with the external  
circuitry shown above.  
Precision duty cycle limiting as well as synchronizing several parts is  
possible with the above circuitry.  
Copyright © 1994  
Rev. 1.0b  
16  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1552/3/4/5  
U
LTRA-LOW  
S
TART-U  
P
CURRENT, CURRENT-MODE PWM  
P R O D U C T I O N D A T A S H E E T  
TYPICAL APPLICATION CIRCUITS (continued)  
FIGURE 34. — SLOPE COMPENSATION  
VCC  
DC BUS  
LX155x  
7(12)  
VO  
5V  
8(14)  
RT  
UVLO  
S
5V  
REF  
R
INTERNAL  
BIAS  
2.5V  
2N222A  
From VO  
VREF  
GOOD LOGIC  
7(11)  
6(10)  
RSLOPE  
4(7)  
OSCILLATOR  
Q1  
CT  
C.S.  
COMP  
2R  
Ri  
2(3)  
RF  
1V  
ERROR  
AMP  
R
5(8)  
3(5)  
PWM  
LATCH  
Rd  
CF  
R
1(1)  
C
RS  
5(9)  
Due to inherent instability of fixed frequency current mode converters running above 50% duty cycle, slope compensation should be  
added to either the current sense pin or the error amplifier. Figure 34 shows a typical slope compensation technique. Pin numbers  
inside parenthesis refer to 14-pin package.  
FIGURE 35. OPEN LOOP LABORATORY FIXTURE  
VREF  
RT  
VCC  
A
LX155x  
2N2222  
100K  
4.7K  
1K  
COMP  
VFB  
VREF  
1
2
3
4
8
7
6
5
VCC  
0.1µF  
0.1µF  
ERROR AMP  
ADJUST  
1K  
5K  
OUTPUT  
4.7K  
ISENSE  
OUTPUT  
ISENSE  
ADJUST  
RTCT  
GROUND  
GROUND  
CT  
High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be  
connected to pin 5 in a single point ground. The transistor and 5k potentiometer are used to sample the oscillator waveform and apply an  
adjustable ramp to pin 3.  
Copyright © 1994  
Rev. 1.0b  
17  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1552/3/4/5  
U
LTRA-LOW  
S
TART-U  
P
CURRENT, CURRENT-MODE PWM  
P R O D U C T I O N D A T A S H E E T  
TYPICAL APPLICATION CIRCUITS (continued)  
FIGURE 36. OFF-LINE FLYBACK REGULATOR  
TI  
MBR735  
4.71W  
220µF  
250V  
4.7k  
2W  
3600pF  
400V  
1N4004  
1N4004  
5V  
2-5A  
4700µF  
10V  
250kΩ  
1/2W  
1N4935  
AC  
INPUT  
1N4004  
1N4004  
1N4935  
16V  
LX1554  
10µF  
20V  
20k  
820pF  
7
0.01µF  
VFB  
VCC  
2
1
2.5k  
27k  
150k  
COMP  
OUT  
6
3
3.6kΩ  
100pF  
VREF  
8
4
1kΩ  
CUR  
SEN  
10k  
470pF  
0.85kΩ  
RT/CT  
GND  
0.01µF  
.0022µF  
5
ISOLATION  
BOUNDARY  
SPECIFICATIONS  
Input line voltage:  
Input frequency:  
90VAC to 130VAC  
50 or 60Hz  
40KHz 10%  
25W maximum  
5V +5%  
2 to 5A  
0.01%/V  
8%/A*  
* This circuit uses a low-cost feedback scheme in which the DC  
voltage developed from the primary-side control winding is  
sensed by the LX1554 error amplifier. Load regulation is  
therefore dependent on the coupling between secondary and  
control windings, and on transformer leakage inductance.  
Switching frequency:  
Output power:  
Output voltage:  
Output current:  
Line regulation:  
Load regulation:  
Efficiency @ 25 Watts,  
VIN = 90VAC:  
70%  
65%  
VIN = 130VAC:  
Output short-circuit current: 2.5Amp average  
Copyright © 1994  
Rev. 1.0b  
18  

LX1555CPW-TR 相关器件

型号 制造商 描述 价格 文档
LX1555CPWT MICROSEMI Switching Controller, Current-mode, 1A, 500kHz Switching Freq-Max, BIPolar, PDSO20, TSSOP-20 获取价格
LX1555ID-TR MICROSEMI Switching Controller, Current-mode, 1A, 500kHz Switching Freq-Max, PDSO14, ROHS COMPLIANT, PLASTIC, SOIC-14 获取价格
LX1555IDM MICROSEMI Switching Controller, Current-mode, 1A, 500kHz Switching Freq-Max, BIPolar, PDSO8, ROHS COMPLIANT, PLASTIC, SOIC-8 获取价格
LX1555IDM-TR MICROSEMI Switching Controller, Current-mode, 1A, 500kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, PLASTIC, SOIC-8 获取价格
LX1555IDMT MICROSEMI Switching Controller, Current-mode, 1A, 500kHz Switching Freq-Max, BIPolar, PDSO8, PLASTIC, SOIC-8 获取价格
LX1555IDT MICROSEMI 暂无描述 获取价格
LX1562 MICROSEMI SECOND-GENERATION POWER FACTOR CONTROLLER 获取价格
LX1562IDM MICROSEMI SECOND-GENERATION POWER FACTOR CONTROLLER 获取价格
LX1562IDM-TR MICROSEMI Power Factor Controller, Current-mode, 0.5A, PDSO8, PLASTIC, SOIC-8 获取价格
LX1562IDMT MICROSEMI Power Factor Controller 获取价格

LX1555CPW-TR 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6