LX1711CDB [MICROSEMI]

EVALUATION KIT; 评估套件
LX1711CDB
型号: LX1711CDB
厂家: Microsemi    Microsemi
描述:

EVALUATION KIT
评估套件

文件: 总18页 (文件大小:336K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LXE1710 EVALUATION BOARD  
USER GUIDE  
ꢀꢁꢂꢃꢂꢄꢅꢂꢃꢂꢂꢆꢇꢈꢉꢊꢋꢌꢇꢁꢆ  
ꢍꢎꢇꢀꢈꢇꢏꢊꢋꢐꢆꢑꢊꢏꢆ  
ꢈꢒꢍꢓꢔꢒꢆꢕꢈꢊꢉꢍ  
ꢂꢃꢄꢂꢃꢂꢅꢆꢀ  
A
M I C R O S E M I  
C O M P A N Y  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 1  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LXE1710 EVALUATION BOARD  
USER GUIDE  
NTRODUCING  
UDIO  
LX1710/1711 A  
I
MAX  
Thank you for your interest in the latest generation of AudioMAX products. The enclosed LXE1710 evaluation  
board is a fully functional mono amplifier designed to demonstrate the “new and improved” Switching Class-D  
Power Amplifier IC from Linfinity Microsemi. The LX1710/1711 is a completely new controller design with  
superior performance over the LX1720 stereo controller IC. Key improvements include better SNR, lower noise  
floor, and reduced THD therefore resulting in a much “quieter” and “cleaner” sounding amplifier.  
The evaluation board has been configured with easy-to-use terminal block connections for power supply/battery hook  
up and speaker connections. An RCA jack or separate audio +/- pins allow a quick interface to your audio source.  
Jumpers are also provided to enable/disable the amplifier (Sleep control) and to turn off the audio input (Mute  
control). With minimal setup, the user can be listening to the amplifier in a matter of a few minutes.  
Both the LX1710 and LX1711 operate from a single supply voltage. The LXE1710 evaluation board can  
e
LX1711 can handle a higher supply voltage (7V to 25V) and provides greater than 50W continuous output power  
change frequency response for other load optimization.  
Thank you again for your interest in the new “quieter”, high efficiency Class-D Audio Amplifier from Linfinity  
Microsemi. Please let us know what you think and stay tuned for future product releases to our AudioMAX family  
of products.  
Regards,  
Linfinity Microsemi  
http://www.linfinity.com  
(714) 898-8121  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 2  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LXE1710 EVALUATION BOARD  
USER GUIDE  
ABLE OF ONTENTS  
T
C
LX1710 / 1710 AudioMAX Evaluation Board Features and Circuit Description .............................4  
Input Compensation  
Output Stage  
Filter Stage  
Quick Start Guide............................................................................................................................................5  
Application Schematic...................................................................................................................................6  
Electrical Characteristics..............................................................................................................................7  
Performance Graphs......................................................................................................................................8  
Application Information  
Filter Design Tradeoffs (1-Stage vs. 2-Stage).............................................................................................9  
LC Filter Design...........................................................................................................................................9  
MOSFET Selection....................................................................................................................................10  
Inductor Selection......................................................................................................................................12  
Capacitor Selection ...................................................................................................................................13  
Gate Resistor ............................................................................................................................................14  
Oscillator Configuration.............................................................................................................................14  
Multi Channel Requirements and Frequency Synchronization..................................................................14  
PCB Layout ...............................................................................................................................................15  
Board Layout..................................................................................................................................................16  
Printed Circuit Board ...................................................................................................................................17  
Bill of Materials..............................................................................................................................................18  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 3  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LXE1710 EVALUATION BOARD  
USER GUIDE  
Part Number  
Product  
Description  
AudioMAX High  
Fidelity Controller IC  
VDD = 7V to 15V, Switching Class-D Mono  
Power Amplifier IC, 28-Pin SSOP Package.  
LX1710CDB  
LX1711CDB  
LXE1710  
AudioMAX High  
Power Controller IC  
VDD = 7V to 25V, Switching Class-D Mono  
Power Amplifier IC, 28-Pin SSOP Package.  
LX1710 AudioMAX  
Evaluation Board  
Fully Operational Mono Audio Amplifier.  
UDIO  
LX1710/1711 A  
VALUATION OARD EATURES AND IRCUIT ESCRIPTION  
MAX E  
B
F
C
D
Fully Assembled Mono Evaluation Board with  
LX1710 Class-D Controller IC  
Improved SNR and Noise Floor Performance  
Supports Full Audio Bandwidth  
Terminal Block Connectors for Supply  
Voltage and Speaker Connection  
RCA Plug for Audio Input Signal  
Output Power of 25W typical (LX1710, 15VDD  
,
,
Output Power of 54W typical (LX1711, 25VDD  
The AudioMAX Evaluation Amplifier Board allows the  
user to quickly connect and evaluate the LX1710  
Switching Class-D Mono Controller IC. Easy-to-  
connect terminal blocks and an RCA plug are  
provided for interfacing to Power, Speaker, and Audio  
Input connections. The single stage output filter has  
been configured to drive a 4  
audio bandwidth amplification (See Application  
section LC filter design for component selection,  
calculations, and suggested inductor and capacitor  
values for other loads). The LXE1710 Evaluation  
Board operates from a single supply voltage.  
capacitors set up the controller operating frequency,  
response characteristics, and comparator ramp  
fundamental to Class-D operation.  
OUTPUT STAGE  
The next section is the output stage. The controller  
IC generates a PWM output by controlling external  
FETs connected in a full bridge configuration. The full  
bridge configuration is connected between the single  
supply voltage (PVDD) and ground (PGND) with the  
output of the bridge driving the LC filter stage.  
Because the FETs are either fully “on” or fully “off”,  
Class-D topology is extremely efficient (up to 85%  
typical), circuit power dissipation is minimal, and  
maximum power is delivered to the speaker. The  
bridge output also drives the RC low pass filter, which  
provides the feedback for the control loop through the  
FBK+ and FBK- inputs.  
The Class-D Amplifier Controller IC requires a  
minimal number of external components to create a  
complete amplifier solution. See LXE1710 Evaluation  
Board Schematic and Bill of Materials for circuit  
specifics.  
A Class-D Amplifier is a “switching”  
amplifier that converts a low-level, analog audio input  
signal into a high power, pulse-width modulated  
(PWM) output. The switching frequency (500kHz  
typical but can be adjusted) is much higher than the  
audio bandwidth (20Hz to 20kHz), and is easily  
filtered out with a simple LC filter. The support  
circuitry can be generally grouped into three areas  
(input circuit, output power stage, and output filter).  
FILTER STAGE  
The single stage, second order LC filter is used to  
remove the switching frequency. The frequency  
response and corner frequency can be easily  
adjusted for optimization of various loads. The LC  
evaluation board component values have been  
chosen for a 4  
INPUT COMPENSATION  
for component selection.  
The first group is the compensation network and  
control setting components. These resistors and  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 4  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LXE1710 EVALUATION BOARD  
USER GUIDE  
UICK TART UIDE  
Q
S
G
The LXE1710 Evaluation Board is a fully functional,  
Class-D Amplifier. Connection to a single supply  
voltage (VDD from either a battery or power supply),  
speakers, and your audio source is all that is required  
to begin evaluating the amplifier and listening to music.  
The following outlines the necessary connections and  
control jumpers.  
can be used to drive other speaker loads but  
frequency response may not be optimal. See  
LC filter design section for recommended  
inductor and capacitor modifications.  
4) Audio Input Connection: Connect your audio  
source to the RCA Jack CN1, Audio In. For  
other type interfaces, the audio input signal can  
also be connected to the amplifier board using  
the J3 (In- and In+) location. Strip Line Plugs  
can be inserted into J3 for connectivity.  
1) Verify contents of Evaluation Kit: The easy-to-  
use amplifier is all contained on a single board.  
Visually inspect to see if the board or any  
components were damaged during shipping.  
All components are located on the top side of  
the PCB except for the decoupling capacitor,  
C17. A copy of the LX1710/1711 Datasheet  
should also be enclosed or a PDF version can  
be downloaded from the Microsemi.com  
website  
5) Jumper Selection Controls: The “on/off” or  
enable to the module is controlled with the  
SLEEP/ signal.  
Jumper J1 connects the  
SLEEP/ to “on” or “ off”. SLEEP/ is an active  
Low control. Jumper J2 connects the MUTE  
control which enables/disables the audio input  
to the amplifier. MUTE is an active High signal.  
See table below.  
(http://www.microsemi.com/datasheets/MSC1580.PDF).  
2) Power and Ground Connections: The voltage  
supply and ground connections are made  
through terminal block TB1. Connect your “+”  
(+7V to +15V) power supply or battery to the  
+V input of TB1. Connect your supply or  
battery ground to the GND input of TB1.  
Please ensure the correct positive and ground  
connections are made before turning on the  
power supply.  
6) Power Source: If a power supply is being used,  
make sure it is set to the correct voltage level  
and turn the power supply on.  
7) Audio Source: Make sure the audio source  
signal is set to a minimum level. Start or “play”  
audio source and adjust source volume to  
desired level.  
8) Listen to AudioMAX: If the amplifier is not  
operating properly, verify preceding steps or  
contact Linfinity for technical assistance (714)  
898-8121.  
3) Speaker Connection: The amplifier is designed  
“+” and “-“ to the +OUT and –OUT input of  
terminal block TB2 respectively. The amplifier  
To Speaker +  
To Speaker -  
To Power Supply +V  
7V-15V for LX1710  
7V-25V for LX1711  
Jumper  
toward  
OFF  
Amplifier  
enabled  
(SLEEP/ is  
OFF)  
Jumper  
toward  
ON  
Amplifier  
disabled  
(SLEEP/ is  
ON)  
Jumper  
floating  
To Power Supply  
Ground  
Amplifier  
disabled  
(SLEEP/ is  
ON)  
J1 Jumper:  
SLEEP/  
Optional  
Audio In -  
Audio Input  
enabled  
(MUTE is  
OFF)  
Audio Input  
enabled  
(MUTE is  
OFF)  
Audio Input  
disabled  
(MUTE is ON)  
J2 Jumper:  
MUTE  
Optional  
Audio In +  
Jumper Settings  
To Audio  
Source  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 5  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LXE1710 EVALUATION BOARD  
USER GUIDE  
CHEMATIC  
S
VIN7V to 15V  
C9  
0.1µF  
35V  
+
25  
28NC  
CLOCK  
C22  
.1µF  
RS1  
.0347  
VDD  
C17  
220µF  
25V  
24  
PVDD  
+
C13  
+
2.2µF  
27  
23  
C11  
4.7µF  
IS-  
P+  
C12  
.1µF  
26  
5
CP  
Q1  
R12  
RPW M  
L1 15µH  
10 ohm  
R5 34.8K  
6
CPW M  
C1  
1µF  
C16  
100pF  
R3  
24.3K  
1
4
R13  
15 ohm  
1W  
VREF  
V25  
C20  
.68µF  
Q2  
22  
20  
C8  
.1µF  
50V  
N+  
P-  
R11  
10 ohm  
C7  
220pF  
C2  
1µF  
C18  
.47µF  
2
10  
11  
9
GND  
LX1710  
C21  
SLEEP  
MUTE  
C19  
.47µF  
.68µF  
Q3  
R6  
10 ohm  
SLEEP  
MUTE  
AUDIO  
INPUT  
NC  
INAMPOUT  
INPUT+  
L2 15µH  
R8 10K  
Q4  
21  
19  
7
N-  
R10  
10 ohm  
C3  
470nF  
R4  
24.3K  
C26  
330pF  
PGND  
C6  
220pF  
8
3
INPUT-  
NC  
C10  
R9 10K  
C14  
4.7µF  
+
470nF  
18  
16  
CN  
C5  
18pF  
14  
13  
15  
EAOUT  
EAIN  
FBK+  
FBK-  
C4  
150pF  
R1 56.2K  
17  
12  
NC  
FAOUT  
STATUS  
R2 10K  
– Evaluation Board Schematic  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 6  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LXE1710 EVALUATION BOARD  
USER GUIDE  
LECTRICAL HARACTERISTICS  
E
C
Unless otherwise specified, the following specifications apply over the operating ambient temperature 0°C<TA<70°C.  
For test circuit, see LXE1710 Evaluation Board Schematic diagram.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN.  
TYP.  
MAX  
UNITS  
Supply Voltage LX1710  
VDD  
7
15  
V
VIN=15V, PO=38W, RL  
THD+N=1%  
Supply Current  
IDD  
IQ  
3
A
mA  
W
Quiescent Current  
VIN=15V, No Input  
43  
14  
25  
38  
VIN=15V, RL  
10Hz to 22kHz  
VIN=15V, RL  
10Hz to 22kHz  
VIN=15V, RL  
Output Power  
PO  
W
W
10Hz to 22kHz  
VIN=15V, fIN=1kHz, PO=10W  
VIN=15V, fIN=1kHz, PO=20W  
fIN=1kHz, PO=1W  
82  
85  
%
%
Efficiency  
0.05  
%
Total Harmonic Distortion Plus  
Noise  
THD+N  
fIN=20Hz to 20kHz, PO=1W  
0.3  
%
Signal-To-Noise Ratio  
SNR  
81  
dBV  
VIN=15V, VRIPPLE=1VRMS  
10Hz to 10kHz  
,
Power Supply Rejection Ratio  
PSRR  
-70  
dB  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 7  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LXE1710 EVALUATION BOARD  
USER GUIDE  
ERFORMANCE RAPHS  
P
G
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
45%  
60  
50  
40  
30  
20  
10  
0
0
5
10  
15  
20  
25  
30  
6
11  
16  
21  
26  
Output Power (W)  
Supply Voltage (VIN  
)
fIN=1kHz  
VIN = 15V  
RL  
THD+N=1%  
+20  
100  
50  
+15  
+10  
+5  
20  
10  
5
2
1
-0.08  
-0.59  
0.5  
0.26  
0.1  
-5  
0.04  
-10  
0.02  
0.01  
-15  
-20  
0.005  
0.002  
0.001  
17.88k  
18.2  
10  
50  
100 200  
500  
1k 2k  
5k  
10k  
50k  
80k  
24.56  
30  
1.13 2  
50m  
100m 200m 500m  
5
10 20  
Frequency (Hz)  
Output Power (W)  
VIN=15V  
RL  
RO=1WRMS  
VIN=15V  
fIN=1kHz  
RL  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 8  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LXE1710 EVALUATION BOARD  
USER GUIDE  
PPLICATION NFORMATION  
A
I
LX1710 Filter Implementation, 1-stage vs. 2- stage  
100  
50  
20  
10  
5
2
1
0.55626  
2-Stage  
1-Stage  
0.2  
0.12572  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
1.15  
1
25.04  
20 30  
50m  
100m  
200m  
500m  
2
5
10  
Watts(W)  
FILTER DESIGN TRADEOFFS (1-STAGE VS. 2-STAGE)  
impedance changes could result in a +/- 6dB  
change.  
A 1-stage or 2-stage filter may be used depending on  
your application and performance targets. The main  
tradeoff in this selection is price (number of  
components, component costs, PCB area) vs.  
performance. The primary advantage of the single  
stage filter is lower cost whereas the main benefit to a  
2-stage filter is that it will provide steeper attenuation.  
This allows the corner frequency to be selected further  
outside of the audio band (to minimize the effects of  
impedance variations in the passband) and still  
provide adequate RF attenuation.  
THD: There are minimal differences between  
the 1-stage and 2-stage implementations with  
other parameters such as THD+N as seen in  
the above graph.  
Single Stage Filter Disadvantages  
EMI and Switching Frequency: For the 1-  
stage, the switching frequency must be higher  
than 400kHz to ensure the corner frequency  
will provide adequate amplifier performance in  
the high end of the audio frequency range. If  
fS < 400kHz, then fC < fS /10 = 40kHz which is  
too close to the desired audio band. A higher  
oscillation frequency could translate into  
greater MOSFET switching losses, slightly  
lower efficiency, and increased EMI effects.  
With a 2-stage 4th order filter, the switching  
frequency fS can be reduced to 120kHz. If fS =  
120kHz, then fC = fS /3 = 40kHz. The lower  
oscillation frequency could help minimize EMI  
issues.  
Single Stage Filter Advantages  
Low Cost: The 1-stage LC filter uses one half  
the number of inductors/capacitors resulting in  
a substantial cost savings over a 2-stage  
design. Key parameters such as THD+N,  
frequency response, and nose performance  
do not change significantly.  
Power Loss: Since current will flow in two  
inductors and not four, the inductor power loss  
will be less in the single stage design. The  
overall amplifier will have a wider dynamic  
range and improved efficiency.  
LC FILTER DESIGN  
Filter Design: This easy-to-design filter can  
limit audio signal changes within +/- 3dB  
across the audio band with impedance  
vari  
The output filter helps to reconstruct the amplified  
audio signal and filter out the switching frequency.  
The design of the filter depends on the type of  
attenuation and frequency response desired at the  
output. The output filter designed into the LXE1710  
a
steeper rolloff with the 2-stage filter,  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 9  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LXE1710 EVALUATION BOARD  
USER GUIDE  
evaluation board is a second order, LC type filter as  
shown below. Tradeoffs between performance and  
component cost must be considered when determining  
the complexity or type of filter selected.  
the required audio response and is used in the  
calculation below.  
Q
Q
0.707  
C =  
=
=
= 0.56µF  
Rω R(2πfC) 4(2π )(50000)  
OUT+  
L
15µH  
C = 0.68µF is usedin theEvaluationBoard  
C
0.68µF  
To Compute the Inductor Value:  
1
1
1
R
L =  
=
=
=14.9µH  
ω2C (2πfC)2C [(2π )(50000)]2(.68µ)  
L =15µH is usedin theEvaluationBoard  
C
0.68µF  
L
15µH  
OUT-  
LXE1710 Evaluation Board  
Frequency Response  
Its Laplace Transform function is:  
+15  
+12.5  
+10  
+7.5  
+5  
S
S
C
C
+2.5  
+0  
H(S) =  
=
1
1
ω
S2  
S
S2  
S ω 2  
-2.5  
-5  
+
+
+
+
RC  
LC  
Q
-7.5  
-10  
-12.5  
-15  
10  
20  
50  
10  
20  
50  
1k  
2k  
5k  
10  
20  
50 80  
1
Frequency (Hz)  
Where  
ω =  
LC  
Frequency response of the audio amplifier was  
Q = RCω  
The Class-D amplifier evaluation board design has a  
pass-band of 20Hz to 20kHz to support the audio  
frequency range and is configured to utilize a switching  
or oscillator frequency fs = 500kHz. Depending on the  
application, this oscillator frequency may be adjusted  
(see section on Oscillator Configuration) to optimize  
amplifier performance or modified for other  
–4dB  
Therefore, to improve  
attenuation respectively.  
frequency response performance for other loads, the  
value of Q must be increased/decreased by changing  
the capacitor. Since a different value C will affect the  
corner frequency, values for L and C must be  
recalculated. Below are recommended inductor and  
capacitor values for 2  
considerations such as EMI effects.  
Further  
requirements of the filter are that the pass band  
attenuation of switching frequency fs should be lower  
than 40dB and the corner frequency of the LC filter  
should be set higher than 20kHz to avoid attenuating  
audio signals in the desired audio band by more than  
single stage LC filter design.  
Capacitor C (µF)  
Inductor L (µH)  
1.0  
0.68  
0.47  
10  
15  
22  
1dB. A speaker DC impedance o  
=
C
50kHz corner frequency are defined for the evaluation  
board.  
Filter Component Values  
The Q (selectivity factor or ratio of the center  
frequency divided by the bandwidth) of the filter must  
also be considered when designing a filter. Too high a  
Q will result in a boost of the audio signal across the  
audio band whereas a low Q will cause too much  
attenuation of the signal. A Q value of 0.707 provides  
Please note: These recommended values are guidelines  
for speaker loads. Actual speakers have varying  
impedances, which may require revised filter calculations  
and optimization. Furthermore, your application may have  
different design goals than those chosen for the LX1710  
evaluation board.  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 10  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LXE1710 EVALUATION BOARD  
USER GUIDE  
MOSFET SELECTION  
R
NDS = 0.03, RPDS = 0.095Ω  
DS = (2.5)2[2(0.03+ 0.095)] =1.56W  
P
As seen in previous sections, the user can design the  
output filter of the amplifier to meet performance or  
costs targets. In addition, the amplifier’s power stage  
(selection of MOSFETs) can be selected depending on  
these tradeoffs. The efficiency of the amplifier circuit  
can be approximated by the following equation.  
MOSFET power loss is proportional to on-resistance.  
I 2 R  
I 2[2(RNDS + RPDS + RIND) + R  
]+ PCROSS  
L
2
P
OUT  
S
MOSFETSwitchingLoss= PCROSS =CV f n  
=  
=
P
IN  
L
Where  
C
V
= Input Capacitance  
= Supply Voltage  
Where  
RL  
RNDS  
=
=
DC Resistance of Speaker  
fS = Switching Frequency  
n
n-channel MOSFET on-resistance  
p-channel MOSFET on-resistance  
DC Resistance of Inductor  
= Number of MOSFETS  
RPDS  
=
=
=
Assume  
C
V
= 1000pF  
= 15VDC  
RIND  
PCROSS  
MOSFET Switching Loss  
fS = 500kHz  
P
CROSS = (1×109 )(152 )(500×103 )(4) = 0.45W  
The overall efficiency is a function of primarily the  
MOSFETs and output filter inductors. The “Inductor”  
section’s contribution will be considered later. The  
MOSFET Power loss is a function of the on-resistance  
and gate charge.  
MOSFET switching loss is proportional to total gate  
charge, supply voltage, and switching frequency.  
There are a few other important parameters to  
consider when selecting the output power components  
besides the on-resistance and gate charge of the  
MOSFETs. The drain-source voltage must provide  
ample margin for circuit noise and high speed  
switching transients. Since the amplifier configuration  
requires output bridge operation at the supply voltage,  
the MOSFETs should have a drain-source voltage of  
at least 50% greater than the supply voltage. The  
power dissipation of the MOSFETs should also be  
able to dissipate the heat generated by the internal  
MOSFET Power Loss = PDS = I 2[2(RNDS + RPDS )]  
If  
P
O
= 25W at 4Ω  
P
25  
4
Then I =  
=
= 2.5A  
R
losses and be greater than the sum of PDS and PCROSS  
Linfinity recommends that in selecting MOSFETs, RDS  
.
The LX1710 Evaluation Board is designed using  
FDS4953 p-channel and FDS6612A n-channel  
MOSFETS.  
<10nC. The table below provides  
g
several MOSFET options.  
FDS6612A FDS4953  
Si4532ADY  
IRF7105  
n-channel p-channel n-channel p-channel n-channel p-channel  
RDS(ON)@VGS = +/-10V  
0.022  
0.053  
0.053  
0.08  
0.10  
0.25  
Drain-Source On-Resistance  
VDSS (V)  
30  
8.4  
9
-30  
-5  
8
30  
4.9  
8
-30  
-3.9  
10  
25  
3.5  
9.4  
-25  
-2.3  
10  
Drain-Source Voltage  
Drain Current (continuous)  
Total Gate Charge  
ID(continuous) (A)  
Qg (typical) (nC)  
Vishay  
Siliconix  
Vishay  
Siliconix  
International International  
Fairchild  
Fairchild  
Manufacturer  
Rectifier  
Rectifier  
MOSFET Component Options  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 11  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LXE1710 EVALUATION BOARD  
USER GUIDE  
INDUCTOR SELECTION  
Inductor Power Loss = PIND = (I 2 )(2)(RIND  
)
The output filter inductors are key elements in the  
performance of the Class-D audio power amplifier.  
The LX1710 Evaluation board utilizes two 15µH radial  
leaded R.F. inductors from Inductor Supply, Inc. (ISI).  
When evaluating component options, inductors such  
as from Coilcraft can be used for other performance /  
price tradeoffs. See inductor table below.  
Inductor selection criteria also involves tradeoffs  
between performance (efficiency) and component  
costs. The critical specifications for the inductor are  
the DC resistance, DC current, and peak current  
ratings. The inductors should be able to handle the  
amplifier’s power as well as operate within its linear  
P
IND = (2.52 )(2)(.056) = 0.7W  
region.  
Saturating the inductors could decrease  
performance (increase THD) and even produce a  
short, which may damage either the circuit or the  
speaker.  
The efficiency approximation can now be completed.  
POUT  
PIN  
I 2RL  
Other variables when selecting an inductor depend on  
the switching frequency of the designed amplifier. A  
higher switching frequency implies that the corner  
frequency of the LC filter is higher. With a higher fC,  
the inductor value is smaller.  
=  
=
I 2[2(RNDS + RPDS + RIND) + RL]+ PCROSS  
I 2RL  
=  
=  
PDS + PIND + PCROSS + I 2RL  
The amplifier’s application and design constraints will  
help determine whether the inductors are selected for  
size, power, or performance. Various inductors such  
as those that are shielded may also have different EMI  
effects and distortion performance.  
25  
= 90.2%  
1.56 +.7 +.45+ 25  
The overall efficiency ( ) of the amplifier circuit is given  
in the previous MOSFET section. The inductor’s  
power loss contribution is a function of the inductor’s  
The efficiency is a function of the power and switching  
loss in the MOSFETs and inductors.  
DC resistance, RIND  
.
Self Resonant  
Frequency min  
(MHz)  
Inductance  
Test  
Frequency  
DC Resistance DC Current  
Manufacturer  
Part Number  
Q min  
max (ARMS  
)
RL622-150K  
15.0  
15.0  
50  
2.520MHz  
100kHz  
56  
32  
2.50  
12.0  
ISI  
DO5022P-153HC  
4.4  
20  
Coilcraft  
Inductor Component Options  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 12  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LXE1710 EVALUATION BOARD  
USER GUIDE  
CAPACITOR SELECTION  
The LC filter design section discusses filter options  
and the calculation of component values. However,  
the specification of capacitor type depends on the  
application in the circuit.  
The table provides  
descriptions and guidelines for capacitors in the  
AudioMAX amplifier board.  
Reference  
Capacitor  
Designator  
Comments  
C10, C11  
FET gate drive  
Audio input path  
Output filter  
These  
These decoupling capacitors are used for the audio input +/- signals.  
C3 C14  
C18, C19,  
C20, C21  
The output filter metal film capacitors (low ESR, 5% tolerance) work well to set an accurate  
corner frequency at a low cost.  
These metal film capacitors are used for the power supply bypass for the FETs. Place  
adjacent to the FETs or consider lower value ESR solutions depending on the PCB  
component placement.  
C8, C12  
FET bypass  
C22  
C9, C13  
C17  
LX1710 bypass  
The metal film capacitor is a high frequency bypass for the LX1710 IC.  
VDD,  
PVDD bypass  
These tantalum capacitors provide the bypass for the IC supply voltage and output driver  
supply voltage utilizing a minimal footprint area.  
The electrolytic filter capacitor smoothes out ripple current and should be placed close to the  
output FETs.  
Output power stage  
C16  
Oscillator frequency  
Feedback filter  
The timing capacitor (5% tolerance) sets the oscillator frequency.  
C6, C7  
C4, C5  
C1, C2  
C26  
These (5%) capacitors are used in the RC filter to provide feedback for the control loop.  
These (5%) capacitors create the compensation network. Make sure the appropriate  
“temperature grade” is used to ensure stability.  
Error amplifier  
Voltage references  
The filter capacitors provide the bypass for the 5V and 2.5V references.  
The RC filter minimizes high frequency noise to the amplifier.  
Audio input filter  
Capacitor Description  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 13  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LXE1710 EVALUATION BOARD  
USER GUIDE  
Gate Resistor Impact On THD+N  
100  
50  
20  
10  
2
1
0.26978  
0.1  
No Gate Resistor  
W ith 10Gate Resistor  
0.04675  
0.01  
0.005  
0.001  
50m  
100m  
200m  
500m  
1.131  
2
5
10  
20 24.56 30  
Output Power (W )  
VIN = 15V  
fIN = 1kHz  
RL  
GATE RESISTOR  
and valley voltages, and the charge and discharge  
currents are proportional to the supply voltage. This  
keeps the frequency relatively constant while keeping  
the slope of the PWM ramp proportional to the voltage  
on the VDD pin. For operating frequencies other than  
333kHz, the frequency can be approximated by the  
following equation:  
Series resistors (R6, R10, R11, R12) can be added to  
the gate of MOSFETs (Q1 to Q4) to control the  
switching transition times.  
distortion as seen in the THD+N vs. Output Power  
graph below. The slower switching speeds will  
This reduces signal  
however, increase power dissipation and therefore  
slightly decrease the overall efficiency of the amplifier.  
1
Frequency =  
VIN  
(0.577)(RPWM )(CPWM ) + 320ns  
R12  
P+  
Q1  
10  
OUT+  
R11  
N+  
Q2  
MULTI CHANNEL REQUIREMENTS AND FREQUENCY  
SYNCHRONIZATION  
10  
For applications that require more than a single  
channel, the oscillators of multiple LX1710/1711  
controllers can be configured for synchronous  
operation. One unit, the master, is programmed for  
the desired frequency with the RPWM and CPWM as  
usual. Additional units will be slave units, and their  
oscillators will be disabled by leaving the RPWM pin  
disconnected. The CLOCK pin and the CPWM pin of  
the slave units should be tied to the CLOCK pin and  
the CPWM pin of the master unit respectively. In this  
configuration, the CLOCK pins of the slave units begin  
receiving instead of transmitting clock pulses. Also,  
the CPWM pins quit driving the PWM capacitor in the  
slave units. Note that for optimum performance, all  
slave units should be located within a few inches of the  
master unit.  
resistors, which improves (decreases) the THD+N  
from 0.1% to 0.05% with a slight impact on efficiency  
of approximately 2%. The recommended gate resistor  
OSCILLATOR CONFIGURATION  
The oscillator is programmed by the external timing  
components RPWM and CPWM. For a nominal  
frequency of 333kHz, RPWM and CPWM should be  
set to 49.9kOhms and 100pF respectively. Note that  
in order to keep the slope of the PWM ramp voltage  
proportional to the supply voltage, both the ramp peak  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 14  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LXE1710 EVALUATION BOARD  
USER GUIDE  
PCB LAYOUT RECOMMENDATIONS  
from the switching circuit. In general, minimizing the  
high frequency, high power currents from flowing  
through the same copper as the audio signal  
references are recommended. Signal traces that  
could be sensitive to noise should be node to node  
connections (no “shared” traces). Stray capacitance at  
the controller pins RPWM, EAOUT, EAIN, and FAOUT  
can affect the circuit performance and components  
associated with these pins should be placed as close  
to the controller IC as possible.  
Like most analog circuits, component placement,  
signal routing, and power/ground isolation can affect  
the overall performance of the design. The layout  
should utilize individual ground traces/planes for the  
audio amplifier whenever possible. The audio input  
and controller ground, FET ground, and output filter  
ground are routed using a “star” connection in the  
LXE1710 evaluation board. See PCB layer views.  
The power to the controller IC should be routed using  
separate traces that do not carry high current pulses  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 15  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LXE1710 EVALUATION BOARD  
USER GUIDE  
RINTED IRCUIT OARD AYOUT  
P
C
B
L
TB1: Power Supply Terminal Block  
J3: Optional Connections  
Audio In +, Audio In -  
CN1: RCA Jack  
+V, GND  
Audio In  
Silkscreen Layer  
TB2: Audio Output Terminal Block  
J1: Sleep Jumper  
J2: Mute Jumper  
+ OUT, - OUT  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 16  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LXE1710 EVALUATION BOARD  
USER GUIDE  
RINTED IRCUIT OARD  
P
C
B
Bottom Layer  
Top Layer  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 17  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LXE1710 EVALUATION BOARD  
USER GUIDE  
ILL OF ATERIALS  
B
M
Line  
Reference  
Designators  
U1  
Part Description  
Item  
Manufacturer & Part #  
Case  
Qty  
LX1710  
FDS6612A  
FDS4953  
1
2
3
4
5
6
7
8
9
Controller  
SSOP 28  
SO-8  
1
2
2
1
2
1
2
1
2
N-Channel MOSFET  
Q2, Q4  
Q1, Q3  
REV.X  
L1, L2  
P-Channel MOSFET  
SO-8  
SGE2758  
Printed Circuit Board  
RL622-150K  
161-4214  
Inductor, 15uH  
TH  
TH  
TH  
TH  
TH  
Phono Jacks, 90° Nickel Plated, Wht  
Strip Line Plugs, Straight, Single Row .100"  
Shorting Jumpers, Open Top, Black  
Terminal Block 2 pos 5mm  
CN1  
CA-S36-24B-44  
151-8030  
J1, J2  
J1  
301-021-1000  
TB1, TB2  
Line  
Item  
Reference  
Designators  
Part Description  
Capacitor, COG, 18pF, 50V, 5%  
Capacitor, COG, 150pF, 50V, 5%  
Part Description  
Case  
1206  
Qty  
1206N180J500NT  
12065C180JAT2A  
1206N151J500NT  
12065C151JAT2A  
12065C221JAT2A  
ECU-V1H331KBM  
1206B474M160NT  
1206YC474MAT2A  
1206B105K500NT  
12065C105KAT2A  
0805N101J500NT  
08055C101JAT2A  
TAJA104M035R  
1
C5  
1
1
2
1206  
C4  
3
4
Capacitor, COG, 220pF, 50V, 5%  
Capacitor, X7R, 330pF, 50V, 10%  
1206  
1206  
C6, C7  
C26  
2
1
5
6
7
Capacitor, X7R, .47uF, 16V, 20%  
Capacitor, X7R, 1uF, 50V, 10%  
Capacitor, COG, 100pF, 50V, 5%  
1206  
1206  
0805  
C3, C14  
C1, C2  
C16  
2
2
1
8
9
Capacitor Tant 0.1uF 35V 20%  
Capacitor Tant 2.2uF 25V 20%  
3216  
3216  
C9  
1
1
T491A225M025AS  
T491A475M016AS  
TAJA475M016R  
C13  
10  
Capacitor, Tant, 4.7uF, 16V, 20%  
3216  
C10, C11  
2
ECQ-V1H104JL  
11  
12  
13  
14  
Capacitor Stacked MF 0.1uF 50V 5%  
Capacitor Stacked MF 0.47uF 50V 5%  
Capacitor Stacked MF 0.68uF 50V 5%  
Capacitor, Elect 220uF, 25V, 20%  
TH  
TH  
TH  
NT  
C8, C12, C22  
C18, C19  
C20, C21  
C17  
3
2
2
1
ECQ-V1H474JL  
ECQ-V1H684JL  
RV-25V221MH10-R  
Line  
Item  
Reference  
Designators  
Part Description  
Part Description  
Case  
Qty  
CR32J103T  
CR32F2432T  
CR J100T  
1
2
3
4
5
6
7
Resistor, 10K, 5%, 1/4W  
Resistor, 24.3K, 1%, 1/4W  
Resistor, 10 Ohm, 5%, 1/8W  
Resistor, 10K, 5%, 1/8W  
Resistor, 34.8K, 1%, 1/8W  
Resistor,20K, 5%, 1/8W  
Resistor, 56.2K, 1%, 1/8W  
1206  
1206  
0805  
0805  
0805  
0805  
0805  
R2  
1
2
4
2
1
1
1
R3, R4  
R6, R10, R11, R12  
CR21J103T  
R8, R9  
R5  
CR21F3482T  
CR J203T  
R7  
CR21F5622T  
RM73B3A150J  
MCR100JZHJ150  
LR2010-01-R0374-F  
R1  
8
9
Resistor, 15 Ohm 5% 1W  
2512  
2512  
R13  
RS1  
1
1
Resistor, Low Value Flat .0374  
Copyright 2000  
Rev. 1.1, 2000-12-01  
Page 18  
Microsemi  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY