LX8384-15CP-TR [MICROSEMI]

Fixed Positive LDO Regulator, 1.5V, 1.5V Dropout, PSFM3, ROHS COMPLIANT, PLASTIC, TO-220, 3 PIN;
LX8384-15CP-TR
型号: LX8384-15CP-TR
厂家: Microsemi    Microsemi
描述:

Fixed Positive LDO Regulator, 1.5V, 1.5V Dropout, PSFM3, ROHS COMPLIANT, PLASTIC, TO-220, 3 PIN

局域网 输出元件 调节器
文件: 总11页 (文件大小:283K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LX8384x-xx  
®
TM  
5A Low Dropout Positive Regulators  
PRODUCTION DATA SHEET  
KEY FEATURES  
DESCRIPTION  
available and specified in the Available  
Options table below.  
ƒ Three-Terminal Adjustable Or  
Fixed Output  
ƒ Guaranteed < 1.3V Headroom a  
5A (LX8384A)  
ƒ Guaranteed 2.0% Max.  
Reference Tolerance (LX8384A)  
ƒ Guaranteed 1.0% Max.  
Reference Tolerance (LX8384B)  
ƒ 0.015% Line Regulation  
ƒ 0.15% Load Regulation  
The LX8384/84A/84B Series ICs are  
positive regulators designed to provide 5A  
output current. These regulators yield  
higher efficiency than currently available  
devices with all internal circuitry designed  
to operate down to a 1V input-to-output  
differential. In each of these products, the  
dropout voltage is fully specified as a  
function of load current. Dropout is  
guaranteed at a maximum of 1.3V (8384A)  
and 1.5V (8384) at maximum output  
current, decreasing at lower load currents.  
In addition, on-chip trimming adjusts the  
reference voltage tolerance to 1% maximum  
at room temperature and 2% maximum over  
the 0 to 125°C range for the LX8384A,  
making this ideal for the Pentium P54C-  
VRE specification. The LX8384B offers  
0.8% tolerance at room temperature and  
1.0% maximum over line, load and  
The LX8384/84A/84B Series devices are  
pin-compatible with earlier 3-terminal  
regulators, such as the 117 series products,  
but they do require input and output  
capacitors. A minimum 10µF capacitor is  
required on the input and a 15µF or greater  
on the output of these new devices for  
stability. Although, these capacitors are  
generally included in most regulator  
designs.  
The LX8384/84A/84B Series quiescent  
current flows into the load, thereby  
increasing efficiency. This feature contrasts  
with PNP regulators where up to 10% of the  
output current is wasted as quiescent  
current. The LX8384-xxI is specified over  
the industrial temperature range of -25°C to  
125°C, while the LX8384-xxC/84A-  
xxC/84B-xxC is specified over the  
commercial range of 0°C to 125°C.  
APPLICATIONS  
ƒ Pentium® Processor VRE  
Application  
ƒ High Efficiency Linear  
Regulators  
ƒ Power Regulators For Switching  
Power Supplies  
ƒ Battery Chargers  
ƒ Constant Current Regulators  
ƒ Cyrix® 6x86™  
temperature.  
Fixed versions are also  
ƒ AMD-K5™  
IMPORTANT: For the most current data, consult MICROSEMI’s website: http://www.microsemi.com  
PRODUCT HIGHLIGHT  
IN  
OUT  
OUTPUT  
PART #  
3.5V  
at 5A  
5V  
LX8384A  
VOLTAGE  
+
121Ω  
0.1%  
*1500µF  
6MV1500GX  
Sanyo  
LX8384/84A/84B-00  
LX8384/84A/84B-15  
LX8384/84A/84B-33  
Adjustable  
1.5V  
ADJ  
+
1500µF  
5x 6MV1500GX  
Sanyo  
218Ω  
0.1%  
3.3V  
Table 1 - Available Options  
* Capacitors must have < 20mΩ  
Total ESR for the VRE Specification  
An Application of the LX8384A for the Pentium P54C Processors Meeting VRE Specification.  
PACKAGE ORDER INFO  
Plastic TO-220  
Plastic TO-263  
3-Pin  
Plastic TO-252  
(D-Pak) 3-Pin  
Max Ref Max Dropout DT  
P
DD  
3-Pin  
TA (°C)  
Accuracy  
Voltage  
RoHS Compliant  
RoHS Compliant  
RoHS Compliant  
Transition DC: 0532  
Transition DC: 0543  
LX8384-xxCP  
LX8384A-xxCP  
LX8384B-xxCP  
LX8384-xxIP  
Transition DC: 0535  
2.0%  
2.0%  
1.0%  
1.5V  
1.3V  
1.3V  
1.5V  
LX8384-xxCDT  
LX8384A-xxCDT  
LX8384B-xxCDT  
LX8384-xxIDT  
LX8384-xxCDD  
LX8384A-xxCDD  
LX8384B-xxCDD  
LX8384-xxIDD  
0 to 125  
-25 to 125 2.0%  
Note: Available in Tape & Reel. Append the letters “TR” to the part number. (i.e. LX8384-xxCP-TR)  
Copyright © 2000  
Rev. 2.1f, 2006-01-20  
Microsemi Inc.  
Integrated Products Division  
Page 1  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX8384x-xx  
®
TM  
5A Low Dropout Positive Regulators  
PRODUCTION DATA SHEET  
ABSOLUTE MAXIMUM RATINGS(NOTE 1)  
PACKAGE PIN OUT  
Power Dissipation................................................................................... Internally Limited  
Input Voltage ................................................................................................................ 10V  
Input to Output Voltage Differential............................................................................. 10V  
Operating Junction Temperature................................................................................150°C  
Storage Temperature Range....................................................................... -65°C to 150 °C  
Peak Package Solder Reflow Temp. (40 seconds max. exposure) .................260°C (+0,-5)  
TAB is VOUT  
3
VIN  
2
1
VOUT  
ADJ /  
GND*  
Note 1: Exceeding these ratings could cause damage to the device. All voltages are with respect to  
Ground. Currents are positive into, negative out of specified terminal.  
DD PACKAGE (3-PIN)  
(Top View)  
TAB is VOUT  
VIN  
3
2
1
VOUT  
THERMAL DATA  
ADJ/  
GND  
*
Plastic TO-263 3-Pin  
DD  
DT PACKAGE (3-PIN)  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
60°C/W  
2.7°C/W  
(Top View)  
TAB is VOUT  
Plastic TO-220 3-Pin  
P
3
VIN  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
60°C/W  
2.7°C/W  
2
VOUT  
ADJ  
1
GND  
Plastic TO-252 3-Pin  
DT  
P PACKAGE (3-PIN)  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
60°C/W  
2.7°C/W  
(Top View)  
*Pin 1 is GND for fixed voltage versions  
RoHS 100% Matte Tin Lead Finish  
Junction Temperature Calculation: TJ = TA + (PD x θJT).  
The θJA & θJT numbers are guidelines for the thermal performance of the device/pc-board  
system. All of the above assume no ambient airflow.  
BLOCK DIAGRAM  
VIN  
Bias Circuit  
Thermal  
Limit Circuit  
Bandgap  
Circuit  
Control  
Circuit  
Output  
Circuit  
VOUT  
SOA  
Protection  
Circuit  
ADJ or  
GND*  
Current  
Limit Circuit  
*Pin 1 is GND for fixed voltage versions  
Copyright © 2000  
Rev. 2.1f, 2006-01-20  
Microsemi Inc.  
Page 2  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX8384x-xx  
®
TM  
5A Low Dropout Positive Regulators  
PRODUCTION DATA SHEET  
ELECTRICAL CHARACTERISTICS  
Unless otherwise specified, the following specifications apply over the operating ambient temperature for the LX8384x-xxC with  
0°C TA 125°C and the LX8384-xxI with -25°C TA 125°C except where otherwise noted. Test conditions: VIN -VOUT = 3V;  
IOUT = 5A. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient  
temperature.  
LX8384x-xx  
Parameter  
Symbol  
Test Conditions  
Units  
Min  
Typ  
Max  
LX8384-00 / 8384A-00 / 8384B-00 (ADJUSTABLE)  
`
IOUT = 10mA, TA = 25°C  
1.238  
1.225  
1.240  
1.238  
1.250  
1.250  
1.250  
1.250  
1.262  
1.270  
1.260  
1.262  
V
V
V
V
Reference Voltage  
(Note 4)  
LX8384/84A-00  
LX8384B-00  
10mA < IOUT < 5A, 1.5V < (VIN -VOUT),  
VIN < 10V, P < PMAX  
VREF  
IOUT = 10mA, TA = 25°C  
10mA < IOUT < 5A, 1.5V < (VIN -VOUT),  
VIN < 10V, P < PMAX  
1.3V < (VIN -VOUT), VIN < 7V, IOUT = 10mA  
1.3V < (VIN -VOUT), VIN < 10V, IOUT = 10mA  
0.015  
0.035  
0.2  
0.3  
%
%
Δ VREF  
(VIN)  
Line Regulation (Note 2)  
Δ VREF  
VOUT > VREF, VIN - VOUT = 3V,  
10mA < IOUT < 5A  
Load Regulation (Note 2)  
Thermal Regulation  
0.15  
0.01  
83  
0.5  
%
% / W  
dB  
(IOUT  
)
ΔVOUT  
(Pwr)  
TA = 25°C, 20ms pulse  
0.02  
VOUT = 5V, f= 120Hz, COUT = 100µF Tantalum,  
VIN = 6.5V, CADJ = 10µF, IOUT = 5A  
Ripple Rejection (Note 3)  
65  
20  
Adjust Pin Current  
IADJ  
55  
0.2  
1.2  
1.1  
2
100  
5
µA  
µA  
V
Adjust Pin Current Change (Note 4)  
ΔIADJ  
10mA < IOUT < IOUT(MAX), 1.3V < (VIN -VOUT), VIN<10V  
ΔVREF = 1%, IOUT = 5A  
ΔVREF = 1%, IOUT = 5A  
VIN < 10V  
1.5  
1.3  
10  
Dropout Voltage  
LX8384-00  
ΔV  
LX8384A/84B-00  
V
Minimum Load Current  
IOUT(MIN)  
IOUT(MAX)  
mA  
A
(VIN - VOUT) < 7V  
5
3
6
Maximum Output Current  
(VIN - VOUT) < 10V  
4
A
Long Term Stability (Note 3)  
Temperature Stability (Note 3)  
ΔVOUT(t) TA = 125°C, 1000 hours  
ΔVOUT(T)  
0.3  
0.25  
1
%
%
RMS Output Noise (% of VOUT  
(Note 3)  
)
ΔVOUT(RMS) TA = 25°C, 10Hz < f < 10kHz  
0.003  
%
LX8384-15 / 8384A-15 / 8384B-15 (1.5V FIXED)  
`
VIN = 5V, IOUT = 0mA, TA = 25°C  
4.75V < VIN < 10V, 0mA < IOUT < 5A, P < PMAX  
VIN = 5V, IOUT = 0mA, TA = 25°C  
4.75V < VIN < 10V, 0A < IOUT < 5A, P < PMAX  
4.75V < VIN < 7V  
1.485  
1.470  
1.488  
1.485  
1.50  
1.50  
1.50  
1.50  
1
1.515  
1.530  
1.512  
1.515  
3
V
V
Output Voltage  
(Note 4)  
LX8384/84A-15  
LX8384B-15  
VOUT  
V
V
mV  
mV  
ΔVOUT  
(VIN)  
Line Regulation (note 2)  
4.75V < VIN < 10V  
1
5
ΔVOUT  
Load Regulation (note 2)  
Thermal Regulation  
VIN = 5V, 0mA < IOUT < IOUT(MAX)  
TA = 25°C, 20ms pulse  
2.5  
7
mV  
(IOUT  
)
ΔVOUT  
(Pwr)  
0.01  
0.02  
% / W  
Ripple Rejection (note 3)  
Quiescent Current  
COUT = 100µF (Tantalum), IOUT = 5A  
0mA < IOUT < IOUT(MAX), 4.75V < V < 10V  
ΔVOUT = 1%, IOUT < IOUT(MAX)  
60  
83  
4
dB  
mA  
V
IQ  
10  
1.5  
1.3  
1.2  
1
Dropout Voltage  
LX8384-15  
LX8384A/84B-15  
ΔV  
ΔVOUT = 1%, IOUT < IOUT(MAX)  
V
Copyright © 2000  
Rev. 2.1f, 2006-01-20  
Microsemi Inc.  
Page 3  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX8384x-xx  
®
TM  
5A Low Dropout Positive Regulators  
PRODUCTION DATA SHEET  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Unless otherwise specified, the following specifications apply over the operating ambient temperature for the LX8384x-xxC with  
0°C TA 125°C and the LX8384-xxI with -25°C TA 125°C except where otherwise noted. Test conditions: VIN -VOUT = 3V;  
IOUT = 5A. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient  
temperature.  
LX8384x-xx  
Parameter  
Symbol  
Test Conditions  
Units  
Min  
Typ  
Max  
LX8384-15 / 8384A-15 / 8384B-15 (1.5V FIXED)(CONTINUED)  
`
`
Maximum Output Current  
IOUT(MAX)  
VIN < 7V  
5
6
A
%
%
Temperature Stability (Note 3)  
Long Term Stability (Note 3)  
ΔVOUT(T)  
0.25  
0.3  
ΔVOUT (t) TA=125°C, 1000 hours  
1
RMS Output Noise (% of VOUT  
(Note 3)  
)
VOUT (RMS) TA=25°C, 10Hz < f < 10kHz  
0.003  
%
LX8384-33 / 8384A-33 / 8384B-33 (3.3V FIXED)  
VIN=5V, IOUT=0mA, TA=25°C  
4.75V < VIN < 10V, 0mA < IOUT < 5A, P < PMAX  
VIN=5V, IOUT=0mA, TA=25°C  
4.75V < VIN < 10V, 0mA < IOUT < 5A, P < PMAX  
4.75V < VIN < 7V  
3.267  
3.235  
3.274  
3.267  
3.30  
3.30  
3.30  
3.30  
1
3.333  
3.365  
3.326  
3.333  
6
V
V
Output Voltage  
(Note 4)  
LX8384/84A-33  
LX8384B-33  
VOUT  
V
V
mV  
mV  
Line Regulation (Note 2)  
ΔVOUT(VIN)  
ΔVOUT  
4.75V < VIN < 10V  
2
10  
Load Regulation (Note 2)  
Thermal Regulation  
VIN=5V, 0mA < IOUT < IOUT(MAX)  
TA=25°C, 20ms pulse  
5
15  
mV  
(IOUT  
)
ΔVOUT  
(Pwr)  
0.01  
0.02  
% / W  
Ripple Rejection (Note 3)  
Quiescent Current  
COUT=100µF (Tantalum), IOUT=5A  
0mA < IOUT < IOUT(MAX), 4.75V < VIN < 10V  
ΔVOUT=1%, IOUT < IOUT(MAX)  
60  
83  
4
dB  
mA  
V
IQ  
10  
1.5  
1.3  
1.2  
1
Dropout Voltage  
LX8384-33  
LX8384A/84B-33  
ΔV  
ΔVOUT=1%, IOUT < IOUT(MAX)  
V
Maximum Output Current  
IOUT(MAX) VIN < 7V  
ΔVOUT (T)  
5
6
A
Temperature Stability (Note 3)  
Long Term Stability (Note 3)  
0.25  
0.3  
%
%
ΔVOUT (t) TA=125°C, 1000 hours  
1
RMS Output Noise (% of VOUT  
(Note 3)  
)
VOUT (RMS) TA=25°C, 10Hz < f < 10kHz  
0.003  
%
Note 2  
Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output  
voltage due to heating effects are covered under the specification for thermal regulation.  
These parameters, although guaranteed are not tested in production.  
Note 3  
Note 4  
See Maximum Output Current Section  
Copyright © 2000  
Rev. 2.1f, 2006-01-20  
Microsemi Inc.  
Page 4  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX8384x-xx  
®
TM  
5A Low Dropout Positive Regulators  
PRODUCTION DATA SHEET  
APPLICATION NOTES  
Power  
Supply  
Minimum Load  
(Larger resistor)  
The LX8384/84A/84B Series ICs are easy to use Low-  
Dropout (LDO) voltage regulators. They have all of the standard  
self-protection features expected of a voltage regulator: short  
circuit protection, safe operating area protection and automatic  
thermal shutdown if the device temperature rises above  
approximately 165°C.  
Use of an output capacitor is REQUIRED with the  
LX8384/84A/84B series. Please see the table below for  
recommended minimum capacitor values.  
IN  
OUT  
LX8384x  
Full Load  
(Smaller  
resistor)  
ADJ  
RDSON << RL  
10ms  
Star Ground  
1 sec  
These regulators offer a more tightly controlled reference  
voltage tolerance and superior reference stability when measured  
against the older pin-compatible regulator types that they replace.  
FIGURE 1 - DYNAMIC INPUT AND OUTPUT TEST  
STABILITY  
OVERLOAD RECOVERY  
The output capacitor is part of the regulator’s frequency  
compensation system. Many types of capacitors are available,  
with different capacitance value tolerances, capacitance  
temperature coefficients, and equivalent series impedances. For  
all operating conditions, connection of a 220µF aluminum  
electrolytic capacitor or a 47µF (<400mΩ ESR) solid tantalum  
capacitor between the output terminal and ground will guarantee  
stable operation.  
If a bypass capacitor is connected between the output voltage  
adjust (ADJ) pin and ground, ripple rejection will be improved  
(please see the section entitled “RIPPLE REJECTION”). When  
ADJ pin bypassing is used, the required output capacitor value  
increases. Output capacitor values of 220µF (aluminum) or 47µF  
(tantalum) provide for all cases of bypassing the ADJ pin. If an  
ADJ pin bypass capacitor is not used, smaller output capacitor  
values are adequate. The table below shows recommended  
minimum capacitance values for operation.  
Like almost all IC power regulators, the LX8384/84A/84B  
regulators are equipped with Safe Operating Area (SOA)  
protection. The SOA circuit limits the regulator's maximum  
output current to progressively lower values as the input-to-output  
voltage difference increases. By limiting the maximum output  
current, the SOA circuit keeps the amount of power that is  
dissipated in the regulator itself within safe limits for all values of  
input-to-output voltage within the operating range of the  
regulator. The LX8384/84A/84B SOA protection system is  
designed to be able to supply some output current for all values of  
input-to-output voltage, up to the device breakdown voltage.  
Under some conditions, a correctly operating SOA circuit may  
prevent a power supply system from returning to regulated opera-  
tion after removal of an intermittent short circuit at the output of  
the regulator. This is a normal mode of operation, which can be  
seen, in most similar products, including older devices such as  
7800 series regulators. It is most likely to occur when the power  
system input voltage is relatively high and the load impedance is  
relatively low.  
Minimum Capacitor Values  
INPUT  
10µ  
10µ  
OUTPUT  
15µF Tantalum, 100µF Aluminum  
47µF Tantalum, 220µF Aluminum  
ADJ  
None  
15µF  
When the power system is started “cold”, both the input and  
output voltages are very close to zero. The output voltage closely  
follows the rising input voltage, and the input-to-output voltage  
difference is small. The SOA circuit therefore permits the  
regulator to supply large amounts of current as needed to develop  
the designed voltage level at the regulator output.  
To ensure good transient response from the power supply  
system under rapidly changing current load conditions, designers  
generally use several output capacitors connected in parallel.  
Such an arrangement serves to minimize the effects of the  
parasitic resistance (ESR) and inductance (ESL) that are present  
in all capacitors. Cost-effective solutions that sufficiently limit  
ESR and ESL effects generally result in total capacitance values  
in the range of hundreds to thousands of microfarads, which is  
more than adequate to meet regulator output capacitor  
specifications. Output capacitance values may be increased  
without limit.  
The circuit shown in Figure 1 can be used to observe the  
transient response characteristics of the regulator in a power  
system under changing loads. The effects of different capacitor  
types and values on transient response parameters, such as  
overshoot and under-shoot, can be compared quickly in order to  
develop an optimum solution.  
Now consider the case where the regulator is supplying  
regulated voltage to a resistive load under steady state conditions.  
A moderate input-to-output voltage appears across the regulator  
but the voltage difference is small enough that the SOA circuitry  
allows sufficient current to flow through the regulator to develop  
the designed output voltage across the load resistance. If the  
output resistor is short-circuited to ground, the input-to-output  
voltage difference across the regulator suddenly becomes larger  
by the amount of voltage that had appeared across the load  
resistor. The SOA circuit reads the increased input-to-output  
voltage, and cuts back the amount of current that it will permit the  
regulator to supply to its output terminal. When the short circuit  
across the output resistor is removed, all the regulator output  
current will again flow through the output resistor. The maximum  
current that the regulator can supply to the resistor will be limited  
by the SOA circuit, based on the large input-to-output  
Copyright © 2000  
Rev. 2.1f, 2006-01-20  
Microsemi Inc.  
Page 5  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX8384x-xx  
®
TM  
5A Low Dropout Positive Regulators  
PRODUCTION DATA SHEET  
APPLICATION NOTES (CONTINUED)  
OVERLOAD RECOVERY (continued)  
IN  
OUT  
voltage across the regulator at the time the short circuit is  
removed from the output. If this limited current is not sufficient  
to develop the designed voltage across the output resistor, the  
voltage will stabilize at some lower value, and will never reach  
the designed value. Under these circumstances, it may be  
necessary to cycle the input voltage down to zero in order to  
make the regulator output voltage return to regulation.  
VOUT  
VIN  
LX8384x  
VREF  
R1  
R2  
ADJ  
IADJ  
50µA  
R2  
R1  
RIPPLE REJECTION  
VOUT =VREF 1+  
+ IADJ R2  
Ripple rejection can be improved by connecting a capacitor  
between the ADJ pin and ground. The value of the capacitor  
should be chosen so that the impedance of the capacitor is equal  
in magnitude to the resistance of R1 at the ripple frequency. The  
capacitor value can be determined by using this equation:  
FIGURE 2 - BASIC ADJUSTABLE REGULATOR  
LOAD REGULATION  
Because the LX8384/84A/84B regulators are three-terminal  
devices, it is not possible to provide true remote load sensing.  
Load regulation will be limited by the resistance of the wire  
connecting the regulator to the load. The data sheet specification  
for load regulation is measured at the bottom of the package.  
Negative side sensing is a true Kelvin connection, with the  
bottom of the output divider returned to the negative side of the  
load. Although it may not be immediately obvious, best load  
regulation is obtained when the top of the resistor divider, (R1), is  
connected directly to the case of the regulator, not to the load.  
This is illustrated in Figure 3. If R1 were connected to the load,  
the effective resistance between the regulator and the load would  
be:  
1
C =  
(
6.28× FR × R1  
)
where:  
C
the value of the capacitor in Farads; select  
an equal or larger standard value.  
the ripple frequency in Hz  
FR  
R1  
the value of resistor R1 in ohms  
At a Ripple frequency of 120Hz, with R1= 100:  
1
C =  
=13.3μF  
(
6.28×120Hz×100Ω  
)
The closest equal or larger standard value should be used, in  
this case, 15µF. When an ADJ pin bypass capacitor is used,  
output ripple amplitude will be essentially independent of the  
output voltage. If an ADJ pin bypass capacitor is not used, output  
ripple will be proportional to the ratio of the output voltage to the  
reference voltage:  
R2 + R1  
R1  
RPeff = R ×  
P
where:  
RP  
Actual parasitic line resistance.  
When the circuit is connected as shown in Figure 3, the  
parasitic resistance appears as its actual value, rather than the  
VOUT  
M =  
higher RPeff  
.
VREF  
RP Parasitic Line  
Resistance  
where:  
M
a multiplier for the ripple seen when the  
ADJ pin is optimally bypassed.  
1.25V  
OUT  
IN  
LX8384x  
VIN  
VREF  
=
For example, if VOUT = 2.5V the output ripple will be:  
2.5V  
Connect R1 to  
Case of Regulator  
R1  
R2  
ADJ  
M =  
= 2  
RL  
1.25V  
Connect R2 to  
Load  
Output ripple will be twice as bad as it would be if the ADJ  
pin were to be bypassed to ground with a properly selected  
capacitor.  
OUTPUT VOLTAGE  
The LX8384/84A/84B ICs develop a 1.25V reference voltage  
between the output and the adjust terminal (See Figure 2). By  
placing a resistor, R1, between these two terminals, a constant  
current is caused to flow through R1 and down through R2 to set  
the overall output voltage. Normally this current is the specified  
minimum load current of 10mA. Because IADJ is very small and  
constant when compared with the current through R1, it  
represents a small error and can usually be ignored.  
FIGURE 3 - CONNECTIONS FOR BEST LOAD REGULATION  
Copyright © 2000  
Rev. 2.1f, 2006-01-20  
Microsemi Inc.  
Page 6  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX8384x-xx  
®
TM  
5A Low Dropout Positive Regulators  
PRODUCTION DATA SHEET  
APPLICATION NOTES (CONTINUED)  
Example  
LOAD REGULATION (continued)  
Given: VIN  
VOUT  
=
=
=
=
=
5V  
2.8V  
5.0A  
50°C  
Even when the circuit is configured optimally, parasitic  
resistance can be a significant source of error. A 100 mil. wide  
PC trace built from 1 oz. copper-clad circuit board material has a  
parasitic resistance of about 5 milliohms per inch of its length at  
room temperature. If a 3-terminal regulator used to supply 2.50  
volts is connected by 2 inches of this trace to a load which draws  
5 amps of current, a 50 millivolt drop will appear between the  
regulator and the load. Even when the regulator output voltage is  
precisely 2.50 volts, the load will only see 2.45 volts, which is a  
2% error. It is important to keep the connection between the  
regulator output pin and the load as short as possible, and to use  
wide traces or heavy-gauge wire.  
IOUT  
TA  
RθJT  
2.7°C/W for TO-220  
300 ft/min airflow available  
Find:  
Proper Heat Sink to keep IC’s junction temperature  
below 125°C.**  
Solution: The junction temperature is:  
TJ = PD (RθJT + RθCS + RθSA ) + TA  
The minimum specified output capacitance for the regulator  
should be located near the regulator package. If several capacitors  
are used in parallel to construct the power system output  
capacitance, any capacitors beyond the minimum needed to meet  
the specified requirements of the regulator should be located near  
the sections of the load that require rapidly-changing amounts of  
current. Placing capacitors near the sources of load transients will  
help ensure that power system transient response is not impaired  
by the effects of trace impedance.  
To maintain good load regulation, wide traces should be used  
on the input side of the regulator, especially between the input  
capacitors and the regulator. Input capacitor ESR must be small  
enough that the voltage at the input pin does not drop below  
VIN(MIN) during transients.  
where: PD  
RθJT  
Dissipated power.  
Thermal resistance from the junction to  
the mounting tab of the package.  
Thermal resistance through the  
interface between the IC and the  
surface on which it is mounted.  
(1.0°C/W at 6 in-lbs mounting screw  
torque).  
Thermal resistance from the mounting  
surface to ambient (thermal resistance  
of the heat sink).  
RθCS  
RθSA  
TS  
Heat Sink Temperature.  
TJ  
TC  
RθJT RθCS RθSA  
First, find the maximum allowable thermal resistance of the  
TS  
TA  
VΙΝ(ΜΙΝ) = VOUT + VDROPOUT(MAX)  
where: VIN(MIN)  
the lowest allowable instantaneous  
voltage at the input pin.  
heat sink:  
VOUT  
the designed output voltage for the  
power supply system.  
TJ TA  
RθSA  
=
(
RθJT + RθCS  
)
VDROPOUT(MAX) the specified dropout voltage for the  
PD  
installed regulator.  
P = (VIN(MAX)VOUT )IOUT = (5.0V 2.8V)×5.0A  
D
THERMAL CONSIDERATIONS  
The LX8384/84A/84B regulators have internal power and  
thermal limiting circuitry designed to protect each device under  
overload conditions. For continuous normal load conditions,  
however, maximum junction temperature ratings must not be  
exceeded. It is important to give careful consideration to all  
sources of thermal resistance from junction to ambient. This  
includes junction to case, case to heat sink interface, and heat  
sink thermal resistance itself.  
P =11.0W  
D
125°C50°C  
(5.0V 2.8V)*5.0A  
RθSA = 3.1°C/W  
RθSA  
=
(2.7°C/W +1.0°C/W)  
Next, select a suitable heat sink. The selected heat sink must  
Junction-to-case thermal resistance is specified from the IC  
junction to the back surface of the case directly opposite the die.  
This is the lowest resistance path for heat flow. Proper mounting  
is required to ensure the best possible thermal flow from this area  
of the package to the heat sink. Thermal compound at the case to  
heat sink interface is strongly recommended. If the case of the  
device must be electrically isolated, a thermally conductive  
spacer can be used, as long as its added contribution to thermal  
resistance is considered. Note that the case of all devices in this  
series is electrically connected to the output.  
have RθSA < 3.1°C/W. Thermalloy heatsink 6296B has RθSA  
3.0°C/W with 300ft/min air flow.  
Finally, verify that junction temperature remains within speci-  
fication using the selected heat sink:  
=
TJ =11W(2.7°C/W +1.0°C/W +3.0°C/W)+50°C  
TJ =124°C  
** Although the device can operate up to 150°C junction, it is recommended for long  
term reliability to keep the junction temperature below 125°C whenever possible.  
Copyright © 2000  
Rev. 2.1f, 2006-01-20  
Microsemi Inc.  
Page 7  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX8384x-xx  
®
TM  
5A Low Dropout Positive Regulators  
PRODUCTION DATA SHEET  
TYPICAL APPLICATIONS  
IN  
OUT  
(Note A)  
VIN  
VOUT**  
LX8384x  
+
IN  
OUT  
C1*  
10µF  
R1  
121Ω 1%  
VIN  
(Note A)  
VOUT  
LX8384x  
C2  
+
100µF  
ADJ  
+
R1  
10µF  
121Ω 1%  
ADJ  
150µF  
R2  
1k  
C1  
10µF*  
+
R2  
365Ω 1%  
* C1 improves ripple rejection.  
XC should be R1 at ripple  
frequency.  
* Needed if device is far from filter capacitors.  
R2  
* *VOUT = 1.25V 1+  
FIGURE 4 - IMPROVING RIPPLE REJECTION  
R1  
FIGURE 5 - 1.2V - 8V ADJUSTABLE REGULATOR  
IN  
OUT  
VIN  
5V  
LX8384x  
(Note A)  
+
121Ω  
1%  
10µF  
ADJ  
+
1k  
100µF  
2N3904  
1k  
365Ω  
1%  
TTL  
Output  
FIGURE 6 - 5V REGULATOR WITH SHUTDOWN  
IN  
OUT  
3.3V  
VIN  
LX8384x  
Min. 15µF Tantalum or  
10µF Tantalum or  
100µF Aluminum  
100µF Aluminum capacitor. May  
be increased without limit. ESR  
must be less than <400mΩ.  
ADJ  
FIGURE 7 - FIXED 3.3V OUTPUT REGULATOR  
Not e A: VIN(MIN) = (Intended VOUT ) + VDROPOUT(MAX)  
Copyright © 2000  
Rev. 2.1f, 2006-01-20  
Microsemi Inc.  
Page 8  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX8384x-xx  
®
TM  
5A Low Dropout Positive Regulators  
PRODUCTION DATA SHEET  
PACKAGE DIMENSIONS  
3-Pin Plastic TO-220  
P
B
S
MILLIMETERS  
INCHES  
Dim  
F
T
MIN  
14.22  
9.65  
3.56  
0.51  
3.53  
MAX  
15.88  
10.67  
4.83  
1.14  
4.09  
MIN  
MAX  
0.625  
0.420  
0.190  
0.045  
0.161  
Q
A
B
C
D
F
0.560  
0.380  
0.140  
0.020  
0.139  
U
A
C
G
2.54 BSC  
0.100 BSC  
1
2
3
H
6.35  
1.14  
14.73  
0.250  
0.045  
0.580  
0.050  
R
H
J
K
L
0.30  
12.70  
1.14  
0.012  
0.500  
0.045  
1.27  
5.08 TYP  
K
N
0.200 TYP  
D
Q
R
S
T
U
2.54  
2.03  
1.14  
5.84  
0.508  
3.05  
2.92  
1.40  
6.86  
1.14  
0.100  
0.080  
0.045  
0.230  
0.020  
0.120  
0.115  
0.055  
0.270  
0.045  
L
J
G
N
3-Pin Plastic TO-263  
DD  
I
A
MILLIMETERS  
INCHES  
D
Dim  
MIN  
10.03  
8.51  
4.19  
1.14  
0.330  
1.19  
2.41  
2.29  
MAX  
10.67  
9.17  
4.59  
1.40  
0.51  
1.34  
2.66  
2.79  
1.65  
0.25  
15.87  
MIN  
0.395  
0.335  
0.165  
0.045  
0.013  
0.047  
0.095  
0.090  
MAX  
0.420  
0.361  
0.181  
0.055  
0.020  
0.053  
0.104  
0.110  
0.065  
0.010  
0.625  
C
A
B
C
D
E
F
G
H
I
B
K
M
N
H
E
F
G
J
0
0
K
M
N
14.60  
0.575  
7°  
3°  
7°  
3°  
0° -8°  
J
Seating Plane  
Note: Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm(.006”) on any side. Lead dimension shall  
not include solder coverage.  
Copyright © 2000  
Rev. 2.1f, 2006-01-20  
Microsemi Inc.  
Integrated Products Division  
Page 9  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX8384x-xx  
®
TM  
5A Low Dropout Positive Regulators  
PRODUCTION DATA SHEET  
PACKAGE DIMENSIONS  
3-Pin Plastic TO-252  
DT  
P
L1  
MILLIMETERS  
INCHES  
Dim  
MIN  
2.16  
0
MAX  
2.42  
0.13  
0.89  
5.46  
0.64  
0.94  
6.23  
5.80  
6.73  
2.42  
10.41  
1.40  
2.74  
1.27  
1.02  
4.67  
1.70  
-
MIN  
MAX  
0.095  
0.005  
0.035  
0.215  
0.025  
0.037  
0.245  
0.228  
0.265  
0.095  
0.410  
0.055  
0.108  
0.050  
0.040  
0.184  
0.067  
-
A
A1  
b
b3  
c
c2  
D
D1  
E
e
0.085  
0
e
L4  
W
E
b3  
0.63  
5.20  
0.38  
0.68  
5.97  
5.21  
6.35  
2.16  
9.40  
1.02  
2.44  
0.89  
0.51  
4.19  
1.00  
6°  
0.025  
0.205  
0.015  
0.027  
0.235  
0.205  
0.250  
0.085  
0.370  
0.040  
0.096  
0.035  
0.020  
0.165  
0.039  
6°  
b
D1  
H
L
L1  
L3  
L4  
P
W
Θ1  
Θ1  
C2  
A
c
D
L
A1  
L3  
H
Copyright © 2000  
Rev. 2.1f, 2006-01-20  
Microsemi Inc.  
Page 10  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX8384x-xx  
®
TM  
5A Low Dropout Positive Regulators  
PRODUCTION DATA SHEET  
NOTES  
Pentium is a registered trademark of Intel Corporation. Cyrix is a registered trademark  
and 6x86 is a trademark of the Cyrix Corporation. K5 is a registered trademark of AMD.  
PRODUCTION DATA – Information contained in this document is proprietary to  
LinFinity and is current as of publication date. This document may not be modified in any  
way without the express written consent of LinFinity. Product processing does not  
necessarily include testing of all parameters. LinFinity reserves the right to change the  
configuration and performance of the product and to discontinue product at any time.  
Copyright © 2000  
Rev. 2.1f, 2006-01-20  
Microsemi Inc.  
Integrated Products Division  
Page 11  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY