LX8384-15IP-TR [MICROSEMI]

Fixed Positive LDO Regulator, 1.5V, 1.5V Dropout, PSFM3, ROHS COMPLIANT, PLASTIC, TO-220, 3 PIN;
LX8384-15IP-TR
型号: LX8384-15IP-TR
厂家: Microsemi    Microsemi
描述:

Fixed Positive LDO Regulator, 1.5V, 1.5V Dropout, PSFM3, ROHS COMPLIANT, PLASTIC, TO-220, 3 PIN

稳压器
文件: 总8页 (文件大小:217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LIN DOC #: 8384  
LX8384-xx/8384A-xx/8384B-xx  
5 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L A T O R S  
T H E I N F I N I T E P O W E R O F I N N O V A T I O N  
P R O D U C T I O N D A T A S H E E T  
DESCRIPTION  
KEY FEATURES  
THREE-TERMINAL ADJUSTABLE OR FIXED  
The LX8384/84A/84B Series ICs are posi-  
tive regulators designed to provide 5A  
output current. These regulators yield  
higher efficiency than currently available  
devices with all internal circuitry designed  
to operate down to a 1V input-to-output  
differential. In each of these products,  
the dropout voltage is fully specified as  
a function of load current. Dropout is  
guaranteed at a maximum of 1.3V  
(8384A) and 1.5V (8384) at maximum  
output current, decreasing at lower load  
currents.  
In addition, on-chip trimming adjusts  
the reference voltage tolerance to 1%  
maximum at room temperature and 2%  
maximum over the 0 to 125°C range  
for the LX8384A, making this ideal for  
the Pentium P54C-VRE specification.  
The LX8384B offers 0.8% tolerance at  
room temperature and 1.0% maximum  
over line, load and temperature.  
Fixed versions are also available and  
specified in the Available Options table  
below.  
The LX8384/84A/84B Series devices  
are pin-compatible with earlier 3-  
terminalregulators, such as the 117 series  
products. While a 10µF output capacitor  
is required on both input and output of  
these new devices, this capacitor is  
generally included in most regulator  
designs.  
The LX8384/84A/84B Series quiescent  
current flows into the load, thereby  
increasing efficiency. This feature  
constrasts with PNP regulators where up  
to 10% of the output current is wasted as  
quiescent current. The LX8384-xxI is  
specified over the industrial temperature  
range of -25°C to 125°C, while the  
LX8384-xxC/84A-xxC/84B-xxC is  
specified over the commercial range of  
0°C to 125°C.  
OUTPUT  
GUARANTEED < 1.3V HEADROOM AT 5A  
(LX8384A-xx)  
GUARANTEED 2.0% MAX. REFERENCE  
TOLERANCE (LX8384A-xx)  
GUARANTEED 1.0% MAX. REFERENCE  
TOLERANCE (LX8384B-xx)  
OUTPUT CURRENT OF 5A MINIMUM  
p 0.015% LINE REGULATION  
p 0.15% LOAD REGULATION  
APPLICATIONS  
PENTIUM® PROCESSOR VRE APPLICATIONS  
HIGH EFFICIENCY LINEAR REGULATORS  
POST REGULATORS FOR SWITCHING POWER  
SUPPLIES  
BATTERY CHARGERS  
CONSTANT CURRENT REGULATORS  
CYRIX® 6x86TM  
AMD-K5TM  
IMPORTANT: For the most current data, consult LinFinity's web site: http://www.linfinity.com.  
AVAILABLE OPTIONS PER PAR T #  
PRODUCT HIGHLIGHT  
Output  
Part #  
Voltage  
3.5V, 5A REGULATOR  
LX8384/84A/84B-00  
LX8384/84A/84B-15  
LX8384/84A/84B-33  
Other voltage options may be available —  
Please contact factory for details.  
Adjustable  
1.5V  
IN  
OUT  
3.3V  
3.5V at 5A  
5V  
LX8384A  
121  
0.1%  
1500µF  
*
*
1500µF  
6MV1500GX  
Sanyo  
ADJ  
5x 6MV1500GX  
Sanyo  
Capacitors must  
have < 20mTotal ESR.  
218  
0.1%  
*
An application of the LX8384A for the Pentium P54C processors meeting VRE specfication.  
PACKAGE ORDER INFORMATION  
Plastic TO-220  
3-pin  
Plastic TO-263  
DD  
3-pin  
Max. Ref. Max. Dropout  
TA (°C)  
P
Accuracy  
Voltage  
2.0%  
2.0%  
1.0%  
2.0%  
1.5V  
1.3V  
1.3V  
1.5V  
LX8384-xxCP  
LX8384A-xxCP  
LX8384B-xxCP  
LX8384-xxIP  
LX8384-xxCDD  
LX8384A-xxCDD  
LX8384B-xxCDD  
LX8384-xxIDD  
0 to 125  
-25 to 125  
Note: All surface-mount packages are available in Tape & Reel, append the letter "T" to part number.  
(i.e. LX8384A-xxCDDT) "xx" refers to output voltage, please see table above.  
L I N F I N I T Y M I C R O E L E C T R O N I C S I N C .  
11861 WESTERN AVENUE, GARDEN GROVE, CA. 92841, 714-898-8121, FAX: 714-893-2570  
Copyright © 1997  
Rev. 1.9 12/97  
1
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8384-xx/8384A-xx/8384B-xx  
5 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
PACKAGE PIN OUTS  
Power Dissipation ..................................................................................Internally Limited  
Input Voltage................................................................................................................ 10V  
Input to Output Voltage Differential........................................................................... 10V  
Operating Junction Temperature  
TAB IS VOUT  
3
V
IN  
2
VOUT  
1
ADJ / GND*  
Hermetic (K - Package) ........................................................................................ 150°C  
Plastic (DD - Package).......................................................................................... 150°C  
Storage Temperature Range ...................................................................... -65°C to 150°C  
Lead Temperature (Soldering, 10 seconds)............................................................. 300°C  
P PACKAGE  
(Top View)  
* Pin 1 is GND for fixed voltage versions.  
Note 1. Exceeding these ratings could cause damage to the device. All voltages are with  
respect to Ground. Currents are positive into, negative out of the specified terminal.  
TAB IS VOUT  
THERMAL DATA  
V
3
2
1
IN  
P PACKAGE:  
VOUT  
ADJ / GND*  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
DD PACKAGE:  
2.7°C/W  
60°C/W  
DD PACKAGE  
(Top View)  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
Junction Temperature Calculation: TJ = TA + (PD x θJA).  
2.7°C/W  
60°C/W*  
* Pin 1 is GND for fixed voltage versions.  
The θJA numbers are guidelines for the thermal performance of the device/pc-board system.  
All of the above assume no ambient airflow.  
* θ can be improved with package soldered to 0.5IN2 copper area over backside ground  
pJlAane or internal power plane. θJAcan vary from 20ºC/W to > 40ºC/W depending on  
mounting technique.  
BLOCK DIAGRAM  
VIN  
Bias  
Circuit  
Bandgap  
Circuit  
Control  
Circuit  
Output  
Circuit  
Thermal  
Limit Circuit  
VOUT  
SOA Protection  
Circuit  
ADJ or  
GND*  
Current  
Limit Circuit  
* This pin GND for fixed voltage versions.  
Copyright © 1997  
Rev. 1.9 12/97  
2
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8384-xx/8384A-xx/8384B-xx  
5 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L A T O R S  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise specified, these specifications apply over the operating ambient temperatures for the LX8384-xxC/8384A-xxC/8384B-xxC with  
0°C TA 125°C, and the LX8384-xxI with -25°C TA 125°C; VIN - VOUT = 3V; IOUT = 5A. Low duty cycle pulse testing techniques are used which  
maintains junction and case temperatures equal to the ambient temperature.)  
LX8384-00 / 8384A-00 / 8384B-00 (Adjustable)  
LX8384/84A/84B-00  
Parameter  
Symbol  
Test Conditions  
Units  
Min. Typ.  
Max.  
1.238  
1.250  
1.262  
V
V
V
Reference Voltage  
(Note 4)  
LX8384/84A-00  
LX8384B-00  
VREF  
IOUT = 10mA, TA = 25°C  
10mA IOUT 5A, 1.5V (V - VOUT), V 10V, P PMAX  
1.225 1.250 1.270  
1.240 1.250 1.260  
1.238 1.250 1.262  
IN  
IN  
IOUT = 10mA, TA = 25°C  
10mA IOUT 5A, 1.5V (V - VOUT), V 10V, P PMAX  
V
IN  
IN  
0.015  
0.035  
0.15  
0.01  
83  
0.2  
0.3  
%
%
%
%/W  
dB  
Line Regulation (Note 2)  
VREF 1.3V (VIN - VOUT), VIN 7V, IOUT = 10mA  
(VIN)  
1.3V (VIN - VOUT), VIN 10V, IOUT = 10mA  
0.5  
0.02  
Load Regulation (Note 2)  
Thermal Regulation  
VREF (IOUT  
)
VOUT VREF, VIN - VOUT = 3V, 10mA IOUT 5A  
VOUT(Pwr) TA = 25°C, 20ms pulse  
VOUT = 5V, f =120Hz, COUT = 100µf Tantalum, VIN = 6.5V  
65  
20  
Ripple Rejection (Note 3)  
CADJ = 10µF, IOUT = 5A  
55  
0.2  
1.2  
1.1  
2
100  
5
µA  
µA  
V
Adjust Pin Current  
Adjust Pin Current Change (Note 4)  
IADJ  
IADJ  
V  
10mA IOUT IOUT (MAX) , 1.3V (V - VOUT), V 10V  
IN  
IN  
1.5  
1.3  
10  
Dropout Voltage  
LX8384-00  
VREF = 1%, IOUT = 5A  
VREF = 1%, IOUT = 5A  
LX8384A/84B-00  
V
mA  
A
Minimum Load Current  
IOUT (MIN)  
V 10V  
IN  
5
3
6
Maximum Output Current  
IOUT (MAX) (VIN - VOUT) 7V  
(VIN - VOUT) 10V  
4
A
0.25  
0.3  
0.003  
%
%
%
Temperature Stability (Note 3)  
Long Term Stability (Note 3)  
VOUT (T)  
VOUT (t) TA = 125°C, 1000 hours  
1
RMS Output Noise (% of VOUT) (Note 3) VOUT (RMS) TA = 25°C, 10Hz f 10kHz  
LX8384-15 / 8384A-15 / 8384B-15 (1.5V Fixed)  
LX8384/84A/84B-15  
Parameter  
Symbol  
Test Conditions  
Units  
Min. Typ.  
Max.  
Output Voltage  
(Note 4)  
LX8384/84A-15  
LX8384B-15  
VOUT  
VIN = 5V, IOUT = 0mA, TA = 25°C  
1.485  
1.470  
1.488  
1.485  
1.50  
1.50  
1.50  
1.50  
1
1.515  
1.530  
1.512  
1.515  
3
V
V
4.75V VIN 10V, 0mA IOUT 5A, P PMAX  
VIN = 5V, IOUT = 0mA, TA = 25°C  
4.75V VIN 10V, 0mA IOUT 5A, P PMAX  
V
V
Line Regulation (Note 2)  
VOUT 4.75V VIN 7V  
(VIN)  
mV  
mV  
mV  
% / W  
dB  
mA  
V
4.75V VIN 10V  
1
5
7
2.5  
0.01  
83  
Load Regulation (Note 2)  
Thermal Regulation  
Ripple Rejection (Note 3)  
Quiescent Current  
VOUT (IOUT  
)
VIN = 5V, 0mA IOUT IOUT (MAX)  
VOUT(Pwr) TA = 25°C, 20ms pulse  
COUT = 100µF (Tantalum), IOUT = 5A  
0.02  
60  
5
IQ  
V  
0mA IOUT IOUT (MAX) , 4.75V VIN 10V  
VOUT = 1%, IOUT IOUT (MAX)  
4
1.2  
1
10  
1.5  
1.3  
Dropout Voltage  
LX8384-15  
LX8384A/84B-15  
V
VOUT = 1%, IOUT IOUT (MAX)  
6
A
Maximum Output Current  
IOUT (MAX) VIN 7V  
0.25  
0.3  
0.003  
%
Temperature Stability (Note 3)  
Long Term Stability (Note 3)  
RMS Output Noise (% of VOUT) (Note 3) VOUT (RMS) TA = 25°C, 10Hz f 10kHz  
VOUT (T)  
1
%
%
VOUT (t) TA = 125°C, 1000 hours  
Note 2. Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to  
heating effects are covered under the specification for thermal regulation.  
Note 3. These parameters, although guaranteed, are not tested in production.  
Note 4. See Maximum Output Current Section above.  
Copyright © 1997  
Rev. 1.9 12/97  
3
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8384-xx/8384A-xx/8384B-xx  
5 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS (Continued)  
LX8384-33 / 8384A-33 / 8384B-33 (3.3V Fixed)  
LX8384/84A/84B-33  
Parameter  
Symbol  
Test Conditions  
Units  
Min. Typ.  
Max.  
3.267  
3.235  
3.274  
3.267  
3.30  
3.30  
3.30  
3.30  
1
3.333  
3.365  
3.326  
3.333  
6
V
V
V
Output Voltage  
(Note 4)  
LX8384/84A-33  
LX8384B-33  
VOUT  
VIN = 5V, IOUT = 0mA, TA = 25°C  
4.75V VIN 10V, 0mA IOUT 5A, P PMAX  
VIN = 5V, IOUT = 0mA, TA = 25°C  
4.75V VIN 10V, 0mA IOUT 5A, P PMAX  
V
Line Regulation (Note 2)  
VOUT 4.75V VIN 7V  
(VIN)  
mV  
mV  
mV  
% / W  
dB  
mA  
V
2
10  
4.75V VIN 10V  
Load Regulation (Note 2)  
Thermal Regulation  
VOUT (IOUT  
)
VIN = 5V, 0mA IOUT IOUT (MAX)  
VOUT(Pwr) TA = 25°C, 20ms pulse  
COUT = 100µF (Tantalum), IOUT = 5A  
5
0.01  
83  
4
1.2  
1
15  
0.02  
Ripple Rejection (Note 3)  
Quiescent Current  
60  
5
IQ  
0mA IOUT IOUT (MAX) , 4.75V VIN 10V  
VOUT = 1%, IOUT IOUT (MAX)  
VOUT = 1%, IOUT IOUT (MAX)  
10  
1.5  
1.3  
Dropout Voltage  
LX8384-33  
LX8384A/84B-33  
V  
V
A
6
Maximum Output Current  
IOUT (MAX) VIN 7V  
0.25  
0.3  
0.003  
%
%
%
Temperature Stability (Note 3)  
Long Term Stability (Note 3)  
VOUT (T)  
VOUT (t) TA = 125°C, 1000 hours  
1
RMS Output Noise (% of VOUT) (Note 3) VOUT (RMS) TA = 25°C, 10Hz f 10kHz  
Copyright © 1997  
Rev. 1.9 12/97  
4
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8384-xx/8384A-xx/8384B-xx  
5 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L A T O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
Minumum Load  
(Larger resistor)  
TheLX8384/84A/84BSeriesICsareeasytouseLow-Dropout(LDO)  
Power Supply  
LX8384/84A  
/84B  
ADJ  
IN  
OUT  
voltage regulators. They have all of the standard self-protection  
features expected of a voltage regulator: short circuit protection,  
safe operating area protection and automatic thermal shutdown if  
the device temperature rises above approximately 165°C.  
Use of an output capacitor is REQUIRED with the LX8384/84A/  
84B series. Please see the table below for recommended minimum  
capacitor values.  
Full Load  
(Smaller resistor)  
RDSON << RL  
1 sec  
10ms  
Star Ground  
These regulators offer a more tightly controlled reference voltage  
tolerance and superior reference stability when measured against  
the older pin-compatible regulator types that they replace.  
FIGURE 1 — DYNAMIC INPUT and OUTPUT TEST  
OVERLOAD RECOVERY  
Like almost all IC power regulators, the LX8384/84A/84B regulators  
are equipped with Safe Operating Area (SOA) protection. The SOA  
circuitlimitstheregulator'smaximumoutputcurrenttoprogressively  
lower values as the input-to-output voltage difference increases. By  
limiting the maximum output current, the SOA circuit keeps the  
amount of power that is dissipated in the regulator itself within safe  
limits for all values of input-to-output voltage within the operating  
rangeoftheregulator. TheLX8384/84A/84BSOAprotectionsystem  
is designed to be able to supply some output current for all values  
of input-to-output voltage, up to the device breakdown voltage.  
Under some conditions, a correctly operating SOA circuit may  
prevent a power supply system from returning to regulated opera-  
tion after removal of an intermittent short circuit at the output of the  
regulator. This is a normal mode of operation which can be seen in  
most similar products, including older devices such as 7800 series  
regulators. It is most likely to occur when the power system input  
voltage is relatively high and the load impedance is relatively low.  
When the power system is started “cold”, both the input and  
output voltages are very close to zero. The output voltage closely  
follows the rising input voltage, and the input-to-output voltage  
difference is small. The SOA circuit therefore permits the regulator  
to supply large amounts of current as needed to develop the  
designed voltage level at the regulator output.  
Now consider the case where the regulator is supplying regulated  
voltage toa resistive load under steadystateconditions. Amoderate  
input-to-output voltage appears across the regulator but the voltage  
difference is small enough that the SOA circuitry allows sufficient  
currenttoflowthroughtheregulatortodevelopthedesignedoutput  
voltage across the load resistance. If the output resistor is short-  
circuitedtoground,theinput-to-outputvoltagedifferenceacrossthe  
regulatorsuddenlybecomeslargerbytheamountofvoltagethathad  
appeared across the load resistor. The SOA circuit reads the  
increased input-to-output voltage, and cuts back the amount of  
current that it will permit the regulator to supply to its output  
terminal. When the short circuit across the output resistor is  
removed, alltheregulatoroutputcurrentwillagainflowthroughthe  
output resistor. The maximum current that the regulator can supply  
to the resistor will be limited by the SOA circuit, based on the large  
input-to-output voltage across the regulator at the time the short  
circuit is removed from the output. If this limited current is not  
sufficient to develop the designedvoltageacrosstheoutputresistor,  
STABILITY  
The output capacitor is part of the regulator’s frequency compen-  
sation system. Many types of capacitors are available, with different  
capacitance value tolerances, capacitance temperature coefficients,  
and equivalent series impedances. For all operating conditions,  
connection of a 220µF aluminum electrolytic capacitor or a 47µF  
solid tantalum capacitor between the output terminal and ground  
will guarantee stable operation.  
If a bypass capacitor is connected between the output voltage  
adjust (ADJ) pin and ground, ripple rejection will be improved  
(please see the section entitled “RIPPLE REJECTION”). When ADJ  
pinbypassingisused,therequiredoutputcapacitorvalueincreases.  
Output capacitor values of 220µF (aluminum) or 47µF (tantalum)  
provide for all cases of bypassing the ADJ pin. If an ADJ pin bypass  
capacitor is not used, smaller output capacitor values are adequate.  
Thetablebelowshowsrecommendedminimumcapacitancevalues  
for stable operation.  
RECOMMENDED CAPACITOR VALUES  
INPUT  
10µF  
10µF  
OUTPUT  
15µF Tantalum, 100µF Aluminum  
47µF Tantalum, 220µF Aluminum  
ADJ  
None  
15µF  
To ensure good transient response from the power supply system  
underrapidlychangingcurrentloadconditions,designersgenerally  
use several output capacitors connected in parallel. Such an  
arrangementservestominimizetheeffectsoftheparasiticresistance  
(ESR) and inductance (ESL) that are present in all capacitors. Cost-  
effective solutions that sufficiently limit ESR and ESL effects gener-  
ally result in total capacitance values in the range of hundreds to  
thousands of microfarads, which is more than adequate to meet  
regulator output capacitor specifications. Output capacitance  
values may be increased without limit.  
ThecircuitshowninFigure1canbeusedtoobservethetransient  
response characteristics of the regulator in a power system under  
changing loads. The effects of different capacitor types and values  
on transient response parameters, such as overshoot and under-  
shoot, can be compared quickly in order to develop an optimum  
solution.  
Copyright © 1997  
Rev. 1.9 12/97  
5
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8384-xx/8384A-xx/8384B-xx  
5 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
OVERLOAD RECOVERY (continued)  
the voltage will stabilize at some lower value, and will never reach  
thedesignedvalue. Underthesecircumstances, itmaybenecessary  
to cycle the input voltage down to zero in order to make the  
regulator output voltage return to regulation.  
LX8384/84A/84B  
IN  
OUT  
VIN  
VOUT  
ADJ  
VREF  
R1  
R2  
IADJ  
50µA  
RIPPLE REJECTION  
Ripple rejection can be improved by connecting a capacitor  
betweentheADJpinandground. Thevalueofthecapacitorshould  
be chosen so that the impedance of the capacitor is equal in  
magnitude to the resistance of R1 at the ripple frequency. The  
capacitor value can be determined by using this equation:  
R2  
R1  
VOUT = VREF 1 +  
+ IADJ R2  
FIGURE 2 — BASIC ADJUSTABLE REGULATOR  
C = 1 / (6.28 F R1)  
*
*
R
LOAD REGULATION  
where: C the value of the capacitor in Farads;  
select an equal or larger standard value.  
FR the ripple frequency in Hz  
Because the LX8384/84A/84B regulators are three-terminal devices,  
it is not possible to provide true remote load sensing. Load  
regulation will be limited by the resistance of the wire connecting  
the regulator to the load. The data sheet specification for load  
regulation is measured at the bottom of the package. Negative side  
sensing is a true Kelvin connection, with the bottom of the output  
divider returned to the negative side of the load. Although it may  
not be immediately obvious, best load regulation is obtained when  
the top of the resistor divider, (R1), is connected directly to the case  
of the regulator, not to the load. This is illustrated in Figure 3. If R1  
were connected to the load, the effective resistance between the  
regulator and the load would be:  
R1 the value of resistor R1 in ohms  
At a ripple frequency of 120Hz, with R1 = 100:  
C = 1 / (6.28 120Hz 100) = 13.3µF  
*
*
The closest equal or larger standard value should be used, in this  
case, 15µF.  
When an ADJ pin bypass capacitor is used, output ripple  
amplitude will be essentially independent of the output voltage. If  
an ADJ pin bypass capacitor is not used, output ripple will be  
proportional to the ratio of the output voltage to the reference  
voltage:  
R2+R1  
RPeff = RP  
*
R1  
M = VOUT/VREF  
where: RP Actual parasitic line resistance.  
where: M a multiplier for the ripple seen when the  
ADJ pin is optimally bypassed.  
When the circuit is connected as shown in Figure 3, the parasitic  
resistance appears as its actual value, rather than the higher RPeff.  
VREF = 1.25V.  
For example, if VOUT = 2.5V the output ripple will be:  
M = 2.5V/1.25V= 2  
R
ParaPsitic  
LX8384/84A/84B  
IN  
Line Resistance  
OUT  
VIN  
Output ripple will be twice as bad as it would be if the ADJ pin  
were to be bypassed to ground with a properly selected capacitor.  
Connect  
ADJ  
R1 to Case  
of Regulator  
R1  
OUTPUT VOLTAGE  
The LX8384/84A/84B ICs develop a 1.25V reference voltage  
between the output and the adjust terminal (See Figure 2). By  
placing a resistor, R1, between these two terminals, a constant  
current is caused to flow through R1 and down through R2 to set  
the overall output voltage. Normally this current is the specified  
minimum load current of 10mA. Because IADJ is very small and  
constant when compared with the current through R1, it represents  
a small error and can usually be ignored.  
RL  
R2  
Connect  
R2  
to Load  
FIGURE 3 — CONNECTIONS FOR BEST LOAD REGULATION  
Copyright © 1997  
Rev. 1.9 12/97  
6
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8384-xx/8384A-xx/8384B-xx  
5 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L A T O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
LOAD REGULATION (continued)  
Even when the circuit is configured optimally, parasitic resistance  
can be a significant source of error. A 100 mil wide PC trace built  
from 1 oz. copper-clad circuit board material has a parasitic  
resistance of about 5 milliohms per inch of its length at room  
temperature. If a 3-terminal regulator used to supply 2.50 volts is  
connected by 2 inches of this trace to a load which draws 5 amps  
of current, a50 millivolt dropwill appearbetween theregulatorand  
the load. Even when the regulator output voltage is precisely  
2.50 volts, the load will only see 2.45 volts, which is a 2% error. It  
is important to keep the connection between the regulator output  
pin and the load as short as possible, and to use wide traces or  
heavy-gauge wire.  
can be used, as long as its added contribution to thermal resistance  
is considered. Note that the case of all devices in this series is  
electrically connected to the output.  
Example  
Given: VIN = 5V  
VOUT = 2.8V, IOUT = 5.0A  
Ambient Temp., TA = 50°C  
RθJT = 2.7°C/W for TO-220  
300 ft/min airflow available  
Find: Proper Heat Sink to keep IC's junction  
temperature below 125°C.**  
The minimum specified output capacitance for the regulator  
should be located near the reglator package. If several capacitors  
are used in parallel to construct the power system output capaci-  
tance, any capacitors beyond the minimum needed to meet the  
specified requirements of the regulator should be located near the  
sections of the load that require rapidly-changing amounts of  
current. Placing capacitors near the sources of load transients will  
help ensure that power system transient response is not impaired  
by the effects of trace impedance.  
To maintain good load regulation, wide traces should be used on  
the input side of the regulator, especially between the input  
capacitors and the regulator. Input capacitor ESR must be small  
enoughthatthevoltageattheinputpindoesnotdropbelowVIN(MIN)  
during transients.  
Solution: The junction temperature is:  
TJ = PD (RθJT + RθCS + RθSA) + TA  
where: PD Dissipated power.  
RθJT Thermal resistance from the junction to the  
mounting tab of the package.  
RθCS Thermal resistance through the interface  
between the IC and the surface on which  
it is mounted. (1.0°C/W at 6 in-lbs  
mounting screw torque.)  
RθSA  
Thermal resistance from the mounting surface  
to ambient (thermal resistance of the heat sink).  
TS Heat sink temperature.  
TJ TC TS  
TA  
VIN (MIN) = VOUT + VDROPOUT (MAX)  
RθJT  
RθCS  
RθSA  
where: VIN (MIN)  
VOUT  
the lowest allowable instantaneous  
voltage at the input pin.  
the designed output voltage for the  
power supply system.  
First, find the maximum allowable thermal resistance of the  
heat sink:  
TJ - TA  
RθSA  
=
- (RθJT + RθCS)  
PD  
VDROPOUT (MAX) the specified dropout voltage  
for the installed regulator.  
PD = (VIN(MAX) - VOUT) IOUT = (5.0V-2.8V) 5.0A  
*
= 11.0W  
THERMAL CONSIDERATIONS  
125°C - 50°C  
RθSA  
=
- (2.7°C/W+ 1.0°C/W)  
The LX8384/84A/84B regulators have internal power and thermal  
limiting circuitry designed to protect each device under overload  
conditions. For continuous normal load conditions, however,  
maximum junction temperature ratings must not be exceeded. It is  
important to give careful consideration to all sources of thermal  
resistance from junction to ambient. This includes junction to case,  
case to heat sink interface, and heat sink thermal resistance itself.  
Junction-to-case thermal resistance is specified from the IC  
junction to the back surface of the case directly opposite the die.  
This is the lowest resistance path for heat flow. Proper mounting  
is required to ensure the best possible thermal flow from this area  
of the package to the heat sink. Thermal compound at the case-to-  
heat-sink interface is strongly recommended. If the case of the  
device must be electrically isolated, a thermally conductive spacer  
(5.0V-2.8V) 5.0A  
*
= 3.1°C/W  
Next,selectasuitableheatsink. Theselectedheatsinkmusthave  
RθSA3.1°C/W. Thermalloyheatsink6296BhasRθSA =3.0°C/Wwith  
300ft/min air flow.  
Finally, verify that junction temperature remains within speci-  
fication using the selected heat sink:  
TJ = 11W (2.7°C/W + 1.0°C/W + 3.0°C/W) + 50°C = 124°C  
** Although the device can operate up to 150°C junction, it is recom-  
mended for long term reliability to keep the junction temperature  
below 125°C whenever possible.  
Copyright © 1997  
Rev. 1.9 12/97  
7
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8384-xx/8384A-xx/8384B-xx  
5 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
TYPICAL APPLICATIONS  
LX8384/84A/84B  
OUT  
LX8384/84A/84B  
OUT  
VIN  
(Note A)  
(Note A)  
VIN  
IN  
VOUT**  
5V  
VOUT  
IN  
ADJ  
R1  
121  
R1  
121  
1%  
ADJ  
10µF  
C2  
100µF  
C1*  
10µF  
150µF  
R2  
1k  
R2  
C1  
10µF*  
* C1 improves ripple rejection.  
XC should be R1 at ripple  
frequency.  
365Ω  
1%  
* Needed if device is far from filter capacitors.  
R2  
R1  
**VOUT = 1.25V 1 +  
FIGURE 4 — IMPROVING RIPPLE REJECTION  
FIGURE 5 — 1.2V - 8V ADJUSTABLE REGULATOR  
LX8384/84A/84B  
VIN  
(Note A)  
OUT  
IN  
5V  
ADJ  
121  
1%  
100µF  
10µF  
1k  
TTL  
Output  
2N3904  
365Ω  
1%  
1k  
FIGURE 6 — 5V REGULATOR WITH SHUTDOWN  
LX8384/84A/84B-33  
VIN  
OUT  
IN  
3.3V  
GND  
10µF Tantalum  
or 100µF Aluminum  
Min. 15µF Tantalum or  
100µF Aluminum capacitor.  
May be increased without  
limit. ESR must be less  
than 50m.  
FIGURE 7 — FIXED 3.3V OUTPUT REGULATOR  
Note A: VIN (MIN) = (Intended VOUT) + (VDROPOUT (MAX)  
)
Pentium is a registered trademark of Intel Corporation.  
Cyrix is a registered trademark and 6x86 is a trademark of Cyrix Corporation. K5 is a trademark of AMD.  
PRODUCTION DATA - Information contained in this document is proprietary to Linfinity, and is current as of publication date. This document  
may not be modified in any way without the express written consent of Linfinity. Product processing does not necessarily include testing of  
all parameters. Linfinity reserves the right to change the configuration and performance of the product and to discontinue product at any time.  
Copyright © 1997  
Rev. 1.9 12/97  
8

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY