LX8582A-00CV [MICROSEMI]

8.5A LOW DROPOUT POSITIVE REGULATORS; 8.5A低压差正稳压器
LX8582A-00CV
型号: LX8582A-00CV
厂家: Microsemi    Microsemi
描述:

8.5A LOW DROPOUT POSITIVE REGULATORS
8.5A低压差正稳压器

线性稳压器IC 调节器 电源电路 输出元件 局域网
文件: 总7页 (文件大小:201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LIN DOC #: 8582  
LX8582A-xx  
8.5A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
T H E I N F I N I T E P O W E R O F I N N O V A T I O N  
P R O D U C T I O N D A T A S H E E T  
DESCRIPTION  
KEY FEATURES  
THREE-TERMINAL AJUSTABLE OR FIXED  
The LX8582A series ICs are low  
to ensure adequate output current and  
OUTPUT  
dropout three-terminal positive regula-  
tors with 8.5A rated output current.  
Processor applications such as the  
Cyrix® 6x86TM & 6x86LTM, Pentium®  
Processor and Power PCTM applications  
requiring fast transient response are  
ideally suited for this product family.  
The LX8582A series products are  
guaranteed to have < 1.3V at 8.5A  
and are ideal to provide well-regulated  
outputs of 2.5V to 3.6V using a 5V  
input supply in the adjustable version,  
or an output of 3.3V using a 5V input  
supply in the fixed version.  
controlled short-circuit current. On-  
chip thermal limiting provides protec-  
tion against any combination of  
overload that would create excessive  
junction temperatures.  
The LX8582A series ICs are available  
in both the through-hole versions of the  
industry standard 3-pin TO-220 and TO-  
247 power packages.  
For use in VRE applications, the  
LX1431 Programmable Reference in  
conjunction with this family of regula-  
tors offers precision output voltage.  
See the LX1431 data sheet for informa-  
tion on this product.  
GUARANTEED 1.3V HEADROOM AT 8.5A  
OUTPUT CURRENT OF 8.5A  
p FAST TRANSIENT RESPONSE  
p 1% VOLTAGE REFERENCE INITIAL  
ACCURACY  
p OUTPUT SHORT CIRCUIT PROTECTION  
p BUILT-IN THERMAL SHUTDOWN  
EVALUATION BOARD AVAILABLE:  
REQUEST LXE9001 EVALUATION KIT  
APPLICATIONS  
CYRIX 6x86 & 6x86L APPLICATIONS  
PENTIUM PROCESSOR SUPPLIES  
POWER PC SUPPLIES  
Current limit is trimmed above 8.6A  
MICROPROCESSOR SUPPLIES  
LOW VOLTAGE LOGIC SUPPLIES  
POST REGULATOR FOR SWITCHING SUPPLY  
PRODUCT HIGHLIGHT  
CYRIX 6X86 VOLTAGE SUPPLY  
3.38V, 8.5A REGULATOR  
LXE9001 EVALUATION BOARD FOR  
PENTIUM APPLICATIONS AVAILABLE.  
CONSULT FACTORY.  
AVAILABLE OPTIONS PER PAR T #  
IN  
OUT  
3.38V at 8.5A  
VIN 4.75V  
LX8582A  
Output  
Part #  
R1  
Voltage  
1500µF  
2x 330µF, 6.3V  
Oscon SA type  
from Sanyo  
-or-  
121  
VREF  
ADJ  
6.3V  
6MV1500GX  
from Sanyo  
LX8582A-00  
LX8582A-33  
Adjustable  
3.3V  
1%  
4x 1500µF, 6.3V  
6MV1500GX  
from Sanyo  
Other voltage options may be available —  
Please contact factory for details.  
IADJ = 50µA  
+ IADJ R2  
R2  
205  
1%  
R2  
R1  
VOUT = VREF 1 +  
Application of the LX8582A for the Cyrix 6x86 processor family.  
This circuit is designed to have less than 130mV dynamic response to a 8.5A load transient.  
PACKAGE ORDER INFORMATION  
Plastic TO-220  
3-pin  
Plastic TO-247  
3-terminal  
Dropout  
Voltage  
TA (°C)  
P
V
0 to 125  
1.3V  
LX8582A-xxCP  
LX8582A-xxCV  
"xx" refers to output voltage, please see table above.  
F O R F U R T H E R I N F O R M AT I O N C A L L ( 7 1 4 ) 8 9 8 - 8 1 2 1  
Copyright © 1997  
Rev. 1.1 1/97  
1
11861 WESTERN AVENUE, GARDEN GROVE, CA. 92841  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8582A-xx  
8.5A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
PACKAGE PIN OUTS  
Power Dissipation .................................................................................. Internally Limited  
Input Voltage................................................................................................................ 10V  
Input to Output Voltage Differential........................................................................... 10V  
Operating Junction Temperature  
Plastic (P Package) ................................................................................................ 150°C  
Storage Temperature Range ...................................................................... -65°C to 150°C  
Lead Temperature (Soldering, 10 seconds) ............................................................. 300°C  
TAB IS VOUT  
3
VIN  
2
1
VOUT  
ADJ /  
GND*  
P PACKAGE  
(Top View)  
Note 1. Exceeding these ratings could cause damage to the device. All voltages are with respect  
to Ground. Currents are positive into, negative out of the specified terminal.  
* Pin 1 is GND for fixed voltage versions.  
TAB ON REVERSE SIDE IS VOUT  
THERMAL DATA  
P PACKAGE:  
3
VIN  
2
1
VOUT  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
V PACKAGE:  
2.7°C/W  
60°C/W  
ADJ /  
GND*  
V PACKAGE  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
1.6°C/W  
35°C/W  
(Top View)  
* Pin 1 is GND for fixed voltage versions.  
Junction Temperature Calculation: TJ = TA + (PD x θJA).  
The θJA numbers are guidelines for the thermal performance of the device/pc-board system.  
All of the above assume no ambient airflow.  
Copyright © 1997  
Rev. 1.1 1/97  
2
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8582A-xx  
8.5A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise specified, these specifications apply over the operating ambient temperatures for the LX8582A-xxC with 0°C TA 125°C; VIN - VOUT  
=
3V; IOUT = 8.5A. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)  
LX8582A-00 (Adjustable)  
LX8582A-00  
Min. Typ.  
Parameter  
Symbol  
Test Conditions  
Units  
Max.  
Reference Voltage  
VREF  
IOUT = 10mA, TA = 25°C  
10mA IOUT 8.5A, 1.5V (V - VOUT), VIN 7V, P PMAX  
1.238 1.250 1.262  
1.225 1.250 1.275  
V
V
IN  
Line Regulation (Note 2)  
Load Regulation (Note 2)  
Thermal Regulation  
VREF (V ) IOUT = 10mA, 1.5V (VIN - VOUT), VIN 7V  
0.035  
0.1  
0.01  
83  
0.2  
0.5  
0.02  
%
IN  
VREF (IOUT  
)
(VIN - VOUT) = 3V, 10mA IOUT 8.5A  
VOUT(Pwr) TA = 25°C, 20ms pulse  
VOUT = 3.3V, f =120Hz, COUT = 100µf Tantalum, VIN = 5V  
%
%/W  
dB  
Ripple Rejection (Note 3)  
65  
CADJ = 10µF, TA = 25°C, IOUT = 8.5A  
Adjust Pin Current  
IADJ  
IADJ  
V  
55  
0.2  
1.1  
100  
5
1.3  
10  
µA  
µA  
V
Adjust Pin Current Change  
Dropout Voltage  
Minimum Load Current  
Maximum Output Current  
Temperature Stability  
Long Term Stability  
10mA IOUT 8.5A, 1.5V (V - VOUT), VIN 7V  
IN  
VREF = 1%, IOUT = 8.5A  
IOUT(MIN) VIN 7V  
2
9.2  
mA  
A
IOUT(MAX) 1.4V (VIN - VOUT), VIN 7V  
VOUT (T)  
8.6  
0.25  
0.3  
0.003  
%
VOUT (t) TA = 125°C, 1000 hrs  
VOUT (RMS) TA = 25°C, 10Hz f 10kHz  
1
%
%
RMS Output Noise (% of VOUT  
)
LX8582A-33 (3.3V Fixed)  
Parameter  
LX8582A-33  
Symbol  
Test Conditions  
Units  
Min. Typ.  
Max.  
Output Voltage (Note 4)  
VOUT  
VIN = 5V, IOUT = 0mA, TA = 25°C  
4.75V VIN 10V, 0mA IOUT 8.5A, P PMAX  
3.267  
3.235  
3.3  
3.3  
1
3.333  
3.365  
6
V
V
Line Regulation (Note 2)  
VOUT 4.75V VIN 7V  
(VIN)  
mV  
mV  
mV  
% / W  
dB  
mA  
V
4.75V VIN 10V  
2
10  
Load Regulation (Note 2)  
Thermal Regulation (Note 3)  
Ripple Rejection (Note 3)  
Quiescent Current  
VOUT (IOUT  
)
VIN = 5V, 0mA IOUT IOUT (MAX)  
5
0.01  
83  
15  
0.02  
VOUT(Pwr) TA = 25°C, 20ms pulse  
COUT = 100µF (Tantalum), IOUT = 8.5A, TA = 25°C  
60  
IQ  
V  
0mA IOUT IOUT (MAX) , 4.75V VIN 10V  
VOUT = 1%, IOUT = IOUT (MAX)  
4
10  
1.3  
Dropout Voltage  
1.1  
9.2  
0.25  
0.3  
0.003  
Maximum Output Current  
Temperature Stability (Note 3)  
Long Term Stability (Note 3)  
IOUT (MAX) VIN 7V  
8.6  
A
%
%
VOUT (T)  
VOUT (t) TA = 125°C, 1000 hours  
1
%
RMS Output Noise (% of VOUT) (Note 3) VOUT (RMS) TA = 25°C, 10Hz f 10kHz  
Note 2. Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to  
heating effects are covered under the specification for thermal regulation.  
Note 3. These parameters, although guaranteed, are not tested in production.  
Copyright © 1997  
Rev. 1.1 1/97  
3
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8582A-xx  
8.5A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
Minumum Load  
(Larger resistor)  
The LX8582A is an easy to use Low-Dropout (LDO) voltage  
regulator. Ithasallofthestandardself-protectionfeaturesexpected  
of a voltage regulator: short circuit protection, safe operating area  
protection and automatic thermal shutdown if the device tempera-  
ture rises above approximately 165°C.  
Power Supply  
IN  
OUT  
LX8582A  
Full Load  
(Smaller resistor)  
ADJ  
RDSON << RL  
Use of an output capacitor is REQUIRED with the LX8582A.  
Please see the table below for recommended minimum capacitor  
values.  
1 sec  
10ms  
Star Ground  
The regulator offers a more tightly controlled reference voltage  
tolerance and superior reference stability when measured against  
the older pin-compatible regulator types that it replaces.  
FIGURE 1 — DYNAMIC INPUT and OUTPUT TEST  
OVERLOAD RECOVERY  
Like almost all IC power regulators, the LX8582A is equipped with  
Safe Operating Area (SOA) protection. The SOA circuit limits the  
regulator's maximum output current to progressively lower values  
as the input-to-output voltage difference increases. By limiting the  
maximum output current, the SOA circuit keeps the amount of  
power that is dissipated in the regulator itself within safe limits for  
all values of input-to-output voltage within the operating range of  
the regulator. The LX8582A SOA protection system is designed to  
be able to supply some output current for all values of input-to-  
output voltage, up to the device breakdown voltage.  
Under some conditions, a correctly operating SOA circuit may  
prevent a power supply system from returning to regulated  
operation after removal of an intermittent short circuit at the output  
of the regulator. This is a normal mode of operation which can be  
seen in most similar products, including older devices such as 7800  
series regulators. It is most likely to occur when the power system  
input voltage is relatively high and the load impedance is relatively  
low.  
STABILITY  
The output capacitor is part of the regulator’s frequency compen-  
sation system. Many types of capacitors are available, with different  
capacitance value tolerances, capacitance temperature coefficients,  
and equivalent series impedances. For all operating conditions,  
connection of a 220µF aluminum electrolytic capacitor or a 47µF  
solid tantalum capacitor between the output terminal and ground  
will guarantee stable operation.  
If a bypass capacitor is connected between the output voltage  
adjust (ADJ) pin and ground, ripple rejection will be improved  
(please see the section entitled “RIPPLE REJECTION”). When ADJ  
pinbypassingisused,therequiredoutputcapacitorvalueincreases.  
Output capacitor values of 220µF (aluminum) or 47µF (tantalum)  
provide for all cases of bypassing the ADJ pin. If an ADJ pin bypass  
capacitor is not used, smaller output capacitor values are adequate.  
Thetablebelowshowsrecommendedminimumcapacitancevalues  
for stable operation.  
When the power system is started “cold”, both the input and  
output voltages are very close to zero. The output voltage closely  
follows the rising input voltage, and the input-to-output voltage  
difference is small. The SOA circuit therefore permits the regulator  
to supply large amounts of current as needed to develop the  
designed voltage level at the regulator output. Now consider the  
casewheretheregulatorissupplyingregulatedvoltagetoaresistive  
load under steady state conditions. A moderate input-to-output  
voltage appears across the regulator but the voltage difference is  
small enough that the SOA circuitry allows sufficient current to flow  
throughtheregulatortodevelopthedesignedoutputvoltageacross  
theloadresistance. Iftheoutputresistorisshort-circuitedtoground,  
theinput-to-outputvoltagedifferenceacrosstheregulatorsuddenly  
becomes larger by the amount of voltage that had appeared across  
the load resistor. The SOA circuit reads the increased input-to-  
output voltage, and cuts back the amount of current that it will  
permittheregulatortosupplytoitsoutputterminal. Whentheshort  
circuit across the output resistor is removed, all the regulator output  
current will again flow through the output resistor. The maximum  
current that the regulator can supply to the resistor will be limited  
bytheSOAcircuit,basedonthelargeinput-to-outputvoltageacross  
theregulatoratthetimetheshortcircuitisremovedfromtheoutput.  
RECOMMENDED CAPACITOR VALUES  
INPUT  
OUTPUT  
ADJ  
None  
15µF  
10µF  
10µF  
15µF Tantalum, 100µF Aluminum  
47µF Tantalum, 220µF Aluminum  
In order to ensure good transient response from the power supply  
system under rapidly changing current load conditions, designers  
generally use several output capacitors connected in parallel. Such  
an arrangement serves to minimize the effects of the parasitic  
resistance (ESR) and inductance (ESL) that are present in all  
capacitors. Cost-effective solutions that sufficiently limit ESR and  
ESL effects generally result in total capacitance values in the range  
of hundreds to thousands of microfarads, which is more than  
adequate to meet regulator output capacitor specifications. Output  
capacitance values may be increased without limit.  
ThecircuitshowninFigure1canbeusedtoobservethetransient  
response characteristics of the regulator in a power system under  
changing loads. The effects of different capacitor types and values  
on transient response parameters, such as overshoot and under-  
shoot, can be quickly compared in order to develop an optimum  
solution.  
Copyright © 1997  
Rev. 1.1 1/97  
4
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8582A-xx  
8.5A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
OVERLOAD RECOVERY (continued)  
If this limited current is not sufficient to develop the designed  
voltage across the output resistor, the voltage will stabilize at some  
lower value, and willnever reach the designed value. Under these  
circumstances, it may be necessary to cycle the input voltage down  
to zero in order to make the regulator output voltage return to  
regulation.  
LX8582A  
OUT  
IN  
VIN  
VOUT  
ADJ  
VREF  
R1  
R2  
IADJ  
50µA  
RIPPLE REJECTION  
R2  
R1  
VOUT = VREF 1 +  
+ IADJ R2  
Ripple rejection can be improved by connecting a capacitor  
betweentheADJpinandground. Thevalueofthecapacitorshould  
be chosen so that the impedance of the capacitor is equal in  
magnitude to the resistance of R1 at the ripple frequency. The  
capacitor value can be determined by using this equation:  
FIGURE 2 — BASIC ADJUSTABLE REGULATOR  
LOAD REGULATION  
C = 1 / (6.28 F R1)  
*
*
Because theLX8582A is a three-terminal device, it is not possible to  
provide true remote load sensing. Load regulation will be limited  
by the resistance of the wire connecting the regulator to the load.  
The data sheet specification for load regulation is measured at the  
bottom of the package. Negative side sensing is a true Kelvin  
connection, with the bottom of the output divider returned to the  
negative side of the load. Although it may not be immediately  
obvious,bestloadregulationisobtainedwhenthetopoftheresistor  
divider, (R1), is connected directly to the case of the regulator, not  
to the load. This is illustrated in Figure 3. If R1 were connected to  
the load, the effective resistance between the regulator and the load  
would be:  
R
where: C the value of the capacitor in Farads;  
select an equal or larger standard value.  
FR the ripple frequency in Hz  
R1 the value of resistor R1 in ohms  
At a ripple frequency of 120Hz, with R1 = 100:  
C = 1 / (6.28 120Hz 100) = 13.3µF  
*
*
The closest equal or larger standard value should be used, in this  
case, 15µF.  
When an ADJ pin bypass capacitor is used, output ripple  
amplitude will be essentially independent of the output voltage. If  
an ADJ pin bypass capacitor is not used, output ripple will be  
proportional to the ratio of the output voltage to the reference  
voltage:  
R2+R1  
R1  
RPeff = RP  
*
where: RP Actual parasitic line resistance.  
M = VOUT/VREF  
When the circuit is connected as shown in Figure 3, the parasitic  
resistance appears as its actual value, rather than the higher RPeff.  
where: M a multiplier for the ripple seen when the  
ADJ pin is optimally bypassed.  
VREF = 1.25V.  
R
ParaPsitic  
LX8582A  
Line Resistance  
For example, if VOUT = 2.5V the output ripple will be:  
M = 2.5V/1.25V= 2  
OUT  
IN  
VIN  
ADJ  
Connect  
R1 to Case  
of Regulator  
Output ripple will be twice as bad as it would be if the ADJ pin  
were to be bypassed to ground with a properly selected capacitor.  
R1  
R2  
RL  
OUTPUT VOLTAGE  
Connect  
R2  
The LX8582A develops a 1.25V reference voltage between the output  
and the adjust terminal (See Figure 2). By placing a resistor, R1,  
between these two terminals, a constant current is caused to flow  
through R1 and down through R2 to set the overall output voltage.  
Normally this current is the specified minimum load current of 10mA.  
BecauseIADJisverysmallandconstantwhencomparedwiththecurrent  
through R1, it represents a small error and can usually be ignored.  
to Load  
FIGURE 3 — CONNECTIONS FOR BEST LOAD REGULATION  
Copyright © 1997  
Rev. 1.1 1/97  
5
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8582A-xx  
8.5A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
LOAD REGULATION (continued)  
Even when the circuit is optimally configured, parasitic resistance  
can be a significant source of error. A 100 mil (2.54 mm) wide PC  
trace built from 1 oz. copper-clad circuit board material has a  
parasitic resistance of about 5 milliohms per inch of its length at  
roomtemperature. Ifa3-terminalregulatorusedtosupply2.50volts  
is connected by 2 inches of this trace to a load which draws 5 amps  
of current, a50 millivolt dropwill appearbetween theregulatorand  
the load. Even when the regulator output voltage is precisely  
2.50 volts, the load will only see 2.45 volts, which is a 2% error. It  
is important to keep the connection between the regulator output  
pin and the load as short as possible, and to use wide traces or  
heavy-gauge wire.  
can be used, as long as its added contribution to thermal resistance  
is considered. Note that the case of all devices in this series is  
electrically connected to the output.  
Example  
Given: VIN = 5V  
VOUT = 2.8V, IOUT = 5.0A  
Ambient Temp., TA = 50°C  
RθJT = 2.7°C/W for TO-220  
300 ft/min airflow available  
Find: Proper Heat Sink to keep IC's junction  
temperature below 125°C.**  
The minimum specified output capacitance for the regulator  
should be located near the reglator package. If several capacitors  
are used in parallel to construct the power system output capaci-  
tance, any capacitors beyond the minimum needed to meet the  
specified requirements of the regulator should be located near the  
sections of the load that require rapidly-changing amounts of  
current. Placing capacitors near the sources of load transients will  
help ensure that power system transient response is not impaired  
by the effects of trace impedance.  
To maintain good load regulation, wide traces should be used on  
the input side of the regulator, especially between the input  
capacitors and the regulator. Input capacitor ESR must be small  
enoughthatthevoltageattheinputpindoesnotdropbelowVIN(MIN)  
during transients.  
Solution: The junction temperature is:  
TJ = PD (RθJT + RθCS + RθSA) + TA  
where: PD Dissipated power.  
RθJT Thermal resistance from the junction to the  
mounting tab of the package.  
RθCS Thermal resistance through the interface  
between the IC and the surface on which  
it is mounted. (1.0°C/W at 6 in-lbs  
mounting screw torque.)  
RθSA  
Thermal resistance from the mounting surface  
to ambient (thermal resistance of the heat sink).  
TS Heat sink temperature.  
TJ TC TS  
TA  
VIN (MIN) = VOUT + VDROPOUT (MAX)  
Rq JT  
RqCS  
RqSA  
where: VIN (MIN)  
VOUT  
the lowest allowable instantaneous  
voltage at the input pin.  
the designed output voltage for the  
power supply system.  
First, find the maximum allowable thermal resistance of the  
heat sink:  
TJ - TA  
RθSA  
=
- (RθJT + RθCS)  
PD  
VDROPOUT (MAX) the specified dropout voltage  
for the installed regulator.  
PD = (VIN(MAX) - VOUT) IOUT = (5.0V-2.8V) 5.0A  
*
= 11.0W  
THERMAL CONSIDERATIONS  
125°C - 50°C  
RθSA  
=
- (2.7°C/W + 1.0°C/W)  
The LX8582A regulator has internal power and thermal limiting  
circuitry designed to protect the device under overload conditions.  
For continuous normal load conditions, however, maximum junc-  
tion temperature ratings must not be exceeded. It is important to  
give careful consideration to all sources of thermal resistance from  
junctiontoambient. Thisincludesjunctiontocase, casetoheatsink  
interface, and heat sink thermal resistance itself.  
Junction-to-case thermal resistance is specified from the IC  
junction to the back surface of the case directly opposite the die.  
This is the lowest resistance path for heat flow. Proper mounting  
is required to ensure the best possible thermal flow from this area  
of the package to the heat sink. Thermal compound at the case-to-  
heat-sink interface is strongly recommended. If the case of the  
device must be electrically isolated, a thermally conductive spacer  
(5.0V-2.8V) 5.0A  
*
= 3.1°C/W  
Next,selectasuitableheatsink. Theselectedheatsinkmusthave  
RθSA3.1°C/W. Thermalloyheatsink6296BhasRθSA =3.0°C/Wwith  
300ft/min air flow.  
Finally, verify that junction temperature remains within speci-  
fication using the selected heat sink:  
TJ = 11W (2.7°C/W + 1.0°C/W + 3.0°C/W) + 50°C = 124°C  
** Although the device can operate up to 150°C junction, it is recom-  
mended for long term reliability to keep the junction temperature  
below 125°C whenever possible.  
Copyright © 1997  
Rev. 1.1 1/97  
6
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8582A-xx  
8.5A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
TYPICAL APPLICATIONS  
LX8582A  
LX8582A  
VIN  
(Note A)  
(Note A)  
VIN  
OUT  
IN  
VOUT**  
5V  
VOUT  
OUT  
IN  
ADJ  
R1  
121W  
R1  
ADJ  
10µF  
121W  
C2  
100µF  
C1*  
1%  
10µF  
150µF  
R2  
1k  
R2  
C1  
* C1 improves ripple rejection.  
XC should be » R1 at ripple  
frequency.  
365W  
10µF*  
1%  
* Needed if device is far from filter capacitors.  
R2  
R1  
**VOUT = 1.25V 1 +  
FIGURE 4 — IMPROVING RIPPLE REJECTION  
FIGURE 5 — 1.2V - 8V ADJUSTABLE REGULATOR  
LX8582A  
VIN  
(Note A)  
OUT  
IN  
5V  
ADJ  
121W  
1%  
100µF  
10µF  
1k  
TTL  
Output  
2N3904  
365W  
1%  
1k  
FIGURE 6 — 5V REGULATOR WITH SHUTDOWN  
LX8582A-33  
VIN  
OUT  
IN  
3.3V  
GND  
10µF Tantalum  
or 100µF Aluminum  
Min. 15µF Tantalum or  
100µF Aluminum capacitor.  
May be increased without  
limit. ESR must be less  
than 50mW.  
FIGURE 7 — FIXED 3.3V OUTPUT REGULATOR  
Note A: VIN (MIN) = (Intended VOUT) + (VDROPOUT (MAX)  
)
Cyrix is a registered trademark and 6x86 and 6x86L are trademarks of Cyrix Corporation. Pentium is a registered  
trademark of Intel Corporation. Power PC is a trademark of International Business Machines Corporation.  
Copyright © 1997  
Rev. 1.1 1/97  
7

相关型号:

LX8582A-33

8.5A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8582A-33CP

8.5A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8582A-33CV

8.5A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8582A-XX

8.5A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8582A33CP

Positive Adjustable Voltage Regulator
ETC

LX8582A33CV

Positive Adjustable Voltage Regulator
ETC

LX8584-00

7 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8584-00CP

7 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8584-00CP-TR

Adjustable Positive LDO Regulator
MICROSEMI

LX8584-00CV

7 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8584-14CP

7A Low Dropout Positive Regualtors
MICROSEMI

LX8584-33

7 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI