LX8587-15CDT [MICROSEMI]

暂无描述;
LX8587-15CDT
型号: LX8587-15CDT
厂家: Microsemi    Microsemi
描述:

暂无描述

稳压器
文件: 总8页 (文件大小:213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LIN DOC #: 8587  
LX8587-xx/8587A-xx  
3 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
T H E I N F I N I T E P O W E R O F I N N O V A T I O N  
P R O D U C T I O N D A T A S H E E T  
DESCRIPTION  
KEY FEATURES  
Three-Terminal Adjustable Or Fixed  
The LX8587/8587A series ICs are low  
dropout three-terminal positive regulators  
with a nominal 3A output current. Pen-  
tium® Processor and Power PCTM appli-  
cations requiring fast transient response  
are ideally suited for this product family.  
The LX8587A is guaranteed to have  
< 1.2V dropout at 3A and the LX8587  
< 1.3V at the same current, making  
them ideal to provide well-regulated out-  
puts of 2.5V to 3.6V using a 5V input  
supply. Fixed versions are also available  
and specified in the Available Options  
table below.  
Current limit is trimmed above 3.1A to  
ensure adequate output current and con-  
Output  
Guaranteed 1.2V Headroom At 3A  
trolled short-circuit current. On-chip  
thermal limiting provides protection  
against any combination of overload con-  
ditions that would create excessive junc-  
tion temperatures.  
The LX8587/87A family of products are  
available in both TO-220 through-hole  
as well as TO-263 surface-mount pack-  
ages. For higher current applications,  
see the LX8585 and LX8584 data sheets.  
(LX8587A)  
Guaranteed 1.3V Headroom At 3A  
(LX8587)  
Output Current Of 3A  
p Fast Transient Response  
p 1% Voltage Reference Initial Accuracy  
p Output Short Circuit Protection  
p Built-In Thermal Shutdown  
APPLICATIONS  
Pentium Processor Supplies  
Power PC Supplies  
IMPORTANT: For the most current data, consult LinFinity's web site: http://www.linfinity.com.  
Microprocessor Supplies  
Low Voltage Logic Supplies  
Post Regulator For Switching Supply  
ASIC & Low Voltage Chipset Supplies  
Graphics & Sound Cards  
PRODUCT HIGHLIGHT  
TYPICAL APPLICATION OF THE LX8587/87A IN A 5V TO 3.3V MOTHERBOARD APPLICATION  
Processor I/O Supply  
VIN  
³
4.75  
3.3V/3A  
LX8587A  
121  
W
2x 1500µF  
AVAILABLE OPTIONS PER PAR T #  
1500µF  
6MV1500GX  
Sanyo  
Output  
6MV1500GX  
Part #  
Voltage  
200  
W
LX8587/87A-00  
LX8587/87A-15  
LX8587/87A-33  
Adjustable  
1.5V  
3.3V  
Other voltage options may be available —  
The output capacitors must be low ESR and low ESL type for good transient response.  
Please contact factory for details.  
PACKAGE ORDER INFORMATION  
Plastic TO-220  
3-pin  
Plastic TO-263  
Dropout  
Voltage  
TA (°C)  
P
DD  
3-pin  
1.3V  
1.2V  
LX8587-xxCP  
LX8587-xxCDD  
0 to 125  
LX8587A-xxCP  
LX8587A-xxCDD  
Note: All surface-mount packages are available in Tape & Reel.  
Append the letter "T" to part number. (i.e. LX8587A-00CDDT)  
"xx" refers to output voltage, please see table above.  
L I N F I N I T Y M I C R O E L E C T R O N I C S I N C .  
11861 WESTERN AVENUE, GARDEN GROVE, CA. 92841, 714-898-8121, FAX: 714-893-2570  
Copyright © 1998  
Rev. 1.2 3/98  
1
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8587-xx/8587A-xx  
3 A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
PACKAGE PIN OUTS  
Power Dissipation ................................................................................ Internally Limited  
Input Voltage ............................................................................................................... 10V  
Input to Output Voltage Differential.......................................................................... 10V  
Maximum Output Current............................................................................................. 5A  
Operating Junction Temperature  
Plastic (P Package) ...............................................................................................150°C  
Storage Temperature Range......................................................................-65°C to 150°C  
Lead Temperature (Soldering, 10 seconds)............................................................ 300°C  
TAB IS VOUT  
3
VIN  
2
1
VOUT  
ADJ /  
GND*  
P PACKAGE  
(Top View)  
* Pin 1 is GND for fixed voltage versions.  
Note 1. Exceeding these ratings could cause damage to the device. All voltages are with  
respect to Ground. Currents are positive into, negative out of the specified terminal.  
TAB IS VOUT  
THERMAL DATA  
3
2
1
VIN  
P PACKAGE:  
VOUT  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
DD PACKAGE:  
3.0°C/W  
60°C/W  
ADJ / GND*  
DD PACKAGE  
(Top View)  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
3.0°C/W  
60°C/W*  
* Pin 1 is GND for fixed voltage versions.  
Junction Temperature Calculation: TJ = TA + (P x θJA).  
The θJA numbers are guidelines for the thermal Dperformance of the device/pc-board system.  
All of the above assume no ambient airflow.  
* With package soldered to 0.5 in.2 copper area over back-side ground plane or internal  
power plane, θJA can vary from 20°C/W to 40°C/W, depending on mounting technique.  
Copyright © 1998  
Rev. 1.2 3/98  
2
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8587-xx/8587A-xx  
3 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise specified, these specifications apply over the operating ambient temperatures for the LX8587-xx/87A-xx with 0°C TA 125°C;  
VIN - VOUT = 3V; IOUT = 3A. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)  
LX8587-00/87A-00 (Adjustable)  
LX8587/87A-00  
Parameter  
Symbol  
Test Conditions  
Units  
Min. Typ.  
Max.  
Reference Voltage  
VREF  
IOUT = 10mA, TA = 25°C  
10mA IOUT 3A, 1.5V (VIN - VOUT), VIN 7V, P PMAX  
VREF (VIN) IOUT = 10mA, 1.5V (VIN - VOUT), VIN 7V  
VIN - VOUT = 3V, 10mA IOUT 3A  
VOUT (Pwr) TA = 25°C, 20ms pulse  
VOUT = 3.3V, f =120Hz, COUT = 100µf Tantalum, VIN = 5V  
1.238 1.250 1.262  
1.225 1.250 1.275  
V
V
Line Regulation (Note 2)  
Load Regulation (Note 2)  
Thermal Regulation  
0.035  
0.1  
0.2  
0.5  
%
%
%/W  
dB  
VREF (IOUT  
)
0.01  
83  
0.02  
65  
Ripple Rejection (Note 3)  
CADJ = 10µF, IOUT = 3A  
Adjust Pin Current  
IADJ  
IADJ  
V  
55  
0.2  
1.1  
1
100  
5
1.3  
1.2  
10  
µA  
µA  
V
Adjust Pin Current Change  
10mA IOUT 3A, 1.5V (VIN - VOUT), VIN 7V  
VREF = 1%, IOUT = 3A  
VREF = 1%, IOUT = 3A  
Dropout Voltage  
LX8587-00  
LX8587A-00  
V
mA  
A
%
%
%
2
Minimum Load Current  
Maximum Output Current  
Temperature Stability  
Long Term Stability  
IOUT(MIN)  
VIN 7V  
3.0  
5
0.25  
IOUT(MAX) 1.4V (VIN - VOUT), VIN 7V  
VOUT (T)  
1
VOUT (t) TA = 125°C, 1000 hrs  
VOUT (RMS) TA = 25°C, 10Hz £ f £ 10kHz  
0.003  
RMS Output Noise (% of VOUT  
)
LX8587-15/87A-15 (1.5V Fixed)  
LX8587-15/87A-15  
Min. Typ. Max.  
Parameter  
Symbol  
Test Conditions  
Units  
1.485  
1.470  
1.5  
1.5  
1
1.515  
1.530  
6
V
V
Output Voltage  
VOUT  
VIN = 5V, IOUT = 0mA, TA = 25°C  
3.0V VIN 7V, 0mA IOUT 3A, P PMAX  
Line Regulation (Note 2)  
VOUT 4.75V VIN 7V  
(VIN)  
mV  
mV  
mV  
% / W  
dB  
mA  
V
4.75V VIN 10V  
VIN = 5V, 0mA IOUT IOUT (MAX)  
2
5
0.01  
75  
4
10  
7.5  
0.02  
Load Regulation (Note 2)  
Thermal Regulation (Note 3)  
Ripple Rejection (Note 3)  
Quiescent Current  
VOUT (IOUT  
)
VOUT(Pwr) TA = 25°C, 20ms pulse  
COUT = 100µF (Tantalum), IOUT = 3A  
60  
IQ  
0mA IOUT IOUT (MAX) , 4.75V VIN 10V  
VOUT = 1%, IOUT IOUT (MAX)  
10  
1.3  
1.2  
Dropout Voltage  
LX8587-15  
V  
1.1  
1
V
LX8587A-15  
VOUT = 1%, IOUT IOUT (MAX)  
3.0  
5.0  
0.25  
0.3  
0.003  
A
Maximum Output Current  
IOUT (MAX) VIN 7V  
%
%
Temperature Stability (Note 3)  
Long Term Stability (Note 3)  
VOUT (T)  
VOUT (t) TA = 125°C, 1000 hours  
1
%
RMS Output Noise (% of VOUT) (Note 3) VOUT (RMS) TA = 25°C, 10Hz f 10kHz  
Note 2. Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to  
heating effects are covered under the specification for thermal regulation.  
Note 3. These parameters, although guaranteed, are not tested in production.  
Copyright © 1998  
Rev. 1.2 3/98  
3
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8587-xx/8587A-xx  
3 A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS  
LX8587-33/87A-33 (3.3V Fixed)  
LX8587-33/87A-33  
Min. Typ. Max.  
Parameter  
Symbol  
VOUT  
Test Conditions  
Units  
Output Voltage  
VIN = 5V, IOUT = 0mA, TA = 25°C  
4.75V VIN 10V, 0mA IOUT 3A, P PMAX  
VOUT 4.75V VIN 7V  
3.267  
3.235  
3.3  
3.3  
1
3.333  
3.365  
6
V
V
Line Regulation (Note 2)  
mV  
mV  
mV  
% / W  
dB  
mA  
V
(VIN)  
4.75V VIN 10V  
2
10  
5
15  
Load Regulation (Note 2)  
Thermal Regulation (Note 3)  
Ripple Rejection (Note 3)  
Quiescent Current  
VOUT (IOUT  
)
VIN = 5V, 0mA IOUT IOUT (MAX)  
VOUT(Pwr) TA = 25°C, 20ms pulse  
COUT = 100µF (Tantalum), IOUT = 3A  
0.01  
75  
0.02  
60  
IQ  
V  
0mA IOUT IOUT (MAX) , 4.75V VIN 10V  
VOUT = 1%, IOUT IOUT (MAX)  
4
1.1  
1
10  
1.3  
1.2  
Dropout Voltage  
LX8587-33  
V
LX8587A-33  
VOUT = 1%, IOUT IOUT (MAX)  
3.0  
5.0  
0.25  
0.3  
0.003  
A
%
Maximum Output Current  
Temperature Stability (Note 3)  
Long Term Stability (Note 3)  
IOUT (MAX) VIN 7V  
VOUT (T)  
1
%
%
VOUT (t) TA = 125°C, 1000 hours  
RMS Output Noise (% of VOUT) (Note 3) VOUT (RMS) TA = 25°C, 10Hz f 10kHz  
Note 2. Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to  
heating effects are covered under the specification for thermal regulation.  
Note 3. These parameters, although guaranteed, are not tested in production.  
Copyright © 1998  
Rev. 1.2 3/98  
4
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8587-xx/8587A-xx  
3 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
Minumum Load  
(Larger resistor)  
The LX8587/87A series ICs are easy to use Low-Dropout (LDO)  
Power Supply  
IN  
OUT  
LX8587/87A  
voltage regulators. They have all of the standard self-protection  
features expected of a voltage regulator: short circuit protection,  
safe operating area protection and automatic thermal shutdown if  
the device temperature rises above approximately 165°C.  
Use of an output capacitor is REQUIRED with the LX8587/87A  
series. Please see the table below for recommended minimum  
capacitor values.  
Full Load  
(Smaller resistor)  
ADJ  
RDSON << RL  
1 sec  
10ms  
Star Ground  
These regulators offer a more tightly controlled reference voltage  
tolerance and superior reference stability when measured against  
the older pin-compatible regulator types that they replace.  
FIGURE 1 — Dynamic Input And Output Test  
OVERLOAD RECOVERY  
Like almost all IC power regulators, the LX8587/87A regulators are  
equipped with Safe Operating Area (SOA) protection. The SOA  
circuit limits the regulator's maximum output current to progres-  
sively lower values as the input-to-output voltage difference  
increases. By limiting the maximum output current, the SOA circuit  
keeps the amount of power that is dissipated in the regulator itself  
within safe limits for all values of input-to-output voltage within the  
operating range of the regulator. The LX8587/87A SOA protection  
system is designed to be able to supply some output current for all  
values of input-to-output voltage, up to the device breakdown  
voltage.  
Under some conditions, a correctly operating SOA circuit may  
prevent a power supply system from returning to regulated  
operation after removal of an intermittent short circuit at the output  
of the regulator. This is a normal mode of operation which can be  
seen in most similar products, including older devices such as 7800  
series regulators. It is most likely to occur when the power system  
input voltage is relatively high and the load impedance is relatively  
low.  
STABILITY  
The output capacitor is part of the regulator’s frequency compen-  
sation system. Many types of capacitors are available, with different  
capacitance value tolerances, capacitance temperature coefficients,  
and equivalent series impedances. For all operating conditions,  
connection of a 220µF aluminum electrolytic capacitor or a 47µF  
solid tantalum capacitor between the output terminal and ground  
will guarantee stable operation.  
If a bypass capacitor is connected between the output voltage  
adjust (ADJ) pin and ground, ripple rejection will be improved  
(please see the section entitled “RIPPLE REJECTION”). When ADJ  
pinbypassingisused,therequiredoutputcapacitorvalueincreases.  
Output capacitor values of 220µF (aluminum) or 47µF (tantalum)  
provide for all cases of bypassing the ADJ pin. If an ADJ pin bypass  
capacitor is not used, smaller output capacitor values are adequate.  
Thetablebelowshowsrecommendedminimumcapacitancevalues  
for stable operation.  
When the power system is started “cold”, both the input and  
output voltages are very close to zero. The output voltage closely  
follows the rising input voltage, and the input-to-output voltage  
difference is small. The SOA circuit therefore permits the regulator  
to supply large amounts of current as needed to develop the  
designed voltage level at the regulator output. Now consider the  
casewheretheregulatorissupplyingregulatedvoltagetoaresistive  
load under steady state conditions. A moderate input-to-output  
voltage appears across the regulator but the voltage difference is  
small enough that the SOA circuitry allows sufficient current to flow  
throughtheregulatortodevelopthedesignedoutputvoltageacross  
theloadresistance. Iftheoutputresistorisshort-circuitedtoground,  
theinput-to-outputvoltagedifferenceacrosstheregulatorsuddenly  
becomes larger by the amount of voltage that had appeared across  
the load resistor. The SOA circuit reads the increased input-to-  
output voltage, and cuts back the amount of current that it will  
permittheregulatortosupplytoitsoutputterminal. Whentheshort  
circuit across the output resistor is removed, all the regulator output  
current will again flow through the output resistor. The maximum  
current that the regulator can supply to the resistor will be limited  
bytheSOAcircuit,basedonthelargeinput-to-outputvoltageacross  
theregulatoratthetimetheshortcircuitisremovedfromtheoutput.  
RECOMMENDED CAPACITOR VALUES  
INPUT  
OUTPUT  
ADJ  
None  
15µF  
10µF  
10µF  
15µF Tantalum, 100µF Aluminum  
47µF Tantalum, 220µF Aluminum  
In order to ensure good transient response from the power supply  
system under rapidly changing current load conditions, designers  
generally use several output capacitors connected in parallel. Such  
an arrangement serves to minimize the effects of the parasitic  
resistance (ESR) and inductance (ESL) that are present in all  
capacitors. Cost-effective solutions that sufficiently limit ESR and  
ESL effects generally result in total capacitance values in the range  
of hundreds to thousands of microfarads, which is more than  
adequate to meet regulator output capacitor specifications. Output  
capacitance values may be increased without limit.  
ThecircuitshowninFigure1canbeusedtoobservethetransient  
response characteristics of the regulator in a power system under  
changing loads. The effects of different capacitor types and values  
on transient response parameters, such as overshoot and under-  
shoot, can be quickly compared in order to develop an optimum  
solution.  
Copyright © 1998  
Rev. 1.2 3/98  
5
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8587-xx/8587A-xx  
3 A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
OVERLOAD RECOVERY (continued)  
If this limited current is not sufficient to develop the designed  
voltage across the output resistor, the voltage will stabilize at some  
lower value, and willnever reach the designed value. Under these  
circumstances, it may be necessary to cycle the input voltage down  
to zero in order to make the regulator output voltage return to  
regulation.  
LX8587/87A  
OUT  
IN  
VIN  
VOUT  
ADJ  
VREF  
R1  
R2  
IADJ  
50µA  
RIPPLE REJECTION  
R2  
R1  
VOUT = VREF 1 +  
+ IADJ R2  
Ripple rejection can be improved by connecting a capacitor  
betweentheADJpinandground. Thevalueofthecapacitorshould  
be chosen so that the impedance of the capacitor is equal in  
magnitude to the resistance of R1 at the ripple frequency. The  
capacitor value can be determined by using this equation:  
FIGURE 2 — Basic Adjustable Regulator  
LOAD REGULATION  
C = 1 / (6.28 F R1)  
*
*
Because the LX8587/87A regulators are three-terminal devices, it is  
not possible to provide true remote load sensing. Load regulation  
willbelimitedbytheresistanceofthewireconnectingtheregulator  
to the load. The data sheet specification for load regulation is  
measured at the bottom of the package. Negative side sensing is a  
true Kelvin connection, with the bottom of the output divider  
returned to the negative side of the load. Although it may not be  
immediately obvious, best load regulation is obtained when the top  
of the resistor divider, (R1), is connected directly to the case of the  
regulator, not to the load. This is illustrated in Figure 3. If R1 were  
connectedtotheload,theeffectiveresistancebetweentheregulator  
and the load would be:  
R
where: C the value of the capacitor in Farads;  
select an equal or larger standard value.  
FR the ripple frequency in Hz  
R1 the value of resistor R1 in ohms  
At a ripple frequency of 120Hz, with R1 = 100:  
C = 1 / (6.28 120Hz 100) = 13.3µF  
*
*
The closest equal or larger standard value should be used, in this  
case, 15µF.  
When an ADJ pin bypass capacitor is used, output ripple  
amplitude will be essentially independent of the output voltage. If  
an ADJ pin bypass capacitor is not used, output ripple will be  
proportional to the ratio of the output voltage to the reference  
voltage:  
R2+R1  
R1  
RPeff = RP  
*
where: RP Actual parasitic line resistance.  
M = VOUT/VREF  
When the circuit is connected as shown in Figure 3, the parasitic  
resistance appears as its actual value, rather than the higher RPeff.  
where: M a multiplier for the ripple seen when the  
ADJ pin is optimally bypassed.  
VREF = 1.25V.  
R
ParaPsitic  
LX8587/87A  
OUT  
Line Resistance  
For example, if VOUT = 2.5V the output ripple will be:  
M = 2.5V/1.25V= 2  
IN  
VIN  
ADJ  
Connect  
R1 to Case  
of Regulator  
Output ripple will be twice as bad as it would be if the ADJ pin  
were to be bypassed to ground with a properly selected capacitor.  
R1  
R2  
RL  
OUTPUT VOLTAGE  
Connect  
R2  
The LX8587/87A ICs develop a 1.25V reference voltage between the  
output and the adjust terminal (See Figure 2). By placing a resistor, R1,  
between these two terminals, a constant current is caused to flow  
through R1 and down through R2 to set the overall output voltage.  
Normally this current is the specified minimum load current of 10mA.  
BecauseIADJisverysmallandconstantwhencomparedwiththecurrent  
through R1, it represents a small error and can usually be ignored.  
to Load  
FIGURE 3 — Connections For Best Load Regulation  
Copyright © 1998  
Rev. 1.2 3/98  
6
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8587-xx/8587A-xx  
3 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
LOAD REGULATION (continued)  
Even when the circuit is optimally configured, parasitic resistance  
can be a significant source of error. A 100 mil wide PC trace built  
from 1 oz. copper-clad circuit board material has a parasitic  
resistance of about 5 milliohms per inch of its length at room  
temperature. If a 3-terminal regulator used to supply 2.50 volts is  
connected by 2 inches of this trace to a load which draws 5 amps  
of current, a50 millivolt dropwill appearbetween theregulatorand  
the load. Even when the regulator output voltage is precisely  
2.50 volts, the load will only see 2.45 volts, which is a 2% error. It  
is important to keep the connection between the regulator output  
pin and the load as short as possible, and to use wide traces or  
heavy-gauge wire.  
can be used, as long as its added contribution to thermal resistance  
is considered. Note that the case of all devices in this series is  
electrically connected to the output.  
Example  
Given: VIN = 5V  
VOUT = 2.8V, IOUT = 5.0A  
Ambient Temp., TA = 50°C  
RθJT = 2.7°C/W for TO-220  
300 ft/min airflow available  
Find: Proper Heat Sink to keep IC's junction  
temperature below 125°C.**  
The minimum specified output capacitance for the regulator  
should be located near the reglator package. If several capacitors  
are used in parallel to construct the power system output capaci-  
tance, any capacitors beyond the minimum needed to meet the  
specified requirements of the regulator should be located near the  
sections of the load that require rapidly-changing amounts of  
current. Placing capacitors near the sources of load transients will  
help ensure that power system transient response is not impaired  
by the effects of trace impedance.  
To maintain good load regulation, wide traces should be used on  
the input side of the regulator, especially between the input  
capacitors and the regulator. Input capacitor ESR must be small  
enoughthatthevoltageattheinputpindoesnotdropbelowVIN(MIN)  
during transients.  
Solution: The junction temperature is:  
TJ = PD (RθJT + RθCS + RθSA) + TA  
where: PD Dissipated power.  
RθJT Thermal resistance from the junction to the  
mounting tab of the package.  
RθCS Thermal resistance through the interface  
between the IC and the surface on which  
it is mounted. (1.0°C/W at 6 in-lbs  
mounting screw torque.)  
RθSA  
Thermal resistance from the mounting surface  
to ambient (thermal resistance of the heat sink).  
TS Heat sink temperature.  
TJ TC TS  
TA  
VIN (MIN) = VOUT + VDROPOUT (MAX)  
Rq JT  
RqCS  
RqSA  
where: VIN (MIN)  
VOUT  
the lowest allowable instantaneous  
voltage at the input pin.  
the designed output voltage for the  
power supply system.  
First, find the maximum allowable thermal resistance of the  
heat sink:  
TJ - TA  
RθSA  
=
- (RθJT + RθCS)  
PD  
PD = (VIN(MAX) - VOUT) IOUT  
VDROPOUT (MAX) the specified dropout voltage  
for the installed regulator.  
=
(5.0V-2.8V)  
*
5.0A  
THERMAL CONSIDERATIONS  
= 11.0W  
125°C - 50°C  
(5.0V-2.8V) 5.0A  
The LX8587/87A regulators have internal power and thermal  
limiting circuitry designed to protect each device under overload  
conditions. For continuous normal load conditions, however,  
maximum junction temperature ratings must not be exceeded. It is  
important to give careful consideration to all sources of thermal  
resistance from junction to ambient. This includes junction to case,  
case to heat sink interface, and heat sink thermal resistance itself.  
Junction-to-case thermal resistance is specified from the IC  
junction to the back surface of the case directly opposite the die.  
This is the lowest resistance path for heat flow. Proper mounting  
is required to ensure the best possible thermal flow from this area  
of the package to the heat sink. Thermal compound at the case-to-  
heat-sink interface is strongly recommended. If the case of the  
device must be electrically isolated, a thermally conductive spacer  
*
RθSA  
=
- (2.7°C/W+ 1.0°C/W)  
= 3.1°C/W  
Next,selectasuitableheatsink. Theselectedheatsinkmusthave  
RθSA3.1°C/W. Thermalloyheatsink6296BhasRθSA =3.0°C/Wwith  
300ft/min air flow.  
Finally, verify that junction temperature remains within speci-  
fication using the selected heat sink:  
TJ = 11W (2.7°C/W + 1.0°C/W + 3.0°C/W) + 50°C = 124°C  
** Although the device can operate up to 150°C junction, it is recom-  
mended for long term reliability to keep the junction temperature  
below 125°C whenever possible.  
Copyright © 1998  
Rev. 1.2 3/98  
7
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8587-xx/8587A-xx  
3 A LO W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
TYPICAL APPLICATIONS  
LX8587/87A  
OUT  
LX8587/87A  
OUT  
VIN  
(Note A)  
(Note A)  
VIN  
IN  
VOUT**  
5V  
VOUT  
IN  
ADJ  
R1  
121W  
R1  
ADJ  
10µF  
121W  
C2  
100µF  
C1*  
1%  
10µF  
150µF  
R2  
1k  
R2  
365W  
1%  
C1  
* C1 improves ripple rejection.  
XC should be » R1 at ripple  
frequency.  
10µF*  
* Needed if device is far from filter capacitors.  
R2  
R1  
**VOUT = 1.25V 1 +  
FIGURE 4 — Improving Ripple Rejection  
FIGURE 5 — 1.2V - 8V Adjustable Regulator  
LX8587/87A  
OUT  
VIN  
(Note A)  
IN  
5V  
ADJ  
121W  
1%  
100µF  
10µF  
1k  
TTL  
Output  
2N3904  
365W  
1%  
1k  
FIGURE 6 — 5V Regulator With Shutdown  
LX8587-33/87A-33  
IN  
VIN  
OUT  
3.3V  
GND  
10µF Tantalum  
or 100µF Aluminum  
Min. 15µF Tantalum or  
100µF Aluminum capacitor.  
May be increased as needed.  
ESR must be less than 50mW.  
FIGURE 7 — Fixed 3.3V Output Regulator  
Note A: VIN (MIN) = (Intended VOUT) + (VDROPOUT (MAX)  
)
Pentium is a registered trademark of Intel Corporation.  
Power PC is a trademark of International Business Machines Corporation.  
PRODUCTIONDATA-InformationcontainedinthisdocumentisproprietarytoLinFinity, andiscurrentasofpublicationdate. Thisdocument  
may not be modified in any way without the express written consent of LinFinity. Product processing does not necessarily include testing of  
all parameters. Linfinity reserves the right to change the configuration and performance of the product and to discontinue product at any time.  
Copyright © 1998  
Rev. 1.2 3/98  
8

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY