M1AFS250M1AFS600-2FGG256I [MICROSEMI]

Fusion Family of Mixed Signal FPGAs; Fusion系列混合信号FPGA的
M1AFS250M1AFS600-2FGG256I
型号: M1AFS250M1AFS600-2FGG256I
厂家: Microsemi    Microsemi
描述:

Fusion Family of Mixed Signal FPGAs
Fusion系列混合信号FPGA的

文件: 总334页 (文件大小:18785K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Revision 4  
Fusion Family of Mixed Signal FPGAs  
In-System Programming (ISP) and Security  
Features and Benefits  
ISP with 128-Bit AES via JTAG  
®
High-Performance Reprogrammable Flash Technology  
FlashLock Designed to Protect FPGA Contents  
Advanced 130-nm, 7-Layer Metal, Flash-Based CMOS Process  
Nonvolatile, Retains Program when Powered Off  
Instant On Single-Chip Solution  
Advanced Digital I/O  
1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation  
Bank-Selectable I/O Voltages – Up to 5 Banks per Chip  
Single-Ended I/O Standards: LVTTL, LVCMOS  
3.3 V / 2.5 V /1.8 V / 1.5 V, 3.3 V PCI / 3.3 V PCI-X, and  
LVCMOS 2.5 V / 5.0 V Input  
Differential I/O Standards: LVPECL, LVDS, B-LVDS, M-LVDS  
– Built-In I/O Registers  
– 700 Mbps DDR Operation  
Hot-Swappable I/Os  
350 MHz System Performance  
Embedded Flash Memory  
User Flash Memory – 2 Mbits to 8 Mbits  
– Configurable 8-, 16-, or 32-Bit Datapath  
– 10 ns Access in Read-Ahead Mode  
1 Kbit of Additional FlashROM  
Integrated A/D Converter (ADC) and Analog I/O  
Programmable Output Slew Rate, Drive Strength, and Weak  
Pull-Up/Down Resistor  
Pin-Compatible Packages across the Fusion Family  
Up to 12-Bit Resolution and up to 600 Ksps  
Internal 2.56 V or External Reference Voltage  
ADC: Up to 30 Scalable Analog Input Channels  
High-Voltage Input Tolerance: –10.5 V to +12 V  
Current Monitor and Temperature Monitor Blocks  
Up to 10 MOSFET Gate Driver Outputs  
– P- and N-Channel Power MOSFET Support  
– Programmable 1, 3, 10, 30 µA, and 20 mA Drive Strengths  
ADC Accuracy is Better than 1%  
®
SRAMs and FIFOs  
Variable-Aspect-Ratio 4,608-Bit SRAM Blocks (×1, ×2, ×4, ×9,  
and ×18 organizations available)  
True Dual-Port SRAM (except ×18)  
Programmable Embedded FIFO Control Logic  
Soft ARM Cortex-M1 Fusion Devices (M1)  
®
On-Chip Clocking Support  
ARM Cortex-™M1–Enabled  
Internal 100 MHz RC Oscillator (accurate to 1%)  
Crystal Oscillator Support (32 KHz to 20 MHz)  
Pigeon Point ATCA IP Support (P1)  
®
Targeted to Pigeon Point Board Management Reference  
(BMR) Starter Kits  
Designed in Partnership with Pigeon Point Systems  
ARM Cortex-M1 Enabled  
Programmable Real-Time Counter (RTC)  
6 Clock Conditioning Circuits (CCCs) with 1 or 2 Integrated PLLs  
– Phase Shift, Multiply/Divide, and Delay Capabilities  
– Frequency: Input 1.5–350 MHz, Output 0.75–350 MHz  
MicroBlade Advanced Mezzanine Card Support (U1)  
Low Power Consumption  
Targeted to Advanced Mezzanine Card (AdvancedMC™ Designs)  
Designed in Partnership with MicroBlade  
8051-Based Module Management Controller (MMC)  
Single 3.3 V Power Supply with On-Chip 1.5 V Regulator  
Sleep and Standby Low-Power Modes  
Table 1 • Fusion Family  
Fusion Devices  
AFS090  
AFS250  
AFS600  
AFS1500  
*
ARM Cortex-M1 Devices  
M1AFS250  
M1AFS600  
M1AFS1500  
Pigeon Point Devices  
MicroBlade Devices  
P1AFS600  
P1AFS1500  
U1AFS250  
U1AFS600  
U1AFS1500  
System Gates  
90,000  
2,304  
Yes  
1
250,000  
600,000  
13,824  
Yes  
2
1,500,000  
38,400  
Yes  
2
Tiles (D-flip-flops)  
Secure (AES) ISP  
PLLs  
6,144  
Yes  
1
General  
Information  
Globals  
18  
18  
1
18  
18  
Flash Memory Blocks (2 Mbits)  
Total Flash Memory Bits  
FlashROM Bits  
1
2
4
2M  
1,024  
6
2M  
1,024  
8
4M  
1,024  
24  
8M  
Memory  
1,024  
60  
RAM Blocks (4,608 bits)  
RAM kbits  
27  
36  
6
108  
10  
270  
10  
Analog Quads  
5
Analog Input Channels  
Gate Driver Outputs  
I/O Banks (+ JTAG)  
Maximum Digital I/Os  
Analog I/Os  
15  
18  
6
30  
30  
5
10  
10  
Analog and I/Os  
4
4
5
5
75  
114  
24  
172  
40  
252  
40  
20  
Note: *Refer to the Cortex-M1 product brief for more information.  
January 2013  
I
© 2013 Microsemi Corporation  
Fusion Family of Mixed Signal FPGAs  
Fusion Device Architecture Overview  
Bank 0  
Bank 1  
CCC  
SRAM Block  
4,608-Bit Dual-Port SRAM  
or FIFO Block  
OSC  
I/Os  
CCC/PLL  
VersaTile  
SRAM Block  
4,608-Bit Dual-Port SRAM  
or FIFO Block  
ISP AES  
Decryption  
User Nonvolatile  
FlashROM  
Charge Pumps  
Flash Memory Blocks  
ADC  
Flash Memory Blocks  
Analog  
Quad  
Analog  
Quad  
Analog  
Quad  
Analog  
Quad  
Analog  
Quad  
Analog  
Quad  
Analog  
Quad  
Analog  
Quad  
Analog  
Quad  
Analog  
Quad  
CCC  
Bank 3  
Fusion Device Architecture Overview (AFS600)  
Figure 1 •  
Package I/Os: Single-/Double-Ended (Analog)  
Fusion Devices  
ARM Cortex-M1 Devices  
Pigeon Point Devices  
MicroBlade Devices  
QN108  
AFS090  
AFS250  
AFS600  
AFS1500  
M1AFS250  
M1AFS600  
M1AFS1500  
1
1
P1AFS600  
U1AFS600  
P1AFS1500  
U1AFS1500  
2
2
2
U1AFS250  
37/9 (16)  
QN180  
60/16 (20)  
65/15 (24)  
93/26 (24)  
114/37 (24)  
3
PQ208  
95/46 (40)  
FG256  
FG484  
FG676  
Notes:  
75/22 (20)  
119/58 (40)  
172/86 (40)  
119/58 (40)  
223/109 (40)  
252/126 (40)  
1. Pigeon Point devices are only offered in FG484 and FG256.  
2. MicroBlade devices are only offered in FG256.  
3. Fusion devices in the same package are pin compatible with the exception of the PQ208 package (AFS250 and AFS600).  
II  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Product Ordering Codes  
_
M1AFS600  
1
G
256  
Y
I
FG  
Application (junction temperature range)  
Blank = Commercial (0 to +85°C)  
I = Industrial (–40 to +100°C)  
PP = Pre-Production  
ES = Engineering Silicon (room temperature only)  
Security Feature  
Y = Device Includes License to Implement IP Based on  
the Cryptography Research, Inc. (CRI) Patent Portfolio  
Blank = Device Does Not Include License to Implement IP Based  
on the Cryptography Research, Inc. (CRI) Patent Portfolio  
Package Lead Count  
Lead-Free Packaging Options  
Blank = Standard Packaging  
G = RoHS-Compliant (green) Packaging  
Package Type  
1
=
QN  
Quad Flat No Lead (0.5 mm pitch)  
=
=
PQ  
FG  
Plastic Quad Flat Pack (0.5 mm pitch)  
Fine Pitch Ball Grid Array (1.0 mm pitch)  
2
Speed Grade  
Blank = Standard  
1 = 15% Faster than Standard  
2 = 25% Faster than Standard  
Part Number  
Fusion Devices  
AFS090 = 90,000 System Gates  
AFS250 = 250,000 System Gates  
AFS600 = 600,000 System Gates  
AFS1500 = 1,500,000 System Gates  
ARM-Enabled Fusion Devices  
=
=
=
M1AFS250  
M1AFS600  
M1AFS1500  
250,000 System Gates  
600,000 System Gates  
1,500,000 System Gates  
Pigeon Point Devices  
P1AFS600 = 600,000 System Gates  
P1AFS1500 = 1,500,000 System Gates  
MicroBlade Devices  
U1AFS250 = 250,000 System Gates  
U1AFS600 = 600,000 System Gates  
U1AFS1500 = 1,500,000 System Gates  
Notes:  
1. For Fusion devices, Quad Flat No Lead packages are only offered as RoHS compliant, QNG packages.  
2. MicroBlade and Pigeon Point devices only support FG packages.  
Fusion Device Status  
Fusion  
Status  
Cortex-M1  
Status  
Pigeon Point  
Status  
MicroBlade  
Status  
AFS090  
Production  
Production  
Production  
Production  
AFS250  
AFS600  
AFS1500  
M1AFS250  
M1AFS600  
M1AFS1500  
Production  
Production  
Production  
U1AFS250  
U1AFS600  
U1AFS1500  
Production  
Production  
Production  
P1AFS600  
Production  
Production  
P1AFS1500  
Revision 4  
III  
Fusion Family of Mixed Signal FPGAs  
Temperature Grade Offerings  
Fusion Devices  
ARM Cortex-M1 Devices  
Pigeon Point Devices  
MicroBlade Devices  
QN108  
AFS090  
AFS250  
AFS600  
AFS1500  
M1AFS250  
M1AFS600  
M1AFS1500  
P1AFS600 3  
P1AFS1500 3  
U1AFS250 4  
U1AFS600 4  
U1AFS1500 4  
C, I  
C, I  
C, I  
C, I  
C, I  
QN180  
PQ208  
C, I  
C, I  
C, I  
FG256  
C, I  
C, I  
C, I  
C, I  
FG484  
FG676  
Notes:  
1. C = Commercial Temperature Range: 0°C to 85°C Junction  
2. I = Industrial Temperature Range: –40°C to 100°C Junction  
3. Pigeon Point devices are only offered in FG484 and FG256.  
4. MicroBlade devices are only offered in FG256.  
Speed Grade and Temperature Grade Matrix  
Std.1  
–1  
3
–22  
3
C3  
3
3
I4  
3
3
Notes:  
1. MicroBlade devices are only offered in standard speed grade.  
2. Pigeon Point devices are only offered in –2 speed grade.  
3. C = Commercial Temperature Range: 0°C to 85°C Junction  
4. I = Industrial Temperature Range: –40°C to 100°C Junction  
Contact your local Microsemi SoC Products Group representative for device availability:  
http://www.microsemi.com/soc/contact/offices/index.html.  
Cortex-M1, Pigeon Point, and MicroBlade Fusion Device Information  
This datasheet provides information for all Fusion (AFS), Cortex-M1 (M1), Pigeon Point (P1), and MicroBlade (U1) devices. The  
remainder of the document will only list the Fusion (AFS) devices. Please apply relevant information to M1, P1, and U1 devices  
when appropriate. Please note the following:  
Cortex-M1 devices are offered in the same speed grades and packages as basic Fusion devices.  
Pigeon Point devices are only offered in –2 speed grade and FG484 and FG256 packages.  
MicroBlade devices are only offered in standard speed grade and the FG256 package.  
IV  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table of Contents  
Fusion Device Family Overview  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Unprecedented Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10  
Device Architecture  
Fusion Stack Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
Core Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
Clocking Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19  
Real-Time Counter System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33  
Embedded Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41  
Analog Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-79  
Analog Configuration MUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-129  
User I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-135  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-226  
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-231  
DC and Power Characteristics  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32  
Package Pin Assignments  
QN108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
QN180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  
PQ208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7  
FG256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11  
FG484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19  
FG676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27  
Datasheet Information  
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17  
Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17  
Revision 4  
V
1 – Fusion Device Family Overview  
Introduction  
The Fusion mixed signal FPGA satisfies the demand from system architects for a device that simplifies  
design and unleashes their creativity. As the world’s first mixed signal programmable logic family, Fusion  
integrates mixed signal analog, flash memory, and FPGA fabric in a monolithic device. Fusion devices  
enable designers to quickly move from concept to completed design and then deliver feature-rich  
systems to market. This new technology takes advantage of the unique properties of Microsemi flash-  
based FPGAs, including a high-isolation, triple-well process and the ability to support high-voltage  
transistors to meet the demanding requirements of mixed signal system design.  
Fusion mixed signal FPGAs bring the benefits of programmable logic to many application areas,  
including power management, smart battery charging, clock generation and management, and motor  
control. Until now, these applications have only been implemented with costly and space-consuming  
discrete analog components or mixed signal ASIC solutions. Fusion mixed signal FPGAs present new  
capabilities for system development by allowing designers to integrate a wide range of functionality into a  
single device, while at the same time offering the flexibility of upgrades late in the manufacturing process  
or after the device is in the field. Fusion devices provide an excellent alternative to costly and time-  
consuming mixed signal ASIC designs. In addition, when used in conjunction with the ARM Cortex-M1  
processor, Fusion technology represents the definitive mixed signal FPGA platform.  
Flash-based Fusion devices are Instant On. As soon as system power is applied and within normal  
operating specifications, Fusion devices are working. Fusion devices have a 128-bit flash-based lock and  
industry-leading AES decryption, used to secure programmed intellectual property (IP) and configuration  
data. Fusion devices are the most comprehensive single-chip analog and digital programmable logic  
solution available today.  
To support this new ground-breaking technology, Microsemi has developed a series of major tool  
innovations to help maximize designer productivity. Implemented as extensions to the popular Microsemi  
Libero® System-on-Chip (SoC) software, these new tools allow designers to easily instantiate and  
configure peripherals within a design, establish links between peripherals, create or import building  
blocks or reference designs, and perform hardware verification. This tool suite will also add  
comprehensive hardware/software debug capability as well as a suite of utilities to simplify development  
of embedded soft-processor-based solutions.  
General Description  
The Fusion family, based on the highly successful ProASIC®3 and ProASIC3E flash FPGA architecture,  
has been designed as a high-performance, programmable, mixed signal platform. By combining an  
advanced flash FPGA core with flash memory blocks and analog peripherals, Fusion devices  
dramatically simplify system design and, as a result, dramatically reduce overall system cost and board  
space.  
The state-of-the-art flash memory technology offers high-density integrated flash memory blocks,  
enabling savings in cost, power, and board area relative to external flash solutions, while providing  
increased flexibility and performance. The flash memory blocks and integrated analog peripherals enable  
true mixed-mode programmable logic designs. Two examples are using an on-chip soft processor to  
implement a fully functional flash MCU and using high-speed FPGA logic to offer system and power  
supervisory capabilities. Instant On, and capable of operating from a single 3.3 V supply, the Fusion  
family is ideally suited for system management and control applications.  
The devices in the Fusion family are categorized by FPGA core density. Each family member contains  
many peripherals, including flash memory blocks, an analog-to-digital-converter (ADC), high-drive  
outputs, both RC and crystal oscillators, and a real-time counter (RTC). This provides the user with a  
high level of flexibility and integration to support a wide variety of mixed signal applications. The flash  
memory block capacity ranges from 2 Mbits to 8 Mbits. The integrated 12-bit ADC supports up to 30  
independently configurable input channels.  
Revision 4  
1-1  
Fusion Device Family Overview  
The on-chip crystal and RC oscillators work in conjunction with the integrated phase-locked loops (PLLs)  
to provide clocking support to the FPGA array and on-chip resources. In addition to supporting typical  
RTC uses such as watchdog timer, the Fusion RTC can control the on-chip voltage regulator to power  
down the device (FPGA fabric, flash memory block, and ADC), enabling a low power standby mode.  
The Fusion family offers revolutionary features, never before available in an FPGA. The nonvolatile flash  
technology gives the Fusion solution the advantage of being a highly secure, low power, single-chip  
solution that is Instant On. Fusion is reprogrammable and offers time-to-market benefits at an ASIC-level  
unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA  
design flows and tools.  
Flash Advantages  
Reduced Cost of Ownership  
Advantages to the designer extend beyond low unit cost, high performance, and ease of use. Flash-  
based Fusion devices are Instant On and do not need to be loaded from an external boot PROM. On-  
board security mechanisms prevent access to the programming information and enable remote updates  
of the FPGA logic that are protected with high level security. Designers can perform remote in-system  
reprogramming to support future design iterations and field upgrades, with confidence that valuable IP is  
highly unlikely to be compromised or copied. ISP can be performed using the industry-standard AES  
algorithm with MAC data authentication on the device. The Fusion family device architecture mitigates  
the need for ASIC migration at higher user volumes. This makes the Fusion family a cost-effective ASIC  
replacement solution for applications in the consumer, networking and communications, computing, and  
avionics markets.  
Security  
As the nonvolatile, flash-based Fusion family requires no boot PROM, there is no vulnerable external  
bitstream. Fusion devices incorporate FlashLock, which provides  
a unique combination of  
reprogrammability and design security without external overhead, advantages that only an FPGA with  
nonvolatile flash programming can offer.  
Fusion devices utilize a 128-bit flash-based key lock and a separate AES key to provide the highest level  
of protection in the FPGA industry for programmed IP and configuration data. The FlashROM data in  
Fusion devices can also be encrypted prior to loading. Additionally, the flash memory blocks can be  
programmed during runtime using the industry-leading AES-128 block cipher encryption standard (FIPS  
Publication 192). The AES standard was adopted by the National Institute of Standards and Technology  
(NIST) in 2000 and replaces the DES standard, which was adopted in 1977. Fusion devices have a built-  
in AES decryption engine and a flash-based AES key that make Fusion devices the most comprehensive  
programmable logic device security solution available today. Fusion devices with AES-based security  
provide a high level of protection for remote field updates over public networks, such as the Internet, and  
are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners,  
and IP thieves. As an additional security measure, the FPGA configuration data of a programmed Fusion  
device cannot be read back, although secure design verification is possible. During design, the user  
controls and defines both internal and external access to the flash memory blocks.  
Security, built into the FPGA fabric, is an inherent component of the Fusion family. The flash cells are  
located beneath seven metal layers, and many device design and layout techniques have been used to  
make invasive attacks extremely difficult. Fusion with FlashLock and AES security is unique in being  
highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-  
standard security, making remote ISP possible. A Fusion device provides the best available security for  
programmable logic designs.  
Single Chip  
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the  
configuration data is an inherent part of the FPGA structure, and no external configuration data needs to  
be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based Fusion FPGAs do  
not require system configuration components such as EEPROMs or microcontrollers to load device  
configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system  
reliability.  
1-2  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Instant On  
Flash-based Fusion devices are Level 0 Instant On. Instant On Fusion devices greatly simplify total  
system design and reduce total system cost by eliminating the need for CPLDs. The Fusion Instant On  
clocking (PLLs) replaces off-chip clocking resources. The Fusion mix of Instant On clocking and analog  
resources makes these devices an excellent choice for both system supervisor and system management  
functions. Instant On from a single 3.3 V source enables Fusion devices to initiate, control, and monitor  
multiple voltage supplies while also providing system clocks. In addition, glitches and brownouts in  
system power will not corrupt the Fusion device flash configuration. Unlike SRAM-based FPGAs, the  
device will not have to be reloaded when system power is restored. This enables reduction or complete  
removal of expensive voltage monitor and brownout detection devices from the PCB design. Flash-  
based Fusion devices simplify total system design and reduce cost and design risk, while increasing  
system reliability.  
Firm Errors  
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike  
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the  
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. Another  
source of radiation-induced firm errors is alpha particles. For an alpha to cause a soft or firm error, its  
source must be in very close proximity to the affected circuit. The alpha source must be in the package  
molding compound or in the die itself. While low-alpha molding compounds are being used increasingly,  
this helps reduce but does not entirely eliminate alpha-induced firm errors.  
Firm errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a  
complete system failure. Firm errors do not occur in Fusion flash-based FPGAs. Once it is programmed,  
the flash cell configuration element of Fusion FPGAs cannot be altered by high-energy neutrons and is  
therefore immune to errors from them.  
Recoverable (or soft) errors occur in the user data SRAMs of all FPGA devices. These can easily be  
mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.  
Low Power  
Flash-based Fusion devices exhibit power characteristics similar to those of an ASIC, making them an  
ideal choice for power-sensitive applications. With Fusion devices, there is no power-on current surge  
and no high current transition, both of which occur on many FPGAs.  
Fusion devices also have low dynamic power consumption and support both low power standby mode  
and very low power sleep mode, offering further power savings.  
Advanced Flash Technology  
The Fusion family offers many benefits, including nonvolatility and reprogrammability through an  
advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design  
techniques are used to implement logic and control functions. The combination of fine granularity,  
enhanced flexible routing resources, and abundant flash switches allows very high logic utilization (much  
higher than competing SRAM technologies) without compromising device routability or performance.  
Logic functions within the device are interconnected through a four-level routing hierarchy.  
Advanced Architecture  
The proprietary Fusion architecture provides granularity comparable to standard-cell ASICs. The Fusion  
device consists of several distinct and programmable architectural features, including the following  
(Figure 1-1 on page 1-5):  
Embedded memories  
Flash memory blocks  
FlashROM  
SRAM and FIFO  
Clocking resources  
PLL and CCC  
Revision 4  
1-3  
Fusion Device Family Overview  
RC oscillator  
Crystal oscillator  
No-Glitch MUX (NGMUX)  
Digital I/Os with advanced I/O standards  
FPGA VersaTiles  
Analog components  
ADC  
Analog I/Os supporting voltage, current, and temperature monitoring  
1.5 V on-board voltage regulator  
Real-time counter  
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic  
lookup table (LUT) equivalent or a D-flip-flop or latch (with or without enable) by programming the  
appropriate flash switch interconnections. This versatility allows efficient use of the FPGA fabric. The  
VersaTile capability is unique to the Microsemi families of flash-based FPGAs. VersaTiles and larger  
functions are connected with any of the four levels of routing hierarchy. Flash switches are distributed  
throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core  
utilization is possible for virtually any design.  
In addition, extensive on-chip programming circuitry allows for rapid (3.3 V) single-voltage programming  
of Fusion devices via an IEEE 1532 JTAG interface.  
Unprecedented Integration  
Integrated Analog Blocks and Analog I/Os  
Fusion devices offer robust and flexible analog mixed signal capability in addition to the high-  
performance flash FPGA fabric and flash memory block. The many built-in analog peripherals include a  
configurable 32:1 input analog MUX, up to 10 independent MOSFET gate driver outputs, and a  
configurable ADC. The ADC supports 8-, 10-, and 12-bit modes of operation with a cumulative sample  
rate up to 600 k samples per second (Ksps), differential nonlinearity (DNL) < 1.0 LSB, and Total  
Unadjusted Error (TUE) of 0.72 LSB in 10-bit mode. The TUE is used for characterization of the  
conversion error and includes errors from all sources, such as offset and linearity. Internal bandgap  
circuitry offers 1% voltage reference accuracy with the flexibility of utilizing an external reference voltage.  
The ADC channel sampling sequence and sampling rate are programmable and implemented in the  
FPGA logic using Designer and Libero SoC software tool support.  
Two channels of the 32-channel ADCMUX are dedicated. Channel 0 is connected internally to VCC and  
can be used to monitor core power supply. Channel 31 is connected to an internal temperature diode  
which can be used to monitor device temperature. The 30 remaining channels can be connected to  
external analog signals. The exact number of I/Os available for external connection signals is device-  
dependent (refer to the "Fusion Family" table on page I for details).  
With Fusion, Microsemi also introduces the Analog Quad I/O structure (Figure 1-1 on page 1-5). Each  
quad consists of three analog inputs and one gate driver. Each quad can be configured in various built-in  
circuit combinations, such as three prescaler circuits, three digital input circuits, a current monitor circuit,  
or a temperature monitor circuit. Each prescaler has multiple scaling factors programmed by FPGA  
signals to support a large range of analog inputs with positive or negative polarity. When the current  
monitor circuit is selected, two adjacent analog inputs measure the voltage drop across a small external  
sense resistor. For more information, refer to the "Analog System Characteristics" section on  
page 2-120. Built-in operational amplifiers amplify small voltage signals for accurate current  
measurement. One analog input in each quad can be connected to an external temperature monitor  
diode. In addition to the external temperature monitor diode(s), a Fusion device can monitor an internal  
temperature diode using dedicated channel 31 of the ADCMUX.  
Figure 1-1 on page 1-5 illustrates a typical use of the Analog Quad I/O structure. The Analog Quad  
shown is configured to monitor and control an external power supply. The AV pad measures the source  
of the power supply. The AC pad measures the voltage drop across an external sense resistor to  
1-4  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
calculate current. The AG MOSFET gate driver pad turns the external MOSFET on and off. The AT pad  
measures the load-side voltage level.  
Power  
Line Side  
Load Side  
Off-Chip  
Rpullup  
AV  
AC  
AG  
AT  
Voltage  
Monitor Block  
Current  
Monitor Block  
Gate  
Driver  
Temperature  
Monitor Block  
Pads  
On-Chip  
Analog Quad  
Pre-  
scaler  
Pre-  
scaler  
Pre-  
scaler  
Power  
MOSFET  
Gate Driver  
Digital  
Input  
Digital  
Input  
Digital  
Input  
Current  
Monitor/Instr  
Amplifier  
Temperature  
Monitor  
To FPGA  
(DAVOUTx)  
To FPGA  
(DACOUTx)  
From FPGA  
(GDONx)  
To FPGA  
(DATOUTx)  
To Analog MUX  
To Analog MUX  
To Analog MUX  
Figure 1-1 • Analog Quad  
Embedded Memories  
Flash Memory Blocks  
The flash memory available in each Fusion device is composed of one to four flash blocks, each 2 Mbits  
in density. Each block operates independently with a dedicated flash controller and interface. Fusion  
flash memory blocks combine fast access times (60 ns random access and 10 ns access in Read-Ahead  
mode) with a configurable 8-, 16-, or 32-bit datapath, enabling high-speed flash operation without wait  
states. The memory block is organized in pages and sectors. Each page has 128 bytes, with 33 pages  
comprising one sector and 64 sectors per block. The flash block can support multiple partitions. The only  
constraint on size is that partition boundaries must coincide with page boundaries. The flexibility and  
granularity enable many use models and allow added granularity in programming updates.  
Fusion devices support two methods of external access to the flash memory blocks. The first method is a  
serial interface that features a built-in JTAG-compliant port, which allows in-system programmability  
during user or monitor/test modes. This serial interface supports programming of an AES-encrypted  
stream. Data protected with security measures can be passed through the JTAG interface, decrypted,  
and then programmed in the flash block. The second method is a soft parallel interface.  
FPGA logic or an on-chip soft microprocessor can access flash memory through the parallel interface.  
Since the flash parallel interface is implemented in the FPGA fabric, it can potentially be customized to  
meet special user requirements. For more information, refer to the CoreCFI Handbook. The flash  
memory parallel interface provides configurable byte-wide (×8), word-wide (×16), or dual-word-wide  
Revision 4  
1-5  
Fusion Device Family Overview  
(×32) data-port options. Through the programmable flash parallel interface, the on-chip and off-chip  
memories can be cascaded for wider or deeper configurations.  
The flash memory has built-in security. The user can configure either the entire flash block or the small  
blocks to protect against unintentional or intrusive attempts to change or destroy the storage contents.  
Each on-chip flash memory block has a dedicated controller, enabling each block to operate  
independently.  
The flash block logic consists of the following sub-blocks:  
Flash block – Contains all stored data. The flash block contains 64 sectors and each sector  
contains 33 pages of data.  
Page Buffer – Contains the contents of the current page being modified. A page contains 8 blocks  
of data.  
Block Buffer – Contains the contents of the last block accessed. A block contains 128 data bits.  
ECC Logic – The flash memory stores error correction information with each block to perform  
single-bit error correction and double-bit error detection on all data blocks.  
User Nonvolatile FlashROM  
In addition to the flash blocks, Fusion devices have 1 Kbit of user-accessible, nonvolatile FlashROM on-  
chip. The FlashROM is organized as 8×128-bit pages. The FlashROM can be used in diverse system  
applications:  
Internet protocol addressing (wireless or fixed)  
System calibration settings  
Device serialization and/or inventory control  
Subscription-based business models (for example, set-top boxes)  
Secure key storage for communications algorithms protected by security  
Asset management/tracking  
Date stamping  
Version management  
The FlashROM is written using the standard IEEE 1532 JTAG programming interface. Pages can be  
individually programmed (erased and written). On-chip AES decryption can be used selectively over  
public networks to load data such as security keys stored in the FlashROM for a user design.  
The FlashROM can be programmed (erased and written) via the JTAG programming interface, and its  
contents can be read back either through the JTAG programming interface or via direct FPGA core  
addressing.  
The FlashPoint tool in the Fusion development software solutions, Libero SoC and Designer, has  
extensive support for flash memory blocks and FlashROM. One such feature is auto-generation of  
sequential programming files for applications requiring a unique serial number in each part. Another  
feature allows the inclusion of static data for system version control. Data for the FlashROM can be  
generated quickly and easily using the Libero SoC and Designer software tools. Comprehensive  
programming file support is also included to allow for easy programming of large numbers of parts with  
differing FlashROM contents.  
SRAM and FIFO  
Fusion devices have embedded SRAM blocks along the north and south sides of the device. Each  
variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18,  
512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can  
be configured with different bit widths on each port. For example, data can be written through a 4-bit port  
and read as a single bitstream. The SRAM blocks can be initialized from the flash memory blocks or via  
the device JTAG port (ROM emulation mode), using the UJTAG macro.  
In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM  
block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width  
and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and  
Almost Full (AFULL) flags in addition to the normal EMPTY and FULL flags. The embedded FIFO control  
unit contains the counters necessary for the generation of the read and write address pointers. The  
SRAM/FIFO blocks can be cascaded to create larger configurations.  
1-6  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Clock Resources  
PLLs and Clock Conditioning Circuits (CCCs)  
Fusion devices provide designers with very flexible clock conditioning capabilities. Each member of the  
Fusion family contains six CCCs. In the two larger family members, two of these CCCs also include a  
PLL; the smaller devices support one PLL.  
The inputs of the CCC blocks are accessible from the FPGA core or from one of several inputs with  
dedicated CCC block connections.  
The CCC block has the following key features:  
Wide input frequency range (fIN_CCC) = 1.5 MHz to 350 MHz  
Output frequency range (fOUT_CCC) = 0.75 MHz to 350 MHz  
Clock phase adjustment via programmable and fixed delays from –6.275 ns to +8.75 ns  
Clock skew minimization (PLL)  
Clock frequency synthesis (PLL)  
On-chip analog clocking resources usable as inputs:  
100 MHz on-chip RC oscillator  
Crystal oscillator  
Additional CCC specifications:  
Internal phase shift = 0°, 90°, 180°, and 270°  
Output duty cycle = 50% ± 1.5%  
Low output jitter. Samples of peak-to-peak period jitter when a single global network is used:  
70 ps at 350 MHz  
90 ps at 100 MHz  
180 ps at 24 MHz  
Worst case < 2.5% × clock period  
Maximum acquisition time = 150 µs  
Low power consumption of 5 mW  
Global Clocking  
Fusion devices have extensive support for multiple clocking domains. In addition to the CCC and PLL  
support described above, there are on-chip oscillators as well as a comprehensive global clock  
distribution network.  
The integrated RC oscillator generates a 100 MHz clock. It is used internally to provide a known clock  
source to the flash memory read and write control. It can also be used as a source for the PLLs.  
The crystal oscillator supports the following operating modes:  
Crystal (32.768 KHz to 20 MHz)  
Ceramic (500 KHz to 8 MHz)  
RC (32.768 KHz to 4 MHz)  
Each VersaTile input and output port has access to nine VersaNets: six main and three quadrant global  
networks. The VersaNets can be driven by the CCC or directly accessed from the core via MUXes. The  
VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.  
Digital I/Os with Advanced I/O Standards  
The Fusion family of FPGAs features a flexible digital I/O structure, supporting a range of voltages (1.5 V,  
1.8 V, 2.5 V, and 3.3 V). Fusion FPGAs support many different digital I/O standards, both single-ended  
and differential.  
The I/Os are organized into banks, with four or five banks per device. The configuration of these banks  
determines the I/O standards supported. The banks along the east and west sides of the device support  
the full range of I/O standards (single-ended and differential). The south bank supports the Analog Quads  
(analog I/O). In the family's two smaller devices, the north bank supports multiple single-ended digital I/O  
Revision 4  
1-7  
Fusion Device Family Overview  
standards. In the family’s larger devices, the north bank is divided into two banks of digital Pro I/Os,  
supporting a wide variety of single-ended, differential, and voltage-referenced I/O standards.  
Each I/O module contains several input, output, and enable registers. These registers allow the  
implementation of the following applications:  
Single-Data-Rate (SDR) applications  
Double-Data-Rate (DDR) applications—DDR LVDS I/O for chip-to-chip communications  
Fusion banks support LVPECL, LVDS, BLVDS, and M-LVDS with 20 multi-drop points.  
VersaTiles  
The Fusion core consists of VersaTiles, which are also used in the successful ProASIC3 family. The  
Fusion VersaTile supports the following:  
All 3-input logic functions—LUT-3 equivalent  
Latch with clear or set  
D-flip-flop with clear or set and optional enable  
Refer to Figure 1-2 for the VersaTile configuration arrangement.  
LUT-3 Equivalent D-Flip-Flop with Clear or Set Enable D-Flip-Flop with Clear or Set  
Data  
CLK  
CLR  
Y
X1  
X2  
X3  
Data  
CLK  
Enable  
Y
D-FF  
LUT-3  
D-FFE  
Y
CLR  
Figure 1-2 VersaTile Configurations  
Specifying I/O States During Programming  
You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for  
PDB files generated from Designer v8.5 or greater. See the FlashPro User’s Guide for more information.  
Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have  
limited display of Pin Numbers only.  
The I/Os are controlled by the JTAG Boundary Scan register during programming, except for the analog  
pins (AC, AT and AV). The Boundary Scan register of the AG pin can be used to enable/disable the gate  
driver in software v9.0.  
1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during  
programming.  
2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator  
window appears.  
3. Click the Specify I/O States During Programming button to display the Specify I/O States  
During Programming dialog box.  
4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header.  
Select the I/Os you wish to modify (Figure 1-3 on page 1-9).  
5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings  
for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state  
settings:  
1 – I/O is set to drive out logic High  
0 – I/O is set to drive out logic Low  
Last Known State – I/O is set to the last value that was driven out prior to entering the  
programming mode, and then held at that value during programming  
Z -Tri-State: I/O is tristated  
1-8  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Figure 1-3 • I/O States During Programming Window  
6. Click OK to return to the FlashPoint – Programming File Generator window.  
I/O States During programming are saved to the ADB and resulting programming files after completing  
programming file generation.  
Revision 4  
1-9  
Fusion Device Family Overview  
Related Documents  
Datasheet  
Core8051  
www.microsemi.com/soc/ipdocs/Core8051_DS.pdf  
Application Notes  
Fusion FlashROM  
http://www.microsemi.com/soc/documents/Fusion_FROM_AN.pdf  
Fusion SRAM/FIFO Blocks  
http://www.microsemi.com/soc/documents/Fusion_RAM_FIFO_AN.pdf  
Using DDR in Fusion Devices  
http://www.microsemi.com/soc/documents/Fusion_DDR_AN.pdf  
Fusion Security  
http://www.microsemi.com/soc/documents/Fusion_Security_AN.pdf  
Using Fusion RAM as Multipliers  
http://www.microsemi.com/soc/documents/Fusion_Multipliers_AN.pdf  
Handbook  
Cortex-M1 Handbook  
www.microsemi.com/soc/documents/CortexM1_HB.pdf  
User’s Guides  
Designer User's Guide  
http://www.microsemi.com/soc/documents/designer_UG.pdf  
Fusion FPGA Fabric User’s Guide  
http://www.microsemi.com/soc/documents/Fusion_UG.pdf  
IGLOO, ProASIC3, SmartFusion and Fusion Macro Library Guide  
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf  
SmartGen, FlashROM, Flash Memory System Builder, and Analog System Builder User's Guide  
http://www.microsemi.com/soc/documents/genguide_ug.pdf  
White Papers  
Fusion Technology  
http://www.microsemi.com/soc/documents/Fusion_Tech_WP.pdf  
1-10  
Revision 4  
2 – Device Architecture  
Fusion Stack Architecture  
To manage the unprecedented level of integration in Fusion devices, Microsemi developed the Fusion  
technology stack (Figure 2-1). This layered model offers a flexible design environment, enabling design  
at very high and very low levels of abstraction. Fusion peripherals include hard analog IP and hard and  
soft digital IP. Peripherals communicate across the FPGA fabric via a layer of soft gates—the Fusion  
backbone. Much more than a common bus interface, this Fusion backbone integrates a micro-sequencer  
within the FPGA fabric and configures the individual peripherals and supports low-level processing of  
peripheral data. Fusion applets are application building blocks that can control and respond to  
peripherals and other system signals. Applets can be rapidly combined to create large applications. The  
technology is scalable across devices, families, design types, and user expertise, and supports a well-  
defined interface for external IP and tool integration.  
At the lowest level, Level 0, are Fusion peripherals. These are configurable functional blocks that can be  
hardwired structures such as a PLL or analog input channel, or soft (FPGA gate) blocks such as a UART  
or two-wire serial interface. The Fusion peripherals are configurable and support a standard interface to  
facilitate communication and implementation.  
Connecting and controlling access to the peripherals is the Fusion backbone, Level 1. The backbone is a  
soft-gate structure, scalable to any number of peripherals. The backbone is a bus and much more; it  
manages peripheral configuration to ensure proper operation. Leveraging the common peripheral  
interface and a low-level state machine, the backbone efficiently offloads peripheral management from  
the system design. The backbone can set and clear flags based upon peripheral behavior and can define  
performance criteria. The flexibility of the stack enables a designer to configure the silicon, directly  
bypassing the backbone if that level of control is desired.  
One step up from the backbone is the Fusion applet, Level 2. The applet is an application building block  
that implements a specific function in FPGA gates. It can react to stimuli and board-level events coming  
through the backbone or from other sources, and responds to these stimuli by accessing and  
manipulating peripherals via the backbone or initiating some other action. An applet controls or responds  
to the peripheral(s). Applets can be easily imported or exported from the design environment. The applet  
structure is open and well-defined, enabling users to import applets from Microsemi, system developers,  
third parties, and user groups.  
Optional ARM or 8051 Processor  
User Applications  
Fusion Applets  
Level 3  
Level 2  
Level 1  
Flash  
Memory  
Fusion Smart Backbone  
Smart Peripherals  
in FPGA  
Fabric  
(e.g., Logic, PLL, FIFO)  
Analog  
Smart  
Peripheral 2 Peripheral n  
Analog  
Smart  
Analog  
Smart  
Peripheral 1  
Level 0  
Note: Levels 1, 2, and 3 are implemented in FPGA logic gates.  
Figure 2-1 • Fusion Architecture Stack  
Revision 4  
2-1  
Device Architecture  
The system application, Level 3, is the larger user application that utilizes one or more applets. Designing  
at the highest level of abstraction supported by the Fusion technology stack, the application can be easily  
created in FPGA gates by importing and configuring multiple applets.  
In fact, in some cases an entire FPGA system design can be created without any HDL coding.  
An optional MCU enables a combination of software and HDL-based design methodologies. The MCU  
can be on-chip or off-chip as system requirements dictate. System portioning is very flexible, allowing the  
MCU to reside above the applets or to absorb applets, or applets and backbone, if desired.  
The Fusion technology stack enables a very flexible design environment. Users can engage in design  
across a continuum of abstraction from very low to very high.  
Core Architecture  
VersaTile  
Based upon successful ProASIC3/E logic architecture, Fusion devices provide granularity comparable to  
gate arrays. The Fusion device core consists of a sea-of-VersaTiles architecture.  
As illustrated in Figure 2-2, there are four inputs in a logic VersaTile cell, and each VersaTile can be  
configured using the appropriate flash switch connections:  
Any 3-input logic function  
Latch with clear or set  
D-flip-flop with clear or set  
Enable D-flip-flop with clear or set (on a 4th input)  
VersaTiles can flexibly map the logic and sequential gates of a design. The inputs of the VersaTile can be  
inverted (allowing bubble pushing), and the output of the tile can connect to high-speed, very-long-line  
routing resources. VersaTiles and larger functions are connected with any of the four levels of routing  
hierarchy.  
When the VersaTile is used as an enable D-flip-flop, the SET/CLR signal is supported by a fourth input,  
which can only be routed to the core cell over the VersaNet (global) network.  
The output of the VersaTile is F2 when the connection is to the ultra-fast local lines, or YL when the  
connection is to the efficient long-line or very-long-line resources (Figure 2-2).  
0
1
Y
Pin 1  
F2  
Data  
X3  
0
1
0
1
YL  
0
1
CLK  
X2  
CLR/  
Enable  
X1  
CLR  
XC*  
Ground  
Legend:  
Via (hard connection)  
Switch (flash connection)  
Note: *This input can only be connected to the global clock distribution network.  
Figure 2-2 • Fusion Core VersaTile  
2-2  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
VersaTile Characteristics  
Sample VersaTile Specifications—Combinatorial Module  
The Fusion library offers all combinations of LUT-3 combinatorial functions. In this section, timing  
characteristics are presented for a sample of the library (Figure 2-3). For more details, refer to the  
IGLOO, ProASIC3, SmartFusion and Fusion Macro Library Guide.  
A
Y
Y
INV  
A
A
B
NOR2  
OR2  
Y
B
A
B
A
B
Y
AND2  
Y
NAND2  
XOR3  
A
B
C
A
B
Y
XOR2  
Y
A
B
C
A
MAJ3  
0
Y
A
B
C
MUX2  
Y
NAND3  
B
S
1
Figure 2-3 • Sample of Combinatorial Cells  
Revision 4  
2-3  
Device Architecture  
t
PD  
A
B
NAND2 or  
Any Combinatorial  
Logic  
Y
t
= MAX(t  
, t  
, t  
, t  
)
PD  
PD(RR) PD(RF) PD(FF) PD(FR)  
where edges are applicable for the  
particular combinatorial cell  
VCCA  
50%  
50%  
A, B, C  
GND  
50%  
VCCA  
50%  
OUT  
GND  
VCCA  
t
PD  
t
PD  
(FF)  
(RR)  
OUT  
t
PD  
(FR)  
50%  
50%  
t
PD  
GND  
(RF)  
Figure 2-4 • Combinatorial Timing Model and Waveforms  
2-4  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Timing Characteristics  
Table 2-1 • Combinatorial Cell Propagation Delays  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Combinatorial Cell  
INV  
Equation  
Y = !A  
Parameter  
tPD  
–2  
–1  
Std.  
0.54  
0.63  
0.63  
0.65  
0.65  
0.99  
0.93  
1.17  
0.68  
0.75  
Units  
ns  
0.40  
0.47  
0.47  
0.49  
0.49  
0.74  
0.70  
0.87  
0.51  
0.56  
0.46  
0.54  
0.54  
0.55  
0.55  
0.84  
0.79  
1.00  
0.58  
0.64  
AND2  
Y = A · B  
tPD  
ns  
NAND2  
OR2  
Y = !(A · B)  
Y = A + B  
tPD  
ns  
tPD  
ns  
NOR2  
Y = !(A + B)  
Y = A B  
Y = MAJ(A, B, C)  
Y = A B C  
Y = A !S + B S  
Y = A · B · C  
tPD  
ns  
XOR2  
tPD  
ns  
MAJ3  
tPD  
ns  
XOR3  
tPD  
ns  
MUX2  
tPD  
ns  
AND3  
tPD  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Sample VersaTile Specifications—Sequential Module  
The Fusion library offers a wide variety of sequential cells, including flip-flops and latches. Each has a  
data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a  
representative sample from the library (Figure 2-5). For more details, refer to the IGLOO, ProASIC3,  
SmartFusion and Fusion Macro Library Guide.  
Revision 4  
2-5  
Device Architecture  
Data  
CLK  
Out  
Data  
Out  
D
Q
D
Q
En  
DFN1  
DFN1E1  
CLK  
PRE  
Data  
Data  
Out  
Out  
Q
D
D
Q
En  
DFN1C1  
DFI1E1P1  
CLK  
CLK  
CLR  
Figure 2-5 • Sample of Sequential Cells  
tCKMPWH CKMPWL  
t
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
tHD  
tSUD  
50%  
50%  
Data  
EN  
0
tWPRE  
tRECPRE  
50%  
tREMPRE  
50%  
tHE  
50%  
50%  
PRE  
CLR  
Out  
tSUE  
tRECCLR  
50%  
tWCLR  
50%  
tREMCLR  
50%  
tPRE2Q  
50%  
tCLR2Q  
50%  
50%  
tCLKQ  
Figure 2-6 • Sequential Timing Model and Waveforms  
2-6  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Sequential Timing Characteristics  
Table 2-2 • Register Delays  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tCLKQ  
Description  
Clock-to-Q of the Core Register  
–2  
–1  
Std.  
0.74  
0.57  
0.00  
0.61  
0.00  
0.53  
0.53  
0.00  
0.30  
0.00  
0.30  
0.30  
0.30  
0.43  
0.48  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.55  
0.43  
0.00  
0.45  
0.00  
0.40  
0.40  
0.00  
0.22  
0.00  
0.22  
0.22  
0.22  
0.32  
0.36  
0.63  
0.49  
0.00  
0.52  
0.00  
0.45  
0.45  
0.00  
0.25  
0.00  
0.25  
0.25  
0.25  
0.37  
0.41  
tSUD  
Data Setup Time for the Core Register  
tHD  
Data Hold Time for the Core Register  
tSUE  
Enable Setup Time for the Core Register  
tHE  
Enable Hold Time for the Core Register  
tCLR2Q  
tPRE2Q  
tREMCLR  
tRECCLR  
tREMPRE  
tRECPRE  
tWCLR  
Asynchronous Clear-to-Q of the Core Register  
Asynchronous Preset-to-Q of the Core Register  
Asynchronous Clear Removal Time for the Core Register  
Asynchronous Clear Recovery Time for the Core Register  
Asynchronous Preset Removal Time for the Core Register  
Asynchronous Preset Recovery Time for the Core Register  
Asynchronous Clear Minimum Pulse Width for the Core Register  
Asynchronous Preset Minimum Pulse Width for the Core Register  
Clock Minimum Pulse Width High for the Core Register  
Clock Minimum Pulse Width Low for the Core Register  
tWPRE  
tCKMPWH  
tCKMPWL  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-7  
Device Architecture  
Array Coordinates  
During many place-and-route operations in the Microsemi Designer software tool, it is possible to set  
constraints that require array coordinates. Table 2-3 is provided as a reference. The array coordinates  
are measured from the lower left (0, 0). They can be used in region constraints for specific logic  
groups/blocks, designated by a wildcard, and can contain core cells, memories, and I/Os.  
Table 2-3 provides array coordinates of core cells and memory blocks.  
I/O and cell coordinates are used for placement constraints. Two coordinate systems are needed  
because there is not a one-to-one correspondence between I/O cells and edge core cells. In addition, the  
I/O coordinate system changes depending on the die/package combination. It is not listed in Table 2-3.  
The Designer ChipPlanner tool provides array coordinates of all I/O locations. I/O and cell coordinates  
are used for placement constraints. However, I/O placement is easier by package pin assignment.  
Figure 2-7 illustrates the array coordinates of an AFS600 device. For more information on how to use  
array coordinates for region/placement constraints, see the Designer User's Guide or online help  
(available in the software) for Fusion software tools.  
Table 2-3 • Array Coordinates  
Device  
VersaTiles  
Memory Rows  
All  
Min.  
Max.  
Bottom  
Top  
(x, y)  
Min.  
(x, y)  
(0, 0)  
(0, 0)  
(0, 0)  
(0, 0)  
Max.  
(x, y)  
x
3
3
3
3
y
2
2
4
4
x
y
(x, y)  
None  
None  
(3, 2)  
(3, 2)  
AFS090  
AFS250  
AFS600  
AFS1500  
98  
25  
(3, 26)  
(3, 50)  
(3, 76)  
(3, 124)  
(101, 29)  
(133, 53)  
(197, 79)  
(325, 129)  
130  
194  
322  
49  
75  
123  
I/O Tile  
Top Row (7, 79) to (189, 79)  
Bottom Row (5, 78) to (192, 78)  
(0, 79)  
(197, 79)  
Memory  
Blocks  
(3, 77)  
(3, 76)  
(194, 77)  
(194, 76)  
Memory  
Blocks  
VersaTile (Core)  
(3, 75)  
(194, 75)  
VersaTile (Core)  
(194, 4)  
VersaTile(Core)  
VersaTile (Core)  
(3, 4)  
(194, 3) Memory  
Blocks  
(194, 2)  
Memory  
Blocks  
(3, 3)  
(3, 2)  
(197, 1)  
(197, 0)  
(0, 0)  
UJTAG FlashROM  
I/O Tile to Analog Block  
Top Row (5, 1) to (168, 1)  
Bottom Row (7, 0) to (165, 0)  
Top Row (169, 1) to (192, 1)  
Note: The vertical I/O tile coordinates are not shown. West side coordinates are {(0, 2) to (2, 2)} to {(0, 77) to (2, 77)};  
east side coordinates are {(195, 2) to (197, 2)} to {(195, 77) to (197, 77)}.  
Figure 2-7 • Array Coordinates for AFS600  
2-8  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Routing Architecture  
The routing structure of Fusion devices is designed to provide high performance through a flexible four-  
level hierarchy of routing resources: ultra-fast local resources; efficient long-line resources; high-speed  
very-long-line resources; and the high-performance VersaNet networks.  
The ultra-fast local resources are dedicated lines that allow the output of each VersaTile to connect  
directly to every input of the eight surrounding VersaTiles (Figure 2-8). The exception to this is that the  
SET/CLR input of a VersaTile configured as a D-flip-flop is driven only by the VersaNet global network.  
The efficient long-line resources provide routing for longer distances and higher-fanout connections.  
These resources vary in length (spanning one, two, or four VersaTiles), run both vertically and  
horizontally, and cover the entire Fusion device (Figure 2-9 on page 2-10). Each VersaTile can drive  
signals onto the efficient long-line resources, which can access every input of every VersaTile. Active  
buffers are inserted automatically by routing software to limit loading effects.  
The high-speed very-long-line resources, which span the entire device with minimal delay, are used to  
route very long or high-fanout nets: length ±12 VersaTiles in the vertical direction and length ±16 in the  
horizontal direction from a given core VersaTile (Figure 2-10 on page 2-11). Very long lines in Fusion  
devices, like those in ProASIC3 devices, have been enhanced. This provides a significant performance  
boost for long-reach signals.  
The high-performance VersaNet global networks are low-skew, high-fanout nets that are accessible from  
external pins or from internal logic (Figure 2-11 on page 2-12). These nets are typically used to distribute  
clocks, reset signals, and other high-fanout nets requiring minimum skew. The VersaNet networks are  
implemented as clock trees, and signals can be introduced at any junction. These can be employed  
hierarchically, with signals accessing every input on all VersaTiles.  
Long Lines  
L
L
L
L
L
L
Inputs  
Ultra-Fast Local Lines  
(connects a VersaTile to the  
adjacent VersaTile, I/O buffer,  
or memory block)  
L
L
L
Note: Input to the core cell for the D-flip-flop set and reset is only available via the VersaNet global network connection.  
Figure 2-8 • Ultra-Fast Local Lines Connected to the Eight Nearest Neighbors  
Revision 4  
2-9  
Device Architecture  
Spans Four VersaTiles  
Spans One VersaTile  
Spans Two VersaTiles  
L
VersaTile  
L
L
L
L
L
L
L
L
L
L
L
L
L
Spans One VersaTile  
L
L
L
L
Spans Two VersaTiles  
Spans Four VersaTiles  
L
L
L
L
L
L
L
L
L
L
L
L
Figure 2-9 • Efficient Long-Line Resources  
2-10  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
High-Speed, Very-Long-Line Resources  
Pad Ring  
SRAM  
16×12 Block of VersaTiles  
Figure 2-10 • Very-Long-Line Resources  
Revision 4  
2-11  
Device Architecture  
Global Resources (VersaNets)  
Fusion devices offer powerful and flexible control of circuit timing through the use of analog circuitry.  
Each chip has six CCCs. The west CCC also contains a PLL core. In the two larger devices (AFS600 and  
AFS1500), the west and the east CCCs each contain a PLL. The PLLs include delay lines, a phase  
shifter (0°, 90°, 180°, 270°), and clock multipliers/dividers. Each CCC has all the circuitry needed for the  
selection and interconnection of inputs to the VersaNet global network. The east and west CCCs each  
have access to three VersaNet global lines on each side of the chip (six lines total). The CCCs at the four  
corners each have access to three quadrant global lines on each quadrant of the chip.  
Advantages of the VersaNet Approach  
One of the architectural benefits of Fusion is the set of powerful and low-delay VersaNet global networks.  
Fusion offers six chip (main) global networks that are distributed from the center of the FPGA array  
(Figure 2-11). In addition, Fusion devices have three regional globals (quadrant globals) in each of the  
four chip quadrants. Each core VersaTile has access to nine global network resources: three quadrant  
and six chip (main) global networks. There are a total of 18 global networks on the device. Each of these  
networks contains spines and ribs that reach all VersaTiles in all quadrants (Figure 2-12 on page 2-13).  
This flexible VersaNet global network architecture allows users to map up to 180 different  
internal/external clocks in a Fusion device. Details on the VersaNet networks are given in Table 2-4 on  
page 2-13. The flexibility of the Fusion VersaNet global network allows the designer to address several  
design requirements. User applications that are clock-resource-intensive can easily route external or  
gated internal clocks using VersaNet global routing networks. Designers can also drastically reduce  
delay penalties and minimize resource usage by mapping critical, high-fanout nets to the VersaNet global  
network.  
Quadrant Global Pads  
High-Performance  
VersaNet Global Network  
Pad Ring  
Top Spine  
Main (chip)  
Global Network  
Global  
Pads  
Chip (main)  
Global Pads  
Global Spine  
Global Ribs  
Bottom Spine  
Spine-Selection  
Tree MUX  
Figure 2-11 • Overview of Fusion VersaNet Global Network  
2-12  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Northwest Quadrant Global Network  
CCC  
CCC  
3
3
3
3
3
Chip (main)  
Global  
Network  
6
6
6
6
6
6
CCC  
3
CCC  
6
6
3
3
3
3
CCC  
CCC  
Southeast Quadrant Global Network  
Figure 2-12 • Global Network Architecture  
Table 2-4 • Globals/Spines/Rows by Device  
AFS090  
AFS250  
AFS600  
9
AFS1500  
9
Global VersaNets (trees)*  
VersaNet Spines/Tree  
Total Spines  
9
4
9
8
12  
20  
36  
72  
108  
180  
VersaTiles in Each Top or Bottom Spine  
Total VersaTiles  
384  
2,304  
768  
6,144  
1,152  
13,824  
1,920  
38,400  
Note: *There are six chip (main) globals and three globals per quadrant.  
Revision 4  
2-13  
Device Architecture  
VersaNet Global Networks and Spine Access  
The Fusion architecture contains a total of 18 segmented global networks that can access the  
VersaTiles, SRAM, and I/O tiles on the Fusion device. There are 6 chip (main) global networks that  
access the entire device and 12 quadrant networks (3 in each quadrant). Each device has a total of 18  
globals. These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets,  
including clock signals. In addition, these highly segmented global networks offer users the flexibility to  
create low-skew local networks using spines for up to 180 internal/external clocks (in an AFS1500  
device) or other high-fanout nets in Fusion devices. Optimal usage of these low-skew networks can  
result in significant improvement in design performance on Fusion devices.  
The nine spines available in a vertical column reside in global networks with two separate regions of  
scope: the quadrant global network, which has three spines, and the chip (main) global network, which  
has six spines. Note that there are three quadrant spines in each quadrant of the device. There are four  
quadrant global network regions per device (Figure 2-12 on page 2-13).  
The spines are the vertical branches of the global network tree, shown in Figure 2-11 on page 2-12. Each  
spine in a vertical column of a chip (main) global network is further divided into two equal-length spine  
segments: one in the top and one in the bottom half of the die.  
Each spine and its associated ribs cover a certain area of the Fusion device (the "scope" of the spine;  
see Figure 2-11 on page 2-12). Each spine is accessed by the dedicated global network MUX tree  
architecture, which defines how a particular spine is driven—either by the signal on the global network  
from a CCC, for example, or another net defined by the user (Figure 2-13). Quadrant spines can be  
driven from user I/Os on the north and south sides of the die, via analog I/Os configured as direct digital  
inputs. The ability to drive spines in the quadrant global networks can have a significant effect on system  
performance for high-fanout inputs to a design.  
Details of the chip (main) global network spine-selection MUX are presented in Figure 2-13. The spine  
drivers for each spine are located in the middle of the die.  
Quadrant spines are driven from a north or south rib. Access to the top and bottom ribs is from the corner  
CCC or from the I/Os on the north and south sides of the device. For details on using spines in Fusion  
devices, see the application note Using Global Resources in Actel Fusion Devices.  
Internal/External  
Signals  
Internal/External  
Signals  
Tree Node MUX  
Tree Node MUX  
Internal/External  
Signal  
Tree Node MUX  
Global Rib  
Internal/External  
Signal  
Global Driver MUX  
Spine  
Figure 2-13 • Spine-Selection MUX of Global Tree  
2-14  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Clock Aggregation  
Clock aggregation allows for multi-spine clock domains. A MUX tree provides the necessary flexibility to  
allow long lines or I/Os to access domains of one, two, or four global spines. Signal access to the clock  
aggregation system is achieved through long-line resources in the central rib, and also through local  
resources in the north and south ribs, allowing I/Os to feed directly into the clock system. As Figure 2-14  
indicates, this access system is contiguous.  
There is no break in the middle of the chip for north and south I/O VersaNet access. This is different from  
the quadrant clocks, located in these ribs, which only reach the middle of the rib. Refer to the Using  
Global Resources in Actel Fusion Devices application note.  
Global Spine  
I/O Tiles  
I/O Access  
Global Rib  
Global Driver and MUX  
Tree Node MUX  
Internal Signal Access  
Global Signal Access  
Figure 2-14 • Clock Aggregation Tree Architecture  
Revision 4  
2-15  
Device Architecture  
Global Resource Characteristics  
AFS600 VersaNet Topology  
Clock delays are device-specific. Figure 2-15 is an example of a global tree used for clock routing. The  
global tree presented in Figure 2-15 is driven by a CCC located on the west side of the AFS600 device. It  
is used to drive all D-flip-flops in the device.  
Central  
Global Rib  
CCC  
VersaTile  
Rows  
Global Spine  
Figure 2-15 • Example of Global Tree Use in an AFS600 Device for Clock Routing  
2-16  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
VersaNet Timing Characteristics  
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not  
include I/O input buffer clock delays, as these are dependent upon I/O standard, and the clock may be  
driven and conditioned internally by the CCC module. Table 2-5, Table 2-6, Table 2-7, and Table 2-8 on  
page 2-18 present minimum and maximum global clock delays within the device Minimum and maximum  
delays are measured with minimum and maximum loading, respectively.  
Timing Characteristics  
Table 2-5 • AFS1500 Global Resource Timing  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
–2 –1 Std.  
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2 Units  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Input High Delay for Global Clock  
1.53  
1.53  
1.75  
1.79  
1.74  
1.75  
1.99  
2.04  
2.05  
2.05  
2.34  
2.40  
ns  
ns  
ns  
ns  
ns  
tRCKH  
tRCKMPWH Minimum Pulse Width High for Global Clock  
tRCKMPWL Minimum Pulse Width Low for Global Clock  
tRCKSW  
Maximum Skew for Global Clock  
0.26  
0.29  
0.34  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a  
fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.  
Table 2-6 • AFS600 Global Resource Timing  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
–2  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Input High Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2 Units  
1.27  
1.26  
1.49  
1.54  
1.44  
1.44  
1.70  
1.75  
1.69  
1.69  
2.00  
2.06  
ns  
ns  
ns  
ns  
ns  
tRCKH  
tRCKMPWH Minimum Pulse Width High for Global Clock  
tRCKMPWL Minimum Pulse Width Low for Global Clock  
tRCKSW  
Maximum Skew for Global Clock  
0.27  
0.31  
0.36  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a  
fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.  
Revision 4  
2-17  
Device Architecture  
Table 2-7 • AFS250 Global Resource Timing  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
–2 –1 Std.  
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2 Units  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Input High Delay for Global Clock  
0.89  
0.88  
1.12  
1.14  
1.02  
1.00  
1.27  
1.30  
1.20  
1.17  
1.50  
1.53  
ns  
ns  
ns  
ns  
ns  
tRCKH  
tRCKMPWH Minimum Pulse Width High for Global Clock  
tRCKMPWL  
tRCKSW  
Notes:  
Minimum Pulse Width Low for Global Clock  
Maximum Skew for Global Clock  
0.26  
0.30  
0.35  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully  
loaded row (all available flip-flops are connected to the global net in the row).  
3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.  
Table 2-8 • AFS090 Global Resource Timing  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
–2  
–1  
Std.  
Parameter  
tRCKL  
Description  
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2 Units  
Input Low Delay for Global Clock  
Input High Delay for Global Clock  
0.84  
0.83  
1.07  
1.10  
0.96  
0.95  
1.21  
1.25  
1.13  
1.12  
1.43  
1.47  
ns  
ns  
ns  
ns  
ns  
tRCKH  
tRCKMPWH Minimum Pulse Width High for Global Clock  
tRCKMPWL Minimum Pulse Width Low for Global Clock  
tRCKSW  
Maximum Skew for Global Clock  
0.27  
0.30  
0.36  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element  
located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully  
loaded row (all available flip-flops are connected to the global net in the row).  
3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.  
2-18  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Clocking Resources  
The Fusion family has a robust collection of clocking peripherals, as shown in the block diagram in  
Figure 2-16. These on-chip resources enable the creation, manipulation, and distribution of many clock  
signals. The Fusion integrated RC oscillator produces a 100 MHz clock source with no external  
components. For systems requiring more precise clock signals, the Fusion family supports an on-chip  
crystal oscillator circuit. The integrated PLLs in each Fusion device can use the RC oscillator, crystal  
oscillator, or another on-chip clock signal as a source. These PLLs offer a variety of capabilities to modify  
the clock source (multiply, divide, synchronize, advance, or delay). Utilizing the CCC found in the popular  
ProASIC3 family, Fusion incorporates six CCC blocks. The CCCs allow access to Fusion global and local  
clock distribution nets, as described in the "Global Resources (VersaNets)" section on page 2-12.  
Off-Chip On-Chip  
100 MHz  
RC Oscillator  
GNDOSC  
VCCOSC  
Clock Out to FPGA Core through CCC  
XTAL1  
GLINT  
Crystal Oscillator  
XTAL2  
To Core  
Xtal Clock  
PLL/ GLA  
NGMUX  
CCC  
External  
Crystal  
External  
RC  
Clock I/Os  
GLC  
or  
CLKOUT  
From FPGA Core  
Figure 2-16 • Fusion Clocking Options  
Revision 4  
2-19  
Device Architecture  
RC Oscillator  
The RC oscillator is an on-chip free-running clock source generating a 100 MHz clock. It can be used as  
a source clock for both on-chip and off-chip resources. When used in conjunction with the Fusion PLL  
and CCC circuits, the RC oscillator clock source can be used to generate clocks of varying frequency  
and phase.  
The Fusion RC oscillator is very accurate at ±1% over commercial temperature ranges and and ±3%  
over industrial temperature ranges. It is an automated clock, requiring no setup or configuration by the  
user. It requires only that the power and GNDOSC pins be connected; no external components are  
required. The RC oscillator can be used to drive either a PLL or another internal signal.  
RC Oscillator Characteristics  
Table 2-9 • Electrical Characteristics of RC Oscillator  
Parameter  
Description  
Conditions  
Min.  
Typ. Max. Units  
FRC  
Operating  
100  
MHz  
Frequency  
Accuracy  
Temperature: 0°C to 85°C  
Voltage: 3.3 V ± 5%  
1
%
Temperature: –40°C to 125°C  
Voltage: 3.3 V ± 5%  
3
%
Output Jitter  
Period Jitter (at 5 k cycles)  
100  
100  
150  
ps  
ps  
ps  
Cycle–Cycle Jitter (at 5 k cycles)  
Period Jitter (at 5 k cycles) with  
1 KHz / 300 mV peak-to-peak noise  
on power supply  
Cycle–Cycle Jitter (at 5 k cycles) with  
1 KHz / 300 mV peak-to-peak noise  
on power supply  
150  
ps  
Output Duty Cycle  
Operating Current  
50  
1
%
IDYNRC  
mA  
2-20  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Crystal Oscillator  
The Crystal Oscillator (XTLOSC) is source that generates the clock from an external crystal. The output  
of XTLOSC CLKOUT signal can be selected as an input to the PLL. Refer to the "Clock Conditioning  
Circuits" section for more details. The XTLOSC can operate in normal operations and Standby mode  
(RTC is running and 1.5 V is not present).  
In normal operation, the internal FPGA_EN signal is '1' as long as 1.5 V is present for VCC. As such,  
the internal enable signal, XTL_EN, for Crystal Oscillator is enabled since FPGA_EN is asserted. The  
XTL_MODE has the option of using MODE or RTC_MODE, depending on SELMODE.  
During Standby, 1.5 V is not available, as such, and FPGA_EN is '0'. SELMODE must be asserted in  
order for XTL_EN to be enabled; hence XTL_MODE relies on RTC_MODE. SELMODE and RTC_MODE  
must be connected to RTCXTLSEL and RTCXTLMODE from the AB respectively for correct operation  
during Standby (refer to the "Real-Time Counter System" section on page 2-33 for a detailed  
description).  
The Crystal Oscillator can be configured in one of four modes:  
RC network, 32 KHz to 4 MHz  
Low gain, 32 to 200 KHz  
Medium gain, 0.20 to 2.0 MHz  
High gain, 2.0 to 20.0 MHz  
In RC network mode, the XTAL1 pin is connected to an RC circuit, as shown in Figure 2-16 on  
page 2-19. The XTAL2 pin should be left floating. The RC value can be chosen based on Figure 2-18 for  
any desired frequency between 32 KHz and 4 MHz. The RC network mode can also accommodate an  
external clock source on XTAL1 instead of an RC circuit.  
In Low gain, Medium gain, and High gain, an external crystal component or ceramic resonator can be  
added onto XTAL1 and XTAL2, as shown in Figure 2-16 on page 2-19. In the case where the Crystal  
Oscillator block is not used, the XTAL1 pin should be connected to GND and the XTAL2 pin should be left  
floating.  
XTLOSC  
FPGA_EN*  
SELMODE  
XTL_EN*  
CLKOUT  
MODE[1:0]  
0
1
XTL_MODE*  
RTC_MODE[1:0]  
XTL  
Note: *Internal signal—does not exist in macro.  
Figure 2-17 • XTLOSC Macro  
Revision 4  
2-21  
Device Architecture  
RC Time Constant Values vs. Frequency  
1.00E-0.3  
1.00E-0.4  
1.00E-0.5  
1.00E-0.6  
1.00E-0.7  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Frequency (MHz)  
Figure 2-18 • Crystal Oscillator: RC Time Constant Values vs. Frequency (typical)  
Table 2-10 • XTLOSC Signals Descriptions  
Signal Name  
XTL_EN*  
Width Direction  
Function  
Enables the crystal. Active high.  
Settings for the crystal clock for different frequency.  
1
2
XTL_MODE*  
Value  
b'00  
b'01  
b'10  
b'11  
Modes  
RC network  
Low gain  
Frequency Range  
32 KHz to 4 MHz  
32 to 200 KHz  
Medium gain  
High gain  
0.20 to 2.0 MHz  
2.0 to 20.0 MHz  
SELMODE  
1
IN  
Selects the source of XTL_MODE and also enables the  
XTL_EN. Connect from RTCXTLSEL from AB.  
0
For normal operation or sleep mode, XTL_EN  
depends on FPGA_EN, XTL_MODE depends on  
MODE  
1
For Standby mode, XTL_EN is enabled,  
XTL_MODE depends on RTC_MODE  
RTC_MODE[1:0]  
MODE[1:0]  
2
2
IN  
IN  
Settings for the crystal clock for different frequency ranges.  
XTL_MODE uses RTC_MODE when SELMODE is '1'.  
Settings for the crystal clock for different frequency ranges.  
XTL_MODE uses MODE when SELMODE is '0'. In Standby,  
MODE inputs will be 0's.  
FPGA_EN*  
1
IN  
0 when 1.5 V is not present for VCC 1 when 1.5 V is present  
for VCC  
XTL  
1
1
IN  
Crystal Clock source  
Crystal Clock output  
CLKOUT  
OUT  
Note: *Internal signal—does not exist in macro.  
2-22  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Clock Conditioning Circuits  
In Fusion devices, the CCCs are used to implement frequency division, frequency multiplication, phase  
shifting, and delay operations.  
The CCCs are available in six chip locations—each of the four chip corners and the middle of the east  
and west chip sides.  
Each CCC can implement up to three independent global buffers (with or without programmable delay),  
or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to three  
global outputs. Unused global outputs of a PLL can be used to implement independent global buffers, up  
to a maximum of three global outputs for a given CCC.  
A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, and CLKC-  
GLC) of a given CCC.  
A PLL macro uses the CLKA CCC input to drive its reference clock. It uses the GLA and, optionally, the  
GLB and GLC global outputs to drive the global networks. A PLL macro can also drive the YB and YC  
regular core outputs. The GLB (or GLC) global output cannot be reused if the YB (or YC) output is used  
(Figure 2-19). Refer to the "PLL Macro" section on page 2-29 for more information.  
Each global buffer, as well as the PLL reference clock, can be driven from one of the following:  
3 dedicated single-ended I/Os using a hardwired connection  
2 dedicated differential I/Os using a hardwired connection  
The FPGA core  
The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or  
through an asynchronous interface. This asynchronous interface is dynamically accessible from inside  
the Fusion device to permit changes of parameters (such as divide ratios) during device operation. To  
increase the versatility and flexibility of the clock conditioning system, the CCC configuration is  
determined either by the user during the design process, with configuration data being stored in flash  
memory as part of the device programming procedure, or by writing data into a dedicated shift register  
during normal device operation. This latter mode allows the user to dynamically reconfigure the CCC  
without the need for core programming. The shift register is accessed through a simple serial interface.  
Refer to the "UJTAG Applications in Microsemi’s Low-Power Flash Devices" chapter of the Fusion FPGA  
Fabric User’s Guide and the "CCC and PLL Characteristics" section on page 2-30 for more information.  
Revision 4  
2-23  
Device Architecture  
Clock Source  
Input LVDS/LVPECL Macro  
Clock Conditioning  
Output  
CLKA  
EXTFB  
POWERDOWN  
GLA  
LOCK  
GLA  
or  
GLB  
YB  
GLC  
YC  
PADN  
PADP  
Y
GLA and (GLB or YB)  
or  
GLA and (GLC or YC)  
or  
GLA and (GLB or YB) and  
(GLC or YC)  
OADIVRST  
OADIVHALF  
OADIV[4:0]  
OAMUX[2:0]  
DLYGLA[4:0]  
OBDIV[4:0]  
OBMUX[2:0]  
DLYYB[4:0]  
DLYGLB[4:0]  
OCDIV[4:0]  
OCMUX[2:0]  
DLYYC[4:0]  
DLYGLC[4:0]  
FINDIV[6:0]  
FBDIV[6:0]  
FBDLY[4:0]  
FBSEL[1:0]  
XDLYSEL  
INBUF2 Macro  
Y
PAD  
VCOSEL[2:0]  
Notes:  
1. Visit the Microsemi SoC Products Group website for application notes concerning dynamic PLL reconfiguration. Refer to  
the "PLL Macro" section on page 2-29 for signal descriptions.  
2. Many specific INBUF macros support the wide variety of single-ended and differential I/O standards for the Fusion family.  
3. Refer to the IGLOO, ProASIC3, SmartFusion and Fusion Macro Library Guide for more information.  
Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro  
Table 2-11 • Available Selections of I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros  
CLKBUF Macros  
CLKBUF_LVCMOS5  
CLKBUF_LVCMOS331  
CLKBUF_LVCMOS18  
CLKBUF_LVCMOS15  
CLKBUF_PCI  
CLKBUF_LVDS2  
CLKBUF_LVPECL  
Notes:  
1. This is the default macro. For more details, refer to the IGLOO, ProASIC3, SmartFusion and Fusion Macro Library  
Guide.  
2. The B-LVDS and M-LVDS standards are supported with CLKBUF_LVDS.  
2-24  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Global Buffers with No Programmable Delays  
The CLKBUF and CLKBUF_LVPECL/LVDS macros are composite macros that include an I/O macro  
driving a global buffer, hardwired together (Figure 2-20).  
The CLKINT macro provides a global buffer function driven by the FPGA core.  
The CLKBUF, CLKBUF_LVPECL/LVDS, and CLKINT macros are pass-through clock sources and do not  
use the PLL or provide any programmable delay functionality.  
Many specific CLKBUF macros support the wide variety of single-ended and differential I/O standards  
supported by Fusion devices. The available CLKBUF macros are described in the IGLOO, ProASIC3,  
SmartFusion and Fusion Macro Library Guide.  
Clock Source  
CLKBUF Macro  
PAD  
Output  
Clock Conditioning  
GLA  
CLKBUF_LVDS/LVPECL Macro  
PADN  
CLKINT Macro  
or  
None  
GLB  
or  
Y
Y
A
Y
PADP  
GLC  
Figure 2-20 • Global Buffers with No Programmable Delay  
Revision 4  
2-25  
Device Architecture  
Global Buffers with Programmable Delay  
The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to  
delay the clock input using a programmable delay (Figure 2-21). The CLKDLY macro takes the selected  
clock input and adds a user-defined delay element. This macro generates an output clock phase shift  
from the input clock.  
The CLKDLY macro can be driven by an INBUF macro to create a composite macro, where the I/O  
macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the  
I/O must be placed in one of the dedicated global I/O locations.  
Many specific INBUF macros support the wide variety of single-ended and differential I/O standards  
supported by the Fusion family. The available INBUF macros are described in the IGLOO, ProASIC3,  
SmartFusion and Fusion Macro Library Guide.  
The CLKDLY macro can be driven directly from the FPGA core.  
The CLKDLY macro can also be driven from an I/O that is routed through the FPGA regular routing  
fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate from the hardwired  
I/O connection described earlier.  
The visual CLKDLY configuration in the SmartGen part of the Libero SoC and Designer tools allows the  
user to select the desired amount of delay and configures the delay elements appropriately. SmartGen  
also allows the user to select the input clock source. SmartGen will automatically instantiate the special  
macro, PLLINT, when needed.  
Clock Source  
Clock Conditioning  
Output  
GLA  
or  
Input LVDS/LVPECL Macro  
CLK  
GL  
PADN  
PADP  
Y
GLB  
or  
DLYGL[4:0]  
GLC  
INBUF* Macro  
Y
PAD  
Figure 2-21 • Fusion CCC Options: Global Buffers with Programmable Delay  
2-26  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Global Input Selections  
Each global buffer, as well as the PLL reference clock, can be driven from one of the following (Figure 2-  
22):  
3 dedicated single-ended I/Os using a hardwired connection  
2 dedicated differential I/Os using a hardwired connection  
The FPGA core  
Each shaded box represents an  
input buffer called out by the  
appropriate name: INBUF or  
INBUF_LVDS/LVPECL.  
To Core  
Sample Pin Names  
GAA01  
GAA11  
+
Source for CCC  
(CLKA or CLKB or CLKC)  
Routed Clock  
(from FPGA core)2  
GAA21  
+
GAA[0:2]: GA represents global in the northwest corner  
of the device. A[0:2]: designates specific A clock source.  
Notes:  
1. Represents the global input pins. Globals have direct access to the clock conditioning block and are not  
routed via the FPGA fabric. Refer to the "User I/O Naming Convention" section on page 2-161 for more  
information.  
2. Instantiate the routed clock source input as follows:  
a) Connect the output of a logic element to the clock input of the PLL, CLKDLY, or CLKINT macro.  
b) Do not place a clock source I/O (INBUF or INBUF_LVPECL/LVDS) in a relevant global pin location.  
3. LVDS-based clock sources are available in the east and west banks on all Fusion devices.  
Figure 2-22 • Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT  
Revision 4  
2-27  
Device Architecture  
CCC Physical Implementation  
The CCC circuit is composed of the following (Figure 2-23):  
PLL core  
3 phase selectors  
6 programmable delays and 1 fixed delay  
5 programmable frequency dividers that provide frequency multiplication/division (not shown in  
Figure 2-23 because they are automatically configured based on the user's required frequencies)  
1 dynamic shift register that provides CCC dynamic reconfiguration capability (not shown)  
CCC Programming  
The CCC block is fully configurable. It is configured via static flash configuration bits in the array, set by  
the user in the programming bitstream, or configured through an asynchronous dedicated shift register,  
dynamically accessible from inside the Fusion device. The dedicated shift register permits changes of  
parameters such as PLL divide ratios and delays during device operation. This latter mode allows the  
user to dynamically reconfigure the PLL without the need for core programming. The register file is  
accessed through a simple serial interface.  
CLKA  
Four-Phase Output  
GLA  
Programmable  
Delay Type 2  
Phase  
Select  
PLL Core  
Programmable  
Delay Type 1  
Fixed Delay  
Programmable  
Delay Type 2  
GLB  
YB  
Phase  
Select  
Programmable  
Delay Type 1  
Programmable  
Delay Type 2  
GLC  
Phase  
Select  
YC  
Programmable  
Delay Type 1  
Note: Clock divider and multiplier blocks are not shown in this figure or in SmartGen. They are  
automatically configured based on the user's required frequencies.  
Figure 2-23 • PLL Block  
2-28  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
PLL Macro  
The PLL functionality of the clock conditioning block is supported by the PLL macro. Note that the PLL  
macro reference clock uses the CLKA input of the CCC block, which is only accessible from the global  
A[2:0] package pins. Refer to Figure 2-22 on page 2-27 for more information.  
The PLL macro provides five derived clocks (three independent) from a single reference clock. The PLL  
feedback loop can be driven either internally or externally. The PLL macro also provides power-down  
input and lock output signals. During power-up, POWERDOWN should be asserted Low until VCC is up.  
See Figure 2-19 on page 2-24 for more information.  
Inputs:  
CLKA: selected clock input  
POWERDOWN (active low): disables PLLs. The default state is power-down on (active low).  
Outputs:  
LOCK (active high): indicates that PLL output has locked on the input reference signal  
GLA, GLB, GLC: outputs to respective global networks  
YB, YC: allows output from the CCC to be routed back to the FPGA core  
As previously described, the PLL allows up to five flexible and independently configurable clock outputs.  
Figure 2-23 on page 2-28 illustrates the various clock output options and delay elements.  
As illustrated, the PLL supports three distinct output frequencies from a given input clock. Two of these  
(GLB and GLC) can be routed to the B and C global networks, respectively, and/or routed to the device  
core (YB and YC).  
There are five delay elements to support phase control on all five outputs (GLA, GLB, GLC, YB, and YC).  
There is also a delay element in the feedback loop that can be used to advance the clock relative to the  
reference clock.  
The PLL macro reference clock can be driven by an INBUF macro to create a composite macro, where  
the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this  
case, the I/O must be placed in one of the dedicated global I/O locations.  
The PLL macro reference clock can be driven directly from the FPGA core.  
The PLL macro reference clock can also be driven from an I/O routed through the FPGA regular routing  
fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate it from the hardwired  
I/O connection described earlier.  
The visual PLL configuration in SmartGen, available with the Libero SoC and Designer tools, will derive  
the necessary internal divider ratios based on the input frequency and desired output frequencies  
selected by the user. SmartGen allows the user to select the various delays and phase shift values  
necessary to adjust the phases between the reference clock (CLKA) and the derived clocks (GLA, GLB,  
GLC, YB, and YC). SmartGen also allows the user to select where the input clock is coming from.  
SmartGen automatically instantiates the special macro, PLLINT, when needed.  
Revision 4  
2-29  
Device Architecture  
CCC and PLL Characteristics  
Timing Characteristics  
Table 2-12 • Fusion CCC/PLL Specification  
Parameter  
Min.  
1.5  
Typ.  
Max.  
350  
Unit  
MHz  
MHz  
ps  
Clock Conditioning Circuitry Input Frequency fIN_CCC  
Clock Conditioning Circuitry Output Frequency fOUT_CCC  
Delay Increments in Programmable Delay Blocks1, 2  
0.75  
350  
1603  
Number of Programmable Values in Each Programmable  
Delay Block  
32  
Input Period Jitter  
1.5  
ns  
CCC Output Peak-to-Peak Period Jitter FCCC_OUT  
Max Peak-to-Peak Period Jitter  
1 Global  
Network  
Used  
3 Global  
Networks  
Used  
0.75 MHz to 24 MHz  
24 MHz to 100 MHz  
100 MHz to 250 MHz  
250 MHz to 350 MHz  
1.00%  
1.50%  
2.25%  
3.50%  
1.00%  
1.50%  
2.25%  
3.50%  
300  
Acquisition Time  
LockControl = 0  
LockControl = 1  
LockControl = 0  
LockControl = 1  
µs  
ms  
ns  
ns  
%
6.0  
Tracking Jitter4  
1.6  
0.8  
Output Duty Cycle  
48.5  
0.6  
51.5  
5.56  
5.56  
Delay Range in Block: Programmable Delay 1 1, 2  
Delay Range in Block: Programmable Delay 2 1, 2  
Delay Range in Block: Fixed Delay 1, 2  
Notes:  
ns  
ns  
ns  
0.025  
2.2  
1. This delay is a function of voltage and temperature. See Table 3-7 on page 3-9 for deratings.  
2. T = 25°C, VCC = 1.5 V  
J
3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay  
increments are available. Refer to the Libero SoC Online Help associated with the core for more information.  
4. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge.  
Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.  
2-30  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
No-Glitch MUX (NGMUX)  
Positioned downstream from the PLL/CCC blocks, the NGMUX provides a special switching sequence  
between two asynchronous clock domains that prevents generating any unwanted narrow clock pulses.  
The NGMUX is used to switch the source of a global between three different clock sources. Allowable  
inputs are either two PLL/CCC outputs or a PLL/CCC output and a regular net, as shown in Figure 2-24.  
The GLMUXCFG[1:0] configuration bits determine the source of the CLK inputs (i.e., internal signal or  
GLC). These are set by SmartGen during design but can also be changed by dynamically reconfiguring  
the PLL. The GLMUXSEL[1:0] bits control which clock source is passed through the NGMUX to the global  
network (GL). See Table 2-13.  
Crystal Oscillator  
RC Oscillator  
W I/O Ring  
GLMUXCFG[1:0]  
CCC/PLL  
GLINT  
To Clock Rib Driver  
GL  
PLL/  
CCC  
GLA  
GLC  
NGMUX  
Clock I/Os  
From FPGA Core  
PWR UP  
GLMUXSEL[1:0]  
Figure 2-24 • NGMUX  
Table 2-13 • NGMUX Configuration and Selection Table  
Selected Input  
GLMUXCFG[1:0]  
GLMUXSEL[1:0]  
Signal  
MUX Type  
00  
X
X
X
X
0
1
0
1
GLA  
2-to-1 GLMUX  
GLC  
01  
GLA  
2-to-1 GLMUX  
GLINT  
Revision 4  
2-31  
Device Architecture  
The NGMUX macro is simplified to show the two clock options that have been selected by the  
GLMUXCFG[1:0] bits. Figure 2-25 illustrates the NGMUX macro. During design, the two clock sources  
are connected to CLK0 and CLK1 and are controlled by GLMUXSEL[1:0] to determine which signal is to  
be passed through the MUX.  
CLK0  
GL  
CLK1  
GLMUXSEL[1:0]  
Figure 2-25 • NGMUX Macro  
The sequence of switching between two clock sources (from CLK0 to CLK1) is as follows (Figure 2-26):  
GLMUXSEL[1:0] transitions to initiate a switch.  
GL drives one last complete CLK0 positive pulse (i.e., one rising edge followed by one falling  
edge).  
From that point, GL stays Low until the second rising edge of CLK1 occurs.  
At the second CLK1 rising edge, GL will begin to continuously deliver the CLK1 signal.  
Minimum tsw = 0.05 ns at 25°C (typical conditions)  
For examples of NGMUX operation, refer to the Fusion FPGA Fabric User’s Guide.  
tSW  
CLK0  
CLK1  
GLMUXSEL[1:0]  
GL  
Figure 2-26 • NGMUX Waveform  
2-32  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Real-Time Counter System  
The RTC system enables Fusion devices to support standby and sleep modes of operation to reduce  
power consumption in many applications.  
Sleep mode, typical 10 µA  
Standby mode (RTC running), typical 3 mA with 20 MHz  
The RTC system is composed of five cores:  
RTC sub-block inside Analog Block (AB)  
Voltage Regulator and Power System Monitor (VRPSM)  
Crystal oscillator (XTLOSC); refer to the "Crystal Oscillator" section in the Fusion Clock  
Resources chapter of the Fusion FPGA Fabric User’s Guide for more detail.  
Crystal clock; does not require instantiation in RTL  
1.5 V voltage regulator; does not require instantiation in RTL  
All cores are powered by 3.3 V supplies, so the RTC system is operational without a 1.5 V supply during  
standby mode. Figure 2-27 shows their connection.  
3.3 V  
AB  
VRPSM  
1.5 Voltage Regulator  
PTBASE1  
Real-Time Counter  
External  
Pass  
VRPU  
FPGAGOOD  
PUCORE  
RTCMATCH  
RTCPSMMATCH  
RTCCLK  
Transistor  
2N2222  
VRINITSTATE  
RTCPSMMATCH  
PUB  
PTEM1  
VREN1  
VREN1  
1.5 V  
TRST1  
RTCXTLSEL  
RTCXTLMODE[1:0]  
XTLOSC  
SELMODE  
RTC_MODE[1:0]  
CLKOUT  
MODE[1:0]  
FPGA_EN1  
Can Be Route  
to PLL  
XTL  
Crystal Clock  
XTL1  
Power-Up/-Down  
Toggle Control  
Switch  
External Pin  
Internal Pin  
XTAL1  
XTAL2  
Cores do not require any  
RTL instantiation  
Cores require RTL instantiation2  
Sub-block in cores does not  
require additional RTL instantiation  
Notes:  
1. Signals are hardwired internally and do not exist in the macro core.  
2. User is only required to instantiate the VRPSM macro if the user wishes to specify PUPO behavior of the voltage regulator  
to be different from the default, or employ user logic to shut the voltage regulator off.  
Figure 2-27 • Real-Time Counter System (not all the signals are shown for the AB macro)  
Revision 4  
2-33  
Device Architecture  
Modes of Operation  
Standby Mode  
Standby mode allows periodic power-up and power-down of the FPGA fabric. In standby mode, the real-  
time counter and crystal block are ON. The FPGA is not powered by disabling the 1.5 V voltage  
regulator. The 1.5 V voltage regulator can be enabled when the preset count is matched. Refer to the  
"Real-Time Counter (part of AB macro)" section for details. To enter standby mode, the RTC must be first  
configured and enabled. Then VRPSM is shut off by deasserting the VRPU signal. The 1.5 V voltage  
regulator is then disabled, and shuts off the 1.5 V output.  
Sleep Mode  
In sleep mode, the real-time counter and crystal blocks are OFF. The 1.5 V voltage regulator inside the  
VRPSM can only be enabled by the PUB or TRST pin. Refer to the "Voltage Regulator and Power  
System Monitor (VRPSM)" section on page 2-37 for details on power-up and power-down of the 1.5 V  
voltage regulator.  
Standby and Sleep Mode Circuit Implementation  
For extra power savings, VJTAG and VPUMP should be at the same voltage as VCC, floated or ground,  
during standby and sleep modes. Note that when VJTAG is not powered, the 1.5 V voltage regulator  
cannot be enabled through TRST.  
VPUMP and VJTAG can be controlled through an external switch. Microsemi recommends ADG839,  
ADG849, or ADG841 as possible switches. Figure 2-28 shows the implementation for controlling  
VPUMP. The IN signal of the switch can be connected to PTBASE of the Fusion device. VJTAG can be  
controlled in same manner.  
3.3 V  
VPUMP (or JTAG) Supply  
ADG841  
Fusion  
VPUMP (or JTAG)  
Pin of Fusion  
S
IN  
External  
Pass  
Transistor  
2N2222  
PTBASE  
PTEM  
1.5 V  
Figure 2-28 • Implementation to Control VPUMP  
2-34  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Real-Time Counter (part of AB macro)  
The RTC is a 40-bit loadable counter and used as the primary timekeeping element (Figure 2-29). The  
clock source, RTCCLK, must come from the CLKOUT signal of the crystal oscillator. The RTC can be  
configured to reset itself when a count value reaches the match value set in the Match Register.  
The RTC is part of the Analog Block (AB) macro. The RTC is configured by the analog configuration  
MUX (ACM). Each address contains one byte of data. The circuitry in the RTC is powered by VCC33A,  
so the RTC can be used in standby mode when the 1.5 V supply is not present.  
Real-Time Counter  
xt_mode[1:0]  
RTCXTLMODE[1:0]  
xtal_en  
Control Status  
MatchBits Reg  
Match Reg  
RTCXTLSEL  
1.5 V to  
3.3 V  
ACM  
Registers  
Level  
Shifter  
RTCMATCH  
Counter  
Read-Hold Reg  
RTCPSMMATCH  
Counter Reg  
Crystal Prescaler  
RTCCLK Divide by 128  
RTCCLK  
40-Bit Counter  
F
Figure 2-29 • RTC Block Diagram  
Table 2-14 • RTC Signal Description  
Signal Name  
RTCCLK  
Width Direction  
Function  
Must come from CLKOUT of XTLOSC.  
1
2
In  
RTCXTLMODE[1:0]  
Out  
Controlled by xt_mode in CTRL_STAT. Signal must connect to  
the RTC_MODE signal in XTLOSC, as shown in Figure 2-27.  
RTCXTLSEL  
RTCMATCH  
1
1
Out  
Out  
Controlled by xtal_en from CTRL_STAT register. Signal must  
connect to RTC_MODE signal in XTLOSC in Figure 2-27.  
Match signal for FPGA  
0 – Counter value does not equal the Match Register value.  
1 – Counter value equals the Match Register value.  
RTCPSMMATCH  
1
Out  
Same signal as RTCMATCH. Signal must connect to  
RTCPSMMATCH in VRPSM, as shown in Figure 2-27.  
The 40-bit counter can be preloaded with an initial value as a starting point by the Counter Register. The  
count from the 40-bit counter can be read through the same set of address space. The count comes from  
a Read-Hold Register to avoid data changing during read.  
When the counter value equals the Match Register value, all Match Bits Register values will be  
0xFFFFFFFFFF. The RTCMATCH and RTCPSMMATCH signals will assert. The 40-bit counter can be  
configured to automatically reset to 0x0000000000 when the counter value equals the Match Register  
value. The automatic reset does not apply if the Match Register value is 0x0000000000.  
The RTCCLK has a prescaler to divide the clock by 128 before it is used for the 40-bit counter. Below is  
an example of how to calculate the OFF time.  
Revision 4  
2-35  
Device Architecture  
Example: Calculation for Match Count  
To put the Fusion device on standby for one hour using an external crystal of 32.768 KHz:  
The period of the crystal oscillator is Tcrystal  
crystal = 1 / 32.768 KHz = 30.518 µs  
The period of the counter is Tcounter  
:
T
:
Tcounter = 30.518 us X 128 = 3.90625 ms  
The Match Count for 1 hour is tmatch:  
tmatch / Tcounter = (1 hr X 60 min/hr X 60 sec/min) / 3.90625 ms = 921600 or 0xE1000  
Using a 32.768 KHz crystal, the maximum standby time of the 40-bit counter is 4,294,967,296 seconds,  
which is 136 years.  
Table 2-16 • RTC Control/Status Register  
Default  
Bit  
Name  
Description  
Value  
7
rtc_rst  
RTC Reset  
1 – Resets the RTC  
0 – Deassert reset on after two ACM_CLK cycle.  
Counter Enable  
6
5
cntr_en  
0
1 – Enables the counter; rtc_rst must be deasserted as well. First  
counter increments after 64 RTCCLK positive edges.  
0 – Disables the crystal prescaler but does not reset the counter  
value. Counter value can only be updated when the counter is  
disabled.  
vr_en_mat  
Voltage Regulator Enable on Match  
0
1 – Enables RTCMATCH and RTCPSMMATCH to output 1 when the  
counter value equals the Match Register value. This enables the 1.5 V  
voltage regulator when RTCPSMMATCH connects to the  
RTCPSMMATCH signal in VRPSM.  
0 – RTCMATCH and RTCPSMMATCH output 0 at all times.  
4:3  
2
xt_mode[1:0] Crystal Mode  
Controls RTCXTLMODE[1:0]. Connects to RTC_MODE signal in  
00  
0
XTLOSC. XTL_MODE uses this value when xtal_en is 1. See the  
"Crystal Oscillator" section on page 2-21 for mode configuration.  
rst_cnt_omat Reset Counter on Match  
1 – Enables the sync clear of the counter when the counter value  
equals the Match Register value. The counter clears on the rising  
edge of the clock. If all the Match Registers are set to 0, the clear is  
disabled.  
0 – Counter increments indefinitely  
1
0
rstb_cnt  
xtal_en  
Counter Reset, active Low  
0
0
0 - Resets the 40-bit counter value  
Crystal Enable  
Controls RTCXTLSEL. Connects to SELMODE signal in XTLOSC.  
0 – XTLOSC enables control by FPGA_EN; xt_mode is not used.  
Sleep mode requires this bit to equal 0.  
1 – Enables XTLOSC, XTL_MODE control by xt_mode  
Standby mode requires this bit to be set to 1.  
See the "Crystal Oscillator" section on page 2-21 for further details on  
SELMODE configuration.  
2-36  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-15 • Memory Map for RTC in ACM Register and Description  
Default  
Value  
ACMADDR Register Name  
Description  
Counter bits 7:0  
Use  
0x40  
COUNTER0  
Used to preload the counter to 0x00  
a specified start point.  
0x41  
0x42  
0x43  
0x44  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x50  
COUNTER1  
COUNTER2  
COUNTER3  
COUNTER4  
Counter bits 15:8  
Counter bits 23:16  
Counter bits 31:24  
Counter bits 39:32  
0x00  
0x00  
0x00  
0x00  
MATCHREG0 Match register bits 7:0  
MATCHREG1 Match register bits 15:8  
MATCHREG2 Match register bits 23:16  
MATCHREG3 Match register bits 31:24  
MATCHREG4 Match register bits 39:32  
The RTC comparison bits  
0x00  
0x00  
0x00  
0x00  
0x00  
MATCHBIT0  
Individual match bits 7:0  
The output of the XNOR gates 0x00  
0 – Not matched  
1 – Matched  
0x51  
0x52  
0x53  
0x54  
0x58  
MATCHBIT1  
MATCHBIT2  
MATCHBIT3  
MATCHBIT4  
CTRL_STAT  
Individual match bits 15:8  
Individual match bits 23:16  
Individual match bits 31:24  
Individual match bits 29:32  
0x00  
0x00  
0x00  
0x00  
Control (write/read) / Status Refer to Table 2-16 on 0x00  
(read only) register bits page 2-36 for details.  
Voltage Regulator and Power System Monitor (VRPSM)  
The VRPSM macro controls the power-up state of the FPGA. The power-up bar (PUB) pin can turn on  
the voltage regulator when set to 0. TRST can enable the voltage regulator when deasserted, allowing  
the FPGA to power-up when user want access to JTAG ports. The inputs VRINITSTATE and  
RTCPSMMATCH come from the flash bits and RTC, and can also power up the FPGA.  
VRPSM  
VRPU  
FPGAGOOD  
PUCORE  
VRINITSTATE  
RTCPSMMATCH  
VREN*  
PUB  
TRST*  
Note: *Signals are hardwired internally and do not exist in the macro core.  
Figure 2-30 • VRPSM Macro  
Revision 4  
2-37  
Device Architecture  
Table 2-17 • VRPSM Signal Descriptions  
Signal Name Width Dir.  
Function  
VRPU  
1
In Voltage Regulator Power-Up  
0 – Voltage regulator disabled. PUB must be floated or pulled up, and  
the TRST pin must be grounded to disable the voltage regulator.  
1 – Voltage regulator enabled  
VRINITSTATE  
1
In Voltage Regulator Initial State  
Defines the voltage Regulator status upon power-up of the 3.3 V. The  
signal is configured by Libero SoC when the VRPSM macro is  
generated.  
Tie off to 1 – Voltage regulator enables when 3.3 V is powered.  
Tie off to 0 – Voltage regulator disables when 3.3 V is powered.  
In RTC Power System Management Match  
Connect from RTCPSMATCH signal from RTC in AB  
0 transition to 1 turns on the voltage regulator  
In External pin, built-in weak pull-up  
RTCPSMMATCH  
PUB  
1
1
Power-Up Bar  
0 – Enables voltage regulator at all times  
In External pin, JTAG Test Reset  
TRST*  
1
1
1 – Enables voltage regulator at all times  
Out Indicator that the FPGA is powered and functional  
No need to connect if it is not used.  
FPGAGOOD  
1 – Indicates that the FPGA is powered up and functional.  
0 – Not possible to read by FPGA since it has already powered off.  
Out Power-Up Core  
PUCORE  
VREN*  
1
1
Inverted signal of PUB. No need to connect if it is not used.  
Out Voltage Regulator Enable  
Connected to 1.5 V voltage regulator in Fusion device internally.  
0 – Voltage regulator disables  
1 – Voltage regulator enables  
Note: *Signals are hardwired internally and do not exist in the macro core.  
2-38  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
3.3 V Power Supply ON/OFF  
3.3 V OFF  
3.3 V ON  
VINITSTATE = 0  
And PUB = 1  
And TRST = 0  
Standby Mode  
3.3 V On,  
Sleep Mode  
3.3 V On,  
RTC Enabled  
VREN Disabled  
VREN Disabled  
*RTCPSMMATCH = 1  
Or PUB = 0  
PUB = 0  
or TRST = 1  
Or TRST = 1  
OFF State  
3.3 V Off,  
PUB Pull-Up,  
TRST Pull-Down,  
VREN Disabled  
VRPU = 0  
And PUB = 1  
And TRST = 0  
Normal Operation  
3.3 V on,  
VREN Enable  
VRINITSTATE = 1  
VRPU = 0  
or PUB = 0  
And PUB = 1  
or TRST = 1  
And TRST = 0  
And *RTC: CTRL_STAT:  
xtal_en = 1  
3.3 V ON, 1.5 V ON (VR on)  
Note: * To enter and exit standby mode without any external stimulus on PUB or TRST, the vr_en_mat in the  
CTRL_STAT register must also be set to 1, so that RTCPSMMATCH will assert when a match occurs; hence the  
device exits standby mode.  
Figure 2-31 • State Diagram for All Different Power Modes  
When TRST is 1 or PUB is 0, the 1.5 V voltage regulator is always ON, putting the Fusion device in  
normal operation at all times. Therefore, when the JTAG port is not in reset, the Fusion device cannot  
enter sleep mode or standby mode.  
To enter standby mode, the Fusion device must first power-up into normal operation. The RTC is enabled  
through the RTC Control/Status Register described in the "Real-Time Counter (part of AB macro)"  
section on page 2-35. A match value corresponding to the wake-up time is loaded into the Match  
Register. The 1.5 V voltage regulator is disabled by setting VRPU to 0 to allow the Fusion device to enter  
standby mode, when the 1.5 V supply is off but the RTC remains on.  
Revision 4  
2-39  
Device Architecture  
1.5 V Voltage Regulator  
The 1.5 V voltage regulator uses an external pass transistor to generate 1.5 V from a 3.3 V supply. The  
base of the pass transistor is tied to PTBASE, the collector is tied to 3.3 V, and an emitter is tied to  
PTBASE and the 1.5 V supplies of the Fusion device. Figure 2-27 on page 2-33 shows the hook-up of  
the 1.5 V voltage regulator to an external pass transistor.  
Microsemi recommends using a PN2222A or 2N2222A transistor. The gain of such a transistor is  
approximately 25, with a maximum base current of 20 mA. The maximum current that can be supported  
is 0.5 A. Transistors with different gain can also be used for different current requirements.  
Table 2-18 • Electrical Characteristics  
VCC33A = 3.3 V  
Symbol  
Parameter  
Condition  
Tj = 25ºC  
Tj = 25ºC  
Min  
Typical  
Max  
Units  
VOUT  
Output Voltage  
1.425  
1.5  
1.575  
V
ICC33A Operation Current  
ILOAD = 1 mA  
ILOAD = 100 mA  
ILOAD = 0.5 A  
11  
11  
30  
mA  
mA  
mA  
VOUT  
VOUT  
Load Regulation  
Line Regulation  
Tj = 25ºC  
Tj = 25ºC  
ILOAD = 1 mA to 0.5 A  
90  
mV  
VCC33A = 2.97 V to 3.63 V  
ILOAD = 1 mA  
10.6  
12.1  
10.6  
mV/V  
mV/V  
mV/V  
VCC33A = 2.97 V to 3.63 V  
ILOAD = 100 mA  
VCC33A = 2.97 V to 3.63 V  
ILOAD = 500 mA  
Dropout Voltage*  
PTBase Current  
Tj = 25ºC  
Tj = 25ºC  
ILOAD = 1 mA  
ILOAD = 100 mA  
ILOAD = 0.5 A  
0.63  
0.84  
1.35  
V
V
V
IPTBAS  
E
ILOAD = 1 mA  
ILOAD = 100 mA  
ILOAD = 0.5 A  
48  
736  
12  
µA  
µA  
20  
mA  
Note: *Data collected with 2N2222A.  
2-40  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Embedded Memories  
Fusion devices include four types of embedded memory: flash block, FlashROM, SRAM, and FIFO.  
Flash Memory Block  
Fusion is the first FPGA that offers a flash memory block (FB). Each FB block stores 2 Mbits of data. The  
flash memory block macro is illustrated in Figure 2-32. The port pin name and descriptions are detailed  
on Table 2-19 on page 2-42. All flash memory block signals are active high, except for CLK and active  
low RESET. All flash memory operations are synchronous to the rising edge of CLK.  
ADDR[17:0]  
RD[31:0]  
BUSY  
WD[31:0]  
STATUS[1:0]  
DATAWIDTH[1:0]  
REN  
READNEXT  
PAGESTATUS  
WEN  
ERASEPAGE  
PROGRAM  
SPAREPAGE  
AUXBLOCK  
UNPROTECTPAGE  
OVERWRITEPAGE  
DISCARDPAGE  
OVERWRITEPROTECT  
PAGELOSSPROTECT  
PIPE  
LOCKREQUEST  
CLK  
RESET  
Figure 2-32 • Flash Memory Block  
Revision 4  
2-41  
Device Architecture  
Flash Memory Block Pin Names  
Table 2-19 • Flash Memory Block Pin Names  
Interface Name  
ADDR[17:0]  
Width Direction  
Description  
18  
1
In  
In  
Byte offset into the FB. Byte-based address.  
AUXBLOCK  
When asserted, the page addressed is used to access the auxiliary  
block within that page.  
BUSY  
CLK  
1
1
Out  
In  
When asserted, indicates that the FB is performing an operation.  
User interface clock. All operations and status are synchronous to the  
rising edge of this clock.  
DATAWIDTH[1:0]  
2
In  
Data width  
00 = 1 byte in RD/WD[7:0]  
01 = 2 bytes in RD/WD[15:0]  
1x = 4 bytes in RD/WD[31:0]  
DISCARDPAGE  
ERASEPAGE  
1
1
In  
In  
When asserted, the contents of the Page Buffer are discarded so that  
a new page write can be started.  
When asserted, the address page is to be programmed with all zeros.  
ERASEPAGE must transition synchronously with the rising edge of  
CLK.  
LOCKREQUEST  
1
1
1
In  
In  
In  
When asserted, indicates to the JTAG controller that the FPGA  
interface is accessing the FB.  
OVERWRITEPAGE  
OVERWRITEPROTECT  
When asserted, the page addressed is overwritten with the contents of  
the Page Buffer if the page is writable.  
When asserted, all program operations will set the overwrite protect bit  
of the page being programmed.  
PAGESTATUS  
1
1
In  
In  
When asserted with REN, initiates a read page status operation.  
PAGELOSSPROTECT  
When asserted, a modified Page Buffer must be programmed or  
discarded before accessing a new page.  
PIPE  
1
1
In  
In  
Adds a pipeline stage to the output for operation above 50 MHz.  
PROGRAM  
When asserted, writes the contents of the Page Buffer into the FB  
page addressed.  
RD[31:0]  
32  
Out  
Read data; data will be valid from the first non-busy cycle (BUSY = 0)  
after REN has been asserted.  
READNEXT  
REN  
1
1
1
1
In  
In  
In  
In  
When asserted with REN, initiates a read-next operation.  
When asserted, initiates a read operation.  
RESET  
When asserted, resets the state of the FB (active low).  
SPAREPAGE  
When asserted, the sector addressed is used to access the spare  
page within that sector.  
2-42  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-19 • Flash Memory Block Pin Names (continued)  
Interface Name  
Width Direction  
2 Out  
Description  
STATUS[1:0]  
Status of the last operation completed:  
00: Successful completion  
01: Read-/Unprotect-Page: single error detected and corrected  
Write: operation addressed a write-protected page  
Erase-Page: protection violation  
Program: Page Buffer is unmodified  
Protection violation  
10: Read-/Unprotect-Page: two or more errors detected  
11: Write: attempt to write to another page before programming  
current page  
Erase-Page/Program: page write count has exceeded the 10-year  
retention threshold  
UNPROTECTPAGE  
1
In  
When asserted, the page addressed is copied into the Page Buffer  
and the Page Buffer is made writable.  
WD[31:0]  
WEN  
32  
1
In  
In  
Write data  
When asserted, stores WD in the page buffer.  
All flash memory block input signals are active high, except for RESET.  
Revision 4  
2-43  
Device Architecture  
Flash Memory Block Diagram  
A simplified diagram of the flash memory block is shown in Figure 2-33.  
Output  
MUX  
ECC  
Logic  
Flash Array = 64 Sectors  
RD[31:0]  
Page Buffer = 8 Blocks  
Plus AUX Block  
Block Buffer  
(128 bits)  
WD[31 :0]  
ADDDR[17:0]  
DATAWIDTH[1:0]  
REN  
READNEXT  
PAGESTATUS  
WEN  
ERASEPAGE  
PROGRAM  
SPAREPAGE  
AUXBLOCK  
Control  
Logic  
UNPROTECTPAGE  
OVERWRITEPAGE  
DISCARDPAGE  
OVERWRITEPROTECT  
PAGELOSSPROTECT  
PIPE  
LOCKREQUEST  
CLK  
RESET  
STATUS[1:0]  
BUSY  
Figure 2-33 • Flash Memory Block Diagram  
The logic consists of the following sub-blocks:  
Flash Array  
Contains all stored data. The flash array contains 64 sectors, and each sector contains 33 pages  
of data.  
Page Buffer  
A page-wide volatile register. A page contains 8 blocks of data and an AUX block.  
Block Buffer  
Contains the contents of the last block accessed. A block contains 128 data bits.  
ECC Logic  
The FB stores error correction information with each block to perform single-bit error correction and  
double-bit error detection on all data blocks.  
2-44  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Flash Memory Block Addressing  
Figure 2-34 shows a graphical representation of the flash memory block.  
Spare Page  
Page 31  
.
ages  
. . .  
33 P  
n
r
o
t
c
Se  
Page 3  
Page 2  
Page 1  
Page 0  
1
0
r
r
o
t
t
c
c
Se  
o
Se  
1190  
140  
1
Block  
0
2
3
4
5
6
7
Notes:  
1 block = 128 bits  
1 page = 8 blocks plus the AUX block  
1 sector = 33 pages  
Block Organization  
1 Flash array = 64 sectors  
Figure 2-34 • Flash Memory Block Organization  
Each FB is partitioned into sectors, pages, blocks, and bytes. There are 64 sectors in an FB, and each  
sector contains 32 pages and 1 spare page. Each page contains 8 data blocks and 1 auxiliary block.  
Each data block contains 16 bytes of user data, and the auxiliary block contains 4 bytes of user data.  
Addressing for the FB is shown in Table 2-20.  
Table 2-20 • FB Address Bit Allocation ADDR[17:0]  
17 12 11  
7
6
4
3
0
Sector  
Page  
Block  
Byte  
When the spare page of a sector is addressed (SPAREPAGE active), ADDR[11:7] are ignored.  
When the Auxiliary block is addressed (AUXBLOCK active), ADDR[6:2] are ignored.  
Note: The spare page of sector 0 is unavailable for any user data. Writes to this page will return an error,  
and reads will return all zeroes.  
Revision 4  
2-45  
Device Architecture  
Data operations are performed in widths of 1 to 4 bytes. A write to a location in a page that is not already  
in the Page Buffer will cause the page to be read from the FB Array and stored in the Page Buffer. The  
block that was addressed during the write will be put into the Block Buffer, and the data written by WD will  
overwrite the data in the Block Buffer. After the data is written to the Block Buffer, the Block Buffer is then  
written to the Page Buffer to keep both buffers in sync. Subsequent writes to the same block will  
overwrite the Block Buffer and the Page Buffer. A write to another block in the page will cause the  
addressed block to be loaded from the Page Buffer, and the write will be performed as described  
previously.  
The data width can be selected dynamically via the DATAWIDTH input bus. The truth table for the data  
width settings is detailed in Table 2-21. The minimum resolvable address is one 8-bit byte. For data  
widths greater than 8 bits, the corresponding address bits are ignored—when DATAWIDTH = 0 (2 bytes),  
ADDR[0] is ignored, and when DATAWIDTH = '10' or '11' (4 bytes), ADDR[1:0] are ignored. Data pins are  
LSB-oriented and unused WD data pins must be grounded.  
Table 2-21 • Data Width Settings  
DATAWIDTH[1:0]  
Data Width  
1 byte [7:0]  
00  
01  
2 byte [15:0]  
4 bytes [31:0]  
10, 11  
Flash Memory Block Protection  
Page Loss Protection  
When the PAGELOSSPROTECT pin is set to logic 1, it prevents writes to any page other than the  
current page in the Page Buffer until the page is either discarded or programmed.  
A write to another page while the current page is Page Loss Protected will return a STATUS of '11'.  
Overwrite Protection  
Any page that is Overwrite Protected will result in the STATUS being set to '01' when an attempt is made  
to either write, program, or erase it. To set the Overwrite Protection state for a page, set the  
OVERWRITEPROTECT pin when a Program operation is undertaken. To clear the Overwrite Protect  
state for a given page, an Unprotect Page operation must be performed on the page, and then the page  
must be programmed with the OVERWRITEPROTECT pin cleared to save the new page.  
LOCKREQUEST  
The LOCKREQUEST signal is used to give the user interface control over simultaneous access of the FB  
from both the User and JTAG interfaces. When LOCKREQUEST is asserted, the JTAG interface will hold  
off any access attempts until LOCKREQUEST is deasserted.  
Flash Memory Block Operations  
FB Operation Priority  
The FB provides for priority of operations when multiple actions are requested simultaneously.  
Table 2-22 shows the priority order (priority 0 is the highest).  
Table 2-22 FB Operation Priority  
Operation  
System Initialization  
FB Reset  
Priority  
0
1
2
3
4
5
6
7
Read  
Write  
Erase Page  
Program  
Unprotect Page  
Discard Page  
2-46  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Access to the FB is controlled by the BUSY signal. The BUSY output is synchronous to the CLK signal.  
FB operations are only accepted in cycles where BUSY is logic 0.  
Write Operation  
Write operations are initiated with the assertion of the WEN signal. Figure 2-35 on page 2-47 illustrates  
the multiple Write operations.  
CLK  
WEN  
A0  
A1  
A2  
A3 A4  
A5  
A6  
ADDR[17:0]  
WD[31:0]  
D0  
D1  
D2 D3 D4  
D5  
D6  
DATAWIDTH[1:0]  
PAGELOSSPROTECT  
BUSY  
STATUS[1:0]  
S0  
S1  
S2  
S3  
S4  
S5 S6  
Figure 2-35 • FB Write Waveform  
When a Write operation is initiated to a page that is currently not in the Page Buffer, the FB control logic  
will issue a BUSY signal to the user interface while the page is loaded from the FB Array into the Page  
Buffer. A Copy Page operation takes no less than 55 cycles and could take more if a Write or Unprotect  
Page operation is started while the NVM is busy pre-fetching a block. The basic operation is to read a  
block from the array into the block register (5 cycles) and then write the block register to the page buffer  
(1 cycle) and if necessary, when the copy is complete, reading the block being written from the page  
buffer into the block buffer (1 cycle). A page contains 9 blocks, so 9 blocks multiplied by 6 cycles to  
read/write each block, plus 1 is 55 cycles total. Subsequent writes to the same block of the page will incur  
no busy cycles. A write to another block in the page will assert BUSY for four cycles (five cycles when  
PIPE is asserted), to allow the data to be written to the Page Buffer and have the current block loaded  
into the Block Buffer.  
Write operations are considered successful as long as the STATUS output is '00'. A non-zero STATUS  
indicates that an error was detected during the operation and the write was not performed. Note that the  
STATUS output is "sticky"; it is unchanged until another operation is started.  
Only one word can be written at a time. Write word width is controlled by the DATAWIDTH bus. Users are  
responsible for keeping track of the contents of the Page Buffer and when to program it to the array. Just  
like a regular RAM, writing to random addresses is possible. Users can write into the Page Buffer in any  
order but will incur additional BUSY cycles. It is not necessary to modify the entire Page Buffer before  
saving it to nonvolatile memory.  
Write errors include the following:  
1. Attempting to write a page that is Overwrite Protected (STATUS = '01'). The write is not  
performed.  
2. Attempting to write to a page that is not in the Page Buffer when Page Loss Protection is enabled  
(STATUS = '11'). The write is not performed.  
Revision 4  
2-47  
Device Architecture  
Program Operation  
A Program operation is initiated by asserting the PROGRAM signal on the interface. Program operations  
save the contents of the Page Buffer to the FB Array. Due to the technologies inherent in the FB, a  
program operation is a time consuming operation (~8 ms). While the FB is writing the data to the array,  
the BUSY signal will be asserted.  
During a Program operation, the sector and page addresses on ADDR are compared with the stored  
address for the page (and sector) in the Page Buffer. If there is a mismatch between the two addresses,  
the Program operation will be aborted and an error will be reported on the STATUS output.  
It is possible to write the Page Buffer to a different page in memory. When asserting the PROGRAM pin,  
if OVERWRITEPAGE is asserted as well, the FB will write the contents of the Page Buffer to the sector  
and page designated on the ADDR inputs if the destination page is not Overwrite Protected.  
A Program operation can be utilized to either modify the contents of the page in the flash memory block or  
change the protections for the page. Setting the OVERWRITEPROTECT bit on the interface while  
asserting the PROGRAM pin will put the page addressed into Overwrite Protect Mode. Overwrite Protect  
Mode safeguards a page from being inadvertently overwritten during subsequent Program or Erase  
operations.  
Program operations that result in a STATUS value of '01' do not modify the addressed page. For all other  
values of STATUS, the addressed page is modified.  
Program errors include the following:  
1. Attempting to program a page that is Overwrite Protected (STATUS = '01')  
2. Attempting to program a page that is not in the Page Buffer when the Page Buffer has entered  
Page Loss Protection Mode (STATUS = '01')  
3. Attempting to perform a program with OVERWRITEPAGE set when the page addressed has  
been Overwrite Protected (STATUS = '01')  
4. The Write Count of the page programmed exceeding the Write Threshold defined in the part  
specification (STATUS = '11')  
5. The ECC Logic determining that there is an uncorrectable error within the programmed page  
(STATUS = '10')  
6. Attempting to program a page that is not in the Page Buffer when OVERWRITEPAGE is not set  
and the page in the Page Buffer is modified (STATUS = '01')  
7. Attempting to program the page in the Page Buffer when the Page Buffer is not modified  
The waveform for a Program operation is shown in Figure 2-36.  
CLK  
PROGRAM  
Page  
ADDR[17:0]  
OVERWRITEPAGE  
OVERWRITEPROTECT  
PAGELOSSPROTECT  
BUSY  
0
Valid  
STATUS[1:0]  
Figure 2-36 • FB Program Waveform  
Note: OVERWRITEPAGE is only sampled when the PROGRAM or ERASEPAGE pins are asserted.  
OVERWRITEPAGE is ignored in all other operations.  
2-48  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Erase Page Operation  
The Erase Page operation is initiated when the ERASEPAGE pin is asserted. The Erase Page operation  
allows the user to erase (set user data to zero) any page within the FB.  
The use of the OVERWRITEPAGE and PAGELOSSPROTECT pins is the same for erase as for a  
Program Page operation.  
As with the Program Page operation, a STATUS of '01' indicates that the addressed page is not erased.  
A waveform for an Erase Page operation is shown in Figure 2-37.  
Erase errors include the following:  
1. Attempting to erase a page that is Overwrite Protected (STATUS = '01')  
2. Attempting to erase a page that is not in the Page Buffer when the Page Buffer has entered Page  
Loss Protection mode (STATUS = '01')  
3. The Write Count of the erased page exceeding the Write Threshold defined in the part  
specification (STATUS = '11')  
4. The ECC Logic determining that there is an uncorrectable error within the erased page (STATUS  
= '10')  
CLK  
ERASE  
Page  
ADDR[17:0]  
OVERWRITEPROTECT  
PAGELOSSPROTECT  
BUSY  
STATUS[1:0]  
Valid  
Figure 2-37 • FB Erase Page Waveform  
Revision 4  
2-49  
Device Architecture  
Read Operation  
Read operations are designed to read data from the FB Array, Page Buffer, Block Buffer, or status  
registers. Read operations support a normal read and a read-ahead mode (done by asserting  
READNEXT). Also, the timing for Read operations is dependent on the setting of PIPE.  
The following diagrams illustrate representative timing for Non-Pipe Mode (Figure 2-38) and Pipe Mode  
(Figure 2-39) reads of the flash memory block interface.  
CLK  
REN  
A0  
A1  
A2  
A3  
A4  
ADDR[17:0]  
DATAWIDTH[1:0]  
BUSY  
0
0
S0 S1 S2  
D0 D1 D2  
S3  
D3  
0
0
S4  
STATUS[1:0]  
RD[31:0]  
D4  
0
Figure 2-38 • Read Waveform (Non-Pipe Mode, 32-bit access)  
CLK  
REN  
A0  
A1  
A2  
A3  
A4  
ADDR[17:0]  
DATAWIDTH[1:0]  
BUSY  
0
0
S0 S1  
S2  
S3  
D3  
0
S4  
D4  
STATUS[1:0]  
RD[31:0]  
D0 D1 D2  
0
X
0
Figure 2-39 • Read Waveform (Pipe Mode, 32-bit access)  
2-50  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
The following error indications are possible for Read operations:  
1. STATUS = '01' when a single-bit data error was detected and corrected within the block  
addressed.  
2. STATUS = '10' when a double-bit error was detected in the block addressed (note that the error is  
uncorrected).  
In addition to data reads, users can read the status of any page in the FB by asserting PAGESTATUS  
along with REN. The format of the data returned by a page status read is shown in Table 2-23, and the  
definition of the page status bits is shown in Table 2-24.  
Table 2-23 • Page Status Read Data Format  
31  
8
7
4
3
2
1
0
Write Count Reserved Over Threshold Read Protected Write Protected Overwrite Protected  
Table 2-24 • Page Status Bit Definition  
Page Status  
Bit(s)  
31–8  
7–4  
3
Definition  
The number of times the page addressed has been programmed/erased  
Reserved; read as 0  
Over Threshold indicator (see the"Program Operation" section on page 2-48)  
2
Read Protected; read protect bit for page, which is set via the JTAG interface and  
only affects JTAG operations. This bit can be overridden by using the correct user  
key value.  
1
0
Write Protected; write protect bit for page, which is set via the JTAG interface and  
only affects JTAG operations. This bit can be overridden by using the correct user  
key value.  
Overwrite Protected; designates that the user has set the OVERWRITEPROTECT  
bit on the interface while doing a Program operation. The page cannot be written  
without first performing an Unprotect Page operation.  
Revision 4  
2-51  
Device Architecture  
Read Next Operation  
The Read Next operation is a feature by which the next block relative to the block in the Block Buffer is  
read from the FB Array while performing reads from the Block Buffer. The goal is to minimize wait states  
during consecutive sequential Read operations.  
The Read Next operation is performed in a predetermined manner because it does look-ahead reads.  
The general look-ahead function is as follows:  
Within a page, the next block fetched will be the next in linear address.  
When reading the last data block of a page, it will fetch the first block of the next page.  
When reading spare pages, it will read the first block of the next sector's spare page.  
Reads of the last sector will wrap around to sector 0.  
Reads of Auxiliary blocks will read the next linear page's Auxiliary block.  
When an address on the ADDR input does not agree with the predetermined look-ahead address, there  
is a time penalty for this access. The FB will be busy finishing the current look-ahead read before it can  
start the next read. The worst case is a total of nine BUSY cycles before data is delivered.  
The Non-Pipe Mode and Pipe Mode waveforms for Read Next operations are illustrated in Figure 2-40  
and Figure 2-41.  
CLK  
REN  
READNEXT  
ADDR[17:0]  
DATAWIDTH[1:0]  
BUSY  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
STATUS[1:0]  
RD[31:0]  
0
0
S0 S1 S2 S3  
D0 D1 D2 D3  
0
0
S4 S5 S6  
S7  
0
0
S8 S9  
D8 D9  
D4 D5 D6 D7  
Figure 2-40 • Read Next Waveform (Non-Pipe Mode, 32-bit access)  
CLK  
REN  
READNEXT  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
ADDR[17:0]  
BUSY  
S0  
D0  
S1  
D1  
S2  
D2  
S3  
D3  
0
0
S4  
D4  
S5  
D5  
S6  
D6  
S7  
D7  
0
0
STATUS[1:0]  
RD[31:0]  
0
Figure 2-41 • Read Next WaveForm (Pipe Mode, 32-bit access)  
2-52  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Unprotect Page Operation  
An Unprotect Page operation will clear the protection for a page addressed on the ADDR input. It is  
initiated by setting the UNPROTECTPAGE signal on the interface along with the page address on  
ADDR.  
If the page is not in the Page Buffer, the Unprotect Page operation will copy the page into the Page  
Buffer. The Copy Page operation occurs only if the current page in the Page Buffer is not Page Loss  
Protected.  
The waveform for an Unprotect Page operation is shown in Figure 2-42.  
CLK  
UNPROTECTPAGE  
Page  
ADDR[17:0]  
BUSY  
STATUS[1:0]  
Valid  
Figure 2-42 • FB Unprotected Page Waveform  
The Unprotect Page operation can incur the following error conditions:  
1. If the copy of the page to the Page Buffer determines that the page has a single-bit correctable  
error in the data, it will report a STATUS = '01'.  
2. If the address on ADDR does not match the address of the Page Buffer, PAGELOSSPROTECT is  
asserted, and the Page Buffer has been modified, then STATUS = '11' and the addressed page is  
not loaded into the Page Buffer.  
3. If the copy of the page to the Page Buffer determines that at least one block in the page has a  
double-bit uncorrectable error, STATUS = '10' and the Page Buffer will contain the corrupted data.  
Discard Page Operation  
If the contents of the modified Page Buffer have to be discarded, the DISCARDPAGE signal should be  
asserted. This command results in the Page Buffer being marked as unmodified.  
The timing for the operation is shown in Figure 2-43. The BUSY signal will remain asserted until the  
operation has completed.  
CLK  
DISCARDPAGE  
BUSY  
Figure 2-43 • FB Discard Page Waveform  
Revision 4  
2-53  
Device Architecture  
Flash Memory Block Characteristics  
CLK  
RESET  
Active Low, Asynchronous  
BUSY  
Figure 2-44 • Reset Timing Diagram  
Table 2-25 • Flash Memory Block Timing  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
Description  
–2  
–1  
Std. Units  
tCLK2RD  
Clock-to-Q in 5-cycle read mode of the Read Data  
Clock-to-Q in 6-cycle read mode of the Read Data  
Clock-to-Q in 5-cycle read mode of BUSY  
Clock-to-Q in 6-cycle read mode of BUSY  
Clock-to-Status in 5-cycle read mode  
7.99  
5.03  
4.95  
4.45  
11.24  
4.48  
1.92  
0.00  
2.76  
0.00  
1.85  
0.00  
3.85  
0.00  
2.37  
0.00  
2.16  
0.00  
3.74  
0.00  
3.74  
0.00  
2.17  
0.00  
3.76  
0.00  
2.01  
0.00  
1.88  
0.00  
1.64  
0.00  
9.10  
5.73  
5.63  
5.07  
10.70  
6.74  
6.62  
5.96  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLK2BUSY  
tCLK2STATUS  
12.81 15.06  
Clock-to-Status in 6-cycle read mode  
5.10  
2.19  
0.00  
3.14  
0.00  
2.11  
0.00  
4.39  
0.00  
2.69  
0.00  
2.46  
0.00  
4.26  
0.00  
4.26  
0.00  
2.47  
0.00  
4.28  
0.00  
2.29  
0.00  
2.14  
0.00  
1.86  
0.00  
6.00  
2.57  
0.00  
3.69  
0.00  
2.48  
0.00  
5.16  
0.00  
3.17  
0.00  
2.89  
0.00  
5.01  
0.00  
5.00  
0.00  
2.90  
0.00  
5.03  
0.00  
2.69  
0.00  
2.52  
0.00  
2.19  
0.00  
tDSUNVM  
Data Input Setup time for the Control Logic  
Data Input Hold time for the Control Logic  
Address Input Setup time for the Control Logic  
Address Input Hold time for the Control Logic  
Data Width Setup time for the Control Logic  
Data Width Hold time for the Control Logic  
Read Enable Setup time for the Control Logic  
Read Enable Hold Time for the Control Logic  
Write Enable Setup time for the Control Logic  
Write Enable Hold Time for the Control Logic  
Program Setup time for the Control Logic  
Program Hold time for the Control Logic  
tDHNVM  
tASUNVM  
tAHNVM  
tSUDWNVM  
tHDDWNVM  
tSURENNVM  
tHDRENNVM  
tSUWENNVM  
tHDWENNVM  
tSUPROGNVM  
tHDPROGNVM  
tSUSPAREPAGE  
tHDSPAREPAGE  
tSUAUXBLK  
SparePage Setup time for the Control Logic  
SparePage Hold time for the Control Logic  
Auxiliary Block Setup Time for the Control Logic  
Auxiliary Block Hold Time for the Control Logic  
ReadNext Setup Time for the Control Logic  
ReadNext Hold Time for the Control Logic  
Erase Page Setup Time for the Control Logic  
Erase Page Hold Time for the Control Logic  
Unprotect Page Setup Time for the Control Logic  
Unprotect Page Hold Time for the Control Logic  
Discard Page Setup Time for the Control Logic  
Discard Page Hold Time for the Control Logic  
Overwrite Protect Setup Time for the Control Logic  
Overwrite Protect Hold Time for the Control Logic  
tHDAUXBLK  
tSURDNEXT  
tHDRDNEXT  
tSUERASEPG  
tHDERASEPG  
tSUUNPROTECTPG  
tHDUNPROTECTPG  
tSUDISCARDPG  
tHDDISCARDPG  
tSUOVERWRPRO  
tHDOVERWRPRO  
2-54  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-25 • Flash Memory Block Timing (continued)  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
Description  
–2  
–1  
Std. Units  
tSUPGLOSSPRO  
tHDPGLOSSPRO  
tSUPGSTAT  
Page Loss Protect Setup Time for the Control Logic  
Page Loss Protect Hold Time for the Control Logic  
Page Status Setup Time for the Control Logic  
Page Status Hold Time for the Control Logic  
Over Write Page Setup Time for the Control Logic  
Over Write Page Hold Time for the Control Logic  
Lock Request Setup Time for the Control Logic  
Lock Request Hold Time for the Control Logic  
Reset Recovery Time  
1.69  
0.00  
2.49  
0.00  
1.88  
0.00  
0.87  
0.00  
0.94  
0.00  
1.93  
0.00  
2.83  
0.00  
2.14  
0.00  
0.99  
0.00  
1.07  
0.00  
2.27  
0.00  
3.33  
0.00  
2.52  
0.00  
1.16  
0.00  
1.25  
0.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHDPGSTAT  
tSUOVERWRPG  
tHDOVERWRPG  
tSULOCKREQUEST  
tHDLOCKREQUEST  
tRECARNVM  
tREMARNVM  
Reset Removal Time  
tMPWARNVM  
Asynchronous Reset Minimum Pulse Width for the 10.00  
Control Logic  
12.50 12.50  
tMPWCLKNVM  
tFMAXCLKNVM  
Clock Minimum Pulse Width for the Control Logic  
4.00  
5.00 5.00  
ns  
Maximum Frequency for Clock for the Control Logic – for 80.00  
AFS1500/AFS600  
80.00 80.00 MHz  
Maximum Frequency for Clock for the Control Logic – for 100.00 80.00 80.00 MHz  
AFS250/AFS090  
Revision 4  
2-55  
Device Architecture  
FlashROM  
Fusion devices have 1 kbit of on-chip nonvolatile flash memory that can be read from the FPGA core  
fabric. The FlashROM is arranged in eight banks of 128 bits during programming. The 128 bits in each  
bank are addressable as 16 bytes during the read-back of the FlashROM from the FPGA core (Figure 2-  
45).  
The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly  
from the FPGA core. When programming, each of the eight 128-bit banks can be selectively  
reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves  
an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports a  
synchronous read and can be read on byte boundaries. The upper three bits of the FlashROM address  
from the FPGA core define the bank that is being accessed. The lower four bits of the FlashROM  
address from the FPGA core define which of the 16 bytes in the bank is being accessed.  
The maximum FlashROM access clock is given in Table 2-26 on page 2-57. Figure 2-46 shows the  
timing behavior of the FlashROM access cycle—the address has to be set up on the rising edge of the  
clock for DOUT to be valid on the next falling edge of the clock.  
If the address is unchanged for two cycles:  
D0 becomes invalid tCK2Q ns after the second rising edge of the clock.  
D0 becomes valid again tCK2Q ns after the second falling edge.  
If the address unchanged for three cycles:  
D0 becomes invalid tCK2Q ns after the second rising edge of the clock.  
D0 becomes valid again tCK2Q ns after the second falling edge.  
D0 becomes invalid tCK2Q ns after the third rising edge of the clock.  
D0 becomes valid again tCK2Q ns after the third falling edge.  
Byte Number in Bank  
4 LSB of ADDR (READ)  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Figure 2-45 • FlashROM Architecture  
2-56  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
FlashROM Characteristics  
t
t
t
SU  
SU  
SU  
t
t
t
HOLD  
HOLD  
HOLD  
Address  
A0  
A1  
t
t
t
CK2Q  
CK2Q  
CK2Q  
D0  
D0  
D1  
Figure 2-46 • FlashROM Timing Diagram  
Table 2-26 • FlashROM Access Time  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tSU  
Description  
Address Setup Time  
Address Hold Time  
Clock to Out  
–2  
–1  
Std.  
0.71  
Units  
ns  
0.53  
0.61  
0.00  
24.40  
15.00  
tHOLD  
tCK2Q  
0.00  
0.00  
ns  
21.42  
15.00  
28.68  
15.00  
ns  
FMAX  
Maximum Clock frequency  
MHz  
Revision 4  
2-57  
Device Architecture  
SRAM and FIFO  
All Fusion devices have SRAM blocks along the north side of the device. Additionally, AFS600 and  
AFS1500 devices have an SRAM block on the south side of the device. To meet the needs of high-  
performance designs, the memory blocks operate strictly in synchronous mode for both read and write  
operations. The read and write clocks are completely independent, and each may operate at any desired  
frequency less than or equal to 350 MHz. The following configurations are available:  
4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—two read, two write or one read, one write)  
512×9, 256×18 (two-port RAM—one read and one write)  
Sync write, sync pipelined/nonpipelined read  
The Fusion SRAM memory block includes dedicated FIFO control logic to generate internal addresses  
and external flag logic (FULL, EMPTY, AFULL, AEMPTY).  
During RAM operation, addresses are sourced by the user logic, and the FIFO controller is ignored. In  
FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by  
internal MUXes. Refer to Figure 2-47 for more information about the implementation of the embedded  
FIFO controller.  
The Fusion architecture enables the read and write sizes of RAMs to be organized independently,  
allowing for bus conversion. This is done with the WW (write width) and RW (read width) pins. The  
different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1. For example, the write size can  
be set to 256×18 and the read size to 512×9.  
Both the write and read widths for the RAM blocks can be specified independently with the WW (write  
width) and RW (read width) pins. The different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and  
4k×1.  
Refer to the allowable RW and WW values supported for each of the RAM macro types in Table 2-27 on  
page 2-61.  
When a width of one, two, or four is selected, the ninth bit is unused. For example, when writing 9-bit  
values and reading 4-bit values, only the first four bits and the second four bits of each 9-bit value are  
addressable for read operations. The ninth bit is not accessible.  
2-58  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Conversely, when writing 4-bit values and reading 9-bit values, the ninth bit of a read operation will be  
undefined. The RAM blocks employ little-endian byte order for read and write operations.  
RD  
RD[17:0]  
WD[17:0]  
RCLK  
WD  
RCLK  
WCLK  
WCLK  
RAM  
RADD[J:0]  
WADD[J:0]  
REN  
WEN  
FREN  
FWEN  
CNT 12  
E
RBLK  
REN  
=
FULL  
ESTOP  
AFVAL  
AFULL  
AEVAL  
AEMPTY  
EMPTY  
CNT 12  
E
SUB 12  
WBLK  
WEN  
=
FSTOP  
Reset  
Figure 2-47 • Fusion RAM Block with Embedded FIFO Controller  
Revision 4  
2-59  
Device Architecture  
RAM4K9 Description  
RAM4K9  
ADDRA11 DOUTA8  
DOUTA7  
ADDRA10  
DOUTA0  
ADDRA0  
DINA8  
DINA7  
DINA0  
WIDTHA1  
WIDTHA0  
PIPEA  
WMODEA  
BLKA  
WENA  
CLKA  
ADDRB11 DOUTB8  
ADDRB10 DOUTB7  
ADDRB0  
DOUTB0  
DINB8  
DINB7  
DINB0  
WIDTHB1  
WIDTHB0  
PIPEB  
WMODEB  
BLKB  
WENB  
CLKB  
RESET  
Figure 2-48 • RAM4K9  
2-60  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
The following signals are used to configure the RAM4K9 memory element:  
WIDTHA and WIDTHB  
These signals enable the RAM to be configured in one of four allowable aspect ratios (Table 2-27).  
Table 2-27 • Allowable Aspect Ratio Settings for WIDTHA[1:0]  
WIDTHA1, WIDTHA0  
WIDTHB1, WIDTHB0  
D×W  
4k×1  
2k×2  
1k×4  
512×9  
00  
01  
10  
11  
00  
01  
10  
11  
Note: The aspect ratio settings are constant and cannot be changed on the fly.  
BLKA and BLKB  
These signals are active low and will enable the respective ports when asserted. When a BLKx signal is  
deasserted, the corresponding port’s outputs hold the previous value.  
WENA and WENB  
These signals switch the RAM between read and write mode for the respective ports. A Low on these  
signals indicates a write operation, and a High indicates a read.  
CLKA and CLKB  
These are the clock signals for the synchronous read and write operations. These can be driven  
independently or with the same driver.  
PIPEA and PIPEB  
These signals are used to specify pipelined read on the output. A Low on PIPEA or PIPEB indicates a  
nonpipelined read, and the data appears on the corresponding output in the same clock cycle. A High  
indicates a pipelined, read and data appears on the corresponding output in the next clock cycle.  
WMODEA and WMODEB  
These signals are used to configure the behavior of the output when the RAM is in write mode. A Low on  
these signals makes the output retain data from the previous read. A High indicates pass-through  
behavior, wherein the data being written will appear immediately on the output. This signal is overridden  
when the RAM is being read.  
RESET  
This active low signal resets the output to zero, disables reads and writes from the SRAM block, and  
clears the data hold registers when asserted. It does not reset the contents of the memory.  
ADDRA and ADDRB  
These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is  
specified, the unused high-order bits must be grounded (Table 2-28).  
Table 2-28 • Address Pins Unused/Used for Various Supported Bus Widths  
ADDRx  
D×W  
4k×1  
2k×2  
1k×4  
512×9  
Unused  
None  
[11]  
Used  
[11:0]  
[10:0]  
[9:0]  
[11:10]  
[11:9]  
[8:0]  
Note: The "x" in ADDRx implies A or B.  
Revision 4  
2-61  
Device Architecture  
DINA and DINB  
These are the input data signals, and they are nine bits wide. Not all nine bits are valid in all  
configurations. When a data width less than nine is specified, unused high-order signals must be  
grounded (Table 2-29).  
DOUTA and DOUTB  
These are the nine-bit output data signals. Not all nine bits are valid in all configurations. As with DINA  
and DINB, high-order bits may not be used (Table 2-29). The output data on unused pins is undefined.  
Table 2-29 • Unused/Used Input and Output Data Pins for Various Supported Bus Widths  
DINx/DOUTx  
D×W  
4k×1  
2k×2  
1k×4  
512×9  
Unused  
[8:1]  
Used  
[0]  
[8:2]  
[1:0]  
[3:0]  
[8:0]  
[8:4]  
None  
Note: The "x" in DINx and DOUTx implies A or B.  
2-62  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
RAM512X18 Description  
RAM512X18  
RADDR8  
RADDR7  
RD17  
RD16  
RADDR0  
RD0  
RW1  
RW0  
PIPE  
REN  
RCLK  
WADDR8  
WADDR7  
WADDR0  
WD17  
WD16  
WD0  
WW1  
WW0  
WEN  
WCLK  
RESET  
Figure 2-49 • RAM512X18  
Revision 4  
2-63  
Device Architecture  
RAM512X18 exhibits slightly different behavior from RAM4K9, as it has dedicated read and write ports.  
WW and RW  
These signals enable the RAM to be configured in one of the two allowable aspect ratios (Table 2-30).  
Table 2-30 • Aspect Ratio Settings for WW[1:0]  
WW[1:0]  
01  
RW[1:0]  
01  
D×W  
512×9  
10  
10  
256×18  
Reserved  
00, 11  
00, 11  
WD and RD  
These are the input and output data signals, and they are 18 bits wide. When a 512×9 aspect ratio is  
used for write, WD[17:9] are unused and must be grounded. If this aspect ratio is used for read, then  
RD[17:9] are undefined.  
WADDR and RADDR  
These are read and write addresses, and they are nine bits wide. When the 256×18 aspect ratio is used  
for write or read, WADDR[8] or RADDR[8] are unused and must be grounded.  
WCLK and RCLK  
These signals are the write and read clocks, respectively. They are both active high.  
WEN and REN  
These signals are the write and read enables, respectively. They are both active low by default. These  
signals can be configured as active high.  
RESET  
This active low signal resets the output to zero, disables reads and/or writes from the SRAM block, and  
clears the data hold registers when asserted. It does not reset the contents of the memory.  
PIPE  
This signal is used to specify pipelined read on the output. A Low on PIPE indicates a nonpipelined read,  
and the data appears on the output in the same clock cycle. A High indicates a pipelined read, and data  
appears on the output in the next clock cycle.  
Clocking  
The dual-port SRAM blocks are only clocked on the rising edge. SmartGen allows falling-edge-triggered  
clocks by adding inverters to the netlist, hence achieving dual-port SRAM blocks that are clocked on  
either edge (rising or falling). For dual-port SRAM, each port can be clocked on either edge or by  
separate clocks, by port.  
Fusion devices support inversion (bubble pushing) throughout the FPGA architecture, including the clock  
input to the SRAM modules. Inversions added to the SRAM clock pin on the design schematic or in the  
HDL code will be automatically accounted for during design compile without incurring additional delay in  
the clock path.  
The two-port SRAM can be clocked on the rising edge or falling edge of WCLK and RCLK.  
If negative-edge RAM and FIFO clocking is selected for memory macros, clock edge inversion  
management (bubble pushing) is automatically used within the Fusion development tools, without  
performance penalty.  
2-64  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Modes of Operation  
There are two read modes and one write mode:  
Read Nonpipelined (synchronous—1 clock edge): In the standard read mode, new data is driven  
onto the RD bus in the same clock cycle following RA and REN valid. The read address is  
registered on the read port clock active edge, and data appears at RD after the RAM access time.  
Setting PIPE to OFF enables this mode.  
Read Pipelined (synchronous—2 clock edges): The pipelined mode incurs an additional clock  
delay from the address to the data but enables operation at a much higher frequency. The read  
address is registered on the read port active clock edge, and the read data is registered and  
appears at RD after the second read clock edge. Setting PIPE to ON enables this mode.  
Write (synchronous—1 clock edge): On the write clock active edge, the write data is written into  
the SRAM at the write address when WEN is High. The setup times of the write address, write  
enables, and write data are minimal with respect to the write clock. Write and read transfers are  
described with timing requirements in the "SRAM Characteristics" section on page 2-66 and the  
"FIFO Characteristics" section on page 2-75.  
RAM Initialization  
Each SRAM block can be individually initialized on power-up by means of the JTAG port using the  
UJTAG mechanism (refer to the "JTAG IEEE 1532" section on page 2-232 and the Fusion SRAM/FIFO  
Blocks application note). The shift register for a target block can be selected and loaded with the proper  
bit configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation.  
Revision 4  
2-65  
Device Architecture  
SRAM Characteristics  
Timing Waveforms  
tCYC  
tCKH  
tCKL  
CLK  
tAS tAH  
A0  
tBKS  
A1  
A2  
[R|W]ADDR  
BLK  
tBKH  
tENS  
tENH  
WEN  
tCKQ1  
Dn  
D0  
D1  
D2  
DOUT|RD  
tDOH1  
Figure 2-50 • RAM Read for Flow-Through Output. Applicable to both RAM4K9 and RAM512x18.  
t
CYC  
t
t
CKL  
CKH  
CLK  
[R|W]ADDR  
BLK  
t
t
AH  
AS  
A
A
A
0
1
2
t
t
BKS  
ENS  
t
BKH  
t
ENH  
WEN  
t
CKQ2  
D
D
D
1
DOUT|RD  
n
0
t
DOH2  
Figure 2-51 • RAM Read for Pipelined Output. Applicable to both RAM4K9 and RAM512x18.  
2-66  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
t
CYC  
t
t
CKL  
CKH  
CLK  
[R|W]ADDR  
BLK  
t
t
AH  
AS  
A
A
A
0
1
2
t
BKS  
ENS  
t
BKH  
t
t
ENH  
WEN  
t
t
DH  
DS  
DI  
DI  
DIN|WD  
DOUT|RD  
0
1
D
D
n
2
Figure 2-52 • RAM Write, Output Retained. Applicable to both RAM4K9 and RAM512x18.  
tCYC  
tCKH  
tCKL  
CLK  
ADDR  
BLK  
tAS tAH  
A0  
tBKS  
A1  
A2  
tBKH  
tENS  
WEN  
DIN  
tDS  
tDH  
DI1  
D0  
DI2  
DOUT  
DI0  
Dn  
DI1  
(flow-through)  
DOUT  
DI0  
Dn  
DI1  
(pipelined)  
Figure 2-53 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only.  
Revision 4  
2-67  
Device Architecture  
CLK1  
ADDR1  
DIN1  
t
t
AH  
AS  
A
D
A
A
3
0
2
t
t
DH  
DS  
D
D
3
0
2
t
WRO  
CLK2  
t
t
AH  
AS  
A
A
A
ADDR2  
DOUT2  
0
1
4
t
CKQ1  
D
D
D
D
n
0
1
0
(flow-through)  
t
CKQ2  
DOUT2  
(Pipelined)  
D
n
Figure 2-54 • One Port Write / Other Port Read Same  
tCYC  
tCKH  
tCKL  
CLK  
RESET  
tRSTBQ  
Dm  
Dn  
DOUT|RD  
Figure 2-55 • RAM Reset. Applicable to both RAM4K9 and RAM512x18.  
2-68  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Timing Characteristics  
Table 2-31 • RAM4K9  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tAS  
Description –2 –1  
Std. Units  
Address setup time  
Address hold time  
0.25 0.28 0.33  
0.00 0.00 0.00  
0.14 0.16 0.19  
0.10 0.11 0.13  
0.23 0.27 0.31  
0.02 0.02 0.02  
0.18 0.21 0.25  
0.00 0.00 0.00  
1.79 2.03 2.39  
2.36 2.68 3.15  
0.89 1.02 1.20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAH  
tENS  
tENH  
tBKS  
tBKH  
tDS  
REN, WEN setup time  
REN, WEN hold time  
BLK setup time  
BL hold time  
Input data (DIN) setup time  
Input data (DIN) hold time  
tDH  
tCKQ1  
Clock High to new data valid on DOUT (output retained, WMODE = 0)  
Clock High to new data valid on DOUT (flow-through, WMODE = 1)  
Clock High to new data valid on DOUT (pipelined)  
tCKQ2  
1
tC2CWWH  
Address collision clk-to-clk delay for reliable write after write on same 0.30 0.26 0.23  
address—Applicable to Rising Edge  
1
tC2CRWH  
Address collision clk-to-clk delay for reliable read access after write on 0.45 0.38 0.34  
same address—Applicable to Opening Edge  
ns  
ns  
1
tC2CWRH  
Address collision clk-to-clk delay for reliable write access after read on 0.49 0.42 0.37  
same address— Applicable to Opening Edge  
tRSTBQ  
RESET Low to data out Low on DOUT (flow-through)  
RESET Low to Data Out Low on DOUT (pipelined)  
RESET removal  
0.92 1.05 1.23  
0.92 1.05 1.23  
0.29 0.33 0.38  
1.50 1.71 2.01  
0.21 0.24 0.29  
3.23 3.68 4.32  
ns  
ns  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
RESET recovery  
RESET minimum pulse width  
Clock cycle time  
FMAX  
Maximum frequency  
310 272 231 MHz  
Notes:  
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-  
Based cSoCs and FPGAs.  
2. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.  
Revision 4  
2-69  
Device Architecture  
Table 2-32 • RAM512X18  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tAS  
Description –2 –1  
Std. Units  
Address setup time  
0.25 0.28 0.33  
0.00 0.00 0.00  
0.09 0.10 0.12  
0.06 0.07 0.08  
0.18 0.21 0.25  
0.00 0.00 0.00  
2.16 2.46 2.89  
0.90 1.02 1.20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAH  
Address hold time  
tENS  
REN, WEN setup time  
REN, WEN hold time  
Input data (WD) setup time  
Input data (WD) hold time  
tENH  
tDS  
tDH  
tCKQ1  
tCKQ2  
Clock High to new data valid on RD (output retained)  
Clock High to new data valid on RD (pipelined)  
1
tC2CRWH  
Address collision clk-to-clk delay for reliable read access after write on 0.50 0.43 0.38  
same address—Applicable to Opening Edge  
1
tC2CWRH  
Address collision clk-to-clk delay for reliable write access after read on 0.59 0.50 0.44  
same address— Applicable to Opening Edge  
ns  
1
tRSTBQ  
RESET Low to data out Low on RD (flow-through)  
RESET Low to data out Low on RD (pipelined)  
RESET removal  
0.92 1.05 1.23  
0.92 1.05 1.23  
0.29 0.33 0.38  
1.50 1.71 2.01  
0.21 0.24 0.29  
3.23 3.68 4.32  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET recovery  
ns  
RESET minimum pulse width  
Clock cycle time  
ns  
ns  
FMAX  
Maximum frequency  
310 272  
231  
MHz  
Notes:  
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-  
Based cSoCs and FPGAs.  
2. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.  
2-70  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
FIFO4K18 Description  
FIFO4K18  
RD17  
RW2  
RD16  
RW1  
RW0  
WW2  
WW1  
WW0  
RD0  
ESTOP  
FSTOP  
FULL  
AFULL  
EMPTY  
AEMPTY  
AEVAL11  
AEVAL10  
AEVAL0  
AFVAL11  
AFVAL10  
AFVAL0  
REN  
RBLK  
RCLK  
WD17  
WD16  
WD0  
WEN  
WBLK  
WCLK  
RPIPE  
RESET  
Figure 2-56 • FIFO4KX18  
Revision 4  
2-71  
Device Architecture  
The following signals are used to configure the FIFO4K18 memory element:  
WW and RW  
These signals enable the FIFO to be configured in one of the five allowable aspect ratios (Table 2-33).  
Table 2-33 • Aspect Ratio Settings for WW[2:0]  
WW2, WW1, WW0  
RW2, RW1, RW0  
D×W  
4k×1  
000  
000  
001  
001  
2k×2  
010  
010  
1k×4  
011  
011  
512×9  
256×18  
Reserved  
100  
100  
101, 110, 111  
101, 110, 111  
WBLK and RBLK  
These signals are active low and will enable the respective ports when Low. When the RBLK signal is  
High, the corresponding port’s outputs hold the previous value.  
WEN and REN  
Read and write enables. WEN is active low and REN is active high by default. These signals can be  
configured as active high or low.  
WCLK and RCLK  
These are the clock signals for the synchronous read and write operations. These can be driven  
independently or with the same driver.  
RPIPE  
This signal is used to specify pipelined read on the output. A Low on RPIPE indicates a nonpipelined  
read, and the data appears on the output in the same clock cycle. A High indicates a pipelined read, and  
data appears on the output in the next clock cycle.  
RESET  
This active low signal resets the output to zero when asserted. It resets the FIFO counters. It also sets all  
the RD pins Low, the FULL and AFULL pins Low, and the EMPTY and AEMPTY pins High (Table 2-34).  
Table 2-34 • Input Data Signal Usage for Different Aspect Ratios  
D×W  
WD/RD Unused  
WD[17:1], RD[17:1]  
WD[17:2], RD[17:2]  
WD[17:4], RD[17:4]  
WD[17:9], RD[17:9]  
4k×1  
2k×2  
1k×4  
512×9  
256×18  
WD  
This is the input data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. When a data  
width less than 18 is specified, unused higher-order signals must be grounded (Table 2-34).  
RD  
This is the output data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. Like the WD  
bus, high-order bits become unusable if the data width is less than 18. The output data on unused pins is  
undefined (Table 2-34).  
ESTOP, FSTOP  
ESTOP is used to stop the FIFO read counter from further counting once the FIFO is empty (i.e., the  
EMPTY flag goes High). A High on this signal inhibits the counting.  
2-72  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
FSTOP is used to stop the FIFO write counter from further counting once the FIFO is full (i.e., the FULL  
flag goes High). A High on this signal inhibits the counting.  
For more information on these signals, refer to the "ESTOP and FSTOP Usage" section on page 2-73.  
FULL, EMPTY  
When the FIFO is full and no more data can be written, the FULL flag asserts High. The FULL flag is  
synchronous to WCLK to inhibit writing immediately upon detection of a full condition and to prevent  
overflows. Since the write address is compared to a resynchronized (and thus time-delayed) version of  
the read address, the FULL flag will remain asserted until two WCLK active edges after a read operation  
eliminates the full condition.  
When the FIFO is empty and no more data can be read, the EMPTY flag asserts High. The EMPTY flag  
is synchronous to RCLK to inhibit reading immediately upon detection of an empty condition and to  
prevent underflows. Since the read address is compared to a resynchronized (and thus time-delayed)  
version of the write address, the EMPTY flag will remain asserted until two RCLK active edges after a  
write operation removes the empty condition.  
For more information on these signals, refer to the "FIFO Flag Usage Considerations" section on  
page 2-74.  
AFULL, AEMPTY  
These are programmable flags and will be asserted on the threshold specified by AFVAL and AEVAL,  
respectively.  
When the number of words stored in the FIFO reaches the amount specified by AEVAL while reading,  
the AEMPTY output will go High. Likewise, when the number of words stored in the FIFO reaches the  
amount specified by AFVAL while writing, the AFULL output will go High.  
AFVAL, AEVAL  
The AEVAL and AFVAL pins are used to specify the almost-empty and almost-full threshold values,  
respectively. They are 12-bit signals. For more information on these signals, refer to "FIFO Flag  
Usage Considerations" section.  
ESTOP and FSTOP Usage  
The ESTOP pin is used to stop the read counter from counting any further once the FIFO is empty (i.e.,  
the EMPTY flag goes High). Likewise, the FSTOP pin is used to stop the write counter from counting any  
further once the FIFO is full (i.e., the FULL flag goes High).  
The FIFO counters in the Fusion device start the count at 0, reach the maximum depth for the  
configuration (e.g., 511 for a 512×9 configuration), and then restart at 0. An example application for the  
ESTOP, where the read counter keeps counting, would be writing to the FIFO once and reading the same  
content over and over without doing another write.  
Revision 4  
2-73  
Device Architecture  
FIFO Flag Usage Considerations  
The AEVAL and AFVAL pins are used to specify the 12-bit AEMPTY and AFULL threshold values,  
respectively. The FIFO contains separate 12-bit write address (WADDR) and read address (RADDR)  
counters. WADDR is incremented every time a write operation is performed, and RADDR is incremented  
every time a read operation is performed. Whenever the difference between WADDR and RADDR is  
greater than or equal to AFVAL, the AFULL output is asserted. Likewise, whenever the difference  
between WADDR and RADDR is less than or equal to AEVAL, the AEMPTY output is asserted. To  
handle different read and write aspect ratios, AFVAL and AEVAL are expressed in terms of total data bits  
instead of total data words. When users specify AFVAL and AEVAL in terms of read or write words, the  
SmartGen tool translates them into bit addresses and configures these signals automatically. SmartGen  
configures the AFULL flag to assert when the write address exceeds the read address by at least a  
predefined value. In a 2k×8 FIFO, for example, a value of 1,500 for AFVAL means that the AFULL flag  
will be asserted after a write when the difference between the write address and the read address  
reaches 1,500 (there have been at least 1500 more writes than reads). It will stay asserted until the  
difference between the write and read addresses drops below 1,500.  
The AEMPTY flag is asserted when the difference between the write address and the read address is  
less than a predefined value. In the example above, a value of 200 for AEVAL means that the AEMPTY  
flag will be asserted when a read causes the difference between the write address and the read address  
to drop to 200. It will stay asserted until that difference rises above 200. Note that the FIFO can be  
configured with different read and write widths; in this case, the AFVAL setting is based on the number of  
write data entries and the AEVAL setting is based on the number of read data entries. For aspect ratios of  
512×9 and 256×18, only 4,096 bits can be addressed by the 12 bits of AFVAL and AEVAL. The number  
of words must be multiplied by 8 and 16, instead of 9 and 18. The SmartGen tool automatically uses the  
proper values. To avoid halfwords being written or read, which could happen if different read and write  
aspect ratios are specified, the FIFO will assert FULL or EMPTY as soon as at least a minimum of one  
word cannot be written or read. For example, if a two-bit word is written and a four-bit word is being read,  
the FIFO will remain in the empty state when the first word is written. This occurs even if the FIFO is not  
completely empty, because in this case, a complete word cannot be read. The same is applicable in the  
full state. If a four-bit word is written and a two-bit word is read, the FIFO is full and one word is read. The  
FULL flag will remain asserted because a complete word cannot be written at this point.  
2-74  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
FIFO Characteristics  
Timing Waveforms  
tCYC  
RCLK  
tENH  
tENS  
REN  
tBKS  
tBKH  
RBLK  
tCKQ1  
RD  
D1  
Dn  
D0  
D2  
(flow-through)  
tCKQ2  
RD  
(pipelined)  
Dn  
D0  
D1  
Figure 2-57 • FIFO Read  
tCYC  
WCLK  
tENS  
tENH  
WEN  
tBKS  
tBKH  
WBLK  
tDS  
tDH  
DI1  
DI0  
WD  
Figure 2-58 • FIFO Write  
Revision 4  
2-75  
Device Architecture  
RCLK/  
WCLK  
tMPWRSTB  
tRSTCK  
RESET  
EF  
tRSTFG  
tRSTAF  
AEF  
FF  
tRSTFG  
tRSTAF  
AFF  
WA/RA  
MATCH (A0)  
(Address Counter)  
Figure 2-59 • FIFO Reset  
tCYC  
RCLK  
EF  
tRCKEF  
tCKAF  
AEF  
WA/RA  
(Address Counter)  
NO MATCH  
NO MATCH  
Dist = AEF_TH  
MATCH (EMPTY)  
Figure 2-60 • FIFO EMPTY Flag and AEMPTY Flag Assertion  
2-76  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
t
CYC  
WCLK  
FF  
t
WCKFF  
t
CKAF  
AFF  
WA/RA  
Dist = AFF_TH  
MATCH (FULL)  
NO MATCH  
NO MATCH  
(Address Counter)  
Figure 2-61 • FIFO FULL and AFULL Flag Assertion  
WCLK  
MATCH  
WA/RA  
Dist = AEF_TH + 1  
NO MATCH  
NO MATCH  
NO MATCH  
NO MATCH  
(EMPTY)  
(Address Counter)  
1st rising  
2nd rising  
edge  
after 1st  
write  
edge  
after 1st  
write  
RCLK  
EF  
t
RCKEF  
t
CKAF  
AEF  
Figure 2-62 • FIFO EMPTY Flag and AEMPTY Flag Deassertion  
RCLK  
WA/RA  
(Address Counter) MATCH (FULL)  
NO MATCH  
NO MATCH  
NO MATCH  
NO MATCH  
Dist = AFF_TH – 1  
1st Rising  
1st Rising  
Edge  
After 1st  
Read  
Edge  
After 2nd  
Read  
WCLK  
FF  
t
WCKF  
t
CKAF  
AFF  
Figure 2-63 • FIFO FULL Flag and AFULL Flag Deassertion  
Revision 4  
2-77  
Device Architecture  
Timing Characteristics  
Table 2-35 • FIFO  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tENS  
Description  
REN, WEN Setup time  
–2  
–1  
Std.  
1.79  
0.00  
0.26  
0.00  
0.25  
0.00  
2.90  
1.26  
2.30  
2.18  
8.29  
2.27  
8.20  
1.23  
1.23  
0.38  
2.01  
0.29  
4.32  
231  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.34  
0.00  
0.19  
0.00  
0.18  
0.00  
2.17  
0.94  
1.72  
1.63  
6.19  
1.69  
6.13  
0.92  
0.92  
0.29  
1.50  
0.21  
3.23  
310  
1.52  
0.00  
0.22  
0.00  
0.21  
0.00  
2.47  
1.07  
1.96  
1.86  
7.05  
1.93  
6.98  
1.05  
1.05  
0.33  
1.71  
0.24  
3.68  
272  
tENH  
REN, WEN Hold time  
tBKS  
BLK Setup time  
tBKH  
BLK Hold time  
tDS  
Input data (WD) Setup time  
tDH  
Input data (WD) Hold time  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock High to New Data Valid on RD (flow-through)  
Clock High to New Data Valid on RD (pipelined)  
RCLK High to Empty Flag Valid  
WCLK High to Full Flag Valid  
Clock High to Almost Empty/Full Flag Valid  
RESET Low to Empty/Full Flag Valid  
RESET Low to Almost-Empty/Full Flag Valid  
RESET Low to Data out Low on RD (flow-through)  
RESET Low to Data out Low on RD (pipelined)  
RESET Removal  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
RESET Recovery  
RESET Minimum Pulse Width  
Clock Cycle time  
FMAX  
Maximum Frequency for FIFO  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
2-78  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Analog Block  
With the Fusion family, Microsemi has introduced the world's first mixed-mode FPGA solution.  
Supporting a robust analog peripheral mix, Fusion devices will support a wide variety of applications. It is  
this Analog Block that separates Fusion from all other FPGA solutions on the market today.  
By combining both flash and high-speed CMOS processes in a single chip, these devices offer the best  
of both worlds. The high-performance CMOS is used for building RAM resources. These high-  
performance structures support device operation up to 350 MHz. Additionally, the advanced Microsemi  
0.13 µm flash process incorporates high-voltage transistors and a high-isolation, triple-well process. Both  
of these are suited for the flash-based programmable logic and nonvolatile memory structures.  
High-voltage transistors support the integration of analog technology in several ways. They aid in noise  
immunity so that the analog portions of the chip can be better isolated from the digital portions,  
increasing analog accuracy. Because they support high voltages, Microsemi flash FPGAs can be  
connected directly to high-voltage input signals, eliminating the need for external resistor divider  
networks, reducing component count, and increasing accuracy. By supporting higher internal voltages,  
the Microsemi advanced flash process enables high dynamic range on analog circuitry, increasing  
precision and signal–noise ratio. Microsemi flash FPGAs also drive high-voltage outputs, eliminating the  
need for external level shifters and drivers.  
The unique triple-well process enables the integration of high-performance analog features with  
increased noise immunity and better isolation. By increasing the efficiency of analog design, the triple-  
well process also enables a smaller overall design size, reducing die size and cost.  
The Analog Block consists of the Analog Quad I/O structure, RTC (for details refer to the "Real-Time  
Counter System" section on page 2-33), ADC, and ACM. All of these elements are combined in the  
single Analog Block macro, with which the user implements this functionality (Figure 2-64).  
The Analog Block needs to be reset/reinitialized after the core powers up or the device is programmed.  
An external reset/initialize signal, which can come from the internal voltage regulator when it powers up,  
must be applied.  
Revision 4  
2-79  
Device Architecture  
VAREF  
ADCGNDREF  
AV0  
AC0  
AT0  
DAVOUT0  
DACOUT0  
DATOUT0  
AV9  
DAVOUT9  
DACOUT9  
DATOUT9  
AC9  
AT9  
ATRETURN01  
AG0  
AG1  
ATRETURN9  
DENAV0  
DENAC0  
DENAT0  
AG9  
DENAV0  
DENAC0  
DENAT0  
CMSTB0  
CSMTB9  
GDON0  
GDON9  
TMSTB0  
TMSTB9  
MODE[3:0]  
TVC[7:0]  
BUSY  
CALIBRATE  
DATAVALID  
SAMPLE  
STC[7:0]  
CHNUMBER[4:0]  
TMSTINT  
RESULT[11:0]  
RTCMATCH  
RTCXTLMODE  
RTCXTLSEL  
ADCSTART  
VAREFSEL  
PWRDWN  
ADCRESET  
RTCPSMMATCH  
RTCCLK  
SYSCLK  
ACMWEN  
ACMRESET  
ACMWDATA  
ACMADDR  
ACMCLK  
ACMRDATA[7:0]  
AB  
Figure 2-64 • Analog Block Macro  
2-80  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-36 describes each pin in the Analog Block. Each function within the Analog Block will be  
explained in detail in the following sections.  
Table 2-36 • Analog Block Pin Description  
Number  
of Bits  
Location of  
Details  
Signal Name  
VAREF  
Direction  
Function  
1
1
4
1
8
8
1
1
Input/Output Voltage reference for ADC  
ADC  
ADC  
ADC  
ADCGNDREF  
MODE[3:0]  
SYSCLK  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
External ground reference  
ADC operating mode  
External system clock  
Clock divide control  
Sample time control  
Start of conversion  
TVC[7:0]  
ADC  
ADC  
ADC  
ADC  
STC[7:0]  
ADCSTART  
PWRDWN  
ADC comparator power-down if 1.  
When asserted, the ADC will stop  
functioning, and the digital portion of  
the analog block will continue  
operating. This may result in invalid  
status flags from the analog block.  
Therefore,  
Microsemi  
does  
not  
recommend asserting the PWRDWN  
pin.  
ADCRESET  
1
Input  
ADC resets and disables Analog Quad  
– active high  
ADC  
BUSY  
1
1
Output  
Output  
Output  
Output  
Input  
1 – Running conversion  
1 – Power-up calibration  
1 – Valid conversion result  
Conversion result  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
CALIBRATE  
DATAVALID  
RESULT[11:0]  
TMSTBINT  
SAMPLE  
1
12  
1
Internal temp. monitor strobe  
1
Output  
1 – An analog signal is actively being  
sampled (stays high during signal  
acquisition only)  
0 – No analog signal is being sampled  
VAREFSEL  
1
5
Input  
Input  
0 = Output internal voltage reference  
(2.56 V) to VAREF  
ADC  
1 = Input external voltage reference  
from VAREF and ADCGNDREF  
CHNUMBER[4:0]  
Analog input channel select  
Input  
multiplexer  
ACMCLK  
1
1
Input  
Input  
Input  
Input  
Output  
Input  
Input  
ACM clock  
ACM  
ACM  
ACM  
ACM  
ACM  
ACM  
ACMWEN  
ACM write enable – active high  
ACM reset – active low  
ACM write data  
ACMRESET  
1
ACMWDATA[7:0]  
ACMRDATA[7:0]  
ACMADDR[7:0]  
CMSTB0 to CMSTB9  
8
8
ACM read data  
8
ACM address  
10  
Current monitor strobe – 1 per quad, Analog Quad  
active high  
Revision 4  
2-81  
Device Architecture  
Table 2-36 • Analog Block Pin Description (continued)  
Number  
of Bits  
Location of  
Details  
Signal Name  
Direction  
Input  
Function  
GDON0 to GDON9  
TMSTB0 to TMSTB9  
10  
Control to power MOS – 1 per quad  
Analog Quad  
10  
Input  
Temperature monitor strobe – 1 per Analog Quad  
quad; active high  
DAVOUT0, DACOUT0, DATOUT0  
to  
DAVOUT9, DACOUT9, DATOUT9  
30  
30  
Output  
Input  
Digital outputs – 3 per quad  
Analog Quad  
DENAV0, DENAC0, DENAT0 to  
DENAV9, DENAC9, DENAT9  
Digital input enables – 3 per quad  
Analog Quad 0  
Analog Quad  
AV0  
1
1
1
1
1
Input  
Input  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
AC0  
AG0  
Output  
Input  
AT0  
ATRETURN01  
Input  
Temperature monitor return shared by Analog Quad  
Analog Quads 0 and 1  
AV1  
1
1
1
1
1
1
1
1
1
Input  
Input  
Output  
Input  
Input  
Input  
Output  
Input  
Input  
Analog Quad 1  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
AC1  
AG1  
AT1  
AV2  
Analog Quad 2  
AC2  
AG2  
AT2  
ATRETURN23  
Temperature monitor return shared by Analog Quad  
Analog Quads 2 and 3  
AV3  
1
1
1
1
1
1
1
1
1
Input  
Input  
Output  
Input  
Input  
Input  
Output  
Input  
Input  
Analog Quad 3  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
AC3  
AG3  
AT3  
AV4  
Analog Quad 4  
AC4  
AG4  
AT4  
ATRETURN45  
Temperature monitor return shared by Analog Quad  
Analog Quads 4 and 5  
AV5  
AC5  
AG5  
AT5  
AV6  
AC6  
1
1
1
1
1
1
Input  
Input  
Output  
Input  
Input  
Input  
Analog Quad 5  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad 6  
2-82  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-36 • Analog Block Pin Description (continued)  
Number  
Location of  
Signal Name  
AG6  
of Bits  
Direction  
Output  
Input  
Function  
Details  
1
1
1
Analog Quad  
Analog Quad  
AT6  
ATRETURN67  
Input  
Temperature monitor return shared by Analog Quad  
Analog Quads 6 and 7  
AV7  
1
1
1
1
1
1
1
1
1
Input  
Input  
Output  
Input  
Input  
Input  
Output  
Input  
Input  
Analog Quad 7  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
AC7  
AG7  
AT7  
AV8  
Analog Quad 8  
AC8  
AG8  
AT8  
ATRETURN89  
Temperature monitor return shared by Analog Quad  
Analog Quads 8 and 9  
AV9  
1
1
1
1
1
1
2
1
1
Input  
Input  
Analog Quad 9  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
RTC  
AC9  
AG9  
Output  
Input  
AT9  
RTCMATCH  
RTCPSMMATCH  
RTCXTLMODE[1:0]  
RTCXTLSEL  
RTCCLK  
Output  
Output  
Output  
Output  
Input  
MATCH  
MATCH connected to VRPSM  
Drives XTLOSC RTCMODE[1:0] pins  
Drives XTLOSC MODESEL pin  
RTC clock input  
RTC  
RTC  
RTC  
RTC  
Analog Quad  
With the Fusion family, Microsemi introduces the Analog Quad, shown in Figure 2-65 on page 2-84, as  
the basic analog I/O structure. The Analog Quad is a four-channel system used to precondition a set of  
analog signals before sending it to the ADC for conversion into a digital signal. To maximize the  
usefulness of the Analog Quad, the analog input signals can also be configured as LVTTL digital input  
signals. The Analog Quad is divided into four sections.  
The first section is called the Voltage Monitor Block, and its input pin is named AV. It contains a two-  
channel analog multiplexer that allows an incoming analog signal to be routed directly to the ADC or  
allows the signal to be routed to a prescaler circuit before being sent to the ADC. The prescaler can be  
configured to accept analog signals between –12 V and 0 or between 0 and +12 V. The prescaler circuit  
scales the voltage applied to the ADC input pad such that it is compatible with the ADC input voltage  
range. The AV pin can also be used as a digital input pin.  
The second section of the Analog Quad is called the Current Monitor Block. Its input pin is named AC.  
The Current Monitor Block contains all the same functions as the Voltage Monitor Block with one  
addition, which is a current monitoring function. A small external current sensing resistor (typically less  
than 1 ) is connected between the AV and AC pins and is in series with a power source. The Current  
Monitor Block contains a current monitor circuit that converts the current through the external resistor to  
a voltage that can then be read using the ADC.  
Revision 4  
2-83  
Device Architecture  
The third part of the Analog Quad is called the Gate Driver Block, and its output pin is named AG. This  
section is used to drive an external FET. There are two modes available: a High Current Drive mode and  
a Current Source Control mode. Both negative and positive voltage polarities are available, and in the  
current source control mode, four different current levels are available.  
The fourth section of the Analog Quad is called the Temperature Monitor Block, and its input pin name is  
AT. This block is similar to the Voltage Monitor Block, except that it has an additional function: it can be  
used to monitor the temperature of an external diode-connected transistor. It has a modified prescaler  
and is limited to positive voltages only.  
The Analog Quad can be configured during design time by Libero SoC; however, the ACM can be used  
to change the parameters of any of these I/Os during runtime. This type of change is referred to as a  
context switch. The Analog Quad is a modular structure that is replicated to generate the analog I/O  
resources. Each Fusion device supports between 5 and 10 Analog Quads.  
The analog pads are numbered to clearly identify both the type of pad (voltage, current, gate driver, or  
temperature pad) and its corresponding Analog Quad (AV0, AC0, AG0, AT0, AV1, …, AC9, AG9, and  
AT9). There are three types of input pads (AVx, ACx, and ATx) and one type of analog output pad (AGx).  
Since there can be up to 10 Analog Quads on a device, there can be a maximum of 30 analog input pads  
and 10 analog output pads.  
Off-Chip  
AV  
AC  
AG  
AT  
Voltage  
Monitor Block  
Current  
Monitor Block  
Gate  
Driver  
Temperature  
Monitor Block  
Pads  
On-Chip  
Analog Quad  
Prescaler  
Prescaler  
Prescaler  
Power  
MOSFET  
Gate Driver  
Digital  
Input  
Digital  
Input  
Digital  
Input  
Current  
Monitor/Instr  
Amplifier  
Temperature  
Monitor  
To FPGA  
(DAVOUTx)  
To FPGA  
(DACOUTx)  
From FPGA  
(GDONx)  
To FPGA  
(DATOUTx)  
To Analog MUX  
To Analog MUX  
To Analog MUX  
Figure 2-65 • Analog Quad  
2-84  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Voltage Monitor  
The Fusion Analog Quad offers a robust set of voltage-monitoring capabilities unique in the FPGA  
industry. The Analog Quad comprises three analog input pads— Analog Voltage (AV), Analog Current  
(AC), and Analog Temperature (AT)—and a single gate driver output pad, Analog Gate (AG). There are  
many common characteristics among the analog input pads. Each analog input can be configured to  
connect directly to the input MUX of the ADC. When configured in this manner (Figure 2-66), there will be  
no prescaling of the input signal. Care must be taken in this mode not to drive the ADC into saturation by  
applying an input voltage greater than the reference voltage. The internal reference voltage of the ADC is  
2.56 V. Optionally, an external reference can be supplied by the user. The external reference can be a  
maximum of 3.3 V DC.  
Off-Chip  
AV  
AC  
AG  
AT  
Voltage  
Monitor Block  
Current  
Monitor Block  
Gate  
Driver  
Temperature  
Monitor Block  
Pads  
On-Chip  
Analog Quad  
Prescaler  
Prescaler  
Prescaler  
Power  
MOSFET  
Gate Driver  
Digital  
Input  
Digital  
Input  
Digital  
Input  
Current  
Monitor / Instr  
Amplifier  
Temperature  
Monitor  
To FPGA  
(DAVOUTx)  
To FPGA  
(DACOUTx)  
From FPGA  
(GDONx)  
To FPGA  
(DATOUTx)  
To Analog MUX  
To Analog MUX  
To Analog MUX  
Figure 2-66 • Analog Quad Direct Connect  
Revision 4  
2-85  
Device Architecture  
The Analog Quad offers a wide variety of prescaling options to enable the ADC to resolve the input  
signals. Figure 2-67 shows the path through the Analog Quad for a signal that is to be prescaled prior to  
conversion. The ADC internal reference voltage and the prescaler factors were selected to make both  
prescaling and postscaling of the signals easy binary calculations (refer to Table 2-57 on page 2-133 for  
details). When an analog input pad is configured with a prescaler, there will be a 1 Mresistor to ground.  
This occurs even when the device is in power-down mode. In low power standby or sleep mode (VCC is  
OFF, VCC33A is ON, VCCI is ON) or when the resource is not used, analog inputs are pulled down to  
ground through a 1 Mresistor. The gate driver output is floating (or tristated), and there is no extra  
current on VCC33A.  
These scaling factors hold true whether the particular pad is configured to accept a positive or negative  
voltage. Note that whereas the AV and AC pads support the same prescaling factors, the AT pad  
supports a reduced set of prescaling factors and supports positive voltages only.  
Typical scaling factors are given in Table 2-57 on page 2-133, and the gain error (which contributes to the  
minimum and maximum) is in Table 2-49 on page 2-120.  
Off-Chip  
AV  
AC  
AG  
AT  
Voltage  
Monitor Block  
Current  
Monitor Block  
Gate  
Driver  
Temperature  
Monitor Block  
Pads  
On-Chip  
Analog Quad  
Prescaler  
Prescaler  
Prescaler  
Power  
MOSFET  
Gate Driver  
Digital  
Input  
Digital  
Input  
Digital  
Input  
Current  
Monitor / Instr  
Amplifier  
Temperature  
Monitor  
To FPGA  
(DAVOUTx)  
To FPGA  
From FPGA  
(GDONx)  
To FPGA  
(DATOUTx)  
(DACOUTx)  
To Analog MUX  
To Analog MUX  
To Analog MUX  
Figure 2-67 • Analog Quad Prescaler Input Configuration  
2-86  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Terminology  
BW – Bandwidth  
BW is a range of frequencies that a Channel can handle.  
Channel  
A channel is define as an analog input configured as one of the Prescaler range shown in Table 2-57 on  
page 2-133. The channel includes the Prescaler circuit and the ADC.  
Channel Gain  
Channel Gain is a measured of the deviation of the actual slope from the ideal slope. The slope is  
measured from the 20% and 80% point.  
Gainactual  
------------------------  
Gain =  
Gainideal  
EQ 1  
Channel Gain Error  
Channel Gain Error is a deviation from the ideal slope of the transfer function. The Prescaler Gain Error  
is expressed as the percent difference between the actual and ideal, as shown in EQ 2.  
ErrorGain = (1-Gain) 100%  
EQ 2  
Channel Input Offset Error  
Channel Offset error is measured as the input voltage that causes the transition from zero to a count of  
one. An Ideal Prescaler will have offset equal to ½ of LSB voltage. Offset error is a positive or negative  
when the first transition point is higher or lower than ideal. Offset error is expressed in LSB or input  
voltage.  
Total Channel Error  
Total Channel Error is defined as the total error measured compared to the ideal value. Total Channel  
Error is the sum of gain error and offset error combined. Figure 2-68 shows how Total Channel Error is  
measured.  
Total Channel Error is defined as the difference between the actual ADC output and ideal ADC output. In  
the example shown in Figure 2-68, the Total Channel Error would be a negative number.  
Channel Gain  
Actual Output  
Ideal Output  
Total Channel Error  
Channel Input  
Offset Error  
Input Voltage to Prescaler  
Figure 2-68 • Total Channel Error Example  
Revision 4  
2-87  
Device Architecture  
Direct Digital Input  
The AV, AC, and AT pads can also be configured as high-voltage digital inputs (Figure 2-69). As these  
pads are 12 V–tolerant, the digital input can also be up to 12 V. However, the frequency at which these  
pads can operate is limited to 10 MHz.  
To enable one of these analog input pads to operate as a digital input, its corresponding Digital Input  
Enable (DENAxy) pin on the Analog Block must be pulled High, where x is either V, C, or T (for AV, AC,  
or AT pads, respectively) and y is in the range 0 to 9, corresponding to the appropriate Analog Quad.  
When the pad is configured as a digital input, the signal will come out of the Analog Block macro on the  
appropriate DAxOUTy pin, where x represents the pad type (V for AV pad, C for AC pad, or T for AT pad)  
and y represents the appropriate Analog Quad number. Example: If the AT pad in Analog Quad 5 is  
configured as a digital input, it will come out on the DATOUT5 pin of the Analog Block macro.  
Off-Chip  
AV  
AC  
AG  
AT  
Voltage  
Monitor Block  
Current  
Monitor Block  
Gate  
Driver  
Temperature  
Monitor Block  
Pads  
On-Chip  
Analog Quad  
Prescaler  
Prescaler  
Prescaler  
Power  
MOSFET  
Gate Driver  
Digital  
Input  
Digital  
Input  
Digital  
Input  
Current  
Monitor / Instr  
Amplifier  
Temperature  
Monitor  
To FPGA  
(DAVOUTx)  
To FPGA  
(DACOUTx)  
From FPGA  
(GDONx)  
To FPGA  
(DATOUTx)  
To Analog MUX  
To Analog MUX  
To Analog MUX  
Figure 2-69 • Analog Quad Direct Digital Input Configuration  
2-88  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Current Monitor  
The Fusion Analog Quad is an excellent element for voltage- and current-monitoring applications. In  
addition to supporting the same functionality offered by the AV pad, the AC pad can be configured to  
monitor current across an external sense resistor (Figure 2-70). To support this current monitor function,  
a differential amplifier with 10x gain passes the amplified voltage drop between the AV and AC pads to  
the ADC. The amplifier enables the user to use very small resistor values, thereby limiting any impact on  
the circuit. This function of the AC pad does not limit AV pad operation. The AV pad can still be  
configured for use as a direct voltage input or scaled through the AV prescaler independently of it’s use  
as an input to the AC pad’s differential amplifier.  
Power  
Off-Chip  
AV  
AC  
AG  
AT  
Voltage  
Monitor Block  
Current  
Monitor Block  
Gate  
Driver  
Temperature  
Monitor Block  
Pads  
On-Chip  
Analog Quad  
Prescaler  
Prescaler  
Prescaler  
Power  
MOSFET  
Gate Driver  
Digital  
Input  
Digital  
Input  
Digital  
Input  
Current  
Monitor / Instr  
Amplifier  
Temperature  
Monitor  
To FPGA  
(DAVOUTx)  
To FPGA  
(DACOUTx)  
From FPGA  
(GDONx)  
To FPGA  
(DATOUTx)  
To Analog MUX  
To Analog MUX  
To Analog MUX  
Figure 2-70 • Analog Quad Current Monitor Configuration  
Revision 4  
2-89  
Device Architecture  
To initiate a current measurement, the appropriate Current Monitor Strobe (CMSTB) signal on the AB  
macro must be asserted low for at least tCMSLO in order to discharge the previous measurement. Then  
CMSTB must be asserted high for at least tCMSET prior to asserting the ADCSTART signal. The CMSTB  
must remain high until after the SAMPLE signal is de-asserted by the AB macro. Note that the minimum  
sample time cannot be less than tCMSHI. Figure 2-71 shows the timing diagram of CMSTB in relationship  
with the ADC control signals.  
tCMSHI  
CMSTBx  
t
t
CMSLO  
CMSET  
VADC  
ADCSTART can be asserted  
after this point to start ADC  
sampling.  
ADCSTART  
Figure 2-71 • Timing Diagram for Current Monitor Strobe  
Figure 2-72 illustrates positive current monitor operation. The differential voltage between AV and AC  
goes into the 10× amplifier and is then converted by the ADC. For example, a current of 1.5 A is drawn  
from a 10 V supply and is measured by the voltage drop across a 0.050 sense resistor, The voltage  
drop is amplified by ten times by the amplifier and then measured by the ADC. The 1.5 A current creates  
a differential voltage across the sense resistor of 75 mV. This becomes 750 mV after amplification. Thus,  
the ADC measures a current of 1.5 A as 750 mV. Using an ADC with 8-bit resolution and VAREF of 2.56  
V, the ADC result is decimal 75. EQ 3 shows how to compute the current from the ADC result.  
I = ADC VAREF  10 2N Rsense  
EQ 3  
where  
I is the current flowing through the sense resistor  
ADC is the result from the ADC  
VAREF is the Reference voltage  
N is the number of bits  
Rsense is the resistance of the sense resistor  
2-90  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
I
RSENSE  
0-12 V  
AVx  
ACx  
CMSTBx  
to Analog MUX  
VADC  
10 X  
(refer Table 2-36  
for MUX channel  
number)  
Current Monitor  
Figure 2-72 • Positive Current Monitor  
Care must be taken when choosing the right resistor for current measurement application. Note that  
because of the 10× amplification, the maximum measurable difference between the AV and AC pads is  
VAREF / 10. A larger AV-to-AC voltage drop will result in ADC saturation; that is, the digital code put out by  
the ADC will stay fixed at the full scale value. Therefore, the user must select the external sense resistor  
appropriately. Table 2-38 shows recommended resistor values for different current measurement ranges.  
When choosing resistor values for a system, there is a trade-off between measurement accuracy and  
power consumption. Choosing a large resistor will increase the voltage drop and hence increase  
accuracy of the measurement; however the larger voltage drop dissipates more power (P = I2 × R).  
The Current Monitor is a unipolar system, meaning that the differential voltage swing must be from 0 V to  
VAREF/10. Therefore, the Current Monitor only supports differential voltage where |VAV-VAC| is greater  
than 0 V. This results in the requirement that the potential of the AV pad must be larger than the potential  
of the AC pad. This is straightforward for positive voltage systems. For a negative voltage system, it  
means that the AV pad must be "more negative" than the AC pad. This is shown in Figure 2-73.  
In this case, both the AV pad and the AC pad are configured for negative operations and the output of the  
differential amplifier still falls between 0 V and VAREF as required.  
Revision 4  
2-91  
Device Architecture  
Table 2-37 • Recommended Resistor for Different Current Range Measurement  
Current Range  
> 5 mA – 10 mA  
> 10 mA – 20 mA  
> 20 mA – 50 mA  
> 50 mA – 100 mA  
> 100 mA – 200 mA  
> 200 mA – 500 mA  
> 500 mA – 1 A  
> 1 A – 2 A  
Recommended Minimum Resistor Value (Ohms)  
10 – 20  
5 – 10  
2.5 – 5  
1 – 2  
0.5 – 1  
0.3 – 0.5  
0.1 – 0.2  
0.05 – 0.1  
0.025 – 0.05  
0.0125 – 0.025  
0.00625 – 0.02  
> 2 A – 4 A  
> 4 A – 8 A  
> 8 A – 12 A  
I
RSENSE  
0 to  
–10.5 V  
AVx  
ACx  
CMSTBx  
to Analog MUX  
VADC  
10 X  
(see Table 2-36  
for MUXchannel  
number)  
Current Monitor  
Figure 2-73 • Negative Current Monitor  
Terminology  
Accuracy  
The accuracy of Fusion Current Monitor is ±2 mV minimum plus 5% of the differential voltage at the  
input. The input accuracy can be translated to error at the ADC output by using EQ 4. The 10 V/V gain is  
the gain of the Current Monitor Circuit, as described in the "Current Monitor" section on page 2-89. For 8-  
bit mode, N = 8, VAREF= 2.56 V, zero differential voltage between AV and AC, the Error (EADC) is equal to  
2 LSBs.  
2N  
VAREF  
-----------------  
EADC = 2mV + 0.05 VAV VAC   10V  V   
EQ 4  
where  
N is the number of bits  
VAREF is the Reference voltage  
AV is the voltage at AV pad  
AC is the voltage at AC pad  
V
V
2-92  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Gate Driver  
The Fusion Analog Quad includes a Gate Driver connected to the Quad's AG pin (Figure 2-74).  
Designed to work with external p- or n-channel MOSFETs, the Gate driver is a configurable current sink  
or source and requires an external pull-up or pull-down resistor. The AG supports 4 selectable gate drive  
levels: 1 µA, 3 µA, 10 µA, and 30 µA (Figure 2-75 on page 2-94). The AG also supports a High Current  
Drive mode in which it can sink 20 mA; in this mode the switching rate is approximately 1.3 MHz with  
100 ns turn-on time and 600 ns turn-off time. Modeled on an open-drain-style output, it does not output a  
voltage level without an appropriate pull-up or pull-down resistor. If 1 V is forced on the drain, the current  
sinking/sourcing will exceed the ability of the transistor, and the device could be damaged.  
The AG pad is turned on via the corresponding GDONx pin in the Analog Block macro, where x is the  
number of the corresponding Analog Quad for the AG pad to be enabled (GDON0 to GDON9).  
Power  
Line Side  
Load Side  
Off-Chip  
Rpullup  
AV  
AC  
AG  
AT  
Voltage  
Monitor Block  
Current  
Monitor Block  
Gate  
Driver  
Temperature  
Monitor Block  
Pads  
On-Chip  
Analog Quad  
Prescaler  
Prescaler  
Prescaler  
Power  
MOSFET  
Gate Driver  
Digital  
Input  
Digital  
Input  
Digital  
Input  
Current  
Monitor / Instr  
Amplifier  
Temperature  
Monitor  
To FPGA  
(DAVOUTx)  
To FPGA  
(DACOUTx)  
From FPGA  
(GDONx)  
To FPGA  
(DATOUTx)  
To Analog MUX  
To Analog MUX  
To Analog MUX  
Figure 2-74 • Gate Driver  
The gate-to-source voltage (Vgs) of the external MOSFET is limited to the programmable drive current  
times the external pull-up or pull-down resistor value (EQ 5).  
Vgs Ig × (Rpullup or Rpulldown  
)
EQ 5  
The rate at which the gate voltage of the external MOSFET slews is determined by the current, Ig,  
sourced or sunk by the AG pin and the gate-to-source capacitance, CGS, of the external MOSFET. As an  
approximation, the slew rate is given by EQ 6.  
dv/dt = Ig / CGS  
EQ 6  
Revision 4  
2-93  
Device Architecture  
CGS is not a fixed capacitance but, depending on the circuitry connected to its drain terminal, can vary  
significantly during the course of a turn-on or turn-off transient. Thus, EQ 6 on page 2-93 can only be  
used for a first-order estimate of the switching speed of the external MOSFET.  
High  
Current  
1 μA  
3 μA  
10 μA  
30 μA  
AG  
High  
Current  
1 μA  
3 μA  
10 μA  
30 μA  
Figure 2-75 • Gate Driver Example  
2-94  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Temperature Monitor  
The final pin in the Analog Quad is the Analog Temperature (AT) pin. The AT pin is used to implement an  
accurate temperature monitor in conjunction with an external diode-connected bipolar transistor  
(Figure 2-76). For improved temperature measurement accuracy, it is important to use the ATRTN pin for  
the return path of the current sourced by the AT pin. Each ATRTN pin is shared between two adjacent  
Analog Quads. Additionally, if not used for temperature monitoring, the AT pin can provide functionality  
similar to that of the AV pad. However, in this mode only positive voltages can be applied to the AT pin,  
and only two prescaler factors are available (16 V and 4 V ranges—refer to Table 2-57 on page 2-133).  
Discrete  
Bipolar  
Transistor  
Off-Chip  
ATRTN  
AV  
AC  
AG  
AT  
Voltage  
Monitor Block  
Current  
Monitor Block  
Gate  
Driver  
Temperature  
Monitor Block  
Pads  
On-Chip  
Analog Quad  
Prescaler  
Prescaler  
Prescaler  
Power  
MOSFET  
Gate Driver  
Digital  
Input  
Digital  
Input  
Digital  
Input  
Current  
Monitor / Instr  
Amplifier  
Temperature  
Monitor  
To FPGA  
(DAVOUTx)  
To FPGA  
(DACOUTx)  
From FPGA  
(GDONx)  
To FPGA  
(DATOUTx)  
To Analog MUX  
To Analog MUX  
To Analog MUX  
Figure 2-76 • Temperature Monitor Quad  
Revision 4  
2-95  
Device Architecture  
Fusion uses a remote diode as a temperature sensor. The Fusion Temperature Monitor uses a  
differential input; the AT pin and ATRTN (AT Return) pin are the differential inputs to the Temperature  
Monitor. There is one Temperature Monitor in each Quad. A simplified block diagram is shown in  
Figure 2-77.  
VDD33A  
10 μA  
100 μA  
TMSTBx  
+
ATx  
to Analog MUX  
(refer Table 2-36  
for MUX Channel  
Number)  
+
VADC  
V  
12.5 X  
ATRTNxy  
Figure 2-77 • Block Diagram for Temperature Monitor Circuit  
The Fusion approach to measuring temperature is forcing two different currents through the diode with a  
ratio of 10:1. The switch that controls the different currents is controlled by the Temperature Monitor  
Strobe signal, TMSTB. Setting TMSTB to '1' will initiate a Temperature reading. The TMSTB should  
remain '1' until the ADC finishes sampling the voltage from the Temperature Monitor. The minimum  
sample time for the Temperature Monitor cannot be less than the minimum strobe high time minus the  
setup time. Figure 2-78 shows the timing diagram.  
tTMSHI  
TMSTBx  
tTMSLO  
tTMSSET  
VADC  
ADC should start  
sampling at this point  
ADCSTART  
Figure 2-78 • Timing Diagram for the Temperature Monitor Strobe Signal  
Note: When the IEEE 1149.1 Boundary Scan EXTEST instruction is executed, the AG pad drive  
strength ceases and becomes a 1 µA sink into the Fusion device.  
2-96  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
The diode’s voltage is measured at each current level and the temperature is calculated based on EQ 7.  
ITMSLO  
kT  
q
------ -----------------  
TMSLO VTMSHI = n ln  
V
ITMSHI  
EQ 7  
where  
I
I
TMSLO is the current when the Temperature Strobe is Low, typically 100 µA  
TMSHI is the current when the Temperature Strobe is High, typically 10 µA  
V
TMSLO is diode voltage while Temperature Strobe is Low  
TMSHI is diode voltage while Temperature Strobe is High  
V
n is the non-ideality factor of the diode-connected transistor. It is typically 1.004 for the Microsemi-  
recommended transistor type 2N3904.  
K = 1.3806 x 10-23 J/K is the Boltzman constant  
Q = 1.602 x 10-19 C is the charge of a proton  
When ITMSLO / ITMSHI = 10, the equation can be simplified as shown in EQ 8.  
V = VTMSLO VTMSHI = 1.986 104nT  
EQ 8  
In the Fusion TMB, the ideality factor n for 2N3904 is 1.004 and V is amplified 12.5 times by an internal  
amplifier; hence the voltage before entering the ADC is as given in EQ 9.  
VADC = V 12.5 = 2.5 mV  K T  
EQ 9  
This means the temperature to voltage relationship is 2.5 mV per degree Kelvin. The unique design of  
Fusion has made the Temperature Monitor System simple for the user. When the 10-bit mode ADC is  
used, each LSB represents 1 degree Kelvin, as shown in EQ 10. That is, e. 25°C is equal to 293°K and is  
represented by decimal 293 counts from the ADC.  
210  
2.56 V  
----------------  
1K = 2.5 mV   
= 1 LSB  
EQ 10  
If 8-bit mode is used for the ADC resolution, each LSB represents 4 degrees Kelvin; however, the  
resolution remains as 1 degree Kelvin per LSB, even for 12-bit mode, due to the Temperature Monitor  
design. An example of the temperature data format for 10-bit mode is shown in Table 2-38.  
Table 2-38 • Temperature Data Format  
Digital Output  
Temperature  
–40°C  
–20°C  
0°C  
Temperature (K)  
(ADC 10-bit mode)  
00 1110 1001  
00 1111 1101  
01 0001 0001  
01 0001 0010  
01 0001 1011  
01 0010 1010  
01 0100 0011  
01 0110 0110  
233  
253  
273  
274  
283  
298  
323  
358  
1°C  
10 °C  
25°C  
50 °C  
85 °C  
Revision 4  
2-97  
Device Architecture  
Terminology  
Resolution  
Resolution defines the smallest temperature change Fusion Temperature Monitor can resolve. For ADC  
configured as 8-bit mode, each LSB represents 4°C, and 1°C per LSB for 10-bit mode. With 12-bit mode,  
the Temperature Monitor can still only resolve 1°C due to Temperature Monitor design.  
Offset  
The Fusion Temperature Monitor has a systematic offset (Table 2-49 on page 2-120), excluding error due  
to board resistance and ideality factor of the external diode. Microsemi provides an IP block (CalibIP) that  
is required in order to mitigate the systematic temperature offset. For further details on CalibIP, refer to  
the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion  
FPGA Fabric User's Guide.  
2-98  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Analog-to-Digital Converter Block  
At the heart of the Fusion analog system is a programmable Successive Approximation Register (SAR)  
ADC. The ADC can support 8-, 10-, or 12-bit modes of operation. In 12-bit mode, the ADC can resolve  
500 ksps. All results are MSB-justified in the ADC. The input to the ADC is a large 32:1 analog input  
multiplexer. A simplified block diagram of the Analog Quads, analog input multiplexer, and ADC is shown  
in Figure 2-79. The ADC offers multiple self-calibrating modes to ensure consistent high performance  
both at power-up and during runtime.  
V
CC (1.5 V)  
0
1
Pads  
AV0  
AC0  
AG0  
AT0  
Analog  
Quad 0  
These are hardwired  
connections within  
Analog Quad.  
ATRETURN01  
AV1  
AC1  
AG1  
AT1  
Analog  
Quad 1  
AV2  
AC2  
AG2  
AT2  
Analog  
Quad 2  
ATRETURN23  
AV3  
AC3  
AG3  
AT3  
Analog  
Quad 3  
AV4  
AC4  
AG4  
AT4  
Analog  
Quad 4  
12  
Analog MUX  
(32 to 1)  
ATRETURN45  
ADC  
AV5  
AC5  
AG5  
AT5  
AV6  
AC6  
AG6  
AT6  
Analog  
Quad 5  
Digital Output to FPGA  
Analog  
Quad 6  
ATRETURN67  
AV7  
AC7  
AG7  
AT7  
Analog  
Quad 7  
AV8  
AC8  
AG8  
AT8  
Analog  
Quad 8  
ATRETURN89  
AV9  
AC9  
AG9  
AT9  
Analog  
Quad 9  
31  
Temperature  
Monitor  
CHNUMBER[4:0]  
Internal Diode  
Figure 2-79 • ADC Block Diagram  
Revision 4  
2-99  
Device Architecture  
ADC Description  
The Fusion ADC is a 12-bit SAR ADC. It offers a wide variety of features for different use models.  
Figure 2-80 shows a block diagram of the Fusion ADC.  
Configurable resolution: 8-bit, 10-bit, and 12-bit mode  
DNL: 0.6 LSB for 10-bit mode  
INL: 0.4 LSB for 10-bit mode  
No missing code  
Internal VAREF = 2.56 V  
Maximum Sample Rate = 600 Ksps  
Power-up calibration and dynamic calibration after every sample to compensate for temperature  
drift over time  
CALIBRATE  
SAMPLE  
BUSY  
DATAVALID  
VAREF  
Analog  
STATUS  
MUX  
32  
12  
Signals from  
Analog Quads  
SAR ADC  
RESULT  
CHNUMBER  
SYSCLK  
STC  
MODE  
TVC  
ADCCLK  
Figure 2-80 ADC Simplified Block Diagram  
ADC Theory of Operation  
An analog-to-digital converter is used to capture discrete samples of a continuous analog voltage and  
provide a discrete binary representation of the signal. Analog-to-digital converters are generally  
characterized in three ways:  
Input voltage range  
Resolution  
Bandwidth or conversion rate  
The input voltage range of an ADC is determined by its reference voltage (VREF). Fusion devices  
include an internal 2.56 V reference, or the user can supply an external reference of up to 3.3 V. The  
following examples use the internal 2.56 V reference, so the full-scale input range of the ADC is 0 to  
2.56 V.  
The resolution (LSB) of the ADC is a function of the number of binary bits in the converter. The ADC  
approximates the value of the input voltage using 2n steps, where n is the number of bits in the converter.  
Each step therefore represents VREF÷ 2n volts. In the case of the Fusion ADC configured for 12-bit  
operation, the LSB is 2.56 V / 4096 = 0.625 mV.  
Finally, bandwidth is an indication of the maximum number of conversions the ADC can perform each  
second. The bandwidth of an ADC is constrained by its architecture and several key performance  
characteristics.  
2-100  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
There are several popular ADC architectures, each with advantages and limitations. The analog-to-digital  
converter in Fusion devices is a switched-capacitor Successive Approximation Register (SAR) ADC. It  
supports 8-, 10-, and 12-bit modes of operation with a cumulative sample rate up to 600 k samples per  
second (ksps). Built-in bandgap circuitry offers 1% internal voltage reference accuracy or an external  
reference voltage can be used.  
As shown in Figure 2-81, a SAR ADC contains N capacitors with binary-weighted values.  
Comparator  
C / 2N–2  
C / 2N–1  
C
C / 2  
C / 4  
VREF  
VIN  
Figure 2-81 • Example SAR ADC Architecture  
To begin a conversion, all of the capacitors are quickly discharged. Then VIN is applied to all the  
capacitors for a period of time (acquisition time) during which the capacitors are charged to a value very  
close to VIN. Then all of the capacitors are switched to ground, and thus –VIN is applied across the  
comparator. Now the conversion process begins. First, C is switched to VREF Because of the binary  
.
weighting of the capacitors, the voltage at the input of the comparator is then shown by EQ 11.  
Voltage at input of comparator = –VIN + VREF / 2  
EQ 11  
If VIN is greater than VREF / 2, the output of the comparator is 1; otherwise, the comparator output is 0.  
A register is clocked to retain this value as the MSB of the result. Next, if the MSB is 0, C is switched  
back to ground; otherwise, it remains connected to VREF, and C / 2 is connected to VREF. The result at  
the comparator input is now either –VIN + VREF / 4 or –VIN + 3 VREF / 4 (depending on the state of the  
MSB), and the comparator output now indicates the value of the next most significant bit. This bit is  
likewise registered, and the process continues for each subsequent bit until a conversion is completed.  
The conversion process requires some acquisition time plus N + 1 ADC clock cycles to complete.  
Revision 4  
2-101  
Device Architecture  
This process results in a binary approximation of VIN. Generally, there is a fixed interval T, the sampling  
period, between the samples. The inverse of the sampling period is often referred to as the sampling  
frequency fS = 1 / T. The combined effect is illustrated in Figure 2-82.  
LSB  
T
Figure 2-82 • Conversion Example  
Figure 2-82 demonstrates that if the signal changes faster than the sampling rate can accommodate, or if  
the actual value of VIN falls between counts in the result, this information is lost during the conversion.  
There are several techniques that can be used to address these issues.  
First, the sampling rate must be chosen to provide enough samples to adequately represent the input  
signal. Based on the Nyquist-Shannon Sampling Theorem, the minimum sampling rate must be at least  
twice the frequency of the highest frequency component in the target signal (Nyquist Frequency). For  
example, to recreate the frequency content of an audio signal with up to 22 KHz bandwidth, the user  
must sample it at a minimum of 44 ksps. However, as shown in Figure 2-82, significant post-processing  
of the data is required to interpolate the value of the waveform during the time between each sample.  
Similarly, to re-create the amplitude variation of a signal, the signal must be sampled with adequate  
resolution. Continuing with the audio example, the dynamic range of the human ear (the ratio of the  
amplitude of the threshold of hearing to the threshold of pain) is generally accepted to be 135 dB, and the  
dynamic range of a typical symphony orchestra performance is around 85 dB. Most commercial  
recording media provide about 96 dB of dynamic range using 16-bit sample resolution. But 16-bit fidelity  
does not necessarily mean that you need a 16-bit ADC. As long as the input is sampled at or above the  
Nyquist Frequency, post-processing techniques can be used to interpolate intermediate values and  
reconstruct the original input signal to within desired tolerances.  
If sophisticated digital signal processing (DSP) capabilities are available, the best results are obtained by  
implementing a reconstruction filter, which is used to interpolate many intermediate values with higher  
resolution than the original data. Interpolating many intermediate values increases the effective number  
of samples, and higher resolution increases the effective number of bits in the sample. In many cases,  
however, it is not cost-effective or necessary to implement such a sophisticated reconstruction algorithm.  
For applications that do not require extremely fine reproduction of the input signal, alternative methods  
can enhance digital sampling results with relatively simple post-processing. The details of such  
techniques are out of the scope of this chapter; refer to the Improving ADC Results through  
Oversampling and Post-Processing of Data white paper for more information.  
2-102  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
ADC Terminology  
Conversion Time  
Conversion time is the interval between the release of the hold state (imposed by the input circuitry of a  
track-and-hold) and the instant at which the voltage on the sampling capacitor settles to within one LSB  
of a new input value.  
DNL – Differential Non-Linearity  
For an ideal ADC, the analog-input levels that trigger any two successive output codes should differ by  
one LSB (DNL = 0). Any deviation from one LSB in defined as DNL (Figure 2-83).  
Ideal Output  
Actual Output  
Error = –0.5 LSB  
Error = +1 LSB  
Input Voltage to Prescaler  
Figure 2-83 • Differential Non-Linearity (DNL)  
ENOB – Effective Number of Bits  
ENOB specifies the dynamic performance of an ADC at a specific input frequency and sampling rate. An  
ideal ADC’s error consists only of quantization of noise. As the input frequency increases, the overall  
noise (particularly in the distortion components) also increases, thereby reducing the ENOB and SINAD  
(also see “Signal-to-Noise and Distortion Ratio (SINAD)”.) ENOB for a full-scale, sinusoidal input  
waveform is computed using EQ 12.  
SINAD 1.76  
------------------------------------  
ENOB =  
6.02  
EQ 12  
FS Error – Full-Scale Error  
Full-scale error is the difference between the actual value that triggers that transition to full-scale and the  
ideal analog full-scale transition value. Full-scale error equals offset error plus gain error.  
Revision 4  
2-103  
Device Architecture  
Gain Error  
The gain error of an ADC indicates how well the slope of an actual transfer function matches the slope of  
the ideal transfer function. Gain error is usually expressed in LSB or as a percent of full-scale (%FSR).  
Gain error is the full-scale error minus the offset error (Figure 2-84).  
Gain = 2 LSB  
1...11  
Ideal Output  
Actual Output  
0...00  
Input Voltage to Prescaler  
Figure 2-84 • Gain Error  
Gain Error Drift  
Gain-error drift is the variation in gain error due to a change in ambient temperature, typically expressed  
in ppm/°C.  
2-104  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
INL – Integral Non-Linearity  
INL is the deviation of an actual transfer function from a straight line. After nullifying offset and gain  
errors, the straight line is either a best-fit straight line or a line drawn between the end points of the  
transfer function (Figure 2-85).  
INL = +0.5 LSB  
Ideal Output  
Actual Output  
INL = +1 LSB  
Input Voltage to Prescaler  
Figure 2-85 • Integral Non-Linearity (INL)  
LSB – Least Significant Bit  
In a binary number, the LSB is the least weighted bit in the group. Typically, the LSB is the furthest right  
bit. For an ADC, the weight of an LSB equals the full-scale voltage range of the converter divided by 2N,  
where N is the converter’s resolution.  
EQ 13 shows the calculation for a 10-bit ADC with a unipolar full-scale voltage of 2.56 V:  
1 LSB = (2.56 V / 210) = 2.5 mV  
EQ 13  
No Missing Codes  
An ADC has no missing codes if it produces all possible digital codes in response to a ramp signal  
applied to the analog input.  
Offset Error  
Offset error indicates how well the actual transfer function matches the ideal transfer function at a single  
point. For an ideal ADC, the first transition occurs at 0.5 LSB above zero. The offset voltage is measured  
by applying an analog input such that the ADC outputs all zeroes and increases until the first transition  
occurs (Figure 2-86 on page 2-106).  
Revision 4  
2-105  
Device Architecture  
Ideal Output  
Actual Output  
0...01  
0...00  
Offset Error = 1.5 LSB  
Input Voltage to Prescaler  
Figure 2-86 • Offset Error  
Resolution  
ADC resolution is the number of bits used to represent an analog input signal. To more accurately  
replicate the analog signal, resolution needs to be increased.  
Sampling Rate  
Sampling rate or sample frequency, specified in samples per second (sps), is the rate at which an ADC  
acquires (samples) the analog input.  
SNR – Signal-to-Noise Ratio  
SNR is the ratio of the amplitude of the desired signal to the amplitude of the noise signals at a given  
point in time. For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR  
(EQ 14) is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual  
error). The ideal, theoretical minimum ADC noise is caused by quantization error only and results directly  
from the ADC’s resolution (N bits):  
SNRdB[MAX] = 6.02dB N + 1.76dB  
EQ 14  
SINAD – Signal-to-Noise and Distortion  
SINAD is the ratio of the rms amplitude to the mean value of the root-sum-square of the all other spectral  
components, including harmonics, but excluding DC. SINAD is a good indication of the overall dynamic  
performance of an ADC because it includes all components which make up noise and distortion.  
Total Harmonic Distortion  
THD measures the distortion content of a signal, and is specified in decibels relative to the carrier (dBc).  
THD is the ratio of the RMS sum of the selected harmonics of the input signal to the fundamental itself.  
Only harmonics within the Nyquist limit are included in the measurement.  
2-106  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
TUE – Total Unadjusted Error  
TUE is a comprehensive specification that includes linearity errors, gain error, and offset error. It is the  
worst-case deviation from the ideal device performance. TUE is a static specification (Figure 2-87).  
TUE = ±0.5 LSB  
IDEAL OUTPUT  
Input Voltage to Prescaler  
Figure 2-87 • Total Unadjusted Error (TUE)  
ADC Operation  
Once the ADC has powered up and been released from reset, ADCRESET, the ADC will initiate a  
calibration routine designed to provide optimal ADC performance. The Fusion ADC offers a robust  
calibration scheme to reduce integrated offset and linearity errors. The offset and linearity errors of the  
main capacitor array are compensated for with an 8-bit calibration capacitor array. The offset/linearity  
error calibration is carried out in two ways. First, a power-up calibration is carried out when the ADC  
comes out of reset. This is initiated by the CALIBRATE output of the Analog Block macro and is a fixed  
number of ADC_CLK cycles (3,840 cycles), as shown in Figure 2-89 on page 2-114. In this mode, the  
linearity and offset errors of the capacitors are calibrated.  
To further compensate for drift and temperature-dependent effects, every conversion is followed by post-  
calibration of either the offset or a bit of the main capacitor array. The post-calibration ensures that, over  
time and with temperature, the ADC remains consistent.  
After both calibration and the setting of the appropriate configurations, as explained above, the ADC is  
ready for operation. Setting the ADCSTART signal high for one clock period will initiate the sample and  
conversion of the analog signal on the channel as configured by CHNUMBER[4:0]. The status signals  
SAMPLE and BUSY will show when the ADC is sampling and converting (Figure 2-91 on page 2-115).  
Both SAMPLE and BUSY will initially go high. After the ADC has sampled and held the analog signal,  
SAMPLE will go low. After the entire operation has completed and the analog signal is converted, BUSY  
will go low and DATAVALID will go high. This indicates that the digital result is available on the  
RESULT[11:0] pins.  
DATAVALID will remain high until a subsequent ADC_START is issued. The DATAVALID goes low on the  
rising edge of SYSCLK as shown in Figure 2-90 on page 2-114. The RESULT signals will be kept  
constant until the ADC finishes the subsequent sample. The next sampled RESULT will be available  
when DATAVALID goes high again. It is ideal to read the RESULT when DATAVALID is '1'. The RESULT  
is latched and remains unchanged until the next DATAVLAID rising edge.  
Revision 4  
2-107  
Device Architecture  
ADC Input Multiplexer  
At the input to the Fusion ADC is a 32:1 multiplexer. Of the 32 input channels, up to 30 are user  
definable. Two of these channels are hardwired internally. Channel 31 connects to an internal  
temperature diode so the temperature of the Fusion device itself can be monitored. Channel 0 is wired to  
the FPGA’s 1.5 V VCC supply, enabling the Fusion device to monitor its own power supply. Doing this  
internally makes it unnecessary to use an analog I/O to support these functions. The balance of the MUX  
inputs are connected to Analog Quads (see the "Analog Quad" section on page 2-83). Table 2-40 defines  
which Analog Quad inputs are associated with which specific analog MUX channels. The number of  
Analog Quads present is device-dependent; refer to the family list in the "Fusion Family" table on page I  
of this datasheet for the number of quads per device. Regardless of the number of quads populated in a  
device, the internal connections to both VCC and the internal temperature diode remain on Channels 0  
and 31, respectively. To sample the internal temperature monitor, it must be strobed (similar to the AT  
pads). The TMSTBINT pin on the Analog Block macro is the control for strobing the internal temperature  
measurement diode.  
To determine which channel is selected for conversion, there is a five-pin interface on the Analog Block,  
CHNUMBER[4:0], defined in Table 2-39.  
Table 2-39 • Channel Selection  
Channel Number  
CHNUMBER[4:0]  
00000  
0
1
2
3
00001  
00010  
00011  
.
.
.
.
.
.
30  
31  
11110  
11111  
Table 2-40 shows the correlation between the analog MUX input channels and the analog input pins.  
Table 2-40 • Analog MUX Channels  
Analog MUX Channel  
Signal  
Vcc_analog  
AV0  
Analog Quad Number  
0
1
Analog Quad 0  
2
AC0  
3
AT0  
4
AV1  
Analog Quad 1  
Analog Quad 2  
Analog Quad 3  
Analog Quad 4  
5
AC1  
6
AT1  
7
AV2  
8
AC2  
9
AT2  
10  
11  
12  
13  
14  
15  
AV3  
AC3  
AT3  
AV4  
AC4  
AT4  
2-108  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-40 • Analog MUX Channels (continued)  
Analog MUX Channel  
Signal  
AV5  
AC5  
AT5  
AV6  
AC6  
AT6  
AV7  
AC7  
AT7  
AV8  
AC8  
AT8  
AV9  
AC9  
AT9  
Analog Quad Number  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Analog Quad 5  
Analog Quad 6  
Analog Quad 7  
Analog Quad 8  
Analog Quad 9  
31  
Internal temperature  
monitor  
The ADC can be powered down independently of the FPGA core, as an additional control or for power-  
saving considerations, via the PWRDWN pin of the Analog Block. The PWRDWN pin controls only the  
comparators in the ADC.  
ADC Modes  
The Fusion ADC can be configured to operate in 8-, 10-, or 12-bit modes, power-down after conversion,  
and dynamic calibration. This is controlled by MODE[3:0], as defined in Table 2-41 on page 2-109.  
The output of the ADC is the RESULT[11:0] signal. In 8-bit mode, the Most Significant 8 Bits  
RESULT[11:4] are used as the ADC value and the Least Significant 4 Bits RESULT[3:0] are logical '0's.  
In 10-bit mode, RESULT[11:2] are used the ADC value and RESULT[1:0] are logical 0s.  
Table 2-41 • Mode Bits Function  
Name  
Bits  
Function  
MODE  
3
0 – Internal calibration after every conversion; two ADCCLK cycles are used  
after the conversion.  
1 – No calibration after every conversion  
MODE  
MODE  
2
0 – Power-down after conversion  
1 – No Power-down after conversion  
1:0  
00 – 10-bit  
01 – 12-bit  
10 – 8-bit  
11 – Unused  
Integrated Voltage Reference  
The Fusion device has an integrated on-chip 2.56 V reference voltage for the ADC. The value of this  
reference voltage was chosen to make the prescaling and postscaling factors for the prescaler blocks  
change in a binary fashion. However, if desired, an external reference voltage of up to 3.3 V can be  
Revision 4  
2-109  
Device Architecture  
connected between the VAREF and ADCGNDREF pins. The VAREFSEL control pin is used to select the  
reference voltage.  
Table 2-42 • VAREF Bit Function  
Name  
Bit  
Function  
VAREF  
0
Reference voltage selection  
0 – Internal voltage reference selected. VAREF pin outputs 2.56 V.  
1 – Input external voltage reference from VAREF and ADCGNDREF  
ADC Clock  
The speed of the ADC depends on its internal clock, ADCCLK, which is not accessible to users. The  
ADCCLK is derived from SYSCLK. Input signal TVC[7:0], Time Divider Control, determines the speed of  
the ADCCLK in relationship to SYSCLK, based on EQ 15.  
tADCCLK = 4  1 + TVC  tSYSCLK  
EQ 15  
TVC: Time Divider Control (0–255)  
t
t
ADCCLK is the period of ADCCLK, and must be between 0.5 MHz and 10 MHz  
SYSCLK is the period of SYSCLK  
Table 2-43 • TVC Bits Function  
Name  
Bits  
Function  
TVC  
[7:0]  
SYSCLK divider control  
The frequency of ADCCLK, fADCCLK, must be within 0.5 Hz to 10 MHz.  
The inputs to the ADC are synchronized to SYSCLK. A conversion is initiated by asserting the  
ADCSTART signal on a rising edge of SYSCLK. Figure 2-90 on page 2-114 and Figure 2-91 on  
page 2-115 show the timing diagram for the ADC.  
Acquisition Time or Sample Time Control  
Acquisition time (tSAMPLE) specifies how long an analog input signal has to charge the internal capacitor  
array. Figure 2-88 shows a simplified internal input sampling mechanism of a SAR ADC.  
Sample and Hold  
R
Z
source  
INAD  
C
INAD  
Figure 2-88 • Simplified Sample and Hold Circuitry  
The internal impedance (ZINAD), external source resistance (RSOURCE), and sample capacitor (CINAD  
)
form a simple RC network. As a result, the accuracy of the ADC can be affected if the ADC is given  
insufficient time to charge the capacitor. To resolve this problem, you can either reduce the source  
resistance or increase the sampling time by changing the acquisition time using the STC signal.  
EQ 16 through EQ 18 can be used to calculate the acquisition time required for a given input. The STC  
signal gives the number of sample periods in ADCCLK for the acquisition time of the desired signal. If the  
actual acquisition time is higher than the STC value, the settling time error can affect the accuracy of the  
ADC, because the sampling capacitor is only partially charged within the given sampling cycle. Example  
acquisition times are given in Table 2-44 and Table 2-45. When controlling the sample time for the ADC  
2-110  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
along with the use of the active bipolar prescaler, current monitor, or temperature monitor, the minimum  
sample time(s) for each must be obeyed. EQ 19 can be used to determine the appropriate value of STC.  
You can calculate the minimum actual acquisition time by using EQ 16:  
VOUT = VIN(1 – e–t/RC  
)
EQ 16  
EQ 17  
For 0.5 LSB gain error, VOUT should be replaced with (VIN –(0.5 × LSB Value)):  
(VIN – 0.5 × LSB Value) = VIN(1 – e–t/RC  
)
where VIN is the ADC reference voltage (VREF)  
Solving EQ 17:  
t = RC x ln (VIN / (0.5 x LSB Value))  
EQ 18  
EQ 19  
where R = ZINAD + RSOURCE and C = CINAD  
Calculate the value of STC by using EQ 19.  
.
tSAMPLE = (2 + STC) x (1 / ADCCLK) or tSAMPLE = (2 + STC) x (ADC Clock Period)  
where ADCCLK = ADC clock frequency in MHz.  
tSAMPLE = 0.449 µs from bit resolution in Table 2-44.  
ADC Clock frequency = 10 MHz or a 100 ns period.  
STC = (tSAMPLE / (1 / 10 MHz)) – 2 = 4.49 – 2 = 2.49.  
You must round up to 3 to accommodate the minimum sample time.  
Table 2-44 • Acquisition Time Example with VAREF = 2.56 V  
VIN = 2.56V, R = 4K (RSOURCE ~ 0), C = 18 pF  
Resolution  
LSB Value (mV)  
Min. Sample/Hold Time for 0.5 LSB (µs)  
8
10  
2.5  
0.449  
0.549  
0.649  
10  
12  
0.625  
Table 2-45 • Acquisition Time Example with VAREF = 3.3 V  
VIN = 3.3V, R = 4K (RSOURCE ~ 0), C = 18 pF  
LSB Value (mV) Min. Sample/Hold time for 0.5 LSB (µs)  
Resolution  
8
12.891  
3.223  
0.806  
0.449  
0.549  
0.649  
10  
12  
Sample Phase  
A conversion is performed in three phases. In the first phase, the analog input voltage is sampled on the  
input capacitor. This phase is called sample phase. During the sample phase, the output signals BUSY  
and SAMPLE change from '0' to '1', indicating the ADC is busy and sampling the analog signal. The  
sample time can be controlled by input signals STC[7:0]. The sample time can be calculated by EQ 20.  
When controlling the sample time for the ADC along with the use of Prescaler or Current Monitor or  
Temperature Monitor, the minimum sample time for each must be obeyed. Refer to Table 2-46 on  
page 2-112 and the "Acquisition Time or Sample Time Control" section on page 2-110  
tsample = 2 + STC  tADCCLK  
EQ 20  
STC: Sample Time Control value (0–255)  
tSAMPLE is the sample time  
Revision 4  
2-111  
Device Architecture  
Table 2-46 • STC Bits Function  
Name  
Bits  
Function  
STC  
[7:0]  
Sample time control  
Sample time is computed based on the period of ADCCLK.  
Distribution Phase  
The second phase is called the distribution phase. During distribution phase, the ADC computes the  
equivalent digital value from the value stored in the input capacitor. In this phase, the output signal  
SAMPLE goes back to '0', indicating the sample is completed; but the BUSY signal remains '1', indicating  
the ADC is still busy for distribution. The distribution time depends strictly on the number of bits. If the  
ADC is configured as a 10-bit ADC, then 10 ADCCLK cycles are needed. EQ 8 describes the distribution  
time.  
tdistrib = N tADCCLK  
EQ 21  
N: Number of bits  
Post-Calibration Phase  
The last phase is the post-calibration phase. This is an optional phase. The post-calibration phase takes  
two ADCCLK cycles. The output BUSY signal will remain '1' until the post-calibration phase is completed.  
If the post-calibration phase is skipped, then the BUSY signal goes to '0' after distribution phase. As soon  
as BUSY signal goes to '0', the DATAVALID signal goes to '1', indicating the digital result is available on  
the RESULT output signals. DATAVAILD will remain '1' until the next ADCSTART is asserted. Microsemi  
recommends enabling post-calibration to compensate for drift and temperature-dependent effects. This  
ensures that the ADC remains consistent over time and with temperature. The post-calibration phase is  
enabled by bit 3 of the Mode register. EQ 9 describes the post-calibration time.  
tpost-cal = MODE3  2 tADCCLK  
EQ 22  
MODE[3]: Bit 3 of the Mode register, described in Table 2-41 on page 2-109.  
The calculation for the conversion time for the ADC is summarized in EQ 23.  
tconv = tsync_read + tsample + tdistrib + tpost-cal + tsync_write  
EQ 23  
t
conv: conversion time  
tsync_read: maximum time for a signal to synchronize with SYSCLK. For calculation purposes, the  
worst case is a period of SYSCLK, tSYSCLK  
sample: Sample time  
tdistrib: Distribution time  
.
t
t
post-cal: Post-calibration time  
sync_write: Maximum time for a signal to synchronize with SYSCLK. For calculation purposes, the  
t
worst case is a period of SYSCLK, tSYSCLK  
.
Intra-Conversion  
Performing a conversion during power-up calibration is possible but should be avoided, since the  
performance is not guaranteed, as shown in Table 2-49 on page 2-120. This is described as intra-  
conversion. Figure 2-92 on page 2-115 shows intra-conversion (conversion that starts during power-up  
calibration).  
Injected Conversion  
A conversion can be interrupted by another conversion. Before the current conversion is finished, a  
second conversion can be started by issuing a pulse on signal ADCSTART. When a second conversion  
is issued before the current conversion is completed, the current conversion would be dropped and the  
ADC would start the second conversion on the rising edge of the SYSCLK. This is known as injected  
conversion. Since the ADC is synchronous, the minimum time to issue a second conversion is two clock  
cycles of SYSCLK after the previous one. Figure 2-93 on page 2-116 shows injected conversion  
2-112  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
(conversion that starts before a previously started conversion is finished). The total time for  
calibration still remains 3,840 ADCCLK cycles.  
ADC Example  
This example shows how to choose the correct settings to achieve the fastest sample time in 10-bit mode  
for a system that runs at 66 MHz. Assume the acquisition times defined in Table 2-44 on page 2-111 for  
10-bit mode, which gives 0.549 µs as a minimum hold time.  
The period of SYSCLK: tSYSCLK = 1/66 MHz = 0.015 µs  
Choosing TVC between 1 and 33 will meet the maximum and minimum period for the ADCCLK  
requirement. A higher TVC leads to a higher ADCCLK period.  
The minimum TVC is chosen so that tdistrib and tpost-cal can be run faster. The period of ADCCLK with a  
TVC of 1 can be computed by EQ 24.  
tADCCLK = 4  1 + TVC  tSYSCLK = 4  1 + 1  0.015 µs = 0.12 µs  
EQ 24  
The STC value can now be computed by using the minimum sample/hold time from Table 2-44 on  
page 2-111, as shown in EQ 25.  
tsample  
--------------------  
tADCCLK  
0.549 µs  
0.12 µs  
----------------------  
2 = 4.575 2 = 2.575  
STC =  
2 =  
EQ 25  
You must round up to 3 to accommodate the minimum sample time requirement. The actual sample time,  
tsample, with an STC of 3, is now equal to 0.6 µs, as shown in EQ 26  
tsample = 2 + STC  tADCCLK = 2 + 3  tADCCLK = 5 0.12 µs = 0.6 µs  
EQ 26  
Microsemi recommends post-calibration for temperature drift over time, so post-calibration is enabled.  
The post-calibration time, tpost-cal, can be computed by EQ 27. The post-calibration time is 0.24 µs.  
tpost-cal = 2 tADCCLK = 0.24 µs  
EQ 27  
The distribution time, tdistrib, is equal to 1.2 µs and can be computed as shown in EQ 28 (N is number of  
bits, referring back to EQ 8 on page 2-97).  
tdistrib = N tADCCLK = 10 0.12 = 1.2 µs  
EQ 28  
The total conversion time can now be summated, as shown in EQ 29 (referring to EQ 23 on page 2-112).  
tsync_read + tsample + tdistrib + tpost-cal  
+
tsync_write = (0.015 + 0.60 + 1.2 + 0.24 + 0.015) µs = 2.07 µs  
EQ 29  
The optimal setting for the system running at 66 MHz with an ADC for 10-bit mode chosen is shown in  
Table 2-47:  
Table 2-47 • Optimal Setting at 66 MHz in 10-Bit Mode  
TVC[7:0]  
STC[7:0]  
MODE[3:0]  
= 1  
= 0x01  
= 0x03  
= 0x4*  
= 3  
= b'0100  
Note: No power-down after every conversion is chosen in this case; however, if the application is  
power-sensitive, the MODE[2] can be set to '0', as described above, and it will not affect any  
performance.  
Revision 4  
2-113  
Device Architecture  
Timing Diagrams  
tCAL = 3,840 tADCCLK  
*
SYSCLK  
tRECCLR  
tREMCLR  
ADCRESET  
tSUTVC tHDTVC  
TVC[7:0]  
tCK2QCAL  
tCK2QCAL  
CALIBRATE  
Note: *Refer to EQ 15 on page 2-110 for the calculation on the period of ADCCLK, tADCCLK  
.
Figure 2-89 • Power-Up Calibration Status Signal Timing Diagram  
tMINSYSCLK  
tMPWSYSCLK  
SYSCLK  
tSUADCSTART tHDADCSTART  
ADCSTART  
tSUMODE tHDMODE  
MODE[3:0]  
TVC[7:0]  
tSUTVC tHDTVC  
tSUSTC tHDSTC  
STC[7:0]  
VAREF  
tSUVAREFSEL tHDVAREFSEL  
tSUCHNUM tHDCHNUM  
CHNUMBER[7:0]  
Figure 2-90 • Input Setup Time  
2-114  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Standard Conversion  
3
tSAMPLE  
1
tDATA2START  
SYSCLK  
tSUADCSTART tHDADCSTART  
ADCSTART  
BUSY  
tCK2QBUSY  
tCK2QSAMPLE  
SAMPLE  
2
tCONV  
tCK2QVAL  
tCK2QVAL  
DATAVALID  
ADC_RESULT[11:0]  
tCLK2RESULT  
1st Sample Result  
2nd Sample Result  
Notes:  
1. Refer to EQ 20 on page 2-111 for the calculation on the sample time, t  
.
SAMPLE  
2. See EQ 23 on page 2-112 for calculation of the conversion time, t  
.
CONV  
3. Minimum time to issue an ADCSTART after DATAVALID is 1 SYSCLK period  
Figure 2-91 • Standard Conversion Status Signal Timing Diagram  
Intra-Conversion  
SYSCLK  
ADCRESET  
ADCSTART  
tCK2QBUSY  
BUSY  
tCK2QSAMPLE tCK2QSAMPLE  
SAMPLE  
DATAVALID  
CALIBRATE  
tCLR2QVAL  
tCONV  
*
tCK2QVAL  
tCK2QCAL  
tCK2QCAL  
Interrupts Power-Up Calibration  
Resumes Power-Up Calibration  
Note: *tCONV represents the conversion time of the second conversion. See EQ 23 on page 2-112 for calculation of the  
conversion time, tCONV  
Figure 2-92 • Intra-Conversion Timing Diagram  
.
Revision 4  
2-115  
Device Architecture  
Injected Conversion  
SYSCLK  
ADCSTART  
BUSY  
1st Start  
2nd Start  
tCK2QBUSY  
tCK2QSAMPLE  
tCK2QVAL  
1st Conversion  
1st Conversion Cancelled,  
2nd Conversion  
tCK2QSAMPLE  
SAMPLE  
tCONV  
*
tCK2QVAL  
DATAVALID  
Note: *See EQ 23 on page 2-112 for calculation on the conversion time, tCONV  
.
Figure 2-93 • Injected Conversion Timing Diagram  
2-116  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
ADC Interface Timing  
Table 2-48 • ADC Interface Timing  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Description  
Mode Pin Setup Time  
Parameter  
tSUMODE  
–2  
0.56  
0.26  
0.68  
0.32  
1.58  
1.27  
0.00  
0.67  
0.90  
0.00  
0.75  
0.43  
1.33  
0.63  
3.12  
0.22  
2.53  
2.06  
2.15  
2.41  
2.17  
2.25  
0.00  
0.63  
4.00  
100.00  
–1  
0.64  
0.29  
0.77  
0.36  
1.79  
1.45  
0.00  
0.76  
1.03  
0.00  
0.85  
0.49  
1.51  
0.71  
3.55  
0.25  
2.89  
2.35  
2.45  
2.74  
2.48  
2.56  
0.00  
0.72  
4.00  
100.00  
Std.  
0.75  
0.34  
0.90  
0.43  
2.11  
1.71  
0.00  
0.89  
1.21  
0.00  
1.00  
0.57  
1.78  
0.84  
4.17  
0.30  
3.39  
2.76  
2.88  
3.22  
2.91  
3.01  
0.00  
0.84  
4.00  
100.00  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
tHDMODE  
Mode Pin Hold Time  
tSUTVC  
Clock Divide Control (TVC) Setup Time  
Clock Divide Control (TVC) Hold Time  
Sample Time Control (STC) Setup Time  
Sample Time Control (STC) Hold Time  
Voltage Reference Select (VAREFSEL) Setup Time  
Voltage Reference Select (VAREFSEL) Hold Time  
Channel Select (CHNUMBER) Setup Time  
Channel Select (CHNUMBER) Hold Time  
Start of Conversion (ADCSTART) Setup Time  
Start of Conversion (ADCSTART) Hold Time  
Busy Clock-to-Q  
tHDTVC  
tSUSTC  
tHDSTC  
tSUVAREFSEL  
tHDVAREFSEL  
tSUCHNUM  
tHDCHNUM  
tSUADCSTART  
tHDADCSTART  
tCK2QBUSY  
tCK2QCAL  
Power-Up Calibration Clock-to-Q  
Valid Conversion Result Clock-to-Q  
Sample Clock-to-Q  
tCK2QVAL  
tCK2QSAMPLE  
tCK2QRESULT  
tCLR2QBUSY  
tCLR2QCAL  
tCLR2QVAL  
tCLR2QSAMPLE  
tCLR2QRESULT  
tRECCLR  
Conversion Result Clock-to-Q  
Busy Clear-to-Q  
Power-Up Calibration Clear-to-Q  
Valid Conversion Result Clear-to-Q  
Sample Clear-to-Q  
Conversion result Clear-to-Q  
Recovery Time of Clear  
tREMCLR  
Removal Time of Clear  
tMPWSYSCLK  
tFMAXSYSCLK  
Clock Minimum Pulse Width for the ADC  
Clock Maximum Frequency for the ADC  
Revision 4  
2-117  
Device Architecture  
Typical Performance Characteristics  
Temperature Errror vs. Die Temperature  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
–40  
10  
60  
110  
Temperature (°C)  
Figure 2-94 • Temperature Error  
Temperature Error vs. Interconnect Capacitance  
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
0
500  
1000  
1500  
2000  
Capacitance (pF)  
Figure 2-95 • Effect of External Sensor Capacitance  
2-118  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Temperature Reading Noise RMS vs. Averaging  
12  
10  
8
6
4
2
0
1
10  
100  
1000  
10000  
Number of Averages  
Figure 2-96 • Temperature Reading Noise When Averaging is Used  
Revision 4  
2-119  
Device Architecture  
Analog System Characteristics  
Table 2-49 • Analog Channel Specifications  
Commercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise),  
Typical: VCC33A = 3.3 V, VCC = 1.5 V  
Parameter  
Description  
Condition  
Min. Typ.  
Max.  
Units  
Voltage Monitor Using Analog Pads AV, AC and AT (using prescaler)  
Input Voltage  
(Prescaler)  
Refer to Table 3-2 on page 3-3  
VINAP  
Uncalibrated Gain and  
Offset Errors  
Refer to Table 2-51 on  
page 2-125  
Calibrated Gain and  
Offset Errors  
Refer to Table 2-52 on  
page 2-126  
Bandwidth1  
100  
KHz  
Input Resistance  
Scaling Factor  
Refer to Table 3-3 on page 3-4  
Prescaler modes (Table 2-57 on  
page 2-133)  
Sample Time  
10  
µs  
Current Monitor Using Analog Pads AV and AC  
VRSM1  
Maximum Differential  
Input Voltage  
VAREF / 10  
mV  
Resolution  
Refer to "Current Monitor"  
section  
Common Mode Range  
– 10.5 to +12  
V
CMRR  
Common Mode  
Rejection Ratio  
DC – 1 KHz  
60  
dB  
1 KHz - 10 KHz  
> 10 KHz  
50  
30  
dB  
dB  
µs  
tCMSHI  
Strobe High time  
ADC  
conv.  
time  
200  
tCMSHI  
tCMSHI  
Strobe Low time  
Settling time  
Accuracy  
5
µs  
µs  
0.02  
Input differential voltage > 50 mV  
–2 –(0.05 x  
VRSM) to +2 +  
(0.05 x VRSM)  
mV  
Notes:  
1. VRSM is the maximum voltage drop across the current sense resistor.  
2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no  
reliability concern on digital inputs as long as VIND does not exceed these limits.  
3. VIND is limited to VCC33A + 0.2 to allow reaching 10 MHz input frequency.  
4. An averaging of 1,024 samples (LPF setting in Analog System Builder) is required and the maximum capacitance  
allowed across the AT pins is 500 pF.  
5. The temperature offset is a fixed positive value.  
6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on  
voltage on the pad.  
7. When using SmartGen Analog System Builder, CalibIP is required to obtain 0 offset. For further details on CalibIP, refer  
to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User’s  
Guide.  
2-120  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-49 • Analog Channel Specifications (continued)  
Commercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise),  
Typical: VCC33A = 3.3 V, VCC = 1.5 V  
Parameter  
Description  
Condition  
Min. Typ.  
Max.  
Units  
Temperature Monitor Using Analog Pad AT  
External  
Temperature  
Monitor  
Resolution  
8-bit ADC  
10-bit ADC  
12-bit ADC  
AFS090 uncalibrated7  
AFS090, AFS250, calibrated7  
4
1
°C  
°C  
°C  
°C  
°C  
°C  
0.25  
5
(external diode  
2N3904,  
Systematic Offset5  
TJ = 25°C)4  
0
AFS250, AFS600, AFS1500,  
uncalibrated7  
11  
AFS600, AFS1500, calibrated7  
0
°C  
°C  
µA  
µA  
nF  
Accuracy  
±3  
10  
±5  
External Sensor Source High level, TMSTBx = 0  
Current  
Low level, TMSTBx = 1  
100  
Max Capacitance on AT  
pad  
1.3  
Internal  
Temperature  
Monitor  
Resolution  
8-bit ADC  
4
1
°C  
°C  
°C  
°C  
°C  
°C  
10-bit ADC  
12-bit ADC  
0.25  
Systematic Offset5  
AFS090 uncalibrated7  
AFS090, AFS250, calibrated7  
5
0
AFS250, AFS600, AFS1500  
uncalibrated7  
11  
AFS600, AFS1500 calibrated7  
0
°C  
°C  
µs  
µs  
µs  
Accuracy  
±3  
±5  
tTMSHI  
Strobe High time  
Strobe Low time  
Settling time  
10  
5
105  
tTMSLO  
tTMSSET  
Notes:  
5
1. VRSM is the maximum voltage drop across the current sense resistor.  
2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no  
reliability concern on digital inputs as long as VIND does not exceed these limits.  
3. VIND is limited to VCC33A + 0.2 to allow reaching 10 MHz input frequency.  
4. An averaging of 1,024 samples (LPF setting in Analog System Builder) is required and the maximum capacitance  
allowed across the AT pins is 500 pF.  
5. The temperature offset is a fixed positive value.  
6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on  
voltage on the pad.  
7. When using SmartGen Analog System Builder, CalibIP is required to obtain 0 offset. For further details on CalibIP, refer  
to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User’s  
Guide.  
Revision 4  
2-121  
Device Architecture  
Table 2-49 • Analog Channel Specifications (continued)  
Commercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise),  
Typical: VCC33A = 3.3 V, VCC = 1.5 V  
Parameter  
Description  
Condition  
Min. Typ.  
Max.  
Units  
Digital Input using Analog Pads AV, AC and AT  
VIND2,3  
VHYSDIN  
VIHDIN  
VILDIN  
VMPWDIN  
FDIN  
Input Voltage  
Refer to Table 3-2 on page 3-3  
Hysteresis  
0.3  
V
V
Input High  
1.2  
Input Low  
0.9  
50  
V
Minimum Pulse With  
Maximum Frequency  
Input Leakage Current  
Dynamic Current  
Input Delay  
ns  
10  
MHz  
µA  
µA  
ns  
ISTBDIN  
IDYNDIN  
tINDIN  
2
20  
10  
Gate Driver Output Using Analog Pad AG  
VG  
IG  
Voltage Range  
Refer to Table 3-2 on page 3-3  
High Current Mode6 at 1.0 V  
Low Current Mode: ±1 µA  
Low Current Mode: ±3 µA  
Low Current Mode: ± 10 µA  
Low Current Mode: ± 30 µA  
Output Current Drive  
±20  
1.3  
mA  
µA  
0.8  
2.0  
7.4  
1.0  
2.7  
9.0  
3.3  
µA  
11.5  
32.0  
100  
µA  
21.0 27.0  
µA  
IOFFG  
FG  
Maximum Off Current  
Maximum switching rate High Current Mode6 at 1.0 V, 1  
nA  
1.3  
3
MHz  
kresistive load  
Low Current Mode:  
±1 µA, 3 Mresistive load  
KHz  
KHz  
KHz  
KHz  
Low Current Mode:  
±3 µA, 1 Mresistive load  
7
Low Current Mode:  
±10 µA, 300 kresistive load  
25  
78  
Low Current Mode:  
±30 µA, 105 kresistive load  
Notes:  
1. VRSM is the maximum voltage drop across the current sense resistor.  
2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no  
reliability concern on digital inputs as long as VIND does not exceed these limits.  
3. VIND is limited to VCC33A + 0.2 to allow reaching 10 MHz input frequency.  
4. An averaging of 1,024 samples (LPF setting in Analog System Builder) is required and the maximum capacitance  
allowed across the AT pins is 500 pF.  
5. The temperature offset is a fixed positive value.  
6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on  
voltage on the pad.  
7. When using SmartGen Analog System Builder, CalibIP is required to obtain 0 offset. For further details on CalibIP, refer  
to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User’s  
Guide.  
2-122  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-50 • ADC Characteristics in Direct Input Mode  
Commercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise),  
Typical: VCC33A = 3.3 V, VCC = 1.5 V  
Parameter  
Description  
Condition  
Min.  
Typ.  
Max.  
Units  
Direct Input using Analog Pad AV, AC, AT  
VINADC  
CINADC  
Input Voltage (Direct Input)  
Input Capacitance  
Refer to Table 3-2 on  
page 3-3  
Channel not selected  
7
8
pF  
pF  
Channel selected but not  
sampling  
Channel selected and  
sampling  
18  
pF  
ZINADC  
Input Impedance  
8-bit mode  
10-bit mode  
12-bit mode  
2
2
2
k  
k  
k  
Analog Reference Voltage VAREF  
VAREF  
Accuracy  
TJ = 25°C  
2.537  
2.527  
2.56  
65  
2.583  
V
Temperature Drift of  
Internal Reference  
ppm / °C  
External Reference  
VCC33A + 0.05  
V
ADC Accuracy (using external reference) 1,2  
DC Accuracy  
TUE  
INL  
Total Unadjusted Error  
Integral Non-Linearity  
8-bit mode  
10-bit mode  
12-bit mode  
8-bit mode  
10-bit mode  
12-bit mode  
8-bit mode  
0.29  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
0.72  
1.8  
0.20  
0.32  
1.71  
0.20  
0.25  
0.43  
1.80  
0.24  
DNL  
Differential Non-Linearity  
(no missing code)  
10-bit mode  
12-bit mode  
8-bit mode  
10-bit mode  
12-bit mode  
8-bit mode  
10-bit mode  
12-bit mode  
0.60  
2.40  
0.01  
0.05  
0.20  
0.65  
2.48  
LSB  
LSB  
Offset Error  
Gain Error  
0.17  
LSB  
0.20  
LSB  
0.40  
LSB  
0.0004  
0.002  
0.007  
2
0.003  
0.011  
0.044  
LSB  
LSB  
LSB  
Gain Error (with internal All modes  
reference)  
% FSR  
Notes:  
1. Accuracy of the external reference is 2.56 V ± 4.6 mV.  
2. Data is based on characterization.  
3. The sample rate is time-shared among active analog inputs.  
Revision 4  
2-123  
Device Architecture  
Table 2-50 • ADC Characteristics in Direct Input Mode (continued)  
Commercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise),  
Typical: VCC33A = 3.3 V, VCC = 1.5 V  
Parameter  
Description  
Condition  
Min.  
Typ.  
Max.  
Units  
Dynamic Performance  
SNR  
Signal-to-Noise Ratio  
8-bit mode  
48.0  
58.0  
62.9  
47.6  
57.4  
62.0  
49.5  
60.0  
64.5  
49.5  
59.8  
64.2  
–74.4  
dB  
dB  
dB  
dB  
dB  
dB  
dBc  
10-bit mode  
12-bit mode  
8-bit mode  
10-bit mode  
12-bit mode  
8-bit mode  
SINAD  
THD  
Signal-to-Noise Distortion  
Total Harmonic  
Distortion  
–63.0  
10-bit mode  
12-bit mode  
8-bit mode  
10-bit mode  
12-bit mode  
–78.3  
–77.9  
7.9  
–63.0  
–64.4  
dBc  
dBc  
bits  
bits  
bits  
ENOB  
Effective Number of Bits  
7.6  
9.5  
9.6  
10.0  
10.4  
Conversion Rate  
Conversion Time  
8-bit mode  
10-bit mode  
12-bit mode  
8-bit mode  
10-bit mode  
12-bit mode  
1.7  
1.8  
2
µs  
µs  
µs  
Sample Rate  
600  
550  
500  
Ksps  
Ksps  
Ksps  
Notes:  
1. Accuracy of the external reference is 2.56 V ± 4.6 mV.  
2. Data is based on characterization.  
3. The sample rate is time-shared among active analog inputs.  
2-124  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-51 • Uncalibrated Analog Channel Accuracy*  
Worst-Case Industrial Conditions, TJ = 85°C  
Total Channel  
Error (LSB)  
Channel Input Offset  
Error (LSB)  
Channel Input Offset  
Channel Gain Error  
(%FSR)  
Error (mV)  
Analog Prescaler Neg.  
Pos. Neg  
Pos.  
Neg.  
Max.  
Pos.  
Max.  
Pad  
Range (V) Max. Med. Max. Max Med. Max.  
Med.  
Min. Typ. Max.  
Positive Range  
ADC in 10-Bit Mode  
AV, AC  
16  
8
–22  
–40  
–45  
–2  
–5  
–9  
12  
17  
24  
33  
5
–11  
–11  
–16  
–33  
–11  
–12  
–20  
–40  
–4  
–2  
–5  
14  
21  
36  
66  
26  
38  
40  
88  
4
–169  
–87  
–63  
–66  
–11  
–6  
–32  
–40  
–43  
–39  
–3  
224  
166  
144  
131  
26  
3
2
2
2
3
3
5
7
1
1
0
0
–3  
–4  
–4  
–4  
–3  
–3  
–4  
–5  
–1  
–1  
4
–11  
–20  
–3  
0
2
–70 –19  
–25 –7  
0
1
–1  
–1  
0
0.5  
0.25  
0.125  
16  
4
–41 –12  
–53 –14  
–89 –29  
8
–7  
–4  
19  
19  
24  
15  
15  
–14  
–28  
0
–5  
–3  
10  
–5  
–4  
11  
0
AT  
–3  
9
2
–64  
–44  
5
64  
0
–10  
–11  
–2  
11  
–8  
44  
0
Negative Range  
ADC in 10-Bit Mode  
AV, AC  
16  
8
–35 –10  
–65 –19  
–86 –28  
–136 –53  
–98 –35  
–121 –46  
–149 –49  
–188 –67  
9
–24  
–34  
–64  
–6  
9
–383  
–268  
–254  
–230  
–39  
–96  
–99  
–96  
–83  
–8  
148  
75  
76  
78  
15  
9
5
5
–1  
–1  
–1  
–2  
–3  
–4  
–4  
–5  
–6  
–5  
12  
21  
37  
8
–12  
–24  
9
4
19  
39  
15  
18  
40  
56  
5
–6  
2
–115 –42  
6
–7  
1
–39  
–54  
–72  
–8  
10  
10  
14  
16  
–10  
–11  
–12  
–14  
0.5  
0.25  
0.125  
7
–14  
–16  
–27  
–7  
19  
38  
–18  
–4  
10  
7
–112 –27  
–14  
–3  
Note: *Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For  
8-bit mode, divide the LSB count by 4. Gain remains the same.  
Revision 4  
2-125  
Device Architecture  
Table 2-52 • Calibrated Analog Channel Accuracy 1,2,3  
Worst-Case Industrial Conditions, TJ = 85°C  
Condition  
Total Channel Error (LSB)  
Analog  
Pad  
Prescaler Range (V)  
Positive Range  
Input Voltage4 (V)  
Negative Max.  
Median  
Positive Max.  
ADC in 10-Bit Mode  
AV, AC  
16  
0.300 to 12.0  
0.250 to 8.00  
0.200 to 4.00  
0.150 to 2.00  
0.050 to 1.00  
0.300 to 16.0  
0.100 to 4.00  
–6  
–6  
–7  
–7  
–6  
–5  
–7  
1
6
6
7
7
6
5
7
8
0
4
–1  
2
0
1
–1  
AT  
16  
0
4
–1  
Negative Range  
ADC in 10-Bit Mode  
AV, AC  
16  
8
–0.400 to –10.5  
–0.350 to –8.00  
–0.300 to –4.00  
–0.250 to –2.00  
–0.050 to –1.00  
–7  
–7  
1
9
7
–1  
–2  
–2  
–1  
4
–7  
9
2
–7  
7
1
–16  
20  
Notes:  
1. Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For 8-bit  
mode, divide the LSB count by 4. Overall accuracy remains the same.  
2. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the  
"Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User’s Guide.  
3. Calibrated with two-point calibration methodology, using 20% and 80% full-scale points.  
4. The lower limit of the input voltage is determined by the prescaler input offset.  
2-126  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-53 • Analog Channel Accuracy: Monitoring Standard Positive Voltages  
Typical Conditions, TA = 25°C  
Direct ADC 2,3  
(%FSR)  
Calibrated Typical Error per Positive Prescaler Setting 1 (%FSR)  
Input Voltage  
(V)  
16 V (12 V)  
(AV/AC)  
8 V  
4 V  
2 V  
1 V  
16 V (AT)  
(AV/AC) 4 V (AT) (AV/AC) (AV/AC) (AV/AC) VAREF = 2.56 V  
15  
1
1
1
2
2
3
4
5
7
9
14  
12  
1
2
2
2
4
5
6
9
5
1
3.3  
2.5  
1.8  
1.5  
1.2  
0.9  
Notes:  
1
1
1
2
2
4
1
1
1
2
2
3
1
1
1
2
2
3
1
1
1
1
1
1
1
1
1
1
1. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the  
"Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User’s Guide.  
2. Direct ADC mode using an external VAREF of 2.56V±4.6mV, without Analog Calibration macro.  
3. For input greater than 2.56 V, the ADC output will saturate. A higher VAREF or prescaler usage is recommended.  
Examples  
Calculating Accuracy for an Uncalibrated Analog Channel  
Formula  
For a given prescaler range, EQ 30 gives the output voltage.  
Output Voltage = (Channel Output Offset in V) + (Input Voltage x Channel Gain)  
EQ 30  
where  
Channel Output offset in V = Channel Input offset in LSBs x Equivalent voltage per LSB  
Channel Gain Factor = 1+ (% Channel Gain / 100)  
Example  
Input Voltage = 5 V  
Chosen Prescaler range = 8 V range  
Refer to Table 2-51 on page 2-125.  
Max. Output Voltage = (Max Positive input offset) + (Input Voltage x Max Positive Channel Gain)  
Max. Positive input offset = (21 LSB) x (8 mV per LSB in 10-bit mode)  
Max. Positive input offset = 166 mV  
Max. Positive Gain Error = +3%  
Max. Positive Channel Gain = 1 + (+3% / 100)  
Max. Positive Channel Gain = 1.03  
Max. Output Voltage = (166 mV) + (5 V x 1.03)  
Max. Output Voltage = 5.316 V  
Revision 4  
2-127  
Device Architecture  
Similarly,  
Min. Output Voltage = (Max. Negative input offset) + (Input Voltage x Max. Negative Channel Gain)  
= (–88 mV) + (5 V x 0.96) = 4.712 V  
Calculating Accuracy for a Calibrated Analog Channel  
Formula  
For a given prescaler range, EQ 31 gives the output voltage.  
Output Voltage = Channel Error in V + Input Voltage  
EQ 31  
where  
Channel Error in V = Total Channel Error in LSBs x Equivalent voltage per LSB  
Example  
Input Voltage = 5 V  
Chosen Prescaler range = 8 V range  
Refer to Table 2-52 on page 2-126.  
Max. Output Voltage = Max. Positive Channel Error in V + Input Voltage  
Max. Positive Channel Error in V = (6 LSB) × (8 mV per LSB in 10-bit mode) = 48 mV  
Max. Output Voltage = 48 mV + 5 V = 5.048 V  
Similarly,  
Min. Output Voltage = Max. Negative Channel Error in V + Input Voltage = (–48 mV) + 5 V = 4.952 V  
Calculating LSBs from a Given Error Budget  
Formula  
For a given prescaler range,  
LSB count = ± (Input Voltage × Required % error) / (Equivalent voltage per LSB)  
Example  
Input Voltage = 3.3 V  
Required error margin= 1%  
Refer to Table 2-52 on page 2-126.  
Equivalent voltage per LSB = 16 mV for a 16V prescaler, with ADC in 10-bit mode  
LSB Count = ± (5.0 V × 1%) / (0.016)  
LSB Count = ± 3.125  
Equivalent voltage per LSB = 8 mV for an 8 V prescaler, with ADC in 10-bit mode  
LSB Count = ± (5.0 V × 1%) / (0.008)  
LSB Count = ± 6.25  
The 8 V prescaler satisfies the calculated LSB count accuracy requirement (see Table 2-52 on  
page 2-126).  
2-128  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Analog Configuration MUX  
The ACM is the interface between the FPGA, the Analog Block configurations, and the real-time counter.  
Microsemi Libero SoC will generate IP that will load and configure the Analog Block via the ACM.  
However, users are not limited to using the Libero SoC IP. This section provides a detailed description of  
the ACM's register map, truth tables for proper configuration of the Analog Block and RTC, as well as  
timing waveforms so users can access and control the ACM directly from their designs.  
The Analog Block contains four 8-bit latches per Analog Quad that are initialized through the ACM.  
These latches act as configuration bits for Analog Quads. The ACM block runs from the core voltage  
supply (1.5 V).  
Access to the ACM is achieved via 8-bit address and data busses with enables. The pin list is provided in  
Table 2-36 on page 2-81. The ACM clock speed is limited to a maximum of 10 MHz, more than sufficient  
to handle the low-bandwidth requirements of configuring the Analog Block and the RTC (sub-block of the  
Analog Block).  
Table 2-54 decodes the ACM address space and maps it to the corresponding Analog Quad and  
configuration byte for that quad.  
Table 2-54 ACM Address Decode Table for Analog Quad  
ACMADDR [7:0] in  
Decimal  
Associated  
Peripheral  
Name  
Description  
0
1
2
3
4
5
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
AQ0  
AQ0  
AQ0  
AQ0  
AQ1  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Byte 0  
.
.
.
.
.
.
.
.
.
36  
37  
38  
39  
40  
41  
AQ8  
AQ9  
AQ9  
AQ9  
AQ9  
Byte 3  
Byte 0  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Analog Quad  
Byte 1  
Byte 2  
Byte 3  
Undefined  
Undefined  
.
.
.
.
.
.
63  
64  
65  
66  
67  
68  
72  
73  
Undefined  
RTC  
RTC  
RTC  
RTC  
RTC  
RTC  
RTC  
RTC  
COUNTER0  
COUNTER1  
COUNTER2  
COUNTER3  
COUNTER4  
MATCHREG0  
MATCHREG1  
Counter bits 7:0  
Counter bits 15:8  
Counter bits 23:16  
Counter bits 31:24  
Counter bits 39:32  
Match register bits 7:0  
Match register bits 15:8  
Revision 4  
2-129  
Device Architecture  
Table 2-54 ACM Address Decode Table for Analog Quad (continued)  
ACMADDR [7:0] in  
Decimal  
Associated  
Peripheral  
Name  
Description  
74  
75  
76  
80  
81  
82  
83  
84  
88  
MATCHREG2  
MATCHREG3  
MATCHREG4  
MATCHBITS0  
MATCHBITS1  
MATCHBITS2  
MATCHBITS3  
MATCHBITS4  
CTRL_STAT  
Match register bits 23:16  
Match register bits 31:24  
Match register bits 39:32  
Individual match bits 7:0  
Individual match bits 15:8  
Individual match bits 23:16  
Individual match bits 31:24  
Individual match bits 39:32  
RTC  
RTC  
RTC  
RTC  
RTC  
RTC  
RTC  
RTC  
RTC  
Control (write) / Status (read) register  
bits 7:0  
Note: ACMADDR bytes 1 to 40 pertain to the Analog Quads; bytes 64 to 89 pertain to the RTC.  
1
ACM Characteristics  
ACMCLK  
tSUEACM  
tHEACM  
ACMWEN  
ACMWDATA  
tSUDACM  
tHDACM  
D0  
D1  
A1  
tSUAACM  
tHAACM  
ACMADDRESS  
A0  
Figure 2-97 • ACM Write Waveform  
tMPWCLKACM  
ACMCLK  
ACMADDRESS  
ACMRDATA  
A0  
A1  
tCLKQACM  
RD0  
RD1  
Figure 2-98 • ACM Read Waveform  
1. When addressing the RTC addresses (i.e., ACMADDR 64 to 89), there is no timing generator, and the rc_osc, byte_en, and  
aq_wen signals have no impact.  
2-130  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Timing Characteristics  
Table 2-55 • Analog Configuration Multiplexer (ACM) Timing  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tCLKQACM  
tSUDACM  
tHDACM  
Description  
Clock-to-Q of the ACM  
–2  
–1  
Std.  
26.42  
5.88  
0.00  
6.33  
0.00  
5.27  
0.00  
10.00  
Units  
ns  
19.73  
4.39  
0.00  
4.73  
0.00  
3.93  
0.00  
22.48  
5.00  
0.00  
5.38  
0.00  
4.48  
0.00  
10.00  
Data Setup time for the ACM  
Data Hold time for the ACM  
Address Setup time for the ACM  
Address Hold time for the ACM  
Enable Setup time for the ACM  
Enable Hold time for the ACM  
ns  
ns  
tSUAACM  
tHAACM  
tSUEACM  
tHEACM  
ns  
ns  
ns  
ns  
tMPWARACM  
Asynchronous Reset Minimum Pulse Width for the 10.00  
ACM  
ns  
tREMARACM  
tRECARACM  
tMPWCLKACM  
tFMAXCLKACM  
Asynchronous Reset Removal time for the ACM  
Asynchronous Reset Recovery time for the ACM  
Clock Minimum Pulse Width for the ACM  
lock Maximum Frequency for the ACM  
12.98  
12.98  
45.00  
10.00  
14.79  
14.79  
45.00  
10.00  
17.38  
17.38  
45.00  
10.00  
ns  
ns  
ns  
MHz  
Revision 4  
2-131  
Device Architecture  
Analog Quad ACM Description  
Table 2-56 maps out the ACM space associated with configuration of the Analog Quads within the  
Analog Block. Table 2-56 shows the byte assignment within each quad and the function of each bit within  
each byte. Subsequent tables will explain each bit setting and how it corresponds to a particular  
configuration. After 3.3 V and 1.5 V are applied to Fusion, Analog Quad configuration registers are  
loaded with default settings until the initialization and configuration state machine changes them to user-  
defined settings.  
Table 2-56 • Analog Quad ACM Byte Assignment  
Byte  
Bit  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Signal (Bx)  
B0[0]  
B0[1]  
B0[2]  
B0[3]  
B0[4]  
B0[5]  
B0[6]  
B0[7]  
B1[0]  
B1[1]  
B1[2]  
B1[3]  
B1[4]  
B1[5]  
B1[6]  
B1[7]  
B2[0]  
B2[1]  
B2[2]  
B2[3]  
B2[4]  
B2[5]  
B2[6]  
B2[7]  
B3[0]  
B3[1]  
B3[2]  
B3[3]  
B3[4]  
B3[5]  
B3[6]  
B3[7]  
Function  
Default Setting  
Byte 0  
(AV)  
Scaling factor control – prescaler  
Highest voltage range  
Analog MUX select  
Prescaler  
Current monitor switch  
Direct analog input switch  
Selects V-pad polarity  
Off  
Off  
Positive  
Prescaler op amp mode  
Scaling factor control – prescaler  
Power-down  
Highest voltage range  
Byte 1  
(AC)  
Analog MUX select  
Prescaler  
Direct analog input switch  
Selects C-pad polarity  
Prescaler op amp mode  
Off  
Positive  
Power-down  
Byte 2  
(AG)  
Internal chip temperature monitor * Off  
Spare  
Current drive control  
Lowest current  
Spare  
Spare  
Selects G-pad polarity  
Selects low/high drive  
Scaling factor control – prescaler  
Positive  
Low drive  
Byte 3  
(AT)  
Highest voltage range  
Analog MUX select  
Prescaler  
Direct analog input switch  
Off  
Prescaler op amp mode  
Power-down  
Note: *For the internal temperature monitor to function, Bit 0 of Byte 2 for all 10 Quads must be set.  
2-132  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-57 details the settings available to control the prescaler values of the AV, AC, and AT pins. Note  
that the AT pin has a reduced number of available prescaler values.  
Table 2-57 • Prescaler Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)  
LSB for an  
8-Bit  
LSB for a  
10-Bit  
LSB for a  
12-Bit  
Full-Scale  
Voltage in  
10-Bit  
Scaling  
Control Lines Factor, Pad to  
Conversion1  
(mV)  
Conversion1  
(mV)  
Conversion1  
(mV)  
Bx[2:0]  
000 3  
001  
ADC Input  
0.15625  
0.3125  
0.625  
1.25  
Mode2  
Range Name  
16 V  
64  
32  
16  
8
16  
8
4
2
16.368 V  
8.184 V  
8 V  
010 3  
4
1
4.092 V  
4 V  
011  
2
0.5  
2.046 V  
2 V  
100  
2.5  
4
1
0.25  
0.125  
0.0625  
0.03125  
1.023 V  
1 V  
101  
5.0  
2
0.5  
0.25  
0.125  
0.5115 V  
0.25575 V  
0.127875 V  
0.5 V  
0.25 V  
0.125 V  
110  
10.0  
1
111  
20.0  
0.5  
Notes:  
1. LSB voltage equivalences assume VAREF = 2.56 V.  
2. Full Scale voltage for n-bit mode: ((2^n) - 1) x (LSB for a n-bit Conversion)  
3. These are the only valid ranges for the Temperature Monitor Block Prescaler.  
Table 2-58 details the settings available to control the MUX within each of the AV, AC, and AT circuits.  
This MUX determines whether the signal routed to the ADC is the direct analog input, prescaled signal,  
or output of either the Current Monitor Block or the Temperature Monitor Block.  
Table 2-58 • Analog Multiplexer Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)  
Control Lines Bx[4]  
Control Lines Bx[3]  
ADC Connected To  
0
0
1
1
0
1
0
1
Prescaler  
Direct input  
Current amplifier temperature monitor  
Not valid  
Table 2-59 details the settings available to control the Direct Analog Input switch for the AV, AC, and AT  
pins.  
Table 2-59 • Direct Analog Input Switch Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)  
Control Lines Bx[5]  
Direct Input Switch  
0
1
Off  
On  
Table 2-60 details the settings available to control the polarity of the signals coming to the AV, AC, and AT  
pins. Note that the only valid setting for the AT pin is logic 0 to support positive voltages.  
Table 2-60 • Voltage Polarity Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)*  
Control Lines Bx[6]  
Input Signal Polarity  
Positive  
0
1
Negative  
Note: *The B3[6] signal for the AT pad should be kept at logic 0 to accept only positive voltages.  
Revision 4  
2-133  
Device Architecture  
Table 2-61 details the settings available to either power down or enable the prescaler associated with the  
analog inputs AV, AC, and AT.  
Table 2-61 • Prescaler Op Amp Power-Down Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)  
Control Lines Bx[7]  
Prescaler Op Amp  
Power-down  
0
1
Operational  
Table 2-62 details the settings available to enable the Current Monitor Block associated with the AC pin.  
Table 2-62 • Current Monitor Input Switch Control Truth Table—AV (x = 0)  
Control Lines B0[4]  
Current Monitor Input Switch  
0
1
Off  
On  
Table 2-63 details the settings available to configure the drive strength of the gate drive when not in high-  
drive mode.  
Table 2-63 • Low-Drive Gate Driver Current Truth Table (AG)  
Control Lines B2[3]  
Control Lines B2[2]  
Current (µA)  
0
0
1
1
0
1
0
1
1
3
10  
30  
Table 2-64 details the settings available to set the polarity of the gate driver (either p-channel- or  
n-channel-type devices).  
Table 2-64 Gate Driver Polarity Truth Table (AG)  
Control Lines B2[6]  
Gate Driver Polarity  
Positive  
0
1
Negative  
Table 2-65 details the settings available to turn on the Gate Driver and set whether high-drive mode is on  
or off.  
Table 2-65 • Gate Driver Control Truth Table (AG)  
Control Lines B2[7]  
GDON  
Gate Driver  
Off  
0
0
1
1
0
1
0
1
Low drive on  
Off  
High drive on  
Table 2-66 details the settings available to turn on and off the chip internal temperature monitor.  
Note: For the internal temperature monitor to function, Bit 0 of Byte 2 for all 10 Quads must be set.  
Table 2-66 • Internal Temperature Monitor Control Truth Table  
Control Lines B2[0]  
PDTMB  
Chip Internal Temperature Monitor  
0
1
0
1
Off  
On  
2-134  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
User I/Os  
Introduction  
Fusion devices feature a flexible I/O structure, supporting a range of mixed voltages (1.5 V, 1.8 V, 2.5 V,  
and 3.3 V) through a bank-selectable voltage. Table 2-68, Table 2-69, Table 2-70, and Table 2-71 on  
page 2-138 show the voltages and the compatible I/O standards. I/Os provide programmable slew rates,  
drive strengths, weak pull-up, and weak pull-down circuits. 3.3 V PCI and 3.3 V PCI-X are 5 V–tolerant.  
See the "5 V Input Tolerance" section on page 2-147 for possible implementations of 5 V tolerance.  
All I/Os are in a known state during power-up, and any power-up sequence is allowed without current  
impact. Refer to the "I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial  
and Industrial)" section on page 3-5 for more information. In low power standby or sleep mode (VCC is  
OFF, VCC33A is ON, VCCI is ON) or when the resource is not used, digital inputs are tristated, digital  
outputs are tristated, and digital bibufs (input/output) are tristated.  
I/O Tile  
The Fusion I/O tile provides a flexible, programmable structure for implementing a large number of I/O  
standards. In addition, the registers available in the I/O tile in selected I/O banks can be used to support  
high-performance register inputs and outputs, with register enable if desired (Figure 2-99 on  
page 2-136). The registers can also be used to support the JESD-79C DDR standard within the I/O  
structure (see the "Double Data Rate (DDR) Support" section on page 2-142 for more information).  
As depicted in Figure 2-100 on page 2-141, all I/O registers share one CLR port. The output register and  
output enable register share one CLK port. Refer to the "I/O Registers" section on page 2-141 for more  
information.  
I/O Banks and I/O Standards Compatibility  
The digital I/Os are grouped into I/O voltage banks. There are three digital I/O banks on the AFS090 and  
AFS250 devices and four digital I/O banks on the AFS600 and AFS1500 devices. Figure 2-113 on  
page 2-161 and Figure 2-114 on page 2-162 show the bank configuration by device. The north side of  
the I/O in the AFS600 and AFS1500 devices comprises two banks of Pro I/Os. The Pro I/Os support a  
wide number of voltage-referenced I/O standards in addition to the multitude of single-ended and  
differential I/O standards common throughout all Microsemi digital I/Os. Each I/O voltage bank has  
dedicated I/O supply and ground voltages (VCCI/GNDQ for input buffers and VCCI/GND for output  
buffers). Because of these dedicated supplies, only I/Os with compatible standards can be assigned to  
the same I/O voltage bank. Table 2-69 and Table 2-70 on page 2-137 show the required voltage  
compatibility values for each of these voltages.  
For more information about I/O and global assignments to I/O banks, refer to the specific pin table of the  
device in the "Package Pin Assignments" on page 4-1 and the "User I/O Naming Convention" section on  
page 2-161.  
Each Pro I/O bank is divided into minibanks. Any user I/O in a VREF minibank (a minibank is the region  
of scope of a VREF pin) can be configured as a VREF pin (Figure 2-99 on page 2-136). Only one VREF  
pin is needed to control the entire VREF minibank. The location and scope of the VREF minibanks can  
be determined by the I/O name. For details, see the "User I/O Naming Convention" section on  
page 2-161.  
Table 2-70 on page 2-137 shows the I/O standards supported by Fusion devices and the corresponding  
voltage levels.  
I/O standards are compatible if the following are true:  
Their VCCI values are identical.  
If both of the standards need a VREF, their VREF values must be identical (Pro I/O only).  
Revision 4  
2-135  
Device Architecture  
CCC  
CCC  
CCC  
Bank 0  
Bank 1  
Up to five VREF  
minibanks within  
an I/O bank  
Common VREF  
signal for all I/Os  
VREF signal scope is  
between 8 and 18 I/Os.  
in VREF minibanks  
If needed, the VREF for a given  
minibank can be provided by  
any I/O within the minibank.  
I/O Pad  
Figure 2-99 • Fusion Pro I/O Bank Detail Showing VREF Minibanks (north side ofAFS600 and AFS1500)  
Table 2-67 • I/O Standards Supported by Bank Type  
Differential I/O  
Hot-  
I/O Bank  
Single-Ended I/O Standards  
Standards  
Voltage-Referenced  
Swap  
Standard I/O LVTTL/LVCMOS 3.3 V, LVCMOS –  
2.5 V / 1.8 V / 1.5 V, LVCMOS  
2.5/5.0 V  
Yes  
Advanced I/O LVTTL/LVCMOS 3.3 V, LVCMOS LVPECL  
and –  
2.5 V / 1.8 V / 1.5 V, LVCMOS  
LVDS  
2.5/5.0 V, 3.3 V PCI / 3.3 V PCI-  
X
Pro I/O  
LVTTL/LVCMOS 3.3 V, LVCMOS LVPECL  
and GTL+ 2.5 V / 3.3 V, GTL 2.5 V / 3.3 V, Yes  
HSTL Class I and II, SSTL2 Class I  
and II, SSTL3 Class I and II  
2.5 V / 1.8 V / 1.5 V, LVCMOS  
LVDS  
2.5/5.0 V, 3.3 V PCI / 3.3 V PCI-  
X
2-136  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-68 • I/O Bank Support by Device  
I/O Bank  
AFS090  
AFS250  
AFS600  
AFS1500  
Standard I/O  
Advanced I/O  
Pro I/O  
N
E, W  
N
E, W  
E, W  
N
E, W  
N
Analog Quad  
S
S
S
S
Note: E = East side of the device  
W = West side of the device  
N = North side of the device  
S = South side of the device  
Table 2-69 • Fusion VCCI Voltages and Compatible Standards  
VCCI (typical)  
3.3 V  
Compatible Standards  
LVTTL/LVCMOS 3.3, PCI 3.3, SSTL3 (Class I and II),* GTL+ 3.3, GTL 3.3,* LVPECL  
2.5 V  
LVCMOS 2.5, LVCMOS 2.5/5.0, SSTL2 (Class I and II),* GTL+ 2.5,* GTL 2.5,* LVDS, BLVDS, M-  
LVDS  
1.8 V  
1.5 V  
LVCMOS 1.8  
LVCMOS 1.5, HSTL (Class I),* HSTL (Class II)*  
Note: *I/O standard supported by Pro I/O banks.  
Table 2-70 • Fusion VREF Voltages and Compatible Standards*  
VREF (typical)  
1.5 V  
Compatible Standards  
SSTL3 (Class I and II)  
SSTL2 (Class I and II)  
GTL+ 2.5, GTL+ 3.3  
1.25 V  
1.0 V  
0.8 V  
GTL 2.5, GTL 3.3  
0.75 V  
HSTL (Class I), HSTL (Class II)  
Note: *I/O standards supported by Pro I/O banks.  
Revision 4  
2-137  
Device Architecture  
Table 2-71 • Fusion Standard and Advanced I/O Features  
3.3 V  
2.5 V  
0.80 V  
1.00 V  
1.50 V  
0.80 V  
1.00 V  
1.25 V  
1.8 V  
1.5 V  
0.75 V  
Note: White box: Allowable I/O standard combinations  
Gray box: Illegal I/O standard combinations  
2-138  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Features Supported on Pro I/Os  
Table 2-72 lists all features supported by transmitter/receiver for single-ended and differential I/Os.  
Table 2-72 • Fusion Pro I/O Features  
Feature  
Description  
Single-ended  
referenced transmitter  
features  
and  
voltage- • Hot insertion in every mode except PCI or 5 V input tolerant (these modes use  
clamp diodes and do not allow hot insertion)  
Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.  
Weak pull-up and pull-down  
Two slew rates  
Skew between output buffer enable/disable time: 2 ns delay (rising edge) and  
0 ns delay (falling edge); see "Selectable Skew between Output Buffer  
Enable/Disable Time" on page 2-152 for more information  
Five drive strengths  
5 V–tolerant receiver ("5 V Input Tolerance" section on page 2-147)  
LVTTL/LVCMOS 3.3 V outputs compatible with 5 V TTL inputs ("5 V Output  
Tolerance" section on page 2-151)  
High performance (Table 2-76 on page 2-146)  
Schmitt trigger option  
Single-ended receiver features  
ESD protection  
Programmable delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 ns  
with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V)  
High performance (Table 2-76 on page 2-146)  
Separate ground planes, GND/GNDQ, for input buffers only to avoid output-  
induced noise in the input circuitry  
Voltage-referenced differential • Programmable Delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 ns  
receiver features  
with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V)  
High performance (Table 2-76 on page 2-146)  
Separate ground planes, GND/GNDQ, for input buffers only to avoid output-  
induced noise in the input circuitry  
CMOS-style LVDS, BLVDS, • Two I/Os and external resistors are used to provide a CMOS-style LVDS,  
M-LVDS, or LVPECL  
transmitter  
BLVDS, M-LVDS, or LVPECL transmitter solution.  
Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.  
Weak pull-up and pull-down  
Fast slew rate  
LVDS/LVPECL differential  
receiver features  
ESD protection  
High performance (Table 2-76 on page 2-146)  
Programmable delay: 0.625 ns with '000' setting, 6.575 ns with '111' setting,  
0.85-ns intermediate delay increments (at 25°C, 1.5 V)  
Separate input buffer ground and power planes to avoid output-induced noise  
in the input circuitry  
Revision 4  
2-139  
Device Architecture  
Table 2-73 • Maximum I/O Frequency for Single-Ended, Voltage-Referenced, and Differential I/Os;  
All I/O Bank Types (maximum drive strength and high slew selected)  
Specification  
LVTTL/LVCMOS 3.3 V  
LVCMOS 2.5 V  
LVCMOS 1.8 V  
LVCMOS 1.5 V  
PCI  
Performance Up To  
200 MHz  
250 MHz  
200 MHz  
130 MHz  
200 MHz  
200 MHz  
300 MHz  
300 MHz  
300 MHz  
300 MHz  
300 MHz  
300 MHz  
300 MHz  
300 MHz  
300 MHz  
300 MHz  
350 MHz  
300 MHz  
PCI-X  
HSTL-I  
HSTL-II  
SSTL2-I  
SSTL2-II  
SSTL3-I  
SSTL3-II  
GTL+ 3.3 V  
GTL+ 2.5 V  
GTL 3.3 V  
GTL 2.5 V  
LVDS  
LVPECL  
2-140  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
I/O Registers  
Each I/O module contains several input, output, and enable registers. Refer to Figure 2-100 for a  
simplified representation of the I/O block.  
The number of input registers is selected by a set of switches (not shown in Figure 2-100) between  
registers to implement single or differential data transmission to and from the FPGA core. The Designer  
software sets these switches for the user.  
A common CLR/PRE signal is employed by all I/O registers when I/O register combining is used. Input  
register 2 does not have a CLR/PRE pin, as this register is used for DDR implementation. The I/O  
register combining must satisfy some rules.  
1
Input  
Reg  
I/O / Q0  
2
Input  
Reg  
Y
Pull-Up/Down  
Resistor Control  
CLR/PRE  
To FPGA Core  
3
Input  
I/O / Q1  
PAD  
Reg  
ICE  
CLR/PRE  
I/O / ICLK  
Signal Drive Strength  
and Slew-Rate Control  
E = Enable Pin  
A
4
I/O / D0  
Output  
Reg  
OCE  
ICE  
From FPGA Core  
CLR/PRE  
5
I/O / D1 / ICE  
Output  
Reg  
CLR/PRE  
I/O / OCLK  
I/O / OE  
6
Output  
Enable  
Reg  
OCE  
CLR/PRE  
I/O / CLR or I/O / PRE / OCE  
Note: Fusion I/Os have registers to support DDR functionality (see the "Double Data Rate (DDR) Support" section on  
page 2-142 for more information).  
Figure 2-100 • I/O Block Logical Representation  
Revision 4  
2-141  
Device Architecture  
Double Data Rate (DDR) Support  
Fusion Pro I/Os support 350 MHz DDR inputs and outputs. In DDR mode, new data is present on every  
transition of the clock signal. Clock and data lines have identical bandwidths and signal integrity  
requirements, making it very efficient for implementing very high-speed systems.  
DDR interfaces can be implemented using HSTL, SSTL, LVDS, and LVPECL I/O standards. In addition,  
high-speed DDR interfaces can be implemented using LVDS I/O.  
Input Support for DDR  
The basic structure to support a DDR input is shown in Figure 2-101. Three input registers are used to  
capture incoming data, which is presented to the core on each rising edge of the I/O register clock.  
Each I/O tile on Fusion devices supports DDR inputs.  
Output Support for DDR  
The basic DDR output structure is shown in Figure 2-102 on page 2-143. New data is presented to the  
output every half clock cycle. Note: DDR macros and I/O registers do not require additional routing. The  
combiner automatically recognizes the DDR macro and pushes its registers to the I/O register area at the  
edge of the chip. The routing delay from the I/O registers to the I/O buffers is already taken into account  
in the DDR macro.  
Refer to the application note Using DDR for Fusion Devices for more information.  
Input DDR  
A
D
Out_QF  
(to core)  
Data  
INBUF  
FF1  
E
B
C
Out_QR  
(to core)  
CLK  
CLR  
CLKBUF  
INBUF  
FF2  
DDR_IN  
Figure 2-101 • DDR Input Register Support in Fusion Devices  
2-142  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
A
Data_F  
(from core)  
FF1  
Out  
B
C
D
0
CLK  
E
CLKBUF  
OUTBUF  
1
Data_R  
(from core)  
FF2  
B
C
CLR  
INBUF  
DDR_OUT  
Figure 2-102 • DDR Output Support in Fusion Devices  
Revision 4  
2-143  
Device Architecture  
Hot-Swap Support  
Hot-swapping (also called hot plugging) is the operation of hot insertion or hot removal of a card in (or  
from) a powered-up system. The levels of hot-swap support and examples of related applications are  
described in Table 2-74. The I/Os also need to be configured in hot insertion mode if hot plugging  
compliance is required.  
Table 2-74 • Levels of Hot-Swap Support  
Device  
Example of  
Hot  
Power  
Card  
Circuitry  
Application with  
Swapping  
Level  
Applied  
Ground  
Connected Cards that Contain Compliance of  
Fusion Devices  
Description to Device Bus State Connection to Bus Pins Fusion Devices  
1
Cold-swap  
No  
System and card with Compliant I/Os  
Microsemi FPGA chip can but do not  
are powered down,  
then card gets  
have to be set to  
hot insertion  
plugged into system, mode.  
then power supplies  
are turned on for  
system but not for  
FPGA on card.  
2
Hot-swap  
while reset  
Yes  
Yes  
Held in  
reset state and  
maintained for  
Must be made –  
In PCI hot plug  
specification, reset  
control circuitry  
isolates the card  
busses until the card mode.  
supplies are at their  
nominal operating  
Compliant I/Os  
can but do not  
have to be set to  
hot insertion  
1 ms before,  
during, and  
after insertion/  
removal  
levels and stable.  
3
Hot-swap  
while bus  
idle  
Held idle  
(no ongoing Level 2  
I/O  
Same as  
Mustremain Board bus shared  
glitch-free with card bus is  
during  
Compliant with  
cards with two  
"frozen," and there is levels of staging.  
processes  
during  
insertion/re  
moval)  
power-up or no toggling activity on I/Os have to be  
power-down bus. It is critical that set to hot  
the logic states set on insertion mode.  
the bus signal do not  
get disturbed during  
card  
insertion/removal.  
4
Hot-swapon  
an active  
bus  
Yes  
Bus may  
have active Level 2  
I/O  
processes  
ongoing,  
but device  
being  
Same as  
Same as  
Level 3  
There is activity on  
Compliant with  
the system bus, and it cards with two  
is critical that the logic levels of staging.  
states set on the bus I/Os have to be  
signal do not get  
disturbed during card insertion mode.  
insertion/removal.  
set to hot  
inserted or  
removed  
must be  
idle.  
2-144  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
For Fusion devices requiring Level 3 and/or Level 4 compliance, the board drivers connected to Fusion  
I/Os need to have 10 k(or lower) output drive resistance at hot insertion, and 1 k(or lower) output  
drive resistance at hot removal. This is the resistance of the transmitter sending a signal to the Fusion  
I/O, and no additional resistance is needed on the board. If that cannot be assured, three levels of  
staging can be used to meet Level 3 and/or Level 4 compliance. Cards with two levels of staging should  
have the following sequence:  
1. Grounds  
2. Powers, I/Os, other pins  
Cold-Sparing Support  
Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically  
connected to the system that is in operation. This means that all input buffers of the subsystem must  
present very high input impedance with no power applied so as not to disturb the operating portion of the  
system.  
Pro I/O banks and standard I/O banks fully support cold-sparing.  
For Pro I/O banks, standards such as PCI that require I/O clamp diodes, can also achieve cold-sparing  
compliance, since clamp diodes get disconnected internally when the supplies are at 0 V.  
For Advanced I/O banks, since the I/O clamp diode is always active, cold-sparing can be accomplished  
either by employing a bus switch to isolate the device I/Os from the rest of the system or by driving each  
advanced I/O pin to 0 V.  
If Standard I/O banks are used in applications requiring cold-sparing, a discharge path from the power  
supply to ground should be provided. This can be done with a discharge resistor or a switched resistor.  
This is necessary because the standard I/O buffers do not have built-in I/O clamp diodes.  
If a resistor is chosen, the resistor value must be calculated based on decoupling capacitance on a given  
power supply on the board (this decoupling capacitor is in parallel with the resistor). The RC time  
constant should ensure full discharge of supplies before cold-sparing functionality is required. The  
resistor is necessary to ensure that the power pins are discharged to ground every time there is an  
interruption of power to the device.  
I/O cold-sparing may add additional current if the pin is configured with either a pull-up or pull down  
resistor and driven in the opposite direction. A small static current is induced on each IO pin when the pin  
is driven to a voltage opposite to the weak pull resistor. The current is equal to the voltage drop across  
the input pin divided by the pull resistor. Please refer to Table 2-95 on page 2-172, Table 2-96 on  
page 2-172, and Table 2-97 on page 2-174 for the specific pull resistor value for the corresponding I/O  
standard.  
For example, assuming an LVTTL 3.3 V input pin is configured with a weak Pull-up resistor, a current will  
flow through the pull-up resistor if the input pin is driven low. For an LVTTL 3.3 V, pull-up resistor is ~45  
kand the resulting current is equal to 3.3 V / 45 k= 73 µA for the I/O pin. This is true also when a  
weak pull-down is chosen and the input pin is driven high. Avoiding this current can be done by driving  
the input low when a weak pull-down resistor is used, and driving it high when a weak pull-up resistor is  
used.  
In Active and Static modes, this current draw can occur in the following cases:  
Input buffers with pull-up, driven low  
Input buffers with pull-down, driven high  
Bidirectional buffers with pull-up, driven low  
Bidirectional buffers with pull-down, driven high  
Output buffers with pull-up, driven low  
Output buffers with pull-down, driven high  
Tristate buffers with pull-up, driven low  
Tristate buffers with pull-down, driven high  
Revision 4  
2-145  
Device Architecture  
Electrostatic Discharge (ESD) Protection  
Fusion devices are tested per JEDEC Standard JESD22-A114-B.  
Fusion devices contain clamp diodes at every I/O, global, and power pad. Clamp diodes protect all  
device pads against damage from ESD as well as from excessive voltage transients.  
Each I/O has two clamp diodes. One diode has its positive (P) side connected to the pad and its negative  
(N) side connected to VCCI. The second diode has its P side connected to GND and its N side  
connected to the pad. During operation, these diodes are normally biased in the Off state, except when  
transient voltage is significantly above VCCI or below GND levels.  
By selecting the appropriate I/O configuration, the diode is turned on or off. Refer to Table 2-75 and  
Table 2-76 on page 2-146 for more information about I/O standards and the clamp diode.  
The second diode is always connected to the pad, regardless of the I/O configuration selected.  
Table 2-75 • Fusion Standard and Advanced I/O – Hot-Swap and 5 V Input Tolerance Capabilities  
Clamp Diode  
Hot Insertion  
5 V Input Tolerance 1  
Standard Advanced Standard Advanced Standard Advanced  
Input  
Buffer  
Output  
Buffer  
I/O Assignment  
I/O  
No  
I/O  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
I/O  
Yes  
N/A  
Yes  
N/A  
Yes  
Yes  
N/A  
I/O  
No  
No  
No  
No  
No  
No  
No  
I/O  
Yes1  
N/A  
No  
I/O  
Yes1  
Yes1  
No  
3.3 V LVTTL/LVCMOS  
3.3 V PCI, 3.3 V PCI-X  
LVCMOS 2.5 V  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
N/A  
No  
LVCMOS 2.5 V / 5.0 V  
LVCMOS 1.8 V  
N/A  
No  
N/A  
No  
Yes2  
No  
LVCMOS 1.5 V  
No  
No  
No  
Differential,  
N/A  
N/A  
No  
LVDS/BLVDS/M-  
LVDS/ LVPECL 3  
Notes:  
1. Can be implemented with an external IDT bus switch, resistor divider, or Zener with resistor.  
2. Can be implemented with an external resistor and an internal clamp diode.  
3. Bidirectional LVPECL buffers are not supported. I/Os can be configured as either input buffers or output buffers.  
Table 2-76 • Fusion Pro I/O – Hot-Swap and 5 V Input Tolerance Capabilities  
Clamp  
Diode  
Hot  
5 V Input  
I/O Assignment  
Insertion Tolerance Input Buffer Output Buffer  
3.3 V LVTTL/LVCMOS  
3.3 V PCI, 3.3 V PCI-X  
LVCMOS 2.5 V 3  
No  
Yes  
No  
Yes  
No  
No  
No  
No  
Yes  
No  
Yes1  
Yes1  
No  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
Yes  
No  
LVCMOS 2.5 V / 5.0 V 3  
Yes2  
LVCMOS 1.8 V  
Yes  
Yes  
Yes  
Yes  
No  
LVCMOS 1.5 V  
No  
Voltage-Referenced Input Buffer  
Differential, LVDS/BLVDS/M-LVDS/LVPECL4  
Notes:  
No  
No  
1. Can be implemented with an external IDT bus switch, resistor divider, or Zener with resistor.  
2. Can be implemented with an external resistor and an internal clamp diode.  
3. In the SmartGen, FlashROM, Flash Memory System Builder, and Analog System Builder User's Guide, select the  
LVCMOS5 macro for the LVCMOS 2.5 V / 5.0 V I/O standard or the LVCMOS25 macro for the LVCMOS 2.5 V I/O  
standard.  
4. Bidirectional LVPECL buffers are not supported. I/Os can be configured as either input buffers or output buffers.  
2-146  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
5 V Input Tolerance  
I/Os can support 5 V input tolerance when LVTTL 3.3 V, LVCMOS 3.3 V, LVCMOS 2.5 V / 5 V, and  
LVCMOS 2.5 V configurations are used (see Table 2-77 on page 2-150 for more details). There are four  
recommended solutions (see Figure 2-103 to Figure 2-106 on page 2-149 for details of board and macro  
setups) to achieve 5 V receiver tolerance. All the solutions meet a common requirement of limiting the  
voltage at the input to 3.6 V or less. In fact, the I/O absolute maximum voltage rating is 3.6 V, and any  
voltage above 3.6 V may cause long-term gate oxide failures.  
Solution 1  
The board-level design needs to ensure that the reflected waveform at the pad does not exceed the limits  
provided in Table 3-4 on page 3-4. This is a long-term reliability requirement.  
This scheme will also work for a 3.3 V PCI / PCI-X configuration, but the internal diode should not be  
used for clamping, and the voltage must be limited by the two external resistors, as explained below.  
Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.  
The following are some examples of possible resistor values (based on a simplified simulation model  
with no line effects and 10 transmitter output resistance, where Rtx_out_high = (VCCI – VOH) / IOH,  
Rtx_out_low = VOL / IOL).  
Example 1 (high speed, high current):  
Rtx_out_high = Rtx_out_low = 10   
R1 = 36 (±5%), P(r1)min = 0.069   
R2 = 82 (±5%), P(r2)min = 0.158   
Imax_tx = 5.5 V / (82 * 0.95 + 36 * 0.95 + 10) = 45.04 mA  
t
t
RISE = tFALL = 0.85 ns at C_pad_load = 10 pF (includes up to 25% safety margin)  
RISE = tFALL = 4 ns at C_pad_load = 50 pF (includes up to 25% safety margin)  
Example 2 (low–medium speed, medium current):  
Rtx_out_high = Rtx_out_low = 10   
R1 = 220 (±5%), P(r1)min = 0.018   
R2 = 390 (±5%), P(r2)min = 0.032   
Imax_tx = 5.5 V / (220 * 0.95 + 390 * 0.95 + 10) = 9.17 mA  
t
RISE = tFALL = 4 ns at C_pad_load = 10 pF (includes up to 25% safety margin)  
tRISE = tFALL = 20 ns at C_pad_load = 50 pF (includes up to 25% safety margin)  
Other values of resistors are also allowed as long as the resistors are sized appropriately to limit the  
voltage at the receiving end to 2.5 V < Vin(rx) < 3.6 V when the transmitter sends a logic 1. This range of  
Vin_dc(rx) must be assured for any combination of transmitter supply (5 V ± 0.5 V), transmitter output  
resistance, and board resistor tolerances.  
Revision 4  
2-147  
Device Architecture  
Temporary overshoots are allowed according to Table 3-4 on page 3-4.  
Solution 1  
Fusion I/O Input  
On-Chip  
Off-Chip  
5.5 V  
3.3 V  
Rext1  
Rext2  
Requires two board resistors,  
LVCMOS 3.3 V I/Os  
Figure 2-103 • Solution 1  
Solution 2  
The board-level design must ensure that the reflected waveform at the pad does not exceed limits  
provided in Table 3-4 on page 3-4. This is a long-term reliability requirement.  
This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used  
for clamping, and the voltage must be limited by the external resistors and Zener, as shown in Figure 2-  
104. Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.  
Solution 2  
Fusion I/O Input  
Off-Chip On-Chip  
3.3 V  
5.5 V  
Rext1  
Zener  
3.3 V  
Requires one board resistor, one  
Zener 3.3 V diode, LVCMOS 3.3 V I/Os  
Figure 2-104 • Solution 2  
2-148  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Solution 3  
The board-level design must ensure that the reflected waveform at the pad does not exceed limits  
provided in Table 3-4 on page 3-4. This is a long-term reliability requirement.  
This scheme will also work for a 3.3 V PCI/PCIX configuration, but the internal diode should not be used  
for clamping, and the voltage must be limited by the bus switch, as shown in Figure 2-105. Relying on the  
diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.  
Solution 3  
Fusion I/O Input  
Off-Chip  
Bus  
On-Chip  
3.3 V  
Switch  
IDTQS32X23  
5.5 V  
5.5 V  
Requires a bus switch on the board,  
LVTTL/LVCMOS 3.3 V I/Os.  
Figure 2-105 • Solution 3  
Solution 4  
Solution 4  
Fusion I/O Input  
Off-Chip  
5.5 V  
On-Chip  
2.5 V On-Chip  
2.5 V  
Clamp  
Diode  
Rext1  
Requires one board resistor.  
Available for LVCMOS 2.5 V / 5.0 V.  
Figure 2-106 • Solution 4  
Revision 4  
2-149  
Device Architecture  
Table 2-77 • Comparison Table for 5 V–Compliant Receiver Scheme  
Schem  
e
1
2
3
4
Board Components  
Two resistors  
Speed  
Current Limitations  
Low to high1 Limited by transmitter's drive strength  
Resistor and Zener 3.3 V  
Bus switch  
Medium  
High  
Limited by transmitter's drive strength  
N/A  
Minimum resistor value2  
R = 47 at TJ = 70°C  
R = 150 at TJ = 85°C  
R = 420 at TJ = 100°C  
Medium  
Maximum diode current at 100% duty cycle, signal constantly  
at '1'  
52.7 mA at TJ =70°C / 10-year lifetime  
16.5 mA at TJ = 85°C / 10-year lifetime  
5.9 mA at TJ = 100°C / 10-year lifetime  
For duty cycles other than 100%, the currents can be  
increased by a factor = 1 / (duty cycle).  
Example: 20% duty cycle at 70°C  
Maximum current = (1 / 0.2) * 52.7 mA = 5 * 52.7 mA = 263.5  
mA  
Notes:  
1. Speed and current consumption increase as the board resistance values decrease.  
2. Resistor values ensure I/O diode long-term reliability.  
2-150  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
5 V Output Tolerance  
Fusion I/Os must be set to 3.3 V LVTTL or 3.3 V LVCMOS mode to reliably drive 5 V TTL receivers. It is  
also critical that there be NO external I/O pull-up resistor to 5 V, since this resistor would pull the I/O pad  
voltage beyond the 3.6 V absolute maximum value and consequently cause damage to the I/O.  
When set to 3.3 V LVTTL or 3.3 V LVCMOS mode, Fusion I/Os can directly drive signals into 5 V TTL  
receivers. In fact, VOL = 0.4 V and VOH = 2.4 V in both 3.3 V LVTTL and 3.3 V LVCMOS modes exceed  
the VIL = 0.8 V and VIH = 2 V level requirements of 5 V TTL receivers. Therefore, level '1' and level '0'  
will be recognized correctly by 5 V TTL receivers.  
Simultaneously Switching Outputs and PCB Layout  
Simultaneously switching outputs (SSOs) can produce signal integrity problems on adjacent  
signals that are not part of the SSO bus. Both inductive and capacitive coupling parasitics of bond  
wires inside packages and of traces on PCBs will transfer noise from SSO busses onto signals  
adjacent to those busses. Additionally, SSOs can produce ground bounce noise and VCCI dip  
noise. These two noise types are caused by rapidly changing currents through GND and VCCI  
package pin inductances during switching activities:  
Ground bounce noise voltage = L(GND) * di/dt  
VCCI dip noise voltage = L(VCCI) * di/dt  
Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The  
shielding should be done both on the board and inside the package unless otherwise described.  
In-package shielding can be achieved in several ways; the required shielding will vary depending on  
whether pins next to SSO bus are LVTTL/LVCMOS inputs, LVTTL/LVCMOS outputs, or  
GTL/SSTL/HSTL/LVDS/LVPECL inputs and outputs. Board traces in the vicinity of the SSO bus have to  
be adequately shielded from mutual coupling and inductive noise that can be generated by the SSO bus.  
Also, noise generated by the SSO bus needs to be reduced inside the package.  
PCBs perform an important function in feeding stable supply voltages to the IC and, at the same time,  
maintaining signal integrity between devices.  
Key issues that need to considered are as follows:  
Power and ground plane design and decoupling network design  
Transmission line reflections and terminations  
Revision 4  
2-151  
Device Architecture  
Selectable Skew between Output Buffer Enable/Disable Time  
The configurable skew block is used to delay the output buffer assertion (enable) without affecting  
deassertion (disable) time.  
Output Enable  
ENABLE (IN)  
(from FPGA core)  
ENABLE (OUT)  
MUX  
Skew Circuit  
I/O Output  
Buffers  
Skew Select  
Figure 2-107 • Block Diagram of Output Enable Path  
ENABLE (IN)  
ENABLE (OUT)  
Less than  
0.1 ns  
Less than  
0.1 ns  
Figure 2-108 • Timing Diagram (option1: bypasses skew circuit)  
ENABLE (IN)  
ENABLE (OUT)  
1.2 ns  
(typical)  
Less than  
0.1 ns  
Figure 2-109 • Timing Diagram (option 2: enables skew circuit)  
2-152  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
At the system level, the skew circuit can be used in applications where transmission activities on  
bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that  
can prevent bus contention and subsequent data loss or transmitter overstress due to transmitter-to-  
transmitter current shorts. Figure 2-110 presents an example of the skew circuit implementation in a  
bidirectional communication system. Figure 2-111 shows how bus contention is created, and Figure 2-  
112 on page 2-154 shows how it can be avoided with the skew circuit.  
Transmitter  
ENABLE/  
DISABLE  
Transmitter 1: Fusion I/O  
Transmitter 2: Generic I/O  
Routing  
Skew or  
Routing  
EN(b1)  
EN(b2)  
EN(r1)  
ENABLE(t2)  
Bypass  
Skew  
Delay (t1)  
Delay (t2)  
ENABLE(t1)  
Bidirectional Data Bus  
Figure 2-110 • Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using  
Fusion Devices  
EN (b1)  
EN (b2)  
ENABLE (r1)  
ENABLE (t1)  
Transmitter 1: OFF  
ENABLE (t2)  
Transmitter 1: OFF  
Transmitter 1: ON  
Transmitter 2: ON  
Transmitter 2: OFF  
Bus  
Contention  
Figure 2-111 • Timing Diagram (bypasses skew circuit)  
Revision 4  
2-153  
Device Architecture  
EN (b1)  
EN (b2)  
ENABLE (t1)  
Transmitter 1: OFF  
ENABLE (t2)  
Transmitter 1: OFF  
Transmitter 1: ON  
Transmitter 2: ON  
Transmitter 2: OFF  
Result: No Bus Contention  
Figure 2-112 • Timing Diagram (with skew circuit selected)  
Weak Pull-Up and Weak Pull-Down Resistors  
Fusion devices support optional weak pull-up and pull-down resistors for each I/O pin. When the I/O is  
pulled up, it is connected to the VCCI of its corresponding I/O bank. When it is pulled down, it is  
connected to GND. Refer to Table 2-97 on page 2-174 for more information.  
Slew Rate Control and Drive Strength  
Fusion devices support output slew rate control: high and low. The high slew rate option is recommended  
to minimize the propagation delay. This high-speed option may introduce noise into the system if  
appropriate signal integrity measures are not adopted. Selecting a low slew rate reduces this kind of  
noise but adds some delays in the system. Low slew rate is recommended when bus transients are  
expected. Drive strength should also be selected according to the design requirements and noise  
immunity of the system.  
The output slew rate and multiple drive strength controls are available in LVTTL/LVCMOS 3.3 V,  
LVCMOS 2.5 V, LVCMOS 2.5 V / 5.0 V input, LVCMOS 1.8 V, and LVCMOS 1.5 V. All other I/O  
standards have a high output slew rate by default.  
For Fusion slew rate and drive strength specifications, refer to the appropriate I/O bank table:  
Fusion Standard I/O (Table 2-78 on page 2-155)  
Fusion Advanced I/O (Table 2-79 on page 2-155)  
Fusion Pro I/O (Table 2-80 on page 2-155)  
Table 2-83 on page 2-158 lists the default values for the above selectable I/O attributes as well as those  
that are preset for each I/O standard.  
2-154  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Refer to Table 2-78, Table 2-79, and Table 2-80 on page 2-155 for SLEW and OUT_DRIVE settings.  
Table 2-81 on page 2-156 and Table 2-82 on page 2-157 list the I/O default attributes. Table 2-83 on  
page 2-158 lists the voltages for the supported I/O standards.  
Table 2-78 • Fusion Standard I/O Standards—OUT_DRIVE Settings  
OUT_DRIVE (mA)  
I/O Standards  
2
3
3
3
3
4
3
3
3
6
3
3
8
3
3
Slew  
LVTTL/LVCMOS 3.3 V  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
LVCMOS 2.5 V  
LVCMOS 1.8 V  
LVCMOS 1.5 V  
Table 2-79 • Fusion Advanced I/O Standards—SLEW and OUT_DRIVE Settings  
OUT_DRIVE (mA)  
I/O Standards  
2
3
3
3
3
4
3
3
3
3
6
3
3
3
8
3
3
3
12  
3
16  
3
Slew  
High  
LVTTL/LVCMOS 3.3 V  
Low  
LVCMOS 2.5 V  
LVCMOS 1.8 V  
LVCMOS 1.5 V  
High  
High  
High  
Low  
Low  
Low  
3
Table 2-80 • Fusion Pro I/O Standards—SLEW and OUT_DRIVE Settings  
OUT_DRIVE (mA)  
I/O Standards  
2
3
3
3
3
3
4
3
3
3
3
3
6
3
3
3
3
3
8
3
3
3
3
3
12  
3
16  
3
24  
3
Slew  
High  
LVTTL/LVCMOS 3.3 V  
Low  
Low  
Low  
Low  
Low  
LVCMOS 2.5 V  
High  
High  
High  
High  
3
3
3
LVCMOS 2.5 V/5.0 V  
LVCMOS 1.8 V  
3
3
3
3
3
LVCMOS 1.5 V  
3
Revision 4  
2-155  
Device Architecture  
Table 2-81 • Fusion Pro I/O Default Attributes  
SLEW  
(output only)  
OUT_DRIVE  
(output only)  
I/O Standards  
LVTTL/LVCMO Refer to the following  
Refer to the following  
tables for more  
information:  
Off None 35 pF  
Off  
0
Off  
S 3.3 V  
tables for more  
information:  
LVCMOS 2.5 V  
Off None 35 pF  
Off None 35 pF  
Off  
Off  
0
0
Off  
Off  
Table 2-78 on page 2-155 Table 2-78 on page 2-155  
Table 2-79 on page 2-155 Table 2-79 on page 2-155  
Table 2-80 on page 2-155 Table 2-80 on page 2-155  
LVCMOS  
2.5/5.0 V  
LVCMOS 1.8 V  
LVCMOS 1.5 V  
PCI (3.3 V)  
Off None 35 pF  
Off None 35 pF  
Off None 10 pF  
Off None 10 pF  
Off None 10 pF  
Off None 10 pF  
Off None 10 pF  
Off None 10 pF  
Off None 20 pF  
Off None 20 pF  
Off None 30 pF  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
0
0
0
0
0
0
0
0
0
0
0
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
PCI-X (3.3 V)  
GTL+ (3.3 V)  
GTL+ (2.5 V)  
GTL (3.3 V)  
GTL (2.5 V)  
HSTL Class I  
HSTL Class II  
SSTL2  
Class I and II  
SSTL3  
Class I and II  
Off None 30 pF  
Off  
Off  
Off  
0
0
0
Off  
Off  
Off  
LVDS, BLVDS,  
M-LVDS  
Off None  
Off None  
0 pF  
0 pF  
LVPECL  
2-156  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-82 • Advanced I/O Default Attributes  
I/O Standards  
LVTTL/LVCMOS 3.3 V  
LVCMOS 2.5 V  
LVCMOS 2.5/5.0 V  
LVCMOS 1.8 V  
LVCMOS 1.5 V  
PCI (3.3 V)  
SLEW (output only)  
OUT_DRIVE (output only)  
Refer to the following  
tables for more  
information:  
Refer to the following tables Off None  
for more information:  
35 pF  
35 pF  
35 pF  
35 pF  
35 pF  
10 pF  
10 pF  
Off None  
Table 2-78 on page 2-155  
Off None  
Table 2-78 on page 2-155  
Table 2-79 on page 2-155  
Table 2-80 on page 2-155  
Table 2-79 on page 2-155  
Off None  
Off None  
Off None  
Off None  
Off None  
Off None  
Table 2-80 on page 2-155  
PCI-X (3.3 V)  
LVDS, BLVDS, M-LVDS  
LVPECL  
Revision 4  
2-157  
Device Architecture  
Table 2-83 • Fusion Pro I/O Supported Standards and Corresponding VREF and VTT Voltages  
Input/Output Supply  
Voltage (VCCI_TYP)  
Input Reference Voltage  
(VREF_TYP)  
Board Termination Voltage  
(VTT_TYP)  
I/O Standard  
LVTTL/LVCMOS 3.3 V  
LVCMOS 2.5 V  
3.30 V  
2.50 V  
2.50 V  
LVCMOS 2.5 V / 5.0 V  
Input  
LVCMOS 1.8 V  
LVCMOS 1.5 V  
PCI 3.3 V  
1.80 V  
1.50 V  
3.30 V  
3.30 V  
3.30 V  
2.50 V  
3.30 V  
2.50 V  
1.50 V  
1.50 V  
3.30 V  
3.30 V  
2.50 V  
2.50 V  
2.50 V  
3.30 V  
PCI-X 3.3 V  
GTL+ 3.3 V  
1.00 V  
1.00 V  
0.80 V  
0.80 V  
0.75 V  
0.75 V  
1.50 V  
1.50 V  
1.25 V  
1.25 V  
1.50 V  
1.50 V  
1.20 V  
1.20 V  
0.75 V  
0.75 V  
1.50 V  
1.50 V  
1.25 V  
1.25 V  
GTL+ 2.5 V  
GTL 3.3 V  
GTL 2.5 V  
HSTL Class I  
HSTL Class II  
SSTL3 Class I  
SSTL3 Class II  
SSTL2 Class I  
SSTL2 Class II  
LVDS, BLVDS, M-LVDS  
LVPECL  
2-158  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
I/O Software Support  
In the Fusion development software, default settings have been defined for the various I/O standards  
supported. Changes can be made to the default settings via the use of attributes; however, not all I/O  
attributes are applicable for all I/O standards. Table 2-84 and Table 2-85 list the valid I/O attributes that  
can be manipulated by the user for each I/O standard.  
Single-ended I/O standards in Fusion support up to five different drive strengths.  
Table 2-84 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications  
SLEW  
SKEW  
(output OUT_DRIVE (all macros  
OUT_LOAD  
(output only) with OE)* RES_PULL (output only) COMBINE_REGISTER  
I/O Standards  
only)  
LVTTL/LVCMOS 3.3 V  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
LVCMOS 2.5 V  
LVCMOS 2.5/5.0 V  
LVCMOS 1.8 V  
LVCMOS 1.5 V  
PCI (3.3 V)  
PCI-X (3.3 V)  
3
LVDS, BLVDS, M-LVDS  
LVPECL  
Note: *This feature does not apply to the standard I/O banks, which are the north I/O banks of AFS090 and AFS250  
devices  
Revision 4  
2-159  
Device Architecture  
Table 2-85 • Fusion Pro I/O Attributes vs. I/O Standard Applications  
I/O Standards  
LVTTL/LVCMOS 3.3 V  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
LVCMOS 2.5 V  
LVCMOS 2.5/5.0 V  
LVCMOS 1.8 V  
LVCMOS 1.5 V  
PCI (3.3 V)  
PCI-X (3.3 V)  
3
GTL+ (3.3 V)  
3
3
3
3
3
3
3
3
3
3
GTL+ (2.5 V)  
GTL (3.3 V)  
GTL (2.5 V)  
HSTL Class I  
HSTL Class II  
SSTL2 Class I and II  
SSTL3 Class I and II  
LVDS, BLVDS, M-LVDS  
LVPECL  
2-160  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
User I/O Naming Convention  
Due to the comprehensive and flexible nature of Fusion device user I/Os, a naming scheme is used to  
show the details of the I/O (Figure 2-113 on page 2-161 and Figure 2-114 on page 2-162). The name  
identifies to which I/O bank it belongs, as well as the pairing and pin polarity for differential I/Os.  
I/O Nomenclature  
= Gmn/IOuxwByVz  
Gmn is only used for I/Os that also have CCC access—i.e., global pins.  
G
m
= Global  
= Global pin location associated with each CCC on the device: A (northwest corner), B (northeast corner), C  
(east middle), D (southeast corner), E (southwest corner), and F (west middle).  
n
u
x
= Global input MUX and pin number of the associated Global location m, either A0, A1, A2, B0, B1, B2, C0, C1,  
or C2. Figure 2-22 on page 2-27 shows the three input pins per clock source MUX at CCC location m.  
= I/O pair number in the bank, starting at 00 from the northwest I/O bank and proceeding in a clockwise  
direction.  
= P (Positive) or N (Negative) for differential pairs, or R (Regular – single-ended) for the I/Os that support single-  
ended and voltage-referenced I/O standards only. U (Positive-LVDS only) or V (Negative-LVDS only) restrict  
the I/O differential pair from being selected as an LVPECL pair.  
w
= D (Differential Pair), P (Pair), or S (Single-Ended). D (Differential Pair) if both members of the pair are bonded  
out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both members of the pair are  
bonded out but do not meet the adjacency requirement; or S (Single-Ended) if the I/O pair is not bonded out.  
For Differential (D) pairs, adjacency for ball grid packages means only vertical or horizontal. Diagonal  
adjacency does not meet the requirements for a true differential pair.  
B
y
= Bank  
= Bank number (0–3). The Bank number starts at 0 from the northwest I/O bank and proceeds in a clockwise  
direction.  
V
z
= Reference voltage  
= Minibank number  
Standard I/O Bank  
CCC  
"A"  
CCC  
"B"  
Bank 0  
Bank 3  
Bank 1  
AFS090  
AFS250  
CCC/PLL  
"F"  
CCC  
"C"  
Bank 3  
Bank 1  
CCC  
"E"  
CCC  
"D"  
Bank 2 (analog)  
Analog Quads  
Figure 2-113 • Naming Conventions of Fusion Devices with Three Digital I/O Banks  
Revision 4  
2-161  
Device Architecture  
Pro I/O Bank  
CCC  
"A"  
CCC  
"B"  
Bank 0  
Bank 1  
Bank 4  
Bank 2  
AFS600  
AFS1500  
CCC/PLL  
"F"  
CCC/PLL  
"C"  
Bank 4  
Bank 2  
CCC  
"E"  
CCC  
"D"  
Bank 3 (analog)  
Analog Quads  
Figure 2-114 • Naming Conventions of Fusion Devices with Four I/O Banks  
2-162  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
User I/O Characteristics  
Timing Model  
I/O Module  
(Non-Registered)  
Combinational Cell  
Combinational Cell  
Y
Y
LVPECL (Pro IO banks)  
tPD = 0.56 ns  
tPD = 0.49 ns  
tDp = 1.60 ns  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
LVTTL/LVCMOS 3.3 V (Pro I/O banks)  
Output drive strength = 12 mA  
High slew rate  
tDP = 2.74 ns  
tPD = 0.87 ns  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
I/O Module  
(Registered)  
LVTTL/LVCMOS 3.3 V (Pro I/O banks)  
Output drive strength = 24 mA  
DP = 2.39 ns  
High slew rate  
t
tPY = 1.22 ns  
tPD = 0.51 ns  
LVPECL  
(Pro IO Banks)  
I/O Module  
(Non-Registered)  
D
Q
Combinational Cell  
Y
LVCMOS 1.5 V (Pro IO banks)  
Output drive strength = 12 mA  
High slew  
t
ICLKQ = 0.24 ns  
tDP = 3.30 ns  
tPD = 0.47 ns  
tISUD = 0.26 ns  
Input LVTTL/LVCMOS  
3.3 V (Pro IO banks)  
I/O Module  
(Registered)  
Register Cell  
Register Cell  
Combinational Cell  
Y
tPY = 0.90 ns  
D
Q
D
Q
D
Q
I/O Module  
(Non-Registered)  
GTL+ 3.3 V  
tDP = 1.53 ns  
t
PD = 0.47 ns  
tCLKQ = 0.55 ns  
SUD = 0.43 ns  
t
t
CLKQ = 0.55 ns  
SUD = 0.43 ns  
t
t
OCLKQ = 0.59 ns  
OSUD = 0.31 ns  
LVDS,  
BLVDS,  
M-LVDS (Pro IO Banks)  
t
Input LVTTL/LVCMOS  
3.3 V (Pro IO banks)  
IInput LVTTL/LVCMOS  
3.3 V (Pro IO banks)  
tPY = 1.36 ns  
tPY = 0.90 ns  
tPY = 0.90 ns  
Figure 2-115 • Timing Model  
Operating Conditions: –2 Speed, Commercial Temperature Range (TJ = 70°C),  
Worst-Case VCC = 1.425 V  
Revision 4  
2-163  
Device Architecture  
tPY  
tDIN  
tPYS  
D
Q
PAD  
DIN  
Y
CLK  
To Array  
I/O interface  
tPY = MAX(tPY (R), tPY (F))  
PYs = MAX(tPYS (R), tPYS (F))  
tDIN = MAX(tDIN (R), tDIN (F))  
t
VIH  
Vtrip  
Vtrip  
VIL  
PAD  
VCC  
50%  
50%  
tPY  
Y
GND  
tPY  
(F)  
(R)  
tPYS  
(R)  
tPYS  
(F)  
VCC  
50%  
50%  
DIN  
GND  
tDIN  
(R)  
tDIN  
(F)  
Figure 2-116 • Input Buffer Timing Model and Delays (example)  
2-164  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
tDOUT  
D Q  
tDP  
PAD  
DOUT  
CLK  
Std  
Load  
D
From Array  
tDP = MAX(tDP(R), tDP(F))  
DOUT = MAX(tDOUT(R), tDOUT(F))  
I/O Interface  
t
tDOUT  
(R)  
tDOUT  
(F)  
VCC  
50%  
50%  
VCC  
D
0 V  
50%  
50%  
VOH  
DOUT  
PAD  
0 V  
Vtrip  
Vtrip  
VOL  
tDP  
(F)  
tDP  
(R)  
Figure 2-117 • Output Buffer Model and Delays (example)  
Revision 4  
2-165  
Device Architecture  
t
EOUT  
D Q  
t
, t , t , t , t , t  
CLK  
ZL ZH HZ LZ ZLS ZHS  
E
EOUT  
D Q  
CLK  
PAD  
(F))  
DOUT  
D
t
= MAX(t  
(R). t  
EOUT  
EOUT EOUT  
I/O Interface  
VCC  
D
E
VCC  
50%  
50%  
t
t
EOUT (F)  
EOUT (R)  
VCC  
50%  
50%  
50%  
ZH  
50%  
t
LZ  
EOUT  
PAD  
t
t
t
ZL  
VCCI  
HZ  
90% VCCI  
V
V
trip  
trip  
VOL  
10% VCCI  
VCC  
D
VCC  
50%  
50%  
50%  
E
t
t
EOUT (F)  
EOUT (R)  
VCC  
50%  
EOUT  
PAD  
50%  
VOH  
t
ZHS  
t
ZLS  
V
V
trip  
trip  
VOL  
Figure 2-118 • Tristate Output Buffer Timing Model and Delays (example)  
2-166  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Overview of I/O Performance  
Summary of I/O DC Input and Output Levels – Default I/O Software Settings  
Table 2-86 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and  
Industrial Conditions  
Applicable to Pro I/Os  
VIL  
Max.  
VIH  
VOL  
VOH  
IOL IOH  
Drive  
Strength Rate  
Slew Min.  
Min.  
V
Max.  
V
Max.  
V
Min.  
V
I/O Standard  
V
V
mA mA  
3.3 V LVTTL / 12 mA  
3.3 V LVCMOS  
High –0.3  
0.8  
2
3.6  
0.4  
2.4  
12 12  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
12 mA  
12 mA  
12 mA  
High –0.3  
0.7  
1.7  
3.6  
3.6  
3.6  
0.7  
1.7  
12 12  
High –0.3 0.35 * VCCI 0.65 * VCCI  
High –0.3 0.35 * VCCI 0.65 * VCCI  
0.45  
VCCI – 0.45 12 12  
0.25 * VCCI 0.75 * VCCI 12 12  
Per PCI Specification  
3.3 V PCI-X  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
Per PCI-X Specification  
20 mA2 High –0.3 VREF – 0.05 VREF + 0.05  
20 mA2 High –0.3 VREF – 0.05 VREF + 0.05  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.4  
0.4  
20 20  
20 20  
35 35  
33 33  
35 mA  
33 mA  
8 mA  
High –0.3 VREF – 0.1 VREF + 0.1  
High –0.3 VREF – 0.1 VREF + 0.1  
High –0.3 VREF – 0.1 VREF + 0.1  
0.6  
0.6  
0.4  
0.4  
VCCI – 0.4  
8
8
HSTL (II)  
15 mA2 High –0.3 VREF – 0.1 VREF + 0.1  
VCCI – 0.4 15 15  
VCCI – 0.62 15 15  
VCCI – 0.43 18 18  
VCCI – 1.1 14 14  
VCCI – 0.9 21 21  
SSTL2 (I)  
15 mA  
18 mA  
14 mA  
21 mA  
High –0.3 VREF – 0.2 VREF + 0.2  
High –0.3 VREF – 0.2 VREF + 0.2  
High –0.3 VREF – 0.2 VREF + 0.2  
High –0.3 VREF – 0.2 VREF + 0.2  
0.54  
0.35  
0.7  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Notes:  
0.5  
1. Currents are measured at 85°C junction temperature.  
2. Output drive strength is below JEDEC specification.  
3. Output slew rate can be extracted by the IBIS models.  
Table 2-87 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and  
Industrial Conditions  
Applicable to Advanced I/Os  
VIL  
Max.  
VIH  
Min.  
VOL  
VOH  
IOL IOH  
mA mA  
Drive  
Strength Rate  
Slew Min.  
Max.  
V
Max.  
V
Min.  
V
I/O Standard  
V
V
V
3.3 V LVTTL / 12 mA  
3.3 V LVCMOS  
High –0.3  
0.8  
2
3.6  
0.4  
2.4  
12  
12  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
12 mA High –0.3  
0.7  
1.7  
2.7  
0.7  
1.7  
12  
12  
12  
12  
12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.9  
0.45  
VCCI – 0.45 12  
12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12  
Per PCI specifications  
3.3 V PCI-X  
Per PCI-X specifications  
Note: Currents are measured at 85°C junction temperature.  
Revision 4  
2-167  
Device Architecture  
Table 2-88 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and  
Industrial Conditions  
Applicable to Standard I/Os  
VIL  
Max.  
VIH  
Min.  
VOL  
VOH  
IOL IOH  
mA mA  
Drive  
Strength Rate  
Slew Min.  
Max.  
V
Max.  
V
Min.  
V
I/O Standard  
V
V
V
3.3 V LVTTL /  
3.3 V LVCMOS  
8 mA  
High –0.3  
0.8  
2
3.6  
0.4  
2.4  
8
8
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
8 mA  
4 mA  
2 mA  
High –0.3  
0.7  
1.7  
3.6  
0.7  
1.7  
8
4
2
8
4
2
High –0.3 0.35 * VCCI 0.65 * VCCI 3.6  
0.45  
VCCI – 0.45  
High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI  
Note: Currents are measured at 85°C junction temperature.  
Table 2-89 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial  
Conditions  
Applicable to All I/O Bank Types  
Commercial1  
Industrial2  
IIL3  
µA  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
IIH4  
µA  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
IIL3  
µA  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
IIH4  
µA  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
DC I/O Standards  
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
3.3 V PCI-X  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Notes:  
1. Commercial range (0°C < T < 85°C)  
J
2. Industrial range (–40°C < T < 100°C)  
J
3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
2-168  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Summary of I/O Timing Characteristics – Default I/O Software Settings  
Table 2-90 • Summary of AC Measuring Points  
Applicable to All I/O Bank Types  
Input Reference Voltage Board Termination Voltage  
Measuring Trip Point  
(Vtrip)  
Standard  
(VREF_TYP)  
(VTT_REF)  
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
1.4 V  
1.2 V  
0.90 V  
0.75 V  
0.285 * VCCI (RR)  
0.615 * VCCI (FF))  
3.3 V PCI-X  
0.285 * VCCI (RR)  
0.615 * VCCI (FF)  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
0.8 V  
0.8 V  
1.0 V  
1.0 V  
0.75 V  
0.75 V  
1.25 V  
1.25 V  
1.5 V  
1.5 V  
1.2 V  
1.2 V  
1.5 V  
1.5 V  
0.75 V  
0.75 V  
1.25 V  
1.25 V  
1.485 V  
1.485 V  
VREF  
VREF  
VREF  
VREF  
VREF  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
LVDS  
VREF  
VREF  
VREF  
VREF  
VREF  
Cross point  
Cross point  
LVPECL  
Table 2-91 • I/O AC Parameter Definitions  
Parameter  
Definition  
tDP  
Data to Pad delay through the Output Buffer  
tPY  
Pad to Data delay through the Input Buffer with Schmitt trigger disabled  
Data to Output Buffer delay through the I/O interface  
tDOUT  
tEOUT  
tDIN  
tPYS  
tHZ  
Enable to Output Buffer Tristate Control delay through the I/O interface  
Input Buffer to Data delay through the I/O interface  
Pad to Data delay through the Input Buffer with Schmitt trigger enabled  
Enable to Pad delay through the Output Buffer—High to Z  
tZH  
Enable to Pad delay through the Output Buffer—Z to High  
tLZ  
Enable to Pad delay through the Output Buffer—Low to Z  
tZL  
Enable to Pad delay through the Output Buffer—Z to Low  
tZHS  
tZLS  
Enable to Pad delay through the Output Buffer with delayed enable—Z to High  
Enable to Pad delay through the Output Buffer with delayed enable—Z to Low  
Revision 4  
2-169  
Device Architecture  
Table 2-92 • Summary of I/O Timing Characteristics – Software Default Settings  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = I/O Standard Dependent  
Applicable to Pro I/Os  
I/O Standard  
3.3 V LVTTL/  
3.3 V LVCMOS  
12 mA High 35  
0.49 2.74 0.03 0.90 1.17 0.32 2.79 2.14 2.45 2.70 4.46 3.81 ns  
2.5 V LVCMOS 12 mA High 35  
1.8 V LVCMOS 12 mA High 35  
1.5 V LVCMOS 12 mA High 35  
0.49 2.80 0.03 1.13 1.24 0.32 2.85 2.61 2.51 2.61 4.52 4.28 ns  
0.49 2.83 0.03 1.08 1.42 0.32 2.89 2.31 2.79 3.16 4.56 3.98 ns  
0.49 3.30 0.03 1.27 1.60 0.32 3.36 2.70 2.96 3.27 5.03 4.37 ns  
3.3 V PCI  
Per High 10 25 2 0.49 2.09 0.03 0.78 1.25 0.32 2.13 1.49 2.45 2.70 3.80 3.16 ns  
PCI  
spec  
3.3 V PCI-X  
Per High 10 25 2 0.49 2.09 0.03 0.77 1.17 0.32 2.13 1.49 2.45 2.70 3.80 3.16 ns  
PCI-X  
spec  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
20 mA High 10 25 0.49 1.55 0.03 2.19  
20 mA High 10 25 0.49 1.59 0.03 1.83  
35 mA High 10 25 0.49 1.53 0.03 1.19  
33 mA High 10 25 0.49 1.65 0.03 1.13  
8 mA High 20 50 0.49 2.37 0.03 1.59  
15 mA High 20 25 0.49 2.26 0.03 1.59  
17 mA High 30 50 0.49 1.59 0.03 1.00  
21 mA High 30 25 0.49 1.62 0.03 1.00  
16 mA High 30 50 0.49 1.72 0.03 0.93  
24 mA High 30 25 0.49 1.54 0.03 0.93  
0.32 1.52 1.55 0.00 0.00 3.19 3.22 ns  
0.32 1.61 1.59 0.00 0.00 3.28 3.26 ns  
0.32 1.56 1.53 0.00 0.00 3.23 3.20 ns  
0.32 1.68 1.57 0.00 0.00 3.35 3.24 ns  
0.32 2.42 2.35 0.00 0.00 4.09 4.02 ns  
0.32 2.30 2.03 0.00 0.00 3.97 3.70 ns  
0.32 1.62 1.38 0.00 0.00 3.29 3.05 ns  
0.32 1.65 1.32 0.00 0.00 3.32 2.99 ns  
0.32 1.75 1.37 0.00 0.00 3.42 3.04 ns  
0.32 1.57 1.25 0.00 0.00 3.24 2.92 ns  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
LVDS  
24 mA High  
24 mA High  
0.49 1.57 0.03 1.36  
0.49 1.60 0.03 1.22  
ns  
ns  
LVPECL  
Notes:  
1. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values.  
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-123 on page 2-200  
for connectivity. This resistor is not required during normal operation.  
2-170  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-93 • Summary of I/O Timing Characteristics – Software Default Settings  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = I/O Standard Dependent  
Applicable to Advanced I/Os  
I/O Standard  
3.3 V LVTTL/  
12 mA High 35 pF  
0.49 2.64 0.03 0.90 0.32 2.69 2.11 2.40 2.68 4.36 3.78 ns  
3.3 V LVCMOS  
2.5 V LVCMOS 12 mA High 35 pF  
1.8 V LVCMOS 12 mA High 35 pF  
1.5 V LVCMOS 12 mA High 35 pF  
0.49 2.66 0.03 0.98 0.32 2.71 2.56 2.47 2.57 4.38 4.23 ns  
0.49 2.64 0.03 0.91 0.32 2.69 2.27 2.76 3.05 4.36 3.94 ns  
0.49 3.05 0.03 1.07 0.32 3.10 2.67 2.95 3.14 4.77 4.34 ns  
3.3 V PCI  
Per PCI High 10 pF 25 2 0.49 2.00 0.03 0.65 0.32 2.04 1.46 2.40 2.68 3.71 3.13 ns  
spec  
3.3 V PCI-X  
PerPCI-X High 10 pF 25 2 0.49 2.00 0.03 0.62 0.32 2.04 1.46 2.40 2.68 3.71 3.13 ns  
spec  
LVDS  
24 mA High  
24 mA High  
0.49 1.37 0.03 1.20 N/A N/A N/A N/A N/A N/A N/A ns  
0.49 1.34 0.03 1.05 N/A N/A N/A N/A N/A N/A N/A ns  
LVPECL  
Notes:  
1. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values.  
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-123 on page 2-200  
for connectivity. This resistor is not required during normal operation.  
Table 2-94 • Summary of I/O Timing Characteristics – Software Default Settings  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = I/O Standard Dependent  
Applicable to Standard I/Os  
I/O Standard  
3.3 V LVTTL/  
8 mA High  
35 pF  
0.49 3.29 0.03 0.75 0.32 3.36 2.80 1.79 2.01  
ns  
3.3 V LVCMOS  
2.5 V LVCMOS 8 mA High  
1.8 V LVCMOS 4 mA High  
1.5 V LVCMOS 2 mA High  
35pF  
35pF  
35pF  
0.49 3.56 0.03 0.96 0.32 3.40 3.56 1.78 1.91  
0.49 4.74 0.03 0.90 0.32 4.02 4.74 1.80 1.85  
0.49 5.71 0.03 1.06 0.32 4.71 5.71 1.83 1.83  
ns  
ns  
ns  
Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values.  
Revision 4  
2-171  
Device Architecture  
Detailed I/O DC Characteristics  
Table 2-95 • Input Capacitance  
Symbol  
CIN  
Definition  
Conditions  
Min.  
Max.  
Units  
pF  
Input capacitance  
VIN = 0, f = 1.0 MHz  
VIN = 0, f = 1.0 MHz  
8
8
CINCLK  
Input capacitance on the clock pin  
pF  
Table 2-96 • I/O Output Buffer Maximum Resistances 1  
RPULL-DOWN  
(ohms) 2  
RPULL-UP  
Standard  
Drive Strength  
(ohms) 3  
Applicable to Pro I/O Banks  
3.3 V LVTTL / 3.3 V LVCMOS  
4 mA  
8 mA  
100  
50  
300  
150  
75  
50  
33  
200  
100  
50  
40  
22  
225  
112  
56  
56  
22  
22  
224  
112  
75  
37  
37  
75  
12 mA  
25  
16 mA  
17  
24 mA  
11  
2.5 V LVCMOS  
1.8 V LVCMOS  
4 mA  
100  
50  
8 mA  
12 mA  
25  
16 mA  
20  
24 mA  
11  
2 mA  
200  
100  
50  
4 mA  
6 mA  
8 mA  
50  
12 mA  
20  
16 mA  
20  
1.5 V LVCMOS  
2 mA  
200  
100  
67  
4 mA  
6 mA  
8 mA  
33  
12 mA  
33  
3.3 V PCI/PCI-X  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
Notes:  
Per PCI/PCI-X specification  
20 mA  
25  
11  
20 mA  
14  
35 mA  
12  
33 mA  
15  
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend  
on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer  
resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website:  
http://www.microsemi.com/soc/techdocs/models/ibis.html.  
2.  
3.  
R
R
= VOLspec / I  
(PULL-DOWN-MAX) OLspec  
= (VCCImax – VOHspec) / IOHspec  
(PULL-UP-MAX)  
2-172  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-96 • I/O Output Buffer Maximum Resistances 1 (continued)  
RPULL-DOWN  
RPULL-UP  
(ohms) 3  
Standard  
Drive Strength  
8 mA  
(ohms) 2  
HSTL (I)  
50  
25  
27  
13  
44  
18  
50  
25  
31  
15  
69  
32  
HSTL (II)  
15 mA  
SSTL2 (I)  
17 mA  
SSTL2 (II)  
21 mA  
SSTL3 (I)  
16 mA  
SSTL3 (II)  
24 mA  
Applicable to Advanced I/O Banks  
3.3 V LVTTL / 3.3 V LVCMOS  
2 mA  
100  
100  
50  
300  
300  
150  
150  
75  
4 mA  
6 mA  
8 mA  
50  
12 mA  
25  
16 mA  
17  
50  
24 mA  
11  
33  
2.5 V LVCMOS  
2 mA  
100  
100  
50  
200  
200  
100  
100  
50  
4 mA  
6 mA  
8 mA  
50  
12 mA  
25  
16 mA  
20  
40  
24 mA  
11  
22  
1.8 V LVCMOS  
2 mA  
200  
100  
50  
225  
112  
56  
4 mA  
6 mA  
8 mA  
50  
56  
12 mA  
20  
22  
16 mA  
20  
22  
1.5 V LVCMOS  
2 mA  
200  
100  
67  
224  
112  
75  
4 mA  
6 mA  
8 mA  
33  
37  
12 mA  
33  
37  
3.3 V PCI/PCI-X  
Per PCI/PCI-X specification  
25  
75  
Notes:  
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend  
on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer  
resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website:  
http://www.microsemi.com/soc/techdocs/models/ibis.html.  
2.  
3.  
R
R
= VOLspec / I  
(PULL-DOWN-MAX) OLspec  
= (VCCImax – VOHspec) / IOHspec  
(PULL-UP-MAX)  
Revision 4  
2-173  
Device Architecture  
Table 2-96 • I/O Output Buffer Maximum Resistances 1 (continued)  
RPULL-DOWN  
(ohms) 2  
RPULL-UP  
(ohms) 3  
Standard  
Drive Strength  
Applicable to Standard I/O Banks  
3.3 V LVTTL / 3.3 V LVCMOS  
2 mA  
4 mA  
6 mA  
8 mA  
2 mA  
4 mA  
6 mA  
8 mA  
2 mA  
4 mA  
2 mA  
100  
100  
50  
300  
300  
150  
150  
200  
200  
100  
100  
225  
112  
224  
50  
2.5 V LVCMOS  
1.8 V LVCMOS  
100  
100  
50  
50  
200  
100  
200  
1.5 V LVCMOS  
Notes:  
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend  
on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer  
resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website:  
http://www.microsemi.com/soc/techdocs/models/ibis.html.  
2.  
R
= VOLspec / I  
(PULL-DOWN-MAX) OLspec  
3.  
R
= (VCCImax – VOHspec) / IOHspec  
(PULL-UP-MAX)  
Table 2-97 • I/O Weak Pull-Up/Pull-Down Resistances  
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values  
1
2
R(WEAK PULL-UP)  
(ohms)  
R(WEAK PULL-DOWN)  
(ohms)  
VCCI  
3.3 V  
2.5 V  
1.8 V  
1.5 V  
Notes:  
Min.  
10 k  
11 k  
18 k  
19 k  
Max.  
45 k  
55 k  
70 k  
90 k  
Min.  
10 k  
12 k  
17 k  
19 k  
Max.  
45 k  
74 k  
110 k  
140 k  
1.  
2.  
R
R
= (VCCImax – VOHspec) / I  
(WEAK PULL-UP-MAX) WEAK PULL-UP-MIN  
= VOLspec / I  
(WEAK PULL-DOWN-MAX)  
WEAK PULL-DOWN-MIN  
2-174  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-98 • I/O Short Currents IOSH/IOSL  
Drive Strength  
IOSH (mA)*  
IOSL (mA)*  
Applicable to Pro I/O Banks  
3.3 V LVTTL / 3.3 V LVCMOS  
4 mA  
8 mA  
25  
51  
103  
132  
268  
16  
32  
65  
83  
169  
9
27  
54  
12 mA  
16 mA  
24 mA  
4 mA  
109  
127  
181  
18  
2.5 V LVCMOS  
1.8 V LVCMOS  
8 mA  
37  
12 mA  
16 mA  
24 mA  
2 mA  
74  
87  
124  
11  
4 mA  
17  
35  
45  
91  
91  
13  
25  
32  
66  
66  
22  
6 mA  
44  
8 mA  
51  
12 mA  
16 mA  
2 mA  
74  
74  
1.5 V LVCMOS  
16  
4 mA  
33  
6 mA  
39  
8 mA  
55  
12 mA  
55  
Applicable to Advanced I/O Banks  
3.3 V LVTTL / 3.3 V LVCMOS  
2 mA  
4 mA  
25  
25  
27  
27  
6 mA  
51  
54  
8 mA  
51  
54  
12 mA  
16 mA  
24 mA  
2 mA  
103  
132  
268  
25  
109  
127  
181  
27  
3.3 V LVCMOS  
4 mA  
25  
27  
6 mA  
51  
54  
8 mA  
51  
54  
12 mA  
16 mA  
24 mA  
103  
132  
268  
109  
127  
181  
Note: *TJ = 100°C  
Revision 4  
2-175  
Device Architecture  
Table 2-98 • I/O Short Currents IOSH/IOSL (continued)  
Drive Strength  
IOSH (mA)*  
IOSL (mA)*  
2.5 V LVCMOS  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16  
16  
32  
32  
65  
83  
169  
9
18  
18  
37  
37  
74  
87  
124  
11  
1.8 V LVCMOS  
17  
35  
45  
91  
91  
13  
25  
32  
66  
66  
103  
22  
44  
51  
74  
74  
16  
33  
39  
55  
55  
109  
1.5 V LVCMOS  
3.3 V PCI/PCI-X  
Per PCI/PCI-X  
specification  
Applicable to Standard I/O Banks  
3.3 V LVTTL / 3.3 V LVCMOS  
2 mA  
4 mA  
6 mA  
8 mA  
2 mA  
4 mA  
6 mA  
8 mA  
2 mA  
4 mA  
2 mA  
25  
25  
51  
51  
16  
16  
32  
32  
9
27  
27  
54  
54  
18  
18  
37  
37  
11  
22  
16  
2.5 V LVCMOS  
1.8 V LVCMOS  
17  
13  
1.5 V LVCMOS  
Note: *TJ = 100°C  
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The  
reliability data below is based on a 3.3 V, 36 mA I/O setting, which is the worst case for this type of  
analysis.  
For example, at 100°C, the short current condition would have to be sustained for more than six months  
to cause a reliability concern. The I/O design does not contain any short circuit protection, but such  
protection would only be needed in extremely prolonged stress conditions.  
2-176  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-99 • Short Current Event Duration before Failure  
Temperature  
–40°C  
0°C  
Time before Failure  
>20 years  
>20 years  
>20 years  
5 years  
25°C  
70°C  
85°C  
2 years  
100°C  
6 months  
Table 2-100 • Schmitt Trigger Input Hysteresis  
Hysteresis Voltage Value (typ.) for Schmitt Mode Input Buffers  
Input Buffer Configuration Hysteresis Value (typ.)  
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)  
2.5 V LVCMOS (Schmitt trigger mode)  
240 mV  
140 mV  
80 mV  
60 mV  
1.8 V LVCMOS (Schmitt trigger mode)  
1.5 V LVCMOS (Schmitt trigger mode)  
Table 2-101 • I/O Input Rise Time, Fall Time, and Related I/O Reliability  
Input Buffer  
Input Rise/Fall Time (min.)  
Input Rise/Fall Time (max.)  
Reliability  
LVTTL/LVCMOS (Schmitt trigger  
disabled)  
No requirement  
10 ns*  
20 years (100°C)  
LVTTL/LVCMOS (Schmitt trigger  
enabled)  
No requirement  
No requirement, but input  
noise voltage cannot exceed  
Schmitt hysteresis  
20 years (100°C)  
HSTL/SSTL/GTL  
No requirement  
No requirement  
10 ns*  
10 ns*  
10 years (100°C)  
10 years (100°C)  
LVDS/BLVDS/M-LVDS/LVPECL  
Note: *The maximum input rise/fall time is related only to the noise induced into the input buffer trace. If the noise is  
low, the rise time and fall time of input buffers, when Schmitt trigger is disabled, can be increased beyond the  
maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise.  
Microsemi recommends signal integrity evaluation/characterization of the system to ensure there is no excessive  
noise coupling into input signals.  
Revision 4  
2-177  
Device Architecture  
Single-Ended I/O Characteristics  
3.3 V LVTTL / 3.3 V LVCMOS  
Low-Voltage Transistor–Transistor Logic is a general-purpose standard (EIA/JESD) for 3.3 V  
applications. It uses an LVTTL input buffer and push-pull output buffer. The 3.3 V LVCMOS standard is  
supported as part of the 3.3 V LVTTL support.  
Table 2-102 • Minimum and Maximum DC Input and Output Levels  
3.3 V LVTTL /  
3.3 V LVCMOS  
VIL  
VIH  
VOL  
VOH IOL IOH  
Min.  
IOSL  
IOSH IIL1 IIH2  
Max.  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Max.  
mA3  
Drive Strength  
V
mA mA  
mA3  
µA4 µA4  
Applicable to Pro I/O Banks  
4 mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
2
3.6  
3.6  
3.6  
3.6  
3.6  
0.4  
0.4  
0.4  
0.4  
0.4  
2.4  
2.4  
2.4  
2.4  
2.4  
4
8
4
8
27  
54  
25  
51  
10 10  
10 10  
10 10  
10 10  
10 10  
8 mA  
12 mA  
16 mA  
24 mA  
12 12  
16 16  
24 24  
109  
127  
181  
103  
132  
268  
Applicable to Advanced I/O Banks  
2 mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
2
2
2
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2
4
6
8
2
4
6
8
27  
27  
25  
25  
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
4 mA  
6 mA  
54  
51  
8 mA  
54  
51  
12 mA  
16 mA  
24 mA  
12 12  
16 16  
24 24  
109  
127  
181  
103  
132  
268  
Applicable to Standard I/O Banks  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
3.6  
3.6  
3.6  
3.6  
0.4  
0.4  
0.4  
0.4  
2.4  
2.4  
2.4  
2.4  
2
4
6
8
2
4
6
8
27  
27  
54  
54  
25  
25  
51  
51  
10 10  
10 10  
10 10  
10 10  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
5. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R to GND for tHZ / tZH / tZHS  
R = 1 k  
Test Point  
Test Point  
Data Path  
35 pF  
Enable Path  
35 pF for tZH / tZHS / tZL / tZLS  
35 pF for tHZ / tLZ  
Figure 2-119 • AC Loading  
Table 2-103 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
0
Input High (V)  
3.3  
Measuring Point* (V)  
1.4  
VREF (typ.) (V)  
CLOAD (pF)  
35  
Note: *Measuring point = Vtrip. See Table 2-90 on page 2-169 for a complete table of trip points.  
2-178  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Timing Characteristics  
Table 2-104 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V  
Applicable to Pro I/Os  
Spee  
d
Drive  
Strength Grade tDOUT tDP  
tDIN  
tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS tZHS Units  
4 mA  
Std.  
–1  
0.66 11.01 0.04 1.20 1.57 0.43 11.21 9.05 2.69 2.44 13.45 11.29  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
9.36 0.04 1.02 1.33 0.36 9.54 7.70 2.29 2.08 11.44 9.60  
8.22 0.03 0.90 1.17 0.32 8.37 6.76 2.01 1.82 10.04 8.43  
7.86 0.04 1.20 1.57 0.43 8.01 6.44 3.04 3.06 10.24 8.68  
6.69 0.04 1.02 1.33 0.36 6.81 5.48 2.58 2.61 8.71 7.38  
5.87 0.03 0.90 1.17 0.32 5.98 4.81 2.27 2.29 7.65 6.48  
6.03 0.04 1.20 1.57 0.43 6.14 5.02 3.28 3.47 8.37 7.26  
5.13 0.04 1.02 1.33 0.36 5.22 4.27 2.79 2.95 7.12 6.17  
4.50 0.03 0.90 1.17 0.32 4.58 3.75 2.45 2.59 6.25 5.42  
5.62 0.04 1.20 1.57 0.43 5.72 4.72 3.32 3.58 7.96 6.96  
4.78 0.04 1.02 1.33 0.36 4.87 4.02 2.83 3.04 6.77 5.92  
4.20 0.03 0.90 1.17 0.32 4.27 3.53 2.48 2.67 5.94 5.20  
5.24 0.04 1.20 1.57 0.43 5.34 4.69 3.39 3.96 7.58 6.93  
4.46 0.04 1.02 1.33 0.36 4.54 3.99 2.88 3.37 6.44 5.89  
3.92 0.03 0.90 1.17 0.32 3.99 3.50 2.53 2.96 5.66 5.17  
–2  
8 mA  
Std.  
–1  
–2  
12 mA  
16 mA  
24 mA  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-179  
Device Architecture  
Table 2-105 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V  
Applicable to Pro I/Os  
Drive  
Speed  
tEOU  
Strength Grade tDOUT tDP  
tDIN  
tPY  
tPYS  
tZL  
tZH  
tLZ  
tHZ  
tZLS tZHS Units  
T
4 mA  
Std.  
–1  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
7.88 0.04 1.20 1.57 0.43 8.03 6.70 2.69 2.59 10.26 8.94  
6.71 0.04 1.02 1.33 0.36 6.83 5.70 2.29 2.20 8.73 7.60  
5.89 0.03 0.90 1.17 0.32 6.00 5.01 2.01 1.93 7.67 6.67  
5.08 0.04 1.20 1.57 0.43 5.17 4.14 3.05 3.21 7.41 6.38  
4.32 0.04 1.02 1.33 0.36 4.40 3.52 2.59 2.73 6.30 5.43  
3.79 0.03 0.90 1.17 0.32 3.86 3.09 2.28 2.40 5.53 4.76  
3.67 0.04 1.20 1.57 0.43 3.74 2.87 3.28 3.61 5.97 5.11  
3.12 0.04 1.02 1.33 0.36 3.18 2.44 2.79 3.07 5.08 4.34  
2.74 0.03 0.90 1.17 0.32 2.79 2.14 2.45 2.70 4.46 3.81  
3.46 0.04 1.20 1.57 0.43 3.53 2.61 3.33 3.72 5.76 4.84  
2.95 0.04 1.02 1.33 0.36 3.00 2.22 2.83 3.17 4.90 4.12  
2.59 0.03 0.90 1.17 0.32 2.63 1.95 2.49 2.78 4.30 3.62  
3.21 0.04 1.20 1.57 0.43 3.27 2.16 3.39 4.13 5.50 4.39  
2.73 0.04 1.02 1.33 0.36 2.78 1.83 2.88 3.51 4.68 3.74  
2.39 0.03 0.90 1.17 0.32 2.44 1.61 2.53 3.08 4.11 3.28  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–2  
8 mA  
Std.  
–1  
–2  
12 mA  
16 mA  
24 mA  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
2-180  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-106 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/Os  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.66 10.26 0.04  
1.20  
1.02  
0.90  
1.20  
1.02  
0.90  
1.20  
1.02  
0.90  
1.20  
1.02  
0.90  
1.20  
1.02  
0.90  
0.43 10.45 8.90  
2.64  
2.25  
1.98  
2.98  
2.54  
2.23  
3.21  
2.73  
2.39  
3.26  
2.77  
2.43  
3.32  
2.82  
2.48  
2.46 12.68 11.13  
2.09 10.79 9.47  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
8.72  
7.66  
7.27  
6.19  
5.43  
5.58  
4.75  
4.17  
5.21  
4.43  
3.89  
4.85  
4.13  
3.62  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
8.89  
7.80  
7.41  
6.30  
5.53  
5.68  
4.84  
4.24  
5.30  
4.51  
3.96  
4.94  
4.20  
3.69  
7.57  
6.64  
6.28  
5.35  
4.69  
4.87  
4.14  
3.64  
4.56  
3.88  
3.41  
4.54  
3.87  
3.39  
–2  
1.83  
3.04  
2.59  
2.27  
3.42  
2.91  
2.55  
3.51  
2.99  
2.62  
3.88  
3.30  
2.90  
9.47  
9.65  
8.20  
7.20  
7.92  
6.74  
5.91  
7.54  
6.41  
5.63  
7.18  
6.10  
5.36  
8.31  
8.52  
7.25  
6.36  
7.11  
6.05  
5.31  
6.80  
5.79  
5.08  
6.78  
5.77  
5.06  
8 mA  
Std.  
–1  
–2  
12 mA  
16 mA  
24 mA  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-181  
Device Architecture  
Table 2-107 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/Os  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
tDIN  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
7.66  
6.51  
5.72  
4.91  
4.17  
3.66  
3.53  
3.00  
2.64  
3.33  
2.83  
2.49  
3.08  
2.62  
2.30  
1.20  
1.02  
0.90  
1.20  
1.02  
0.90  
1.20  
1.02  
0.90  
1.20  
1.02  
0.90  
1.20  
1.02  
0.90  
7.80  
6.63  
5.82  
5.00  
4.25  
3.73  
3.60  
3.06  
2.69  
3.39  
2.89  
2.53  
3.13  
2.66  
2.34  
6.59  
5.60  
4.92  
4.07  
3.46  
3.04  
2.82  
2.40  
2.11  
2.56  
2.18  
1.91  
2.12  
1.80  
1.58  
2.65  
2.25  
1.98  
2.99  
2.54  
2.23  
3.21  
2.73  
2.40  
3.26  
2.77  
2.44  
3.32  
2.83  
2.48  
2.61 10.03 8.82  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.22  
1.95  
3.20  
2.73  
2.39  
3.58  
3.05  
2.68  
3.68  
3.13  
2.75  
4.06  
3.45  
3.03  
8.54  
7.49  
7.23  
6.15  
5.40  
5.83  
4.96  
4.36  
5.63  
4.79  
4.20  
5.37  
4.57  
4.01  
7.51  
6.59  
6.31  
5.36  
4.71  
5.06  
4.30  
3.78  
4.80  
4.08  
3.58  
4.35  
3.70  
3.25  
–2  
8 mA  
Std.  
–1  
–2  
12 mA  
16 mA  
24 mA  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Table 2-108 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V  
Applicable to Standard I/Os  
Drive  
Strength  
Speed  
Grade  
tDOUT  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
Std.  
–1  
9.46  
8.05  
7.07  
9.46  
8.05  
7.07  
6.57  
5.59  
4.91  
6.57  
5.59  
4.91  
1.00  
0.85  
0.75  
1.00  
0.85  
0.75  
1.00  
0.85  
0.75  
1.00  
0.85  
0.75  
9.64  
8.20  
7.20  
9.64  
8.20  
7.20  
6.69  
5.69  
5.00  
6.69  
5.69  
5.00  
8.54  
7.27  
6.38  
8.54  
7.27  
6.38  
5.98  
5.09  
4.47  
5.98  
5.09  
4.47  
2.07  
1.76  
1.55  
2.07  
1.76  
1.55  
2.40  
2.04  
1.79  
2.40  
2.04  
1.79  
2.04  
1.73  
1.52  
2.04  
1.73  
1.52  
2.57  
2.19  
1.92  
2.57  
2.19  
1.92  
ns  
–2  
ns  
Std.  
–1  
ns  
ns  
–2  
ns  
Std.  
–1  
ns  
ns  
–2  
ns  
Std.  
–1  
ns  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
2-182  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-109 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V  
Applicable to Standard I/Os  
Drive  
Speed  
Strength  
Grade  
Std.  
–1  
–2 2  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
7.07  
6.01  
5.28  
7.07  
6.01  
5.28  
4.41  
3.75  
3.29  
4.41  
3.75  
3.29  
1.00  
0.85  
0.75  
1.00  
0.85  
0.75  
1.00  
0.85  
0.75  
1.00  
0.85  
0.75  
7.20  
6.12  
5.37  
7.20  
6.12  
5.37  
4.49  
3.82  
3.36  
4.49  
3.82  
3.36  
6.23  
5.30  
4.65  
6.23  
5.30  
4.65  
3.75  
3.19  
2.80  
3.75  
3.19  
2.80  
2.07  
1.76  
1.55  
2.07  
1.76  
1.55  
2.39  
2.04  
1.79  
2.39  
2.04  
1.79  
2.15  
1.83  
1.60  
2.15  
1.83  
1.60  
2.69  
2.29  
2.01  
2.69  
2.29  
2.01  
ns  
ns  
ns  
ns  
–2  
ns  
Std.  
–1  
ns  
ns  
–2  
ns  
Std.  
–1  
ns  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-183  
Device Architecture  
2.5 V LVCMOS  
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 2.5 V applications.  
Table 2-110 • Minimum and Maximum DC Input and Output Levels  
2.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL  
Max.  
mA mA  
IOSH IIL1 IIH2  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
mA3  
mA3 µA4 µA4  
Applicable to Pro I/O Banks  
4 mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
3.6  
3.6  
3.6  
3.6  
3.6  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
4
8
4
8
18  
37  
16  
32  
10 10  
10 10  
10 10  
10 10  
10 10  
8 mA  
12 mA  
16 mA  
24 mA  
12 12  
16 16  
24 24  
74  
65  
87  
83  
124  
169  
Applicable to Advanced I/O Banks  
2 mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
2
4
6
8
2
4
6
8
18  
18  
16  
16  
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
4 mA  
6 mA  
37  
32  
8 mA  
37  
32  
12 mA  
16 mA  
24 mA  
12 12  
16 16  
24 24  
74  
65  
87  
83  
124  
169  
Applicable to Standard I/O Banks  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
–0.3  
–0.3  
–0.3  
–0.3  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
3.6  
3.6  
3.6  
3.6  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
2
4
6
8
2
4
6
8
18  
18  
37  
37  
16  
16  
32  
32  
10 10  
10 10  
10 10  
10 10  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
5. Software default selection highlighted in gray.  
R to VCCI for t / t / t  
R to GND for t / t / t  
HZ ZH ZHS  
Test Point  
LZ ZL ZLS  
R = 1 k  
Test Point  
Data Path  
35 pF  
Enable Path  
35 pF for t / t  
/ t / t  
ZH ZHS ZL ZLS  
35 pF for t / t  
HZ LZ  
Figure 2-120 • AC Loading  
Table 2-111 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V)  
CLOAD (pF)  
0
2.5  
1.2  
35  
Note: *Measuring point = Vtrip. See Table 2-90 on page 2-169 for a complete table of trip points.  
2-184  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Timing Characteristics  
Table 2-112 • 2.5 V LVCMOS Low Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V  
Applicable to Pro I/Os  
Drive  
Speed  
Strength Grade tDOUT tDP  
tDIN  
tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS tZHS Units  
4 mA  
Std.  
–1  
0.60 12.00 0.04 1.51 1.66 0.43 12.23 11.61 2.72 2.20 14.46 13.85  
0.51 10.21 0.04 1.29 1.41 0.36 10.40 9.88 2.31 1.87 12.30 11.78  
0.45 8.96 0.03 1.13 1.24 0.32 9.13 8.67 2.03 1.64 10.80 10.34  
0.60 8.73 0.04 1.51 1.66 0.43 8.89 8.01 3.10 2.93 11.13 10.25  
0.51 7.43 0.04 1.29 1.41 0.36 7.57 6.82 2.64 2.49 9.47 8.72  
0.45 6.52 0.03 1.13 1.24 0.32 6.64 5.98 2.32 2.19 8.31 7.65  
0.66 6.77 0.04 1.51 1.66 0.43 6.90 6.11 3.37 3.39 9.14 8.34  
0.56 5.76 0.04 1.29 1.41 0.36 5.87 5.20 2.86 2.89 7.77 7.10  
0.49 5.06 0.03 1.13 1.24 0.32 5.15 4.56 2.51 2.53 6.82 6.23  
0.66 6.31 0.04 1.51 1.66 0.43 6.42 5.73 3.42 3.52 8.66 7.96  
0.56 5.37 0.04 1.29 1.41 0.36 5.46 4.87 2.91 3.00 7.37 6.77  
0.49 4.71 0.03 1.13 1.24 0.32 4.80 4.28 2.56 2.63 6.47 5.95  
0.66 5.93 0.04 1.51 1.66 0.43 6.04 5.70 3.49 4.00 8.28 7.94  
0.56 5.05 0.04 1.29 1.41 0.36 5.14 4.85 2.97 3.40 7.04 6.75  
0.49 4.43 0.03 1.13 1.24 0.32 4.51 4.26 2.61 2.99 6.18 5.93  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–2  
8 mA  
Std.  
–1  
–2  
12 mA  
16 mA  
24 mA  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-185  
Device Architecture  
Table 2-113 • 2.5 V LVCMOS High Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V  
Applicable to Pro I/Os  
Drive  
Speed  
Strength Grade tDOUT tDP  
tDIN  
tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS tZHS Units  
4 mA  
Std.  
–1  
0.60 8.82 0.04 1.51 1.66 0.43 8.13 8.82 2.72 2.29 10.37 11.05  
0.51 7.50 0.04 1.29 1.41 0.36 6.92 7.50 2.31 1.95 8.82 9.40  
0.45 6.58 0.03 1.13 1.24 0.32 6.07 6.58 2.03 1.71 7.74 8.25  
0.60 5.27 0.04 1.51 1.66 0.43 5.27 5.27 3.10 3.03 7.50 7.51  
0.51 4.48 0.04 1.29 1.41 0.36 4.48 4.48 2.64 2.58 6.38 6.38  
0.45 3.94 0.03 1.13 1.24 0.32 3.93 3.94 2.32 2.26 5.60 5.61  
0.66 3.74 0.04 1.51 1.66 0.43 3.81 3.49 3.37 3.49 6.05 5.73  
0.56 3.18 0.04 1.29 1.41 0.36 3.24 2.97 2.86 2.97 5.15 4.87  
0.49 2.80 0.03 1.13 1.24 0.32 2.85 2.61 2.51 2.61 4.52 4.28  
0.66 3.53 0.04 1.51 1.66 0.43 3.59 3.12 3.42 3.62 5.83 5.35  
0.56 3.00 0.04 1.29 1.41 0.36 3.06 2.65 2.91 3.08 4.96 4.55  
0.49 2.63 0.03 1.13 1.24 0.32 2.68 2.33 2.56 2.71 4.35 4.00  
0.66 3.26 0.04 1.51 1.66 0.43 3.32 2.48 3.49 4.11 5.56 4.72  
0.56 2.77 0.04 1.29 1.41 0.36 2.83 2.11 2.97 3.49 4.73 4.01  
0.49 2.44 0.03 1.13 1.24 0.32 2.48 1.85 2.61 3.07 4.15 3.52  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–2  
8 mA  
Std.  
–1  
–2  
12 mA  
16 mA  
24 mA  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
2-186  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-114 • 2.5 V LVCMOS Low Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/Os  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.66 11.40 0.04  
1.31  
1.11  
0.98  
1.31  
1.11  
0.98  
1.31  
1.11  
0.98  
1.31  
1.11  
0.98  
1.31  
1.11  
0.98  
0.43 11.22 11.40 2.68  
2.20 13.45 13.63  
1.88 11.44 11.60  
1.65 10.05 10.18  
2.89 10.34 10.05  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
9.69  
8.51  
7.96  
6.77  
5.94  
6.18  
5.26  
4.61  
6.18  
5.26  
4.61  
6.18  
5.26  
4.61  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
9.54  
8.38  
8.11  
6.90  
6.05  
6.29  
5.35  
4.70  
6.29  
5.35  
4.70  
6.29  
5.35  
4.70  
9.69  
8.51  
7.81  
6.65  
5.84  
5.92  
5.03  
4.42  
5.92  
5.03  
4.42  
5.92  
5.03  
4.42  
2.28  
2.00  
3.05  
2.59  
2.28  
3.30  
2.81  
2.47  
3.30  
2.81  
2.47  
3.30  
2.81  
2.47  
–2  
8 mA  
Std.  
–1  
2.46  
2.16  
3.32  
2.83  
2.48  
3.32  
2.83  
2.48  
3.32  
2.83  
2.48  
8.80  
7.72  
8.53  
7.26  
6.37  
8.53  
7.26  
6.37  
8.53  
7.26  
6.37  
8.55  
7.50  
8.15  
6.94  
6.09  
8.15  
6.94  
6.09  
8.15  
6.94  
6.09  
–2  
12 mA  
16 mA  
24 mA  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-187  
Device Architecture  
Table 2-115 • 2.5 V LVCMOS High Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/Os  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
tDIN  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
8.66  
7.37  
6.47  
5.17  
4.39  
3.86  
3.56  
3.03  
2.66  
3.35  
2.85  
2.50  
3.56  
3.03  
2.66  
1.31  
1.11  
0.98  
1.31  
1.11  
0.98  
1.31  
1.11  
0.98  
1.31  
1.11  
0.98  
1.31  
1.11  
0.98  
7.83  
6.66  
5.85  
5.04  
4.28  
3.76  
3.63  
3.08  
2.71  
3.41  
2.90  
2.55  
3.63  
3.08  
2.71  
8.66  
7.37  
6.47  
5.17  
4.39  
3.86  
3.43  
2.92  
2.56  
3.06  
2.60  
2.29  
3.43  
2.92  
2.56  
2.68  
2.28  
2.00  
3.05  
2.59  
2.28  
3.30  
2.81  
2.47  
3.36  
2.86  
2.51  
3.30  
2.81  
2.47  
2.30 10.07 10.90  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.96  
1.72  
3.00  
2.55  
2.24  
3.44  
2.92  
2.57  
3.55  
3.02  
2.65  
3.44  
2.92  
2.57  
8.56  
7.52  
7.27  
6.19  
5.43  
5.86  
4.99  
4.38  
5.65  
4.81  
4.22  
5.86  
4.99  
4.38  
9.27  
8.14  
7.40  
6.30  
5.53  
5.67  
4.82  
4.23  
5.30  
4.51  
3.96  
5.67  
4.82  
4.23  
–2  
8 mA  
Std.  
–1  
–2  
12 mA  
16 mA  
24 mA  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Table 2-116 • 2.5 V LVCMOS Low Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V  
Applicable to Standard I/Os  
Drive  
Strength  
Speed  
Grade  
tDOUT  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
tDP  
11.00  
9.35  
8.21  
11.00  
9.35  
8.21  
7.50  
6.38  
5.60  
7.50  
6.38  
5.60  
tDIN  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
tZL  
10.37  
8.83  
7.75  
10.37  
8.83  
7.75  
7.36  
6.26  
5.49  
7.36  
6.26  
5.49  
tZH  
11.00  
9.35  
8.21  
11.00  
9.35  
8.21  
7.50  
6.38  
5.60  
7.50  
6.38  
5.60  
tLZ  
tHZ  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
Std.  
–1  
1.29  
1.10  
0.96  
1.29  
1.10  
0.96  
1.29  
1.10  
0.96  
1.29  
1.10  
0.96  
2.03  
1.73  
1.52  
2.03  
1.73  
1.52  
2.39  
2.03  
1.78  
2.39  
2.03  
1.78  
1.83  
1.56  
1.37  
1.83  
1.56  
1.37  
2.46  
2.10  
1.84  
2.46  
2.10  
1.84  
ns  
–2  
ns  
Std.  
–1  
ns  
ns  
–2  
ns  
Std.  
–1  
ns  
ns  
–2  
ns  
Std.  
–1  
ns  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
2-188  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-117 • 2.5 V LVCMOS High Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V  
Applicable to Standard I/Os  
Drive  
Speed  
Strength  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
8.20  
6.98  
6.13  
8.20  
6.98  
6.13  
4.77  
4.05  
3.56  
4.77  
4.05  
3.56  
1.29  
1.10  
0.96  
1.29  
1.10  
0.96  
1.29  
1.10  
0.96  
1.29  
1.10  
0.96  
7.24  
6.16  
5.41  
7.24  
6.16  
5.41  
4.55  
3.87  
3.40  
4.55  
3.87  
3.40  
8.20  
6.98  
6.13  
8.20  
6.98  
6.13  
4.77  
4.05  
3.56  
4.77  
4.05  
3.56  
2.03  
1.73  
1.52  
2.03  
1.73  
1.52  
2.38  
2.03  
1.78  
2.38  
2.03  
1.78  
1.91  
1.62  
1.43  
1.91  
1.62  
1.43  
2.55  
2.17  
1.91  
2.55  
2.17  
1.91  
ns  
–2  
ns  
Std.  
–1  
ns  
ns  
–2  
ns  
Std.  
–1  
ns  
ns  
–2  
ns  
Std.  
–1  
ns  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-189  
Device Architecture  
1.8 V LVCMOS  
Low-Voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 1.8 V applications. It uses a 1.8 V input buffer and push-pull output buffer.  
Table 2-118 • Minimum and Maximum DC Input and Output Levels  
1.8 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL IOSH IIL1 IIH2  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
Max.  
mA mA mA3  
mA3 µA4 µA4  
Applicable to Pro I/O Banks  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.35 * VCCI 0.65 * VCCI  
0.35 * VCCI 0.65 * VCCI  
3.6  
3.6  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
2
4
6
8
2
4
6
8
11  
22  
44  
51  
74  
74  
9
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
17  
35  
45  
91  
91  
0.35 * VCCI 0.65 * VCCI 3.6  
0.35 * VCCI 0.65 * VCCI  
0.35 * VCCI 0.65 * VCCI  
0.35 * VCCI 0.65 * VCCI  
3.6  
3.6  
3.6  
0.45 VCCI – 0.45 12 12  
0.45 VCCI – 0.45 16 16  
Applicable to Advanced I/O Banks  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.35 * VCCI 0.65 * VCCI  
0.35 * VCCI 0.65 * VCCI  
1.9  
1.9  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
2
4
6
8
2
4
6
8
11  
22  
44  
51  
74  
74  
9
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
17  
35  
45  
91  
91  
0.35 * VCCI 0.65 * VCCI 1.9  
0.35 * VCCI 0.65 * VCCI  
0.35 * VCCI 0.65 * VCCI  
0.35 * VCCI 0.65 * VCCI  
1.9  
1.9  
1.9  
0.45 VCCI – 0.45 12 12  
0.45 VCCI – 0.45 16 16  
Applicable to Standard I/O Banks  
2 mA  
4 mA  
Notes:  
–0.3  
–0.3  
0.35 * VCCI 0.65 * VCCI  
0.35 * VCCI 0.65 * VCCI  
3.6  
3.6  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
2
4
2
4
11  
22  
9
10  
10  
10  
10  
17  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
5. Software default selection highlighted in gray.  
R to VCCI for t / t / t  
R to GND for t / t / t  
HZ ZH ZHS  
Test Point  
LZ ZL ZLS  
R = 1 k  
Test Point  
Data Path  
35 pF  
Enable Path  
35 pF for t / t  
/ t / t  
ZH ZHS ZL ZLS  
35 pF for t / t  
HZ LZ  
Figure 2-121 • AC Loading  
Table 2-119 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input Low (V)  
Measuring Point* (V)  
VREF (typ.) (V)  
C
LOAD (pF)  
0
1.8  
0.9  
35  
Note: *Measuring point = Vtrip. See Table 2-90 on page 2-169 for a complete table of trip points.  
2-190  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Timing Characteristics  
Table 2-120 • 1.8 V LVCMOS Low Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 1.7 V  
Applicable to Pro I/Os  
Drive  
Speed  
Strength Grade tDOUT tDP  
tDIN  
tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS tZHS Units  
2 mA  
4 mA  
8 mA  
12 mA  
16 mA  
Std.  
–1  
0.66 15.84 0.04 1.45 1.91 0.43 15.65 15.84 2.78 1.58 17.89 18.07  
0.56 13.47 0.04 1.23 1.62 0.36 13.31 13.47 2.37 1.35 15.22 15.37  
0.49 11.83 0.03 1.08 1.42 0.32 11.69 11.83 2.08 1.18 13.36 13.50  
0.66 11.39 0.04 1.45 1.91 0.43 11.60 10.76 3.26 2.77 13.84 12.99  
0.56 9.69 0.04 1.23 1.62 0.36 9.87 9.15 2.77 2.36 11.77 11.05  
0.49 8.51 0.03 1.08 1.42 0.32 8.66 8.03 2.43 2.07 10.33 9.70  
0.66 8.97 0.04 1.45 1.91 0.43 9.14 8.10 3.57 3.36 11.37 10.33  
0.56 7.63 0.04 1.23 1.62 0.36 7.77 6.89 3.04 2.86 9.67 8.79  
0.49 6.70 0.03 1.08 1.42 0.32 6.82 6.05 2.66 2.51 8.49 7.72  
0.66 8.35 0.04 1.45 1.91 0.43 8.50 7.59 3.64 3.52 10.74 9.82  
0.56 7.10 0.04 1.23 1.62 0.36 7.23 6.45 3.10 3.00 9.14 8.35  
0.49 6.24 0.03 1.08 1.42 0.32 6.35 5.66 2.72 2.63 8.02 7.33  
0.66 7.94 0.04 1.45 1.91 0.43 8.09 7.56 3.74 4.11 10.32 9.80  
0.56 6.75 0.04 1.23 1.62 0.36 6.88 6.43 3.18 3.49 8.78 8.33  
0.49 5.93 0.03 1.08 1.42 0.32 6.04 5.65 2.79 3.07 7.71 7.32  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-191  
Device Architecture  
Table 2-121 • 1.8 V LVCMOS High Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 1.7 V  
Applicable to Pro I/Os  
Drive  
Speed  
Strength Grade tDOUT tDP  
tDIN  
tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS tZHS Units  
2 mA  
4 mA  
8 mA  
12 mA  
16 mA  
Std.  
–1  
0.66 12.10 0.04 1.45 1.91 0.43 9.59 12.10 2.78 1.64 11.83 14.34  
0.56 10.30 0.04 1.23 1.62 0.36 8.16 10.30 2.37 1.39 10.06 12.20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–2  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
9.04 0.03 1.08 1.42 0.32 7.16 9.04 2.08 1.22 8.83 10.71  
7.05 0.04 1.45 1.91 0.43 6.20 7.05 3.25 2.86 8.44 9.29  
6.00 0.04 1.23 1.62 0.36 5.28 6.00 2.76 2.44 7.18 7.90  
5.27 0.03 1.08 1.42 0.32 4.63 5.27 2.43 2.14 6.30 6.94  
4.52 0.04 1.45 1.91 0.43 4.47 4.52 3.57 3.47 6.70 6.76  
3.85 0.04 1.23 1.62 0.36 3.80 3.85 3.04 2.95 5.70 5.75  
3.38 0.03 1.08 1.42 0.32 3.33 3.38 2.66 2.59 5.00 5.05  
4.12 0.04 1.45 1.91 0.43 4.20 3.99 3.63 3.62 6.43 6.23  
3.51 0.04 1.23 1.62 0.36 3.57 3.40 3.09 3.08 5.47 5.30  
3.08 0.03 1.08 1.42 0.32 3.14 2.98 2.71 2.71 4.81 4.65  
3.80 0.04 1.45 1.91 0.43 3.87 3.09 3.73 4.24 6.10 5.32  
3.23 0.04 1.23 1.62 0.36 3.29 2.63 3.18 3.60 5.19 4.53  
2.83 0.03 1.08 1.42 0.32 2.89 2.31 2.79 3.16 4.56 3.98  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
2-192  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-122 • 1.8 V LVCMOS Low Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 1.7 V  
Applicable to Advanced I/Os  
Drive  
Speed  
Strength  
Grade tDOUT tDP  
tDIN  
tPY  
tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
8 mA  
12 mA  
16 mA  
Std.  
0.66 15.53 0.04  
0.56 13.21 0.04  
0.49 11.60 0.03  
0.66 10.48 0.04  
1.31  
1.11  
0.98  
1.31  
1.11  
0.98  
1.31  
1.11  
0.98  
1.31  
1.11  
0.98  
1.31  
1.11  
0.98  
0.43 14.11 15.53 2.78  
0.36 12.01 13.21 2.36  
0.32 10.54 11.60 2.07  
0.43 10.41 10.48 3.23  
1.60 16.35 17.77  
1.36 13.91 15.11  
1.19 12.21 13.27  
2.73 12.65 12.71  
2.33 10.76 10.81  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–1  
–22  
Std.  
–1  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
8.91 0.04  
7.82 0.03  
8.05 0.04  
6.85 0.04  
6.01 0.03  
7.50 0.04  
6.38 0.04  
5.60 0.03  
7.29 0.04  
6.20 0.04  
5.45 0.03  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
8.86  
7.77  
8.20  
6.97  
6.12  
7.64  
6.50  
5.71  
7.23  
6.15  
5.40  
8.91  
7.82  
7.84  
6.67  
5.86  
7.30  
6.21  
5.45  
7.29  
6.20  
5.45  
2.75  
2.41  
3.54  
3.01  
2.64  
3.61  
3.07  
2.69  
3.71  
3.15  
2.77  
–2  
2.04  
9.44  
9.49  
Std.  
–1  
3.27 10.43 10.08  
2.78  
2.44  
3.41  
2.90  
2.55  
3.95  
3.36  
2.95  
8.88  
7.79  
9.88  
8.40  
7.38  
9.47  
8.06  
7.07  
8.57  
7.53  
9.53  
8.11  
7.12  
9.53  
8.11  
7.12  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-193  
Device Architecture  
Table 2-123 • 1.8 V LVCMOS High Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 1.7 V  
Applicable to Advanced I/Os  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
11.86 0.04 1.22 0.43 9.14 11.86 2.77  
0.56 10.09 0.04 1.04 0.36 7.77 10.09 2.36  
tDIN  
tPY tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
8 mA  
12 mA  
16 mA  
Std.  
–1  
0.66  
1.66 11.37 14.10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.41  
1.24  
2.84  
2.41  
2.12  
3.38  
2.88  
2.53  
3.52  
3.00  
2.63  
4.08  
3.47  
3.05  
9.67 11.99  
8.49 10.53  
–2  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
8.86  
6.91  
5.88  
5.16  
4.45  
3.78  
3.32  
3.92  
3.34  
2.93  
3.53  
3.01  
2.64  
0.03 0.91 0.32 6.82  
0.04 1.22 0.43 5.86  
0.04 1.04 0.36 4.99  
0.03 0.91 0.32 4.38  
0.04 1.22 0.43 4.18  
0.04 1.04 0.36 3.56  
0.03 0.91 0.32 3.12  
0.04 1.22 0.43 3.93  
0.04 1.04 0.36 3.34  
0.03 0.91 0.32 2.93  
0.04 1.22 0.43 3.60  
0.04 1.04 0.36 3.06  
0.03 0.91 0.32 2.69  
8.86  
6.91  
5.88  
5.16  
4.45  
3.78  
3.32  
3.92  
3.34  
2.93  
3.04  
2.59  
2.27  
2.07  
3.22  
2.74  
2.41  
3.53  
3.00  
2.64  
3.60  
3.06  
2.69  
3.70  
3.15  
2.76  
Std.  
–1  
8.10  
6.89  
6.05  
6.42  
5.46  
4.79  
6.16  
5.24  
4.60  
5.84  
4.96  
4.36  
9.15  
7.78  
6.83  
6.68  
5.69  
4.99  
6.16  
5.24  
4.60  
5.28  
4.49  
3.94  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Table 2-124 • 1.8 V LVCMOS Low Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 1.7 V  
Applicable to Standard I/Os  
Drive  
Strength  
Speed  
Grade  
tDOUT  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
tZL  
13.15  
11.19  
9.82  
9.55  
8.13  
7.13  
tZH  
tLZ  
tHZ  
Units  
ns  
2 mA  
Std.  
–1  
15.01  
12.77  
11.21  
10.10  
8.59  
1.20  
1.02  
0.90  
1.20  
1.02  
0.90  
15.01  
12.77  
11.21  
10.10  
8.59  
1.99  
1.70  
1.49  
2.41  
2.05  
1.80  
1.99  
1.70  
1.49  
2.37  
2.02  
1.77  
ns  
–2  
ns  
4 mA  
Std.  
–1  
ns  
ns  
–2  
7.54  
7.54  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
2-194  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-125 • 1.8 V LVCMOS High Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 1.7 V  
Applicable to Standard I/Os  
Drive  
Speed  
Strength  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
tDP  
11.21  
9.54  
8.37  
6.34  
5.40  
4.74  
tDIN  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
tZL  
tZH  
11.21  
9.54  
8.37  
6.34  
5.40  
4.74  
tLZ  
tHZ  
Units  
ns  
2 mA  
1.20  
1.02  
0.90  
1.20  
1.02  
0.90  
8.53  
7.26  
6.37  
5.38  
4.58  
4.02  
1.99  
1.69  
1.49  
2.41  
2.05  
1.80  
1.21  
1.03  
0.90  
2.48  
2.11  
1.85  
ns  
–2  
ns  
4 mA  
Std.  
–1  
ns  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-195  
Device Architecture  
1.5 V LVCMOS (JESD8-11)  
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 1.5 V applications. It uses a 1.5 V input buffer and push-pull output buffer.  
Table 2-126 • Minimum and Maximum DC Input and Output Levels  
1.5 V  
LVCMOS  
VIL  
Max.  
VIH  
VOL  
VOH  
IOL IOH IOSL IOSH IIL1 IIH2  
Drive  
Strength  
Min.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max. Max.  
V
mA mA mA3 mA3 µA4 µA4  
Applicable to Pro I/O Banks  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI  
2
4
6
8
2
4
6
8
16  
33  
39  
55  
55  
13  
25  
32  
66  
66  
10 10  
10 10  
10 10  
10 10  
10 10  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 12 12  
Applicable to Advanced I/O Banks  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI  
2
4
6
8
2
4
6
8
16  
33  
39  
55  
55  
13  
25  
32  
66  
66  
10 10  
10 10  
10 10  
10 10  
10 10  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12  
Applicable to Pro I/O Banks  
2 mA  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI  
2
2
16  
13  
10 10  
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
2. is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
I
IH  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
5. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R to GND for tHZ / tZH / tZHS  
R = 1 k  
Test Point  
Test Point  
Data Path  
35 pF  
Enable Path  
35 pF for tZH / tZHS / tZL / tZLS  
35 pF for tHZ / tLZ  
Figure 2-122 • AC Loading  
Table 2-127 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V)  
CLOAD (pF)  
0
1.5  
0.75  
35  
Note: *Measuring point = Vtrip. See Table 2-90 on page 2-169 for a complete table of trip points.  
2-196  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Timing Characteristics  
Table 2-128 • 1.5 V LVCMOS Low Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 1.4 V  
Applicable to Pro I/Os  
Drive  
Speed  
Strength Grade tDOUT tDP  
tDIN  
tPY  
tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS tZHS Units  
2 mA  
4 mA  
8 mA  
12 mA  
Std.  
–1  
0.66 14.11 0.04 1.70 2.14 0.43 14.37 13.14 3.40 2.68 16.61 15.37  
0.56 12.00 0.04 1.44 1.82 0.36 12.22 11.17 2.90 2.28 14.13 13.08  
0.49 10.54 0.03 1.27 1.60 0.32 10.73 9.81 2.54 2.00 12.40 11.48  
0.66 11.23 0.04 1.70 2.14 0.43 11.44 9.87 3.77 3.36 13.68 12.10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–2  
Std.  
–1  
0.56  
0.49  
9.55 0.04 1.44 1.82 0.36 9.73 8.39 3.21 2.86 11.63 10.29  
8.39 0.03 1.27 1.60 0.32 8.54 7.37 2.81 2.51 10.21 9.04  
–2  
Std.  
–1  
0.66 10.45 0.04 1.70 2.14 0.43 10.65 9.24 3.84 3.55 12.88 11.48  
0.56  
0.49  
8.89 0.04 1.44 1.82 0.36 9.06 7.86 3.27 3.02 10.96 9.76  
7.81 0.03 1.27 1.60 0.32 7.95 6.90 2.87 2.65 9.62 8.57  
–2  
Std.  
–1  
0.66 10.02 0.04 1.70 2.14 0.43 10.20 9.23 3.97 4.22 12.44 11.47  
0.56  
0.49  
8.52 0.04 1.44 1.82 0.36 8.68 7.85 3.38 3.59 10.58 9.75  
7.48 0.03 1.27 1.60 0.32 7.62 6.89 2.97 3.15 9.29 8.56  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.  
Table 2-129 • 1.5 V LVCMOS High Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 1.4 V  
Applicable to Pro I/Os  
Drive  
Speed  
tEOU  
Strength Grade tDOUT tDP  
tDIN  
tPY  
tPYS  
tZL  
tZH  
tLZ  
tHZ  
tZLS tZHS Units  
T
2 mA  
4 mA  
8 mA  
12 mA  
Std.  
–1  
0.66 8.53 0.04 1.70 2.14 0.43 7.26 8.53 3.39 2.79 9.50 10.77  
0.56 7.26 0.04 1.44 1.82 0.36 6.18 7.26 2.89 2.37 8.08 9.16  
0.49 6.37 0.03 1.27 1.60 0.32 5.42 6.37 2.53 2.08 7.09 8.04  
0.66 5.41 0.04 1.70 2.14 0.43 5.22 5.41 3.75 3.48 7.45 7.65  
0.56 4.60 0.04 1.44 1.82 0.36 4.44 4.60 3.19 2.96 6.34 6.50  
0.49 4.04 0.03 1.27 1.60 0.32 3.89 4.04 2.80 2.60 5.56 5.71  
0.66 4.80 0.04 1.70 2.14 0.43 4.89 4.75 3.83 3.67 7.13 6.98  
0.56 4.09 0.04 1.44 1.82 0.36 4.16 4.04 3.26 3.12 6.06 5.94  
0.49 3.59 0.03 1.27 1.60 0.32 3.65 3.54 2.86 2.74 5.32 5.21  
0.66 4.42 0.04 1.70 2.14 0.43 4.50 3.62 3.96 4.37 6.74 5.86  
0.56 3.76 0.04 1.44 1.82 0.36 3.83 3.08 3.37 3.72 5.73 4.98  
0.49 3.30 0.03 1.27 1.60 0.32 3.36 2.70 2.96 3.27 5.03 4.37  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-197  
Device Architecture  
Table 2-130 • 1.5 V LVCMOS Low Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 1.4 V  
Applicable to Advanced I/Os  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
8 mA  
12 mA  
Std.  
–1  
0.66 12.78 0.04  
0.56 10.87 0.04  
1.31  
1.11  
0.98  
1.31  
1.11  
0.98  
1.31  
1.11  
0.98  
1.31  
1.11  
0.98  
0.43 12.81 12.78 3.40  
0.36 10.90 10.87 2.89  
2.64 15.05 15.02  
2.25 12.80 12.78  
1.97 11.24 11.22  
3.27 12.43 11.78  
2.78 10.57 10.02  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–2  
0.49  
9.55  
0.03  
0.32  
9.57  
9.55  
2.54  
3.75  
3.19  
2.80  
3.83  
3.26  
2.86  
3.95  
3.36  
2.95  
Std.  
–1  
0.66 10.01 0.04  
0.43 10.19 9.55  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
8.51  
7.47  
9.33  
7.94  
6.97  
8.91  
7.58  
6.65  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
8.67  
7.61  
9.51  
8.09  
7.10  
9.07  
7.72  
6.78  
8.12  
7.13  
8.89  
7.56  
6.64  
8.89  
7.57  
6.64  
–2  
2.44  
9.28  
8.80  
Std.  
–1  
3.43 11.74 11.13  
2.92  
2.56  
9.99  
8.77  
9.47  
8.31  
–2  
Std.  
–1  
4.05 11.31 11.13  
3.44  
3.02  
9.62  
8.45  
9.47  
8.31  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Table 2-131 • 1.5 V LVCMOS High Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 1.4 V  
Applicable to Advanced I/Os  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
tDIN  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
8 mA  
12 mA  
Std.  
–1  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
0.66  
0.56  
0.49  
8.36  
7.11  
6.24  
5.31  
4.52  
3.97  
4.67  
3.97  
3.49  
4.08  
3.47  
3.05  
1.44  
1.22  
1.07  
1.44  
1.22  
1.07  
1.44  
1.22  
1.07  
1.44  
1.22  
1.07  
6.82  
5.80  
5.10  
4.85  
4.13  
3.62  
4.55  
3.87  
3.40  
4.15  
3.53  
3.10  
8.36  
7.11  
6.24  
5.31  
4.52  
3.97  
4.67  
3.97  
3.49  
3.58  
3.04  
2.67  
3.39  
2.88  
2.53  
3.74  
3.18  
2.79  
3.82  
3.25  
2.85  
3.94  
3.36  
2.95  
2.77  
2.35  
2.06  
3.40  
2.89  
2.54  
3.56  
3.03  
2.66  
4.20  
3.58  
3.14  
9.06 10.60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7.71  
6.76  
7.09  
6.03  
5.29  
6.78  
5.77  
5.07  
6.39  
5.44  
4.77  
9.02  
7.91  
7.55  
6.42  
5.64  
6.90  
5.87  
5.16  
5.81  
4.95  
4.34  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Std.  
–1  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
2-198  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-132 • 1.5 V LVCMOS Low Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 1.4 V  
Applicable to Standard I/Os  
Drive  
Speed  
Strength  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
2 mA  
12.33  
10.49  
9.21  
1.42  
1.21  
1.06  
11.79  
10.03  
8.81  
12.33  
10.49  
9.21  
2.45  
2.08  
1.83  
2.32  
1.98  
1.73  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Table 2-133 • 1.5 V LVCMOS High Slew  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 1.4 V  
Applicable to Standard I/Os  
Drive  
Strength  
Speed  
Grade  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
Units  
ns  
2 mA  
Std.  
–1  
7.65  
6.50  
5.71  
1.42  
1.21  
1.06  
6.31  
5.37  
4.71  
7.65  
6.50  
5.71  
2.45  
2.08  
1.83  
2.45  
2.08  
1.83  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-199  
Device Architecture  
3.3 V PCI, 3.3 V PCI-X  
The Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI  
Bus applications.  
Table 2-134 • Minimum and Maximum DC Input and Output Levels  
3.3 V PCI/PCI-X  
VIL  
VIH  
VOL  
VOH  
IOL  
mA  
IOH IOSL IOSH IIL1 IIH2  
Max. Max.  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Drive Strength  
mA  
mA3 mA3 µA4 µA4  
Per PCI  
Per PCI curves  
10  
10  
specification  
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable  
path characterization are described in Figure 2-123.  
R to VCCI for tDP (F)  
R to GND for tDP (R)  
R to VCCI for tLZ / tZL / tZLS  
R to GND for tHZ / tZH / tZHS  
R = 25  
Test Point  
Data Path  
R = 1 k  
Test Point  
Enable Path  
10 pF for tZH / tZHS / tZL / tZLS  
10 pF for tHZ / tLZ  
Figure 2-123 AC Loading  
AC loadings are defined per PCI/PCI-X specifications for the data path; Microsemi loading for tristate is  
described in Table 2-135.  
Table 2-135 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V)  
CLOAD (pF)  
0
3.3  
0.285 * VCCI for tDP(R)  
0.615 * VCCI for tDP(F)  
10  
Note: *Measuring point = Vtrip. See Table 2-90 on page 2-169 for a complete table of trip points.  
2-200  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Timing Characteristics  
Table 2-136 • 3.3 V PCI/PCI-X  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V  
Applicable to Pro I/Os  
Speed  
Grade  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
tPY  
tPYS tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
5.09  
4.33  
3.80  
tZHS Units  
Std.  
–1  
2.81  
2.39  
2.09  
0.04 1.05 1.67  
0.04 0.89 1.42  
0.03 0.78 1.25  
0.43  
0.36  
0.32  
2.86  
2.43  
2.13  
2.00  
1.70  
1.49  
3.28  
2.79  
2.45  
3.61  
3.07  
2.70  
4.23  
3.60  
3.16  
ns  
ns  
ns  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Table 2-137 • 3.3 V PCI/PCI-X  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/Os  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
tPY  
tPYS  
tEOUT  
2.73  
2.32  
2.04  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.19  
3.56  
3.13  
tZHS Units  
2.68  
2.28  
2.00  
0.04 0.86 0.43  
0.04 0.73 0.36  
0.03 0.65 0.32  
1.95  
1.66  
1.46  
3.21  
2.73  
2.40  
3.58  
3.05  
2.68  
4.97  
4.22  
3.71  
0.66  
0.56  
0.49  
ns  
ns  
ns  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-201  
Device Architecture  
Voltage Referenced I/O Characteristics  
3.3 V GTL  
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier  
input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.  
Table 2-138 • Minimum and Maximum DC Input and Output Levels  
3.3 V GTL  
VIL  
VIH  
VOL  
VOH IOL IOH IOSL IOSH IIL1 IIH2  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
Max.  
mA mA mA3  
mA3 µA4 µA4  
20 mA3  
–0.3 VREF – 0.05 VREF + 0.05  
3.6  
0.4  
20 20  
181  
268  
10 10  
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
VTT  
GTL  
25  
Test Point  
10 pF  
Figure 2-124 • AC Loading  
Table 2-139 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.05  
VREF + 0.05  
0.8  
0.8  
1.2  
10  
Note: *Measuring point = Vtrip. See Table 2-90 on page 2-169 for a complete table of trip points.  
Timing Characteristics  
Table 2-140 • 3.3 V GTL  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V, VREF = 0.8 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.27  
3.63  
3.19  
tZHS Units  
2.08  
1.77  
1.55  
2.93  
2.50  
2.19  
2.04  
1.73  
1.52  
2.08  
1.77  
1.55  
4.31  
3.67  
3.22  
ns  
ns  
ns  
–2  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
2-202  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
2.5 V GTL  
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier  
input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.  
Table 2-141 • Minimum and Maximum DC Input and Output Levels  
2.5 GTL  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL IOSH IIL1 IIH2  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max. Max.  
mA mA mA3 mA3 µA4 µA4  
20 mA3  
–0.3 VREF – 0.05 VREF + 0.05  
3.6  
0.4  
20  
20  
124  
169  
10  
10  
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
VTT  
GTL  
25  
Test Point  
10 pF  
Figure 2-125 AC Loading  
Table 2-142 AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V) VTT (typ.) (V)  
0.8 1.2  
C
LOAD (pF)  
VREF – 0.05  
VREF + 0.05  
0.8  
10  
Note: *Measuring point = Vtrip. See Table 2-90 on page 2-169 for a complete table of trip points.  
Timing Characteristics  
Table 2-143 • 2.5 V GTL  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V, VREF = 0.8 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.40  
3.74  
3.28  
tZHS  
4.36  
3.71  
3.26  
Units  
ns  
2.13  
1.81  
1.59  
2.46  
2.09  
1.83  
2.16  
1.84  
1.61  
2.13  
1.81  
1.59  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-203  
Device Architecture  
3.3 V GTL+  
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential  
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.  
Table 2-144 • Minimum and Maximum DC Input and Output Levels  
3.3 V GTL+  
VIL  
VIH  
VOL  
VOH IOL IOH IOSL IOSH IIL1 IIH2  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
Max.  
mA mA mA3  
mA3 µA4 µA4  
35 mA  
–0.3 VREF – 0.1 VREF + 0.1  
3.6  
0.6  
35 35  
181  
268  
10  
10  
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
VTT  
GTL+  
25  
Test Point  
10 pF  
Figure 2-126 AC Loading  
Table 2-145 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V) VTT (typ.) (V)  
1.0 1.5  
C
LOAD (pF)  
VREF – 0.1  
VREF + 0.1  
1.0  
10  
Note: *Measuring point = Vtrip. See Table 2-90 on page 2-169 for a complete table of trip points.  
Timing Characteristics  
Table 2-146 • 3.3 V GTL+  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.0 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.33  
3.68  
3.23  
tZHS  
4.29  
3.65  
3.20  
Units  
ns  
2.06  
1.75  
1.53  
1.59  
1.35  
1.19  
2.09  
1.78  
1.56  
2.06  
1.75  
1.53  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
2-204  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
2.5 V GTL+  
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential  
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.  
Table 2-147 • Minimum and Maximum DC Input and Output Levels  
2.5 V  
GTL+  
VIL  
Max.  
VIH  
VOL  
VOH  
IOL  
IOH  
IOSL IOSH IIL1 IIH2  
Drive  
Strength  
Min.  
V
Min.  
V
Max. Max.  
Min.  
V
Max.  
mA3  
Max.  
V
V
V
mA  
mA  
mA3 µA4 µA4  
33 mA  
–0.3 VREF – 0.1 VREF + 0.1 3.6  
0.6  
33  
33  
124  
169  
10  
10  
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
VTT  
GTL+  
25  
Test Point  
10 pF  
Figure 2-127 • AC Loading  
Table 2-148 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V) VTT (typ.) (V)  
1.0 1.5  
C
LOAD (pF)  
VREF – 0.1  
VREF + 0.1  
1.0  
10  
Note: *Measuring point = Vtrip. See Table 2-90 on page 2-169 for a complete table of trip points.  
Timing Characteristics  
Table 2-149 • 2.5 V GTL+  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.0 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.48  
3.81  
3.35  
tZHS  
4.34  
3.69  
4.34  
Units  
ns  
2.21  
1.88  
1.65  
1.51  
1.29  
1.13  
2.25  
1.91  
1.68  
2.10  
1.79  
1.57  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-205  
Device Architecture  
HSTL Class I  
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).  
Fusion devices support Class I. This provides a differential amplifier input buffer and a push-pull output  
buffer.  
Table 2-150 • Minimum and Maximum DC Input and Output Levels  
HSTL  
Class I  
VIL  
Max.  
VIH  
VOL  
VOH  
IOL IOH IOSL IOSH IIL1 IIH2  
Drive  
Strength  
Min.  
V
Min.  
V
Max. Max.  
Min.  
V
Max. Max.  
V
V
V
mA mA mA3 mA3 µA4 µA4  
8 mA  
–0.3 VREF – 0.1 VREF + 0.1 3.6  
0.4  
VCCI – 0.4  
8
8
39  
32  
10 10  
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
VTT  
HSTL  
Class I  
50  
Test Point  
20 pF  
Figure 2-128 • AC Loading  
Table 2-151 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.1  
VREF + 0.1  
0.75  
0.75  
0.75  
20  
Note: *Measuring point = Vtrip. See Table 2-90 on page 2-169 for a complete table of trip points.  
Timing Characteristics  
Table 2-152 • HSTL Class I  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 1.4 V, VREF = 0.75 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
5.47  
4.66  
4.09  
tZHS  
5.38  
4.58  
4.02  
Units  
ns  
3.18  
2.70  
2.37  
2.12  
1.81  
1.59  
3.24  
2.75  
2.42  
3.14  
2.67  
2.35  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
2-206  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
HSTL Class II  
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).  
Fusion devices support Class II. This provides a differential amplifier input buffer and a push-pull output  
buffer.  
Table 2-153 • Minimum and Maximum DC Input and Output Levels  
HSTL Class II  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL IOSH IIL1 IIH2  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max. Max.  
Drive Strength  
15 mA3  
mA mA mA3 mA3 µA4 µA4  
–0.3 VREF – 0.1 VREF + 0.1  
3.6  
0.4  
VCCI – 0.4 15 15  
55  
66  
10 10  
Note:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
5. Output drive strength is below JEDEC specification.  
VTT  
HSTL  
Class II  
25  
Test Point  
20 pF  
Figure 2-129 • AC Loading  
Table 2-154 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V) VTT (typ.) (V)  
0.75 0.75  
C
LOAD (pF)  
VREF – 0.1  
VREF + 0.1  
0.75  
20  
Note: *Measuring point = Vtrip. See Table 2-90 on page 2-169 for a complete table of trip points.  
Timing Characteristics  
Table 2-155 • HSTL Class II  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 1.4 V, VREF = 0.75 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
5.32  
4.52  
3.97  
tZHS  
4.95  
4.21  
3.70  
Units  
ns  
3.02  
2.57  
2.26  
2.12  
1.81  
1.59  
3.08  
2.62  
2.30  
2.71  
2.31  
2.03  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-207  
Device Architecture  
SSTL2 Class I  
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Fusion devices support Class  
I. This provides a differential amplifier input buffer and a push-pull output buffer.  
Table 2-156 • Minimum and Maximum DC Input and Output Levels  
SSTL2 Class I  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL IOSH IIL1 IIH2  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max. Max.  
mA mA mA3 mA3 µA4 µA4  
15 mA  
–0.3 VREF – 0.2 VREF + 0.2  
3.6  
0.54 VCCI – 0.62 15 15  
87  
83  
10  
10  
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
VTT  
SSTL2  
Class I  
50  
Test Point  
25  
30 pF  
Figure 2-130 • AC Loading  
Table 2-157 AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V) VTT (typ.) (V)  
1.25 1.25  
C
LOAD (pF)  
VREF – 0.2  
VREF + 0.2  
1.25  
30  
Note: *Measuring point = Vtrip. See Table 2-90 on page 2-169 for a complete table of trip points.  
Timing Characteristics  
Table 2-158 • SSTL 2 Class I  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.25 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.40  
3.74  
3.29  
tZHS  
4.08  
3.47  
3.05  
Units  
ns  
2.13  
1.81  
1.59  
1.33  
1.14  
1.00  
2.17  
1.84  
1.62  
1.85  
1.57  
1.38  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
2-208  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
SSTL2 Class II  
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Fusion devices support Class  
II. This provides a differential amplifier input buffer and a push-pull output buffer.  
Table 2-159 • Minimum and Maximum DC Input and Output Levels  
SSTL2 Class II  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL IOSH IIL1 IIH2  
Min.  
V
Max.  
V
Min.  
V
Max. Max.  
Min.  
V
Max. Max.  
Drive Strength  
18 mA  
V
V
mA mA mA3 mA3 µA4 µA4  
–0.3 VREF – 0.2 VREF + 0.2 3.6  
0.35 VCCI – 0.43 18 18 124  
169  
10 10  
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
VTT  
SSTL2  
Class II  
25  
Test Point  
25  
30 pF  
Figure 2-131 • AC Loading  
Table 2-160 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V)  
1.25 1.25 1.25  
C
LOAD (pF)  
VREF – 0.2  
VREF + 0.2  
30  
Note: *Measuring point = Vtrip. See Table 2-90 on page 2-169 for a complete table of trip points.  
Timing Characteristics  
Table 2-161 • SSTL 2 Class II  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.25 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.44  
3.78  
3.32  
tZHS  
4.01  
3.41  
2.99  
Units  
ns  
2.17  
1.84  
1.62  
1.33  
1.14  
1.00  
2.21  
1.88  
1.65  
1.77  
1.51  
1.32  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-209  
Device Architecture  
SSTL3 Class I  
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Fusion devices support Class  
I. This provides a differential amplifier input buffer and a push-pull output buffer.  
Table 2-162 • Minimum and Maximum DC Input and Output Levels  
SSTL3 Class I  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL IOSH IIL1 IIH2  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max. Max.  
mA mA mA3 mA3 µA4 µA4  
14 mA  
–0.3 VREF – 0.2 VREF + 0.2 3.6  
0.7  
VCCI – 1.1 14  
14  
54  
51  
10  
10  
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
VTT  
SSTL3  
Class I  
50  
Test Point  
25  
30 pF  
Figure 2-132 • AC Loading  
Table 2-163 AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.2  
VREF + 0.2  
1.5  
1.5  
1.485  
30  
Note: *Measuring point = Vtrip. See Table 2-90 on page 2-169 for a complete table of trip points.  
Timing Characteristics  
Table 2-164 • SSTL3 Class I  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.5 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.59  
3.90  
3.42  
tZHS  
4.07  
3.46  
3.04  
Units  
ns  
2.31  
1.96  
1.72  
1.25  
1.06  
0.93  
2.35  
2.00  
1.75  
1.84  
1.56  
1.37  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
2-210  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
SSTL3 Class II  
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Fusion devices support Class  
II. This provides a differential amplifier input buffer and a push-pull output buffer.  
Table 2-165 • Minimum and Maximum DC Input and Output Levels  
SSTL3 Class II  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL IOSH IIL1 IIH2  
Max. Max.  
Min.  
V
Max.  
V
Min.  
Max. Max.  
Min.  
V
Drive Strength  
21 mA  
V
V
V
mA mA mA3  
mA3 µA4 µA4  
–0.3 VREF – 0.2 VREF + 0.2 3.6  
0.5 VCCI – 0.9 21 21  
109  
103 10 10  
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
4. Currents are measured at 85°C junction temperature.  
VTT  
SSTL3  
Class II  
25  
Test Point  
25  
30 pF  
Figure 2-133 • AC Loading  
Table 2-166 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V) VTT (typ.) (V)  
1.5 1.485  
C
LOAD (pF)  
VREF – 0.2  
VREF + 0.2  
1.5  
30  
Note: *Measuring point = Vtrip. See Table 2-90 on page 2-169 for a complete table of trip points.  
Timing Characteristics  
Table 2-167 • SSTL3- Class II  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.5 V  
Speed  
Grade  
Std.  
–1  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
tEOUT  
0.43  
0.36  
0.32  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.34  
3.69  
3.24  
tZHS  
3.91  
3.32  
2.92  
Units  
ns  
2.07  
1.76  
1.54  
1.25  
1.06  
0.93  
2.10  
1.79  
1.57  
1.67  
1.42  
1.25  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-211  
Device Architecture  
Differential I/O Characteristics  
Configuration of the I/O modules as a differential pair is handled by the Microsemi Designer  
software when the user instantiates a differential I/O macro in the design.  
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output  
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no  
support for bidirectional I/Os or tristates with these standards.  
LVDS  
Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a high-speed differential I/O standard. It requires  
that one data bit be carried through two signal lines, so two pins are needed. It also requires external  
resistor termination.  
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-134.  
The building blocks of the LVDS transmitter–receiver are one transmitter macro, one receiver macro,  
three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three  
driver resistors are different from those used in the LVPECL implementation because the output standard  
specifications are different.  
Bourns Part Number: CAT16-LV4F12  
FPGA  
FPGA  
OUTBUF_LVDS  
P
P
N
165  
165   
ZO = 50   
140   
ZO = 50   
INBUF_LVDS  
+
100   
N
Figure 2-134 • LVDS Circuit Diagram and Board-Level Implementation  
Table 2-168 • Minimum and Maximum DC Input and Output Levels  
DC Parameter  
VCCI  
Description  
Supply Voltage  
Min.  
2.375  
0.9  
Typ.  
2.5  
Max.  
2.625  
1.25  
1.6  
Units  
V
VOL  
Output Low Voltage  
1.075  
1.425  
0.91  
0.91  
V
VOH  
IOL 1  
IOH 1  
Input High Voltage  
1.25  
0.65  
0.65  
0
V
Output Low Voltage  
1.16  
1.16  
2.925  
10  
mA  
mA  
V
Output High Voltage  
Input Voltage  
VI  
IIL 2,3  
IIH 2,4  
VODIFF  
VOCM  
VICM  
Input Low Voltage  
A  
A  
mV  
V
Input High Voltage  
10  
Differential Output Voltage  
Output Common Mode Voltage  
Input Common Mode Voltage  
Input Differential Voltage  
250  
1.125  
0.05  
100  
350  
1.25  
1.25  
350  
450  
1.375  
2.35  
V
VIDIFF  
Notes:  
mV  
1. IOL/IOH defined by VODIFF/(Resistor Network)  
2. Currents are measured at 85°C junction temperature.  
3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges.  
2-212  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 2-169 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
Cross point  
VREF (typ.) (V)  
1.075  
1.325  
Note: *Measuring point = Vtrip. See Table 2-90 on page 2-169 for a complete table of trip points.  
Timing Characteristics  
Table 2-170 • LVDS  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V  
Applicable to Pro I/Os  
Speed Grade  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
Units  
ns  
Std.  
–1  
2.10  
1.79  
1.57  
1.82  
1.55  
1.36  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
BLVDS/M-LVDS  
Bus LVDS (BLVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to  
high-performance multipoint bus applications. Multidrop and multipoint bus configurations can contain  
any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive  
current required by BLVDS and M-LVDS to accommodate the loading. The driver requires series  
terminations for better signal quality and to control voltage swing. Termination is also required at both  
ends of the bus, since the driver can be located anywhere on the bus. These configurations can be  
implemented using TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations.  
Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20  
loads. A sample application is given in Figure 2-135. The input and output buffer delays are available in  
the LVDS section in Table 2-171.  
Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required  
differential voltage, in worst-case industrial operating conditions at the farthest receiver: RS = 60 and  
RT = 70 , given Z0 = 50 (2") and Zstub = 50 (~1.5").  
Receiver  
Transceiver  
Driver  
D
Receiver  
Transceiver  
EN  
EN  
EN  
EN  
EN  
BIBUF_LVDS  
R
T
R
T
+
-
+
-
+
-
+
-
+
-
RS RS  
RS RS  
RS RS  
Zstub  
RS RS  
RS RS  
Zstub  
Z0  
Zstub  
Zstub  
Z0  
Zstub  
Zstub  
Z0  
Zstub  
Z0  
Zstub  
...  
Z0  
Z0  
Z0  
Z0  
RT  
R
Z0  
Z0  
Z0  
Z0  
T
Figure 2-135 • BLVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers  
Revision 4  
2-213  
Device Architecture  
LVPECL  
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires  
that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires  
external resistor termination.  
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-136.  
The building blocks of the LVPECL transmitter–receiver are one transmitter macro, one receiver macro,  
three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three  
driver resistors are different from those used in the LVDS implementation because the output standard  
specifications are different.  
Bourns Part Number: CAT16-PC4F12  
FPGA  
FPGA  
OUTBUF_LVPECL  
P
N
P
100  
ZO = 50   
187 W  
ZO = 50   
INBUF_LVPECL  
+
100   
100   
N
Figure 2-136 • LVPECL Circuit Diagram and Board-Level Implementation  
Table 2-171 • Minimum and Maximum DC Input and Output Levels  
DC Parameter  
VCCI  
Description  
Supply Voltage  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
V
3.0  
3.3  
3.6  
VOL  
Output Low Voltage  
0.96  
1.8  
1.27  
2.11  
3.6  
1.06  
1.92  
0
1.43  
2.28  
3.6  
1.30  
2.13  
0
1.57  
2.41  
3.6  
V
VOH  
Output High Voltage  
V
VIL, VIH  
VODIFF  
VOCM  
VICM  
Input Low, Input High Voltages  
Differential Output Voltage  
Output Common Mode Voltage  
Input Common Mode Voltage  
Input Differential Voltage  
0
V
0.625  
1.762  
1.01  
300  
0.97  
1.98  
2.57  
0.625  
1.762  
1.01  
300  
0.97  
1.98  
2.57  
0.625  
1.762  
1.01  
300  
0.97  
1.98  
2.57  
V
V
V
VIDIFF  
mV  
Table 2-172 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (typ.) (V)  
1.64  
1.94  
Cross point  
Note: *Measuring point = Vtrip. See Table 2-90 on page 2-169 for a complete table of trip points.  
Timing Characteristics  
Table 2-173 LVPECL  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V  
Applicable to Pro I/Os  
Speed Grade  
tDOUT  
0.66  
0.56  
0.49  
tDP  
tDIN  
0.04  
0.04  
0.03  
tPY  
Units  
ns  
Std.  
–1  
2.14  
1.82  
1.60  
1.63  
1.39  
1.22  
ns  
–2  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
2-214  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
I/O Register Specifications  
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset  
Preset  
L
X
X
D
DOUT  
X
Data_out  
PRE  
F
PRE  
Y
Core  
Array  
E
X
X
X
Data  
Enable  
CLK  
X
C
D
Q
D
Q
DFN1E1P1  
DFN1E1P1  
G
E
X
E
X
B
EOUT  
H
I
X
X
X
A
PRE  
J
X
X
D
Q
DFN1E1P1  
E
K
Data Input I/O Register with:  
Active High Enable  
Active High Preset  
Positive Edge Triggered  
Data Output Register and  
Enable Output Register with:  
Active High Enable  
Active High Preset  
Postive Edge Triggered  
CLKBUF  
INBUF  
INBUF  
Figure 2-137 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset  
Revision 4  
2-215  
Device Architecture  
Table 2-174 • Parameter Definitions and Measuring Nodes  
Parameter  
Name  
Measuring Nodes  
(from, to)*  
Parameter Definition  
Clock-to-Q of the Output Data Register  
tOCLKQ  
tOSUD  
H, DOUT  
F, H  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
F, H  
tOSUE  
Enable Setup Time for the Output Data Register  
Enable Hold Time for the Output Data Register  
G, H  
tOHE  
G, H  
tOPRE2Q  
tOREMPRE  
tORECPRE  
tOECLKQ  
tOESUD  
tOEHD  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
L,DOUT  
L, H  
L, H  
H, EOUT  
J, H  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
J, H  
tOESUE  
tOEHE  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
K, H  
K, H  
tOEPRE2Q  
tOEREMPRE  
tOERECPRE  
tICLKQ  
I, EOUT  
I, H  
I, H  
A, E  
tISUD  
Data Setup Time for the Input Data Register  
C, A  
tIHD  
Data Hold Time for the Input Data Register  
C, A  
tISUE  
Enable Setup Time for the Input Data Register  
B, A  
tIHE  
Enable Hold Time for the Input Data Register  
B, A  
tIPRE2Q  
tIREMPRE  
tIRECPRE  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
D, E  
D, A  
D, A  
Note: *See Figure 2-137 on page 2-215 for more information.  
2-216  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear  
DOUT  
FF  
Data_out  
Y
Core  
D
Q
D
Q
Data  
Array  
CC  
EE  
DFN1E1C1  
DFN1E1C1  
GG  
EOUT  
E
E
Enable  
CLK  
CLR  
BB  
AA  
DD  
CLR  
LL  
HH  
JJ  
D
Q
CLR  
DFN1E1C1  
KK  
E
CLR  
Data Input I/O Register with  
Active High Enable  
Active High Clear  
Positive Edge Triggered  
Data Output Register and  
Enable Output Register with  
Active High Enable  
Active High Clear  
Positive Edge Triggered  
INBUF  
INBUF  
CLKBUF  
Figure 2-138 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear  
Revision 4  
2-217  
Device Architecture  
Table 2-175 • Parameter Definitions and Measuring Nodes  
Measuring Nodes  
(from, to)*  
Parameter Name  
tOCLKQ  
tOSUD  
Parameter Definition  
Clock-to-Q of the Output Data Register  
HH, DOUT  
FF, HH  
FF, HH  
GG, HH  
GG, HH  
LL, DOUT  
LL, HH  
LL, HH  
HH, EOUT  
JJ, HH  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOSUE  
Enable Setup Time for the Output Data Register  
Enable Hold Time for the Output Data Register  
tOHE  
tOCLR2Q  
tOREMCLR  
tORECCLR  
tOECLKQ  
tOESUD  
tOEHD  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
JJ, HH  
tOESUE  
tOEHE  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
KK, HH  
KK, HH  
II, EOUT  
II, HH  
tOECLR2Q  
tOEREMCLR  
tOERECCLR  
tICLKQ  
II, HH  
AA, EE  
CC, AA  
CC, AA  
BB, AA  
BB, AA  
DD, EE  
DD, AA  
DD, AA  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
tICLR2Q  
tIREMCLR  
tIRECCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Note: *See Figure 2-138 on page 2-217 for more information.  
2-218  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Input Register  
tICKMPWH tICKMPWL  
50%  
tISUD  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
Data  
tIHD  
50%  
50%  
1
0
tIREMPRE  
tIRECPRE  
Enable  
Preset  
50%  
tIWPRE  
tIHE  
tISUE  
50%  
50%  
50%  
tIWCLR  
tIRECCLR  
tIREMCLR  
50%  
50%  
50%  
Clear  
tIPRE2Q  
50%  
50%  
tICLKQ  
50%  
Out_1  
tICLR2Q  
Figure 2-139 • Input Register Timing Diagram  
Timing Characteristics  
Table 2-176 • Input Data Register Propagation Delays  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Description –2 –1  
Clock-to-Q of the Input Data Register  
Parameter  
tICLKQ  
Std. Units  
0.24 0.27 0.32  
0.26 0.30 0.35  
0.00 0.00 0.00  
0.37 0.42 0.50  
0.00 0.00 0.00  
0.45 0.52 0.61  
0.45 0.52 0.61  
0.00 0.00 0.00  
0.22 0.25 0.30  
0.00 0.00 0.00  
0.22 0.25 0.30  
0.22 0.25 0.30  
0.22 0.25 0.30  
0.36 0.41 0.48  
0.32 0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
tICLR2Q  
tIPRE2Q  
tIREMCLR  
tIRECCLR  
tIREMPRE  
tIRECPRE  
tIWCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
Asynchronous Clear Minimum Pulse Width for the Input Data Register  
Asynchronous Preset Minimum Pulse Width for the Input Data Register  
Clock Minimum Pulse Width High for the Input Data Register  
Clock Minimum Pulse Width Low for the Input Data Register  
tIWPRE  
tICKMPWH  
tICKMPWL  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-219  
Device Architecture  
Output Register  
tOCKMPWH tOCKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
1
CLK  
tOSUD tOHD  
50%  
50%  
0
Data_out  
Enable  
Preset  
50%  
tOREMPRE  
50%  
tOWPRE tORECPRE  
50%  
tOHE  
50%  
tOSUE  
tOREMCLR  
50%  
tOWCLR  
tORECCLR  
50%  
50%  
Clear  
tOPRE2Q  
50%  
tOCLKQ  
50%  
50%  
DOUT  
tOCLR2Q  
Figure 2-140 Output Register Timing Diagram  
Timing Characteristics  
Table 2-177 • Output Data Register Propagation Delays  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tOCLKQ  
Description  
Clock-to-Q of the Output Data Register  
–2  
–1  
Std. Units  
0.59  
0.31  
0.00  
0.44  
0.00  
0.80  
0.80  
0.00  
0.22  
0.00  
0.22  
0.67 0.79  
0.36 0.42  
0.00 0.00  
0.50 0.59  
0.00 0.00  
0.91 1.07  
0.91 1.07  
0.00 0.00  
0.25 0.30  
0.00 0.00  
0.25 0.30  
0.25 0.30  
0.25 0.30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOSUD  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOSUE  
Enable Setup Time for the Output Data Register  
tOHE  
Enable Hold Time for the Output Data Register  
tOCLR2Q  
tOPRE2Q  
tOREMCLR  
tORECCLR  
tOREMPRE  
tORECPRE  
tOWCLR  
tOWPRE  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.22  
Asynchronous Preset Minimum Pulse Width for the Output Data 0.22  
Register  
tOCKMPWH Clock Minimum Pulse Width High for the Output Data Register  
tOCKMPWL Clock Minimum Pulse Width Low for the Output Data Register  
0.36  
0.32  
0.41 0.48  
0.37 0.43  
ns  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
2-220  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Output Enable Register  
tOECKMPWH tOECKMPWL  
50%  
tOESUD tOEHD  
50% 50%  
50%  
50%  
50%  
50%  
50%  
50%  
1
CLK  
0
D_Enable  
Enable  
Preset  
50%  
tOEREMPRE  
50%  
tOEWPRE  
50%  
tOERECPRE  
50%  
tOESUEOEHE  
t
tOEREMCLR  
50%  
tOEWCLR tOERECCLR  
50%  
50%  
Clear  
tOEPRE2Q  
50%  
tOECLR2Q  
50%  
50%  
tOECLKQ  
EOUT  
Figure 2-141 • Output Enable Register Timing Diagram  
Timing Characteristics  
Table 2-178 • Output Enable Register Propagation Delays  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tOECLKQ  
tOESUD  
Description  
–2  
–1  
Std. Units  
Clock-to-Q of the Output Enable Register  
0.44 0.51 0.59  
0.31 0.36 0.42  
0.00 0.00 0.00  
0.44 0.50 0.58  
0.00 0.00 0.00  
0.67 0.76 0.89  
0.67 0.76 0.89  
0.00 0.00 0.00  
0.22 0.25 0.30  
0.00 0.00 0.00  
0.22 0.25 0.30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
tOEHD  
tOESUE  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
tOEHE  
tOECLR2Q  
tOEPRE2Q  
tOEREMCLR  
tOERECCLR  
tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register  
tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register  
tOEWCLR  
Asynchronous Clear Minimum Pulse Width for the Output Enable 0.22 0.25 0.30  
Register  
tOEWPRE  
Asynchronous Preset Minimum Pulse Width for the Output Enable 0.22 0.25 0.30  
Register  
ns  
tOECKMPWH Clock Minimum Pulse Width High for the Output Enable Register  
tOECKMPWL Clock Minimum Pulse Width Low for the Output Enable Register  
0.36 0.41 0.48  
0.32 0.37 0.43  
ns  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-221  
Device Architecture  
DDR Module Specifications  
Input DDR Module  
Input DDR  
A
D
Out_QF  
(to core)  
Data  
INBUF  
FF1  
E
B
C
Out_QR  
(to core)  
CLK  
CLKBUF  
FF2  
CLR  
INBUF  
DDR_IN  
Figure 2-142 • Input DDR Timing Model  
Table 2-179 • Parameter Definitions  
Parameter Name  
Parameter Definition  
Clock-to-Out Out_QR  
Measuring Nodes (from, to)  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD  
B, D  
B, E  
A, B  
A, B  
C, D  
C, E  
C, B  
C, B  
Clock-to-Out Out_QF  
Data Setup Time of DDR Input  
Data Hold Time of DDR Input  
Clear-to-Out Out_QR  
Clear-to-Out Out_QF  
Clear Removal  
tDDRIHD  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
Clear Recovery  
2-222  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
CLK  
tDDRISUD  
tDDRIHD  
8
Data  
CLR  
1
2
3
4
5
6
7
9
tDDRIRECCLR  
tDDRIREMCLR  
tDDRICLKQ1  
tDDRICLR2Q1  
Out_QF  
Out_QR  
6
2
4
tDDRICLKQ2  
tDDRICLR2Q2  
7
3
5
Figure 2-143 • Input DDR Timing Diagram  
Timing Characteristics  
Table 2-180 • Input DDR Propagation Delays  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD  
Description  
Clock-to-Out Out_QR for Input DDR  
Clock-to-Out Out_QF for Input DDR  
Data Setup for Input DDR  
–2  
–1  
Std.  
0.52  
0.37  
0.38  
0.00  
0.76  
0.62  
0.00  
0.30  
0.30  
0.48  
0.43  
1048  
Units  
ns  
0.39  
0.27  
0.28  
0.00  
0.57  
0.46  
0.00  
0.22  
0.22  
0.36  
0.32  
1404  
0.44  
0.31  
0.32  
0.00  
0.65  
0.53  
0.00  
0.25  
0.25  
0.41  
0.37  
1232  
ns  
ns  
tDDRIHD  
Data Hold for Input DDR  
ns  
tDDRICLR2Q1  
tDDRICLR2Q2  
Asynchronous Clear-to-Out Out_QR for Input DDR  
Asynchronous Clear-to-Out Out_QF for Input DDR  
ns  
ns  
tDDRIREMCLR Asynchronous Clear Removal Time for Input DDR  
tDDRIRECCLR Asynchronous Clear Recovery Time for Input DDR  
ns  
ns  
tDDRIWCLR  
Asynchronous Clear Minimum Pulse Width for Input DDR  
ns  
tDDRICKMPWH Clock Minimum Pulse Width High for Input DDR  
tDDRICKMPWL Clock Minimum Pulse Width Low for Input DDR  
ns  
ns  
FDDRIMAX  
Maximum Frequency for Input DDR  
MHz  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-223  
Device Architecture  
Output DDR  
A
Data_F  
(from core)  
FF1  
Out  
B
C
D
0
1
CLK  
E
CLKBUF  
OUTBUF  
Data_R  
(from core)  
FF2  
B
C
CLR  
INBUF  
DDR_OUT  
Figure 2-144 • Output DDR Timing Model  
Table 2-181 • Parameter Definitions  
Parameter Name  
tDDROCLKQ  
Parameter Definition  
Clock-to-Out  
Measuring Nodes (From, To)  
B, E  
C, E  
C, B  
C, B  
A, B  
D, B  
A, B  
D, B  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROSUD1  
Asynchronous Clear-to-Out  
Clear Removal  
Clear Recovery  
Data Setup Data_F  
Data Setup Data_R  
Data Hold Data_F  
Data Hold Data_R  
tDDROSUD2  
tDDROHD1  
tDDROHD2  
2-224  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
CLK  
t
t
DDROHD2  
DDROSUD2  
4
9
5
Data_F  
1
2
DDROSUD1  
7
3
t
t
DDROHD1  
Data_R 6  
CLR  
8
10  
11  
t
DDRORECCLR  
t
DDROREMCLR  
t
t
DDROCLKQ  
DDROCLR2Q  
Out  
7
2
8
3
9
4
10  
Figure 2-145 • Output DDR Timing Diagram  
Timing Characteristics  
Table 2-182 • Output DDR Propagation Delays  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tDDROCLKQ  
tDDROSUD1  
tDDROSUD2  
tDDROHD1  
Description  
–2  
–1  
Std. Units  
Clock-to-Out of DDR for Output DDR  
0.70  
0.38  
0.38  
0.00  
0.00  
0.80  
0.00  
0.22  
0.22  
0.36  
0.32  
1404  
0.80  
0.43  
0.43  
0.00  
0.00  
0.91  
0.00  
0.25  
0.25  
0.41  
0.37  
1232  
0.94  
0.51  
0.51  
0.00  
0.00  
1.07  
0.00  
0.30  
0.30  
0.48  
0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data_F Data Setup for Output DDR  
Data_R Data Setup for Output DDR  
Data_F Data Hold for Output DDR  
tDDROHD2  
Data_R Data Hold for Output DDR  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROWCLR1  
tDDROCKMPWH  
tDDROCKMPWL  
FDDOMAX  
Asynchronous Clear-to-Out for Output DDR  
Asynchronous Clear Removal Time for Output DDR  
Asynchronous Clear Recovery Time for Output DDR  
Asynchronous Clear Minimum Pulse Width for Output DDR  
Clock Minimum Pulse Width High for the Output DDR  
Clock Minimum Pulse Width Low for the Output DDR  
Maximum Frequency for the Output DDR  
1048 MHz  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on  
page 3-9.  
Revision 4  
2-225  
Device Architecture  
Pin Descriptions  
Supply Pins  
GND  
Ground  
Ground supply voltage to the core, I/O outputs, and I/O logic.  
GNDQ Ground (quiet)  
Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is  
decoupled from the simultaneous switching noise originated from the output buffer ground domain. This  
minimizes the noise transfer within the package and improves input signal integrity. GNDQ needs to  
always be connected on the board to GND. Note: In FG256, FG484, and FG676 packages, GNDQ and  
GND pins are connected within the package and are labeled as GND pins in the respective package pin  
assignment tables.  
ADCGNDREF  
Analog ground reference used by the ADC. This pad should be connected to a quiet analog ground.  
GNDA Ground (analog)  
Analog Reference Ground  
Quiet ground supply voltage to the Analog Block of Fusion devices. The use of a separate analog ground  
helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V  
maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.  
GNDAQ  
Ground (analog quiet)  
Quiet ground supply voltage to the analog I/O of Fusion devices. The use of a separate analog ground  
helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V  
maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.  
Note: In FG256, FG484, and FG676 packages, GNDAQ and GNDA pins are connected within the  
package and are labeled as GNDA pins in the respective package pin assignment tables.  
GNDNVM  
Ground supply used by the Fusion device's flash memory block module(s).  
GNDOSC Oscillator Ground  
Ground supply for both integrated RC oscillator and crystal oscillator circuit.  
VCC15A Analog Power Supply (1.5 V)  
1.5 V clean analog power supply input for use by the 1.5 V portion of the analog circuitry.  
VCC33A Analog Power Supply (3.3 V)  
3.3 V clean analog power supply input for use by the 3.3 V portion of the analog circuitry.  
VCC33N Negative 3.3 V Output  
Flash Memory Ground  
This is the –3.3 V output from the voltage converter. A 2.2 µF capacitor must be connected from this pin  
to ground.  
VCC33PMP  
Analog Power Supply (3.3 V)  
3.3 V clean analog power supply input for use by the analog charge pump. To avoid high current draw,  
VCC33PMP should be powered up simultaneously with or after VCC33A.  
VCCNVM  
Flash Memory Block Power Supply (1.5 V)  
1.5 V power supply input used by the Fusion device's flash memory block module(s). To avoid high  
current draw, VCC should be powered up before or simultaneously with VCCNVM.  
2-226  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
VCCOSC  
Oscillator Power Supply (3.3 V)  
Power supply for both integrated RC oscillator and crystal oscillator circuit. The internal 100 MHz  
oscillator, powered by the VCCOSC pin, is needed for device programming, operation of the VDDN33  
pump, and eNVM operation. VCCOSC is off only when VCCA is off. VCCOSC must be powered  
whenever the Fusion device needs to function.  
VCC  
Core Supply Voltage  
Supply voltage to the FPGA core, nominally 1.5 V. VCC is also required for powering the JTAG state  
machine, in addition to VJTAG. Even when a Fusion device is in bypass mode in a JTAG chain of  
interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass  
through the Fusion device.  
VCCIBx  
I/O Supply Voltage  
Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are either  
four (AFS090 and AFS250) or five (AFS600 and AFS1500) I/O banks on the Fusion devices plus a  
dedicated VJTAG bank.  
Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply.  
VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their  
corresponding VCCI pins tied to GND.  
VCCPLA/B  
PLL Supply Voltage  
Supply voltage to analog PLL, nominally 1.5 V, where A and B refer to the PLL. AFS090 and AFS250  
each have a single PLL. The AFS600 and AFS1500 devices each have two PLLs. Microsemi  
recommends tying VCCPLX to VCC and using proper filtering circuits to decouple VCC noise from PLL.  
If unused, VCCPLA/B should be tied to GND.  
VCOMPLA/B  
Ground for West and East PLL  
VCOMPLA is the ground of the west PLL (CCC location F) and VCOMPLB is the ground of the east PLL  
(CCC location C).  
VJTAG  
JTAG Supply Voltage  
Fusion devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any  
voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives  
greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is  
neither used nor planned to be used, the VJTAG pin together with the TRST pin could be tied to GND. It  
should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a  
Fusion device is in a JTAG chain of interconnected boards and it is desired to power down the board  
containing the Fusion device, this may be done provided both VJTAG and VCC to the Fusion part remain  
powered; otherwise, JTAG signals will not be able to transition the Fusion device, even in bypass mode.  
VPUMP  
Programming Supply Voltage  
Fusion devices support single-voltage ISP programming of the configuration flash and FlashROM. For  
programming, VPUMP should be in the 3.3 V +/-5% range. During normal device operation, VPUMP can  
be left floating or can be tied to any voltage between 0 V and 3.6 V.  
When the VPUMP pin is tied to ground, it shuts off the charge pump circuitry, resulting in no sources of  
oscillation from the charge pump circuitry.  
For proper programming, 0.01 µF and 0.33 µF capacitors (both rated at 16 V) are to be connected in  
parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.  
Revision 4  
2-227  
Device Architecture  
User-Defined Supply Pins  
VREF  
I/O Voltage Reference  
Reference voltage for I/O minibanks. Both AFS600 and AFS1500 (north bank only) support Microsemi  
Pro I/O. These I/O banks support voltage reference standard I/O. The VREF pins are configured by the  
user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated as the voltage  
reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and  
(II), SSTL3 (I) and (II), and GTL/GTL+. One VREF pin can support the number of I/Os available in its  
minibank.  
VAREF  
Analog Reference Voltage  
The Fusion device can be configured to generate a 2.56 V internal reference voltage that can be used by  
the ADC. While using the internal reference, the reference voltage is output on the VAREF pin for use as  
a system reference. If a different reference voltage is required, it can be supplied by an external source  
and applied to this pin. The valid range of values that can be supplied to the ADC is 1.0 V to 3.3 V. When  
VAREF is internally generated by the Fusion device, a bypass capacitor must be connected from this pin  
to ground. The value of the bypass capacitor should be between 3.3 µF and 22 µF, which is based on the  
needs of the individual designs. The choice of the capacitor value has an impact on the settling time it  
takes the VAREF signal to reach the required specification of 2.56 V to initiate valid conversions by the  
ADC. If the lower capacitor value is chosen, the settling time required for VAREF to achieve 2.56 V will  
be shorter than when selecting the larger capacitor value. The above range of capacitor values supports  
the accuracy specification of the ADC, which is detailed in the datasheet. Designers choosing the smaller  
capacitor value will not obtain as much margin in the accuracy as that achieved with a larger capacitor  
value. Depending on the capacitor value selected in the Analog System Builder, a tool in Libero SoC, an  
automatic delay circuit will be generated using logic tiles available within the FPGA to ensure that VAREF  
has achieved the 2.56 V value. Microsemi recommends customers use 10 µF as the value of the bypass  
capacitor. Designers choosing to use an external VAREF need to ensure that a stable and clean VAREF  
source is supplied to the VAREF pin before initiating conversions by the ADC. Designers should also  
make sure that the ADCRESET signal is deasserted before initiating valid conversions.2  
If the user connects VAREF to external 3.3 V on their board, the internal VAREF driving OpAmp tries to  
bring the pin down to the nominal 2.56 V until the device is programmed and up/functional. Under this  
scenario, it is recommended to connect an external 3.3 V supply through a ~1 KOhm resistor to limit  
current, along with placing a 10-100nF capacitor between VAREF and GNDA.  
User Pins  
I/O  
User Input/Output  
The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are  
compatible with the I/O standard selected. Unused I/O pins are configured as inputs with pull-up  
resistors.  
During programming, I/Os become tristated and weakly pulled up to VCCI. With the VCCI and VCC  
supplies continuously powered up, when the device transitions from programming to operating mode, the  
I/Os get instantly configured to the desired user configuration.  
Unused I/Os are configured as follows:  
Output buffer is disabled (with tristate value of high impedance)  
Input buffer is disabled (with tristate value of high impedance)  
Weak pull-up is programmed  
Axy  
Analog Input/Output  
Analog I/O pin, where x is the analog pad type (C = current pad, G = Gate driver pad, T = Temperature  
pad, V = Voltage pad) and y is the Analog Quad number (0 to 9). There is a minimum 1 Mto ground on  
AV, AC, and AT. This pin can be left floating when it is unused.  
2. The ADC is functional with an external reference down to 1V, however to meet the performance parameters highlighted in the  
datasheet refer to the VAREF specification in Table 3-2 on page 3-3.  
2-228  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
ATRTNx  
Temperature Monitor Return  
AT returns are the returns for the temperature sensors. The cathode terminal of the external diodes  
should be connected to these pins. There is one analog return pin for every two Analog Quads. The x in  
the ATRTNx designator indicates the quad pairing (x = 0 for AQ1 and AQ2, x = 1 for AQ2 and AQ3, ...,  
x = 4 for AQ8 and AQ9). The signals that drive these pins are called out as ATRETURNxy in the software  
(where x and y refer to the quads that share the return signal). ATRTN is internally connected to ground.  
It can be left floating when it is unused. The maximum capacitance allowed across the AT pins is 500 pF.  
GL  
Globals  
GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the  
global network (spines). Additionally, the global I/Os can be used as Pro I/Os since they have identical  
capabilities. Unused GL pins are configured as inputs with pull-up resistors. See more detailed  
descriptions of global I/O connectivity in the "Clock Conditioning Circuits" section on page 2-23.  
Refer to the "User I/O Naming Convention" section on page 2-161 for a description of naming of global  
pins.  
JTAG Pins  
Fusion devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any  
voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate,  
even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the Fusion  
part must be supplied to allow JTAG signals to transition the Fusion device.  
Isolating the JTAG power supply in a separate I/O bank gives greater flexibility with supply selection and  
simplifies power supply and PCB design. If the JTAG interface is neither used nor planned to be used,  
the VJTAG pin together with the TRST pin could be tied to GND.  
TCK  
Test Clock  
Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-  
up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND or VJTAG through  
a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired  
state.  
Note that to operate at all VJTAG voltages, 500 to 1 kwill satisfy the requirements. Refer to  
Table 2-183 for more information.  
Table 2-183 • Recommended Tie-Off Values for the TCK and TRST Pins  
VJTAG  
Tie-Off Resistance2, 3  
VJTAG at 3.3 V  
VJTAG at 2.5 V  
VJTAG at 1.8 V  
VJTAG at 1.5 V  
Notes:  
200 to 1 k  
200 to 1 k  
500 to 1 k  
500 to 1 k  
1. Equivalent parallel resistance if more than one device is on JTAG chain.  
2. The TCK pin can be pulled up/down.  
3. The TRST pin can only be pulled down.  
TDI  
Test Data Input  
Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor  
on the TDI pin.  
TDO  
Test Data Output  
Serial output for JTAG boundary scan, ISP, and UJTAG usage.  
Revision 4  
2-229  
Device Architecture  
TMS  
Test Mode Select  
The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an  
internal weak pull-up resistor on the TMS pin.  
TRST  
Boundary Scan Reset Pin  
The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan  
circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-  
down resistor could be included to ensure the TAP is held in reset mode. The resistor values must be  
chosen from Table 2-183 and must satisfy the parallel resistance value requirement. The values in  
Table 2-183 correspond to the resistor recommended when a single device is used and to the equivalent  
parallel resistor when multiple devices are connected via a JTAG chain.  
In critical applications, an upset in the JTAG circuit could allow entering an undesired JTAG state. In such  
cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.  
Note that to operate at all VJTAG voltages, 500 to 1 kwill satisfy the requirements.  
Special Function Pins  
NC  
No Connect  
This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be  
left floating with no effect on the operation of the device.  
DC  
This pin should not be connected to any signals on the PCB. These pins should be left unconnected.  
NCAP Negative Capacitor  
Don't Connect  
Negative Capacitor is where the negative terminal of the charge pump capacitor is connected. A  
capacitor, with a 2.2 µF recommended value, is required to connect between PCAP and NCAP.  
PCAP  
Positive Capacitor  
Positive Capacitor is where the positive terminal of the charge pump capacitor is connected. A capacitor,  
with a 2.2 µF recommended value, is required to connect between PCAP and NCAP.  
PUB  
Push Button  
Push button is the connection for the external momentary switch used to turn on the 1.5 V voltage  
regulator and can be floating if not used.  
PTBASE  
Pass Transistor Base  
Pass Transistor Base is the control signal of the voltage regulator. This pin should be connected to the  
base of the external pass transistor used with the 1.5 V internal voltage regulator and can be floating if  
not used.  
PTEM  
Pass Transistor Emitter  
Pass Transistor Emitter is the feedback input of the voltage regulator.  
This pin should be connected to the emitter of the external pass transistor used with the 1.5 V internal  
voltage regulator and can be floating if not used.  
XTAL1  
Crystal Oscillator Circuit Input  
Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or  
external clock input. When using an external crystal or ceramic oscillator, external capacitors are also  
recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).  
If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the  
case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the  
XTAL2 pin should be left floating.  
2-230  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
XTAL2  
Crystal Oscillator Circuit Input  
Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or  
external clock input. When using an external crystal or ceramic oscillator, external capacitors are also  
recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).  
If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the  
case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the  
XTAL2 pin should be left floating.  
Security  
Fusion devices have a built-in 128-bit AES decryption core. The decryption core facilitates highly secure,  
in-system programming of the FPGA core array fabric and the FlashROM. The FlashROM and the FPGA  
core fabric can be programmed independently from each other, allowing the FlashROM to be updated  
without the need for change to the FPGA core fabric. The AES master key is stored in on-chip nonvolatile  
memory (flash). The AES master key can be preloaded into parts in a security-protected programming  
environment (such as the Microsemi in-house programming center), and then "blank" parts can be  
shipped to an untrusted programming or manufacturing center for final personalization with an AES-  
encrypted bitstream. Late stage product changes or personalization can be implemented easily and with  
high level security by simply sending a STAPL file with AES-encrypted data. Highly secure remote field  
updates over public networks (such as the Internet) are possible by sending and programming a STAPL  
file with AES-encrypted data. For more information, refer to the Fusion Security application note.  
128-Bit AES Decryption  
The 128-bit AES standard (FIPS-197) block cipher is the National Institute of Standards and Technology  
(NIST) replacement for DES (Data Encryption Standard FIPS46-2). AES has been designed to protect  
sensitive government information well into the 21st century. It replaces the aging DES, which NIST  
adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect  
sensitive, unclassified information. The 128-bit AES standard has 3.4 × 1038 possible 128-bit key  
variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text  
using exhaustive techniques. Keys are stored (protected with security) in Fusion devices in nonvolatile  
flash memory. All programming files sent to the device can be authenticated by the part prior to  
programming to ensure that bad programming data is not loaded into the part that may possibly damage  
it. All programming verification is performed on-chip, ensuring that the contents of Fusion devices remain  
as secure as possible.  
AES decryption can also be used on the 1,024-bit FlashROM to allow for remote updates of the  
FlashROM contents. This allows for easy support of subscription model products and protects them with  
measures designed to provide the highest level of security available. See the application note Fusion  
Security for more details.  
AES for Flash Memory  
AES decryption can also be used on the flash memory blocks. This provides the best available security  
during update of the flash memory blocks. During runtime, the encrypted data can be clocked in via the  
JTAG interface. The data can be passed through the internal AES decryption engine, and the decrypted  
data can then be stored in the flash memory block.  
Programming  
Programming can be performed using various programming tools, such as Silicon Sculptor II (BP Micro  
Systems) or FlashPro3 (Microsemi).  
The user can generate STP programming files from the Designer software and can use these files to  
program a device.  
Fusion devices can be programmed in-system. During programming, VCCOSC is needed in order to  
power the internal 100 MHz oscillator. This oscillator is used as a source for the 20 MHz oscillator that is  
used to drive the charge pump for programming.  
Revision 4  
2-231  
Device Architecture  
ISP  
Fusion devices support IEEE 1532 ISP via JTAG and require a single VPUMP voltage of 3.3 V during  
programming. In addition, programming via a microcontroller in a target system can be achieved. Refer to  
the standard or the "In-System Programming (ISP) of Microsemi's Low Power Flash Devices Using  
FlashPro4/3/3X" chapter of the Fusion FPGA Fabric User’s Guide for more details.  
JTAG IEEE 1532  
Programming with IEEE 1532  
Fusion devices support the JTAG-based IEEE1532 standard for ISP. As part of this support, when a  
Fusion device is in an unprogrammed state, all user I/O pins are disabled. This is achieved by keeping  
the global IO_EN signal deactivated, which also has the effect of disabling the input buffers.  
Consequently, the SAMPLE instruction will have no effect while the Fusion device is in this  
unprogrammed state—different behavior from that of the ProASICPLUS® device family. This is done  
because SAMPLE is defined in the IEEE1532 specification as a noninvasive instruction. If the input  
buffers were to be enabled by SAMPLE temporarily turning on the I/Os, then it would not truly be a  
noninvasive instruction. Refer to the standard or the "In-System Programming (ISP) of Microsemi's Low  
Power Flash Devices Using FlashPro4/3/3X" chapter of the Fusion FPGA Fabric User’s Guide for more  
details.  
Boundary Scan  
Fusion devices are compatible with IEEE Standard 1149.1, which defines a hardware architecture and  
the set of mechanisms for boundary scan testing. The basic Fusion boundary scan logic circuit is  
composed of the test access port (TAP) controller, test data registers, and instruction register (Figure 2-  
146 on page 2-233). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST,  
SAMPLE/PRELOAD, and BYPASS) and the optional IDCODE instruction (Table 2-185 on page 2-233).  
Each test section is accessed through the TAP, which has five associated pins: TCK (test clock input),  
TDI, TDO (test data input and output), TMS (test mode selector), and TRST (test reset input). TMS, TDI,  
and TRST are equipped with pull-up resistors to ensure proper operation when no input data is supplied  
to them. These pins are dedicated for boundary scan test usage. Refer to the "JTAG Pins" section on  
page 2-229 for pull-up/-down recommendations for TDO and TCK pins. The TAP controller is a 4-bit state  
machine (16 states) that operates as shown in Figure 2-146 on page 2-233. The 1s and 0s represent the  
values that must be present on TMS at a rising edge of TCK for the given state transition to occur. IR and  
DR indicate that the instruction register or the data register is operating in that state.  
Table 2-184 • TRST and TCK Pull-Down Recommendations  
VJTAG  
Tie-Off Resistance*  
200 to 1 k  
200 to 1 k  
500 to 1 k  
500 to 1 k  
VJTAG at 3.3 V  
VJTAG at 2.5 V  
VJTAG at 1.8 V  
VJTAG at 1.5 V  
Note: *Equivalent parallel resistance if more than one device is on JTAG chain.  
The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals  
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset  
state. To guarantee a reset of the controller from any of the possible states, TMS must remain High for  
five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-  
Logic-Reset state.  
Fusion devices support three types of test data registers: bypass, device identification, and boundary  
scan. The bypass register is selected when no other register needs to be accessed in a device. This  
speeds up test data transfer to other devices in a test data path. The 32-bit device identification register  
is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan register  
observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register cells,  
each with a serial-in, serial-out, parallel-in, and parallel-out pin.  
The serial pins are used to serially connect all the boundary scan register cells in a device into a  
boundary scan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are  
2-232  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
connected to the internal core logic I/O tile and the input, output, and control ports of an I/O buffer to  
capture and load data into the register to control or observe the logic state of each I/O.  
I/O  
I/O  
I/O  
I/O  
I/O  
Test Data  
Registers  
Bypass Register  
Instruction  
Register  
TAP  
Controller  
Device  
Logic  
I/O  
I/O  
I/O  
I/O  
I/O  
Figure 2-146 • Boundary Scan Chain in Fusion  
Table 2-185 • Boundary Scan Opcodes  
Hex Opcode  
EXTEST  
00  
07  
0E  
01  
0F  
05  
FF  
HIGHZ  
USERCODE  
SAMPLE/PRELOAD  
IDCODE  
CLAMP  
BYPASS  
Revision 4  
2-233  
IEEE 1532 Characteristics  
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to  
the corresponding standard selected; refer to the I/O timing characteristics in the "User I/Os" section on  
page 2-135 for more details.  
Timing Characteristics  
Table 2-186 • JTAG 1532  
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tDISU  
Description  
Test Data Input Setup Time  
Test Data Input Hold Time  
Test Mode Select Setup Time  
Test Mode Select Hold Time  
Clock to Q (data out)  
–2  
–1  
Std.  
0.67  
1.33  
0.67  
1.33  
8.00  
26.67  
19.00  
0.00  
0.27  
TBD  
Units  
ns  
0.50  
1.00  
0.50  
1.00  
6.00  
20.00  
25.00  
0.00  
0.20  
TBD  
0.57  
1.13  
0.57  
1.13  
6.80  
22.67  
22.00  
0.00  
0.23  
TBD  
tDIHD  
ns  
tTMSSU  
ns  
tTMDHD  
ns  
tTCK2Q  
ns  
tRSTB2Q  
FTCKMAX  
tTRSTREM  
tTRSTREC  
tTRSTMPW  
Reset to Q (data out)  
ns  
TCK Maximum Frequency  
ResetB Removal Time  
MHz  
ns  
ResetB Recovery Time  
ResetB Minimum Pulse  
ns  
ns  
Note: For the derating values at specific junction temperature and voltage supply levels, refer to  
Table 3-7 on page 3-9.  
3 – DC and Power Characteristics  
General Specifications  
Operating Conditions  
Stresses beyond those listed in Table 3-1 may cause permanent damage to the device.  
Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
Devices should not be operated outside the recommended operating ranges specified in Table 3-2 on  
page 3-3.  
Table 3-1 • Absolute Maximum Ratings  
Symbol  
VCC  
Parameter  
DC core supply voltage  
Commercial  
–0.3 to 1.65  
–0.3 to 3.75  
–0.3 to 3.75  
–0.3 to 1.65  
–0.3 to 3.75  
Industrial  
–0.3 to 1.65  
–0.3 to 3.75  
–0.3 to 3.75  
–0.3 to 1.65  
–0.3 to 3.75  
Units  
V
V
V
V
V
V
VJTAG  
VPUMP  
VCCPLL  
VCCI  
JTAG DC voltage  
Programming voltage  
Analog power supply (PLL)  
DC I/O output buffer supply voltage  
I/O input voltage 1  
VI  
–0.3 V to 3.6 V (when I/O hot insertion mode is  
enabled)  
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever  
voltage is lower (when I/O hot-insertion mode is  
disabled)  
VCC33A  
+3.3 V power supply  
–0.3 to 3.75 2  
–0.3 to 3.75 2  
–0.3 to 3.75  
–0.3 to 1.65  
–0.3 to 1.65  
–0.3 to 3.75  
–0.3 to 3.75 2  
–0.3 to 3.75 2  
–0.3 to 3.75  
–0.3 to 1.65  
–0.3 to 1.65  
–0.3 to 3.75  
V
V
V
V
V
V
VCC33PMP +3.3 V power supply  
VAREF  
Voltage reference for ADC  
VCC15A  
VCCNVM  
VCCOSC  
Notes:  
Digital power supply for the analog system  
Embedded flash power supply  
Oscillator power supply  
1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may  
undershoot or overshoot according to the limits shown in Table 3-4 on page 3-4.  
2. Analog data not valid beyond 3.65 V.  
3. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on  
voltage on the pad.  
4. For flash programming and retention maximum limits, refer to Table 3-5 on page 3-5. For recommended operating limits  
refer to Table 3-2 on page 3-3.  
Revision 4  
3-1  
DC and Power Characteristics  
Table 3-1 • Absolute Maximum Ratings (continued)  
Symbol  
Parameter  
ADC reset  
Commercial  
Industrial  
Units  
AV, AC  
Unpowered,  
unconfigured  
asserted  
or  
–11.0 to 12.6  
–11.0 to 12.0  
V
Analog input (+16 V to +2 V prescaler range)  
–0.4 to 12.6  
–0.4 to 3.75  
–0.4 to 12.0  
–0.4 to 3.75  
V
V
Analog input (+1 V to +0.125 V prescaler  
range)  
Analog input (–16 V to –2 V prescaler range)  
–11.0 to 0.4  
–3.75 to 0.4  
–11.0 to 0.4  
–3.75 to 0.4  
V
V
Analog input (–1 V to –0.125 V prescaler  
range)  
Analog input (direct input to ADC)  
Digital input  
–0.4 to 3.75  
–0.4 to 12.6  
–11.0 to 12.6  
–0.4 to 3.75  
–0.4 to 12.0  
–11.0 to 12.0  
V
V
V
AG  
Unpowered,  
unconfigured  
ADC  
reset  
asserted  
or  
Low Current Mode (1 µA, 3 µA, 10 µA, 30 µA)  
–0.4 to 12.6  
–11.0 to 0.4  
–0.4 to 12.0  
–11.0 to 0.4  
V
V
Low Current Mode (–1 µA, –3 µA, –10 µA, –30  
µA)  
High Current Mode 3  
–11.0 to 12.6  
–0.4 to 16.0  
–11.0 to 12.0  
–0.4 to 15.0  
V
V
AT  
Unpowered,  
unconfigured  
ADC  
reset  
asserted  
or  
Analog input (+16 V, 4 V prescaler range)  
Analog input (direct input to ADC)  
Digital input  
–0.4 to 16.0  
–0.4 to 3.75  
–0.4 to 16.0  
–0.4 to 15.0  
–0.4 to 3.75  
–0.4 to 15.0  
V
V
V
4
TSTG  
Storage temperature  
–65 to +150  
+125  
°C  
°C  
4
TJ  
Junction temperature  
Notes:  
1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may  
undershoot or overshoot according to the limits shown in Table 3-4 on page 3-4.  
2. Analog data not valid beyond 3.65 V.  
3. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on  
voltage on the pad.  
4. For flash programming and retention maximum limits, refer to Table 3-5 on page 3-5. For recommended operating limits  
refer to Table 3-2 on page 3-3.  
3-2  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 3-2 • Recommended Operating Conditions1  
Symbol  
TJ  
Parameter2  
Commercial  
0 to +85  
Industrial  
–40 to +100  
1.425 to 1.575  
1.4 to 3.6  
Units  
°C  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Junction temperature  
VCC  
1.5 V DC core supply voltage  
JTAG DC voltage  
1.425 to 1.575  
1.4 to 3.6  
VJTAG  
VPUMP  
Programming voltage  
Programming mode3  
Operation4  
3.15 to 3.45  
0 to 3.6  
3.15 to 3.45  
0 to 3.6  
VCCPLL  
VCCI  
Analog power supply (PLL)  
1.5 V DC supply voltage  
1.8 V DC supply voltage  
2.5 V DC supply voltage  
3.3 V DC supply voltage  
LVDS differential I/O  
1.425 to 1.575  
1.425 to 1.575  
1.7 to 1.9  
1.425 to 1.575  
1.425 to 1.575  
1.7 to 1.9  
2.3 to 2.7  
2.3 to 2.7  
3.0 to 3.6  
3.0 to 3.6  
2.375 to 2.625  
3.0 to 3.6  
2.375 to 2.625  
3.0 to 3.6  
LVPECL differential I/O  
+3.3 V power supply  
VCC33A  
2.97 to 3.63  
2.97 to 3.63  
2.527 to 2.593  
1.425 to 1.575  
1.425 to 1.575  
2.97 to 3.63  
–10.5 to 12.0  
–0.3 to 12.0  
–0.3 to 3.6  
2.97 to 3.63  
2.97 to 3.63  
2.527 to 2.593  
1.425 to 1.575  
1.425 to 1.575  
2.97 to 3.63  
–10.5 to 11.6  
–0.3 to 11.6  
–0.3 to 3.6  
VCC33PMP +3.3 V power supply  
VAREF  
Voltage reference for ADC  
VCC15A 5  
VCCNVM  
VCCOSC  
AV, AC 6  
Digital power supply for the analog system  
Embedded flash power supply  
Oscillator power supply  
Unpowered, ADC reset asserted or unconfigured  
Analog input (+16 V to +2 V prescaler range)  
Analog input (+1 V to + 0.125 V prescaler range)  
Analog input (–16 V to –2 V prescaler range)  
Analog input (–1 V to –0.125 V prescaler range)  
Analog input (direct input to ADC)  
–10.5 to 0.3  
–3.6 to 0.3  
–10.5 to 0.3  
–3.6 to 0.3  
–0.3 to 3.6  
–0.3 to 3.6  
Digital input  
–0.3 to 12.0  
–10.5 to 12.0  
–0.3 to 12.0  
–10.5 to 0.3  
–10.5 to 12.0  
–0.3 to 15.5  
–0.3 to 15.5  
–0.3 to 3.6  
–0.3 to 11.6  
–10.5 to 11.6  
–0.3 to 11.6  
–10.5 to 0.3  
–10.5 to 11.6  
–0.3 to 14.5  
–0.3 to 14.5  
–0.3 to 3.6  
AG 6  
Unpowered, ADC reset asserted or unconfigured  
Low Current Mode (1 µA, 3 µA, 10 µA, 30 µA)  
Low Current Mode (–1 µA, –3 µA, –10 µA, –30 µA)  
High Current Mode 7  
AT 6  
Unpowered, ADC reset asserted or unconfigured  
Analog input (+16 V, +4 V prescaler range)  
Analog input (direct input to ADC)  
Digital input  
–0.3 to 15.5  
–0.3 to 14.5  
Notes:  
1. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O  
standard are given in Table 2-85 on page 2-160.  
2. All parameters representing voltages are measured with respect to GND unless otherwise specified.  
3. The programming temperature range supported is T  
= 0°C to 85°C.  
ambient  
4. VPUMP can be left floating during normal operation (not programming mode).  
5. Violating the V  
programmed.  
recommended voltage supply during an embedded flash program cycle can corrupt the page being  
CC15A  
6. The input voltage may overshoot by up to 500 mV above the Recommended Maximum (150 mV in Direct mode),  
provided the duration of the overshoot is less than 50% of the operating lifetime of the device.  
7. The AG pad should also conform to the limits as specified in Table 2-48 on page 2-117.  
Revision 4  
3-3  
DC and Power Characteristics  
Table 3-3 • Input Resistance of Analog Pads  
Pads  
Pad Configuration  
Prescaler Range  
Input Resistance to Ground  
2 k(typical)  
> 10 M  
AV, AC  
Analog Input (direct input to ADC)  
Analog Input (positive prescaler)  
Analog Input (negative prescaler)  
+16 V to +2 V  
+1 V to +0.125 V  
–16 V to –2 V  
–1 V to –0.125 V  
+16 V to +2 V  
+16 V to +2 V  
–16 V to –2 V  
1 M(typical)  
> 10 M  
1 M(typical)  
> 10 M  
Digital input  
1 M(typical)  
1 M(typical)  
1 M(typical)  
1 M(typical)  
1 M(typical)  
1 M(typical)  
> 10 M  
Current monitor  
AT  
Analog Input (direct input to ADC)  
Analog Input (positive prescaler)  
Digital input  
+16 V, +4 V  
+16 V, +4 V  
+16 V, +4 V  
Temperature monitor  
Table 3-4 • Overshoot and Undershoot Limits 1  
Average VCCI–GND Overshoot or Undershoot  
Duration as a Percentage of Clock Cycle2  
Maximum Overshoot/  
Undershoot2  
VCCI  
2.7 V or less  
10%  
5%  
1.4 V  
1.49 V  
1.1 V  
3.0 V  
3.3 V  
3.6 V  
Notes:  
10%  
5%  
1.19 V  
0.79 V  
0.88 V  
0.45 V  
0.54 V  
10%  
5%  
10%  
5%  
1. Based on reliability requirements at a junction temperature of 85°C.  
2. The duration is allowed at one cycle out of six clock cycle. If the overshoot/undershoot occurs at one out of two cycles,  
the maximum overshoot/undershoot has to be reduced by 0.15 V.  
3-4  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 3-5 • FPGA Programming, Storage, and Operating Limits  
Product  
Grade  
Storage  
Temperature  
Grade Programming  
Cycles  
Element  
Retention  
20 years  
20 years  
10 years  
5 years  
Commercial  
Min. TJ = 0°C  
FPGA/FlashROM  
Embedded Flash  
500  
Max. TJ = 85°C  
< 1,000  
< 10,000  
< 15,000  
500  
Industrial  
Min. TJ = –40°C  
Max. TJ = 100°C  
FPGA/FlashROM  
Embedded Flash  
20 years  
20 years  
10 years  
5 years  
< 1,000  
< 10,000  
< 15,000  
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset  
(Commercial and Industrial)  
Sophisticated power-up management circuitry is designed into every Fusion device. These circuits  
ensure easy transition from the powered off state to the powered up state of the device. The many  
different supplies can power up in any sequence with minimized current spikes or surges. In addition, the  
I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 3-1  
on page 3-6.  
There are five regions to consider during power-up.  
Fusion I/Os are activated only if ALL of the following three conditions are met:  
1. VCC and VCCI are above the minimum specified trip points (Figure 3-1).  
2. VCCI > VCC – 0.75 V (typical).  
3. Chip is in the operating mode.  
VCCI Trip Point:  
Ramping up: 0.6 V < trip_point_up < 1.2 V  
Ramping down: 0.5 V < trip_point_down < 1.1 V  
VCC Trip Point:  
Ramping up: 0.6 V < trip_point_up < 1.1 V  
Ramping down: 0.5 V < trip_point_down < 1 V  
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically  
built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:  
During programming, I/Os become tristated and weakly pulled up to VCCI.  
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O  
behavior.  
Internal Power-Up Activation Sequence  
1. Core  
2. Input buffers  
3. Output buffers, after 200 ns delay from input buffer activation  
PLL Behavior at Brownout Condition  
Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-  
up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout  
activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 3-1 on page 3-6  
for more details).  
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels  
(0.75 V ± 0.25 V), the PLL output lock signal goes low and/or the output clock is lost.  
Revision 4  
3-5  
DC and Power Characteristics  
VCC = VCCI + VT  
Where VT can be from 0.58 V to 0.9 V (typically 0.75 V)  
VCC  
VCC = 1.575 V  
Region 5: I/O buffers are ON  
and power supplies are within  
specification.  
Region 4: I/O  
buffers are ON.  
I/Os are functional  
Region 1: I/O Buffers are OFF  
(except differential inputs)  
but slower because VCCI is  
below specification. For the  
I/Os meet the entire datasheet  
and timer specifications for  
speed, VIH / VIL, VOH VOL, etc.  
same reason, input buffers do not  
meet VIH / VIL levels, and output  
buffers do not meet VOH / VOL levels.  
VCC = 1.425 V  
Region 2: I/O buffers are ON.  
Region 3: I/O buffers are ON.  
I/Os are functional; I/O DC  
specifications are met,  
but I/Os are slower because  
the VCC is below specification  
I/Os are functional (except differential inputs)  
but slower because VCCI / VCC are below  
specification. For the same reason, input  
buffers do not meet VIH / VIL levels, and  
output buffers do not meet VOH / VOL levels.  
Activation trip point:  
V
= 0.85 V ± 0.25 V  
a
Deactivation trip point:  
= 0.75 V ± 0.25 V  
Region 1: I/O buffers are OFF  
V
d
VCCI  
Activation trip point:  
= 0.9 V ±0.3 V  
Min VCCI datasheet specification  
V
voltage at a selected I/O  
standard; i.e., 1.425 V or 1.7 V  
or 2.3 V or 3.0 V  
a
Deactivation trip point:  
= 0.8 V ± 0.3 V  
V
d
Figure 3-1 • I/O State as a Function of VCCI and VCC Voltage Levels  
3-6  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Thermal Characteristics  
Introduction  
The temperature variable in the Microsemi Designer software refers to the junction temperature, not the  
ambient, case, or board temperatures. This is an important distinction because dynamic and static power  
consumption will cause the chip's junction temperature to be higher than the ambient, case, or board  
temperatures. EQ 1 through EQ 3 give the relationship between thermal resistance, temperature  
gradient, and power.  
TJ A  
------------------  
JA  
JB  
JC  
=
=
=
P
EQ 1  
TJ TB  
------------------  
P
EQ 2  
EQ 3  
TJ TC  
------------------  
P
where  
JA = Junction-to-air thermal resistance  
JB = Junction-to-board thermal resistance  
JC = Junction-to-case thermal resistance  
TJ = Junction temperature  
TA = Ambient temperature  
TB = Board temperature (measured 1.0 mm away from the  
package edge)  
TC = Case temperature  
P
= Total power dissipated by the device  
Table 3-6 • Package Thermal Resistance  
JA  
1.0 m/s  
30.0  
27.6  
26.5  
38.4  
21.3  
33.9  
30.0  
25.2  
19.6  
18.2  
16.8  
TBD  
Product  
Still Air  
34.5  
33.3  
32.2  
42.1  
23.9  
37.7  
33.7  
28.9  
23.3  
21.8  
21.6  
TBD  
2.5 m/s  
27.7  
25.7  
24.7  
37  
JC  
8.1  
JB  
16.7  
21.2  
15.0  
36.3  
16.5  
29.7  
24.8  
19.9  
14.2  
16.8  
14.9  
TBD  
Units  
AFS090-QN108  
AFS090-QN180  
AFS250-QN180  
AFS250-PQ208  
AFS600-PQ208  
AFS090-FG256  
AFS250-FG256  
AFS600-FG256  
AFS1500-FG256  
AFS600-FG484  
AFS1500-FG484  
AFS1500-FG676  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
9.2  
5.7  
20.5  
6.1  
20.48  
32.2  
28.3  
23.5  
18.0  
16.7  
15.2  
TBD  
11.5  
9.3  
6.8  
4.3  
7.7  
5.6  
TBD  
Revision 4  
3-7  
DC and Power Characteristics  
Theta-JA  
Junction-to-ambient thermal resistance (JA) is determined under standard conditions specified by  
JEDEC (JESD-51), but it has little relevance in actual performance of the product. It should be used with  
caution but is useful for comparing the thermal performance of one package to another.  
A sample calculation showing the maximum power dissipation allowed for the AFS600-FG484 package  
under forced convection of 1.0 m/s and 75°C ambient temperature is as follows:  
T
J(MAX) TA(MAX)  
---------------------------------------------  
Maximum Power Allowed =  
JA  
EQ 4  
where  
JA = 19.00°C/W (taken from Table 3-6 on page 3-7).  
TA = 75.00°C  
100.00°C 75.00°C  
----------------------------------------------------  
Maximum Power Allowed =  
= 1.3 W  
19.00°C/W  
EQ 5  
The power consumption of a device can be calculated using the Microsemi power calculator. The  
device's power consumption must be lower than the calculated maximum power dissipation by the  
package. If the power consumption is higher than the device's maximum allowable power dissipation, a  
heat sink can be attached on top of the case, or the airflow inside the system must be increased.  
Theta-JB  
Junction-to-board thermal resistance (JB) measures the ability of the package to dissipate heat from the  
surface of the chip to the PCB. As defined by the JEDEC (JESD-51) standard, the thermal resistance  
from junction to board uses an isothermal ring cold plate zone concept. The ring cold plate is simply a  
means to generate an isothermal boundary condition at the perimeter. The cold plate is mounted on a  
JEDEC standard board with a minimum distance of 5.0 mm away from the package edge.  
Theta-JC  
Junction-to-case thermal resistance (JC) measures the ability of a device to dissipate heat from the  
surface of the chip to the top or bottom surface of the package. It is applicable for packages used with  
external heat sinks. Constant temperature is applied to the surface in consideration and acts as a  
boundary condition. This only applies to situations where all or nearly all of the heat is dissipated through  
the surface in consideration.  
Calculation for Heat Sink  
For example, in a design implemented in an AFS600-FG484 package with 2.5 m/s airflow, the power  
consumption value using the power calculator is 3.00 W. The user-dependent Ta and Tj are given as  
follows:  
TJ  
TA  
=
=
100.00°C  
70.00°C  
From the datasheet:  
JA  
JC  
=
=
17.00°C/W  
8.28°C/W  
TJ TA  
------------------ -----------------------------------  
= 1.76 W  
100°C 70°C  
P =  
=
JA  
17.00 W  
EQ 6  
3-8  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
The 1.76 W power is less than the required 3.00 W. The design therefore requires a heat sink, or the  
airflow where the device is mounted should be increased. The design's total junction-to-air thermal  
resistance requirement can be estimated by EQ 7:  
TJ TA  
------------------  
P
100°C 70°C  
-----------------------------------  
= 10.00°C/W  
ja(total)  
=
=
3.00 W  
EQ 7  
EQ 8  
Determining the heat sink's thermal performance proceeds as follows:  
JA(TOTAL) = JC + CS + SA  
where  
JA  
=
=
0.37°C/W  
Thermal resistance of the interface material between  
the case and the heat sink, usually provided by the  
thermal interface manufacturer  
SA  
=
Thermal resistance of the heat sink in °C/W  
SA = JA(TOTAL) JC CS  
EQ 9  
SA = 13.33°C/W 8.28°C/W 0.37°C/W = 5.01°C/W  
A heat sink with a thermal resistance of 5.01°C/W or better should be used. Thermal resistance of heat  
sinks is a function of airflow. The heat sink performance can be significantly improved with increased  
airflow.  
Carefully estimating thermal resistance is important in the long-term reliability of an Microsemi FPGA.  
Design engineers should always correlate the power consumption of the device with the maximum  
allowable power dissipation of the package selected for that device.  
Note: The junction-to-air and junction-to-board thermal resistances are based on JEDEC standard  
(JESD-51) and assumptions made in building the model. It may not be realized in actual application and  
therefore should be used with a degree of caution. Junction-to-case thermal resistance assumes that all  
power is dissipated through the case.  
Temperature and Voltage Derating Factors  
Table 3-7 • Temperature and Voltage Derating Factors for Timing Delays  
(normalized to TJ = 70°C, Worst-Case VCC = 1.425 V)  
Junction Temperature (°C)  
Array Voltage  
VCC (V)  
–40°C  
0°C  
0.93  
0.88  
0.85  
25°C  
0.95  
0.90  
0.87  
70°C  
1.00  
0.95  
0.91  
85°C  
1.02  
0.96  
0.93  
100°C  
1.05  
1.425  
0.88  
1.500  
0.83  
0.99  
1.575  
0.80  
0.96  
Revision 4  
3-9  
DC and Power Characteristics  
Calculating Power Dissipation  
Quiescent Supply Current  
Table 3-8 • AFS1500 Quiescent Supply Current Characteristics  
Parameter  
Description  
Conditions  
Temp.  
Min. Typ. Max. Unit  
ICC1  
1.5 V quiescent current Operational standby4,  
VCC = 1.575 V  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
20  
32  
59  
0
40  
65  
120  
0
mA  
mA  
mA  
µA  
Standby mode5 or Sleep mode6,  
VCC = 0 V  
ICC332  
3.3 V analog supplies  
current  
Operational standby4,  
VCC33 = 3.63 V  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
9.8  
10.7  
10.8  
0.31  
0.35  
0.45  
2.9  
13  
14  
15  
2
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
Operational standby, only Analog  
Quad and –3.3 V output ON,  
VCC33 = 3.63 V  
2
2
Standby mode5, VCC33 = 3.63 V  
3.6  
4
2.9  
3.3  
6
Sleep mode6, VCC33 = 3.63 V  
17  
19  
20  
25  
649  
649  
649  
18  
µA  
24  
µA  
ICCI3  
I/O quiescent current  
Operational standby4,  
417  
417  
417  
µA  
Standby mode, and Sleep Mode6,  
VCCIx = 3.63 V  
µA  
µA  
Notes:  
1. ICC is the 1.5 V power supplies, ICC and ICC15A.  
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.  
3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.  
4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is  
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.  
5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.  
6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.  
3-10  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 3-8 • AFS1500 Quiescent Supply Current Characteristics (continued)  
Parameter  
Description  
Conditions  
Operational standby4,  
Temp.  
Min. Typ. Max. Unit  
IJTAG  
JTAG I/O quiescent  
current  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
80  
80  
80  
0
100  
100  
100  
0
µA  
µA  
µA  
µA  
VJTAG = 3.63 V  
Standby mode5 or Sleep mode6,  
VJTAG = 0 V  
IPP  
Programming supply  
current  
Non-programming mode,  
VPUMP = 3.63 V  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
39  
40  
40  
0
80  
80  
80  
0
µA  
µA  
µA  
µA  
Standby mode5 or Sleep mode6,  
VPUMP = 0 V  
ICCNVM  
ICCPLL  
Notes:  
Embedded NVM  
current  
Reset asserted, VCCNVM = 1.575 V  
TJ = 25°C  
TJ =85°C  
50  
50  
150  
150  
150  
200  
200  
200  
µA  
µA  
µA  
µA  
µA  
µA  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
50  
1.5 V PLL quiescent  
current  
Operational standby  
, VCCPLL = 1.575 V  
130  
130  
130  
1. ICC is the 1.5 V power supplies, ICC and ICC15A.  
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.  
3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.  
4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is  
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.  
5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.  
6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.  
Revision 4  
3-11  
DC and Power Characteristics  
Table 3-9 • AFS600 Quiescent Supply Current Characteristics  
Parameter  
Description  
Conditions  
Temp.  
Min Typ Max Unit  
ICC1  
1.5 V quiescent current  
Operational standby4,  
VCC = 1.575 V  
TJ = 25°C  
TJ = 85°C  
TJ=100°C  
13  
20  
25  
0
25  
45  
75  
0
mA  
mA  
mA  
µA  
Standby mode5 or Sleep  
mode6, VCC = 0 V  
ICC332  
3.3 V analog supplies  
current  
Operational standby4,  
VCC33 = 3.63 V  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
9.8  
13  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
10.7 14  
10.8 15  
Operational standby,  
only Analog Quad and –3.3 V  
output ON, VCC33 = 3.63 V  
0.31  
0.35  
0.45  
2.8  
2.9  
3.5  
17  
2
2
2
Standby mode5,  
VCC33 = 3.63 V  
3.6  
4
6
Sleep mode6, VCC33 = 3.63 V  
19  
20  
25  
18  
µA  
24  
µA  
ICCI3  
I/O quiescent current  
Operational standby4,  
VCCIx = 3.63 V  
417 648 µA  
417 648 µA  
417 649 µA  
IJTAG  
JTAG I/O quiescent current Operational standby4,  
VJTAG = 3.63 V  
80  
80  
80  
0
100 µA  
100 µA  
100 µA  
Standby mode5 or Sleep  
mode6, VJTAG = 0 V  
0
µA  
Notes:  
1. ICC is the 1.5 V power supplies, ICC and ICC15A.  
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.  
3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.  
4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is  
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.  
5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.  
6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.  
3-12  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 3-9 • AFS600 Quiescent Supply Current Characteristics (continued)  
Parameter  
Description  
Conditions  
Temp.  
Min Typ Max Unit  
IPP  
Programming supply  
current  
Non-programming mode,  
VPUMP = 3.63 V  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
36  
36  
36  
0
80  
80  
80  
0
µA  
µA  
µA  
µA  
Standby mode5 or Sleep  
mode6, VPUMP = 0 V  
ICCNVM  
ICCPLL  
Notes:  
Embedded NVM current  
Reset asserted,  
VCCNVM = 1.575 V  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
22  
24  
25  
80  
80  
80  
µA  
µA  
µA  
1.5 V PLL quiescent current Operational standby,  
VCCPLL = 1.575 V  
130 200 µA  
130 200 µA  
130 200 µA  
1. ICC is the 1.5 V power supplies, ICC and ICC15A.  
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.  
3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.  
4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is  
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.  
5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.  
6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.  
Revision 4  
3-13  
DC and Power Characteristics  
Table 3-10 • AFS250 Quiescent Supply Current Characteristics  
Parameter  
Description  
Conditions  
Temp.  
Min Typ Max Unit  
ICC1  
1.5 V quiescent current  
Operational standby4,  
VCC = 1.575 V  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
4.8  
8.2  
15  
0
10  
30  
50  
0
mA  
mA  
mA  
µA  
Standby mode5 or Sleep  
mode6, VCC = 0 V  
ICC332  
3.3 V analog supplies  
current  
Operational standby4,  
VCC33 = 3.63 V  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
9.8  
9.8  
13  
14  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
10.8 15  
Operational standby, only  
Analog Quad and –3.3 V  
output ON, VCC33 = 3.63 V  
0.29  
0.31  
0.45  
2.9  
2.9  
3.5  
19  
2
2
2
Standby mode5, VCC33 = 3.63V TJ = 25°C  
3.0  
3.1  
6
TJ = 85°C  
TJ = 100°C  
Sleep mode6, VCC33 = 3.63 V TJ = 25°C  
TJ = 85°C  
18  
20  
25  
19  
µA  
TJ = 100°C  
24  
µA  
ICCI3  
I/O quiescent current  
Operational standby6,  
VCCIx = 3.63 V  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
266 437 µA  
266 437 µA  
266 437 µA  
IJTAG  
JTAG I/O quiescent current Operational standby4,  
VJTAG = 3.63 V  
80  
80  
80  
0
100 µA  
100 µA  
100 µA  
Standby mode5 or Sleep  
mode6, VJTAG = 0 V  
0
µA  
Notes:  
1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.  
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.  
3. ICCI includes all ICCI0, ICCI1, and ICCI2.  
4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is  
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.  
5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.  
6. Sleep Mode, VCC = VJTA G = VPUMP = 0 V.  
3-14  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 3-10 • AFS250 Quiescent Supply Current Characteristics (continued)  
Parameter  
Description  
Conditions  
Temp.  
Min Typ Max Unit  
IPP  
Programming supply  
current  
Non-programming mode,  
VPUMP = 3.63 V  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
37  
37  
80  
0
80  
80  
µA  
µA  
100 µA  
Standby mode5 or Sleep  
mode6, VPUMP = 0 V  
0
µA  
ICCNVM  
ICCPLL  
Notes:  
Embedded NVM current  
Reset asserted,  
VCCNVM = 1.575 V  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
10  
14  
14  
65  
65  
65  
40  
40  
40  
µA  
µA  
µA  
1.5 V PLL quiescent current Operational standby,  
VCCPLL = 1.575 V  
100 µA  
100 µA  
100 µA  
1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.  
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.  
3. ICCI includes all ICCI0, ICCI1, and ICCI2.  
4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is  
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.  
5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.  
6. Sleep Mode, VCC = VJTA G = VPUMP = 0 V.  
Revision 4  
3-15  
DC and Power Characteristics  
Table 3-11 • AFS090 Quiescent Supply Current Characteristics  
Parameter  
Description  
Conditions  
Temp.  
Min Typ Max Unit  
ICC1  
1.5 V quiescent current  
Operational standby4,  
VCC = 1.575 V  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
5
6.5  
14  
0
7.5  
20  
48  
0
mA  
mA  
mA  
µA  
Standby mode5 or Sleep  
mode6, VCC = 0 V  
ICC332  
3.3 V analog supplies  
current  
Operational standby4,  
VCC33 = 3.63 V  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
9.8  
9.8  
12  
12  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
10.7 15  
Operational standby, only  
Analog Quad and –3.3 V  
output ON, VCC33 = 3.63 V  
0.30  
0.30  
0.45  
2.9  
2.9  
3.5  
17  
2
2
2
Standby mode5,  
VCC33 = 3.63 V  
2.9  
3.0  
6
Sleep mode6, VCC33 = 3.63 V TJ = 25°C  
18  
20  
25  
TJ = 85°C  
18  
µA  
TJ = 100°C  
24  
µA  
ICCI3  
I/O quiescent current  
Operational standby6,  
VCCIx = 3.63 V  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
260 437 µA  
260 437 µA  
260 437 µA  
IJTAG  
JTAG I/O quiescent current Operational standby4,  
VJTAG = 3.63 V  
80  
80  
80  
0
100 µA  
100 µA  
100 µA  
Standby mode5 or Sleep  
mode6, VJTAG = 0 V  
0
µA  
µA  
µA  
IPP  
Programming supply  
current  
Non-programming mode,  
VPUMP = 3.63 V  
TJ = 25°C  
37  
80  
80  
TJ = 85°C  
37  
80  
0
TJ = 100°C  
100 µA  
µA  
Standby mode5 or Sleep  
mode6, VPUMP = 0 V  
0
Notes:  
1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.  
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.  
3. ICCI includes all ICCI0, ICCI1, and ICCI2.  
4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is  
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.  
5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.  
6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.  
3-16  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 3-11 • AFS090 Quiescent Supply Current Characteristics (continued)  
Parameter  
Description  
Conditions  
Temp.  
Min Typ Max Unit  
ICCNVM  
Embedded NVM current  
Reset asserted,  
VCCNVM = 1.575 V  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
TJ = 25°C  
TJ = 85°C  
TJ = 100°C  
10  
14  
14  
65  
65  
65  
40  
40  
40  
µA  
µA  
µA  
ICCPLL  
1.5 V PLL quiescent current Operational standby,  
VCCPLL = 1.575 V  
100 µA  
100 µA  
100 µA  
Notes:  
1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.  
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.  
3. ICCI includes all ICCI0, ICCI1, and ICCI2.  
4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is  
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.  
5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.  
6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.  
Revision 4  
3-17  
DC and Power Characteristics  
Power per I/O Pin  
Table 3-12 • Summary of I/O Input Buffer Power (per pin)—Default I/O Software Settings  
Static Power  
Dynamic Power  
PAC9 (µW/MHz)2  
VCCI (V)  
PDC7 (mW)1  
Applicable to Pro I/O Banks  
Single-Ended  
3.3 V LVTTL/LVCMOS  
3.3 V LVTTL/LVCMOS – Schmitt trigger  
2.5 V LVCMOS  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
1.5  
1.5  
3.3  
3.3  
3.3  
3.3  
17.39  
25.51  
5.76  
2.5 V LVCMOS – Schmitt trigger  
1.8 V LVCMOS  
7.16  
2.72  
1.8 V LVCMOS – Schmitt trigger  
1.5 V LVCMOS (JESD8-11)  
1.5 V LVCMOS (JESD8-11) – Schmitt trigger  
3.3 V PCI  
2.80  
2.08  
2.00  
18.82  
20.12  
18.82  
20.12  
3.3 V PCI – Schmitt trigger  
3.3 V PCI-X  
3.3 V PCI-X – Schmitt trigger  
Voltage-Referenced  
3.3 V GTL  
3.3  
2.5  
3.3  
2.5  
1.5  
1.5  
2.5  
2.5  
3.3  
3.3  
2.90  
2.13  
2.81  
2.57  
0.17  
0.17  
1.38  
1.38  
3.21  
3.21  
8.23  
4.78  
4.14  
3.71  
2.03  
2.03  
4.48  
4.48  
9.26  
9.26  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Differential  
LVDS  
2.5  
3.3  
2.26  
5.71  
1.50  
2.17  
LVPECL  
Notes:  
1. PDC7 is the static power (where applicable) measured on VCCI.  
2. PAC9 is the total dynamic power measured on VCC and VCCI.  
3-18  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 3-12 • Summary of I/O Input Buffer Power (per pin)—Default I/O Software Settings (continued)  
Static Power  
PDC7 (mW)1  
Dynamic Power  
PAC9 (µW/MHz)2  
VCCI (V)  
Applicable to Advanced I/O Banks  
Single-Ended  
3.3 V LVTTL/LVCMOS  
2.5 V LVCMOS  
3.3  
2.5  
1.8  
1.5  
3.3  
3.3  
16.69  
5.12  
1.8 V LVCMOS  
2.13  
1.5 V LVCMOS (JESD8-11)  
3.3 V PCI  
1.45  
18.11  
18.11  
3.3 V PCI-X  
Differential  
LVDS  
2.5  
3.3  
2.26  
5.72  
1.20  
1.87  
LVPECL  
Applicable to Standard I/O Banks  
3.3 V LVTTL/LVCMOS  
2.5 V LVCMOS  
3.3  
2.5  
1.8  
1.5  
16.79  
5.19  
2.18  
1.52  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
Notes:  
1. PDC7 is the static power (where applicable) measured on VCCI.  
2. PAC9 is the total dynamic power measured on VCC and VCCI.  
Revision 4  
3-19  
DC and Power Characteristics  
Table 3-13 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings1  
Static Power  
Dynamic Power  
C
LOAD (pF)  
VCCI (V)  
PDC8 (mW)2  
PAC10 (µW/MHz)3  
Applicable to Pro I/O Banks  
Single-Ended  
3.3 V LVTTL/LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
3.3 V PCI  
35  
35  
35  
35  
10  
10  
3.3  
2.5  
1.8  
1.5  
3.3  
3.3  
474.70  
270.73  
151.78  
104.55  
204.61  
204.61  
3.3 V PCI-X  
Voltage-Referenced  
3.3 V GTL  
10  
10  
10  
10  
20  
20  
30  
30  
30  
30  
3.3  
2.5  
3.3  
2.5  
1.5  
1.5  
2.5  
2.5  
3.3  
3.3  
24.08  
13.52  
24.10  
13.54  
26.22  
27.22  
105.56  
116.60  
114.87  
131.76  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
7.08  
13.88  
16.69  
25.91  
26.02  
42.21  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Differential  
LVDS  
2.5  
3.3  
7.70  
89.62  
LVPECL  
19.42  
168.02  
Applicable to Advanced I/O Banks  
Single-Ended  
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
3.3 V PCI  
35  
35  
35  
35  
10  
10  
3.3  
2.5  
1.8  
1.5  
3.3  
3.3  
468.67  
267.48  
149.46  
103.12  
201.02  
201.02  
3.3 V PCI-X  
Notes:  
1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.  
2. PDC8 is the static power (where applicable) measured on VCCI.  
3. PAC10 is the total dynamic power measured on VCC and VCCI.  
3-20  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Table 3-13 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings1 (continued)  
Static Power  
PDC8 (mW)2  
Dynamic Power  
C
LOAD (pF)  
VCCI (V)  
PAC10 (µW/MHz)3  
Differential  
LVDS  
2.5  
3.3  
7.74  
88.92  
LVPECL  
19.54  
166.52  
Applicable to Standard I/O Banks  
Single-Ended  
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
35  
35  
35  
35  
3.3  
2.5  
1.8  
1.5  
431.08  
247.36  
128.46  
89.46  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
Notes:  
1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.  
2. PDC8 is the static power (where applicable) measured on VCCI.  
3. PAC10 is the total dynamic power measured on VCC and VCCI.  
Revision 4  
3-21  
DC and Power Characteristics  
Dynamic Power Consumption of Various Internal Resources  
Table 3-14 • Different Components Contributing to the Dynamic Power Consumption in Fusion Devices  
Device-Specific  
Power Supply  
Dynamic Contributions  
Parameter  
Definition  
Name Setting AFS1500 AFS600 AFS250 AFS090 Units  
PAC1  
Clock contribution of a Global VCC  
Rib  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
14.5  
2.5  
12.8  
1.9  
11  
11  
µW/MHz  
µW/MHz  
µW/MHz  
µW/MHz  
µW/MHz  
µW/MHz  
PAC2  
PAC3  
PAC4  
PAC5  
PAC6  
Clock contribution of a Global VCC  
Spine  
1.6  
0.8  
Clock contribution of a VersaTile VCC  
row  
0.81  
0.11  
0.07  
0.29  
Clock contribution of a VersaTile VCC  
used as a sequential module  
First contribution of a VersaTile VCC  
used as a sequential module  
Second  
contribution  
of  
a
VCC  
VersaTile used as a sequential  
module  
PAC7  
Contribution of a VersaTile used VCC  
as a combinatorial module  
1.5 V  
1.5 V  
0.29  
0.70  
µW/MHz  
µW/MHz  
PAC8  
Average contribution of a routing VCC  
net  
PAC9  
Contribution of an I/O input pin VCCI  
(standard dependent)  
See Table 3-12 on page 3-18  
PAC10  
PAC11  
PAC12  
Contribution of an I/O output pin VCCI  
(standard dependent)  
See Table 3-13 on page 3-20  
Average contribution of a RAM VCC  
block during a read operation  
1.5 V  
1.5 V  
25  
30  
µW/MHz  
µW/MHz  
Average contribution of a RAM VCC  
block during a write operation  
PAC13  
PAC15  
Dynamic Contribution for PLL  
VCC  
1.5 V  
1.5 V  
2.6  
µW/MHz  
µW/MHz  
Contribution of NVM block during VCC  
a read operation (F < 33MHz)  
358  
PAC16  
PAC17  
1st contribution of NVM block VCC  
during a read operation (F > 33  
MHz)  
1.5 V  
1.5 V  
12.88  
4.8  
mW  
2nd contribution of NVM block VCC  
during a read operation (F > 33  
MHz)  
µW/MHz  
PAC18  
PAC19  
PAC20  
Crystal Oscillator contribution  
RC Oscillator contribution  
VCC33A 3.3 V  
VCC33A 3.3 V  
0.63  
3.3  
3
mW  
mW  
mW  
Analog Block dynamic power VCC  
contribution of ADC  
1.5 V  
3-22  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Static Power Consumption of Various Internal Resources  
Table 3-15 • Different Components Contributing to the Static Power Consumption in Fusion Devices  
Device-Specific Static Contributions  
Power  
Parameter  
Definition  
Supply  
AFS1500 AFS600 AFS250 AFS090 Units  
PDC1  
Core static power contribution in  
operating mode  
VCC  
1.5 V  
18  
7.5  
4.50  
3.00  
mW  
mW  
mW  
PDC2  
PDC3  
Device static power contribution in VCC33A 3.3 V  
standby mode  
0.66  
0.03  
Device static power contribution in VCC33A 3.3 V  
sleep mode  
PDC4  
PDC5  
NVM static power contribution  
VCC  
1.5 V  
1.19  
8.25  
mW  
mW  
Analog  
Block  
static  
power VCC33A 3.3 V  
contribution of ADC  
PDC6  
PDC7  
PDC8  
PDC9  
Analog Block  
contribution per Quad  
static  
power VCC33A 3.3 V  
3.3  
mW  
mW  
Static contribution per input pin – VCCI  
standard dependent contribution  
See Table 3-12 on page 3-18  
See Table 3-13 on page 3-20  
2.55  
Static contribution per input pin – VCCI  
standard dependent contribution  
Static contribution for PLL  
VCC  
1.5 V  
Power Calculation Methodology  
This section describes a simplified method to estimate power consumption of an application. For more  
accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.  
The power calculation methodology described below uses the following variables:  
The number of PLLs as well as the number and the frequency of each output clock generated  
The number of combinatorial and sequential cells used in the design  
The internal clock frequencies  
The number and the standard of I/O pins used in the design  
The number of RAM blocks used in the design  
The number of NVM blocks used in the design  
The number of Analog Quads used in the design  
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 3-16 on  
page 3-27.  
Enable rates of output buffers—guidelines are provided for typical applications in Table 3-17 on  
page 3-27.  
Read rate and write rate to the RAM—guidelines are provided for typical applications in  
Table 3-17 on page 3-27.  
Read rate to the NVM blocks  
The calculation should be repeated for each clock domain defined in the design.  
Revision 4  
3-23  
DC and Power Characteristics  
Methodology  
Total Power Consumption—P  
TOTAL  
Operating Mode, Standby Mode, and Sleep Mode  
PTOTAL = PSTAT + PDYN  
PSTAT is the total static power consumption.  
PDYN is the total dynamic power consumption.  
Total Static Power Consumption—P  
Operating Mode  
STAT  
PSTAT = PDC1 + (NNVM-BLOCKS * PDC4) + PDC5+ (NQUADS * PDC6) + (NINPUTS * PDC7) +  
(NOUTPUTS * PDC8) + (NPLLS * PDC9)  
NNVM-BLOCKS is the number of NVM blocks available in the device.  
NQUADS is the number of Analog Quads used in the design.  
NINPUTS is the number of I/O input buffers used in the design.  
NOUTPUTS is the number of I/O output buffers used in the design.  
NPLLS is the number of PLLs available in the device.  
Standby Mode  
PSTAT = PDC2  
Sleep Mode  
PSTAT = PDC3  
Total Dynamic Power Consumption—P  
Operating Mode  
DYN  
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL + PNVM  
PXTL-OSC + PRC-OSC + PAB  
+
Standby Mode  
PDYN = PXTL-OSC  
Sleep Mode  
PDYN = 0 W  
Global Clock Dynamic Contribution—P  
Operating Mode  
CLOCK  
PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK  
NSPINE is the number of global spines used in the user design—guidelines are provided in the  
"Spine Architecture" section of the Global Resources chapter in the Fusion and Extended  
Temperature Fusion FPGA Fabric User's Guide.  
NROW is the number of VersaTile rows used in the design—guidelines are provided in the "Spine  
Architecture" section of the Global Resources chapter in the Fusion and Extended Temperature  
Fusion FPGA Fabric User's Guide.  
FCLK is the global clock signal frequency.  
NS-CELL is the number of VersaTiles used as sequential modules in the design.  
Standby Mode and Sleep Mode  
PCLOCK = 0 W  
Sequential Cells Dynamic Contribution—P  
S-CELL  
Operating Mode  
3-24  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
PS-CELL = NS-CELL * (PAC5 + (1 / 2) * PAC6) * FCLK  
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a multi-tile  
sequential cell is used, it should be accounted for as 1.  
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.  
FCLK is the global clock signal frequency.  
Standby Mode and Sleep Mode  
PS-CELL = 0 W  
Combinatorial Cells Dynamic Contribution—P  
C-CELL  
Operating Mode  
PC-CELL = NC-CELL* (1 / 2) * PAC7 * FCLK  
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.  
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.  
FCLK is the global clock signal frequency.  
Standby Mode and Sleep Mode  
PC-CELL = 0 W  
Routing Net Dynamic Contribution—PNET  
Operating Mode  
PNET = (NS-CELL + NC-CELL) * (1 / 2) * PAC8 * FCLK  
NS-CELL is the number VersaTiles used as sequential modules in the design.  
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.  
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.  
FCLK is the global clock signal frequency.  
Standby Mode and Sleep Mode  
PNET = 0 W  
I/O Input Buffer Dynamic Contribution—P  
INPUTS  
Operating Mode  
PINPUTS = NINPUTS * (2 / 2) * PAC9 * FCLK  
NINPUTS is the number of I/O input buffers used in the design.  
2 is the I/O buffer toggle rate—guidelines are provided in Table 3-16 on page 3-27.  
FCLK is the global clock signal frequency.  
Standby Mode and Sleep Mode  
PINPUTS = 0 W  
I/O Output Buffer Dynamic Contribution—P  
OUTPUTS  
Operating Mode  
POUTPUTS = NOUTPUTS * (2 / 2) * 1 * PAC10 * FCLK  
NOUTPUTS is the number of I/O output buffers used in the design.  
2 is the I/O buffer toggle rate—guidelines are provided in Table 3-16 on page 3-27.  
1 is the I/O buffer enable rate—guidelines are provided in Table 3-17 on page 3-27.  
FCLK is the global clock signal frequency.  
Standby Mode and Sleep Mode  
POUTPUTS = 0 W  
Revision 4  
3-25  
DC and Power Characteristics  
RAM Dynamic Contribution—P  
MEMORY  
Operating Mode  
PMEMORY = (NBLOCKS * PAC11 * 2 * FREAD-CLOCK) + (NBLOCKS * PAC12 * 3 * FWRITE-CLOCK  
)
NBLOCKS is the number of RAM blocks used in the design.  
FREAD-CLOCK is the memory read clock frequency.  
2 is the RAM enable rate for read operations—guidelines are provided in Table 3-17 on  
page 3-27.  
3 the RAM enable rate for write operations—guidelines are provided in Table 3-17 on page 3-27.  
FWRITE-CLOCK is the memory write clock frequency.  
Standby Mode and Sleep Mode  
PMEMORY = 0 W  
PLL/CCC Dynamic Contribution—P  
PLL  
Operating Mode  
PPLL = PAC13 * FCLKOUT  
FCLKIN is the input clock frequency.  
FCLKOUT is the output clock frequency.1  
Standby Mode and Sleep Mode  
PPLL = 0 W  
Nonvolatile Memory Dynamic Contribution—P  
NVM  
Operating Mode  
The NVM dynamic power consumption is a piecewise linear function of frequency.  
PNVM = NNVM-BLOCKS * 4 * PAC15 * FREAD-NVM when FREAD-NVM 33 MHz,  
PNVM = NNVM-BLOCKS * 4 *(PAC16 + PAC17 * FREAD-NVM when FREAD-NVM > 33 MHz  
NNVM-BLOCKS is the number of NVM blocks used in the design (2 inAFS600).  
4 is the NVM enable rate for read operations. Default is 0 (NVM mainly in idle state).  
FREAD-NVM is the NVM read clock frequency.  
Standby Mode and Sleep Mode  
PNVM = 0 W  
Crystal Oscillator Dynamic Contribution—P  
XTL-OSC  
Operating Mode  
PXTL-OSC = PAC18  
Standby Mode  
PXTL-OSC = PAC18  
Sleep Mode  
PXTL-OSC = 0 W  
1. The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the  
PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output  
clock in the formula output clock by adding its corresponding contribution (PAC14 * FCLKOUT product) to the total PLL  
contribution.  
3-26  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
RC Oscillator Dynamic Contribution—P  
RC-OSC  
Operating Mode  
PRC-OSC = PAC19  
Standby Mode and Sleep Mode  
PRC-OSC = 0 W  
Analog System Dynamic Contribution—P  
AB  
Operating Mode  
PAB = PAC20  
Standby Mode and Sleep Mode  
PAB = 0 W  
Guidelines  
Toggle Rate Definition  
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the  
toggle rate of a net is 100%, this means that the net switches at half the clock frequency. Below are some  
examples:  
The average toggle rate of a shift register is 100%, as all flip-flop outputs toggle at half of the clock  
frequency.  
The average toggle rate of an 8-bit counter is 25%:  
Bit 0 (LSB) = 100%  
Bit 1 = 50%  
Bit 2 = 25%  
Bit 7 (MSB) = 0.78125%  
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . 0.78125%) / 8.  
Enable Rate Definition  
Output enable rate is the average percentage of time during which tristate outputs are enabled. When  
non-tristate output buffers are used, the enable rate should be 100%.  
Table 3-16 • Toggle Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
Toggle rate of VersaTile outputs  
I/O buffer toggle rate  
Guideline  
10%  
1  
2  
10%  
Table 3-17 • Enable Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
I/O output buffer enable rate  
Guideline  
100%  
1  
2  
3  
4  
RAM enable rate for read operations  
RAM enable rate for write operations  
NVM enable rate for read operations  
12.5%  
12.5%  
0%  
Revision 4  
3-27  
DC and Power Characteristics  
Example of Power Calculation  
This example considers a shift register with 5,000 storage tiles, including a counter and memory that  
stores analog information. The shift register is clocked at 50 MHz and stores and reads information from  
a RAM.  
The device used is a commercial AFS600 device operating in typical conditions.  
The calculation below uses the power calculation methodology previously presented and shows how to  
determine the dynamic and static power consumption of resources used in the application.  
Also included in the example is the calculation of power consumption in operating, standby, and sleep  
modes to illustrate the benefit of power-saving modes.  
Global Clock Contribution—P  
CLOCK  
FCLK = 50 MHz  
Number of sequential VersaTiles: NS-CELL = 5,000  
Estimated number of Spines: NSPINES = 5  
Estimated number of Rows: NROW = 313  
Operating Mode  
PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK  
PCLOCK = (0.0128 + 5 * 0.0019 + 313 * 0.00081 + 5,000 * 0.00011) * 50  
PCLOCK = 41.28 mW  
Standby Mode and Sleep Mode  
PCLOCK = 0 W  
Logic—Sequential Cells, Combinational Cells, and Routing Net Contributions—P  
,
S-CELL  
P
, and P  
C-CELL  
NET  
FCLK = 50 MHz  
Number of sequential VersaTiles: NS-CELL = 5,000  
Number of combinatorial VersaTiles: NC-CELL = 6,000  
Estimated toggle rate of VersaTile outputs: 1 = 0.1 (10%)  
Operating Mode  
PS-CELL = NS-CELL * (PAC5+ (1 / 2) * PAC6) * FCLK  
PS-CELL = 5,000 * (0.00007 + (0.1 / 2) * 0.00029) * 50  
PS-CELL = 21.13 mW  
PC-CELL = NC-CELL* (1 / 2) * PAC7 * FCLK  
PC-CELL = 6,000 * (0.1 / 2) * 0.00029 * 50  
PC-CELL = 4.35 mW  
PNET = (NS-CELL + NC-CELL) * (1 / 2) * PAC8 * FCLK  
PNET = (5,000 + 6,000) * (0.1 / 2) * 0.0007 * 50  
PNET = 19.25 mW  
PLOGIC = PS-CELL + PC-CELL + PNET  
PLOGIC = 21.13 mW + 4.35 mW + 19.25 mW  
PLOGIC = 44.73 mW  
Standby Mode and Sleep Mode  
3-28  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
PS-CELL = 0 W  
PC-CELL = 0 W  
PNET = 0 W  
PLOGIC = 0 W  
I/O Input and Output Buffer Contribution—P  
I/O  
This example uses LVTTL 3.3 V I/O cells. The output buffers are 12 mA–capable, configured with high  
output slew and driving a 35 pF output load.  
FCLK = 50 MHz  
Number of input pins used: NINPUTS = 30  
Number of output pins used: NOUTPUTS = 40  
Estimated I/O buffer toggle rate: 2 = 0.1 (10%)  
Estimated IO buffer enable rate: 1 = 1 (100%)  
Operating Mode  
PINPUTS = NINPUTS * (2 / 2) * PAC9 * FCLK  
PINPUTS = 30 * (0.1 / 2) * 0.01739 * 50  
PINPUTS = 1.30 mW  
POUTPUTS = NOUTPUTS * (2 / 2) * 1 * PAC10 * FCLK  
POUTPUTS = 40 * (0.1 / 2) * 1 * 0.4747 * 50  
POUTPUTS = 47.47 mW  
PI/O = PINPUTS + POUTPUTS  
PI/O = 1.30 mW + 47.47 mW  
PI/O = 48.77 mW  
Standby Mode and Sleep Mode  
PINPUTS = 0 W  
POUTPUTS = 0 W  
PI/O = 0 W  
RAM Contribution—P  
MEMORY  
Frequency of Read Clock: FREAD-CLOCK = 10 MHz  
Frequency of Write Clock: FWRITE-CLOCK = 10 MHz  
Number of RAM blocks: NBLOCKS = 20  
Estimated RAM Read Enable Rate: 2 = 0.125 (12.5%)  
Estimated RAM Write Enable Rate: 3 = 0.125 (12.5%)  
Operating Mode  
PMEMORY = (NBLOCKS * PAC11 * 2 * FREAD-CLOCK) + (NBLOCKS * PAC12 * 3 * FWRITE-CLOCK  
)
PMEMORY = (20 * 0.025 * 0.125 * 10) + (20 * 0.030 * 0.125 * 10)  
PMEMORY = 1.38 mW  
Standby Mode and Sleep Mode  
PMEMORY = 0 W  
Revision 4  
3-29  
DC and Power Characteristics  
PLL/CCC Contribution—P  
PLL  
PLL is not used in this application.  
PPLL = 0 W  
Nonvolatile Memory—P  
NVM  
Nonvolatile memory is not used in this application.  
PNVM = 0 W  
Crystal Oscillator—P  
XTL-OSC  
The application utilizes standby mode. The crystal oscillator is assumed to be active.  
Operating Mode  
PXTL-OSC = PAC18  
PXTL-OSC = 0.63 mW  
Standby Mode  
PXTL-OSC = PAC18  
PXTL-OSC = 0.63 mW  
Sleep Mode  
PXTL-OSC = 0 W  
RC Oscillator—P  
RC-OSC  
Operating Mode  
PRC-OSC = PAC19  
PRC-OSC = 3.30 mW  
Standby Mode and Sleep Mode  
PRC-OSC = 0 W  
Analog System—P  
AB  
Number of Quads used: NQUADS = 4  
Operating Mode  
PAB = PAC20  
PAB = 3.00 mW  
Standby Mode and Sleep Mode  
PAB = 0 W  
Total Dynamic Power Consumption—P  
DYN  
Operating Mode  
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL + PNVM  
PXTL-OSC + PRC-OSC + PAB  
+
PDYN = 41.28 mW + 21.1 mW + 4.35 mW + 19.25 mW + 1.30 mW + 47.47 mW + 1.38 mW + 0 + 0 +  
0.63 mW + 3.30 mW + 3.00 mW  
PDYN = 143.06 mW  
Standby Mode  
PDYN = PXTL-OSC  
PDYN = 0.63 mW  
Sleep Mode  
PDYN = 0 W  
3-30  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Total Static Power Consumption—P  
STAT  
Number of Quads used: NQUADS = 4  
Number of NVM blocks available (AFS600): NNVM-BLOCKS = 2  
Number of input pins used: NINPUTS = 30  
Number of output pins used: NOUTPUTS = 40  
Operating Mode  
PSTAT = PDC1 + (NNVM-BLOCKS * PDC4) + PDC5 + (NQUADS * PDC6) + (NINPUTS * PDC7) +  
(NOUTPUTS * PDC8)  
PSTAT = 7.50 mW + (2 * 1.19 mW) + 8.25 mW + (4 * 3.30 mW) + (30 * 0.00) + (40 * 0.00)  
PSTAT = 31.33 mW  
Standby Mode  
PSTAT = PDC2  
PSTAT = 0.03 mW  
Sleep Mode  
PSTAT = PDC3  
PSTAT = 0.03 mW  
Total Power Consumption—P  
TOTAL  
In operating mode, the total power consumption of the device is 174.39 mW:  
PTOTAL = PSTAT + PDYN  
PTOTAL = 143.06 mW + 31.33 mW  
PTOTAL = 174.39 mW  
In standby mode, the total power consumption of the device is limited to 0.66 mW:  
PTOTAL = PSTAT + PDYN  
PTOTAL = 0.03 mW + 0.63 mW  
PTOTAL = 0.66 mW  
In sleep mode, the total power consumption of the device drops as low as 0.03 mW:  
PTOTAL = PSTAT + PDYN  
PTOTAL = 0.03 mW  
Revision 4  
3-31  
DC and Power Characteristics  
Power Consumption  
Table 3-18 • Power Consumption  
Parameter  
Description  
Condition  
Min.  
Typical  
Max.  
Units  
Crystal Oscillator  
ISTBXTAL  
Standby Current of Crystal  
Oscillator  
10  
µA  
IDYNXTAL  
Operating Current  
RC  
0.6  
0.19  
0.6  
mA  
mA  
mA  
mA  
0.032–0.2  
0.2–2.0  
2.0–20.0  
0.6  
RC Oscillator  
IDYNRC  
ACM  
Operating Current  
1
mA  
Operating  
clock)  
Current  
Current  
(fixed  
(user  
200  
30  
µA/MHz  
µA  
Operating  
clock)  
NVM System  
NVM Array Operating Power  
Idle  
795  
µA  
Read  
See  
See  
operation  
Table 3-15 on  
page 3-23.  
Table 3-15 on  
page 3-23.  
Erase  
Write  
900  
900  
20  
µA  
µA  
PNVMCTRL  
NVM Controller Operating  
Power  
µW/MHz  
3-32  
Revision 4  
4 – Package Pin Assignments  
QN108  
A44  
B41  
A56  
B52  
Pin A1 Mark  
A43  
B40  
A1  
B1  
B13  
A14  
B27  
A29  
B26  
A28  
B14  
A15  
Note: The die attach paddle center of the package is tied to ground (GND).  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/default.aspx.  
Revision 4  
4-1  
Package Pin Assignments  
QN108  
QN108  
QN108  
Pin Number AFS090 Function  
Pin Number AFS090 Function  
Pin Number AFS090 Function  
A1  
A2  
NC  
A39  
A40  
A41  
A42  
A43  
A44  
A45  
A46  
A47  
A48  
A49  
A50  
A51  
A52  
A53  
A54  
A55  
A56  
B1  
GND  
GCB1/IO35PDB1V0  
GCB2/IO33PDB1V0  
GBA2/IO31PDB1V0  
NC  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
B35  
AC2  
ATRTN1  
AG3  
GNDQ  
A3  
GAA2/IO52PDB3V0  
A4  
GND  
AV3  
A5  
GFA1/IO47PDB3V0  
VCC33A  
VAREF  
PUB  
A6  
GEB1/IO45PDB3V0  
GBA1/IO30RSB0V0  
GBB1/IO28RSB0V0  
GND  
A7  
VCCOSC  
A8  
XTAL2  
VCC33A  
PTBASE  
VCCNVM  
VCC  
A9  
GEA1/IO44PPB3V0  
VCC  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
A36  
A37  
A38  
GEA0/IO44NPB3V0  
GBC1/IO26RSB0V0  
IO21RSB0V0  
IO19RSB0V0  
IO09RSB0V0  
GAC0/IO04RSB0V0  
VCCIB0  
GEB2/IO42PDB3V0  
VCCNVM  
VCC15A  
PCAP  
TDI  
TDO  
VJTAG  
NC  
GDC0/IO38NDB1V  
0
GNDA  
GND  
B36  
B37  
B38  
VCCIB1  
AV0  
GAB0/IO02RSB0V0  
GAA0/IO00RSB0V0  
VCOMPLA  
GCB0/IO35NDB1V0  
AG0  
GCC2/IO33NDB1V  
0
ATRTN0  
AT1  
B2  
VCCIB3  
B39  
B40  
B41  
B42  
B43  
B44  
B45  
B46  
B47  
B48  
B49  
B50  
B51  
B52  
GBB2/IO31NDB1V0  
VCCIB1  
AC1  
B3  
GAB2/IO52NDB3V0  
VCCIB3  
AV2  
B4  
GNDQ  
AG2  
B5  
GFA0/IO47NDB3V0  
GEB0/IO45NDB3V0  
XTAL1  
GBA0/IO29RSB0V0  
VCCIB0  
AT2  
B6  
AT3  
B7  
GBB0/IO27RSB0V0  
GBC0/IO25RSB0V0  
IO20RSB0V0  
IO10RSB0V0  
GAC1/IO05RSB0V0  
GAB1/IO03RSB0V0  
VCC  
AC3  
B8  
GNDOSC  
GNDAQ  
ADCGNDREF  
NC  
B9  
GEC2/IO43PSB3V0  
GEA2/IO42NDB3V0  
VCC  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
GNDA  
GNDNVM  
PTEM  
NCAP  
GNDNVM  
VPUMP  
TCK  
VCC33PMP  
VCC33N  
GAA1/IO01RSB0V0  
VCCPLA  
GNDAQ  
TMS  
AC0  
TRST  
AT0  
GDB1/IO39PSB1V0  
GDC1/IO38PDB1V0  
AG1  
AV1  
4-2  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
QN180  
A64  
B60  
A49  
B46  
C43  
C56  
Pin A1 Mark  
D1  
D4  
A48  
A1  
B45  
C42  
B1  
C1  
C29  
B31  
C14  
B15  
A16  
A33  
D3  
D2  
Optional Corner  
Pad (4X)  
C15  
B16  
A17  
C28  
B30  
A32  
Note: The die attach paddle center of the package is tied to ground (GND).  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/default.aspx.  
Revision 4  
4-3  
Package Pin Assignments  
QN180  
Pin Number AFS090 Function  
QN180  
AFS250 Function  
GNDQ  
Pin Number AFS090 Function  
AFS250 Function  
VPUMP  
TDI  
A1  
A2  
GNDQ  
A37  
A38  
A39  
A40  
A41  
A42  
A43  
A44  
A45  
A46  
A47  
A48  
A49  
A50  
A51  
A52  
A53  
A54  
A55  
A56  
A57  
A58  
A59  
A60  
A61  
A62  
A63  
A64  
B1  
VPUMP  
TDI  
VCCIB3  
VCCIB3  
A3  
GAB2/IO52NDB3V0  
GFA2/IO51NDB3V0  
GFC2/IO50NDB3V0  
VCCIB3  
IO74NDB3V0  
IO71NDB3V0  
IO69NPB3V0  
VCCIB3  
TDO  
TDO  
A4  
VJTAG  
VJTAG  
A5  
GDB1/IO39PPB1V0 GDA1/IO54PPB1V0  
GDC1/IO38PDB1V0 GDB1/IO53PDB1V0  
A6  
A7  
GFA1/IO47PPB3V0 GFB1/IO67PPB3V0  
VCC  
VCC  
A8  
GEB0/IO45NDB3V0  
XTAL1  
NC  
GCB0/IO35NPB1V0 GCB0/IO48NPB1V0  
GCC1/IO34PDB1V0 GCC1/IO47PDB1V0  
A9  
XTAL1  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
A36  
GNDOSC  
GNDOSC  
VCCIB1  
VCCIB1  
GEC2/IO43PPB3V0 GEA1/IO61PPB3V0  
GBC2/IO32PPB1V0 GBB2/IO41PPB1V0  
IO43NPB3V0  
NC  
GEA0/IO61NPB3V0  
VCCIB3  
GNDNVM  
PCAP  
VCCIB1  
NC  
VCCIB1  
NC  
GNDNVM  
PCAP  
VCC33PMP  
NC  
GBA0/IO29RSB0V0 GBB1/IO37RSB0V0  
VCCIB0 VCCIB0  
GBB0/IO27RSB0V0 GBC0/IO34RSB0V0  
VCC33PMP  
NC  
GBC1/IO26RSB0V0  
IO24RSB0V0  
IO21RSB0V0  
VCCIB0  
IO33RSB0V0  
IO29RSB0V0  
IO26RSB0V0  
VCCIB0  
AV0  
AV0  
AG0  
AG0  
ATRTN0  
AG1  
ATRTN0  
AG1  
IO15RSB0V0  
IO10RSB0V0  
IO07RSB0V0  
GAC0/IO04RSB0V0  
IO21RSB0V0  
IO13RSB0V0  
IO10RSB0V0  
IO06RSB0V0  
AC1  
AC1  
AV2  
AV2  
AT2  
AT2  
AT3  
AT3  
GAB1/IO03RSB0V0 GAC1/IO05RSB0V0  
VCC VCC  
GAA1/IO01RSB0V0 GAB0/IO02RSB0V0  
AC3  
AC3  
AV4  
AV4  
AC4  
AC4  
NC  
NC  
AT4  
AT4  
VCOMPLA  
VCOMPLA  
NC  
AG5  
B2  
GAA2/IO52PDB3V0 GAC2/IO74PDB3V0  
GAC2/IO51PDB3V0 GFA2/IO71PDB3V0  
GFB2/IO50PDB3V0 GFB2/IO70PSB3V0  
NC  
AV5  
B3  
ADCGNDREF  
VCC33A  
GNDA  
PTBASE  
VCCNVM  
ADCGNDREF  
VCC33A  
GNDA  
PTBASE  
VCCNVM  
B4  
B5  
VCC  
VCC  
B6  
GFC0/IO49NDB3V0 GFC0/IO68NDB3V0  
B7  
GEB1/IO45PDB3V0  
VCCOSC  
NC  
B8  
VCCOSC  
4-4  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
QN180  
QN180  
Pin Number AFS090 Function  
AFS250 Function  
Pin Number AFS090 Function  
AFS250 Function  
B9  
XTAL2  
XTAL2  
B45  
B46  
B47  
B48  
B49  
B50  
B51  
B52  
B53  
B54  
B55  
B56  
B57  
B58  
B59  
B60  
C1  
GBA2/IO31PDB1V0 GBA2/IO40PDB1V0  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
B35  
B36  
B37  
B38  
B39  
B40  
B41  
B42  
B43  
B44  
GEA0/IO44NDB3V0 GFA0/IO66NDB3V0  
GNDQ  
GNDQ  
GEB2/IO42PDB3V0  
VCC  
IO60NDB3V0  
VCC  
GBA1/IO30RSB0V0 GBA0/IO38RSB0V0  
GBB1/IO28RSB0V0 GBC1/IO35RSB0V0  
VCCNVM  
VCC15A  
NCAP  
VCC33N  
GNDAQ  
AC0  
VCCNVM  
VCC15A  
NCAP  
VCC33N  
GNDAQ  
AC0  
VCC  
GBC0/IO25RSB0V0  
IO23RSB0V0  
IO20RSB0V0  
VCC  
VCC  
IO31RSB0V0  
IO28RSB0V0  
IO25RSB0V0  
VCC  
IO11RSB0V0  
IO08RSB0V0  
GAC1/IO05RSB0V0  
VCCIB0  
IO14RSB0V0  
IO11RSB0V0  
IO08RSB0V0  
VCCIB0  
AT0  
AT0  
AT1  
AT1  
AV1  
AV1  
AC2  
AC2  
GAB0/IO02RSB0V0 GAC0/IO04RSB0V0  
GAA0/IO00RSB0V0 GAA1/IO01RSB0V0  
ATRTN1  
AG3  
ATRTN1  
AG3  
VCCPLA  
NC  
VCCPLA  
NC  
AV3  
AV3  
AG4  
AG4  
C2  
NC  
VCCIB3  
ATRTN2  
NC  
ATRTN2  
AC5  
C3  
GND  
NC  
GND  
C4  
GFC2/IO69PPB3V0  
VCC33A  
VAREF  
PUB  
VCC33A  
VAREF  
PUB  
C5  
GFC1/IO49PDB3V0 GFC1/IO68PDB3V0  
GFA0/IO47NPB3V0 GFB0/IO67NPB3V0  
C6  
C7  
VCCIB3  
GND  
NC  
PTEM  
GNDNVM  
VCC  
PTEM  
GNDNVM  
VCC  
C8  
GND  
C9  
GEA1/IO44PDB3V0 GFA1/IO66PDB3V0  
GEA2/IO42NDB3V0 GEC2/IO60PDB3V0  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
TCK  
TCK  
NC  
NC  
GEA2/IO58PSB3V0  
TMS  
TMS  
NC  
GND  
NC  
TRST  
TRST  
GND  
NC  
GDB2/IO41PSB1V0 GDA2/IO55PSB1V0  
GDC0/IO38NDB1V0 GDB0/IO53NDB1V0  
NC  
NC  
VCCIB1  
VCCIB1  
GNDA  
NC  
GNDA  
NC  
GCA1/IO36PDB1V0 GCA1/IO49PDB1V0  
GCC0/IO34NDB1V0 GCC0/IO47NDB1V0  
GCB2/IO33PSB1V0 GBC2/IO42PSB1V0  
NC  
NC  
NC  
NC  
VCC  
VCC  
NC  
NC  
Revision 4  
4-5  
Package Pin Assignments  
QN180  
Pin Number AFS090 Function  
QN180  
AFS250 Function  
Pin Number AFS090 Function  
AFS250 Function  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
C34  
C35  
C36  
C37  
C38  
C39  
C40  
C41  
C42  
C43  
C44  
C45  
C46  
C47  
C48  
C49  
C50  
C51  
C52  
C53  
C54  
C55  
C56  
AG2  
NC  
AG2  
NC  
D1  
D2  
D3  
D4  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
AT5  
GNDAQ  
NC  
GNDAQ  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GND  
NC  
GND  
NC  
NC  
NC  
NC  
NC  
GND  
GND  
GDB0/IO39NPB1V0 GDA0/IO54NPB1V0  
GDA1/IO37NSB1V0 GDC0/IO52NSB1V0  
GCA0/IO36NDB1V0 GCA0/IO49NDB1V0  
GCB1/IO35PPB1V0 GCB1/IO48PPB1V0  
GND  
GND  
IO41NPB1V0  
IO40NDB1V0  
NC  
GCA2/IO32NPB1V0  
GBB2/IO31NDB1V0  
NC  
NC  
GBA1/IO39RSB0V0  
GBB0/IO36RSB0V0  
GND  
NC  
GND  
NC  
IO30RSB0V0  
IO27RSB0V0  
GND  
IO22RSB0V0  
GND  
IO13RSB0V0  
IO09RSB0V0  
IO06RSB0V0  
GND  
IO16RSB0V0  
IO12RSB0V0  
IO09RSB0V0  
GND  
NC  
GAB1/IO03RSB0V0  
GAA0/IO00RSB0V0  
NC  
NC  
NC  
4-6  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
PQ208  
208  
1
208-Pin PQFP  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/default.aspx.  
Revision 4  
4-7  
Package Pin Assignments  
PQ208  
PQ208  
Pin  
Pin  
Number  
AFS250 Function  
VCCPLA  
AFS600 Function  
VCCPLA  
Number  
AFS250 Function  
IO60NDB3V0  
GND  
AFS600 Function  
GEB0/IO62NDB4V0  
GEA1/IO61PDB4V0  
GEA0/IO61NDB4V0  
1
38  
39  
40  
41  
42  
43  
44  
45  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
2
VCOMPLA  
GNDQ  
VCOMPLA  
3
GAA2/IO85PDB4V0  
IO85NDB4V0  
VCCIB3  
4
VCCIB3  
GEB2/IO59PDB3V0 GEC2/IO60PDB4V0  
5
GAA2/IO76PDB3V0 GAB2/IO84PDB4V0  
IO76NDB3V0 IO84NDB4V0  
GAB2/IO75PDB3V0 GAC2/IO83PDB4V0  
IO59NDB3V0  
GEA2/IO58PDB3V0  
IO58NDB3V0  
VCC  
IO60NDB4V0  
VCCIB4  
GNDQ  
VCC  
6
7
8
IO75NDB3V0  
NC  
IO83NDB4V0  
IO77PDB4V0  
IO77NDB4V0  
IO76PDB4V0  
IO76NDB4V0  
VCC  
9
VCC  
VCC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
NC  
VCCNVM  
GNDNVM  
GND  
VCCNVM  
GNDNVM  
GND  
VCC  
GND  
VCCIB3  
IO72PDB3V0  
IO72NDB3V0  
VCC15A  
PCAP  
NCAP  
VCC33PMP  
VCC33N  
GNDA  
GNDAQ  
NC  
VCC15A  
PCAP  
NCAP  
VCC33PMP  
VCC33N  
GNDA  
GNDAQ  
AV0  
GND  
VCCIB4  
GFA2/IO71PDB3V0 GFA2/IO75PDB4V0  
IO71NDB3V0 IO75NDB4V0  
GFB2/IO70PDB3V0 GFC2/IO73PDB4V0  
IO70NDB3V0  
GFC2/IO69PDB3V0  
IO69NDB3V0  
VCC  
IO73NDB4V0  
VCCOSC  
XTAL1  
NC  
AC0  
XTAL2  
NC  
AG0  
GND  
GNDOSC  
NC  
AT0  
VCCIB3  
GFC1/IO72PDB4V0  
NC  
ATRTN0  
AT1  
GFC1/IO68PDB3V0 GFC0/IO72NDB4V0  
GFC0/IO68NDB3V0 GFB1/IO71PDB4V0  
GFB1/IO67PDB3V0 GFB0/IO71NDB4V0  
GFB0/IO67NDB3V0 GFA1/IO70PDB4V0  
NC  
NC  
AG1  
NC  
AC1  
NC  
AV1  
VCCOSC  
XTAL1  
GFA0/IO70NDB4V0  
IO69PDB4V0  
IO69NDB4V0  
VCC  
AV0  
AV2  
AC0  
AC2  
XTAL2  
AG0  
AG2  
GNDOSC  
AT0  
AT2  
GEB1/IO62PDB3V0  
GEB0/IO62NDB3V0  
GND  
ATRTN0  
AT1  
ATRTN1  
AT3  
VCCIB4  
GEA1/IO61PDB3V0 GEC1/IO63PDB4V0  
GEA0/IO61NDB3V0 GEC0/IO63NDB4V0  
GEC2/IO60PDB3V0 GEB1/IO62PDB4V0  
AG1  
AG3  
AC1  
AC3  
AV1  
AV3  
4-8  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
PQ208  
PQ208  
Pin  
Pin  
Number  
AFS250 Function  
AV2  
AFS600 Function  
AV4  
Number  
AFS250 Function  
VCCNVM  
AFS600 Function  
VCCNVM  
VCC  
74  
75  
111  
112  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
AC2  
AC4  
VCC  
76  
AG2  
AG4  
VCC  
VCC  
77  
AT2  
AT4  
VPUMP  
VPUMP  
78  
ATRTN1  
AT3  
ATRTN2  
AT5  
GNDQ  
NC  
79  
VCCIB1  
TCK  
80  
AG3  
AG5  
TCK  
TDI  
81  
AC3  
AC5  
TDI  
TMS  
82  
AV3  
AV5  
TMS  
TDO  
83  
AV4  
AV6  
TDO  
TRST  
84  
AC4  
AC6  
TRST  
VJTAG  
85  
AG4  
AG6  
VJTAG  
IO57NDB2V0  
GDC2/IO57PDB2V0  
IO56NDB2V0  
GDB2/IO56PDB2V0  
IO55NDB2V0  
GDA2/IO55PDB2V0  
GDA0/IO54NDB2V0  
GDA1/IO54PDB2V0  
VCCIB2  
86  
AT4  
AT6  
IO57NDB1V0  
GDC2/IO57PDB1V0  
IO56NDB1V0  
GDB2/IO56PDB1V0  
VCCIB1  
87  
ATRTN2  
AT5  
ATRTN3  
AT7  
88  
89  
AG5  
AG7  
90  
AC5  
AC7  
91  
AV5  
AV7  
GND  
92  
NC  
AV8  
IO55NDB1V0  
GDA2/IO55PDB1V0  
GDA0/IO54NDB1V0  
GDA1/IO54PDB1V0  
93  
NC  
AC8  
94  
NC  
AG8  
GND  
95  
NC  
AT8  
VCC  
96  
NC  
ATRTN4  
AT9  
GDB0/IO53NDB1V0 GCA0/IO45NDB2V0  
GDB1/IO53PDB1V0 GCA1/IO45PDB2V0  
GDC0/IO52NDB1V0 GCB0/IO44NDB2V0  
GDC1/IO52PDB1V0 GCB1/IO44PDB2V0  
97  
NC  
98  
NC  
AG9  
99  
NC  
AC9  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
NC  
AV9  
IO51NSB1V0  
GCC0/IO43NDB2V  
0
GNDAQ  
VCC33A  
ADCGNDREF  
VAREF  
PUB  
GNDAQ  
VCC33A  
ADCGNDREF  
VAREF  
PUB  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
VCCIB1  
GND  
GCC1/IO43PDB2V0  
IO42NDB2V0  
IO42PDB2V0  
IO41NDB2V0  
GCC2/IO41PDB2V0  
VCCIB2  
VCC  
IO50NDB1V0  
IO50PDB1V0  
GCA0/IO49NDB1V0  
GCA1/IO49PDB1V0  
GCB0/IO48NDB1V0  
GCB1/IO48PDB1V0  
VCC33A  
GNDA  
PTEM  
PTBASE  
GNDNVM  
VCC33A  
GNDA  
PTEM  
PTBASE  
GNDNVM  
GND  
VCC  
IO40NDB2V0  
GCC0/IO47NDB1V0 GCB2/IO40PDB2V0  
Revision 4  
4-9  
Package Pin Assignments  
PQ208  
PQ208  
Pin  
Pin  
Number  
AFS250 Function  
GCC1/IO47PDB1V0  
IO42NDB1V0  
AFS600 Function  
IO39NDB2V0  
GCA2/IO39PDB2V0  
IO31NDB2V0  
GBB2/IO31PDB2V0  
IO30NDB2V0  
GBA2/IO30PDB2V0  
VCCIB2  
Number  
AFS250 Function  
IO18RSB0V0  
IO17RSB0V0  
IO16RSB0V0  
IO15RSB0V0  
VCCIB0  
AFS600 Function  
IO10PPB0V1  
IO09PPB0V1  
IO10NPB0V1  
IO09NPB0V1  
IO08PPB0V1  
IO07PPB0V1  
IO08NPB0V1  
IO07NPB0V1  
IO06PPB0V0  
IO05PPB0V0  
IO06NPB0V0  
IO04PPB0V0  
IO05NPB0V0  
IO04NPB0V0  
GAC1/IO03PDB0V0  
GAC0/IO03NDB0V0  
VCCIB0  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
GBC2/IO42PDB1V0  
VCCIB1  
GND  
VCC  
GND  
IO41NDB1V0  
VCC  
GBB2/IO41PDB1V0  
IO40NDB1V0  
GNDQ  
IO14RSB0V0  
IO13RSB0V0  
IO12RSB0V0  
IO11RSB0V0  
IO10RSB0V0  
IO09RSB0V0  
IO08RSB0V0  
IO07RSB0V0  
IO06RSB0V0  
GAC1/IO05RSB0V0  
VCCIB0  
VCOMPLB  
GBA2/IO40PDB1V0  
GBA1/IO39RSB0V0  
GBA0/IO38RSB0V0  
VCCPLB  
VCCIB1  
GNDQ  
GBB1/IO37RSB0V0 GBB1/IO27PPB1V1  
GBB0/IO36RSB0V0 GBA1/IO28PPB1V1  
GBC1/IO35RSB0V0 GBB0/IO27NPB1V1  
VCCIB0  
GND  
GBA0/IO28NPB1V1  
VCCIB1  
VCC  
GND  
GND  
GBC0/IO34RSB0V0  
IO33RSB0V0  
IO32RSB0V0  
IO31RSB0V0  
IO30RSB0V0  
IO29RSB0V0  
IO28RSB0V0  
IO27RSB0V0  
IO26RSB0V0  
IO25RSB0V0  
VCCIB0  
VCC  
GND  
VCC  
GBC1/IO26PDB1V1  
GBC0/IO26NDB1V1  
IO24PPB1V1  
IO23PPB1V1  
IO24NPB1V1  
IO23NPB1V1  
IO22PPB1V0  
IO21PPB1V0  
IO22NPB1V0  
IO21NPB1V0  
IO20PSB1V0  
IO19PSB1V0  
IO14NSB0V1  
IO12PDB0V1  
IO12NDB0V1  
VCCIB0  
VCC  
GAB1/IO02PDB0V0  
GAC0/IO04RSB0V0 GAB0/IO02NDB0V0  
GAB1/IO03RSB0V0 GAA1/IO01PDB0V0  
GAB0/IO02RSB0V0 GAA0/IO01NDB0V0  
GAA1/IO01RSB0V0  
GAA0/IO00RSB0V0  
GNDQ  
VCCIB0  
GND  
VCC  
IO24RSB0V0  
IO23RSB0V0  
IO22RSB0V0  
IO21RSB0V0  
IO20RSB0V0  
IO19RSB0V0  
GND  
VCC  
4-10  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
FG256  
A1 Ball Pad Corner  
1
7
6
4
5
3
2
16 15 14 13 12 11 10 9  
8
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/default.aspx.  
Revision 4  
4-11  
Package Pin Assignments  
FG256  
AFS250 Function  
GND  
Pin Number  
A1  
AFS090 Function  
AFS600 Function  
GND  
AFS1500 Function  
GND  
GND  
VCCIB0  
A2  
VCCIB0  
VCCIB0  
VCCIB0  
A3  
GAB0/IO02RSB0V0  
GAB1/IO03RSB0V0  
GND  
GAA0/IO00RSB0V0  
GAA1/IO01RSB0V0  
GND  
GAA0/IO01NDB0V0  
GAA1/IO01PDB0V0  
GND  
GAA0/IO01NDB0V0  
GAA1/IO01PDB0V0  
GND  
A4  
A5  
A6  
IO07RSB0V0  
IO10RSB0V0  
IO11RSB0V0  
IO16RSB0V0  
IO17RSB0V0  
IO18RSB0V0  
GND  
IO11RSB0V0  
IO14RSB0V0  
IO15RSB0V0  
IO24RSB0V0  
IO25RSB0V0  
IO26RSB0V0  
GND  
IO10PDB0V1  
IO12PDB0V1  
IO12NDB0V1  
IO22NDB1V0  
IO22PDB1V0  
IO24NDB1V1  
GND  
IO07PDB0V1  
IO13PDB0V2  
IO13NDB0V2  
IO24NDB1V0  
IO24PDB1V0  
IO29NDB1V1  
GND  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
GBC0/IO25RSB0V0  
GBA0/IO29RSB0V0  
VCCIB0  
GBA0/IO38RSB0V0  
IO32RSB0V0  
VCCIB0  
GBA0/IO28NDB1V1  
IO29NDB1V1  
VCCIB1  
GBA0/IO42NDB1V2  
IO43NDB1V2  
VCCIB1  
GND  
GND  
GND  
GND  
VCOMPLA  
VCCPLA  
VCOMPLA  
VCCPLA  
VCOMPLA  
VCOMPLA  
B2  
VCCPLA  
VCCPLA  
B3  
GAA0/IO00RSB0V0  
GAA1/IO01RSB0V0  
NC  
IO07RSB0V0  
IO06RSB0V0  
GAB1/IO03RSB0V0  
IO10RSB0V0  
VCCIB0  
IO00NDB0V0  
IO00PDB0V0  
GAB1/IO02PPB0V0  
IO10NDB0V1  
VCCIB0  
IO00NDB0V0  
IO00PDB0V0  
GAB1/IO02PPB0V0  
IO07NDB0V1  
VCCIB0  
B4  
B5  
B6  
IO06RSB0V0  
VCCIB0  
B7  
B8  
IO12RSB0V0  
IO13RSB0V0  
VCCIB0  
IO16RSB0V0  
IO17RSB0V0  
VCCIB0  
IO18NDB1V0  
IO18PDB1V0  
VCCIB1  
IO22NDB1V0  
IO22PDB1V0  
VCCIB1  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
IO19RSB0V0  
GBB0/IO27RSB0V0  
GBC1/IO26RSB0V0  
GBA1/IO30RSB0V0  
NC  
IO27RSB0V0  
GBC0/IO34RSB0V0  
GBA1/IO39RSB0V0  
IO33RSB0V0  
NC  
IO24PDB1V1  
GBC0/IO26NPB1V1  
GBA1/IO28PDB1V1  
IO29PDB1V1  
VCCPLB  
IO29PDB1V1  
GBC0/IO40NPB1V2  
GBA1/IO42PDB1V2  
IO43PDB1V2  
VCCPLB  
NC  
NC  
VCOMPLB  
VCOMPLB  
VCCIB3  
VCCIB3  
VCCIB4  
VCCIB4  
C2  
GND  
GND  
GND  
GND  
C3  
VCCIB3  
VCCIB3  
VCCIB4  
VCCIB4  
C4  
NC  
NC  
VCCIB0  
VCCIB0  
C5  
VCCIB0  
VCCIB0  
VCCIB0  
VCCIB0  
C6  
GAC1/IO05RSB0V0  
GAC1/IO05RSB0V0  
GAC1/IO03PDB0V0  
GAC1/IO03PDB0V0  
4-12  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
FG256  
AFS250 Function  
IO12RSB0V0  
IO22RSB0V0  
IO23RSB0V0  
IO30RSB0V0  
IO31RSB0V0  
VCCIB0  
Pin Number  
C7  
AFS090 Function  
IO09RSB0V0  
IO14RSB0V0  
IO15RSB0V0  
IO22RSB0V0  
IO20RSB0V0  
VCCIB0  
AFS600 Function  
AFS1500 Function  
IO09NDB0V1  
IO23PDB1V0  
IO23NDB1V0  
IO31NDB1V1  
IO31PDB1V1  
VCCIB1  
IO06NDB0V0  
IO16PDB1V0  
IO16NDB1V0  
IO25NDB1V1  
IO25PDB1V1  
VCCIB1  
C8  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
D1  
GBB1/IO28RSB0V0  
VCCIB1  
GBC1/IO35RSB0V0  
VCCIB1  
GBC1/IO26PPB1V1  
VCCIB2  
GBC1/IO40PPB1V2  
VCCIB2  
GND  
GND  
GND  
GND  
VCCIB1  
VCCIB1  
VCCIB2  
VCCIB2  
GFC2/IO50NPB3V0  
GFA2/IO51NDB3V0  
GAC2/IO51PDB3V0  
GAA2/IO52PDB3V0  
GAB2/IO52NDB3V0  
GAC0/IO04RSB0V0  
IO08RSB0V0  
NC  
IO75NDB3V0  
GAB2/IO75PDB3V0  
IO76NDB3V0  
GAA2/IO76PDB3V0  
GAB0/IO02RSB0V0  
GAC0/IO04RSB0V0  
IO13RSB0V0  
IO20RSB0V0  
IO21RSB0V0  
IO28RSB0V0  
GBB0/IO36RSB0V0  
NC  
IO84NDB4V0  
GAB2/IO84PDB4V0  
IO85NDB4V0  
GAA2/IO85PDB4V0  
GAB0/IO02NPB0V0  
GAC0/IO03NDB0V0  
IO06PDB0V0  
IO14NDB0V1  
IO14PDB0V1  
IO23PDB1V1  
GBB0/IO27NDB1V1  
VCCIB1  
IO124NDB4V0  
GAB2/IO124PDB4V0  
IO125NDB4V0  
GAA2/IO125PDB4V0  
GAB0/IO02NPB0V0  
GAC0/IO03NDB0V0  
IO09PDB0V1  
IO15NDB0V2  
IO15PDB0V2  
IO37PDB1V2  
GBB0/IO41NDB1V2  
VCCIB1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
NC  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
IO21RSB0V0  
IO23RSB0V0  
NC  
GBA2/IO31PDB1V0  
GBB2/IO31NDB1V0  
GBC2/IO32PDB1V0  
GCA2/IO32NDB1V0  
GND  
GBA2/IO40PDB1V0  
IO40NDB1V0  
GBB2/IO41PDB1V0  
IO41NDB1V0  
GND  
GBA2/IO30PDB2V0  
IO30NDB2V0  
GBB2/IO31PDB2V0  
IO31NDB2V0  
GND  
GBA2/IO44PDB2V0  
IO44NDB2V0  
GBB2/IO45PDB2V0  
IO45NDB2V0  
GND  
E2  
GFB0/IO48NPB3V0  
GFB2/IO50PPB3V0  
VCCIB3  
IO73NDB3V0  
IO73PDB3V0  
VCCIB3  
IO81NDB4V0  
IO81PDB4V0  
VCCIB4  
IO118NDB4V0  
IO118PDB4V0  
VCCIB4  
E3  
E4  
E5  
NC  
IO74NPB3V0  
IO08RSB0V0  
GND  
IO83NPB4V0  
IO04NPB0V0  
GND  
IO123NPB4V0  
IO05NPB0V1  
GND  
E6  
NC  
E7  
GND  
E8  
NC  
IO18RSB0V0  
NC  
IO08PDB0V1  
IO20NDB1V0  
GND  
IO11PDB0V1  
IO27NDB1V1  
GND  
E9  
NC  
E10  
E11  
E12  
GND  
GND  
IO24RSB0V0  
NC  
GBB1/IO37RSB0V0  
IO50PPB1V0  
GBB1/IO27PDB1V1  
IO33PSB2V0  
GBB1/IO41PDB1V2  
IO48PSB2V0  
Revision 4  
4-13  
Package Pin Assignments  
FG256  
AFS250 Function  
VCCIB1  
Pin Number  
E13  
E14  
E15  
E16  
F1  
AFS090 Function  
AFS600 Function  
VCCIB2  
AFS1500 Function  
VCCIB2  
VCCIB1  
GCC2/IO33NDB1V0  
IO42NDB1V0  
GBC2/IO42PDB1V0  
GND  
IO32NDB2V0  
GBC2/IO32PDB2V0  
GND  
IO46NDB2V0  
GBC2/IO46PDB2V0  
GND  
GCB2/IO33PDB1V0  
GND  
NC  
NC  
IO79NDB4V0  
IO79PDB4V0  
IO76NDB4V0  
IO76PDB4V0  
IO82PSB4V0  
GAC2/IO83PPB4V0  
IO04PPB0V0  
IO08NDB0V1  
IO20PDB1V0  
IO23NDB1V1  
IO36NDB2V0  
IO36PDB2V0  
IO39NDB2V0  
GCA2/IO39PDB2V0  
GCB2/IO40PDB2V0  
IO40NDB2V0  
IO74NPB4V0  
VCCIB4  
IO111NDB4V0  
IO111PDB4V0  
IO112NDB4V0  
IO112PDB4V0  
IO120PSB4V0  
GAC2/IO123PPB4V0  
IO05PPB0V1  
IO11NDB0V1  
IO27PDB1V1  
IO37NDB1V2  
IO50NDB2V0  
IO50PDB2V0  
IO59NDB2V0  
GCA2/IO59PDB2V0  
GCB2/IO60PDB2V0  
IO60NDB2V0  
IO109NPB4V0  
VCCIB4  
F2  
NC  
NC  
F3  
GFB1/IO48PPB3V0  
IO72NDB3V0  
IO72PDB3V0  
NC  
F4  
GFC0/IO49NDB3V0  
F5  
NC  
F6  
GFC1/IO49PDB3V0  
GAC2/IO74PPB3V0  
IO09RSB0V0  
IO19RSB0V0  
NC  
F7  
NC  
F8  
NC  
NC  
F9  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
NC  
IO29RSB0V0  
IO43NDB1V0  
IO43PDB1V0  
IO44NDB1V0  
GCA2/IO44PDB1V0  
GCB2/IO45PDB1V0  
IO45NDB1V0  
IO70NPB3V0  
VCCIB3  
NC  
NC  
NC  
NC  
GCC1/IO34PDB1V0  
GCC0/IO34NDB1V0  
GEC0/IO46NPB3V0  
VCCIB3  
G2  
G3  
GEC1/IO46PPB3V0  
GFA1/IO47PDB3V0  
GND  
GFB2/IO70PPB3V0  
GFA2/IO71PDB3V0  
GND  
GFB2/IO74PPB4V0  
GFA2/IO75PDB4V0  
GND  
GFB2/IO109PPB4V0  
GFA2/IO110PDB4V0  
GND  
G4  
G5  
G6  
GFA0/IO47NDB3V0  
GND  
IO71NDB3V0  
GND  
IO75NDB4V0  
GND  
IO110NDB4V0  
GND  
G7  
G8  
VCC  
VCC  
VCC  
VCC  
G9  
GND  
GND  
GND  
GND  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
H1  
VCC  
VCC  
VCC  
VCC  
GDA1/IO37NDB1V0  
GND  
GCC0/IO47NDB1V0  
GND  
GCC0/IO43NDB2V0  
GND  
GCC0/IO62NDB2V0  
GND  
IO37PDB1V0  
GCB0/IO35NPB1V0  
VCCIB1  
GCC1/IO47PDB1V0  
IO46NPB1V0  
VCCIB1  
GCC1/IO43PDB2V0  
IO41NPB2V0  
VCCIB2  
GCC1/IO62PDB2V0  
IO61NPB2V0  
VCCIB2  
GCB1/IO35PPB1V0  
GEB1/IO45PDB3V0  
GEB0/IO45NDB3V0  
GCC2/IO46PPB1V0  
GFC2/IO69PDB3V0  
IO69NDB3V0  
GCC2/IO41PPB2V0  
GFC2/IO73PDB4V0  
IO73NDB4V0  
GCC2/IO61PPB2V0  
GFC2/IO108PDB4V0  
IO108NDB4V0  
H2  
4-14  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
FG256  
AFS250 Function  
XTAL2  
Pin Number  
H3  
AFS090 Function  
AFS600 Function  
AFS1500 Function  
XTAL2  
XTAL2  
XTAL2  
XTAL1  
H4  
XTAL1  
XTAL1  
XTAL1  
H5  
GNDOSC  
GNDOSC  
GNDOSC  
GNDOSC  
H6  
VCCOSC  
VCCOSC  
VCCOSC  
VCCOSC  
H7  
VCC  
VCC  
VCC  
VCC  
H8  
GND  
GND  
GND  
GND  
H9  
VCC  
VCC  
VCC  
VCC  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
GND  
GND  
GND  
GND  
GDC0/IO38NDB1V0  
IO51NDB1V0  
IO51PDB1V0  
GCA1/IO49PDB1V0  
GCA0/IO49NDB1V0  
GCB0/IO48NDB1V0  
GCB1/IO48PDB1V0  
GFA0/IO66NDB3V0  
GFA1/IO66PDB3V0  
GFB0/IO67NDB3V0  
GFB1/IO67PDB3V0  
GFC0/IO68NDB3V0  
GFC1/IO68PDB3V0  
GND  
IO47NDB2V0  
IO47PDB2V0  
GCA1/IO45PDB2V0  
GCA0/IO45NDB2V0  
GCB0/IO44NDB2V0  
GCB1/IO44PDB2V0  
GFA0/IO70NDB4V0  
GFA1/IO70PDB4V0  
GFB0/IO71NDB4V0  
GFB1/IO71PDB4V0  
GFC0/IO72NDB4V0  
GFC1/IO72PDB4V0  
GND  
IO69NDB2V0  
IO69PDB2V0  
GCA1/IO64PDB2V0  
GCA0/IO64NDB2V0  
GCB0/IO63NDB2V0  
GCB1/IO63PDB2V0  
GFA0/IO105NDB4V0  
GFA1/IO105PDB4V0  
GFB0/IO106NDB4V0  
GFB1/IO106PDB4V0  
GFC0/IO107NDB4V0  
GFC1/IO107PDB4V0  
GND  
GDC1/IO38PDB1V0  
GDB1/IO39PDB1V0  
GDB0/IO39NDB1V0  
GCA0/IO36NDB1V0  
GCA1/IO36PDB1V0  
GEA0/IO44NDB3V0  
J2  
GEA1/IO44PDB3V0  
J3  
IO43NDB3V0  
J4  
GEC2/IO43PDB3V0  
J5  
NC  
J6  
NC  
J7  
GND  
J8  
VCC  
VCC  
VCC  
VCC  
J9  
GND  
GND  
GND  
GND  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
K1  
VCC  
VCC  
VCC  
VCC  
GDC2/IO41NPB1V0  
IO56NPB1V0  
GDB0/IO53NPB1V0  
GDA1/IO54PDB1V0  
GDC1/IO52PPB1V0  
IO50NPB1V0  
GDC0/IO52NPB1V0  
IO65NPB3V0  
VCCIB3  
IO56NPB2V0  
GDB0/IO53NPB2V0  
GDA1/IO54PDB2V0  
GDC1/IO52PPB2V0  
IO51NSB2V0  
GDC0/IO52NPB2V0  
IO67NPB4V0  
VCCIB4  
IO83NPB2V0  
GDB0/IO80NPB2V0  
GDA1/IO81PDB2V0  
GDC1/IO79PPB2V0  
IO77NSB2V0  
GDC0/IO79NPB2V0  
IO92NPB4V0  
VCCIB4  
NC  
NC  
GDA0/IO40PDB1V0  
NC  
GDA2/IO40NDB1V0  
NC  
VCCIB3  
NC  
K2  
K3  
IO65PPB3V0  
IO64PDB3V0  
GND  
IO67PPB4V0  
IO65PDB4V0  
GND  
IO92PPB4V0  
IO96PDB4V0  
GND  
K4  
NC  
K5  
GND  
NC  
K6  
IO64NDB3V0  
VCC  
IO65NDB4V0  
VCC  
IO96NDB4V0  
VCC  
K7  
VCC  
GND  
K8  
GND  
GND  
GND  
Revision 4  
4-15  
Package Pin Assignments  
FG256  
AFS250 Function  
VCC  
Pin Number  
K9  
AFS090 Function  
AFS600 Function  
VCC  
AFS1500 Function  
VCC  
VCC  
GND  
NC  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
GND  
GND  
GND  
GDC2/IO57PPB1V0  
GND  
GDC2/IO57PPB2V0  
GND  
GDC2/IO84PPB2V0  
GND  
GND  
NC  
GDA0/IO54NDB1V0  
GDA2/IO55PPB1V0  
VCCIB1  
GDA0/IO54NDB2V0  
GDA2/IO55PPB2V0  
VCCIB2  
GDA0/IO81NDB2V0  
GDA2/IO82PPB2V0  
VCCIB2  
NC  
VCCIB1  
NC  
GDB1/IO53PPB1V0  
GEC1/IO63PDB3V0  
GEC0/IO63NDB3V0  
GEB1/IO62PDB3V0  
GEB0/IO62NDB3V0  
IO60NDB3V0  
GEC2/IO60PDB3V0  
GNDA  
GDB1/IO53PPB2V0  
GEC1/IO63PDB4V0  
GEC0/IO63NDB4V0  
GEB1/IO62PDB4V0  
GEB0/IO62NDB4V0  
IO60NDB4V0  
GEC2/IO60PDB4V0  
GNDA  
GDB1/IO80PPB2V0  
GEC1/IO90PDB4V0  
GEC0/IO90NDB4V0  
GEB1/IO89PDB4V0  
GEB0/IO89NDB4V0  
IO87NDB4V0  
GEC2/IO87PDB4V0  
GNDA  
NC  
L2  
NC  
L3  
NC  
L4  
NC  
L5  
NC  
L6  
NC  
L7  
GNDA  
AC0  
L8  
AC0  
AC2  
AC2  
L9  
AV2  
AV2  
AV4  
AV4  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
AC3  
AC3  
AC5  
AC5  
PTEM  
TDO  
VJTAG  
NC  
PTEM  
PTEM  
PTEM  
TDO  
TDO  
TDO  
VJTAG  
VJTAG  
VJTAG  
IO57NPB1V0  
GDB2/IO56PPB1V0  
IO55NPB1V0  
GND  
IO57NPB2V0  
GDB2/IO56PPB2V0  
IO55NPB2V0  
GND  
IO84NPB2V0  
GDB2/IO83PPB2V0  
IO82NPB2V0  
GND  
GDB2/IO41PPB1V0  
NC  
GND  
NC  
M2  
GEA1/IO61PDB3V0  
GEA0/IO61NDB3V0  
VCCIB3  
GEA1/IO61PDB4V0  
GEA0/IO61NDB4V0  
VCCIB4  
GEA1/IO88PDB4V0  
GEA0/IO88NDB4V0  
VCCIB4  
M3  
NC  
M4  
VCCIB3  
NC  
M5  
IO58NPB3V0  
NC  
IO58NPB4V0  
AV0  
IO85NPB4V0  
AV0  
M6  
NC  
M7  
NC  
NC  
AC1  
AC1  
M8  
AG1  
AG1  
AG3  
AG3  
M9  
AC2  
AC2  
AC4  
AC4  
M10  
M11  
M12  
M13  
M14  
AC4  
AC4  
AC6  
AC6  
NC  
AG5  
AG7  
AG7  
VPUMP  
VCCIB1  
TMS  
VPUMP  
VPUMP  
VPUMP  
VCCIB1  
VCCIB2  
VCCIB2  
TMS  
TMS  
TMS  
4-16  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
FG256  
Pin Number  
M15  
M16  
N1  
AFS090 Function  
AFS250 Function  
AFS600 Function  
AFS1500 Function  
TRST  
TRST  
GND  
TRST  
GND  
TRST  
GND  
GND  
GEB2/IO42PDB3V0  
GEA2/IO42NDB3V0  
NC  
GEB2/IO59PDB3V0  
IO59NDB3V0  
GEA2/IO58PPB3V0  
VCC33PMP  
VCC15A  
NC  
GEB2/IO59PDB4V0  
IO59NDB4V0  
GEA2/IO58PPB4V0  
VCC33PMP  
VCC15A  
AG0  
GEB2/IO86PDB4V0  
IO86NDB4V0  
GEA2/IO85PPB4V0  
VCC33PMP  
VCC15A  
AG0  
N2  
N3  
N4  
VCC33PMP  
VCC15A  
NC  
N5  
N6  
N7  
AC1  
AC1  
AC3  
AC3  
N8  
AG3  
AG3  
AG5  
AG5  
N9  
AV3  
AV3  
AV5  
AV5  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
AG4  
AG4  
AG6  
AG6  
NC  
NC  
AC8  
AC8  
GNDA  
VCC33A  
VCCNVM  
TCK  
GNDA  
VCC33A  
VCCNVM  
TCK  
GNDA  
GNDA  
VCC33A  
VCCNVM  
TCK  
VCC33A  
VCCNVM  
TCK  
TDI  
TDI  
TDI  
TDI  
VCCNVM  
GNDNVM  
GNDA  
NC  
VCCNVM  
GNDNVM  
GNDA  
NC  
VCCNVM  
GNDNVM  
GNDA  
VCCNVM  
GNDNVM  
GNDA  
P2  
P3  
P4  
AC0  
AC0  
P5  
NC  
NC  
AG1  
AG1  
P6  
NC  
NC  
AV1  
AV1  
P7  
AG0  
AG0  
AG2  
AG2  
P8  
AG2  
AG2  
AG4  
AG4  
P9  
GNDA  
NC  
GNDA  
AC5  
GNDA  
GNDA  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
AC7  
AC7  
NC  
NC  
AV8  
AV8  
NC  
NC  
AG8  
AG8  
NC  
NC  
AV9  
AV9  
ADCGNDREF  
PTBASE  
GNDNVM  
VCCIB3  
PCAP  
ADCGNDREF  
PTBASE  
GNDNVM  
VCCIB3  
PCAP  
ADCGNDREF  
PTBASE  
GNDNVM  
VCCIB4  
PCAP  
ADCGNDREF  
PTBASE  
GNDNVM  
VCCIB4  
PCAP  
R2  
R3  
NC  
NC  
AT1  
AT1  
R4  
NC  
NC  
AT0  
AT0  
Revision 4  
4-17  
Package Pin Assignments  
FG256  
AFS250 Function  
AV0  
Pin Number  
R5  
AFS090 Function  
AFS600 Function  
AV2  
AFS1500 Function  
AV2  
AV0  
AT0  
R6  
AT0  
AT2  
AT2  
R7  
AV1  
AV1  
AV3  
AV3  
R8  
AT3  
AT3  
AT5  
AT5  
R9  
AV4  
AV4  
AV6  
AV6  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
NC  
AT5  
AT7  
AT7  
NC  
AV5  
AV7  
AV7  
NC  
NC  
AT9  
AT9  
NC  
NC  
AG9  
AG9  
NC  
NC  
AC9  
AC9  
PUB  
PUB  
PUB  
PUB  
VCCIB1  
GND  
NCAP  
VCC33N  
NC  
VCCIB1  
GND  
VCCIB2  
GND  
VCCIB2  
GND  
T2  
NCAP  
VCC33N  
NC  
NCAP  
VCC33N  
ATRTN0  
AT3  
NCAP  
VCC33N  
ATRTN0  
AT3  
T3  
T4  
T5  
AT1  
AT1  
T6  
ATRTN0  
AT2  
ATRTN0  
AT2  
ATRTN1  
AT4  
ATRTN1  
AT4  
T7  
T8  
ATRTN1  
AT4  
ATRTN1  
AT4  
ATRTN2  
AT6  
ATRTN2  
AT6  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
ATRTN2  
NC  
ATRTN2  
NC  
ATRTN3  
AT8  
ATRTN3  
AT8  
NC  
NC  
ATRTN4  
GNDA  
VCC33A  
VAREF  
GND  
ATRTN4  
GNDA  
VCC33A  
VAREF  
GND  
GNDA  
VCC33A  
VAREF  
GND  
GNDA  
VCC33A  
VAREF  
GND  
4-18  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
FG484  
A1 Ball Pad Corner  
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/default.aspx.  
Revision 4  
4-19  
Package Pin Assignments  
FG484  
FG484  
Pin  
Pin  
Number  
AFS600 Function  
AFS1500 Function  
Number  
AFS600 Function  
AG7  
AFS1500 Function  
AG7  
A1  
A2  
GND  
VCC  
GND  
NC  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AB1  
AG8  
AG8  
A3  
GAA1/IO01PDB0V0 GAA1/IO01PDB0V0  
GAB0/IO02NDB0V0 GAB0/IO02NDB0V0  
GAB1/IO02PDB0V0 GAB1/IO02PDB0V0  
GNDA  
AG9  
GNDA  
AG9  
A4  
A5  
VAREF  
VCCIB2  
PTEM  
GND  
VAREF  
VCCIB2  
PTEM  
GND  
A6  
IO07NDB0V1  
IO07PDB0V1  
IO10PDB0V1  
IO14NDB0V1  
IO14PDB0V1  
IO17PDB1V0  
IO18PDB1V0  
IO19NDB1V0  
IO19PDB1V0  
IO24NDB1V1  
IO24PDB1V1  
IO07NDB0V1  
IO07PDB0V1  
IO09PDB0V1  
IO13NDB0V2  
IO13PDB0V2  
IO24PDB1V0  
IO26PDB1V0  
IO27NDB1V1  
IO27PDB1V1  
IO35NDB1V2  
IO35PDB1V2  
A7  
A8  
A9  
VCC  
NC  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
GND  
GND  
AB2  
VCC  
NC  
AB3  
NC  
IO94NSB4V0  
GND  
AB4  
GND  
AB5  
VCC33N  
AT0  
VCC33N  
AT0  
AB6  
AB7  
ATRTN0  
AT1  
ATRTN0  
AT1  
GBC0/IO26NDB1V1 GBC0/IO40NDB1V2  
GBA0/IO28NDB1V1 GBA0/IO42NDB1V2  
AB8  
AB9  
AT2  
AT2  
IO29NDB1V1  
IO29PDB1V1  
VCC  
IO43NDB1V2  
IO43PDB1V2  
NC  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
B1  
ATRTN1  
AT3  
ATRTN1  
AT3  
AT6  
AT6  
GND  
GND  
ATRTN3  
AT7  
ATRTN3  
AT7  
VCC  
NC  
GND  
GND  
AT8  
AT8  
VCCIB4  
VCCIB4  
PCAP  
AG0  
VCCIB4  
VCCIB4  
PCAP  
AG0  
ATRTN4  
AT9  
ATRTN4  
AT9  
VCC33A  
GND  
VCC33A  
GND  
GNDA  
AG1  
GNDA  
AG1  
NC  
IO76NPB2V0  
NC  
VCC  
AG2  
AG2  
GND  
GND  
GNDA  
AG3  
GNDA  
AG3  
VCC  
NC  
B2  
GND  
GND  
AG6  
AG6  
B3  
GAA0/IO01NDB0V0 GAA0/IO01NDB0V0  
GND GND  
GNDA  
GNDA  
B4  
4-20  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
FG484  
FG484  
Pin  
Pin  
Number  
AFS600 Function  
IO05NDB0V0  
IO05PDB0V0  
GND  
AFS1500 Function  
IO04NDB0V0  
IO04PDB0V0  
GND  
Number  
AFS600 Function  
AFS1500 Function  
VCCIB1  
B5  
B6  
C18  
C19  
C20  
C21  
C22  
D1  
VCCIB1  
VCOMPLB  
VCOMPLB  
B7  
GBA2/IO30PDB2V0 GBA2/IO44PDB2V0  
NC IO48PSB2V0  
GBB2/IO31PDB2V0 GBB2/IO45PDB2V0  
B8  
IO10NDB0V1  
IO13PDB0V1  
GND  
IO09NDB0V1  
IO11PDB0V1  
GND  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C1  
IO82NDB4V0  
GND  
IO121NDB4V0  
GND  
IO17NDB1V0  
IO18NDB1V0  
GND  
IO24NDB1V0  
IO26NDB1V0  
GND  
D2  
D3  
IO83NDB4V0  
IO123NDB4V0  
D4  
GAC2/IO83PDB4V0 GAC2/IO123PDB4V0  
GAA2/IO85PDB4V0 GAA2/IO125PDB4V0  
GAC0/IO03NDB0V0 GAC0/IO03NDB0V0  
GAC1/IO03PDB0V0 GAC1/IO03PDB0V0  
IO21NDB1V0  
IO21PDB1V0  
GND  
IO31NDB1V1  
IO31PDB1V1  
GND  
D5  
D6  
D7  
GBC1/IO26PDB1V1 GBC1/IO40PDB1V2  
GBA1/IO28PDB1V1 GBA1/IO42PDB1V2  
D8  
IO09NDB0V1  
IO09PDB0V1  
IO11NDB0V1  
IO16NDB1V0  
IO16PDB1V0  
NC  
IO10NDB0V1  
IO10PDB0V1  
IO14NDB0V2  
IO23NDB1V0  
IO23PDB1V0  
IO32NPB1V1  
IO34NDB1V1  
IO34PDB1V1  
IO37PDB1V2  
D9  
GND  
GND  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E1  
VCCPLB  
VCCPLB  
GND  
GND  
VCC  
NC  
IO82PDB4V0  
NC  
IO121PDB4V0  
IO122PSB4V0  
IO00NDB0V0  
IO00PDB0V0  
VCCIB0  
IO23NDB1V1  
IO23PDB1V1  
IO25PDB1V1  
C2  
C3  
IO00NDB0V0  
IO00PDB0V0  
VCCIB0  
C4  
GBB1/IO27PDB1V1 GBB1/IO41PDB1V2  
C5  
VCCIB2  
NC  
VCCIB2  
IO47PPB2V0  
IO44NDB2V0  
GND  
C6  
IO06NDB0V0  
IO06PDB0V0  
VCCIB0  
IO05NDB0V1  
IO05PDB0V1  
VCCIB0  
C7  
IO30NDB2V0  
GND  
C8  
C9  
IO13NDB0V1  
IO11PDB0V1  
VCCIB0  
IO11NDB0V1  
IO14PDB0V2  
VCCIB0  
IO31NDB2V0  
IO81NDB4V0  
IO81PDB4V0  
VCCIB4  
IO45NDB2V0  
IO120NDB4V0  
IO120PDB4V0  
VCCIB4  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
E2  
VCCIB1  
VCCIB1  
E3  
IO20NDB1V0  
IO20PDB1V0  
VCCIB1  
IO29NDB1V1  
IO29PDB1V1  
VCCIB1  
E4  
GAB2/IO84PDB4V0 GAB2/IO124PDB4V0  
E5  
IO85NDB4V0  
GND  
IO125NDB4V0  
GND  
E6  
IO25NDB1V1  
IO37NDB1V2  
E7  
VCCIB0  
NC  
VCCIB0  
GBB0/IO27NDB1V1 GBB0/IO41NDB1V2  
E8  
IO08NDB0V1  
Revision 4  
4-21  
Package Pin Assignments  
FG484  
FG484  
Pin  
Pin  
Number  
AFS600 Function  
NC  
AFS1500 Function  
IO08PDB0V1  
GND  
Number  
AFS600 Function  
IO35PDB2V0  
IO77PDB4V0  
GND  
AFS1500 Function  
IO51PDB2V0  
IO115PDB4V0  
GND  
E9  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
F1  
F22  
G1  
GND  
IO15NDB1V0  
IO15PDB1V0  
GND  
IO22NDB1V0  
IO22PDB1V0  
GND  
G2  
G3  
IO78NDB4V0  
IO78PDB4V0  
VCCIB4  
IO116NDB4V0  
IO116PDB4V0  
VCCIB4  
G4  
NC  
IO32PPB1V1  
IO36NPB1V2  
VCCIB1  
G5  
NC  
G6  
NC  
IO117PDB4V0  
VCCIB4  
VCCIB1  
GND  
G7  
VCCIB4  
GND  
G8  
GND  
GND  
NC  
IO47NPB2V0  
IO49PDB2V0  
VCCIB2  
G9  
IO04NDB0V0  
IO04PDB0V0  
IO12NDB0V1  
IO12PDB0V1  
NC  
IO06NDB0V1  
IO06PDB0V1  
IO16NDB0V2  
IO16PDB0V2  
IO28NDB1V1  
IO28PDB1V1  
GND  
IO33PDB2V0  
VCCIB2  
IO32NDB2V0  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
H1  
IO46NDB2V0  
GBC2/IO32PDB2V0 GBC2/IO46PDB2V0  
IO80NDB4V0  
IO80PDB4V0  
NC  
IO118NDB4V0  
IO118PDB4V0  
IO119NSB4V0  
IO124NDB4V0  
GND  
NC  
F2  
GND  
F3  
NC  
IO38PPB1V2  
IO53PDB2V0  
VCCIB2  
F4  
IO84NDB4V0  
GND  
NC  
F5  
VCCIB2  
F6  
VCOMPLA  
VCCPLA  
VCOMPLA  
VCCPLA  
IO36PDB2V0  
IO36NDB2V0  
GND  
IO52PDB2V0  
IO52NDB2V0  
GND  
F7  
F8  
VCCIB0  
VCCIB0  
F9  
IO08NDB0V1  
IO08PDB0V1  
VCCIB0  
IO12NDB0V1  
IO12PDB0V1  
VCCIB0  
IO35NDB2V0  
IO77NDB4V0  
IO76PDB4V0  
VCCIB4  
IO51NDB2V0  
IO115NDB4V0  
IO113PDB4V0  
VCCIB4  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
H2  
VCCIB1  
VCCIB1  
H3  
IO22NDB1V0  
IO22PDB1V0  
VCCIB1  
IO30NDB1V1  
IO30PDB1V1  
VCCIB1  
H4  
IO79NDB4V0  
IO79PDB4V0  
NC  
IO114NDB4V0  
IO114PDB4V0  
IO117NDB4V0  
GND  
H5  
H6  
NC  
IO36PPB1V2  
IO38NPB1V2  
GND  
H7  
GND  
NC  
H8  
VCC  
VCC  
GND  
H9  
VCCIB0  
VCCIB0  
IO33NDB2V0  
IO34PDB2V0  
IO34NDB2V0  
IO49NDB2V0  
IO50PDB2V0  
IO50NDB2V0  
H10  
H11  
H12  
GND  
GND  
VCCIB0  
VCCIB0  
VCCIB1  
VCCIB1  
4-22  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
FG484  
FG484  
Pin  
Pin  
Number  
AFS600 Function  
GND  
AFS1500 Function  
GND  
Number  
AFS600 Function  
AFS1500 Function  
IO110NDB4V0  
GND  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
J1  
K4  
K5  
IO75NDB4V0  
GND  
VCCIB1  
GND  
VCCIB1  
GND  
K6  
NC  
IO104NDB4V0  
IO111NDB4V0  
GND  
GND  
GND  
K7  
NC  
NC  
IO53NDB2V0  
IO57PDB2V0  
K8  
GND  
IO38PDB2V0  
K9  
VCC  
VCC  
GCA2/IO39PDB2V0 GCA2/IO59PDB2V0  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
L1  
GND  
GND  
VCCIB2  
IO37NDB2V0  
IO37PDB2V0  
NC  
VCCIB2  
VCC  
VCC  
IO54NDB2V0  
IO54PDB2V0  
IO112PPB4V0  
IO113NDB4V0  
GND  
GND  
VCC  
VCC  
GND  
GND  
J2  
IO76NDB4V0  
GND  
GND  
J3  
GFB2/IO74PDB4V0 GFB2/IO109PDB4V0  
GFA2/IO75PDB4V0 GFA2/IO110PDB4V0  
IO40NDB2V0  
NC  
IO60NDB2V0  
IO58PDB2V0  
GND  
J4  
J5  
NC  
NC  
IO112NPB4V0  
IO104PDB4V0  
IO111PDB4V0  
VCCIB4  
GND  
GND  
J6  
NC  
IO68NPB2V0  
IO61NDB2V0  
GND  
J7  
NC  
IO41NDB2V0  
GND  
J8  
VCCIB4  
GND  
VCC  
J9  
IO42NDB2V0  
IO73NDB4V0  
VCCOSC  
VCCIB4  
XTAL2  
IO56NDB2V0  
IO108NDB4V0  
VCCOSC  
VCCIB4  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
K1  
VCC  
GND  
VCC  
GND  
L2  
VCC  
L3  
GND  
VCC  
GND  
L4  
XTAL2  
VCC  
L5  
GFC1/IO72PDB4V0 GFC1/IO107PDB4V0  
VCCIB4 VCCIB4  
GFB1/IO71PDB4V0 GFB1/IO106PDB4V0  
VCCIB2  
VCCIB2  
L6  
GCB2/IO40PDB2V0 GCB2/IO60PDB2V0  
L7  
NC  
IO58NDB2V0  
IO57NDB2V0  
IO59NDB2V0  
L8  
VCCIB4  
GND  
VCCIB4  
GND  
IO38NDB2V0  
IO39NDB2V0  
L9  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
VCC  
VCC  
GCC2/IO41PDB2V0 GCC2/IO61PDB2V0  
GND  
GND  
NC  
IO55PSB2V0  
IO56PDB2V0  
VCC  
VCC  
IO42PDB2V0  
GND  
GND  
GFC2/IO73PDB4V0 GFC2/IO108PDB4V0  
VCC  
VCC  
K2  
GND  
GND  
VCCIB2  
IO48PDB2V0  
VCCIB2  
IO70PDB2V0  
K3  
IO74NDB4V0  
IO109NDB4V0  
Revision 4  
4-23  
Package Pin Assignments  
FG484  
FG484  
Pin  
Pin  
Number  
AFS600 Function  
VCCIB2  
AFS1500 Function  
VCCIB2  
Number  
AFS600 Function  
AFS1500 Function  
L17  
L18  
L19  
L20  
L21  
L22  
M1  
N8  
N9  
GND  
GND  
VCC  
GND  
VCC  
GND  
VCC  
GND  
GND  
GND  
VCC  
GND  
VCC  
GND  
VCC  
GND  
IO46PDB2V0  
IO69PDB2V0  
GCA1/IO45PDB2V0 GCA1/IO64PDB2V0  
VCCIB2 VCCIB2  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
P1  
GCC0/IO43NDB2V0 GCC0/IO62NDB2V0  
GCC1/IO43PDB2V0 GCC1/IO62PDB2V0  
NC  
IO103PDB4V0  
XTAL1  
M2  
XTAL1  
M3  
VCCIB4  
GNDOSC  
VCCIB4  
GDB2/IO56PDB2V0 GDB2/IO83PDB2V0  
M4  
GNDOSC  
NC  
IO78PDB2V0  
GND  
M5  
GFC0/IO72NDB4V0 GFC0/IO107NDB4V0  
VCCIB4 VCCIB4  
GFB0/IO71NDB4V0 GFB0/IO106NDB4V0  
GND  
M6  
IO47NDB2V0  
IO47PDB2V0  
GND  
IO72NDB2V0  
IO72PDB2V0  
GND  
M7  
M8  
VCCIB4  
VCC  
VCCIB4  
VCC  
M9  
IO49PDB2V0  
IO71PDB2V0  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
N1  
GND  
GND  
GFA1/IO70PDB4V0 GFA1/IO105PDB4V0  
GFA0/IO70NDB4V0 GFA0/IO105NDB4V0  
VCC  
VCC  
P2  
GND  
GND  
P3  
IO68NDB4V0  
IO65PDB4V0  
IO65NDB4V0  
NC  
IO101NDB4V0  
IO96PDB4V0  
IO96NDB4V0  
IO99NDB4V0  
IO97NDB4V0  
VCCIB4  
VCC  
VCC  
P4  
GND  
GND  
P5  
VCCIB2  
IO48NDB2V0  
VCCIB2  
IO46NDB2V0  
VCCIB2  
IO70NDB2V0  
VCCIB2  
IO69NDB2V0  
P6  
P7  
NC  
P8  
VCCIB4  
VCC  
P9  
VCC  
GCA0/IO45NDB2V0 GCA0/IO64NDB2V0  
VCCIB2 VCCIB2  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
GND  
GND  
VCC  
VCC  
GCB0/IO44NDB2V0 GCB0/IO63NDB2V0  
GCB1/IO44PDB2V0 GCB1/IO63PDB2V0  
GND  
GND  
VCC  
VCC  
NC  
GND  
IO103NDB4V0  
GND  
GND  
GND  
N2  
VCCIB2  
IO56NDB2V0  
NC  
VCCIB2  
N3  
IO68PDB4V0  
NC  
IO101PDB4V0  
IO100NPB4V0  
GND  
IO83NDB2V0  
IO78NDB2V0  
N4  
N5  
GND  
GDA1/IO54PDB2V0 GDA1/IO81PDB2V0  
GDB1/IO53PDB2V0 GDB1/IO80PDB2V0  
N6  
NC  
IO99PDB4V0  
IO97PDB4V0  
N7  
NC  
IO51NDB2V0  
IO73NDB2V0  
4-24  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
FG484  
FG484  
Pin  
Pin  
Number  
AFS600 Function  
IO51PDB2V0  
IO49NDB2V0  
IO69PDB4V0  
IO69NDB4V0  
VCCIB4  
AFS1500 Function  
IO73PDB2V0  
IO71NDB2V0  
IO102PDB4V0  
IO102NDB4V0  
VCCIB4  
Number  
AFS600 Function  
AFS1500 Function  
AV5  
P21  
P22  
R1  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
U1  
AV5  
AC5  
AC5  
NC  
NC  
R2  
GNDA  
NC  
GNDA  
R3  
IO77PPB2V0  
IO74PDB2V0  
VCCIB2  
R4  
IO64PDB4V0  
IO64NDB4V0  
NC  
IO91PDB4V0  
IO91NDB4V0  
IO92PDB4V0  
GND  
NC  
R5  
VCCIB2  
IO55NDB2V0  
R6  
IO82NDB2V0  
R7  
GND  
GDA2/IO55PDB2V0 GDA2/IO82PDB2V0  
GND GND  
GDC1/IO52PDB2V0 GDC1/IO79PDB2V0  
R8  
GND  
GND  
R9  
VCC33A  
GNDA  
VCC33A  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
T1  
GNDA  
IO67PDB4V0  
IO67NDB4V0  
IO98PDB4V0  
IO98NDB4V0  
VCC33A  
GNDA  
VCC33A  
U2  
GNDA  
U3  
GEC1/IO63PDB4V0 GEC1/IO90PDB4V0  
GEC0/IO63NDB4V0 GEC0/IO90NDB4V0  
VCC33A  
GNDA  
VCC33A  
U4  
GNDA  
U5  
GND  
VCCNVM  
VCCIB4  
VCC15A  
GNDA  
GND  
VCCNVM  
VCCIB4  
VCC15A  
GNDA  
VCC  
VCC  
U6  
GND  
GND  
U7  
NC  
IO74NDB2V0  
U8  
GDA0/IO54NDB2V0 GDA0/IO81NDB2V0  
GDB0/IO53NDB2V0 GDB0/IO80NDB2V0  
U9  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
V1  
AC4  
AC4  
VCCIB2  
IO50NDB2V0  
IO50PDB2V0  
NC  
VCCIB2  
IO75NDB2V0  
IO75PDB2V0  
IO100PPB4V0  
GND  
VCC33A  
GNDA  
VCC33A  
GNDA  
AG5  
AG5  
GNDA  
GNDA  
T2  
GND  
PUB  
PUB  
T3  
IO66PDB4V0  
IO66NDB4V0  
VCCIB4  
NC  
IO95PDB4V0  
IO95NDB4V0  
VCCIB4  
VCCIB2  
TDI  
VCCIB2  
TDI  
T4  
T5  
GND  
GND  
T6  
IO92NDB4V0  
GNDNVM  
GNDA  
IO57NDB2V0  
IO84NDB2V0  
T7  
GNDNVM  
GNDA  
GDC2/IO57PDB2V0 GDC2/IO84PDB2V0  
NC IO77NPB2V0  
T8  
T9  
NC  
NC  
GDC0/IO52NDB2V0 GDC0/IO79NDB2V0  
GEB1/IO62PDB4V0 GEB1/IO89PDB4V0  
GEB0/IO62NDB4V0 GEB0/IO89NDB4V0  
T10  
T11  
AV4  
AV4  
NC  
NC  
V2  
Revision 4  
4-25  
Package Pin Assignments  
FG484  
FG484  
Pin  
Pin  
Number  
AFS600 Function  
AFS1500 Function  
Number  
AFS600 Function  
AFS1500 Function  
GNDA  
V3  
V4  
VCCIB4  
VCCIB4  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y1  
GNDA  
AV9  
GEA1/IO61PDB4V0 GEA1/IO88PDB4V0  
GEA0/IO61NDB4V0 GEA0/IO88NDB4V0  
AV9  
V5  
VCCIB2  
NC  
VCCIB2  
V6  
GND  
VCC33PMP  
NC  
GND  
VCC33PMP  
NC  
IO68PPB2V0  
TCK  
V7  
TCK  
V8  
GND  
NC  
GND  
V9  
VCC33A  
AG4  
VCC33A  
AG4  
IO76PPB2V0  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W1  
GEC2/IO60PDB4V0 GEC2/IO87PDB4V0  
IO60NDB4V0 IO87NDB4V0  
GEA2/IO58PDB4V0 GEA2/IO85PDB4V0  
AT4  
AT4  
Y2  
ATRTN2  
AT5  
ATRTN2  
AT5  
Y3  
Y4  
IO58NDB4V0  
NCAP  
IO85NDB4V0  
NCAP  
VCC33A  
NC  
VCC33A  
NC  
Y5  
Y6  
AC0  
AC0  
VCC33A  
GND  
VCC33A  
GND  
Y7  
VCC33A  
AC1  
VCC33A  
AC1  
Y8  
TMS  
TMS  
Y9  
AC2  
AC2  
VJTAG  
VCCIB2  
TRST  
TDO  
VJTAG  
VCCIB2  
TRST  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
VCC33A  
AC3  
VCC33A  
AC3  
AC6  
AC6  
TDO  
VCC33A  
AC7  
VCC33A  
AC7  
NC  
IO93PDB4V0  
GND  
W2  
GND  
AC8  
AC8  
W3  
NC  
IO93NDB4V0  
VCC33A  
AC9  
VCC33A  
AC9  
W4  
GEB2/IO59PDB4V0 GEB2/IO86PDB4V0  
W5  
IO59NDB4V0  
AV0  
IO86NDB4V0  
AV0  
ADCGNDREF  
PTBASE  
GNDNVM  
VCCNVM  
VPUMP  
ADCGNDREF  
PTBASE  
GNDNVM  
VCCNVM  
VPUMP  
W6  
W7  
GNDA  
AV1  
GNDA  
AV1  
W8  
W9  
AV2  
AV2  
W10  
W11  
W12  
W13  
W14  
W15  
GNDA  
AV3  
GNDA  
AV3  
AV6  
AV6  
GNDA  
AV7  
GNDA  
AV7  
AV8  
AV8  
4-26  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
FG676  
A1 Ball Pad Corner  
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9  
8
7 6  
5
4
3
2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/default.aspx.  
Revision 4  
4-27  
Package Pin Assignments  
FG676  
FG676  
FG676  
Pin Number AFS1500 Function  
Pin Number AFS1500 Function  
Pin Number AFS1500 Function  
A1  
A2  
NC  
GND  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AB1  
AV2  
GNDA  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
AC1  
PTBASE  
GNDNVM  
VCCNVM  
VPUMP  
NC  
A3  
NC  
AV3  
A4  
NC  
AV6  
A5  
GND  
GNDA  
A6  
NC  
AV7  
GND  
NC  
A7  
NC  
AV8  
A8  
GND  
GNDA  
AC2  
NC  
A9  
IO17NDB0V2  
IO17PDB0V2  
GND  
AV9  
AC3  
NC  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
VCCIB2  
IO68PPB2V0  
TCK  
AC4  
GND  
VCCIB4  
VCCIB4  
PCAP  
AG0  
AC5  
IO18NDB0V2  
IO18PDB0V2  
IO20NDB0V2  
IO20PDB0V2  
GND  
AC6  
GND  
AC7  
IO76PPB2V0  
VCCIB2  
NC  
AC8  
AC9  
GNDA  
AG1  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AD1  
IO21PDB0V2  
IO21NDB0V2  
GND  
GND  
AG2  
AB2  
NC  
GNDA  
AG3  
AB3  
GEC2/IO87PDB4V0  
IO87NDB4V0  
GEA2/IO85PDB4V0  
IO85NDB4V0  
NCAP  
IO39NDB1V2  
IO39PDB1V2  
GND  
AB4  
AG6  
AB5  
GNDA  
AG7  
AB6  
NC  
AB7  
AG8  
NC  
AB8  
AC0  
GNDA  
AG9  
GND  
AB9  
VCC33A  
AC1  
NC  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
VAREF  
VCCIB2  
PTEM  
GND  
NC  
NC  
AC2  
VCCIB4  
IO93PDB4V0  
GND  
VCC33A  
AC3  
AC6  
IO93NDB4V0  
GEB2/IO86PDB4V0  
IO86NDB4V0  
AV0  
VCC33A  
AC7  
NC  
NC  
AC8  
NC  
VCC33A  
AC9  
AD2  
NC  
GNDA  
AD3  
GND  
NC  
AV1  
ADCGNDREF  
AD4  
4-28  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
FG676  
FG676  
FG676  
Pin Number AFS1500 Function  
Pin Number AFS1500 Function  
Pin Number AFS1500 Function  
AD5  
AD6  
IO94NPB4V0  
GND  
VCC33N  
AT0  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AF1  
GNDA  
NC  
AF25  
AF26  
B1  
GND  
NC  
AD7  
NC  
GND  
AD8  
GNDA  
NC  
B2  
GND  
AD9  
ATRTN0  
AT1  
B3  
NC  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AE1  
NC  
B4  
NC  
AT2  
NC  
B5  
NC  
ATRTN1  
AT3  
NC  
B6  
VCCIB0  
NC  
NC  
B7  
AT6  
NC  
B8  
NC  
ATRTN3  
AT7  
GND  
GND  
NC  
B9  
VCCIB0  
IO15NDB0V2  
IO15PDB0V2  
VCCIB0  
IO19NDB0V2  
IO19PDB0V2  
VCCIB1  
IO25NDB1V0  
IO25PDB1V0  
VCCIB1  
IO33NDB1V1  
IO33PDB1V1  
VCCIB1  
NC  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
C1  
AT8  
ATRTN4  
AT9  
AF2  
GND  
NC  
AF3  
VCC33A  
GND  
IO76NPB2V0  
NC  
AF4  
NC  
AF5  
NC  
AF6  
NC  
AF7  
NC  
GND  
NC  
AF8  
NC  
AF9  
VCC33A  
NC  
NC  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
GND  
GND  
NC  
NC  
AE2  
VCC33A  
NC  
AE3  
NC  
AE4  
NC  
NC  
NC  
AE5  
NC  
VCC33A  
NC  
GND  
AE6  
NC  
GND  
AE7  
NC  
NC  
NC  
AE8  
NC  
VCC33A  
NC  
C2  
NC  
AE9  
GNDA  
NC  
C3  
GND  
AE10  
AE11  
AE12  
AE13  
AE14  
NC  
C4  
NC  
NC  
NC  
C5  
GAA1/IO01PDB0V0  
GAB0/IO02NDB0V0  
GAB1/IO02PDB0V0  
IO07NDB0V1  
GNDA  
NC  
NC  
C6  
NC  
C7  
NC  
NC  
C8  
Revision 4  
4-29  
Package Pin Assignments  
FG676  
FG676  
FG676  
Pin Number AFS1500 Function  
Pin Number AFS1500 Function  
Pin Number AFS1500 Function  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
D1  
IO07PDB0V1  
IO09PDB0V1  
IO13NDB0V2  
IO13PDB0V2  
IO24PDB1V0  
IO26PDB1V0  
IO27NDB1V1  
IO27PDB1V1  
IO35NDB1V2  
IO35PDB1V2  
GBC0/IO40NDB1V2  
GBA0/IO42NDB1V2  
IO43NDB1V2  
IO43PDB1V2  
NC  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
E1  
GBC1/IO40PDB1V2  
GBA1/IO42PDB1V2  
GND  
F3  
F4  
IO121NDB4V0  
GND  
F5  
IO123NDB4V0  
GAC2/IO123PDB4V0  
GAA2/IO125PDB4V0  
GAC0/IO03NDB0V0  
GAC1/IO03PDB0V0  
IO10NDB0V1  
IO10PDB0V1  
IO14NDB0V2  
IO23NDB1V0  
IO23PDB1V0  
IO32NPB1V1  
IO34NDB1V1  
IO34PDB1V1  
IO37PDB1V2  
GBB1/IO41PDB1V2  
VCCIB2  
VCCPLB  
F6  
GND  
F7  
NC  
F8  
NC  
F9  
NC  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
G1  
GND  
E2  
IO122NPB4V0  
IO121PDB4V0  
IO122PPB4V0  
IO00NDB0V0  
IO00PDB0V0  
VCCIB0  
E3  
E4  
E5  
E6  
E7  
GND  
E8  
IO05NDB0V1  
IO05PDB0V1  
VCCIB0  
NC  
E9  
NC  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
F1  
NC  
IO11NDB0V1  
IO14PDB0V2  
VCCIB0  
IO47PPB2V0  
IO44NDB2V0  
GND  
D2  
NC  
D3  
NC  
D4  
GND  
VCCIB1  
IO45NDB2V0  
VCCIB2  
D5  
GAA0/IO01NDB0V0  
GND  
IO29NDB1V1  
IO29PDB1V1  
VCCIB1  
D6  
NC  
D7  
IO04NDB0V0  
IO04PDB0V0  
GND  
NC  
D8  
IO37NDB1V2  
GBB0/IO41NDB1V2  
VCCIB1  
G2  
IO119PPB4V0  
IO120NDB4V0  
IO120PDB4V0  
VCCIB4  
D9  
G3  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
IO09NDB0V1  
IO11PDB0V1  
GND  
G4  
VCOMPLB  
GBA2/IO44PDB2V0  
IO48PPB2V0  
GBB2/IO45PDB2V0  
NC  
G5  
G6  
GAB2/IO124PDB4V0  
IO125NDB4V0  
GND  
IO24NDB1V0  
IO26NDB1V0  
GND  
G7  
G8  
G9  
VCCIB0  
IO31NDB1V1  
IO31PDB1V1  
GND  
GND  
G10  
G11  
G12  
IO08NDB0V1  
IO08PDB0V1  
GND  
NC  
F2  
VCCIB4  
4-30  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
FG676  
FG676  
FG676  
Pin Number AFS1500 Function  
Pin Number AFS1500 Function  
Pin Number AFS1500 Function  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
G25  
G26  
H1  
IO22NDB1V0  
IO22PDB1V0  
GND  
H23  
H24  
H25  
H26  
J1  
IO50NDB2V0  
IO51PDB2V0  
NC  
K7  
K8  
IO114PDB4V0  
IO117NDB4V0  
GND  
K9  
IO32PPB1V1  
IO36NPB1V2  
VCCIB1  
GND  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
K25  
K26  
L1  
VCC  
NC  
VCCIB0  
J2  
VCCIB4  
GND  
GND  
J3  
IO115PDB4V0  
GND  
VCCIB0  
IO47NPB2V0  
IO49PDB2V0  
VCCIB2  
J4  
VCCIB1  
J5  
IO116NDB4V0  
IO116PDB4V0  
VCCIB4  
GND  
J6  
VCCIB1  
IO46NDB2V0  
GBC2/IO46PDB2V0  
IO48NPB2V0  
NC  
J7  
GND  
J8  
IO117PDB4V0  
VCCIB4  
GND  
J9  
IO53NDB2V0  
IO57PDB2V0  
GCA2/IO59PDB2V0  
VCCIB2  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
K1  
GND  
GND  
IO06NDB0V1  
IO06PDB0V1  
IO16NDB0V2  
IO16PDB0V2  
IO28NDB1V1  
IO28PDB1V1  
GND  
H2  
NC  
H3  
IO118NDB4V0  
IO118PDB4V0  
IO119NPB4V0  
IO124NDB4V0  
GND  
IO54NDB2V0  
IO54PDB2V0  
NC  
H4  
H5  
H6  
NC  
H7  
GND  
H8  
VCOMPLA  
VCCPLA  
IO38PPB1V2  
IO53PDB2V0  
VCCIB2  
L2  
NC  
H9  
L3  
IO112PPB4V0  
IO113NDB4V0  
GFB2/IO109PDB4V0  
GFA2/IO110PDB4V0  
IO112NPB4V0  
IO104PDB4V0  
IO111PDB4V0  
VCCIB4  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
VCCIB0  
L4  
IO12NDB0V1  
IO12PDB0V1  
VCCIB0  
IO52PDB2V0  
IO52NDB2V0  
GND  
L5  
L6  
L7  
VCCIB1  
IO51NDB2V0  
VCCIB2  
L8  
IO30NDB1V1  
IO30PDB1V1  
VCCIB1  
L9  
NC  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
NC  
GND  
IO36PPB1V2  
IO38NPB1V2  
GND  
K2  
NC  
VCC  
K3  
IO115NDB4V0  
IO113PDB4V0  
VCCIB4  
GND  
K4  
VCC  
IO49NDB2V0  
IO50PDB2V0  
K5  
GND  
K6  
IO114NDB4V0  
VCC  
Revision 4  
4-31  
Package Pin Assignments  
FG676  
FG676  
FG676  
Pin Number AFS1500 Function  
Pin Number AFS1500 Function  
Pin Number AFS1500 Function  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L25  
L26  
M1  
VCCIB2  
GCB2/IO60PDB2V0  
IO58NDB2V0  
IO57NDB2V0  
IO59NDB2V0  
GCC2/IO61PDB2V0  
IO55PPB2V0  
IO56PDB2V0  
IO55NPB2V0  
GND  
N1  
N2  
NC  
NC  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
R1  
VCC  
GND  
N3  
IO108NDB4V0  
VCCOSC  
VCC  
N4  
GND  
N5  
VCCIB4  
VCC  
N6  
XTAL2  
GND  
N7  
GFC1/IO107PDB4V0  
VCCIB4  
VCCIB2  
N8  
IO70NDB2V0  
VCCIB2  
N9  
GFB1/IO106PDB4V0  
VCCIB4  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
N25  
N26  
P1  
IO69NDB2V0  
GCA0/IO64NDB2V0  
VCCIB2  
NC  
GND  
M2  
VCCIB4  
VCC  
M3  
GFC2/IO108PDB4V0  
GND  
GND  
GCB0/IO63NDB2V0  
GCB1/IO63PDB2V0  
IO66NDB2V0  
IO67PDB2V0  
NC  
M4  
VCC  
M5  
IO109NDB4V0  
IO110NDB4V0  
GND  
GND  
M6  
VCC  
M7  
VCCIB2  
M8  
IO104NDB4V0  
IO111NDB4V0  
GND  
IO70PDB2V0  
VCCIB2  
R2  
VCCIB4  
M9  
R3  
IO103NDB4V0  
GND  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
M25  
M26  
IO69PDB2V0  
GCA1/IO64PDB2V0  
VCCIB2  
R4  
VCC  
R5  
IO101PDB4V0  
IO100NPB4V0  
GND  
GND  
R6  
VCC  
GCC0/IO62NDB2V0  
GCC1/IO62PDB2V0  
IO66PDB2V0  
IO65NDB2V0  
NC  
R7  
GND  
R8  
IO99PDB4V0  
IO97PDB4V0  
GND  
VCC  
R9  
GND  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
GND  
GND  
IO60NDB2V0  
IO58PDB2V0  
GND  
P2  
NC  
VCC  
P3  
IO103PDB4V0  
XTAL1  
GND  
P4  
VCC  
IO68NPB2V0  
IO61NDB2V0  
GND  
P5  
VCCIB4  
GND  
P6  
GNDOSC  
GFC0/IO107NDB4V0  
VCCIB4  
VCC  
P7  
GND  
IO56NDB2V0  
VCCIB2  
P8  
GDB2/IO83PDB2V0  
IO78PDB2V0  
GND  
P9  
GFB0/IO106NDB4V0  
VCCIB4  
IO65PDB2V0  
P10  
4-32  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
FG676  
FG676  
FG676  
Pin Number AFS1500 Function  
Pin Number AFS1500 Function  
Pin Number AFS1500 Function  
R21  
R22  
R23  
R24  
R25  
R26  
T1  
IO72NDB2V0  
IO72PDB2V0  
GND  
U5  
U6  
VCCIB4  
IO91PDB4V0  
IO91NDB4V0  
IO92PDB4V0  
GND  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
V23  
V24  
V25  
V26  
W1  
AC5  
NC  
U7  
GNDA  
IO71PDB2V0  
VCCIB2  
U8  
IO77PPB2V0  
IO74PDB2V0  
VCCIB2  
U9  
IO67NDB2V0  
GND  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
U23  
U24  
U25  
U26  
V1  
GND  
VCC33A  
GNDA  
IO82NDB2V0  
GDA2/IO82PDB2V0  
GND  
T2  
NC  
T3  
GFA1/IO105PDB4V0  
GFA0/IO105NDB4V0  
IO101NDB4V0  
IO96PDB4V0  
IO96NDB4V0  
IO99NDB4V0  
IO97NDB4V0  
VCCIB4  
VCC33A  
GNDA  
T4  
GDC1/IO79PDB2V0  
VCCIB2  
T5  
VCC33A  
GNDA  
T6  
NC  
T7  
VCC  
GND  
T8  
GND  
W2  
IO94PPB4V0  
IO98PDB4V0  
IO98NDB4V0  
GEC1/IO90PDB4V0  
GEC0/IO90NDB4V0  
GND  
T9  
IO74NDB2V0  
GDA0/IO81NDB2V0  
GDB0/IO80NDB2V0  
VCCIB2  
W3  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
T25  
T26  
U1  
W4  
VCC  
W5  
GND  
W6  
VCC  
IO75NDB2V0  
IO75PDB2V0  
NC  
W7  
GND  
W8  
VCCNVM  
VCCIB4  
VCC  
W9  
GND  
NC  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
W23  
W24  
VCC15A  
VCCIB2  
NC  
GNDA  
IO83NDB2V0  
IO78NDB2V0  
GDA1/IO81PDB2V0  
GDB1/IO80PDB2V0  
IO73NDB2V0  
IO73PDB2V0  
IO71NDB2V0  
NC  
V2  
VCCIB4  
AC4  
V3  
IO100PPB4V0  
GND  
VCC33A  
V4  
GNDA  
V5  
IO95PDB4V0  
IO95NDB4V0  
VCCIB4  
AG5  
V6  
GNDA  
V7  
PUB  
V8  
IO92NDB4V0  
GNDNVM  
GNDA  
VCCIB2  
V9  
TDI  
GND  
V10  
V11  
V12  
V13  
V14  
GND  
NC  
NC  
IO84NDB2V0  
GDC2/IO84PDB2V0  
IO77NPB2V0  
GDC0/IO79NDB2V0  
U2  
NC  
AV4  
U3  
IO102PDB4V0  
IO102NDB4V0  
NC  
U4  
AV5  
Revision 4  
4-33  
Package Pin Assignments  
FG676  
Pin Number AFS1500 Function  
W25  
W26  
Y1  
NC  
GND  
NC  
Y2  
NC  
Y3  
GEB1/IO89PDB4V0  
Y4  
GEB0/IO89NDB4V0  
Y5  
VCCIB4  
GEA1/IO88PDB4V0  
GEA0/IO88NDB4V0  
GND  
Y6  
Y7  
Y8  
Y9  
VCC33PMP  
NC  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
VCC33A  
AG4  
AT4  
ATRTN2  
AT5  
VCC33A  
NC  
VCC33A  
GND  
TMS  
VJTAG  
VCCIB2  
TRST  
TDO  
NC  
NC  
4-34  
Revision 4  
5 – Datasheet Information  
List of Changes  
The following table lists critical changes that were made in each revision of the Fusion datasheet.  
Revision  
Changes  
Page  
Revision 4  
(January 2013)  
The "Product Ordering Codes" section has been updated to mention "Y" as "Blank"  
mentioning "Device Does Not Include License to Implement IP Based on the  
Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43177).  
III  
The note in Table 2-12 • Fusion CCC/PLL Specification referring the reader to  
SmartGen was revised to refer instead to the online help associated with the core  
(SAR 42563).  
2-30  
2-120  
2-133  
Table 2-49 • Analog Channel Specifications was modified to update the uncalibrated  
offset values (AFS250) of the external and internal temperature monitors (SAR  
43134).  
In Table 2-57 • Prescaler Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3),  
changed the column heading from 'Full-Scale Voltage' to 'Full Scale Voltage in 10-Bit  
Mode', and added and updated Notes as required (SAR 20812).  
The values for the Speed Grade (-1 and Std.) for FDDRIMAX (Table 2-180 • Input 2-223,  
DDR Propagation Delays) and values for the Speed Grade (-2 and Std.) for  
FDDOMAX (Table 2-182 • Output DDR Propagation Delays) had been inadvertently  
interchanged. This has been rectified (SAR 38514).  
2-225  
Added description about what happens if a user connects VAREF to an external 3.3  
V on their board to the "VAREF Analog Reference Voltage" section (SAR 35188).  
2-228  
3-3  
Added a note to Table 3-2 • Recommended Operating Conditions1 (SAR 43429):  
The programming temperature range supported is Tambient = 0°C to 85°C.  
Added the Package Thermal details for AFS600-PQ208 and AFS250-PQ208 to  
Table 3-6 • Package Thermal Resistance (SAR 37816). Deleted the Die Size column  
from the table (SAR 43503).  
3-7  
Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip  
(SoC) throughout the document (SAR 42495).  
NA  
Live at Power-Up (LAPU) has been replaced with ’Instant On’.  
Revision 3  
(August 2012)  
Microblade U1AFS250 and U1AFS1500 devices were added to the product tables.  
I IV  
1-8  
A sentence pertaining to the analog I/Os was added to the "Specifying I/O States  
During Programming" section (SAR 34831).  
The "RC Oscillator" section was revised to correct a sentence that did not  
differentiate accuracy for commercial and industrial temperature ranges, which is  
given in Table 2-9 • Electrical Characteristics of RC Oscillator (SAR 33722).  
2-20  
Figure 2-57 • FIFO Read and Figure 2-58 • FIFO Write are new (SAR 34840).  
2-75  
2-98  
The first paragraph of the "Offset" section was removed; it was intended to be  
replaced by the paragraph following it (SAR 22647).  
IOL and IOH values for 3.3 V GTL+ and 2.5 V GTL+ were corrected in Table 2-86 •  
Summary of Maximum and Minimum DC Input and Output Levels Applicable to  
Commercial and Industrial Conditions (SAR 39813).  
2-167  
Revision 4  
5-1  
Datasheet Information  
Revision  
Changes  
Page  
Revision 3  
(continued)  
The drive strength, IOL, and IOH for 3.3 V GTL and 2.5 V GTL were changed from  
25 mA to 20 mA in the following tables (SAR 37373):  
2-167  
Table 2-86 • Summary of Maximum and Minimum DC Input and Output Levels  
Applicable to Commercial and Industrial Conditions,  
Table 2-92 • Summary of I/O Timing Characteristics – Software Default Settings  
Table 2-96 • I/O Output Buffer Maximum Resistances 1  
2-170  
2-172  
2-202  
2-203  
Table 2-138 • Minimum and Maximum DC Input and Output Levels  
Table 2-141 • Minimum and Maximum DC Input and Output Levels  
The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 34800):  
"It uses a 5 V–tolerant input buffer and push-pull output buffer."  
2-184  
2-214  
Corrected the inadvertent error in maximum values for LVPECL VIH and VIL and  
revised them to "3.6" in Table 2-171 • Minimum and Maximum DC Input and Output  
Levels, making these consistent with Table 3-1 • Absolute Maximum Ratings, and  
Table 3-4 • Overshoot and Undershoot Limits 1 (SAR 37687).  
The maximum frequency for global clock parameter was removed from Table 2-5 • 2-17 to  
AFS1500 Global Resource Timing through Table 2-8 • AFS090 Global Resource  
Timing because a frequency on the global is only an indication of what the global  
network can do. There are other limiters such as the SRAM, I/Os, and PLL.  
SmartTime software should be used to determine the design frequency (SAR  
36955).  
2-18  
Revision 2  
(March 2012)  
The phrase "without debug" was removed from the "Soft ARM Cortex-M1 Fusion  
Devices (M1)" section (SAR 21390).  
I
The "In-System Programming (ISP) and Security" section, "Security" section, "Flash  
Advantages" section, and "Security" section were revised to clarify that although no  
existing security measures can give an absolute guarantee, Microsemi FPGAs  
implement the best security available in the industry (SAR 34679).  
I, 1-2,  
2-231  
The Y security option and Licensed DPA Logo was added to the "Product Ordering  
Codes" section. The trademarked Licensed DPA Logo identifies that a product is  
covered by a DPA counter-measures license from Cryptography Research (SAR  
34721).  
III  
The "Specifying I/O States During Programming" section is new (SAR 34693).  
The following information was added before Figure 2-17 • XTLOSC Macro:  
1-8  
2-21  
In the case where the Crystal Oscillator block is not used, the XTAL1 pin should be  
connected to GND and the XTAL2 pin should be left floating (SAR 24119).  
Table 2-12 • Fusion CCC/PLL Specification was updated. A note was added  
indicating that when the CCC/PLL core is generated by Microsemi core generator  
software, not all delay values of the specified delay increments are available (SAR  
34814).  
2-30  
2-33  
A note was added to Figure 2-27 • Real-Time Counter System (not all the signals are  
shown for the AB macro) stating that the user is only required to instantiate the  
VRPSM macro if the user wishes to specify PUPO behavior of the voltage regulator  
to be different from the default, or employ user logic to shut the voltage regulator off  
(SAR 21773).  
5-2  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Revision  
Changes  
Page  
Revision 2  
(continued)  
VPUMP was incorrectly represented as VPP in several places. This was corrected to 2-34, 3-10  
VPUMP in the "Standby and Sleep Mode Circuit Implementation" section and  
Table 3-8 • AFS1500 Quiescent Supply Current Characteristics through Table 3-11 •  
AFS090 Quiescent Supply Current Characteristics (21963).  
Additional information was added to the Flash Memory Block "Write Operation"  
section, including an explanation of the fact that a copy-page operation takes no less  
than 55 cycles (SAR 26338).  
2-47  
The "FlashROM" section was revised to refer to Figure 2-46 • FlashROM Timing 2-56, 2-57  
Diagram and Table 2-26 • FlashROM Access Time rather than stating 20 MHz as the  
maximum FlashROM access clock and 10 ns as the time interval for D0 to become  
valid or invalid (SAR 22105).  
The following figures were deleted (SAR 29991). Reference was made to a new  
application note, Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-  
Based cSoCs and FPGAs, which covers these cases in detail (SAR 34862).  
Figure 2-55 • Write Access after Write onto Same Address  
Figure 2-56 • Read Access after Write onto Same Address  
Figure 2-57 • Write Access after Read onto Same Address  
The port names in the SRAM "Timing Waveforms", "Timing Characteristics", SRAM  
tables, Figure 2-55 • RAM Reset. Applicable to both RAM4K9 and RAM512x18., and  
2-66,  
2-69,  
the FIFO "Timing Characteristics" tables were revised to ensure consistency with the 2-68, 2-78  
software names (SAR 35753).  
In several places throughout the datasheet, GNDREF was corrected to  
ADCGNDREF (SAR 20783):  
2-80  
2-81  
Figure 2-64 • Analog Block Macro  
Table 2-36 • Analog Block Pin Description  
"ADC Operation" section  
2-107  
The following note was added below Figure 2-78 • Timing Diagram for the  
Temperature Monitor Strobe Signal:  
2-96  
When the IEEE 1149.1 Boundary Scan EXTEST instruction is executed, the AG pad  
drive strength ceases and becomes a 1 µA sink into the Fusion device. (SAR  
24796).  
The "Analog-to-Digital Converter Block" section was extensively revised,  
reorganizing the information and adding the "ADC Theory of Operation" section and  
"Acquisition Time or Sample Time Control" section. The "ADC Example" section was  
reworked and corrected (SAR 20577).  
2-99  
Table 2-49 • Analog Channel Specifications was modified to include calibrated and  
uncalibrated values for offset (AFS090 and AFS250) for the external and internal  
temperature monitors. The "Offset" section was revised accordingly and now  
references Table 2-49 • Analog Channel Specifications (SARs 22647, 27015).  
2-98,  
2-120  
The "Intra-Conversion" section and "Injected Conversion" section had definitions 2-112,  
incorrectly interchanged and have been corrected. Figure 2-92 • Intra-Conversion  
Timing Diagram and Figure 2-93 • Injected Conversion Timing Diagram were also  
incorrectly interchanged and have been replaced correctly. Reference in the figure  
notes to EQ 10 has been corrected to EQ 23 (SAR 20547).  
2-115,  
2-116  
The prescalar range for the 'Analog Input (direct input to ADC)" configurations was  
removed as inapplicable for direct inputs. The input resistance for direct inputs is  
covered in Table 2-50 • ADC Characteristics in Direct Input Mode (SAR 31201).  
2-123  
Revision 4  
5-3  
Datasheet Information  
Revision  
Changes  
Page  
Revision 2  
(continued)  
The "Examples" for calibrating accuracy for ADC channels were revised and  
corrected to make them consistent with terminology in the associated tables (SARs  
36791, 36773).  
2-127  
A note was added to Table 2-56 • Analog Quad ACM Byte Assignment and the 2-132,  
introductory text for Table 2-66 • Internal Temperature Monitor Control Truth Table,  
stating that for the internal temperature monitor to function, Bit 0 of Byte 2 for all 10  
Quads must be set (SAR 34418).  
2-134  
t
DOUT was corrected to tDIN in Figure 2-116 • Input Buffer Timing Model and Delays  
2-164  
2-174  
2-178  
(example) (SAR 37115).  
The formulas in the table notes for Table 2-97 • I/O Weak Pull-Up/Pull-Down  
Resistances were corrected (SAR 34751).  
The AC Loading figures in the "Single-Ended I/O Characteristics" section were  
updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O  
Software Settings" section (SAR 34877).  
The following notes were removed from Table 2-168 • Minimum and Maximum DC  
Input and Output Levels (SAR 34808):  
2-212  
±5%  
Differential input voltage = ±350 mV  
An incomplete, duplicate sentence was removed from the end of the "GNDAQ  
Ground (analog quiet)" pin description (SAR 30185).  
2-226  
2-228  
2-230  
3-4  
Information about configuration of unused I/Os was added to the "User Pins" section  
(SAR 32642).  
The following information was added to the pin description for "XTAL1 Crystal  
Oscillator Circuit Input" and "XTAL2 Crystal Oscillator Circuit Input" (SAR 24119).  
The input resistance to ground value in Table 3-3 • Input Resistance of Analog Pads  
for Analog Input (direct input to ADC), was corrected from 1 M(typical) to 2 k  
(typical) (SAR 34371).  
The Storage Temperature column in Table 3-5 • FPGA Programming, Storage, and  
Operating Limits stated Min. TJ twice for commercial and industrial product grades  
and has been corrected to Min. TJ and Max. TJ (SAR 29416).  
3-5  
The reference to guidelines for global spines and VersaTile rows, given in the  
"Global Clock Dynamic Contribution—PCLOCK" section, was corrected to the  
"Spine Architecture" section of the Global Resources chapter in the Fusion  
FPGA Fabric User's Guide (SAR 34741).  
3-24  
Package names used in the "Package Pin Assignments" section were revised to  
4-1  
match standards given in Package Mechanical Drawings (SAR 36612).  
July 2010  
The versioning system for datasheets has been changed. Datasheets are assigned  
a revision number that increments each time the datasheet is revised. The "Fusion  
Device Status" table indicates the status for each device in the device family.  
N/A  
5-4  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Revision  
Changes  
Page  
v2.0, Revision 1  
(July 2009)  
The MicroBlade and Fusion datasheets have been combined. Pigeon Point  
information is new.  
N/A  
CoreMP7 support was removed since it is no longer offered.  
–F was removed from the datasheet since it is no longer offered.  
The operating temperature was changed from ambient to junction to better reflect  
actual conditions of operations.  
Commercial: 0°C to 85°C  
Industrial: –40°C to 100°C  
The version number category was changed from Preliminary to Production, which  
means the datasheet contains information based on final characterization. The  
version number changed from Preliminary v1.7 to v2.0.  
The "Integrated Analog Blocks and Analog I/Os" section was updated to include a  
reference to the "Analog System Characteristics" section in the Device Architecture  
chapter of the datasheet, which includes Table 2-46 • Analog Channel Specifications  
and specific voltage data.  
1-4  
The phrase "Commercial-Case Conditions" in timing table titles was changed to  
"Commercial Temperature Range Conditions."  
N/A  
The "Crystal Oscillator" section was updated significantly. Please review carefully.  
2-21  
2-35  
The "Real-Time Counter (part of AB macro)" section was updated significantly.  
Please review carefully.  
There was a typo in Table 2-19 • Flash Memory Block Pin Names for the  
ERASEPAGE description; it was the same as DISCARDPAGE. As as a result, the  
ERASEPAGE description was updated.  
2-42  
2-54  
The tFMAXCLKNVM parameter was updated in Table 2-25 • Flash Memory Block  
Timing.  
Table 2-31 • RAM4K9 and Table 2-32 • RAM512X18 were updated.  
2-69  
2-81  
In Table 2-36 • Analog Block Pin Description, the Function description for PWRDWN  
was changed from "Comparator power-down if 1"  
to  
"ADC comparator power-down if 1. When asserted, the ADC will stop functioning,  
and the digital portion of the analog block will continue operating. This may result in  
invalid status flags from the analog block. Therefore, Microsemi does not  
recommend asserting the PWRDWN pin."  
Figure 2-75 • Gate Driver Example was updated.  
2-94  
2-107  
2-116  
The "ADC Operation" section was updated. Please review carefully.  
Figure 2-92 • Intra-Conversion Timing Diagram and Figure 2-93 • Injected  
Conversion Timing Diagram are new.  
The "Typical Performance Characteristics" section is new.  
2-118  
2-120  
2-123  
2-126  
2-127  
Table 2-49 • Analog Channel Specifications was significantly updated.  
Table 2-50 • ADC Characteristics in Direct Input Mode was significantly updated.  
In Table 2-52 • Calibrated Analog Channel Accuracy 1,2,3, note 2 was updated.  
In Table 2-53 • Analog Channel Accuracy: Monitoring Standard Positive Voltages,  
note 1 was updated.  
In Table 2-54 • ACM Address Decode Table for Analog Quad, bit 89 was removed.  
2-129  
Revision 4  
5-5  
Datasheet Information  
Revision  
Changes  
Page  
v2.0, Revision 1  
(continued)  
The data in the 2.5 V LCMOS and LVCMOS 2.5 V / 5.0 V rows were updated in  
Table 2-75 • Fusion Standard and Advanced I/O – Hot-Swap and 5 V Input Tolerance  
Capabilities.  
2-146  
In Table 2-78 • Fusion Standard I/O Standards—OUT_DRIVE Settings, LVCMOS  
1.5 V, for OUT_DRIVE 2, was changed from a dash to a check mark.  
2-155  
2-226  
The "VCC15A Analog Power Supply (1.5 V)" definition was changed from "A 1.5 V  
analog power supply input should be used to provide this input" to "1.5 V clean  
analog power supply input for use by the 1.5 V portion of the analog circuitry."  
In the "VCC33PMP Analog Power Supply (3.3 V)" pin description, the following text  
was changed from "VCC33PMP should be powered up before or simultaneously  
with VCC33A" to "VCC33PMP should be powered up simultaneously with or after  
VCC33A."  
2-226  
The "VCCOSC Oscillator Power Supply (3.3 V)" section was updated to include  
information about when to power the pin.  
2-227  
2-231  
2-159  
In the "128-Bit AES Decryption" section, FIPS-192 was incorrect and changed to  
FIPS-197.  
The note in Table 2-84 • Fusion Standard and Advanced I/O Attributes vs. I/O  
Standard Applications was updated.  
For 1.5 V LVCMOS, the VIL and VIH parameters, 0.30 * VCCI was changed to 0.35 * 2-167 to  
VCCI and 0.70 * VCCI was changed to 0.65 * VCCI in Table 2-86 • Summary of  
Maximum and Minimum DC Input and Output Levels Applicable to Commercial and  
Industrial Conditions, Table 2-87 • Summary of Maximum and Minimum DC Input  
and Output Levels Applicable to Commercial and Industrial Conditions, and  
Table 2-88 • Summary of Maximum and Minimum DC Input and Output Levels  
Applicable to Commercial and Industrial Conditions.  
2-168  
In Table 2-87 • Summary of Maximum and Minimum DC Input and Output Levels  
Applicable to Commercial and Industrial Conditions, the VIH max column was  
updated.  
Table 2-89 • Summary of Maximum and Minimum DC Input Levels Applicable to  
Commercial and Industrial Conditions was updated to include notes 3 and 4. The  
temperature ranges were also updated in notes 1 and 2.  
2-168  
The titles in Table 2-92 • Summary of I/O Timing Characteristics – Software Default 2-170 to  
Settings to Table 2-94 • Summary of I/O Timing Characteristics – Software Default  
Settings were updated to "VCCI = I/O Standard Dependent."  
2-171  
2-175  
2-177  
2-177  
3-1  
Below Table 2-98 • I/O Short Currents IOSH/IOSL, the paragraph was updated to  
change 110°C to 100°C and three months was changed to six months.  
Table 2-99 • Short Current Event Duration before Failure was updated to remove  
110°C data.  
In Table 2-101 • I/O Input Rise Time, Fall Time, and Related I/O Reliability,  
LVTTL/LVCMOS rows were changed from 110°C to 100°C.  
VCC33PMP was added to Table 3-1 • Absolute Maximum Ratings. In addition,  
conditions for AV, AC, AG, and AT were also updated.  
VCC33PMP was added to Table 3-2 • Recommended Operating Conditions1. In  
addition, conditions for AV, AC, AG, and AT were also updated.  
3-3  
Table 3-5 • FPGA Programming, Storage, and Operating Limits was updated to  
include new data and the temperature ranges were changed. The notes were  
removed from the table.  
3-5  
5-6  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Revision  
Changes  
Page  
v2.0, Revision 1  
(continued)  
Table 3-6 • Package Thermal Resistance was updated to include new data.  
In EQ 4 to EQ 6, the junction temperature was changed from 110°C to 100°C.  
3-7  
3-8 to 3-8  
Table 3-8 • AFS1500 Quiescent Supply Current Characteristics through Table 3-11 • 3-10 to  
AFS090 Quiescent Supply Current Characteristics are new and have replaced the  
Quiescent Supply Current Characteristics (IDDQ) table.  
3-16  
3-22  
In Table 3-14 • Different Components Contributing to the Dynamic Power  
Consumption in Fusion Devices, the power supply for PAC9 and PAC10 were  
changed from VMV/VCC to VCCI.  
In Table 3-15 • Different Components Contributing to the Static Power Consumption  
in Fusion Devices, the power supply for PDC7 and PDC8 were changed from  
VMV/VCC to VCCI. PDC1 was updated from TBD to 18.  
3-23  
4-2  
The "QN108" table was updated to remove the duplicates of pins B12 and B34.  
Preliminary v1.7  
(October 2008)  
The version number category was changed from Advance to Preliminary, which  
means the datasheet contains information based on simulation and/or initial  
characterization. The information is believed to be correct, but changes are possible.  
For the VIL and VIH parameters, 0.30 * VCCI was changed to 0.35 * VCCI and 0.70  
* VCCI was changed to 0.65 * VCCI in Table 2-126 • Minimum and Maximum DC  
Input and Output Levels.  
2-196  
N/A  
The version number category was changed from Advance to Preliminary, which  
means the datasheet contains information based on simulation and/or initial  
characterization. The information is believed to be correct, but changes are possible.  
The following updates were made to Table 2-141 • Minimum and Maximum DC Input  
and Output Levels:  
2-203  
Temperature  
213  
Digital Output  
00 1111 1101  
283  
01 0001 1011  
358  
01 0110 0110 – only the digital output was updated.  
Temperature 358 remains in the temperature column.  
In Advance v1.2, the "VAREF Analog Reference Voltage" pin description was  
significantly updated but the change was not noted in the change table.  
2-228  
N/A  
Advance v1.6  
(August 2008)  
The title of the datasheet changed from Actel Programmable System Chips to Actel  
Fusion Mixed Signal FPGAs. In addition, all instances of programmable system chip  
were changed to mixed signal FPGA.  
The references to the Peripherals User’s Guide in the "No-Glitch MUX (NGMUX)" 2-32, 2-42  
section and "Voltage Regulator Power Supply Monitor (VRPSM)" section were  
changed to Fusion Handbook.  
Advance v1.5  
(July 2008)  
The following bullet was updated from High-Voltage Input Tolerance: ±12 V to High-  
Voltage Input Tolerance: 10.5 V to 12 V.  
I
The following bullet was updated from Programmable 1, 3, 10, 30 µA and 25 mA  
Drive Strengths to Programmable 1, 3, 10, 30 µA and 20 mA Drive Strengths.  
I
Revision 4  
5-7  
Datasheet Information  
Revision  
Changes  
Page  
Advance v1.5  
(continued)  
This bullet was added to the "Integrated A/D Converter (ADC) and Analog I/O"  
section: ADC Accuracy is Better than 1%  
I
In the "Integrated Analog Blocks and Analog I/Os" section, ±4 LSB was changed to  
0.72. The following sentence was deleted:  
1-4  
The input range for voltage signals is from –12 V to +12 V with full-scale output  
values from 0.125 V to 16 V.  
In addition, 2°C was changed to 3°C:  
"One analog input in each quad can be connected to an external temperature  
monitor diode and achieves detection accuracy of ±3ºC."  
The following sentence was deleted:  
The input range for voltage signals is from –12 V to +12 V with full-scale output  
values from 0.125 V to 16 V.  
The title of the datasheet changed from Actel Programmable System Chips to Actel  
Fusion Mixed Signal FPGAs. In addition, all instances of programmable system chip  
were changed to mixed signal FPGA.  
N/A  
Advance v1.4  
(July 2008)  
In Table 3-8 · Quiescent Supply Current Characteristics (IDDQ)1, footnote  
3-11  
references were updated for IDC2 and IDC3  
.
Footnote 3 and 4 were updated and footnote 5 is new.  
Advance v1.3  
(July 2008)  
The "ADC Description" section was significantly updated. Please review carefully.  
2-102  
Advance v1.2  
(May 2008)  
Table 2-25 • Flash Memory Block Timing was significantly updated.  
2-55  
The "VAREF Analog Reference Voltage" pin description section was significantly  
update. Please review it carefully.  
2-226  
Table 2-45 • ADC Interface Timing was significantly updated.  
2-110  
2-131  
Table 2-56 • Direct Analog Input Switch Control Truth Table—AV (x = 0), AC (x = 1),  
and AT (x = 3) was significantly updated.  
The following sentence was deleted from the "Voltage Monitor" section:  
The Analog Quad inputs are tolerant up to 12 V + 10%.  
2-86  
The "180-Pin QFN" figure was updated. D1 to D4 are new and the figure was  
changed to bottom view. The note below the figure is new.  
3-3  
Advance v1.1  
(May 2008)  
The following text was incorrect and therefore deleted:  
2-204  
VCC33A  
Analog Power Filter  
Analog power pin for the analog power supply low-pass filter. An external 100 pF  
capacitor should be connected between this pin and ground.  
There is still a description of VCC33A on page 2-224.  
5-8  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Revision  
Changes  
Page  
Advance v1.0  
(January 2008)  
All Timing Characteristics tables were updated. For the Differential I/O Standards,  
the Standard I/O support tables are new.  
N/A  
Table 2-3 • Array Coordinates was updated to change the max x and y values  
Table 2-12 • Fusion CCC/PLL Specification was updated.  
2-9  
2-31  
2-37  
2-42  
A note was added to Table 2-16 · RTC ACM Memory Map.  
A reference to the Peripheral’s User’s Guide was added to the "Voltage Regulator  
Power Supply Monitor (VRPSM)" section.  
In Table 2-25 • Flash Memory Block Timing, the commercial conditions were  
updated.  
2-55  
2-58  
2-82  
2-86  
In Table 2-26 • FlashROM Access Time, the commercial conditions were missing  
and have been added below the title of the table.  
In Table 2-36 • Analog Block Pin Description, the function description was updated  
for the ADCRESET.  
In the "Voltage Monitor" section, the following sentence originally had ± 10% and it  
was changed to +10%.  
The Analog Quad inputs are tolerant up to 12 V + 10%.  
In addition, this statement was deleted from the datasheet:  
Each I/O will draw power when connected to power (3 mA at 3 V).  
The "Terminology" section is new.  
2-88  
2-90  
The "Current Monitor" section was significantly updated. Figure 2-72 • Timing  
Diagram for Current Monitor Strobe to Figure 2-74 • Negative Current Monitor and  
Table 2-37 • Recommended Resistor for Different Current Range Measurement are  
new.  
The "ADC Description" section was updated to add the "Terminology" section.  
2-93  
2-94  
In the "Gate Driver" section, 25 mA was changed to 20 mA and 1.5 MHz was  
changed to 1.3 MHz. In addition, the following sentence was deleted:  
The maximum AG pad switching frequency is 1.25 MHz.  
The "Temperature Monitor" section was updated to rewrite most of the text and add  
Figure 2-78, Figure 2-79, and Table 2-38 • Temperature Data Format.  
2-96  
2-98  
In Table 2-38 • Temperature Data Format, the temperature K column was changed  
for 85°C from 538 to 358.  
In Table 2-45 • ADC Interface Timing, "Typical-Case" was changed to "Worst-Case."  
The "ADC Interface Timing" section is new.  
2-110  
2-110  
2-118  
2-224  
2-225  
2-224  
Table 2-46 • Analog Channel Specifications was updated.  
The "VCC15A Analog Power Supply (1.5 V)" section was updated.  
The "VCCPLA/B PLL Supply Voltage" section is new.  
In "VCCNVM Flash Memory Block Power Supply (1.5 V)" section, supply was  
changed to supply input.  
The "VCCPLA/B PLL Supply Voltage" pin description was updated to include the  
following statement:  
2-225  
Actel recommends tying VCCPLX to VCC and using proper filtering circuits to  
decouple VCC noise from PLL.  
The "VCOMPLA/B Ground for West and East PLL" section was updated.  
2-225  
Revision 4  
5-9  
Datasheet Information  
Revision  
Changes  
Page  
Advance 1.0  
(continued)  
In Table 2-47 • ADC Characteristics in Direct Input Mode, the commercial conditions  
were updated and note 2 is new.  
2-121  
The VCC33ACAP signal name was changed to "XTAL1 Crystal Oscillator Circuit  
Input".  
2-228  
Table 2-48 • Uncalibrated Analog Channel Accuracy* is new.  
Table 2-49 • Calibrated Analog Channel Accuracy 1,2,3 is new.  
2-123  
2-124  
2-125  
Table 2-50 • Analog Channel Accuracy: Monitoring Standard Positive Voltages is  
new.  
In Table 2-57 • Voltage Polarity Control Truth Table—AV (x = 0), AC (x = 1), and AT  
(x = 3)*, the following I/O Bank names were changed:  
2-131  
Hot-Swap changed to Standard  
LVDS changed to Advanced  
In Table 2-58 • Prescaler Op Amp Power-Down Truth Table—AV (x = 0), AC (x = 1),  
and AT (x = 3), the following I/O Bank names were changed:  
2-132  
Hot-Swap changed to Standard  
LVDS changed to Advanced  
In the title of Table 2-64 • I/O Standards Supported by Bank Type, LVDS I/O was  
changed to Advanced I/O.  
2-134  
2-136  
The title was changed from "Fusion Standard, LVDS, and Standard plus Hot-Swap  
I/O" to Table 2-68 • Fusion Standard and Advanced I/O Features. In addition, the  
table headings were all updated. The heading used to be Standard and LVDS I/O  
and was changed to Advanced I/O. Standard Hot-Swap was changed to just  
Standard.  
This sentence was deleted from the "Slew Rate Control and Drive Strength" section:  
2-152  
The Standard hot-swap I/Os do not support slew rate control. In addition, these  
references were changed:  
• From: Fusion hot-swap I/O (Table 2-69 on page 2-122) To: Fusion Standard I/O  
• From: Fusion LVDS I/O (Table 2-70 on page 2-122) To: Fusion Advanced I/O  
The "Cold-Sparing Support" section was significantly updated.  
2-143  
2-153  
In the title of Table 2-75 • Fusion Standard I/O Standards—OUT_DRIVE Settings,  
Hot-Swap was changed to Standard.  
In the title of Table 2-76 • Fusion Advanced I/O Standards—SLEW and OUT_DRIVE  
Settings, LVDS was changed to Advanced.  
2-153  
2-157  
2-160  
In the title of Table 2-81 • Fusion Standard and Advanced I/O Attributes vs. I/O  
Standard Applications, LVDS was changed to Advanced.  
In Figure 2-111 • Naming Conventions of Fusion Devices with Three Digital I/O  
Banks and Figure 2-112 • Naming Conventions of Fusion Devices with Four I/O  
Banks the following names were changed:  
Hot-Swap changed to Standard  
LVDS changed to Advanced  
The Figure 2-113 • Timing Model was updated.  
2-161  
2-166  
In the notes for Table 2-86 • Summary of Maximum and Minimum DC Input Levels  
Applicable to Commercial and Industrial Conditions, TJ was changed to TA.  
5-10  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Revision  
Changes  
Page  
Advance v1.0  
(continued)  
This change table states that in the "208-Pin PQFP" table listed under the Advance  
v0.8 changes, the AFS090 device had a pin change. That is incorrect. Pin 102 was  
updated for AFS250 and AFS600. The function name changed from VCC33ACAP to  
3-8  
VCC33A  
.
Advance v0.9  
In the  
"Package  
I/Os:  
Single-/Double-Ended  
(Analog)"  
table,  
the  
II  
(October 2007)  
AFS1500/M7AFS1500 I/O counts were updated for the following devices:  
FG484: 223/109  
FG676: 252/126  
In the "108-Pin QFN" table, the function changed from VCC33ACAP to VCC33A for the  
following pin:  
3-2  
3-4  
B25  
In the "180-Pin QFN" table, the function changed from VCC33ACAP to VCC33A for the  
following pins:  
AFS090: B29  
AFS250: B29  
In the "208-Pin PQFP" table, the function changed from VCC33ACAP to VCC33A for the  
following pins:  
3-8  
AFS090: 102  
AFS250: 102  
In the "256-Pin FBGA" table, the function changed from VCC33ACAP to VCC33A for the  
following pins:  
3-12  
AFS090: T14  
AFS250: T14  
AFS600: T14  
AFS1500: T14  
Advance v0.9  
(continued)  
In the "484-Pin FBGA" table, the function changed from VCC33ACAP to VCC33A for the  
following pins:  
3-20  
3-28  
AFS600: AB18  
AFS1500: AB18  
In the "676-Pin FBGA" table, the function changed from VCC33ACAP to VCC33A for the  
following pins:  
AFS1500: AD20  
Advance v0.8  
(June 2007)  
Figure 2-16 • Fusion Clocking Options and the "RC Oscillator" section were updated 2-20, 2-21  
to change GND_OSC and VCC_OSC to GNDOSC and VCCOSC.  
Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro was updated  
to change the positions of OADIVRST and OADIVHALF, and a note was added.  
2-25  
2-22  
2-24  
2-41  
The "Crystal Oscillator" section was updated to include information about controlling  
and enabling/disabling the crystal oscillator.  
Table 2-11 · Electrical Characteristics of the Crystal Oscillator was updated to  
change the typical value of IDYNXTAL for 0.032–0.2 MHz to 0.19.  
The "1.5 V Voltage Regulator" section was updated to add "or floating" in the  
paragraph stating that an external pull-down is required on TRST to power down the  
VR.  
The "1.5 V Voltage Regulator" section was updated to include information on  
powering down with the VR.  
2-41  
Revision 4  
5-11  
Datasheet Information  
Revision  
Changes  
Page  
Advance v0.8  
(continued)  
This sentence was updated in the "No-Glitch MUX (NGMUX)" section to delete GLA:  
2-32  
The GLMUXCFG[1:0] configuration bits determine the source of the CLK inputs (i.e.,  
internal signal or GLC).  
In Table 2-13 • NGMUX Configuration and Selection Table, 10 and 11 were deleted.  
2-32  
2-38  
The method to enable sleep mode was updated for bit 0 in Table 2-16 • RTC  
Control/Status Register.  
S2 was changed to D2 in Figure 2-39 • Read Waveform (Pipe Mode, 32-bit access)  
for RD[31:0] was updated.  
2-51  
2-52  
The definitions for bits 2 and 3 were updated in Table 2-24 • Page Status Bit  
Definition.  
Figure 2-46 • FlashROM Timing Diagram was updated.  
Table 2-26 • FlashROM Access Time is new.  
2-58  
2-58  
Figure 2-55 • Write Access After Write onto Same Address, Figure 2-56 • Read  
Access After Write onto Same Address, and Figure 2-57 • Write Access After Read  
onto Same Address are new.  
2-68–  
2-70  
Table 2-31 • RAM4K9 and Table 2-32 • RAM512X18 were updated.  
2-71, 2-72  
2-82  
The VAREF and SAMPLE functions were updated in Table 2-36 • Analog Block Pin  
Description.  
The title of Figure 2-72 • Timing Diagram for Current Monitor Strobe was updated to  
add the word "positive."  
2-91  
2-94  
The "Gate Driver" section was updated to give information about the switching rate  
in High Current Drive mode.  
The "ADC Description" section was updated to include information about the  
SAMPLE and BUSY signals and the maximum frequencies for SYSCLK and  
ADCCLK. EQ 2 was updated to add parentheses around the entire expression in the  
denominator.  
2-102  
Table 2-46 · Analog Channel Specifications and Table 2-47 · ADC Characteristics in  
Direct Input Mode were updated.  
2-118,  
2-121  
The note was removed from Table 2-55 • Analog Multiplexer Truth Table—AV (x = 0),  
AC (x = 1), and AT (x = 3).  
2-131  
Table 2-63 • Internal Temperature Monitor Control Truth Table is new.  
2-132  
2-143  
The "Cold-Sparing Support" section was updated to add information about cases  
where current draw can occur.  
Figure 2-104 • Solution 4 was updated.  
2-147  
2-153  
2-224  
Table 2-75 • Fusion Standard I/O Standards—OUT_DRIVE Settings was updated.  
The "GNDA Ground (analog)" section and "GNDAQ Ground (analog quiet)" section  
were updated to add information about maximum differential voltage.  
The "VAREF Analog Reference Voltage" section and "VPUMP Programming Supply  
Voltage" section were updated.  
2-226  
2-225  
The "VCCPLA/B PLL Supply Voltage" section was updated to include information  
about the east and west PLLs.  
The VCOMPLF pin description was deleted.  
N/A  
The "Axy Analog Input/Output" section was updated with information about  
grounding and floating the pin.  
2-226  
5-12  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Revision  
Changes  
Page  
Advance v0.8  
(continued)  
The voltage range in the "VPUMP Programming Supply Voltage" section was  
updated. The parenthetical reference to "pulled up" was removed from the  
statement, "VPUMP can be left floating or can be tied (pulled up) to any voltage  
between 0 V and 3.6 V."  
2-225  
The "ATRTNx Temperature Monitor Return" section was updated with information  
about grounding and floating the pin.  
2-226  
2-225  
2-228  
The following text was deleted from the "VREF I/O Voltage Reference" section: (all  
digital I/O).  
The "NCAP Negative Capacitor" section and "PCAP Positive Capacitor" section  
were updated to include information about the type of capacitor that is required to  
connect the two.  
1 µF was changed to 100 pF in the "XTAL1 Crystal Oscillator Circuit Input".  
2-228  
2-229  
N/A  
3-2  
The "Programming" section was updated to include information about VCCOSC  
The VMV pins have now been tied internally with the VCCI pins.  
The AFS090"108-Pin QFN" table was updated.  
.
The AFS090 and AFS250 devices were updated in the "108-Pin QFN" table.  
The AFS250 device was updated in the "208-Pin PQFP" table.  
The AFS600 device was updated in the "208-Pin PQFP" table.  
3-2  
3-8  
3-8  
The AFS090, AFS250, AFS600, and AFS1500 devices were updated in the "256-Pin  
FBGA" table.  
3-12  
The AFS600 and AFS1500 devices were updated in the "484-Pin FBGA" table.  
The AFS600 device was updated in the "676-Pin FBGA" table.  
3-20  
Advance v0.7  
3-28  
(January 2007)  
The AFS1500 digital I/O count was updated in the "Fusion Family" table.  
I
The AFS1500 digital I/O count was updated in the "Package I/Os: Single-/Double-  
Ended (Analog)" table.  
II  
Advance v0.6  
(October 2006)  
The second paragraph of the "PLL Macro" section was updated to include  
information about POWERDOWN.  
2-30  
The description for bit 0 was updated in Table 2-17 · RTC Control/Status Register.  
3.9 was changed to 7.8 in the "Crystal Oscillator (Xtal Osc)" section.  
All function descriptions in Table 2-18 · Signals for VRPSM Macro.  
2-38  
2-40.  
2-42  
2-43  
In Table 2-19 • Flash Memory Block Pin Names, the RD[31:0] description was  
updated.  
The "RESET" section was updated.  
The "RESET" section was updated.  
Table 2-35 • FIFO was updated.  
2-61  
2-64  
2-79  
2-82  
The VAREF function description was updated in Table 2-36 • Analog Block Pin  
Description.  
The "Voltage Monitor" section was updated to include information about low power  
mode and sleep mode.  
2-86  
The text in the "Current Monitor" section was changed from 2 mV to 1 mV.  
2-90  
2-94  
The "Gate Driver" section was updated to include information about forcing 1 V on  
the drain.  
Revision 4  
5-13  
Datasheet Information  
Revision  
Changes  
Page  
Advance v0.6  
(continued)  
The "Analog-to-Digital Converter Block" section was updated with the following  
statement:  
2-99  
"All results are MSB justified in the ADC."  
The information about the ADCSTART signal was updated in the "ADC Description"  
section.  
2-102  
Table 2-46 · Analog Channel Specifications was updated.  
2-118  
2-121  
2-127  
2-130  
Table 2-47 · ADC Characteristics in Direct Input Mode was updated.  
Table 2-51 • ACM Address Decode Table for Analog Quad was updated.  
In Table 2-53 • Analog Quad ACM Byte Assignment, the Function and Default  
Setting for Bit 6 in Byte 3 was updated.  
The "Introduction" section was updated to include information about digital inputs,  
outputs, and bibufs.  
2-133  
2-137  
In Table 2-69 • Fusion Pro I/O Features, the programmable delay descriptions were  
updated for the following features:  
Single-ended receiver  
Voltage-referenced differential receiver  
LVDS/LVPECL differential receiver features  
The "User I/O Naming Convention" section was updated to include "V" and "z"  
descriptions  
2-159  
2-224  
2-224  
2-185  
The "VCC33PMP Analog Power Supply (3.3 V)" section was updated to include  
information about avoiding high current draw.  
The "VCCNVM Flash Memory Block Power Supply (1.5 V)" section was updated to  
include information about avoiding high current draw.  
The "VMVx I/O Supply Voltage (quiet)" section was updated to include this  
statement: VMV and VCCI must be connected to the same power supply and VCCI  
pins within a given I/O bank.  
The "PUB Push Button" section was updated to include information about leaving  
the pin floating if it is not used.  
2-228  
2-228  
2-228  
3-8  
The "PTBASE Pass Transistor Base" section was updated to include information  
about leaving the pin floating if it is not used.  
The "PTEM Pass Transistor Emitter" section was updated to include information  
about leaving the pin floating if it is not used.  
The heading was incorrect in the "208-Pin PQFP" table. It should be AFS250 and not  
AFS090.  
5-14  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Revision  
Changes  
Page  
Advance v0.5  
(June 2006)  
The low power modes of operation were updated and clarified.  
N/A  
The AFS1500 digital I/O count was updated in Table 1 • Fusion Family.  
i
The AFS1500 digital I/O count was updated in the "Package I/Os: Single-/Double-  
Ended (Analog)" table.  
ii  
The "Voltage Regulator Power Supply Monitor (VRPSM)" was updated.  
Figure 2-45 • FlashROM Timing Diagram was updated.  
The "256-Pin FBGA" table for the AFS1500 is new.  
2-36  
2-53  
3-12  
III  
Advance v0.4  
(April 2006)  
The G was moved in the "Product Ordering Codes" section.  
Advance v0.3  
(April 2006)  
The "Features and Benefits" section was updated.  
The "Fusion Family" table was updated.  
I
I
The "Package I/Os: Single-/Double-Ended (Analog)" table was updated.  
The "Product Ordering Codes" table was updated.  
The "Temperature Grade Offerings" table was updated.  
The "General Description" section was updated to include ARM information.  
Figure 2-46 • FlashROM Timing Diagram was updated.  
The "FlashROM" section was updated.  
II  
III  
IV  
1-1  
2-58  
2-57  
2-61  
2-64  
2-35  
2-43  
2-45  
The "RESET" section was updated.  
The "RESET" section was updated.  
Figure 2-27 · Real-Time Counter System was updated.  
Table 2-19 • Flash Memory Block Pin Names was updated.  
Figure 2-33 • Flash Memory Block Diagram was updated to include AUX block  
information.  
Figure 2-34 • Flash Memory Block Organization was updated to include AUX block  
information.  
2-46  
The note in the "Program Operation" section was updated.  
Figure 2-76 • Gate Driver Example was updated.  
2-48  
2-95  
The "Analog Quad ACM Description" section was updated.  
2-130  
2-94  
Information about the maximum pad input frequency was added to the "Gate Driver"  
section.  
Figure 2-65 • Analog Block Macro was updated.  
Figure 2-65 • Analog Block Macro was updated.  
The "Analog Quad" section was updated.  
The "Voltage Monitor" section was updated.  
The "Direct Digital Input" section was updated.  
The "Current Monitor" section was updated.  
2-81  
2-81  
2-84  
2-86  
2-89  
2-90  
2-94  
Information about the maximum pad input frequency was added to the "Gate Driver"  
section.  
Revision 4  
5-15  
Datasheet Information  
Revision  
Changes  
The "Temperature Monitor" section was updated.  
EQ 2 is new.  
Page  
2-96  
Advance v0.3  
(continued)  
2-103  
2-102  
2-20  
The "ADC Description" section was updated.  
Figure 2-16 • Fusion Clocking Options was updated.  
Table 2-46 · Analog Channel Specifications was updated.  
2-118  
2-144  
The notes in Table 2-72 • Fusion Standard and Advanced I/O – Hot-Swap and 5 V  
Input Tolerance Capabilities were updated.  
The "Simultaneously Switching Outputs and PCB Layout" section is new.  
2-149  
2-157  
LVPECL and LVDS were updated in Table 2-81 • Fusion Standard and Advanced I/O  
Attributes vs. I/O Standard Applications.  
LVPECL and LVDS were updated in Table 2-82 • Fusion Pro I/O Attributes vs. I/O  
Standard Applications.  
2-158  
The "Timing Model" was updated.  
2-161  
N/A  
All voltage-referenced Minimum and Maximum DC Input and Output Level tables  
were updated.  
All Timing Characteristic tables were updated  
N/A  
Table 2-83 • Summary of Maximum and Minimum DC Input and Output Levels  
Applicable to Commercial and Industrial Conditions was updated.  
2-165  
Table 2-79 • Summary of I/O Timing Characteristics – Software Default Settings  
was updated.  
2-134  
Table 2-93 • I/O Output Buffer Maximum Resistances 1 was updated.  
2-171  
2-211  
The "BLVDS/M-LVDS" section is new. BLVDS and M-LVDS are two new I/O  
standards included in the datasheet.  
The "CoreMP7 and Cortex-M1 Software Tools" section is new.  
2-257  
2-165  
Table 2-83 • Summary of Maximum and Minimum DC Input and Output Levels  
Applicable to Commercial and Industrial Conditions was updated.  
Table 2-79 • Summary of I/O Timing Characteristics – Software Default Settings  
was updated.  
2-134  
Table 2-93 • I/O Output Buffer Maximum Resistances 1 was updated.  
2-171  
2-211  
The "BLVDS/M-LVDS" section is new. BLVDS and M-LVDS are two new I/O  
standards included in the datasheet.  
The "108-Pin QFN" table for the AFS090 device is new.  
The "180-Pin QFN" table for the AFS090 device is new.  
The "208-Pin PQFP" table for the AFS090 device is new.  
The "256-Pin FBGA" table for the AFS090 device is new.  
The "256-Pin FBGA" table for the AFS250 device is new.  
3-2  
3-4  
3-8  
3-12  
3-12  
5-16  
Revision 4  
Fusion Family of Mixed Signal FPGAs  
Datasheet Categories  
Categories  
In order to provide the latest information to designers, some datasheet parameters are published before  
data has been fully characterized from silicon devices. The data provided for a given device, as  
highlighted in the "Fusion Device Status" table, is designated as either "Product Brief," "Advance,"  
"Preliminary," or "Production." The definitions of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advance or production) and contains general  
product information. This document gives an overview of specific device and family information.  
Advance  
This version contains initial estimated information based on simulation, other products, devices, or speed  
grades. This information can be used as estimates, but not for production. This label only applies to the  
DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not  
been fully characterized.  
Preliminary  
The datasheet contains information based on simulation and/or initial characterization. The information is  
believed to be correct, but changes are possible.  
Production  
This version contains information that is considered to be final.  
Export Administration Regulations (EAR)  
The products described in this document are subject to the Export Administration Regulations (EAR).  
They could require an approved export license prior to export from the United States. An export includes  
release of product or disclosure of technology to a foreign national inside or outside the United States.  
Safety Critical, Life Support, and High-Reliability Applications  
Policy  
The products described in this advance status document may not have completed the Microsemi  
qualification process. Products may be amended or enhanced during the product introduction and  
qualification process, resulting in changes in device functionality or performance. It is the responsibility of  
each customer to ensure the fitness of any product (but especially a new product) for a particular  
purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications.  
Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating  
to life-support applications. A reliability report covering all of the SoC Products Group’s products is  
available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety  
of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for  
additional reliability information.  
Revision 4  
5-17  
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor  
solutions for: aerospace, defense and security; enterprise and communications; and industrial  
and alternative energy markets. Products include high-performance, high-reliability analog and  
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and  
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at  
www.microsemi.com.  
Microsemi Corporate Headquarters  
One Enterprise, Aliso Viejo CA 92656 USA  
Within the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
© 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of  
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.  
Fax: +1 (949) 215-4996  
51700092-4/01.13  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY