RT3PE600L-CQ256YB [MICROSEMI]

FPGA, 13824 CLBS, 600000 GATES, CQFP256, CERAMIC, QFP-256;
RT3PE600L-CQ256YB
型号: RT3PE600L-CQ256YB
厂家: Microsemi    Microsemi
描述:

FPGA, 13824 CLBS, 600000 GATES, CQFP256, CERAMIC, QFP-256

文件: 总174页 (文件大小:8522K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight  
Flash FPGAs with Flash*Freeze Technology  
High-Performance Routing Hierarchy  
Features and Benefits  
Segmented, Hierarchical Routing and Clock Structure  
High-Performance, Low-Skew Global Network  
Architecture Supports Ultra-High Utilization  
MIL-STD-883 Class B Qualified Packaging  
Ceramic Column Grid Array with Six Sigma Copper-Wrapped  
Lead-Tin Columns  
Advanced and Pro (Professional) I/Os  
Land Grid Array  
700 Mbps DDR, LVDS-Capable I/Os  
Ceramic Quad Flat Pack  
1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation  
Bank-Selectable I/O Voltages—up to 8 Banks per Chip  
Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V /  
2.5 V / 1.8 V / 1.5 V / 1.2 V, and 3.3 V PCI / 3.3 V PCI-X  
Differential I/O Standards: LVPECL, LVDS, B-LVDS, and M-LVDS  
Voltage-Referenced I/O Standards: GTL+ 2.5 V / 3.3 V, GTL  
2.5 V / 3.3 V, HSTL Class I and II, SSTL2 Class I and II, SSTL3  
Class I and II (RT3PE3000L only)  
Low Power  
Dramatic Reduction in Dynamic and Static Power  
1.2 V to 1.5 V Core and I/O Voltage Support for Low Power  
Low Power Consumption in Flash*Freeze Mode  
Radiation Performance  
25 Krad to 30 Krad with 10% Propagation Delay Increase  
(TM 1019 Cond. A, Dose Rate 5 Krad/min)  
Up to 40 Krad with 10% Propagation Delay Increase, Dose Rate  
< 1 Krad/min  
Up to 55 Krad with 15% Propagation Delay Increase, Dose  
Rate < 1 Krad/min  
Wafer-Lot-Specific TID Reports  
I/O Registers on Input, Output, and Enable Paths  
Hot-Swappable and Cold-Sparing I/Os  
Programmable Output Slew Rate and Drive Strength  
Programmable Input Delay (RT3PE3000L only)  
Schmitt Trigger Option on Single-Ended Inputs (RT3PE3000L)  
Weak Pull-Up/-Down  
High Capacity  
IEEE 1149.1 (JTAG) Boundary Scan Test  
600 k to 3 M System Gates  
Up to 504 kbits of True Dual-Port SRAM  
Up to 620 User I/Os  
Pin-Compatible Packages across the Radiation-Tolerant (RT)  
®
ProASIC 3 Family  
Clock Conditioning Circuit (CCC) and PLL  
Reprogrammable Flash Technology  
Six CCC Blocks, All with Integrated PLL  
Configurable Phase Shift, Multiply/Divide, Delay Capabilities,  
and External Feedback  
Wide Input Frequency Range 1.5 MHz to 250 MHz (1.2 V  
systems) and 350 MHz (1.5 V systems)  
130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS  
Live-at-Power-Up (LAPU) Level 0 Support  
Single-Chip Solution  
Retains Programmed Design when Powered Off  
High Performance  
SRAMs and FIFOs  
350 MHz (1.5 V) and 250 MHz (1.2 V) System Performance  
3.3 V, 66 MHz, 66-Bit PCI (1.5 V); 66 MHz, 32-Bit PCI (1.2 V)  
Variable-Aspect-Ratio 4,608-Bit RAM Blocks (×1, ×2, ×4, ×9,  
and ×18 organizations available)  
In-System Programming (ISP) and Security  
True Dual-Port SRAM (except ×18)  
ISP Using On-Chip 128-Bit Advanced Encryption Standard (AES)  
Decryption via JTAG (IEEE 1532–compliant)  
24 SRAM and FIFO Blocks with Synchronous Operation:  
– 250 MHz: For 1.2 V Systems  
– 350 MHz: For 1.5 V Systems  
®
FlashLock Designed to Secure FPGA Contents  
Table I-1 • Radiation-Tolerant (RT) ProASIC3 Low Power Spaceflight FPGAs  
RT ProASIC3 Devices  
System Gates  
RT3PE600L  
RT3PE3000L  
600,000  
13,824  
108  
24  
3,000,000  
VersaTiles (D-flip-flops)  
RAM kbits (1,024 bits)  
4,608-Bit Blocks  
75,264  
504  
112  
1
FlashROM Kbits  
1
Secure (AES) ISP  
Integrated PLL in CCCs  
VersaNet Globals  
I/O Banks  
Yes  
6
Yes  
6
18  
18  
8
8
Maximum User I/Os  
270  
620  
Package Pins  
CCGA/LGA  
CQFP  
CG/LG484  
CQ256  
CG/LG484, CG/LG896  
CQ256  
September 2012  
I
© 2012 Microsemi Corporation  
ProASIC3 nano Flash FPGAs  
1
I/Os Per Package  
RT ProASIC3 Low Power Devices  
RT3PE600L  
RT3PE3000L  
Differential I/O  
Pairs  
Package  
CG/LG484  
CG/LG896  
CQ256  
Single-Ended I/Os2 Differential I/O Pairs Single-Ended I/Os2  
270  
135  
341  
620  
166  
168  
310  
82  
166  
82  
Notes:  
1. When considering migrating your design to a lower- or higher-density device, refer to the packaging section of the datasheet to  
ensure you are complying with design and board migration requirements.  
2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.  
3. For RT3PE3000L devices, the usage of certain I/O standards is limited as follows:  
– SSTL3(I) and (II): up to 40 I/Os per north or south bank  
– LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank  
– SSTL2(I) and (II) / GTL+ 2.5 V / GTL 2.5 V: up to 72 I/Os per north or south bank  
4. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not as a regular I/O, the number of single-ended  
user I/Os available is reduced by one.  
RT ProASIC3 Device Status  
RT ProASIC3 Devices  
Status  
RT3PE600L  
Production  
Production  
RT3PE3000L  
II  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
RT ProASIC3 Ordering Information  
_
RT3PE3000L  
1
CG  
484  
Y
B
Application (Screening Level)  
B = MIL-STD-883 Class B  
E = Extended Flow  
PROTO = Protoype Unit; Not for Space-Flight or Qualification of  
Space-Flight Hardware  
Security Feature  
Y = Device Includes License to Implement IP Based on the  
Cryptography Research, Inc. (CRI) Patent Portfolio  
Package Lead Count  
Package Type  
=
CG Ceramic Column Grid Array (1.0 mm pitch)  
=
LG  
Land Grid Array (1.0 mm pitch)  
=
CQ Ceramic Quad Flat Pack  
Speed Grade  
Blank = Standard  
1 = 15% Faster than Standard  
Part Number  
RT ProASIC3 Spaceflight FPGAs  
RT3PE600L = 600,000 System Gates  
RT3PE3000L = 3,000,000 System Gates  
Screening Levels  
Package  
CG/LG484  
CG/LG896  
CQ256  
RT3PE600L  
B, E, PROTO  
RT3PE3000L  
B, E, PROTO  
B, E, PROTO  
B, E, PROTO  
B, E, PROTO  
Note: B = MIL-STD-883 Class B screening  
E = Extended flow  
PROTO = Prototype unit; not for space-flight or qualification of space-flight hardware.  
Speed Grade Offerings  
Speed Grade  
RT3PE600L  
RT3PE3000L  
Std.  
–1  
Notes:  
1. Data applies to B, E, and PROTO flow devices.  
2. Contact your local Microsemi SoC Products Group representative for availability.  
Revision 5  
III  
ProASIC3 nano Flash FPGAs  
MIL-STD-883 Class B Product Flow  
Table 2 • MIL-STD-883 Class B Product Flow for RT ProASIC3 Devices*  
Step  
Screen  
Method  
Requirement  
100%  
1
2
3
4
Internal Visual  
2010, Condition B  
Serialization  
100%  
Temperature Cycling  
Constant Acceleration  
1010, Condition C, 10 cycles minimum  
100%  
2001, Y1 Orientation Only  
100%  
Condition B for CQ256, CQ352, LG624, LG1152  
Condition D for CQ208  
Condition A for LG1272, LGD1272, CQ352  
5
6
7
Particle Impact Noise Detection  
Seal (Fine & Gross Leak Test)  
Pre-Burn-In Electrical Parameters  
2020, Condition A  
1014  
100%  
100%  
100%  
In accordance with applicable Microsemi device  
specification  
8
9
Dynamic Burn-In  
1015, Condition D,  
160 hours at 125°C or 80 hours at 150°C minimum  
100%  
100%  
Interim (Post-Burn-In) Electrical Parameters  
In accordance with applicable Microsemi device  
specification  
10  
11  
Percent Defective Allowable (PDA) Calculation  
Final Electrical Test  
5%  
All Lots  
100%  
In accordance with applicable Microsemi device  
specification, which includes a, b, and c:  
a. Static Tests  
(1) 25°C  
(2) –55°C and +125°C  
5005, Table 1, Subgroup 1  
5005, Table 1, Subgroup 2, 3  
b. Functional Tests  
(1) 25°C  
(2) –55°C and +125°C  
5005, Table 1, Subgroup 7  
5005, Table 1, Subgroup 8a, 8b  
5005, Table 1, Subgroup 9  
2009  
c. Switching Tests at 25°C  
External Visual  
12  
100%  
Note: *For CCGA devices, all Assembly, Screening, and TCI testing are performed at LGA level. Only QA electrical and mechanical  
visual are performed after solder column attachment.  
IV  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Extended Flow (E Flow)  
Table 3 • Extended Flow for RT ProASIC3 Devices 1,2  
Step  
Screen  
Destructive In-Line Bond Pull3  
Internal Visual  
Method  
Requirement  
Sample  
100%  
1
2
3
4
5
6
7
8
9
2011, Condition D  
2010, Condition A  
Serialization  
100%  
Temperature Cycling  
Constant Acceleration  
Particle Impact Noise Detection  
Radiographic (X-Ray)  
Pre-Burn-In Test  
1010, Condition C  
100%  
2001, Condition B or D, Y1 Orientation Only  
2020, Condition A  
100%  
100%  
2012, One View (Y1 Orientation) Only  
In accordance with applicable Microsemi device specification  
100%  
100%  
Dynamic Burn-In  
1015, Condition D, 240 hours at 125°C or 120 hours at 150°C  
minimum  
100%  
10 Interim (Post-Burn-In) Electrical Parameters In accordance with applicable Microsemi device specification  
100%  
100%  
11 Static Burn-In  
1015, Condition C, 72 hours at 150°C or 144 hours at 125°C  
minimum  
12 Interim (Post-Burn-In) Electrical Parameters In accordance with applicable Microsemi device specification  
100%  
13 Percent Defective Allowable (PDA)  
Calculation  
5%, 3% Functional Parameters at 25°C  
All Lots  
14 Final Electrical Test  
In accordance with Microsemi applicable device specification  
which includes a, b, and c:  
100%  
100%  
a. Static Tests  
(1) 25°C  
5005  
5005  
(Subgroup 1, Table1)  
(2) –55°C and +125°C  
(Subgroups 2, 3, Table 1)  
b. Functional Tests  
(1) 25°C  
100%  
5005  
5005  
(Subgroup 7, Table 15)  
(2) –55°C and +125°C  
(Subgroups 8A and B, Table 1)  
c. Switching Tests at 25°C  
(Subgroup 9, Table 1)  
100%  
100%  
5005  
1014  
15 Seal  
a. Fine  
b. Gross  
16 External Visual  
2009  
100%  
Notes:  
1. Microsemi offers Extended Flow for users requiring additional screening beyond MIL-STD-883, Class B requirement. Microsemi  
offers this Extended Flow incorporating the majority of the screening procedures as outlined in Method 5004 of MIL-STD-883,  
Class S. The exceptions to Method 5004 are shown in notes 2 and 4 below.  
2. For CCGA devices, all Assembly/Screening/TCI testing are performed at LGA level. Only QA electrical and mechanical visual  
are performed after solder column attachment.  
3. Method 5004 requires a 100 percent, nondestructive bond-pull to Method 2003. Microsemi substitutes a destructive bond-pull  
to Method 2011 Condition D on a sample basis only.  
4. MIL-STD-883, Method 5004, requires a 100 percent radiation latch-up testing to Method 1020. Microsemi will NOT perform any  
radiation testing, and this requirement must be waived in its entirety.  
5. Wafer lot acceptance complies to commercial standards only (requirement per Method 5007 is not performed).  
Revision 5  
V
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Table of Contents  
Radiation-Tolerant ProASIC3 Low Power Spaceflight FPGA Overview  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching  
Characteristics  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16  
VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-91  
Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-98  
Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-101  
Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-103  
Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-117  
JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-118  
Pin Descriptions  
Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
User-Defined Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
User Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
Package Pin Assignments  
CQ256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
CG484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8  
CG896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19  
Datasheet Information  
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6  
International Traffic in Arms Regulations (ITAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6  
Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6  
Revision 5  
VII  
1 – Radiation-Tolerant ProASIC3 Low Power  
Spaceflight FPGA Overview  
General Description  
The radiation-tolerant (RT) ProASIC3 family of Microsemi flash FPGAs dramatically reduces dynamic  
power consumption by 40% and static power by 50%. These power savings are coupled with  
performance, density, true single chip, 1.2 V to 1.5 V core and I/O operation, reprogrammability, and  
advanced features. The RT ProASIC3 FPGA is based on the ProASIC3EL family of low power FPGAs.  
Microsemi's proven Flash*Freeze technology enables RT ProASIC3 device users to shut off dynamic  
power instantaneously and switch the device to static mode without the need to switch off clocks or  
power supplies, and retaining internal states of the device. This greatly simplifies power management. In  
addition, optimized software tools using power-driven layout provide instant push-button power  
reduction.  
Nonvolatile flash technology gives RT ProASIC3 devices the advantage of being a secure, low power,  
single-chip solution that is live at power-up (LAPU). RT ProASIC3 devices offer dramatic dynamic power  
savings, giving FPGA users flexibility to combine low power with high performance.  
These features enable designers to create high-density systems using existing ASIC or FPGA design  
flows and tools.  
RT ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as  
clock conditioning circuitry (CCC) based on an integrated phase-locked loop (PLL). RT ProASIC3  
devices support devices from 600 k system gates to 3 million system gates with up to 504 kbits of true  
dual-port SRAM and 620 user I/Os.  
Flash*Freeze Technology  
RT ProASIC3 devices offer the proven Flash*Freeze technology, which allows instantaneous switching  
from an active state to a static state. When Flash*Freeze mode is activated, RT ProASIC3 devices enter  
a static state while retaining the contents of registers and SRAM. Power is conserved without the need  
for additional external components to turn off I/Os or clocks. Flash*Freeze technology is combined with  
in-system programmability, which enables users to quickly and easily upgrade and update their designs  
in the final stages of manufacturing or in the field. The ability of RT ProASIC3 devices to support a 1.2 V  
core voltage allows for an even greater reduction in power consumption, which enables low total system  
power.  
When the RT ProASIC3 device enters Flash*Freeze mode, the device automatically shuts off the clocks  
and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and data is  
retained.  
The availability of low power modes, combined with a reprogrammable, single-chip, single-voltage  
solution, make RT ProASIC3 devices suitable for low power data transfer and manipulation in military-  
temperature applications where available power may be limited (e.g., in battery-powered equipment); or  
where heat dissipation may be limited (e.g., in enclosures with no forced cooling).  
Flash Advantages  
Low Power  
The RT ProASIC3 family of flash-based FPGAs provides a low power advantage, and when coupled with  
high performance, enables designers to make power-smart choices using  
reprogrammable, and live-at-power-up device.  
a
single-chip,  
RT ProASIC3 devices offer 40% dynamic power and 50% static power savings by reducing the core  
operating voltage to 1.2 V. In addition, the power-driven layout (PDL) feature in Libero® System-on-Chip  
(SoC) software offers up to 30% additional power reduction. With Flash*Freeze technology, an RT  
ProASIC3 device is able to retain device SRAM and logic while dynamic power is reduced to a minimum,  
Revision 5  
1-1  
Radiation-Tolerant ProASIC3 Low Power Spaceflight FPGA Overview  
without the need to stop clock or power supplies. Combining these features provides a low power,  
feature-rich, and high-performance solution.  
Security  
Nonvolatile, flash-based RT ProASIC3 devices do not require a boot PROM, so there is no vulnerable  
external bitstream that can be easily copied. RT ProASIC3 devices incorporate FlashLock, which  
provides a unique combination of reprogrammability and design security without external overhead,  
advantages that only an FPGA with nonvolatile flash programming can offer.  
RT ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest  
level of protection in the FPGA industry for programmed intellectual property and configuration data. In  
addition, all FlashROM data in RT ProASIC3 devices can be encrypted prior to loading, using the  
industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the  
National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. RT  
ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them the  
most comprehensive programmable logic device security solution available today. RT ProASIC3 devices  
with AES-based security provide a high level of protection for remote field updates over public networks  
such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system  
overbuilders, system cloners, and IP thieves.  
Security, built into the FPGA fabric, is an inherent component of the RT ProASIC3 family. The flash cells  
are located beneath seven metal layers, and many device design and layout techniques have been used  
to make invasive attacks extremely difficult. The RT ProASIC3 family, with FlashLock and AES security,  
is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected  
with industry-standard security, making remote ISP possible. An RT ProASIC3 device provides the best  
available security for programmable logic designs.  
Single Chip  
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the  
configuration data is an inherent part of the FPGA structure, and no external configuration data needs to  
be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based RT ProASIC3  
FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load  
device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and  
system reliability.  
Live at Power-Up  
Flash-based RT ProASIC3 devices support Level 0 of the LAPU classification standard. This feature  
helps in system component initialization, execution of critical tasks before the processor wakes up, setup  
and configuration of memory blocks, clock generation, and bus activity management. The LAPU feature  
of flash-based RT ProASIC3 devices greatly simplifies total system design and reduces total system  
cost, often eliminating the need for CPLDs and clock generation PLLs. In addition, glitches and  
brownouts in system power will not corrupt the device's flash configuration, and unlike SRAM-based  
FPGAs, the device will not have to be reloaded when system power is restored. This enables the  
reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout  
detection, and clock generator devices from the PCB design. Flash-based RT ProASIC3 devices simplify  
total system design and reduce cost and design risk while increasing system reliability and improving  
system initialization time.  
Reduced Cost of Ownership  
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-  
based FPGAs, flash-based RT ProASIC3 devices allow all functionality to be live at power-up; no  
external boot PROM is required. On-board security mechanisms are designed to prevent access to all  
the programming information and enable the highest level of security available for remote updates of the  
FPGA logic. Designers can perform remote in-system reprogramming to support future design iterations  
and field upgrades with confidence that valuable intellectual property is protected and very unlikely to be  
compromised or copied. ISP can be performed using the industry-standard AES algorithm. The RT  
ProASIC3 family device architecture mitigates the need for ASIC migration at higher volumes. This  
makes the RT ProASIC3 family a cost-effective ASIC replacement.  
1-2  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Advanced Flash Technology  
The RT ProASIC3 family offers many benefits, including nonvolatility and reprogrammability, through an  
advanced flash-based, 130-nm LVCMOS process with 7 layers of metal. Standard CMOS design  
techniques are used to implement logic and control functions. The combination of fine granularity,  
enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization  
without compromising device routability or performance. Logic functions within the device are  
interconnected through a four-level routing hierarchy.  
Advanced Architecture  
The proprietary RT ProASIC3 architecture provides granularity comparable to standard-cell ASICs. The  
RT ProASIC3 device consists of five distinct and programmable architectural features (Figure 1-1):  
FPGA VersaTiles  
Dedicated FlashROM  
Dedicated SRAM/FIFO memory  
Extensive CCCs and PLLs  
I/O structure  
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic  
function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch  
interconnections. The versatility of the RT ProASIC3 core tile, as either a three-input lookup table (LUT)  
equivalent or a D-flip-flop/latch with enable, allows for efficient use of the FPGA fabric. The VersaTile  
capability is unique to the ProASIC family of third-generation-architecture flash FPGAs. VersaTiles are  
connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the  
device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is  
possible for virtually any design.  
In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming  
of RT ProASIC3 devices via an IEEE 1532 JTAG interface.  
CCC  
RAM Block  
4,608-Bit Dual-Port SRAM  
or FIFO Block  
Pro I/Os  
VersaTile  
RAM Block  
4,608-Bit Dual-Port SRAM  
or FIFO Block  
ISP AES  
Decryption*  
User Nonvolatile  
FlashRom  
Flash*Freeze  
Technology  
Charge  
Pumps  
Figure 1-1 • RT ProASIC3 Device Architecture Overview  
Revision 5  
1-3  
Radiation-Tolerant ProASIC3 Low Power Spaceflight FPGA Overview  
Flash*Freeze Technology  
RT ProASIC3 devices offer proven Flash*Freeze technology, which enables designers to  
instantaneously shut off dynamic power consumption while retaining all SRAM and register information.  
Flash*Freeze technology enables the user to quickly (within 1 µs) enter and exit Flash*Freeze mode by  
activating the Flash*Freeze (FF) pin while all power supplies are kept at their original values. In addition,  
I/Os and global I/Os can still be driven and can be toggling without impact on power consumption; clocks  
can still be driven or can be toggling without impact on power consumption; all core registers and SRAM  
cells retain their states. I/Os are tristated during Flash*Freeze mode or can be set to a certain state using  
weak pull-up or pull-down I/O attribute configuration. No power is consumed by the I/O banks, clocks,  
JTAG pins, or PLLs. Flash*Freeze technology allows the user to switch to active mode on demand, thus  
simplifying the power management of the device.  
The FF pin (active low) can be routed internally to the core to allow the user's logic to decide when it is  
safe to transition to this mode. It is also possible to use the FF pin as a regular I/O if Flash*Freeze mode  
usage is not planned, which is advantageous because of the inherent low power static and dynamic  
capabilities of the RT ProASIC3 device. Refer to Figure 1-2 for an illustration of entering/exiting  
Flash*Freeze mode.  
Actel RT ProASIC3  
FPGA  
Flash*Freeze  
Mode Control  
Flash*Freeze Pin  
Figure 1-2 • RT ProASIC3 Flash*Freeze Mode  
VersaTiles  
The RT ProASIC3 core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS®  
core tiles. The RT ProASIC3 VersaTile supports the following:  
All 3-input logic functions—LUT-3 equivalent  
Latch with clear or set  
D-flip-flop with clear or set  
Enable D-flip-flop with clear or set  
Refer to Figure 1-3 for VersaTile configurations.  
Enable D-Flip-Flop with Clear or Set  
D-Flip-Flop with Clear or Set  
LUT-3 Equivalent  
X1  
Data  
Y
Data  
CLK  
CLR  
Y
X2  
X3  
LUT-3  
Y
D-FF  
CLK  
D-FF  
Enable  
CLR  
Figure 1-3 • VersaTile Configurations  
1-4  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
User Nonvolatile FlashROM  
RT ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM  
can be used in diverse system applications:  
Internet protocol addressing (wireless or fixed)  
System calibration settings  
Device serialization and/or inventory control  
Subscription-based business models (for example, set-top boxes)  
Secure key storage for secure communications algorithms  
Asset management/tracking  
Date stamping  
Version management  
FlashROM is written using the standard RT ProASIC3 IEEE 1532 JTAG programming interface. The core  
can be individually programmed (erased and written), and on-chip AES decryption can be used  
selectively to provide a high level of security when loading data over public networks, as in security keys  
stored in the FlashROM for a user design.  
FlashROM can be programmed via the JTAG programming interface, and its contents can be read back  
either through the JTAG programming interface or via direct FPGA core addressing. Note that the  
FlashROM can only be programmed from the JTAG interface and cannot be programmed from the  
internal logic array.  
FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis  
using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and  
which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the  
FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM  
address define the byte.  
The RT ProASIC3 development software solution, Libero SoC, has extensive support for the FlashROM.  
One such feature is auto-generation of sequential programming files for applications requiring a unique  
serial number in each part. Another feature allows the inclusion of static data for system version control.  
Data for the FlashROM can be generated quickly and easily using Libero SoC software tools.  
Comprehensive programming file support is also included to allow for easy programming of large  
numbers of parts with differing FlashROM contents.  
SRAM and FIFO  
RT ProASIC3 devices have embedded SRAM blocks along their north and south sides. Each variable-  
aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9,  
1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be  
configured with different bit widths on each port. For example, data can be sent through a 4-bit port and  
read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port  
(ROM emulation mode) using the UJTAG macro.  
In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM  
block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width  
and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and  
Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control  
unit contains the counters necessary for generation of the read and write address pointers. The  
embedded SRAM/FIFO blocks can be cascaded to create larger configurations.  
PLL and CCC  
RT ProASIC3 space-flight FPGAs provide designers with flexible clock conditioning circuit (CCC)  
capabilities. Each member of the RT ProASIC3 family contains six CCCs, located at the four corners and  
the centers of the east and west sides. All six CCC blocks are equipped with a PLL. All six CCC blocks  
are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock  
spine access.  
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs  
located near the CCC that have dedicated connections to the CCC block.  
The CCC block has these key features:  
Revision 5  
1-5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight FPGA Overview  
Wide input frequency range (fIN_CCC) = 1.5 MHz up to 250 MHz  
Output frequency range (fOUT_CCC) = 0.75 MHz up to 250 MHz  
2 programmable delay types for clock skew minimization  
Clock frequency synthesis  
Additional CCC specifications:  
Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider  
configuration.  
Output duty cycle = 50% ± 1.5% or better  
Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global  
network used  
Maximum acquisition time is 300 µs  
Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns  
Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz /  
fOUT_CCC  
Global Clocking  
RT ProASIC3 devices have extensive support for multiple clocking domains. In addition to the CCC and  
PLL support described above, there is a comprehensive global clock distribution network.  
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant  
global networks. The VersaNets can be driven by the CCC or directly accessed from the core via  
multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid  
distribution of high-fanout nets.  
I/Os with Advanced I/O Standards  
The RT ProASIC3 family of FPGAs features a flexible I/O structure, supporting a range of voltages  
(1.5 V, 1.8 V, 2.5 V, and 3.3 V). In addition, 1.2 V I/O operation is supported for RT ProASIC3 devices. RT  
ProASIC3 FPGAs support different I/O standards, including single-ended, differential, and voltage-  
referenced. The I/Os are organized into banks, with eight banks per device. The configuration of these  
banks determines the I/O standards supported. For RT ProASIC3, each I/O bank is subdivided into VREF  
minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All the I/Os  
in a given minibank share a common VREF line. Therefore, if any I/O in a given VREF minibank is  
configured as a VREF pin, the remaining I/Os in that minibank will be able to use that reference voltage.  
Each I/O module contains several input, output, and enable registers. These registers allow the  
implementation of the following:  
Single-data-rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)  
Double-data-rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point  
communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II).  
RT ProASIC3 banks support LVPECL, LVDS, B-LVDS, and M-LVDS. B-LVDS and M-LVDS can support  
up to 20 loads.  
1-6  
Revision 5  
2 – Radiation-Tolerant ProASIC3 Low Power  
Spaceflight Flash FPGAs DC and Switching  
Characteristics  
General Specifications  
Operating Conditions  
Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
absolute maximum ratings are stress ratings only; functional operation of the device at these or any other  
conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on  
page 2-2 is not implied.  
Table 2-1 • Absolute Maximum Ratings  
Symbol  
VCC  
Parameter  
DC core supply voltage  
JTAG DC voltage  
Limits  
Units  
–0.3 to 1.65  
–0.3 to 3.75  
–0.3 to 3.75  
–0.3 to 1.65  
–0.3 to 3.75  
V
V
V
V
V
V
VJTAG  
VPUMP  
VCCPLL  
Programming voltage  
Analog power supply (PLL)  
VCCI and VMV2 DC I/O buffer supply voltage  
VI  
I/O input voltage  
–0.3 V to 3.6 V (when I/O hot insertion mode is  
enabled)  
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is  
lower (when I/O hot-insertion mode is disabled)  
TSTG  
TJ  
Storage temperature  
Junction temperature  
–65 to +150  
+150  
°C  
°C  
Notes:  
1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may  
undershoot or overshoot according to the limits shown in Table 2-4 on page 2-7.  
2. VMV pins must be connected to the corresponding VCCI pins. Refer to the "Pin Descriptions" section on page 3-1 for  
further information.  
3. For recommended operating limits, refer to Table 2-2 on page 2-2.  
Revision 5  
2-1  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Table 2-2 • Recommended Operating Conditions1,2  
Symbol  
TA  
Parameter  
Ambient temperature  
Military  
–55 to 125  
–55 to 125  
1.425 to 1.575  
1.14 to 1.575  
1.4 to 3.6  
Units  
°C  
°C  
V
TJ  
Junction temperature  
VCC6  
1.5 V DC core supply voltage3  
1.2 – 1.5 V Wide Range DC core supply voltage4  
JTAG DC voltage  
V
VJTAG6  
V
VPUMP5,6  
Programming voltage  
Programming mode  
3.15 to 3.45  
0
V
Operation  
V
VCCPLL6  
Analog power supply (PLL)  
1.5 V DC core supply voltage3  
1.425 to 1.575  
V
1.2 – 1.5 V DC core supply voltage4 1.14 to 1.575  
V
VCCI and VMV6 1.2 V DC supply voltage4  
1.2 V Wide Range DC supply voltage4  
1.14 to 1.26  
1.14 to 1.575  
1.425 to 1.575  
1.7 to 1.9  
V
V
1.5 V DC supply voltage  
1.8 V DC supply voltage  
2.5 V DC supply voltage  
3.0 V DC supply voltage7  
3.3 V DC supply voltage  
LVDS differential I/O  
V
V
2.3 to 2.7  
V
2.7 to 3.6  
3.0 to 3.6  
V
V
V
2.375 to 2.625  
3.0 to 3.6  
LVPECL differential I/O  
Notes:  
1. All parameters representing voltages are measured with respect to GND unless otherwise specified.  
2. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi  
recommends that the user follow best design practices using Microsemi’s timing and power simulation tools.  
3. For RT ProASIC3 devices operating at VCC = 1.5 V core voltage.  
4. For RT ProASIC3 devices operating at VCC = 1.2 V core voltage and VCCI VCC.  
5. VPUMP should be tied to 0 V to optimize total ionizing dose performance during operation in spaceflight applications.  
6. See the "Pin Descriptions" section on page 3-1 for instructions and recommendations on tie-off and supply grouping.  
7. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.  
8. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard  
are given in Table 2-18 on page 2-20.  
2-2  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
HTR  
Lifetime  
(yrs)  
Tj (°C)  
70  
85  
100  
105  
102.7  
43.8  
20.0  
15.6  
110  
115  
120  
125  
130  
12.3  
9.7  
7.7  
6.2  
5.0  
135  
140  
145  
150  
4.0  
3.3  
2.7  
2.2  
70 85 100 105 110 115 120 125 130 135 140 145 150  
Temperature (ºC)  
Note: HTR time is the period during which you would not expect a verify failure due to flash cell leakage.  
Figure 2-1 • High-Temperature Data Retention (HTR)  
Table 2-3 • Overshoot and Undershoot Limits  
Average VCCI–GND Overshoot or Undershoot  
Duration as a Percentage of Clock Cycle  
Maximum Overshoot/Undershoot  
VCCI and VMV  
(125ºC)  
0.72 V  
0.82 V  
0.72 V  
0.81 V  
0.69 V  
0.70 V  
N/A  
2.7 V or less  
10%  
5%  
3 V  
10%  
5%  
3.3 V  
3.6 V  
Notes:  
10%  
5%  
10%  
5%  
N/A  
1. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the  
maximum overshoot/undershoot has to be reduced by 0.15 V.  
2. This table does not provide PCI overshoot/undershoot limits.  
Revision 5  
2-3  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset  
Sophisticated power-up management circuitry is designed into every ProASIC®3 device. These circuits  
ensure easy transition from the powered-off state to the powered-up state of the device. The many  
different supplies can power up in any sequence with minimized current spikes or surges. In addition, the  
I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-2  
on page 2-5 and Figure 2-3 on page 2-6.  
There are five regions to consider during power-up.  
RT ProASIC3 I/Os are activated only if ALL of the following three conditions are met:  
1. VCC and VCCI are above the minimum specified trip points (Figure 2-2 on page 2-5 and  
Figure 2-3 on page 2-6).  
2. VCCI > VCC – 0.75 V (typical)  
3. Chip is in the operating mode.  
VCCI Trip Point:  
Ramping up: 0.6 V < trip_point_up < 1.2 V  
Ramping down: 0.5 V < trip_point_down < 1.1 V  
VCC Trip Point:  
Ramping up: 0.6 V < trip_point_up < 1.1 V  
Ramping down: 0.5 V < trip_point_down < 1 V  
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically  
built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:  
During programming, I/Os become tristated and weakly pulled up to VCCI.  
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O  
behavior.  
PLL Behavior at Brownout Condition  
Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-  
up behavior. Power ramp-up should be monotonic, at least until VCC and VCCPLX exceed brownout  
activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-2 and Figure 2-  
3 on page 2-6 for more details).  
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V  
± 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/-  
Down Behavior of Low Power Flash Devices" chapter of the Radiation-Tolerant ProASIC3 FPGA Fabric  
User’s Guide for information on clock and lock recovery.  
Internal Power-Up Activation Sequence  
1. Core  
2. Input buffers  
Output buffers, after 200 ns delay from input buffer activation.  
2-4  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
VCC = VCCI + VT  
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)  
VCC  
VCC = 1.575 V  
Region 5: I/O buffers are ON  
and power supplies are within  
specification.  
Region 4: I/O  
buffers are ON.  
I/Os are functional  
(except differential  
Region 1: I/O Buffers are OFF  
I/Os meet the entire datasheet  
and timer specifications for  
speed, VIH / VIL, VOH / VOL,  
etc.  
but slower because VCCI  
is below specification. For the  
same reason, input buffers do not  
meet VIH / VIL levels, and output  
buffers do not meet VOH / VOL levels.  
VCC = 1.425 V  
Region 2: I/O buffers are ON.  
Region 3: I/O buffers are ON.  
I/Os are functional; I/O DC  
specifications are met,  
but I/Os are slower because  
the VCC is below specification.  
I/Os are functional (except differential inputs)  
but slower because VCCI / VCC are below  
specification. For the same reason, input  
buffers do not meet VIH / VIL levels, and  
output buffers do not meet VOH / VOL levels.  
Activation trip point:  
V
= 0.85 V ± 0.25 V  
a
Deactivation trip point:  
= 0.75 V ± 0.25 V  
Region 1: I/O buffers are OFF  
V
d
VCCI  
Activation trip point:  
= 0.9 V ± 0.3 V  
Deactivation trip point:  
Min VCCI datasheet specification  
V
voltage at a selected I/O  
standard; i.e., 1.425 V or 1.7 V  
or 2.3 V or 3.0 V  
a
V
= 0.8 V ± 0.3 V  
d
Figure 2-2 • Devices Operating at 1.5 V Core Voltage – I/O State as a Function of VCCI and VCC Voltage  
Levels  
Revision 5  
2-5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
VCC = VCCI + VT  
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)  
VCC  
VCC = 1.575 V  
Region 5: I/O buffers are ON  
and power supplies are within  
specification.  
Region 4: I/O  
buffers are ON.  
I/Os are functional  
Region 1: I/O Buffers are OFF  
I/Os meet the entire datasheet  
and timer specifications for  
speed, VIH / VIL , VOH / VOL , etc.  
(except differential inputs)  
but slower because VCCI is  
below specification. For the  
same reason, input buffers do not  
meet VIH / VIL levels, and output  
buffers do not meet VOH / VOL levels.  
VCC = 1.14 V  
Region 2: I/O buffers are ON.  
Region 3: I/O buffers are ON.  
I/Os are functional; I/O DC  
specifications are met,  
but I/Os are slower because  
the VCC is below specification.  
I/Os are functional (except differential inputs)  
but slower because VCCI/VCC are below  
specification. For the same reason, input  
buffers do not meet VIH/VIL levels, and  
output buffers do not meet VOH/VOL levels.  
Activation trip point:  
V
= 0.85 V ± 0.2 V  
a
Deactivation trip point:  
Region 1: I/O buffers are OFF  
V
= 0.75 V ± 0.2 V  
d
VCCI  
Activation trip point:  
= 0.9 V ± 0.15 V  
Deactivation trip point:  
Min VCCI datasheet specification  
voltage at a selected I/O  
standard; i.e., 1.14 V,1.425 V, 1.7 V,  
2.3 V, or 3.0 V  
V
a
V
= 0.8 V ± 0.15 V  
d
Figure 2-3 • Devices Operating at 1.2 V Core Voltage – I/O State as a Function of VCCI and VCC Voltage  
Levels  
2-6  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Thermal Characteristics  
Introduction  
The temperature variable in the Libero SoC software refers to the junction temperature, not the ambient  
temperature. This is an important distinction because dynamic and static power consumption cause the  
chip junction temperature to be higher than the ambient temperature.  
EQ 1 can be used to calculate junction temperature.  
TJ = Junction Temperature = ΔT + TA  
EQ 1  
where:  
TA = Ambient Temperature  
ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θja * P  
θja = Junction-to-ambient of the package. θja numbers are located in Table 2-4.  
P = Power dissipation  
Package Thermal Characteristics  
The device junction-to-case thermal resistivity is θjc and the junction-to-ambient air thermal resistivity is  
θja. The thermal characteristics for θja are shown for two air flow rates. The recommended maximum  
junction temperature is 125°C. EQ 2 shows a sample calculation of the recommended maximum power  
dissipation allowed for a 484-pin CCGA package with the junction at 125°C and with the case  
temperature maintained at 70°C.  
Max. junction temp. (°C) Max. case temp. (°C)  
Maximum Power Allowed = ---------------------------------------------------------------------------------------------------------------------------------  
θjc(°C/W)  
EQ 2  
Table 2-4 • Package Thermal Resistivities  
θja  
Pin  
Package Type  
Device  
Count θjb  
θjc Still Air 200 ft./min. 500 ft./min. Units  
Ceramic Column Grid Array (CCGA) RT3PE600L  
484  
TBD TBD  
TBD  
TBD  
11.9  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
C/W  
C/W  
C/W  
RT3PE3000L 484  
RT3PE3000L 896  
TBD TBD  
3.5 2.8  
Temperature and Voltage Derating Factors  
Table 2-5 • Temperature and Voltage Derating Factors for Timing Delays  
(normalized to TJ = 125°C, VCC = 1.14 V)  
Junction Temperature  
Array Voltage VCC (V)  
–55°C  
0.86  
0.82  
0.79  
0.77  
0.74  
0.71  
0.70  
0.66  
0.63  
–40°C  
0.87  
0.83  
0.80  
0.77  
0.75  
0.72  
0.70  
0.67  
0.64  
0°C  
0.90  
0.86  
0.83  
0.80  
0.77  
0.74  
0.73  
0.69  
0.67  
25°C  
0.92  
0.88  
0.84  
0.82  
0.79  
0.76  
0.75  
0.71  
0.68  
70°C  
85°C  
0.97  
0.93  
0.89  
0.87  
0.84  
0.80  
0.79  
0.75  
0.72  
125°C  
1.14  
1.2  
0.96  
0.92  
0.88  
0.86  
0.83  
0.79  
0.78  
0.74  
0.71  
1.00  
0.96  
0.92  
0.90  
0.86  
0.83  
0.82  
0.77  
0.74  
1.26  
1.3  
1.35  
1.4  
1.425  
1.5  
1.575  
Revision 5  
2-7  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Calculating Power Dissipation  
Quiescent Supply Current  
Table 2-6 • Power Supply State per Mode  
Power Supply Configurations1  
Modes/Power Supplies  
Flash*Freeze3  
Sleep  
VCC  
On  
VCCPLL  
On  
VCCI  
On  
VJTAG  
On  
VPUMP2  
On/off/floating  
Off  
Off  
Off  
On  
Off  
Shutdown  
Off  
Off  
Off  
Off  
Off  
Static and Active3  
On  
On  
On  
On  
On/off/floating  
Notes:  
1. Off: Power Supply level = 0 V.  
2. VPUMP should be tied to 0 V to optimize total ionizing dose performance during operation in spaceflight applications.  
3. Even though the power supply configuration in Flash*Freeze and Static and Active mode is the same, the device’s  
clocks and inputs are shut off in Flash*Freeze mode.  
Table 2-7 • Quiescent Supply Current (IDD) Characteristics, Flash*Freeze Mode*  
Core Voltage  
1.2 V  
RT3PE600L  
RT3PE3000L  
Units  
mA  
mA  
mA  
mA  
mA  
mA  
Nominal (25°C)  
0.55  
0.83  
9
2.75  
4.2  
17  
1.5 V  
Typical maximum (25°C)  
Military maximum (125°C)  
1.2 V  
1.5 V  
12  
20  
1.2 V  
65  
165  
185  
1.5 V  
85  
Note: *IDD includes VCC, VPUMP, VCCI, VJTAG, and VCCPLL currents. Under Flash*Freeze conditions, VCCI, VPUMP.  
and VCCPLL currents are negligible. Values do not include I/O static contribution (PDC6 and PDC7).  
Table 2-8 • Quiescent Supply Current (IDD) Characteristics, Sleep Mode (VCC = 0 V)*  
Core Voltage  
RT3PE600L  
RT3PE3000L  
Units  
VCCI / VJTAG = 1.2 V (per bank)  
Typical (25°C)  
1.2 V  
1.7  
1.7  
µA  
VCCI / VJTAG = 1.5 V (per bank)  
Typical (25°C)  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
1.8  
1.9  
2.2  
2.5  
1.8  
1.9  
2.2  
2.5  
µA  
µA  
µA  
µA  
VCCI / VJTAG = 1.8 V (per bank)  
Typical (25°C)  
VCCI / VJTAG = 2.5 V (per bank)  
Typical (25°C)  
VCCI / VJTAG = 3.3 V (per bank)  
Typical (25°C)  
Note: IDD = N  
× ICCI. Values do not include I/O static contribution (PDC6 and PDC7), which is shown in Table 2-15  
BANKS  
on page 2-13.  
2-8  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Table 2-9 • Quiescent Supply Current (IDD) Characteristics Shutdown Mode  
Core Voltage  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
RT3PE600L  
RT3PE3000L  
Units  
µA  
Nominal (25°C)  
Military (125ºC)  
0
0
µA  
Table 2-10 • Quiescent Supply Current (IDD), Static Mode and Active Mode1  
Core Voltage  
RT3PE600L  
RT3PE3000L  
Units  
ICCA Current2  
Nominal (25°C)  
1.2 V  
1.5 V  
1.2 V  
1.5 V  
1.2 V  
1.5 V  
0.55  
0.83  
9
2.75  
4.2  
17  
mA  
mA  
mA  
mA  
mA  
mA  
Typical maximum (25°C)  
Military maximum (125°C)  
ICCI or IJTAG Current3  
12  
20  
65  
165  
185  
85  
VCCI / VJTAG = 1.2 V (per bank)  
Typical (25°C)  
1.2 V  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
µA  
µA  
µA  
µA  
µA  
VCCI / VJTAG = 1.5 V (per bank)  
Typical (25°C)  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
VCCI / VJTAG = 1.8 V (per bank)  
Typical (25°C)  
VCCI / VJTAG = 2.5 V (per bank)  
Typical (25°C)  
VCCI / VJTAG = 3.3 V (per bank)  
Typical (25°C)  
Notes:  
1. IDD = NBANKS × ICCI + ICCA. JTAG counts as one bank when powered.  
2. Includes VCC , VCCPLL, and VPUMP currents. VPUMP and VCCPLL currents are negligible.  
3. Values do not include I/O static contribution (PDC6 and PDC7).  
Revision 5  
2-9  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Power per I/O Pin  
Table 2-11 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings  
Static Power Dynamic Power PAC9  
VCCI (V) PDC6 (mW)1  
(µW/MHz)2  
Single-Ended  
3.3 V LVTTL/LVCMOS  
3.3 V LVTTL/LVCMOS – Schmitt trigger  
3.3 V LVCMOS Wide Range  
3.3 V LVCMOS – Schmitt trigger Wide Range  
2.5 V LVCMOS  
3.3  
3.3  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
1.5  
1.5  
1.2  
1.2  
1.2  
1.2  
3.3  
3.3  
3.3  
3.3  
16.34  
24.49  
16.34  
24.49  
4.71  
2.5 V LVCMOS – Schmitt trigger  
1.8 V LVCMOS  
6.13  
1.66  
1.8 V LVCMOS – Schmitt trigger  
1.5 V LVCMOS (JESD8-11)  
1.5 V LVCMOS (JESD8-11) – Schmitt trigger  
1.2 V LVCMOS3  
1.2 V LVCMOS (JESD8-11) – Schmitt trigger3  
1.2 V LVCMOS Wide Range3  
1.2 V LVCMOS Schmitt trigger Wide Range3  
3.3 V PCI  
1.78  
1.01  
0.97  
0.60  
0.53  
0.60  
0.53  
17.76  
19.10  
17.76  
19.10  
3.3 V PCI – Schmitt trigger  
3.3 V PCI-X  
3.3 V PCI-X – Schmitt trigger  
Voltage-Referenced  
3.3 V GTL  
3.3  
2.5  
3.3  
2.5  
1.5  
1.5  
2.5  
2.5  
3.3  
3.3  
2.90  
2.13  
2.81  
2.57  
0.17  
0.17  
1.38  
1.38  
3.21  
3.21  
7.14  
3.54  
2.91  
2.61  
0.79  
0.79  
3.26  
3.26  
7.97  
7.97  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Differential  
LVDS  
2.5  
3.3  
2.26  
5.71  
0.89  
1.94  
LVPECL  
Notes:  
1. PDC6 is the static power measured on VCCI for voltage referenced and differential I/O standards. Single-ended I/O  
standards do not have the PDC6 static component. Refer to the "Power Calculation Methodology" section on page 2-13  
for details on how to calculate total static and dynamic power.  
2. PAC9 is the total dynamic power measured on VCCI.  
3. Applicable to RT ProASIC3 devices operating at VCC = 1.2 V and VCCI VCC.  
2-10  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Table 2-12 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1  
Static Power  
PDC7 (mW)2  
Dynamic Power  
CLOAD (pF)  
VCCI (V)  
PAC10 (µW/MHz)3  
Single-Ended  
3.3 V LVTTL/LVCMOS  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
1.2 V LVCMOS  
1.2 V LVCMOS Wide Range  
3.3 V PCI  
5
5
3.3  
3.3  
2.5  
1.8  
1.5  
1.2  
1.2  
3.3  
3.3  
148.00  
148.00  
83.23  
54.58  
37.05  
17.94  
17.94  
5
5
5
5
5
10  
10  
204.61  
204.61  
3.3 V PCI-X  
Voltage-Referenced  
3.3 V GTL  
10  
10  
10  
10  
20  
20  
30  
30  
30  
30  
3.3  
2.5  
3.3  
2.5  
1.5  
1.5  
2.5  
2.5  
3.3  
3.3  
24.08  
13.52  
24.10  
13.54  
26.22  
27.18  
105.65  
116.48  
114.67  
131.69  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
7.08  
13.88  
16.69  
25.91  
26.02  
42.21  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Differential  
LVDS  
2.5  
3.3  
7.70  
89.58  
LVPECL  
19.42  
167.86  
Notes:  
1. Dynamic power consumption is given for standard load and software default drive strength and output slew.  
2. PDC7 is the static power measured on VCCI for voltage referenced and differential I/O standards. Single-ended I/O  
standards do not have the PDC7 static component. Refer to the "Power Calculation Methodology" section on page 2-13  
for details on how to calculate total static and dynamic power.  
3. PAC10 is the total dynamic power measured on VCCI.  
Revision 5  
2-11  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Power Consumption of Various Internal Resources  
Table 2-13 • Different Components Contributing to Dynamic Power Consumption in Devices Operating at  
1.2 V VCC  
Device-Specific Dynamic Power  
(µW/MHz)  
Parameter  
PAC1  
Definition  
RT3PE3000L  
8.34  
RT3PE600L  
3.99  
Clock contribution of a Global Rib  
PAC2  
Clock contribution of a Global Spine  
4.28  
2.22  
PAC3  
Clock contribution of a VersaTile row  
0.94  
0.94  
PAC4  
Clock contribution of a VersaTile used as a sequential module  
First contribution of a VersaTile used as a sequential module  
0.08  
0.08  
PAC5  
0.05  
0.19  
PAC6  
Second contribution of a VersaTile used as a sequential  
module  
PAC7  
Contribution of a VersaTile used as a combinatorial module  
Average contribution of a routing net  
0.11  
0.45  
PAC8  
PAC9  
Contribution of an I/O input pin (standard-dependent)  
Contribution of an I/O output pin (standard-dependent)  
Average contribution of a RAM block during a read operation  
Average contribution of a RAM block during a write operation  
Dynamic contribution for PLL  
See Table 2-11 on page 2-10.  
PAC10  
PAC11  
PAC12  
PAC13  
See Table 2-12 on page 2-11.  
25.00  
30.00  
1.74  
Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet  
calculator or the SmartPower tool in the Libero SoC software.  
Table 2-14 • Different Components Contributing to Dynamic Power Consumption in RT ProASIC3 Devices at  
1.5 V VCC  
Device-Specific Dynamic  
Power (µW/MHz)  
Parameter  
PAC1  
Definition  
Clock contribution of a Global Rib  
RT3PE3000L RT3PE600L  
13.03  
6.69  
1.46  
0.13  
6.24  
3.47  
1.46  
0.13  
PAC2  
Clock contribution of a Global Spine  
PAC3  
Clock contribution of a VersaTile row  
PAC4  
Clock contribution of a VersaTile used as a sequential module  
First contribution of a VersaTile used as a sequential module  
PAC5  
0.07  
0.29  
PAC6  
Second contribution of a VersaTile used as a sequential  
module  
PAC7  
Contribution of a VersaTile used as a combinatorial module  
Average contribution of a routing net  
0.29  
0.70  
PAC8  
PAC9  
Contribution of an I/O input pin (standard-dependent)  
Contribution of an I/O output pin (standard-dependent)  
Average contribution of a RAM block during a read operation  
Average contribution of a RAM block during a write operation  
Dynamic contribution for PLL  
See Table 2-11 on page 2-10.  
PAC10  
PAC11  
PAC12  
PAC13  
See Table 2-12 on page 2-11.  
25.00  
30.00  
2.60  
Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power  
spreadsheet calculator or the SmartPower tool in the Libero SoC software.  
2-12  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Table 2-15 • Different Components Contributing to the Static Power Consumption in RT ProASIC3 Devices  
Device-Specific Dynamic Power  
Parameter  
PDC0  
Definition  
Array static power in Sleep mode  
(µW)  
0 mW  
PDC1  
Array static power in Active mode  
See Table 2-10 on page 2-9.  
See Table 2-10 on page 2-9.  
See Table 2-7 on page 2-8.  
1.42 mW  
PDC2  
Array static power in Static (Idle) mode  
PDC3  
Array static power in Flash*Freeze mode  
Static PLL contribution at 1.2 V operating core voltage  
Static PLL contribution 1.5 V operating core voltage  
Bank quiescent power (VCCI-dependent)  
PDC4  
2.55 mW  
PDC5  
See Table 2-7 on page 2-8,  
Table 2-8 on page 2-8, Table 2-10  
on page 2-9.  
PDC6  
PDC7  
I/O input pin static power (standard-dependent)  
I/O output pin static power (standard-dependent)  
See Table 2-11 on page 2-10.  
See Table 2-12 on page 2-11.  
Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power  
spreadsheet calculator or SmartPower tool in Libero SoC.  
Power Calculation Methodology  
This section describes a simplified method to estimate power consumption of an application. For more  
accurate and detailed power estimations, use the SmartPower tool in Libero SoC software.  
The power calculation methodology described below uses the following variables:  
The number of PLLs as well as the number and the frequency of each output clock generated  
The number of combinatorial and sequential cells used in the design  
The internal clock frequencies  
The number and the standard of I/O pins used in the design  
The number of RAM blocks used in the design  
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-16 on  
page 2-15.  
Enable rates of output buffers—guidelines are provided for typical applications in Table 2-17 on  
page 2-15.  
Read rate and write rate to the memory—guidelines are provided for typical applications in  
Table 2-17 on page 2-15. The calculation should be repeated for each clock domain defined in the  
design.  
Methodology  
Total Power Consumption—P  
TOTAL  
PTOTAL = PSTAT + PDYN  
PSTAT is the total static power consumption.  
DYN is the total dynamic power consumption.  
Total Static Power Consumption—P  
P
STAT  
PSTAT = (PDC0 or PDC1 or PDC2 or PDC3) + NBANKS * PDC5 + NINPUTS* PDC6 + NOUTPUTS* PDC7  
NINPUTS is the number of I/O input buffers used in the design.  
N
OUTPUTS is the number of I/O output buffers used in the design.  
BANKS is the number of I/O banks powered in the design.  
N
Revision 5  
2-13  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Total Dynamic Power Consumption—P  
DYN  
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL  
Global Clock Contribution—P  
CLOCK  
PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL* PAC4) * FCLK  
NSPINE is the number of global spines used in the user design—guidelines are provided in  
the "Spine Architecture" section of the Global Resources chapter in the RT ProASIC3  
FPGA Fabric User's Guide.  
NROW is the number of VersaTile rows used in the design—guidelines are provided in  
"Spine Architecture" section of the Global Resources chapter in the RT ProASIC3  
FPGA Fabric User's Guide.  
FCLK is the global clock signal frequency.  
N
S-CELL is the number of VersaTiles used as sequential modules in the design.  
PAC1, PAC2, PAC3, and PAC4 are device-dependent.  
Sequential Cells Contribution—P  
S-CELL  
PS-CELL = NS-CELL * (PAC5 + α1 / 2 * PAC6) * FCLK  
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a  
multi-tile sequential cell is used, it should be accounted for as 1.  
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on  
page 2-15.  
F
CLK is the global clock signal frequency.  
Combinatorial Cells Contribution—P  
C-CELL  
PC-CELL = NC-CELL* α1 / 2 * PAC7 * FCLK  
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.  
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on  
page 2-15.  
FCLK is the global clock signal frequency.  
Routing Net Contribution—P  
NET  
PNET = (NS-CELL + NC-CELL) * α1 / 2 * PAC8 * FCLK  
NS-CELL is the number of VersaTiles used as sequential modules in the design.  
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.  
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on  
page 2-15.  
F
CLK is the global clock signal frequency.  
I/O Input Buffer Contribution—P  
INPUTS  
PINPUTS = NINPUTS * α2 / 2 * PAC9 * FCLK  
NINPUTS is the number of I/O input buffers used in the design.  
α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-16 on page 2-15.  
F
CLK is the global clock signal frequency.  
I/O Output Buffer Contribution—P  
OUTPUTS  
POUTPUTS = NOUTPUTS * α2 / 2 * β1 * PAC10 * FCLK  
NOUTPUTS is the number of I/O output buffers used in the design.  
α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-16 on page 2-15.  
β1 is the I/O buffer enable rate—guidelines are provided in Table 2-17 on page 2-15.  
F
CLK is the global clock signal frequency.  
2-14  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
RAM Contribution—P  
MEMORY  
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * β2 + PAC12 * NBLOCK * FWRITE-CLOCK * β3  
NBLOCKS is the number of RAM blocks used in the design.  
F
READ-CLOCK is the memory read clock frequency.  
β2 is the RAM enable rate for read operations.  
WRITE-CLOCK is the memory write clock frequency.  
F
β3 is the RAM enable rate for write operations—guidelines are provided in Table 2-17 on  
page 2-15.  
PLL Contribution—P  
PLL  
PPLL = PDC4 + PAC13 *FCLKOUT  
FCLKOUT is the output clock frequency.1  
Guidelines  
Toggle Rate Definition  
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the  
toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are  
some examples:  
The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the  
clock frequency.  
The average toggle rate of an 8-bit counter is 25%:  
Bit 0 (LSB) = 100%  
Bit 1  
Bit 2  
= 50%  
= 25%  
Bit 7 (MSB) = 0.78125%  
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8  
Enable Rate Definition  
Output enable rate is the average percentage of time during which tristate outputs are enabled. When  
nontristate output buffers are used, the enable rate should be 100%.  
Table 2-16 • Toggle Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
Toggle rate of VersaTile outputs  
I/O buffer toggle rate  
Guideline  
10%  
α1  
α2  
10%  
Table 2-17 • Enable Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
I/O output buffer enable rate  
Guideline  
100%  
β1  
β2  
β3  
RAM enable rate for read operations  
RAM enable rate for write operations  
12.5%  
12.5%  
1. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding  
contribution (PAC13* FCLKOUT product) to the total PLL contribution.  
Revision 5  
2-15  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
User I/O Characteristics  
Timing Model  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
Combinational Cell  
Y
LVPECL  
t
= 0.78 ns  
t
= 0.67 ns  
PD  
PD  
t
= 1.59 ns  
DP  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
LVTTL Output Drive Strength = 12 mA  
High Slew Rate  
t
= 2.09 ns  
DP  
t
= 1.21 ns  
PD  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
I/O Module  
(Registered)  
Output Drive Strength = 8 mA  
High Slew Rate  
LVTTL  
t
= 1.84 ns  
PY  
t
= 2.38 ns  
DP  
LVPECL  
t
= 0.70 ns  
PD  
I/O Module  
(Non-Registered)  
D
Q
Combinational Cell  
Y
LVCMOS 1.5 V  
Output Drive Strength = 4 mA  
High Slew Rate  
t
t
= 0.33 ns  
= 0.36 ns  
ICLKQ  
ISUD  
t
= 2.84 ns  
DP  
t
= 0.65 ns  
PD  
Input LVTTL  
Clock  
I/O Module  
Register Cell  
(Registered)  
Register Cell  
Combinational Cell  
Y
t
= 1.49 ns  
PY  
D
Q
D
Q
D
t
Q
LVTTL 3.3 V Output Drive  
Strength = 12 mA  
I/O Module  
t
= 0.65 ns  
PD  
t
= 2.09 ns  
High Slew Rate  
(Non-Registered)  
DP  
t
t
= 0.76 ns  
= 0.59 ns  
CLKQ  
= 0.81 ns  
= 0.43 ns  
t
t
= 0.76 ns  
= 0.59 ns  
OCLKQ  
CLKQ  
LVDS,  
B-LVDS,  
M-LVDS  
SUD  
t
OSUD  
SUD  
Input LVTTL  
Clock  
Input LVTTL  
Clock  
t
= 2.11 ns  
PY  
t
= 1.49 ns  
t
= 1.49 ns  
PY  
PY  
Figure 2-4 • Timing Model  
Operating Conditions: –1 Speed, Military Temperature Range (TJ = 125°C), Worst-Case  
VCC = 1.14 V (example for RT3PE3000L and RT3PE600L)  
2-16  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
tPY  
tDIN  
D
Q
PAD  
DIN  
Y
CLK  
To Array  
I/O Interface  
t
t
PY = MAX(tPY(R), tPY(F))  
DIN = MAX(tDIN(R), tDIN(F))  
VIH  
Vtrip  
Vtrip  
VIL  
PAD  
VCC  
50%  
50%  
Y
GND  
tPY  
(R)  
tPY  
(F)  
VCC  
50%  
50%  
DIN  
tDIN  
(R)  
GND  
tDIN  
(F)  
Figure 2-5 • Input Buffer Timing Model and Delays (example)  
Revision 5  
2-17  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
tDOUT  
D Q  
tDP  
PAD  
DOUT  
CLK  
Std  
Load  
D
From Array  
tDP = MAX(tDP(R), tDP(F))  
tDOUT = MAX(tDOUT(R), tDOUT(F))  
I/O Interface  
tDOUT  
(R)  
tDOUT  
(F)  
VCC  
50%  
50%  
VCC  
D
0 V  
50%  
50%  
DOUT  
PAD  
0 V  
VOH  
Vtrip  
VOL  
Vtrip  
tDP  
(R)  
tDP  
(F)  
Figure 2-6 • Output Buffer Model and Delays (example)  
2-18  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
t
EOUT  
D
Q
CLK  
t
, t , t , t , t , t  
E
ZL ZH HZ LZ ZLS ZHS  
EOUT  
D
Q
PAD  
DOUT  
CLK  
D
t
= MAX(t  
(r), t (f))  
EOUT  
I/O Interface  
EOUT  
EOUT  
VCC  
D
E
VCC  
50%  
t
50%  
t
EOUT (F)  
EOUT (R)  
VCC  
50%  
50%  
50%  
ZH  
50%  
t
LZ  
EOUT  
PAD  
t
t
t
ZL  
HZ  
VCCI  
90% VCCI  
Vtrip  
Vtrip  
VOL  
10% V  
CCI  
VCC  
D
E
VCC  
50%  
50%  
50%  
t
t
EOUT (F)  
EOUT (R)  
VCC  
50%  
EOUT  
PAD  
50%  
VOH  
t
ZHS  
t
ZLS  
Vtrip  
Vtrip  
VOL  
Figure 2-7 • Tristate Output Buffer Timing Model and Delays (example)  
Revision 5  
2-19  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Overview of I/O Performance  
Summary of I/O DC Input and Output Levels – Default I/O Software  
Settings  
Table 2-18 • Summary of Maximum and Minimum DC Output Levels  
Software Default Settings  
Equiv.  
Software  
VOL  
VOH  
IOL IOH  
Default  
Drive  
Strength  
Drive Option1 Slew  
Strgth. (mA) Rate  
Max.  
V
Min.  
V
I/O Standard  
mA  
mA  
–55 TJ 100 100 < TJ 125 –55 TJ 100 100 < TJ 125 –55 TJ 125  
(°C)  
(°C)  
(°C)  
(°C)  
(°C)  
3.3 V LVTTL /  
3.3 V LVCMOS  
12 mA  
12  
12  
High  
High  
0.4  
0.4  
2.4  
2.4  
12  
12  
3.3 V LVCMOS 100 µA  
Wide Range1,2  
0.2  
0.2  
VCCI – 0.2  
1.7  
VCCI – 0.2  
1.7  
0.1  
0.1  
2.5 V LVCMOS 12 mA  
12  
12  
12  
2
High  
High  
0.7  
0.7  
12  
12  
12  
2
12  
12  
12  
2
1.8 V LVCMOS  
12 mA  
0.45  
0.45  
VCCI – 0.45 VCCI – 0.45  
1.5 V LVCMOS 12 mA  
1.2 V LVCMOS3,4 2 mA  
High 0.25 * VCCI 0.25 * VCCI 0.75 * VCCI 0.75 * VCCI  
High 0.25 * VCCI 0.25 * VCCI 0.75 * VCCI 0.75 * VCCI  
1.2 V LVCMOS 100 µA  
Wide Range1,3,4  
2
High  
0.1  
0.1  
VCCI – 0.1  
VCCI – 0.1  
0.1  
0.1  
3.3 V PCI  
Per PCI Specification  
3.3 V PCI-X  
Per PCI-X Specification  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
205  
205  
35  
33  
8
155  
15  
18  
14  
21  
205  
205  
35  
33  
8
155  
15  
18  
14  
21  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
0.4  
0.4  
0.5  
0.5  
20  
20  
35  
33  
8
20  
20  
35  
33  
8
0.6  
0.75  
0.75  
0.6  
0.4  
0.4  
0.5  
VCCI – 0.4  
VCCI – 0.4  
VCCI – 0.4  
VCCI – 0.5  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Notes:  
0.4  
15  
15  
18  
14  
21  
15  
15  
18  
14  
21  
0.54  
0.35  
0.7  
0.54  
0.44  
0.7  
VCCI – 0.62 VCCI – 0.62  
VCCI – 0.43 VCCI – 0.43  
VCCI – 1.1  
VCCI – 0.9  
VCCI – 1.1  
VCCI – 0.9  
0.5  
0.625  
1. The minimum drive strength for any 1.2 V LVCMOS or LVCMOS 3.3 V software configuration when run in wide range is  
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the  
IBIS models.  
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.  
3. Applicable to RT ProASIC3 devices operating at VCC = 1.2 V and VCCI VCC.  
4. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.  
5. Output drive strength is below JEDEC specification.  
6. Output slew rate can be extracted using the IBIS models.  
2-20  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Table 2-19 • Summary of Maximum and Minimum DC Input Levels  
Software Default Settings  
VIL  
VIH  
IIL1  
µA  
IIH2  
µA  
Min.  
Max.  
V
Min.  
V
Max.  
V
I/O Standard  
V
–55 TJ 125 (°C)  
–55 TJ 125 (°C)  
–55 TJ 125 (°C)  
3.3 V LVTTL / 3.3 V LVCMOS  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
1.2 V LVCMOS3  
1.2 V LVCMOS Wide Range3  
3.3 V PCI  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
2
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
0.8  
2
0.7  
1.7  
0.35 * VCCI  
0.35 * VCCI  
0.35 * VCCI  
0.3 * VCCI  
0.65 * VCCI  
0.65 * VCCI  
0.65 * VCCI  
0.7 * VCCI  
Per PCI Specification  
3.3 V PCI-X  
Per PCI-X Specification  
3.3 V GTL  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
VREF – 0.05  
VREF – 0.05  
VREF – 0.1  
VREF – 0.1  
VREF – 0.1  
VREF – 0.1  
VREF – 0.2  
VREF – 0.2  
VREF – 0.2  
VREF – 0.2  
VREF + 0.05  
VREF + 0.05  
VREF + 0.1  
VREF + 0.1  
VREF + 0.1  
VREF + 0.1  
VREF + 0.2  
VREF + 0.2  
VREF + 0.2  
VREF + 0.2  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input current  
is larger when operating outside recommended ranges.  
3. Applicable to RT ProASIC3 devices operating at VCC = 1.2 V core voltage and VCCI VCC.  
Revision 5  
2-21  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Summary of I/O Timing Characteristics – Default I/O Software Settings  
Table 2-20 • Summary of AC Measuring Points*  
Input/Output  
Input Reference  
Board Termination Measuring Trip  
Standard  
Supply Voltage Voltage (VREF_TYP) Voltage (VTT_REF)  
Point (Vtrip)  
3.3 V LVTTL / 3.3 V LVCMOS  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
3.3 V  
3.3 V  
2.5 V  
1.8 V  
1.5 V  
1.2 V  
1.2 V  
3.3 V  
1.4 V  
1.4 V  
1.2 V  
1.8 V LVCMOS  
0.90 V  
1.5 V LVCMOS  
0.75 V  
1.2 V LVCMOS*  
0.6V  
1.2 V LVCMOS – Wide Range*  
3.3 V PCI  
0.6 V  
0.285 * VCCI (RR)  
0.615 * VCCI (FF))  
0.285 * VCCI (RR)  
0.615 * VCCI (FF)  
VREF  
3.3 V PCI-X  
3.3 V  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
3.3 V  
2.5 V  
3.3 V  
2.5 V  
1.5 V  
1.5 V  
2.5 V  
2.5 V  
3.3 V  
3.3 V  
2.5 V  
3.3 V  
0.8 V  
0.8 V  
1.0 V  
1.0 V  
0.75 V  
0.75 V  
1.25 V  
1.25 V  
1.5 V  
1.5 V  
1.2 V  
1.2 V  
1.5 V  
1.5 V  
0.75 V  
0.75 V  
1.25 V  
1.25 V  
1.485 V  
1.485 V  
VREF  
VREF  
VREF  
VREF  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
LVDS  
VREF  
VREF  
VREF  
VREF  
VREF  
Cross point  
Cross point  
LVPECL  
Note: *Applicable to RT ProASIC3 devices operating at 1.2 V core voltage only  
Table 2-21 • I/O AC Parameter Definitions  
Parameter  
tDP  
Parameter Definition  
Data to Pad delay through the Output Buffer  
tPY  
Pad to Data delay through the Input Buffer  
tDOUT  
tEOUT  
tDIN  
Data to Output Buffer delay through the I/O interface  
Enable to Output Buffer Tristate Control delay through the I/O interface  
Input Buffer to Data delay through the I/O interface  
tHZ  
Enable to Pad delay through the Output Buffer—High to Z  
Enable to Pad delay through the Output Buffer—Z to High  
Enable to Pad delay through the Output Buffer—Low to Z  
tZH  
tLZ  
tZL  
Enable to Pad delay through the Output Buffer—Z to Low  
tZHS  
tZLS  
Enable to Pad delay through the Output Buffer with delayed enable—Z to High  
Enable to Pad delay through the Output Buffer with delayed enable—Z to Low  
2-22  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
1.2 V Core Operating Voltage  
Table 2-22 • Summary of I/O Timing Characteristics—Software Default Settings  
–1 Speed Grade, Military-Case Conditions: TJ = 125°C, Worst Case VCC = 1.14 V,  
Worst Case VCCI  
Standard  
3.3 V LVTTL /  
3.3 V LVCMOS  
12 mA  
12 mA High  
5
5
– 0.68 2.09 0.05 1.49 2.03 0.44 2.12 1.56 2.76 3.06 3.99 3.43  
– 0.68 3.01 0.05 1.86 2.69 0.44 3.01 2.22 4.03 4.42 4.89 4.09  
3.3 V LVCMOS 100 µA 12 mA High  
Wide Range2  
2.5 V LVCMOS 12 mA  
1.8 V LVCMOS 12 mA  
1.5 V LVCMOS 12 mA  
12 mA High  
12 mA High  
12 mA High  
2 mA High  
2 mA High  
5
5
5
5
5
– 0.68 2.12 0.05 1.73 2.17 0.44 2.15 1.74 2.84 2.95 4.03 3.62  
– 0.68 2.36 0.05 1.70 2.40 0.44 2.40 1.94 3.16 3.58 4.27 3.81  
– 0.68 2.71 0.05 1.86 2.61 0.44 2.76 2.24 3.34 3.69 4.63 4.12  
– 0.68 4.39 0.05 2.25 3.19 0.44 4.24 3.74 4.34 4.09 6.11 5.61  
– 0.68 4.39 0.05 2.25 3.19 0.44 4.24 3.74 4.34 4.09 6.11 5.61  
1.2 V LVCMOS  
2 mA  
1.2 V LVCMOS 100 µA  
Wide Range3  
3.3 V PCI  
Per PCI  
spec  
High 10 254 0.68 2.37 0.05 2.31 3.13 0.44 2.40 1.68 2.77 3.06 4.28 3.56  
High 10 254 0.68 2.37 0.05 2.31 3.13 0.44 2.40 1.68 2.77 3.06 4.28 3.56  
3.3 V PCI-X  
Per PCI-X  
spec  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
20 mA5 20 mA5 High 10 25 0.68 1.75 0.05 1.99  
20 mA5 20 mA5 High 10 25 0.68 1.79 0.05 1.93  
0.44 1.71 1.75  
0.44 1.82 1.79  
0.44 1.76 1.73  
0.44 1.89 1.77  
0.44 2.73 2.65  
0.44 2.59 2.28  
0.44 1.82 1.55  
0.44 1.86 1.49  
0.44 1.98 1.55  
0.44 1.77 1.41  
3.59 3.62  
3.70 3.67  
3.64 3.61  
3.77 3.64  
4.60 4.52  
4.47 4.16  
1.82 1.55  
1.86 1.49  
1.98 1.55  
1.77 1.41  
35 mA  
33 mA  
8 mA  
35 mA High 10 25 0.68 1.74 0.05 1.99  
33 mA High 10 25 0.68 1.86 0.05 1.93  
8 mA High 20 25 0.68 2.68 0.05 2.34  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
LVDS  
15 mA5 15 mA5 High 20 50 0.68 2.55 0.05 2.34  
15 mA  
18 mA  
14 mA  
21 mA  
24 mA  
24 mA  
15 mA High 30 25 0.68 1.80 0.05 1.78  
18 mA High 30 50 0.68 1.83 0.05 1.78  
14 mA High 30 25 0.68 1.95 0.05 1.71  
21 mA High 30 50 0.68 1.75 0.05 1.71  
High  
High  
– 0.68 1.59 0.05 2.11  
– 0.68 1.51 0.05 1.84  
LVPECL  
Notes:  
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is  
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the  
IBIS models.  
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.  
3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.  
4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-13 on page 2-48 for  
connectivity. This resistor is not required during normal operation.  
5. Output drive strength is below JEDEC specification.  
6. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-23  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
1.5 V Core Voltage  
Table 2-23 • Summary of I/O Timing Characteristics—Software Default Settings  
–1 Speed Grade, Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst Case VCCI  
Standard  
3.3 V LVTTL / 12 mA  
3.3 V LVCMOS  
12 mA High  
5
5
0.52 1.97 0.03 1.23 1.78 0.34 1.99 1.46 2.63 2.89 3.23 2.71  
0.52 2.89 0.03 1.61 2.44 0.34 2.88 2.12 3.89 4.25 4.12 3.36  
3.3 V LVCMOS 100 µA 12 mA High  
Wide Range2  
2.5 V LVCMOS 12 mA  
1.8 V LVCMOS 12 mA  
1.5 V LVCMOS 12 mA  
12 mA High  
12 mA High  
12 mA High  
5
5
5
0.52 2.01 0.03 1.49 1.93 0.34 2.02 1.65 2.71 2.78 3.27 2.89  
0.52 2.24 0.03 1.44 2.14 0.34 2.26 1.84 3.02 3.41 3.51 3.08  
0.52 2.60 0.03 1.60 2.35 0.34 2.62 2.14 3.21 3.52 3.87 3.39  
3.3 V PCI  
Per PCI  
spec  
High 10 253 0.52 2.25 0.03 2.03 2.88 0.34 2.27 1.58 2.64 2.89 3.52 2.83  
3.3 V PCI-X  
Per PCI-X  
spec  
High 10 253 0.52 2.25 0.03 2.03 2.88 0.34 2.27 1.58 2.64 2.89 3.52 2.83  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
20 mA4 20 mA4 High 10 25 0.52 1.68 0.03 1.79  
20 mA4 20 mA4 High 10 25 0.52 1.72 0.03 1.73  
0.34 1.58 1.68  
0.34 1.69 1.72  
0.34 1.63 1.66  
0.34 1.76 1.69  
0.34 2.59 2.55  
0.34 2.46 2.19  
0.34 1.69 1.46  
0.34 1.73 1.39  
0.34 1.84 1.45  
0.34 1.64 1.31  
2.83 2.92  
2.93 2.97  
2.88 2.90  
3.00 2.94  
3.84 3.79  
3.71 3.43  
1.69 1.46  
1.73 1.39  
1.84 1.45  
1.64 1.31  
35 mA  
33 mA  
8 mA  
35 mA High 10 25 0.52 1.66 0.03 1.79  
33 mA High 10 25 0.52 1.75 0.03 1.73  
8 mA High 20 25 0.52 2.57 0.03 2.14  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
LVDS  
15 mA4 15 mA4 High 20 50 0.52 2.44 0.03 2.14  
15 mA  
18 mA  
14 mA  
21 mA  
24 mA  
24 mA  
15 mA High 30 25 0.52 1.68 0.03 1.58  
18 mA High 30 50 0.52 1.72 0.03 1.58  
14 mA High 30 25 0.52 1.83 0.03 1.51  
21 mA High 30 50 0.52 1.63 0.03 1.51  
High  
High  
0.52 1.75 0.04 2.18  
0.52 1.65 0.04 1.89  
LVPECL  
Notes:  
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.  
3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-13 on page 2-48 for  
connectivity. This resistor is not required during normal operation.  
4. Output drive strength is below JEDEC specification.  
5. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
2-24  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Detailed I/O DC Characteristics  
Table 2-24 • Input Capacitance  
Symbol  
CIN  
Definition  
Input capacitance  
Input capacitance on the clock pin  
Conditions  
Min. Max. Units  
VIN = 0, f = 1.0 MHz  
VIN = 0, f = 1.0 MHz  
8
8
pF  
pF  
CINCLK  
Table 2-25 • I/O Output Buffer Maximum Resistances1  
RPULL-DOWN  
RPULL-UP  
Standard  
Drive Strength  
(Ω) 2  
(Ω) 3  
3.3 V LVTTL / 3.3 V LVCMOS  
4 mA  
8 mA  
100  
50  
25  
17  
11  
300  
150  
75  
12 mA  
16 mA  
50  
24 mA  
33  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
100 µA  
4 mA  
Same as regular 3.3 V LVCMOS  
100  
50  
200  
100  
50  
8 mA  
12 mA  
25  
16 mA  
20  
40  
24 mA  
11  
22  
1.8 V LVCMOS  
2 mA  
200  
100  
50  
225  
112  
56  
4 mA  
6 mA  
8 mA  
50  
56  
12 mA  
20  
22  
16 mA  
20  
22  
1.5 V LVCMOS  
2 mA  
200  
100  
67  
224  
112  
75  
4 mA  
6 mA  
8 mA  
33  
37  
12 mA  
33  
37  
1.2 V LVCMOS4  
1.2 V LVCMOS Wide Range4  
3.3 V PCI/PCI-X  
3.3 V GTL  
2 mA  
158  
158  
25  
158  
158  
75  
100 µA  
Per PCI/PCI-X specification  
20 mA5  
20 mA5  
35 mA  
11  
2.5 V GTL  
14  
3.3 V GTL+  
12  
Notes:  
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend  
on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer  
resistances, use the corresponding IBIS models posted at http://www.microsemi.com/soc/download/ibis/default.aspx.  
2.  
3.  
R
R
= (VOLspec) / IOLspec  
(PULL-DOWN-MAX)  
= (VCCImax – VOHspec) / IOHspec  
(PULL-UP-MAX)  
4. Applicable to RT ProASIC3 devices operating at 1.2 V core voltage only.  
5. Output drive strength is below JEDEC specification.  
Revision 5  
2-25  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Table 2-25 • I/O Output Buffer Maximum Resistances1 (continued)  
RPULL-DOWN  
RPULL-UP  
Standard  
2.5 V GTL+  
HSTL (I)  
Drive Strength  
33 mA  
(Ω) 2  
15  
(Ω) 3  
8 mA  
15 mA5  
50  
50  
25  
31  
15  
69  
32  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Notes:  
25  
15 mA  
27  
18 mA  
13  
14 mA  
44  
21 mA  
18  
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend  
on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer  
resistances, use the corresponding IBIS models posted at http://www.microsemi.com/soc/download/ibis/default.aspx.  
2.  
3.  
R
R
= (VOLspec) / IOLspec  
(PULL-DOWN-MAX)  
= (VCCImax – VOHspec) / IOHspec  
(PULL-UP-MAX)  
4. Applicable to RT ProASIC3 devices operating at 1.2 V core voltage only.  
5. Output drive strength is below JEDEC specification.  
Table 2-26 • I/O Weak Pull-Up/Pull-Down Resistances  
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values  
1
2
R(WEAK PULL-UP)  
R(WEAK PULL-DOWN)  
(Ω)  
(Ω)  
VCCI  
Min.  
Max.  
95 k  
Min.  
13 k  
13 k  
17 k  
23 k  
17 k  
25 k  
17 k  
Max.  
45 k  
3.3 V  
10 k  
10 k  
11 k  
19 k  
20 k  
30 k  
20 k  
3.3 V (wide range I/Os)  
95 k  
45 k  
2.5 V  
100 k  
85 k  
74 k  
1.8 V  
110 k  
156 k  
300 k  
300 k  
1.5 V  
120 k  
450 k  
450 k  
1.2 V  
1.2 V (wide range I/Os)  
Notes:  
1.  
2.  
R
R
= (VCCImax – VOHspec) / I  
(WEAK PULL-UP-MAX)  
(WEAK PULL-UP-MIN)  
= VOLspec / I  
(WEAK PULL-DOWN-MAX)  
(WEAK PULL-DOWN-MIN)  
2-26  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Table 2-27 • I/O Short Currents IOSH/IOSL  
Drive Strength  
4 mA  
IOSH (mA)1  
IOSL (mA)1  
3.3 V LVTTL / 3.3 V LVCMOS  
25  
51  
27  
54  
8 mA  
12 mA  
16 mA  
24mA  
100 µA  
4 mA  
103  
132  
268  
109  
127  
181  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
Same as regular 3.3 V LVCMOS  
16  
32  
18  
37  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
65  
74  
83  
87  
169  
9
124  
11  
1.8 V LVCMOS  
4 mA  
17  
22  
6 mA  
35  
44  
8 mA  
45  
51  
12 mA  
16 mA  
2 mA  
91  
74  
91  
74  
1.5 V LVCMOS  
13  
16  
4 mA  
25  
33  
6 mA  
32  
39  
8 mA  
66  
55  
12 mA  
2 mA  
66  
55  
1.2 V LVCMOS  
TBD  
TBD  
TBD  
TBD  
1. V LVCMOS Wide Range  
3.3 V PCI/PCIX  
100 µA  
Per PCI/PCI-X  
Specification  
Per PCI Curves  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
20 mA2  
20 mA2  
35 mA  
33 mA  
8 mA  
268  
169  
268  
169  
32  
181  
124  
181  
124  
39  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Notes:  
15 mA  
15 mA  
18 mA2  
14 mA  
21 mA  
66  
55  
83  
87  
169  
51  
124  
54  
103  
109  
1. T = 100°C  
J
2. Output drive strength is below JEDEC specification.  
Revision 5  
2-27  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Table 2-28 • Schmitt Trigger Input Hysteresis, Hysteresis Voltage Value (typical) for Schmitt Mode Input  
Buffers Applicable  
Input Buffer Configuration  
Hysteresis Value (typical)  
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)  
2.5 V LVCMOS (Schmitt trigger mode)  
1.8 V LVCMOS (Schmitt trigger mode)  
1.5 V LVCMOS (Schmitt trigger mode)  
1.2 V LVCMOS (Schmitt trigger mode)  
240 mV  
140 mV  
80 mV  
60 mV  
40 mV  
The length of time an I/O can withstand IOSH OSL  
/I  
events depends on the junction temperature. The  
reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of  
analysis.  
For example, at 110°C, the short current condition would have to be sustained for more than three  
months to cause a reliability concern. The I/O design does not contain any short circuit protection, but  
such protection would only be needed in extremely prolonged stress conditions.  
Table 2-29 • Duration of Short Circuit Event before Failure  
Temperature  
–55ºC  
–40°C  
0°C  
Time before Failure  
> 20 years  
> 20 years  
> 20 years  
> 20 years  
5 years  
25°C  
70°C  
85°C  
2 years  
100°C  
110°C  
125°C  
6 months  
3 months  
1 month  
Table 2-30 • I/O Input Rise Time, Fall Time, and Related I/O Reliability  
Input Buffer  
Input Rise/Fall Time (min.)  
No requirement  
Input Rise/Fall Time (max.)  
Reliability  
LVTTL/LVCMOS  
10 ns *  
10 ns *  
20 years (110°C)  
10 years (100°C)  
LVDS/B-LVDS/  
No requirement  
M-LVDS/LVPECL  
Note: *The maximum input rise/fall time is related to the noise induced in the input buffer trace. If the noise is low, the rise  
time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more  
susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization  
of the system to ensure that there is no excessive noise coupling into input signals.  
2-28  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Single-Ended I/O Characteristics  
3.3 V LVTTL / 3.3 V LVCMOS  
Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V  
applications. It uses an LVTTL input buffer and push-pull output buffer.  
Table 2-31 • Minimum and Maximum DC Output Levels  
3.3 V LVTTL / 3.3 V LVCMOS  
VOL  
VOH  
IOL  
mA  
IOH  
mA  
IOSH  
IOSL  
Drive  
Strgth.  
Max.  
V
Min.  
V
Max.  
mA  
Max.  
mA  
–55 TJ 100 (ºC) 100 <TJ 125 (ºC) –55 TJ 100 (ºC) 100 <TJ 125 (ºC) –55 TJ 125 (ºC) –55 TJ 100 (ºC)  
4 mA  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
4
4
25  
51  
27  
54  
8 mA  
8
8
12 mA  
16 mA  
24 mA  
12  
16  
24  
12  
16  
24  
103  
132  
268  
109  
127  
181  
Note: Software default selection highlighted in gray.  
Table 2-32 • Minimum and Maximum DC Input Levels  
3.3 V LVTTL / 3.3 V LCMOS  
VIL  
VIH  
IIL1  
µA  
IIH2  
µA  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
–55 TJ 125 (ºC)  
–55 TJ 125 (ºC)  
3.6  
–55 TJ 125 (ºC)  
–0.3  
0.8  
2
5
5
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.  
R to VCCI for tLZ / tZL / tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ / tZH / tZHS  
Test Point  
5 pF  
Enable Path  
5 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-8 • AC Loading  
Table 2-33 • 3.3 V LVTTL/LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (Typ) (V)  
C
LOAD (pF)  
0
3.3  
1.4  
5
Note: *Measuring point = V  
See Table 2-20 on page 2-22 for a complete table of trip points.  
trip.  
Revision 5  
2-29  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-34 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.80 6.04 0.05 1.75 2.38 0.52 6.14 4.84 2.68 2.43 8.35  
7.05  
6.00  
6.34  
5.40  
5.81  
4.95  
5.70  
4.85  
5.71  
4.86  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.68 5.13 0.05 1.49 2.03 0.44 5.22 4.12 2.28 2.07 7.10  
0.80 4.93 0.05 1.75 2.38 0.52 5.02 4.14 3.02 3.05 7.22  
0.68 4.20 0.05 1.49 2.03 0.44 4.27 3.52 2.57 2.59 6.14  
0.80 4.15 0.05 1.75 2.38 0.52 4.22 3.61 3.25 3.43 6.43  
0.68 3.53 0.05 1.49 2.03 0.44 3.59 3.07 2.76 2.92 5.47  
0.80 3.93 0.05 1.75 2.38 0.52 3.99 3.49 3.29 3.54 6.20  
0.68 3.34 0.05 1.49 2.03 0.44 3.40 2.97 2.80 3.01 5.27  
0.80 3.81 0.05 1.75 2.38 0.52 3.87 3.51 3.36 3.94 6.08  
0.68 3.24 0.05 1.49 2.03 0.44 3.30 2.98 2.86 3.35 5.17  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-35 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.80 3.40 0.05 1.75 2.38 0.52 3.45 2.60 2.68 2.58 5.66  
4.81  
4.09  
4.29  
3.65  
4.04  
3.43  
3.99  
3.40  
3.93  
3.34  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.68 2.89 0.05 1.49 2.03 0.44 2.94 2.21 2.28 2.19 4.81  
0.80 2.79 0.05 1.74 2.38 0.52 2.84 2.08 3.02 3.19 5.04  
0.68 2.38 0.05 1.49 2.03 0.44 2.41 1.77 2.57 2.72 4.29  
0.80 2.45 0.05 1.75 2.38 0.52 2.49 1.83 3.25 3.59 4.70  
0.68 2.09 0.05 1.49 2.03 0.44 2.12 1.56 2.76 3.06 3.99  
0.80 2.40 0.05 1.75 2.38 0.52 2.43 1.79 3.30 3.70 4.64  
0.68 2.04 0.05 1.49 2.03 0.44 2.07 1.52 2.81 3.15 3.95  
0.80 2.42 0.05 1.75 2.38 0.52 2.46 1.72 3.37 4.10 4.66  
0.68 2.06 0.05 1.49 2.03 0.44 2.09 1.47 2.86 3.49 3.97  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Notes:  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
2-30  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
1.5 V DC Core Voltage  
Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Speed  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
Drive  
Strength  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.61 5.90 0.04 1.45 2.09 0.40 5.98 4.73 2.52 2.24 7.45  
6.19  
5.27  
5.49  
4.67  
4.96  
4.22  
4.84  
4.12  
4.86  
4.13  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.52 5.02 0.03 1.23 1.78 0.34 5.09 4.02 2.15 1.90 6.34  
0.61 4.80 0.04 1.45 2.09 0.40 4.86 4.02 2.87 2.85 6.32  
0.52 4.08 0.03 1.23 1.78 0.34 4.13 3.42 2.44 2.43 5.38  
0.61 4.02 0.04 1.45 2.09 0.40 4.06 3.49 3.09 3.23 5.53  
0.52 3.42 0.03 1.23 1.78 0.34 3.46 2.97 2.63 2.75 4.70  
0.61 3.79 0.04 1.45 2.09 0.40 3.84 3.38 3.14 3.34 5.30  
0.52 3.23 0.03 1.23 1.78 0.34 3.26 2.87 2.67 2.84 4.51  
0.61 3.67 0.04 1.45 2.09 0.40 3.72 3.39 3.20 3.74 5.18  
0.52 3.13 0.03 1.23 1.78 0.34 3.16 2.88 2.72 3.18 4.41  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.61 3.26 0.04 1.45 2.09 0.40 3.30 2.48 2.52 2.38 4.76  
3.95  
3.36  
3.43  
2.92  
3.18  
2.71  
3.14  
2.67  
3.07  
2.61  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.52 2.77 0.03 1.23 1.78 0.34 2.80 2.11 2.15 2.03 4.05  
0.61 2.66 0.04 1.45 2.09 0.40 2.68 1.97 2.87 3.00 4.15  
0.52 2.26 0.03 1.23 1.78 0.34 2.28 1.67 2.44 2.55 3.53  
0.61 2.32 0.04 1.45 2.09 0.40 2.33 1.72 3.09 3.40 3.80  
0.52 1.97 0.03 1.23 1.78 0.34 1.99 1.46 2.63 2.89 3.23  
0.61 2.26 0.04 1.45 2.09 0.40 2.28 1.67 3.15 3.51 3.74  
0.52 1.92 0.03 1.23 1.78 0.34 1.94 1.42 2.68 2.98 3.18  
0.61 2.28 0.04 1.45 2.09 0.40 2.30 1.61 3.21 3.90 3.77  
0.52 1.94 0.03 1.23 1.78 0.34 1.96 1.37 2.73 3.32 3.20  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Notes:  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-31  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
3.3 V LVCMOS Wide Range  
Table 2-38 • Minimum and Maximum DC Output Levels  
3.3 V LVCMOS Wide Range  
Equiv.  
Software  
Default  
Drive  
VOL  
VOH  
IOL  
µA  
IOH  
µA  
IOSH  
IOSL  
Drive  
Strength  
Strength  
Max.  
V
Min.  
V
Max.  
mA  
Max.  
mA  
Option1  
–55 TJ 125 (ºC) –55 TJ 125 (ºC) –55 TJ 125 (ºC)  
–55 TJ 100 (ºC)  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
2 mA  
4 mA  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
VCCI – 0.2  
VCCI – 0.2  
VCCI – 0.2  
VCCI – 0.2  
VCCI – 0.2  
VCCI – 0.2  
VCCI – 0.2  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
25  
25  
27  
27  
6 mA  
51  
54  
8 mA  
51  
54  
12 mA  
16 mA  
24 mA  
103  
132  
268  
109  
127  
181  
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-A specification.  
3. Software default selection highlighted in gray.  
Table 2-39 • Minimum and Maximum DC Input and Output Levels  
3.3 V LVCMOS Wide Range  
1
2
VIL  
VIH  
IIL  
IIH  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
µA  
µA  
–55 TJ 125  
–55 TJ 125  
–55 TJ 125  
–0.3  
0.8  
2
3.6  
5
5
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.  
Table 2-40 • 3.3 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (Typ) (V)  
CLOAD (pF)  
0
3.3  
1.4  
5
Note: *Measuring point = V  
See Table 2-20 on page 2-22 for a complete table of trip points.  
trip.  
2-32  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-41 • 3.3 V LVCMOS Wide Range Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V  
Equiv.  
Software  
Default  
Drive  
Drive  
Strength Speed  
Strength Option1 Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
4 mA  
8 mA  
Std.  
–1  
0.80 9.08 0.05 2.18 3.16 0.52 9.08 7.17 3.85 3.40 11.28 9.38 ns  
0.68 7.72 0.05 1.86 2.69 0.44 7.72 6.10 3.28 2.89 9.60 7.98 ns  
0.80 7.37 0.05 2.18 3.16 0.52 7.37 6.10 4.38 4.35 9.58 8.31 ns  
0.68 6.27 0.05 1.86 2.69 0.44 6.27 5.19 3.73 3.70 8.15 7.07 ns  
0.80 6.17 0.05 2.18 3.16 0.52 6.17 5.30 4.73 4.94 8.37 7.51 ns  
0.68 5.24 0.05 1.86 2.69 0.44 5.24 4.51 4.03 4.20 7.12 6.38 ns  
0.80 5.82 0.05 2.18 3.16 0.52 5.82 5.12 4.80 5.11 8.03 7.33 ns  
0.68 4.95 0.05 1.86 2.69 0.44 4.95 4.36 4.09 4.34 6.83 6.23 ns  
0.80 5.64 0.05 2.18 3.16 0.52 5.64 5.14 4.90 5.72 7.85 7.35 ns  
0.68 4.80 0.05 1.86 2.69 0.44 4.80 4.38 4.17 4.87 6.67 6.25 ns  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-42 • 3.3 V LVCMOS Wide Range High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V  
Equiv.  
Software  
Default  
Drive  
Drive  
Strength Speed  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
Strength Option1  
tZH tLZ tHZ tZLS tZHS Units  
0.80 5.00 0.05 2.18 3.16 0.52 5.00 3.77 3.85 3.62 7.21 5.97 ns  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
4 mA  
Std.  
–1  
0.68 4.25 0.05 1.86 2.69 0.44 4.25 3.21 3.28 3.08 6.13 5.08 ns  
0.80 4.07 0.05 2.18 3.16 0.52 4.07 2.98 4.38 4.57 6.27 5.19 ns  
0.68 3.46 0.05 1.86 2.69 0.44 3.46 2.54 3.73 3.89 5.33 4.41 ns  
0.80 3.54 0.05 2.18 3.16 0.52 3.54 2.60 4.73 5.19 5.74 4.81 ns  
0.68 3.01 0.05 1.86 2.69 0.44 3.01 2.22 4.03 4.42 4.89 4.09 ns  
0.80 3.45 0.05 2.18 3.16 0.52 3.45 2.54 4.82 5.36 5.66 4.74 ns  
0.68 2.94 0.05 1.86 2.69 0.44 2.94 2.16 4.10 4.56 4.81 4.03 ns  
0.80 3.49 0.05 2.18 3.16 0.52 3.49 2.44 4.91 5.98 5.69 4.64 ns  
0.68 2.97 0.05 1.86 2.69 0.44 2.97 2.07 4.18 5.08 4.84 3.95 ns  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. For specific junction temperature and voltage supply levels, refer to the Table 2-5 on page 2-7 for derating values.  
3. Software default selection highlighted in gray.  
Revision 5  
2-33  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
1.5 V DC Core Voltage  
Table 2-43 • 3.3 V LVCMOS Wide Range Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V  
Equiv.  
Software  
Default  
Drive  
Drive  
Strength Speed  
Strength Option1 Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
4 mA  
8 mA  
Std.  
–1  
0.61 8.94 0.04 1.89 2.86 0.40 8.92 7.06 3.69 3.20 10.39 8.53 ns  
0.52 7.61 0.03 1.61 2.43 0.34 7.59 6.00 3.14 2.72 8.84 7.25 ns  
0.61 7.23 0.04 1.89 2.86 0.40 7.21 5.99 4.22 4.15 8.68 7.45 ns  
0.52 6.15 0.03 1.61 2.43 0.34 6.14 5.09 3.59 3.53 7.39 6.34 ns  
0.61 6.03 0.04 1.89 2.86 0.40 6.01 5.18 4.57 4.74 7.47 6.65 ns  
0.52 5.13 0.03 1.61 2.43 0.34 5.11 4.41 3.89 4.03 6.36 5.66 ns  
0.61 5.68 0.04 1.89 2.86 0.0 5.66 5.01 4.64 4.91 7.13 6.47 ns  
0.52 4.83 0.03 1.61 2.43 0.34 4.82 4.26 3.95 4.18 6.06 5.51 ns  
0.61 5.50 0.04 1.89 2.86 0.40 5.48 5.03 4.74 5.52 6.95 6.49 ns  
0.52 4.68 0.03 1.61 2.43 0.34 4.66 4.28 4.03 4.70 5.91 5.52 ns  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-44 • 3.3 V LVCMOS Wide Range High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V  
Equiv.  
Software  
Default  
Drive  
Drive  
Strength Speed  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
Strength Option1  
tZH tLZ tHZ tZLS tZHS Units  
0.61 4.86 0.04 1.89 2.86 0.40 4.84 3.65 3.69 3.42 6.29 5.12 ns  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
4 mA  
Std.  
–1  
0.52 4.14 0.03 1.61 2.43 0.34 4.12 3.11 3.14 2.91 5.35 4.35 ns  
0.61 3.93 0.04 1.89 2.86 0.40 3.91 2.86 4.22 4.38 5.36 4.33 ns  
0.52 3.34 0.03 1.61 2.43 0.34 3.32 2.44 3.59 3.72 4.56 3.68 ns  
0.61 3.40 0.04 1.89 2.86 0.40 3.38 2.49 4.57 4.99 4.83 3.95 ns  
0.52 2.89 0.03 1.61 2.43 0.34 2.88 2.12 3.89 4.25 4.11 3.36 ns  
0.61 3.31 0.04 1.89 2.86 0.40 3.29 2.42 4.66 5.16 4.75 3.89 ns  
0.52 2.82 0.03 1.61 2.43 0.34 2.80 2.06 3.96 4.39 4.04 3.31 ns  
0.61 3.35 0.04 1.89 2.86 0.40 3.33 2.32 4.76 5.78 4.78 3.79 ns  
0.52 2.85 0.03 1.61 2.43 0.34 2.83 1.98 4.05 4.91 4.07 3.22 ns  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
3. Software default selection highlighted in gray.  
2-34  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
2.5 V LVCMOS  
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 2.5 V applications.  
Table 2-45 • Minimum and Maximum DC Output Levels  
2.5 V LVCMOS  
VOL  
VOH  
IOL  
mA  
IOH  
mA  
IOSH  
IOSL  
Max.  
V
Min.  
V
Max.  
mA  
Max.  
mA  
Drive Strength  
–55 TJ 125 (°C)  
–55 TJ 125 (°C)  
–55 TJ 100 (°C)  
4 mA  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
4
4
16  
32  
18  
37  
8 mA  
8
8
12 mA  
16 mA  
24 mA  
12  
16  
24  
12  
16  
24  
65  
74  
83  
87  
169  
124  
Note: Software default selection highlighted in gray.  
Table 2-46 • Minimum and Maximum DC Input Levels  
2.5 V LVCMOS  
1
2
VIL  
VIH  
IIL  
IIH  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
µA  
µA  
–55 TJ 125 (°C)  
–0.3  
–55 TJ 125 (°C)  
3.6  
–55 TJ 125 (°C)  
0.7  
1.7  
5
5
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.  
R to VCCI for tLZ / tZL / tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ / tZH / tZHS  
Test Point  
5 pF  
Enable Path  
5 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-9 • AC Loading  
Table 2-47 • 2.5 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (Typ) (V)  
C
LOAD (pF)  
0
2.5  
1.2  
5
Note: *Measuring point = V  
See Table 2-20 on page 2-22 for a complete table of trip points.  
trip.  
Revision 5  
2-35  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-48 • 2.5 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.80 6.87 0.05 2.04 2.56 0.52 6.99 5.83 2.70 2.19 9.20  
8.03  
6.83  
7.14  
6.08  
6.50  
5.53  
6.36  
5.41  
6.38  
5.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.68 5.84 0.05 1.73 2.17 0.44 5.95 4.96 2.29 1.86 7.82  
0.80 5.62 0.05 2.04 2.56 0.52 5.72 4.84 3.08 2.90 7.92  
0.68 4.78 0.05 1.73 2.17 0.44 4.86 4.20 2.62 2.47 6.74  
0.80 4.73 0.05 2.04 2.56 0.52 4.81 4.30 3.34 3.38 7.01  
0.68 4.02 0.05 1.73 2.17 0.44 4.09 3.65 2.84 2.87 5.97  
0.80 4.46 0.05 2.04 2.56 0.52 4.53 4.16 3.39 3.50 6.74  
0.68 3.79 0.05 1.73 2.17 0.44 3.86 3.54 2.89 2.98 5.73  
0.80 4.34 0.05 2.04 2.56 0.52 4.41 4.17 3.47 3.96 6.62  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Std.  
–1  
Std.  
–1  
Std.  
–1  
0.68 3.69 0.05 1.73 2.17  
0.4  
3.75 3.55 2.95 3.36 5.63  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-49 • 2.5 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.80 3.51 0.05 2.04 2.56 0.52 3.56 3.13 2.70 2.27 5.77  
5.33  
4.53  
4.61  
3.92  
4.25  
3.62  
4.19  
3.56  
4.10  
3.49  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.68 2.98 0.05 1.73 2.17 0.44 3.03 2.66 2.29 1.93 4.91  
0.80 2.87 0.05 2.04 2.56 0.52 2.92 2.40 3.08 3.01 5.12  
0.68 2.44 0.05 1.73 2.17 0.44 2.48 2.05 2.62 2.56 4.36  
0.80 2.50 0.05 2.04 2.56 0.52 2.53 2.05 3.34 3.47 4.74  
0.68 2.12 0.05 1.73 2.17 0.44 2.15 1.74 2.84 2.95 4.03  
0.80 2.43 0.05 2.04 2.56 0.52 2.47 1.98 3.39 3.59 4.67  
0.68 2.07 0.05 1.73 2.17 0.44 2.10 1.69 2.89 3.06 3.97  
0.80 2.44 0.05 2.04 2.56 0.52 2.48 1.90 3.47 4.08 4.68  
0.68 2.08 0.05 1.73 2.17 0.44 2.11 1.61 2.95 3.47 3.98  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Notes:  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
2-36  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
1.5 V DC Core Voltage  
Table 2-50 • 2.5 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Speed  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
Drive  
Strength  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.61 6.73 0.04 1.75 2.26 0.40 6.83 5.71 2.54 1.99 8.30  
7.18  
6.10  
6.29  
5.35  
5.65  
4.80  
5.51  
4.69  
5.52  
4.70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.52 5.73 0.03 1.49 1.93 0.34 5.81 4.86 2.16 1.69 7.06  
0.61 5.48 0.04 1.75 2.26 0.40 5.56 4.82 2.92 2.71 7.02  
0.52 4.66 0.03 1.49 1.93 0.34 4.73 4.10 2.48 2.30 5.98  
0.61 4.59 0.04 1.75 2.26 0.40 4.65 4.18 3.18 3.18 6.12  
0.52 3.91 0.03 1.49 1.93 0.34 3.96 3.56 2.71 2.70 5.20  
0.61 4.32 0.04 1.75 2.26 0.40 4.38 4.04 3.24 3.31 5.84  
0.52 3.68 0.03 1.49 1.93 0.34 3.72 3.44 2.75 2.81 4.97  
0.61 4.20 0.04 1.75 2.26 0.40 4.26 4.06 3.31 3.76 5.72  
0.52 3.58 0.03 1.49 1.93 0.34 3.62 3.45 2.82 3.20 4.87  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-51 • 2.5 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.61 3.37 0.04 1.75 2.26 0.40 3.41 3.01 2.54 2.08 4.87  
4.48  
3.81  
3.75  
3.19  
3.40  
2.89  
3.33  
2.84  
3.25  
2.76  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.52 2.87 0.03 1.49 1.93 0.34 2.90 2.56 2.16 1.77 4.14  
0.61 2.74 0.04 1.75 2.26 0.40 2.76 2.29 2.92 2.82 4.23  
0.52 2.33 0.03 1.49 1.93 0.34 2.35 1.95 2.48 2.40 3.60  
0.61 2.36 0.04 1.75 2.26 0.40 2.38 1.93 3.19 3.27 3.84  
0.52 2.01 0.03 1.49 1.93 0.34 2.02 1.65 2.71 2.78 3.27  
0.61 2.29 0.04 1.75 2.26 0.40 2.31 1.87 3.24 3.40 3.77  
0.52 1.95 0.03 1.49 1.93 0.34 1.96 1.59 2.75 2.89 3.21  
0.61 2.31 0.04 1.75 2.26 0.40 2.32 1.78 3.31 3.89 3.79  
0.52 1.96 0.03 1.49 1.93 0.34 1.98 1.52 2.82 3.31 3.22  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Notes:  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-37  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
1.8 V LVCMOS  
Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.  
Table 2-52 • Minimum and Maximum DC Output Levels  
1.8 V LVCMOS  
VOL  
VOH  
IOL  
IOH  
mA  
IOSH  
IOSL  
Drive  
Strength  
Max.  
V
Min.  
V
Max.  
mA  
Max  
mA3  
mA  
–55 TJ 125 (°C)  
–55 TJ 125 (°C)  
–55 TJ 100 (°C)  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
0.45  
0.45  
0.45  
0.45  
0.45  
0.45  
VCCI – 0.45  
VCCI – 0.45  
VCCI – 0.45  
VCCI – 0.45  
VCCI – 0.45  
VCCI – 0.45  
2
4
2
4
9
11  
22  
44  
51  
74  
74  
17  
35  
45  
91  
91  
6
6
8
8
12  
16  
12  
16  
Note: Software default selection highlighted in gray.  
Table 2-53 • Minimum and Maximum DC Input Levels  
1.8 V LVCMOS  
VIL  
VIH  
IIL1  
IIH2  
µA  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
µA  
–55 TJ 125 (°C)  
–55 TJ 125 (°C)  
0.65 * VCCI  
–55 TJ 125 (°C)  
–0.3  
0.35 * VCCI  
3.6  
5
5
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.  
R to VCCI for tLZ / tZL / tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ / tZH / tZHS  
Test Point  
5 pF  
Enable Path  
5 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-10 • AC Loading  
Table 2-54 • 1.8 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (Typ) (V)  
C
LOAD (pF)  
0
1.8  
0.9  
5
Note: *Measuring point = Vtrip. See Table 2-20 on page 2-22 for a complete table of trip points.  
2-38  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-55 • 1.8 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Std.  
–1  
0.80 9.16 0.05 2.00 2.82 0.52 9.32 7.69 2.77 1.20 11.53 9.89  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.68 7.79 0.05 1.70 2.40 0.44 7.93 6.54 2.36 1.02 9.81  
0.80 7.55 0.05 2.00 2.82 0.52 7.68 6.48 3.23 2.76 9.88  
0.68 6.42 0.05 1.70 2.40 0.44 6.53 5.51 2.75 2.35 8.41  
0.80 6.40 0.05 2.00 2.82 0.52 6.51 5.65 3.54 3.34 8.71  
0.68 5.44 0.05 1.70 2.40 0.44 5.54 4.80 3.01 2.84 7.41  
0.80 6.01 0.05 2.00 2.82 0.52 6.12 5.48 3.61 3.50 8.32  
8.42  
8.68  
7.38  
7.85  
6.68  
7.69  
6.54  
7.70  
6.55  
7.70  
6.55  
Std.  
–1  
Std.  
–1  
Std.  
0.68  
5.11 0.05 1.70 2.40 0.44 5.20 4.66 3.07 2.98 7.08  
Std.  
–1  
0.80 5.90 0.05 2.00 2.82 0.52 6.00 5.49 3.71 4.08 8.21  
0.68 5.02 0.05 1.70 2.40 0.44 5.11 4.67 3.16 3.47 6.98  
0.80 5.90 005 2.00 2.82 0.52 6.00 5.49 3.71 4.08 8.21  
0.68 5.02 0.05 1.70 2.40 0.44 5.11 4.67 3.16 3.47 6.98  
Std.  
–1  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-56 • 1.8 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
Std.  
–1  
0.80 4.14 0.05 2.00 2.82 0.52 4.21 4.05 2.76 1.23 6.42  
6.26  
5.32  
5.21  
4.43  
4.70  
3.99  
4.60  
3.91  
4.48  
3.81  
4.48  
3.81  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.68 3.52 0.05 1.70 2.40 0.44 3.58 3.45 2.35 1.04 5.46  
0.80 3.36 0.05 2.00 2.82 0.52 3.41 3.01 3.22 2.85 5.62  
0.68 2.86 0.05 1.70 2.40 0.44 2.90 2.56 2.74 2.42 4.78  
0.80 2.88 0.05 2.00 2.82 0.52 2.93 2.49 3.54 3.43 5.13  
0.68 2.45 0.05 1.70 2.40 0.44 2.49 2.12 3.01 2.92 4.36  
0.80 2.79 0.05 2.00 2.82 0.52 2.83 2.40 3.60 3.59 5.04  
0.68 2.37 0.05 1.70 2.40 0.44 2.41 2.04 3.06 3.05 4.29  
0.80 2.78 0.05 2.00 2.82 0.52 2.82 2.28 3.71 4.21 5.02  
0.68 2.36 0.05 1.70 2.40 0.44 2.40 1.94 3.16 3.58 4.27  
0.80 2.78 0.05 2.00 2.82 0.52 2.82 2.28 3.71 4.21 5.02  
0.68 2.36 0.05 1.70 2.40 0.44 2.40 1.94 3.16 3.58 4.27  
4 mA  
Std.  
–1  
6 mA  
Std.  
–1  
8 mA  
Std.  
–1  
12 mA  
16 mA  
Notes:  
Std.  
–1  
Std.  
–1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-39  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
1.5 V DC Core Voltage  
Table 2-57 • 1.8 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Std.  
–1  
0.61 9.02 0.04 1.69 2.52 0.40 9.17 7.57 2.61 1.01 10.63 9.04  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.52 7.68 0.03 1.44 2.14 0.34 7.80 6.44 2.22 0.86 9.04  
0.61 7.41 0.04 1.69 2.52 0.40 7.52 6.36 3.07 2.56 8.99  
0.52 6.30 0.03 1.44 2.14 0.34 6.40 5.41 2.62 2.18 7.64  
0.61 6.26 0.04 1.69 2.52 0.40 6.35 5.53 3.38 3.14 7.82  
0.52 5.33 0.03 1.44 2.14 0.34 5.40 4.71 2.88 2.67 6.65  
0.61 5.88 0.04 1.69 2.52 0.40 5.96 5.37 3.45 3.30 7.42  
0.52 5.00 0.03 1.44 2.14 0.34 5.07 4.57 2.94 2.81 6.32  
0.61 5.76 0.04 1.69 2.52 0.40 5.85 5.38 3.55 3.88 7.31  
0.52 4.90 0.03 1.44 2.14 0.34 4.97 4.57 3.02 3.30 6.22  
7.69  
7.83  
6.66  
7.00  
5.95  
6.83  
5.81  
6.84  
5.82  
6.84  
5.82  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Std.  
–1  
0.61 5.76 0.04 1.69 2.52  
040  
5.85 5.38 3.55 3.88 7.31  
0.52 4.90 0.03 1.44 2.14 0.34 4.97 4.57 3.02 3.30 6.22  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-58 • 1.8 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
Std.  
–1  
0.61 4.01 0.04 1.69 2.52 0.40 4.06 3.94 2.60 1.03 5.52  
5.40  
4.60  
4.36  
3.71  
3.84  
3.27  
3.75  
3.19  
3.63  
3.08  
3.63  
3.08  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.52 3.41 0.03 1.44 2.14 0.34 3.45 3.35 2.21 0.88 4.70  
0.61 3.22 0.04 1.69 2.52 0.40 3.26 2.89 3.07 2.65 4.72  
0.52 2.74 0.03 1.44 2.14 0.34 2.77 2.46 2.61 2.26 4.02  
0.61 2.74 0.04 1.69 2.52 0.40 2.77 2.38 3.38 3.23 4.23  
0.52 2.33 0.03 1.44 2.14 0.34 2.36 2.02 2.88 2.75 3.60  
0.52 2.65 0.04 1.69 2.52 0.40 2.68 2.28 3.45 3.40 4.14  
0.51 2.26 0.03 1.44 2.14 0.34 2.28 1.94 2.93 2.89 3.52  
0.61 2.64 0.04 1.69 2.52 0.40 2.66 2.16 3.55 4.01 4.13  
0.52 2.24 0.03 1.44 2.14 0.34 2.26 1.84 3.02 3.41 3.51  
0.61 2.64 0.04 1.69 2.52 0.40 2.66 2.16 3.55 4.01 4.13  
0.52 2.24 0.03 1.44 2.14 0.34 2.26 1.84 3.02 3.41 3.51  
4 mA  
Std.  
–1  
6 mA  
Std.  
–1  
8 mA  
Std.  
–1  
12 mA  
16 mA  
Notes:  
Std.  
–1  
Std.  
–1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
2-40  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
1.5 V LVCMOS (JESD8-11)  
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.  
Table 2-59 • Minimum and Maximum DC Output Levels  
1.5 V LVCMOS  
VOL  
VOH  
IOL  
mA  
IOH  
mA  
IOSH  
IOSL  
Drive  
Strength  
Max.  
V
Min.  
V
Max.  
mA  
Max.  
mA  
–55 TJ 125 (°C)  
–55 TJ 125 (°C)  
–55 TJ 100 (°C)  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
0.25 * VCCI  
0.25 * VCCI  
0.25 * VCCI  
0.25 * VCCI  
0.25 * VCCI  
0.75 * VCCI  
0.75 * VCCI  
0.75 * VCCI  
0.75 * VCCI  
0.75 * VCCI  
2
2
4
13  
25  
32  
66  
66  
16  
33  
39  
55  
55  
4
6
6
8
8
12  
12  
Note: Software default selection highlighted in gray.  
Table 2-60 • Minimum and Maximum DC Input Levels  
1.5 V LVCMOS  
VIL  
VIH  
IIL1  
µA  
IIH2  
µA  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
–55 TJ 125 (°C)  
–55 TJ 125 (°C)  
0.65 * VCCI 3.6  
–55 TJ 125 (°C)  
–0.3  
0.35 * VCCI  
5
5
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.  
R to VCCI for tLZ / tZL / tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ / tZH / tZHS  
Test Point  
5 pF  
Enable Path  
5 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-11 • AC Loading  
Table 2-61 • 1.5 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (Typ) (V)  
CLOAD (pF)  
0
1.5  
0.75  
5
Note: *Measuring point = V  
See Table 2-20 on page 2-22 for a complete table of trip points.  
trip.  
Revision 5  
2-41  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-62 • 1.5 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Std.  
–1  
0.80 9.53 0.05 2.19 3.06 0.52 9.69 7.88 3.38 2.67 11.90 10.09  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.68 8.10 0.05 1.86 2.61 0.44 8.25 6.71 2.87 2.27 10.12 8.58  
0.80 8.14 0.05 2.19 3.06 0.52 8.28 6.89 3.74 3.34 10.49 9.09  
Std.  
–1  
0.68 6.93 0.05 1.85 2.61 0.44 7.05 5.86 3.18 2.84 8.92  
0.80 7.64 0.05 2.19 3.06 0.52 7.78 6.70 3.82 3.52 9.98  
0.68 6.50 0.05 1.86 2.61 0.44 6.61 5.70 3.25 2.99 8.49  
0.80 7.55 0.05 2.19 3.06 0.52 7.68 6.71 3.41 4.19 9.88  
0.68 6.42 0.05 1.86 2.61 0.44 6.53 5.71 2.90 3.56 8.41  
0.80 7.55 0.05 2.19 3.06 0.52 7.68 6.71 3.41 4.19 9.89  
0.68 6.42 0.05 1.86 2.61 0.44 6.53 5.71 2.90 3.56 8.41  
7.74  
8.91  
7.58  
8.91  
7.58  
8.91  
7.58  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-63 • 1.5 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
Std.  
–1  
0.80 3.91 0.05 2.19 3.06 0.52 3.98 3.54 3.37 2.78 6.18  
5.75  
4.89  
5.11  
4.35  
4.99  
4.24  
4.84  
4.12  
4.84  
4.12  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.68 3.33 0.05 1.86 2.61 0.44 3.38 3.01 2.86 2.36 5.26  
0.80 3.34 0.05 2.19 3.06 0.52 3.39 2.90 3.73 3.45 5.60  
0.68 2.84 0.05 1.86 2.61 0.44 2.88 2.47 3.17 2.93 4.76  
0.80 3.23 0.05 2.19 3.06 0.52 3.28 2.78 3.81 3.64 5.48  
0.68 2.74 0.05 1.86 2.61 0.44 2.79 2.37 3.24 3.09 4.66  
0.80 3.19 0.05 2.19 3.06 0.52 3.24 2.63 3.93 4.33 5.45  
0.68 2.71 0.05 1.86 2.61 0.44 2.76 2.24 3.34 3.69 4.63  
0.80 3.19 0.05 2.19 3.06 0.52 3.24 2.63 3.93 4.33 5.45  
0.68 2.71 0.05 1.86 2.61 0.44 2.76 2.24 3.34 3.69 4.63  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
2-42  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
1.5 V DC Core Voltage  
Table 2-64 • 1.5 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Speed  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
Drive  
Strength  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Std.  
–1  
0.61 9.39 0.04 1.88 2.77 0.40 9.54 7.77 3.22 2.47 11.00 9.24  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.52 7.99 0.03 1.60 2.35 0.34 8.11 6.61 2.74 2.10 9.36  
0.61 8.01 0.04 1.88 2.77 0.40 8.13 6.77 3.58 3.14 9.59  
0.52 6.81 0.03 1.60 2.35 0.34 6.91 5.76 3.05 2.67 8.16  
0.61 7.51 0.04 1.88 2.77 0.40 7.62 6.59 3.66 3.32 9.09  
0.52 6.39 0.03 1.60 2.35 0.34 6.48 5.60 3.12 2.83 7.73  
0.61 7.41 0.04 1.88 2.77 0.40 7.52 6.59 3.41 3.99 8.99  
0.52 6.30 0.03 1.60 2.35 0.34 6.40 5.61 2.90 3.40 7.64  
0.61 7.41 0.04 1.88 2.77 0.40 7.52 6.59 3.41 3.99 8.99  
0.52 6.30 0.03 1.60 2.35 0.34 6.40 5.61 2.90 3.40 7.64  
7.86  
8.24  
7.01  
8.05  
6.85  
8.06  
6.85  
8.06  
6.85  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-65 • 1.5 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
Std.  
–1  
0.61 3.78 0.04 1.88 2.77 0.40 3.82 3.43 3.21 2.58 5.29  
4.89  
4.16  
4.25  
3.62  
4.13  
3.52  
3.98  
3.39  
3.98  
3.39  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.52 3.21 0.03 1.60 2.35 0.34 3.25 2.92 2.73 2.20 4.50  
0.61 3.20 0.04 1.88 2.77 0.40 3.23 2.79 3.57 3.25 4.70  
0.52 2.72 0.03 1.60 2.35 0.34 2.75 2.37 3.04 2.77 4.00  
0.61 3.09 0.04 1.88 2.77 0.40 3.12 2.67 3.65 3.44 4.59  
0.52 2.63 0.04 1.60 2.35 0.34 2.65 2.27 3.11 2.93 3.90  
0.61 3.05 0.04 1.88 2.77 0.40 3.09 2.52 3.77 4.14 4.55  
0.52 2.60 0.03 1.60 2.35 0.34 2.62 2.14 3.21 3.52 3.87  
0.61 3.05 0.04 1.88 2.77 0.40 3.09 2.52 3.77 4.14 4.55  
0.52 2.60 0.03 1.60 2.35 0.34 2.62 2.14 3.21 3.52 3.87  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-43  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
1.2 V LVCMOS (JESD8-12A)  
Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose 1.2 V  
applications. It uses a 1.2 V input buffer and a push-pull output buffer.  
Table 2-66 • Minimum and Maximum DC Output Levels  
1.2 V LVCMOS  
Applicable to I/Os Operating at 1.2 V Core Voltage  
VOL  
VOH  
IOL  
IOH  
mA  
IOSH  
IOSL  
Drive  
Strength  
Max.  
V
Min.  
V
Max.  
mA  
Max.  
mA  
mA  
–55 TJ 125 (°C)  
–55 TJ 125 (°C)  
–55 TJ 100 (°C)  
2 mA  
0.25 * VCCI  
0.75 * VCCI  
2
2
TBD  
TBD  
Note: Software default selection highlighted in gray.  
Table 2-67 • Minimum and Maximum DC Input and Output Levels  
1.2 V LVCMOS  
Applicable to I/Os Operating at 1.2 V Core Voltage1  
VIL  
VIH  
IIL2  
IIH3  
µA  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
µA  
–55 TJ 125 (°C)  
–0.3 0.35 * VCCI  
–55 TJ 125 (°C)  
0.65 * VCCI 3.6  
–55 TJ 125 (°C)  
5
5
Notes:  
1. Applicable to RT ProASIC3 devices operating at 1.2 V core voltage only.  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.  
R to VCCI for tLZ / tZL / tZLS  
R = 1 k  
R to GND for tHZ / tZH / tZHS  
Test Point  
Datapath  
Test Point  
5 pF  
Enable Path  
5 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-12 • AC Loading  
Table 2-68 • 1.2 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (Typ) (V)  
CLOAD (pF)  
0
1.2  
0.6  
5
Note: *Measuring point = V  
See Table 2-20 on page 2-22 for a complete table of trip points.  
trip.  
2-44  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-69 • 1.2 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V  
Drive  
Speed  
Strength  
Grade tDOUT tDP  
tDIN tPY tPYS tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS tZHS Units  
2 mA  
Std.  
–1  
0.80 12.61 0.05 2.65 3.75 0.52 12.10 9.50 5.11 4.66 14.31 11.71  
0.68 10.72 0.05 2.25 3.19 0.44 10.30 8.08 4.35 3.97 12.17 9.96  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-70 • 1.2 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V  
Drive  
Speed  
Strength  
Grade tDOUT tDP  
tDIN tPY tPYS tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
Std.  
–1  
0.80  
0.68  
5.16 0.05 2.65 3.75 0.52  
4.39 0.05 2.25 3.19 0.44  
4.98 4.39 5.10 4.81 7.19 6.60  
4.24 3.74 4.34 4.09 6.11 5.61  
ns  
ns  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-45  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
1.2 V LVCMOS Wide Range  
Table 2-71 • Minimum and Maximum DC Output Levels  
1.2 V LVCMOS Wide Range  
Applicable to I/Os Operating at 1.2 V Core Voltage  
VOL  
VOH  
IOL  
IOH  
µA  
IOSH  
IOSL  
Equiv. Software  
Default Drive  
Drive  
Strength  
Max.  
V
Min.  
V
Max.  
mA  
Max.  
mA  
Strength Option1  
µA  
–55 TJ 125 (°C)  
–55 TJ 125 (°C)  
100 100  
–55 TJ 100 (°C)  
TBD TBD  
100 µA  
2 mA  
0.25 * VCCI  
0.75 * VCCI  
Notes:  
1. The minimum drive strength for any LVCMOS 1.2 V software configuration when run in wide range is ±100 µA. Drive  
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.  
2. Software default selection highlighted in gray.  
Table 2-72 • Minimum and Maximum DC Input Levels  
1.2 V LVCMOS Wide Range  
Applicable to I/Os Operating at 1.2 V Core Voltage1  
VIL  
VIH  
IIL2  
µA  
IIH3  
µA  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
–55 TJ 125 (°C)  
–0.3 0.3 * VCCI  
–55 TJ 125 (°C)  
0.7 * VCCI 3.6  
–55 TJ 125 (°C)  
5
5
Notes:  
1. Applicable to RT ProASIC3 devices operating at 1.2 V core voltage only.  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.  
Table 2-73 • 1.2 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (Typ) (V)  
CLOAD (pF)  
0
1.2  
0.6  
5
Note: *Measuring point = V  
See Table 2-20 on page 2-22 for a complete table of trip points.  
trip.  
2-46  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-74 • 1.2 V LVCMOS Wide Range Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V  
Drive  
Strength  
Speed  
Grade tDOUT tDP  
tDIN tPY tPYS tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS tZHS Units  
2 mA  
Std.  
–1  
0.80 12.61 0.05 2.65 3.75 0.52 12.10 9.50 5.11 4.66 14.31 11.71  
0.68 10.72 0.05 2.25 3.19 0.44 10.30 8.08 4.35 3.97 12.17 9.96  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-75 • 1.2 V LVCMOS Wide Range High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V  
Drive  
Speed  
Strength  
Grade tDOUT tDP  
tDIN tPY tPYS tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
Std.  
–1  
0.80  
0.68  
5.16 0.05 2.65 3.75 0.52  
4.39 0.05 2.25 3.19 0.44  
4.98 4.39 5.10 4.81 7.19 6.60  
4.24 3.74 4.34 4.09 6.11 5.61  
ns  
ns  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-47  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
3.3 V PCI, 3.3 V PCI-X  
Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus  
applications.  
Table 2-76 • Minimum and Maximum DC Input and Output Levels  
3.3 V PCI/PCI-X  
VIL  
VIH  
VOL  
VOH IOL IOH  
IOSH  
IOSL  
IIL1 IIH2  
µA4 µA4  
Min.  
V
Max.  
V
Min.  
V
Max.  
Max.  
V
Min.  
Max.  
mA3  
Max.  
mA3  
Drive Strength  
Per PCI specification  
Notes:  
V
V
mA mA  
Per PCI curves  
5
5
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.Currents are measured at 100°C junction temperature  
and maximum voltage.  
3. Currents are measured at 125°C junction temperature.  
AC loadings are defined per the PCI/PCI-X specifications for the database; Microsemi loadings for  
enable path characterization are described in Figure 2-13.  
R to VCCI for tLZ / tZL / tZLS  
R to GND for tHZ / tZH / tZHS  
R to VCCI for tDP (F)  
R to GND for tDP (R)  
R = 25  
Test Point  
Datapath  
R = 1 k  
Test Point  
Enable Path  
10 pF  
10 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-13 • AC Loading  
AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is  
described in Table 2-77.  
Table 2-77 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (Typ) (V)  
C
LOAD (pF)  
0
3.3  
0.285 * VCCI for tDP(R)  
0.615 * VCCI for tDP(F)  
10  
Note: Measuring point = V  
See Table 2-20 on page 2-22 for a complete table of trip points.  
trip.  
2-48  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-78 • 3.3 V PCI/PCI-X  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Speed Grade tDOUT tDP  
tDIN  
tPY  
tPYS tEOUT  
3.68 0.52  
3.13 0.44  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
Std.  
–1  
0.80 2.78  
0.68 2.37  
0.05 2.71  
0.05 2.31  
2.83 1.97  
2.40 1.68  
3.26 3.59  
2.77 3.06  
5.03 4.18  
4.28 3.56  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
1.5 V DC Core Voltage  
Table 2-79 • 3.3 V PCI/PCI-X  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Speed Grade tDOUT tDP  
tDIN  
tPY  
tPYS tEOUT  
3.38 0.40  
2.88 0.34  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
Std.  
–1  
0.61 2.65  
0.52 2.25  
0.04 2.39  
0.03 2.03  
2.67 1.86  
2.27 1.58  
3.10 3.40  
2.64 2.89  
4.14 3.33  
3.52 2.83  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-49  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Voltage-Referenced I/O Characteristics  
3.3 V GTL  
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input  
buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.  
Table 2-80 • Minimum and Maximum DC Output Levels  
3.3 V GTL  
VOL  
VOH  
IOL  
mA  
IOH  
mA  
IOSH  
IOSL  
Drive  
Strgth.  
Max.  
V
Min.  
V
Max.  
mA  
Max.  
mA  
–55 TJ 100 (°C) 100 < TJ 125 (°C)55 TJ 100 (°C) 100 < TJ 125 (°C) –55 TJ 125 (°C) –55 TJ 100 (°C)  
20 mA*  
0.4  
0.5  
20  
20  
268  
181  
Note: *Output drive strength is below JEDEC specification.  
Table 2-81 • Minimum and Maximum DC Input Levels  
3.3 V GTL  
VIL  
VIH  
IIL1  
µA5  
IIH2  
µA5  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
–55 TJ 125 (°C)  
VREF – 0.05  
–55 TJ 125 (°C)  
VREF + 0.05 3.6  
–55 TJ 125 (°C)  
–0.3  
5
5
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.  
VTT  
GTL  
25  
Test Point  
10 pF  
Figure 2-14 • AC Loading  
Table 2-82 • 3.3 V GTL AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.05  
VREF + 0.05  
0.8  
0.8  
1.2  
10  
Note: *Measuring point = V . See Table 2-20 on page 2-22 for a complete table of trip points.  
trip  
2-50  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
Table 2-83 • 3.3 V GTL  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V,  
VREF = 0.8 V  
Speed  
Grade  
tDOUT  
0.80  
tDP  
2.05  
1.75  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.22  
3.59  
tZHS  
4.26  
3.62  
Units  
ns  
Std.  
–1  
2.34  
1.99  
2.01  
1.71  
2.05  
1.75  
0.68  
0.44  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-84 • 3.3 V GTL  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 0.8 V  
Speed  
Grade  
tDOUT  
0.61  
tDP  
1.97  
1.68  
tDIN  
0.04  
0.03  
tPY  
2.11  
1.79  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
3.32  
2.83  
tZHS  
3.43  
2.92  
Units  
ns  
Std.  
–1  
1.86  
1.58  
1.97  
1.68  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-51  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
2.5 V GTL  
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier  
input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.  
Table 2-85 • Minimum and Maximum DC Output Levels  
2.5 V GTL  
VOL  
VOH  
IOL  
mA  
IOH  
mA  
IOSH  
IOSL  
Drive  
Strgth.  
Max.  
V
Min.  
V
Max.  
mA  
Max.  
mA  
–55 TJ 100 (°C) 100 < TJ 125 (°C) –55 TJ 100 (°C) 100 < TJ 125 (°C) –55 TJ 125 (°C) –55 TJ 100 (°C)  
20 mA*  
0.4  
0.5  
20  
20  
169  
124  
Note: *Output drive strength is below JEDEC specification.  
Table 2-86 • Minimum and Maximum DC Input Levels  
VIL  
VIH  
IIL1  
µA  
IIH2  
µA  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
100 < TJ 125 (ºC)  
100 < TJ 125 (ºC)  
VREF + 0.05 3.6  
100 < TJ 125 (ºC)  
–0.3  
VREF – 0.05  
5
5
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.Output drive strength is below JEDEC specification.  
VTT  
GTL  
25  
Test Point  
10 pF  
Figure 2-15 • AC Loading  
Table 2-87 • 2.5 V GTL AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.05  
VREF + 0.05  
0.8  
0.8  
1.2  
10  
Note: *Measuring point = Vtrip. See Table 2-20 on page 2-22 for a complete table of trip points.  
2-52  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
Table 2-88 • 2.5 V GTL  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 3.0 V, VREF = 0.8 V  
Speed  
Grade  
tDOUT  
0.80  
tDP  
2.11  
1.79  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
2.11  
1.79  
tLZ  
tHZ  
tZLS  
4.34  
3.70  
tZHS  
4.31  
3.67  
Units  
ns  
Std.  
–1  
2.27  
1.93  
2.14  
1.82  
0.68  
0.44  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-89 • 2.5 V GTL  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V, VREF = 0.8 V  
Speed  
Grade  
tDOUT  
0.61  
tDP  
2.02  
1.72  
tDIN  
0.04  
0.03  
tPY  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
3.45  
2.93  
tZHS  
3.49  
2.97  
Units  
ns  
Std.  
2.04  
1.73  
1.98  
1.69  
2.02  
1.72  
–1  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-53  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
3.3 V GTL+  
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential  
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.  
Table 2-90 • Minimum and Maximum DC Output Levels  
3.3 V GTL+  
VOL  
VOH  
IOL  
mA  
IOH  
mA  
IOSH  
IOSL  
Drive  
Strgth.  
Max.  
V
Min.  
V
Max.  
mA  
Max.  
mA  
–55 TJ 100 (ºC) 100 < TJ 125 (ºC) –55 TJ 100 (ºC) 100 < TJ 125 (ºC) –55 TJ 125 (ºC) –55 TJ 100 (ºC)  
35 mA  
0.6  
0.75  
35  
35  
268  
181  
Table 2-91 • Minimum and Maximum DC Input Levels  
3.3 V GTL+  
VIL  
VIH  
IIL1  
µA  
IIH2  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
µA  
–55 TJ 125 (ºC)  
VREF – 0.1  
–55 TJ 125 (ºC)  
VREF + 0.1 3.6  
–55 TJ 125 (ºC)  
–0.3  
5
5
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.  
VTT  
GTL+  
25  
Test Point  
10 pF  
Figure 2-16 • AC Loading  
Table 2-92 • 3.3 V GTL+ AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.1  
VREF + 0.1  
1.0  
1.0  
1.5  
10  
Note: *Measuring point = V . See Table 2-20 on page 2-22 for a complete table of trip points.  
trip  
2-54  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
Table 2-93 • 3.3 V GTL+  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.0 V  
Speed  
Grade  
tDOUT  
0.80  
tDP  
2.04  
1.74  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.28  
3.64  
tZHS  
4.24  
3.61  
Units  
ns  
Std.  
–1  
2.34  
1.99  
2.07  
1.76  
2.03  
1.73  
0.68  
0.44  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-94 • 3.3 V GTL+  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.0 V  
Speed  
Grade  
tDOUT  
0.61  
tDP  
1.95  
1.66  
tDIN  
0.04  
0.03  
tPY  
2.11  
1.79  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
3.38  
2.88  
tZHS  
3.41  
2.90  
Units  
ns  
Std.  
1.92  
1.63  
1.95  
1.66  
–1  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-55  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
2.5 V GTL+  
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential  
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.  
Table 2-95 • Minimum and Maximum DC Output Levels  
2.5 V GTL+  
VOL  
VOH  
IOL  
mA  
IOH  
mA  
IOSH  
IOSL  
Drive  
Strgth.  
Max.  
V
Min.  
V
Max.  
mA  
Max.  
mA  
–55 TJ 100 (ºC) 100 < TJ 125 (ºC) –55 TJ 100 (ºC) 100 < TJ 125 (ºC) –55 TJ 125 (ºC) –55 TJ 100 (ºC)  
33 mA  
0.6  
0.75  
33  
33  
169  
124  
Table 2-96 • Minimum and Maximum DC Input Levels  
2.5 V GTL+  
VIL  
VIH  
IIL1  
µA5  
IIH2  
µA5  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
–55 TJ 125 (ºC)  
VREF – 0.1  
–55 TJ 125 (ºC)  
VREF + 0.1  
–55 TJ 125 (ºC)  
–0.3  
3.6  
5
5
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.  
VTT  
GTL+  
25  
Test Point  
10 pF  
Figure 2-17 • AC Loading  
Table 2-97 • 2.5 V GTL+ AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
C
LOAD (pF)  
VREF – 0.1  
VREF + 0.1  
1.0  
1.0  
1.5  
10  
Note: *Measuring point = V . See Table 2-20 on page 2-22 for a complete table of trip points.  
trip  
2-56  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
Table 2-98 • 2.5 V GTL+  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.0 V  
Speed  
Grade  
tDOUT  
0.80  
tDP  
2.19  
1.86  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.43  
3.77  
tZHS  
4.28  
3.64  
Units  
ns  
Std.  
–1  
2.27  
1.93  
2.22  
1.89  
2.08  
1.77  
0.68  
0.44  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-99 • 2.5 V GTL+  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.0 V  
Speed  
Grade  
tDOUT  
0.61  
tDP  
2.05  
1.75  
tDIN  
0.04  
0.03  
tPY  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
3.53  
3.00  
tZHS  
3.46  
2.94  
Units  
ns  
Std.  
2.04  
1.73  
2.07  
1.76  
1.99  
1.69  
–1  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-57  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
HSTL Class I  
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). RT  
ProASIC3 devices support Class I. This provides a differential amplifier input buffer and a push-pull  
output buffer.  
Table 2-100 • Minimum and Maximum DC Input and Output Levels  
HSTL Class I  
VOL  
VOH  
IOL  
mA  
IOH  
mA  
IOSH  
IOSL  
Drive  
Strgth.  
Max.  
V
Min.  
V
Max.  
mA  
Max.  
mA  
–55 TJ 100 (ºC) 100 < TJ 125 (ºC) –55 TJ 100 (ºC) 100 < TJ 125 (ºC) –55 TJ 125 (ºC) –55 TJ 100 (ºC)  
8 mA  
0.4  
0.4  
VCCI – 0.4  
VCCI – 0.4  
8
8
32  
39  
Table 2-101 • Minimum and Maximum DC Input and Output Levels  
IIL1  
IIH  
2
VIL VIH  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
µA5  
µA5  
–55 TJ 125 (ºC)  
–0.3 VREF – 0.1  
–55 TJ 125 (ºC)  
VREF + 0.1  
–55 TJ 125 (ºC)  
3.6  
5
5
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.  
VTT  
HSTL  
Class I  
50  
Test Point  
20 pF  
Figure 2-18 • AC Loading  
Table 2-102 • HSTL Class I AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring Point*  
Input Low (V)  
Input High (V)  
(V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.1  
VREF + 0.1  
0.75  
0.75  
0.75  
20  
Note: *Measuring point = V . See Table 2-20 on page 2-22 for a complete table of trip points.  
trip  
2-58  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
Table 2-103 • HSTL Class I  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V,  
VREF = 0.75 V  
Speed  
Grade  
tDOUT  
0.80  
tDP  
3.15  
2.68  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
3.11  
2.65  
tLZ  
tHZ  
tZLS  
5.41  
4.60  
tZHS  
5.32  
4.52  
Units  
ns  
Std.  
–1  
2.76  
2.34  
3.20  
2.73  
0.68  
0.44  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-104 • HSTL Class I  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V, VREF = 0.75 V  
Speed  
Grade  
tDOUT  
0.61  
tDP  
3.02  
2.57  
tDIN  
0.04  
0.03  
tPY  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.51  
3.84  
tZHS  
4.46  
3.79  
Units  
ns  
Std.  
–1  
2.52  
2.14  
3.05  
2.59  
3.00  
2.55  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-59  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
HSTL Class II  
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). RT  
ProASIC3 devices support Class II. This provides a differential amplifier input buffer and a push-pull  
output buffer.  
Table 2-105 • Minimum and Maximum DC Output Levels  
HSTL Class II  
VOL  
VOH  
IOL  
mA  
IOH  
mA  
IOSH  
IOSL  
Drive  
Strgth.  
Max.  
V
Min.  
V
Max.  
mA  
Max.  
mA  
–55 TJ 100 (ºC) 100 < TJ 125 (ºC) –55 TJ 100 (ºC) 100 < TJ 125 (ºC) –55 TJ 125 (ºC) –55 TJ 100 (ºC)  
15 mA*  
0.4  
0.5  
VCCI – 0.4  
VCCI – 0.5  
15  
15  
66  
55  
Note: *Output drive strength is below JEDEC specification.  
Table 2-106 • Minimum and Maximum DC Input Levels  
HSTL Class II  
VIL  
VIH  
IIL1  
IIH2  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
µA  
µA  
–55 TJ 125 (ºC)  
–0.3 VREF – 0.1  
–55 TJ 125 (ºC)  
VREF + 0.1 3.6  
–55 TJ 125 (ºC)  
5
5
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.  
VTT  
HSTL  
Class II  
25  
Test Point  
20 pF  
Figure 2-19 • AC Loading  
Table 2-107 • HSTL Class II AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.1  
VREF + 0.1  
0.75  
0.75  
0.75  
20  
Note: *Measuring point = V . See Table 2-20 on page 2-22 for a complete table of trip points.  
trip  
2-60  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
Table 2-108 • HSTL Class II  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V,  
VREF = 0.75 V  
Speed  
Grade  
tDOUT  
0.80  
tDP  
3.00  
2.55  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
5.25  
4.47  
tZHS  
4.89  
4.16  
Units  
ns  
Std.  
–1  
2.76  
2.34  
3.05  
2.59  
2.69  
2.28  
0.68  
0.44  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-109 • HSTL Class II  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V, VREF = 0.75 V  
Speed  
Grade  
tDOUT  
0.61  
tDP  
2.86  
2.44  
tDIN  
0.04  
0.03  
tPY  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.36  
3.71  
tZHS  
4.04  
3.43  
Units  
ns  
Std.  
–1  
2.52  
2.14  
2.89  
2.46  
2.57  
2.19  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-61  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
SSTL2 Class I  
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). RT ProASIC3 devices support  
Class I. This provides a differential amplifier input buffer and a push-pull output buffer.  
Table 2-110 • Minimum and Maximum DC Output Levels  
SSTL 2 Class I  
VOL  
VOH  
IOL  
mA  
IOH  
mA  
IOSH  
IOSL  
Drive  
Strgth.  
Max.  
V
Min.  
V
Max.  
mA  
Max.  
mA  
–55 TJ 100 (ºC) 100 < TJ 125 (ºC) –55 TJ 100 (ºC) 100 < TJ 125 (ºC) –55 TJ 125 (ºC) –55 TJ 100 (ºC)  
0.54 0.54 VCCI – 0.62 VCCI – 0.62 15 15 83 87  
15 mA  
Table 2-111 • Minimum and Maximum DC Input Levels  
SSTL 2 Class I  
VIL  
VIH  
IIL1  
IIH2  
µA  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
µA  
–55 TJ 125 (ºC)  
–0.3 VREF – 0.2  
–55 TJ 125 (ºC)  
VREF + 0.2 3.6  
–55 TJ 125 (ºC)  
5
5
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.  
VTT  
SSTL2  
Class I  
50  
Test Point  
25  
30 pF  
Figure 2-20 • AC Loading  
Table 2-112 • SSTL2 Class I AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
C
LOAD (pF)  
VREF – 0.2  
VREF + 0.2  
1.25  
1.25  
1.25  
30  
Note: *Measuring point = V . See Table 2-20 on page 2-22 for a complete table of trip points.  
trip  
2-62  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
Table 2-113 • SSTL2 Class I  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.25 V  
Speed  
Grade  
tDOUT  
0.80  
tDP  
2.11  
1.80  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
2.14  
1.82  
tZHS  
1.83  
1.55  
Units  
ns  
Std.  
–1  
2.09  
1.78  
2.14  
1.82  
1.83  
1.55  
0.68  
0.44  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-114 • SSTL2 Class I  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.25 V  
Speed  
Grade  
tDOUT  
0.61  
tDP  
1.98  
1.68  
tDIN  
0.04  
0.03  
tPY  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
1.99  
1.69  
tZHS  
1.71  
1.46  
Units  
ns  
Std.  
1.85  
1.58  
1.99  
1.69  
1.71  
1.46  
–1  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-63  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
SSTL2 Class II  
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). RT ProASIC3 devices support  
Class II. This provides a differential amplifier input buffer and a push-pull output buffer.  
Table 2-115 • Minimum and Maximum DC Output Levels  
SSTL2 Class II  
VOL  
VOH  
IOL  
mA  
IOH  
mA  
IOSH  
IOSL  
Drive  
Strgth.  
Max.  
V
Min.  
V
Max.  
mA  
Max.  
mA  
–55 TJ 100 (ºC) 100 < TJ 125 (ºC) –55 TJ 100 (ºC) 100 < TJ 125 (ºC) –55 TJ 125 (ºC) –55 TJ 100 (ºC)  
18 mA  
0.35  
0.44  
VCCI – 0.43  
VCCI – 0.43  
18  
18  
169  
124  
Table 2-116 • Minimum and Maximum DC Input Levels  
SSTL2 Class II  
VIL  
VIH  
IIL1  
IIH2  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
µA  
µA  
–55 TJ 125 (ºC)  
–0.3 VREF – 0.2  
–55 TJ 125 (ºC)  
VREF + 0.2 3.6  
–55 TJ 125 (ºC)  
5
5
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.  
VTT  
SSTL2  
Class II  
25  
Test Point  
25  
30 pF  
Figure 2-21 • AC Loading  
Table 2-117 • SSTL2 Class II AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
C
LOAD (pF)  
VREF – 0.2  
VREF + 0.2  
1.25  
1.25  
1.25  
30  
Note: *Measuring point = V . See Table 2-20 on page 2-22 for a complete table of trip points.  
trip  
2-64  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
Table 2-118 • SSTL2 Class II  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.25 V  
Speed  
Grade  
tDOUT  
0.80  
tDP  
2.15  
1.83  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
2.18  
1.86  
tZHS  
1.75  
1.49  
Units  
ns  
Std.  
–1  
2.09  
1.78  
2.18  
1.86  
1.75  
1.49  
0.68  
0.44  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-119 • SSTL2 Class II  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.25 V  
Speed  
Grade  
tDOUT  
0.61  
tDP  
2.02  
1.72  
tDIN  
0.04  
0.03  
tPY  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
2.03  
1.73  
tZHS  
1.64  
1.39  
Units  
ns  
Std.  
1.85  
1.58  
2.03  
1.73  
1.64  
1.39  
–1  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-65  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
SSTL3 Class I  
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). RT ProASIC3 devices support  
Class I. This provides a differential amplifier input buffer and a push-pull output buffer.  
Table 2-120 • Minimum and Maximum DC Output Levels  
SSTL3 Class I  
VOL  
VOH  
IOL  
mA  
IOH  
mA  
IOSL  
IOSH  
Drive  
Strgth.  
Max.  
V
Min.  
V
Max.  
mA  
Max.  
mA  
–55 TJ 100 (ºC) 100 < TJ 125 (ºC) –55 TJ 100 (ºC) 100 < TJ 125 (ºC) –55 TJ 125 (ºC) –55 TJ 100 (ºC)  
0.7 0.7 VCCI – 1.1 VCCI – 1.1 14 14 51 54  
14 mA  
Table 2-121 • Minimum and Maximum DC Input Levels  
SSTL3 Class I  
VIL  
VIH  
IIL1  
IIH2  
µA  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
µA  
–55 TJ 125 (ºC)  
–0.3 VREF – 0.2  
–55 TJ 125 (ºC)  
–55 TJ 125 (ºC)  
VREF + 0.2  
3.6  
5
5
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.  
VTT  
SSTL3  
Class I  
50  
Test Point  
25  
30 pF  
Figure 2-22 • AC Loading  
Table 2-122 • SSTL3 Class I AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
C
LOAD (pF)  
VREF – 0.2  
VREF + 0.2  
1.5  
1.5  
1.485  
30  
Note: *Measuring point = V . See Table 2-20 on page 2-22 for a complete table of trip points.  
trip  
2-66  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
Table 2-123 • SSTL3 Class I  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.5 V  
Speed  
Grade  
tDOUT  
0.80  
tDP  
2.29  
1.95  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
2.32  
1.98  
tZHS  
1.82  
1.55  
Units  
ns  
Std.  
–1  
2.00  
1.71  
2.32  
1.98  
1.82  
1.55  
0.68  
0.44  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-124 • SSTL3 Class I  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.5 V  
Speed  
Grade  
tDOUT  
0.61  
tDP  
2.15  
1.83  
tDIN  
0.04  
0.03  
tPY  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
2.17  
1.84  
tZHS  
1.70  
1.45  
Units  
ns  
Std.  
1.77  
1.51  
2.17  
1.84  
1.70  
1.45  
–1  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-67  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
SSTL3 Class II  
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). RT ProASIC3 devices support  
Class II. This provides a differential amplifier input buffer and a push-pull output buffer.  
Table 2-125 • Minimum and Maximum DC Output Levels  
SSTL3 Class II  
VOL  
VOH  
IOL  
mA  
IOH  
mA  
IOSL  
IOSH  
Drive  
Strgth.  
Max.  
V
Min.  
V
Max.  
mA  
Max.  
mA  
–55 TJ 100 (ºC) 100 < TJ 125 (ºC) –55 TJ 100 (ºC) 100 < TJ 125 (ºC) –55 TJ 125 (ºC) –55 TJ 100 (ºC)  
0.5 0.625 VCCI – 0.9 VCCI – 0.9 21 21 103 109  
21 mA  
Table 2-126 • Minimum and Maximum DC Input Levels  
SSTL3 Class II  
VIL  
VIH  
IIL1  
µA4  
IIH2  
µA4  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
–55 TJ 125 (ºC)  
–55 TJ 125 (ºC)  
VREF + 0.2  
–55 TJ 125 (ºC)  
–0.3  
VREF – 0.2  
3.6  
5
5
Notes:  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL (max.).  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH (min.) < VIN < VCCI. Input  
current is larger when operating outside recommended ranges.  
VTT  
SSTL3  
Class II  
25  
Test Point  
25  
30 pF  
Figure 2-23 • AC Loading  
Table 2-127 • SSTL3 Class II AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.2  
VREF + 0.2  
1.5  
1.5  
1.485  
30  
Note: *Measuring point = V . See Table 2-20 on page 2-22 for a complete table of trip points.  
trip  
2-68  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
Table 2-128 • SSTL3 Class II  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.5 V  
Speed  
Grade  
tDOUT  
0.80  
tDP  
2.05  
1.75  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
2.08  
1.77  
tZHS  
1.65  
1.41  
Units  
ns  
Std.  
–1  
2.00  
1.71  
2.08  
1.77  
1.65  
1.41  
0.68  
0.44  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-129 • SSTL3 Class II  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.5 V  
Speed  
Grade  
tDOUT  
0.61  
tDP  
1.91  
1.63  
tDIN  
0.04  
0.03  
tPY  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
1.92  
1.64  
tZHS  
1.54  
1.31  
Units  
ns  
Std.  
1.77  
1.51  
1.92  
1.64  
1.54  
1.31  
–1  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-69  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Differential I/O Characteristics  
Physical Implementation  
Configuration of the I/O modules as a differential pair is handled by software when the user instantiates a  
differential I/O macro in the design.  
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output  
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no  
support for bidirectional I/Os or tristates with the LVPECL standards.  
LVDS  
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It  
requires that one data bit be carried through two signal lines, so two pins are needed. It also requires  
external resistor termination.  
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-24. The  
building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three  
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver  
resistors are different from those used in the LVPECL implementation because the output standard  
specifications are different.  
Along with LVDS I/O, military ProASIC3 also supports Bus LVDS structure and Multipoint LVDS (M-  
LVDS) configuration (up to 40 nodes).  
Bourns Part Number: CAT16-LV4F12  
FPGA  
FPGA  
OUTBUF_LVDS  
P
N
P
N
165 Ω  
165 Ω  
Z0 = 50 Ω  
140 Ω  
Z0 = 50 Ω  
INBUF_LVDS  
+
100 Ω  
Figure 2-24 • LVDS Circuit Diagram and Board-Level Implementation  
2-70  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Table 2-130 • Minimum and Maximum DC Input and Output Levels  
DC Parameter  
VCCI  
Description  
Min.  
2.375  
0.9  
Typ.  
2.5  
Max.  
2.625  
1.25  
1.6  
Units  
V
Supply Voltage  
Output Low Voltage  
VOL  
1.075  
1.425  
0.91  
0.91  
V
Output High Voltage  
VOH  
1.25  
0.65  
0.65  
0
V
IOL 1  
1.16  
1.16  
2.925  
5
mA  
mA  
V
Output Lower Current  
Output High Current  
IOH 1  
Input Voltage  
VI  
IIH 2  
µA  
µA  
mV  
V
Input High Leakage Current  
Input Low Leakage Current  
Differential Output Voltage  
Output Common Mode Voltage  
Input Common Mode Voltage  
Input Differential Voltage  
IIL 2  
5
VODIFF  
VOCM  
VICM  
VIDIFF  
Notes:  
250  
1.125  
0.05  
100  
350  
1.25  
1.25  
350  
450  
1.375  
2.35  
V
mV  
1. IOL/IOH is defined by VODIFF/(Resistor Network).  
2. Currents are measured at 125°C junction temperature.  
Table 2-131 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
1.075  
Input High (V)  
Measuring Point* (V)  
1.325  
Cross point  
Note: *Measuring point = V  
See Table 2-20 on page 2-22 for a complete table of trip points.  
trip.  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-132 • LVDS  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V  
Speed Grade  
tDOUT  
0.80  
tDP  
1.87  
1.59  
tDIN  
0.05  
0.05  
tPY  
2.48  
2.11  
Units  
ns  
Std.  
–1  
0.68  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
1.5 V DC Core Voltage  
Table 2-133 • LVDS  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Speed Grade  
tDOUT  
0.61  
tDP  
1.75  
1.48  
tDIN  
0.04  
0.03  
tPY  
Units  
ns  
Std.  
–1  
2.18  
1.86  
0.52  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-71  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
B-LVDS/M-LVDS**  
Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to  
high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain  
any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive  
current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series  
terminations for better signal quality and to control voltage swing. Termination is also required at both  
ends of the bus since the driver can be located anywhere on the bus. These configurations can be  
implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations.  
Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20  
loads. A sample application is given in Figure 2-25. The input and output buffer delays are available in  
the LVDS section in Table 2-130 on page 2-71.  
Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required  
differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: RS = 60 Ω and  
RT = 70 Ω, given Z0 = 50 Ω (2") and Zstub = 50 Ω (~1.5").  
Receiver  
Transceiver  
Driver  
D
Receiver  
Transceiver  
EN  
EN  
EN  
EN  
EN  
BIBUF_LVDS  
R
T
R
T
+
-
+
-
+
-
+
-
+
-
RS RS  
RS RS  
RS RS  
Zstub  
RS RS  
RS RS  
Zstub  
Z0  
Zstub  
Zstub  
Z0  
Zstub  
Zstub  
Z0  
Zstub  
Z0  
Zstub  
...  
Z0  
Z0  
Z0  
Z0  
RT  
RT  
Z0  
Z0  
Z0  
Z0  
Figure 2-25 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers  
2-72  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
LVPECL  
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires  
that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires  
external resistor termination.  
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-26. The  
building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three  
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver  
resistors are different from those used in the LVDS implementation because the output standard  
specifications are different.  
Bourns Part Number: CAT16-PC4F12  
FPGA  
FPGA  
P
P
N
OUTBUF_LVPECL  
100 Ω  
100 Ω  
Z = 50 Ω  
0
INBUF_LVPECL  
+
187 W  
Z = 50 Ω  
100 Ω  
0
N
Figure 2-26 • LVPECL Circuit Diagram and Board-Level Implementation  
Table 2-134 • Minimum and Maximum DC Input and Output Levels  
DC Parameter  
VCCI  
Description  
Supply Voltage  
Min.  
Max.  
Min.  
Max.  
3.3  
Min.  
Max.  
Units  
V
3.0  
3.6  
VOL  
Output Low Voltage  
0.96  
1.8  
1.27  
2.11  
3.6  
1.06  
1.92  
0
1.43  
2.28  
3.6  
1.30  
2.13  
0
1.57  
2.41  
3.6  
V
VOH  
Output High Voltage  
V
VIL, VIH  
VODIFF  
VOCM  
VICM  
Input Low, Input High Voltages  
Differential Output Voltage  
Output Common-Mode Voltage  
Input Common-Mode Voltage  
Input Differential Voltage  
0
V
0.625  
1.762  
1.01  
300  
0.97 0.625  
1.98 1.762  
0.97  
1.98  
2.57  
0.625  
1.762  
1.01  
300  
0.97  
1.98  
2.57  
V
V
2.57  
1.01  
300  
V
VIDIFF  
mV  
Table 2-135 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
1.64  
1.94  
Cross point  
Note: *Measuring point = Vtrip. See Table 2-20 on page 2-22 for a complete table of trip points.  
Revision 5  
2-73  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-136 • LVPECL  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Speed Grade  
tDOUT  
0.80  
tDP  
1.78  
1.51  
tDIN  
0.05  
0.05  
tPY  
Units  
ns  
Std.  
–1  
2.16  
1.84  
0.68  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
1.5 V DC Core Voltage  
Table 2-137 • LVPECL  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Speed Grade  
tDOUT  
0.61  
tDP  
1.65  
1.40  
tDIN  
0.04  
0.03  
tPY  
Units  
ns  
Std.  
–1  
1.89  
1.61  
0.52  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
2-74  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
I/O Register Specifications  
Fully Registered I/O Buffers with Synchronous Enable and  
Asynchronous Preset  
Preset  
L
D
DOUT  
Data_out  
PRE  
F
PRE  
Y
E
Core  
Array  
Data  
Enable  
CLK  
D
Q
D
Q
C
DFN1E1P1  
DFN1E1P1  
G
E
E
EOUT  
B
A
H
I
PRE  
J
D
Q
DFN1E1P1  
K
Data Input I/O Register with:  
Active High Enable  
E
Active High Preset  
Positive-Edge Triggered  
Data Output Register and  
Enable Output Register with:  
Active High Enable  
Active High Preset  
INBUF  
INBUF  
CLKBUF  
Postive-Edge Triggered  
Figure 2-27 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset  
Revision 5  
2-75  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Table 2-138 • Parameter Definition and Measuring Nodes  
Measuring Nodes  
Parameter Name  
tOCLKQ  
tOSUD  
Parameter Definition  
Clock-to-Q of the Output Data Register  
(from, to)*  
H, DOUT  
F, H  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
F, H  
tOSUE  
Enable Setup Time for the Output Data Register  
Enable Hold Time for the Output Data Register  
G, H  
tOHE  
G, H  
tOPRE2Q  
tOREMPRE  
tORECPRE  
tOECLKQ  
tOESUD  
tOEHD  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
L, DOUT  
L, H  
L, H  
H, EOUT  
J, H  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
J, H  
tOESUE  
tOEHE  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
K, H  
K, H  
tOEPRE2Q  
tOEREMPRE  
tOERECPRE  
tICLKQ  
I, EOUT  
I, H  
I, H  
A, E  
tISUD  
Data Setup Time for the Input Data Register  
C, A  
tIHD  
Data Hold Time for the Input Data Register  
C, A  
tISUE  
Enable Setup Time for the Input Data Register  
B, A  
tIHE  
Enable Hold Time for the Input Data Register  
B, A  
tIPRE2Q  
tIREMPRE  
tIRECPRE  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
D, E  
D, A  
D, A  
* See Figure 2-27 on page 2-75 for more information.  
2-76  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Fully Registered I/O Buffers with Synchronous Enable and  
Asynchronous Clear  
DOUT  
FF  
Data_out  
Y
Core  
D
Q
D
Q
Data  
Array  
CC  
EE  
DFN1E1C1  
DFN1E1C1  
GG  
EOUT  
E
E
Enable  
CLK  
CLR  
BB  
AA  
DD  
CLR  
LL  
HH  
JJ  
D
Q
CLR  
DFN1E1C1  
KK  
E
Data Input I/O Register with  
Active High Enable  
CLR  
Active High Clear  
Positive-Edge Triggered  
Data Output Register and  
Enable Output Register with  
Active High Enable  
Active High Clear  
Positive-Edge Triggered  
INBUF  
INBUF  
CLKBUF  
Figure 2-28 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear  
Revision 5  
2-77  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Table 2-139 • Parameter Definition and Measuring Nodes  
Measuring Nodes  
Parameter Name  
tOCLKQ  
tOSUD  
Parameter Definition  
Clock-to-Q of the Output Data Register  
(from, to)*  
HH, DOUT  
FF, HH  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
FF, HH  
tOSUE  
Enable Setup Time for the Output Data Register  
Enable Hold Time for the Output Data Register  
GG, HH  
GG, HH  
LL, DOUT  
LL, HH  
tOHE  
tOCLR2Q  
tOREMCLR  
tORECCLR  
tOECLKQ  
tOESUD  
tOEHD  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
LL, HH  
HH, EOUT  
JJ, HH  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
JJ, HH  
tOESUE  
tOEHE  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
KK, HH  
KK, HH  
II, EOUT  
II, HH  
tOECLR2Q  
tOEREMCLR  
tOERECCLR  
tICLKQ  
II, HH  
AA, EE  
CC, AA  
CC, AA  
BB, AA  
BB, AA  
DD, EE  
DD, AA  
DD, AA  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
tICLR2Q  
tIREMCLR  
tIRECCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Note: *See Figure 2-28 on page 2-77 for more information.  
2-78  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Input Register  
tICKMPWH tICKMPWL  
50%  
tISUD  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
Data  
tIHD  
50%  
50%  
1
0
tIREMPRE  
tIRECPRE  
tIWPRE  
Enable  
Preset  
50%  
tIHE  
tISUE  
50%  
50%  
50%  
tIWCLR  
tIRECCLR  
50%  
tIREMCLR  
50%  
50%  
Clear  
tIPRE2Q  
50%  
50%  
tICLKQ  
50%  
Out_1  
tICLR2Q  
Figure 2-29 • Input Register Timing Diagram  
Revision 5  
2-79  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Timing Characteristics  
Table 2-140 • Input Data Register Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V  
Parameter  
tICLKQ  
Description  
Clock-to-Q of the Input Data Register  
–1 Std. Units  
0.33 0.39 ns  
0.36 0.43 ns  
0.00 0.00 ns  
0.51 0.60 ns  
0.00 0.00 ns  
0.63 0.74 ns  
0.63 0.74 ns  
0.00 0.00 ns  
0.31 0.36 ns  
0.00 0.00 ns  
0.31 0.36 ns  
0.19 0.22 ns  
0.19 0.22 ns  
0.31 0.36 ns  
0.28 0.32 ns  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
tICLR2Q  
tIPRE2Q  
tIREMCLR  
tIRECCLR  
tIREMPRE  
tIRECPRE  
tIWCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
Asynchronous Clear Minimum Pulse Width for the Input Data Register  
Asynchronous Preset Minimum Pulse Width for the Input Data Register  
Clock Minimum Pulse Width High for the Input Data Register  
Clock Minimum Pulse Width Low for the Input Data Register  
tIWPRE  
tICKMPWH  
tICKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-141 • Input Data Register Propagation Delays  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V  
Parameter  
tICLKQ  
Description  
Clock-to-Q of the Input Data Register  
–1 Std. Units  
0.25 0.30 ns  
0.28 0.33 ns  
0.00 0.00 ns  
0.39 0.46 ns  
0.00 0.00 ns  
0.48 0.56 ns  
0.48 0.56 ns  
0.00 0.00 ns  
0.24 0.28 ns  
0.00 0.00 ns  
0.24 0.28 ns  
0.19 0.22 ns  
0.19 0.22 ns  
0.31 0.36 ns  
0.28 0.32 ns  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
tICLR2Q  
tIPRE2Q  
tIREMCLR  
tIRECCLR  
tIREMPRE  
tIRECPRE  
tIWCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
Asynchronous Clear Minimum Pulse Width for the Input Data Register  
Asynchronous Preset Minimum Pulse Width for the Input Data Register  
Clock Minimum Pulse Width High for the Input Data Register  
Clock Minimum Pulse Width Low for the Input Data Register  
tIWPRE  
tICKMPWH  
tICKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
2-80  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Output Register  
tOCKMPWH tOCKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
tOSUD tOHD  
50%  
50%  
1
0
Data_out  
tOREMPRE  
Enable  
Preset  
50%  
tOWPRE tORECPRE  
50%  
tOHE  
50%  
50%  
tOSUE  
tOREMCLR  
50%  
tORECCLR  
50%  
tOWCLR  
50%  
Clear  
tOPRE2Q  
50%  
tOCLKQ  
50%  
50%  
DOUT  
tOCLR2Q  
Figure 2-30 • Output Register Timing Diagram  
Revision 5  
2-81  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Timing Characteristics  
Table 2-142 • Output Data Register Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V  
Parameter  
tOCLKQ  
Description  
Clock-to-Q of the Output Data Register  
–1 Std. Units  
0.81 0.96  
0.43 0.51  
0.00 0.00  
0.61 0.71  
0.00 0.00  
1.11 1.31  
1.11 1.31  
0.00 0.00  
0.31 0.36  
0.00 0.00  
0.31 0.36  
0.19 0.22  
0.19 0.22  
0.31 0.36  
0.28 0.32  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOSUD  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOSUE  
Enable Setup Time for the Output Data Register  
tOHE  
Enable Hold Time for the Output Data Register  
tOCLR2Q  
tOPRE2Q  
tOREMCLR  
tORECCLR  
tOREMPRE  
tORECPRE  
tOWCLR  
tOWPRE  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Asynchronous Clear Minimum Pulse Width for the Output Data Register  
Asynchronous Preset Minimum Pulse Width for the Output Data Register  
tOCKMPWH Clock Minimum Pulse Width High for the Output Data Register  
tOCKMPWL Clock Minimum Pulse Width Low for the Output Data Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-143 • Output Data Register Propagation Delays  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V  
Parameter  
tOCLKQ  
Description  
Clock-to-Q of the Output Data Register  
–1 Std. Units  
0.62 0.73  
0.33 0.39  
0.00 0.00  
0.46 0.55  
0.00 0.00  
0.85 1.00  
0.85 1.00  
0.00 0.00  
0.24 0.28  
0.00 0.00  
0.24 0.28  
0.19 0.22  
0.19 0.22  
0.31 0.36  
0.28 0.32  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOSUD  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOSUE  
Enable Setup Time for the Output Data Register  
tOHE  
Enable Hold Time for the Output Data Register  
tOCLR2Q  
tOPRE2Q  
tOREMCLR  
tORECCLR  
tOREMPRE  
tORECPRE  
tOWCLR  
tOWPRE  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Asynchronous Clear Minimum Pulse Width for the Output Data Register  
Asynchronous Preset Minimum Pulse Width for the Output Data Register  
tOCKMPWH Clock Minimum Pulse Width High for the Output Data Register  
tOCKMPWL Clock Minimum Pulse Width Low for the Output Data Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
2-82  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Output Enable Register  
tOECKMPWH tOECKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
tOESUD OEHD  
t
50% 50%  
1
0
D_Enable  
50%  
Enable  
Preset  
tOEWPRE  
50%  
tOEREMPRE  
50%  
tOERECPRE  
50%  
tOESUEOEHE  
t
tOEREMCLR  
50%  
tOEWCLR tOERECCLR  
50%  
50%  
Clear  
tOECLR2Q  
50%  
tOEPRE2Q  
50%  
50%  
tOECLKQ  
EOUT  
Figure 2-31 • Output Enable Register Timing Diagram  
Revision 5  
2-83  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Timing Characteristics  
Table 2-144 • Output Enable Register Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V  
Parameter  
tOECLKQ  
tOESUD  
Description  
Clock-to-Q of the Output Enable Register  
–1 Std. Units  
0.62 0.72  
0.43 0.51  
0.00 0.00  
0.60 0.71  
0.00 0.00  
0.92 1.08  
0.92 1.08  
0.00 0.00  
0.31 0.36  
0.00 0.00  
0.31 0.36  
0.19 0.22  
0.19 0.22  
0.31 0.36  
0.28 0.32  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
tOEHD  
tOESUE  
tOEHE  
tOECLR2Q  
tOEPRE2Q  
tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register  
tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register  
tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register  
tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register  
tOEWCLR  
tOEWPRE  
Asynchronous Clear Minimum Pulse Width for the Output Enable Register  
Asynchronous Preset Minimum Pulse Width for the Output Enable Register  
tOECKMPWH Clock Minimum Pulse Width High for the Output Enable Register  
tOECKMPWL Clock Minimum Pulse Width Low for the Output Enable Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-145 • Output Enable Register Propagation Delays  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V  
Parameter  
tOECLKQ  
tOESUD  
Description  
Clock-to-Q of the Output Enable Register  
–1 Std. Units  
0.47 0.55  
0.33 0.39  
0.00 0.00  
0.46 0.54  
0.00 0.00  
0.70 0.83  
0.70 0.83  
0.00 0.00  
0.24 0.28  
0.00 0.00  
0.24 0.28  
0.19 0.22  
0.19 0.22  
0.31 0.36  
0.28 0.32  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
tOEHD  
tOESUE  
tOEHE  
tOECLR2Q  
tOEPRE2Q  
tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register  
tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register  
tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register  
tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register  
tOEWCLR  
tOEWPRE  
Asynchronous Clear Minimum Pulse Width for the Output Enable Register  
Asynchronous Preset Minimum Pulse Width for the Output Enable Register  
tOECKMPWH Clock Minimum Pulse Width High for the Output Enable Register  
tOECKMPWL Clock Minimum Pulse Width Low for the Output Enable Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
2-84  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
DDR Module Specifications  
Input DDR Module  
Input DDR  
INBUF  
Data  
A
D
Out_QF  
(to core)  
FF1  
B
C
E
Out_QR  
(to core)  
CLK  
CLKBUF  
FF2  
CLR  
INBUF  
DDR_IN  
Figure 2-32 • Input DDR Timing Model  
Table 2-146 • Parameter Definitions  
Parameter Name  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD  
Parameter Definition  
Measuring Nodes (from, to)  
Clock-to-Out Out_QR  
Clock-to-Out Out_QF  
B, D  
B, E  
A, B  
A, B  
C, D  
C, E  
C, B  
C, B  
Data Setup Time of DDR input  
Data Hold Time of DDR input  
Clear-to-Out Out_QR  
Clear-to-Out Out_QF  
Clear Removal  
tDDRIHD  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
Clear Recovery  
Revision 5  
2-85  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
CLK  
tDDRISUD  
6
tDDRIHD  
8
Data  
CLR  
1
2
3
4
5
7
9
tDDRIRECCLR  
tDDRIREMCLR  
tDDRICLKQ1  
tDDRICLR2Q1  
Out_QF  
Out_QR  
6
2
4
tDDRICLKQ2  
tDDRICLR2Q2  
7
3
5
Figure 2-33 • Input DDR Timing Diagram  
Timing Characteristics  
Table 2-147 • Input DDR Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V  
Parameter  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD1  
Description  
–1  
Std. Units  
Clock-to-Out Out_QR for Input DDR  
0.38 0.45  
0.54 0.63  
0.39 0.46  
0.34 0.40  
0.00 0.00  
0.00 0.00  
0.64 0.75  
0.79 0.93  
0.00 0.00  
0.31 0.36  
0.19 0.22  
0.31 0.36  
0.28 0.32  
TBD TBD  
ns  
ns  
Clock-to-Out Out_QF for Input DDR  
Data Setup for Input DDR (fall)  
ns  
tDDRISUD2  
Data Setup for Input DDR (rise)  
ns  
tDDRIHD1  
Data Hold for Input DDR (fall)  
ns  
tDDRIHD2  
Data Hold for Input DDR (rise)  
ns  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
tDDRIWCLR  
tDDRICKMPWH  
tDDRICKMPWL  
FDDRIMAX  
Asynchronous Clear-to-Out Out_QR for Input DDR  
Asynchronous Clear-to-Out Out_QF for Input DDR  
Asynchronous Clear Removal Time for Input DDR  
Asynchronous Clear Recovery Time for Input DDR  
Asynchronous Clear Minimum Pulse Width for Input DDR  
Clock Minimum Pulse Width High for Input DDR  
Clock Minimum Pulse Width Low for Input DDR  
Maximum Frequency for Input DDR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
2-86  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Table 2-148 • Input DDR Propagation Delays  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V  
Parameter  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD1  
Description  
Clock-to-Out Out_QR for Input DDR  
–1  
Std. Units  
0.29 0.34  
0.41 0.48  
0.30 0.35  
0.26 0.31  
0.00 0.00  
0.00 0.00  
0.49 0.58  
0.60 0.71  
0.00 0.00  
0.24 0.28  
0.19 0.22  
0.31 0.36  
0.28 0.32  
TBD TBD  
ns  
ns  
Clock-to-Out Out_QF for Input DDR  
Data Setup for Input DDR (fall)  
ns  
tDDRISUD2  
Data Setup for Input DDR (rise)  
ns  
tDDRIHD1  
Data Hold for Input DDR (fall)  
ns  
tDDRIHD2  
Data Hold for Input DDR (rise)  
ns  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
tDDRIWCLR  
tDDRICKMPWH  
tDDRICKMPWL  
FDDRIMAX  
Asynchronous Clear-to-Out Out_QR for Input DDR  
Asynchronous Clear-to-Out Out_QF for Input DDR  
Asynchronous Clear Removal Time for Input DDR  
Asynchronous Clear Recovery Time for Input DDR  
Asynchronous Clear Minimum Pulse Width for Input DDR  
Clock Minimum Pulse Width High for Input DDR  
Clock Minimum Pulse Width Low for Input DDR  
Maximum Frequency for Input DDR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-87  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Output DDR Module  
Output DDR  
A
Data_F  
X
(from core)  
FF1  
Out  
B
0
1
CLK  
X
E
X
CLKBUF  
C
X
OUTBUF  
D
Data_R  
X
(from core)  
FF2  
B
X
CLR  
INBUF  
C
X
DDR_OUT  
Figure 2-34 • Output DDR Timing Model  
Table 2-149 • Parameter Definitions  
Parameter Name  
tDDROCLKQ  
Parameter Definition  
Measuring Nodes (from, to)  
Clock-to-Out  
B, E  
C, E  
C, B  
C, B  
A, B  
D, B  
A, B  
D, B  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROSUD1  
Asynchronous Clear-to-Out  
Clear Removal  
Clear Recovery  
Data Setup Data_F  
Data Setup Data_R  
Data Hold Data_F  
Data Hold Data_R  
tDDROSUD2  
tDDROHD1  
tDDROHD2  
2-88  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
CLK  
t
t
DDROHD2  
DDROSUD2  
4
9
5
Data_F  
1
2
3
t
t
DDROHD1  
DDROREMCLR  
Data_R 6  
CLR  
7
8
10  
11  
t
DDRORECCLR  
t
DDROREMCLR  
t
t
DDROCLKQ  
DDROCLR2Q  
Out  
7
2
8
3
9
4
10  
Figure 2-35 • Output DDR Timing Diagram  
Timing Characteristics  
Table 2-150 • Output DDR Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V  
Parameter  
tDDROCLKQ  
tDDRISUD1  
Description  
–1  
Std. Units  
Clock-to-Out of DDR for Output DDR  
0.97 1.14  
0.52 0.62  
0.52 0.62  
0.00 0.00  
0.00 0.00  
1.11 1.30  
0.00 0.00  
0.31 0.36  
0.19 0.22  
0.31 0.36  
0.28 0.32  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data_F Data Setup for Output DDR  
tDDROSUD2  
tDDROHD1  
Data_R Data Setup for Output DDR  
Data_F Data Hold for Output DDR  
tDDROHD2  
Data_R Data Hold for Output DDR  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROWCLR1  
tDDROCKMPWH  
tDDROCKMPWL  
FDDOMAX  
Asynchronous Clear-to-Out for Output DDR  
Asynchronous Clear Removal Time for Output DDR  
Asynchronous Clear Recovery Time for Output DDR  
Asynchronous Clear Minimum Pulse Width for Output DDR  
Clock Minimum Pulse Width High for the Output DDR  
Clock Minimum Pulse Width Low for the Output DDR  
Maximum Frequency for the Output DDR  
TBD TBD MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-89  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Table 2-151 • Output DDR Propagation Delays  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V  
Parameter  
tDDROCLKQ  
tDDRISUD1  
Description  
Clock-to-Out of DDR for Output DDR  
–1  
Std. Units  
0.74 0.87  
0.40 0.47  
0.40 0.47  
0.00 0.00  
0.00 0.00  
0.85 1.00  
0.00 0.00  
0.24 0.28  
0.19 0.22  
0.31 0.36  
0.28 0.32  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data_F Data Setup for Output DDR  
tDDROSUD2  
tDDROHD1  
Data_R Data Setup for Output DDR  
Data_F Data Hold for Output DDR  
tDDROHD2  
Data_R Data Hold for Output DDR  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROWCLR1  
tDDROCKMPWH  
tDDROCKMPWL  
FDDOMAX  
Asynchronous Clear-to-Out for Output DDR  
Asynchronous Clear Removal Time for Output DDR  
Asynchronous Clear Recovery Time for Output DDR  
Asynchronous Clear Minimum Pulse Width for Output DDR  
Clock Minimum Pulse Width High for the Output DDR  
Clock Minimum Pulse Width Low for the Output DDR  
Maximum Frequency for the Output DDR  
TBD TBD MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
2-90  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
VersaTile Characteristics  
VersaTile Specifications as a Combinatorial Module  
The RT ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section, timing  
characteristics are presented for a sample of the library. For more details, refer to the IGLOO, Fusion,  
and ProASIC3 Macro Library Guide.  
A
Y
Y
INV  
A
A
B
NOR2  
OR2  
Y
B
A
B
A
B
Y
AND2  
Y
NAND2  
A
B
C
A
B
Y
XOR3  
XOR2  
Y
A
B
C
A
MAJ3  
0
Y
A
B
C
MUX2  
Y
B
S
NAND3  
1
Figure 2-36 • Sample of Combinatorial Cells  
Revision 5  
2-91  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
tPD  
A
NAND2 or  
Y
Any Combinatorial  
Logic  
B
tPD = MAX(tPD(RR), tPD(RF), tPD(FF), tPD(FR)  
)
where edges are applicable for the particular  
combinatorial cell  
VCC  
50%  
50%  
A, B, C  
GND  
50%  
VCC  
50%  
OUT  
OUT  
GND  
VCC  
tPD  
tPD  
(RR)  
(FF)  
tPD  
(FR)  
50%  
50%  
tPD  
GND  
(RF)  
Figure 2-37 • Timing Model and Waveforms  
2-92  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
Table 2-152 • Combinatorial Cell Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V  
Combinatorial Cell  
INV  
Equation  
Y = !A  
Parameter  
tPD  
–1  
Std.  
0.65  
0.77  
0.77  
0.79  
0.79  
1.20  
1.14  
1.42  
0.82  
0.91  
Units  
ns  
0.56  
0.65  
0.65  
0.67  
0.67  
1.02  
0.97  
1.21  
0.70  
0.78  
AND2  
Y = A · B  
tPD  
ns  
NAND2  
OR2  
Y = !(A · B)  
Y = A + B  
tPD  
ns  
tPD  
ns  
NOR2  
Y = !(A + B)  
Y = A B  
Y = MAJ(A , B, C)  
Y = A B C  
Y = A !S + B S  
Y = A · B · C  
tPD  
ns  
XOR2  
tPD  
ns  
MAJ3  
tPD  
ns  
XOR3  
tPD  
ns  
MUX2  
tPD  
ns  
AND3  
tPD  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating  
values.  
Table 2-153 • Combinatorial Cell Propagation Delays  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V  
Combinatorial Cell  
INV  
Equation  
Y = !A  
Parameter  
tPD  
–1  
Std.  
0.50  
0.59  
0.59  
0.61  
0.61  
0.92  
0.87  
1.09  
0.63  
0.70  
Units  
ns  
0.43  
0.50  
0.50  
0.51  
0.51  
0.78  
0.74  
0.93  
0.54  
0.59  
AND2  
Y = A · B  
tPD  
ns  
NAND2  
OR2  
Y = !(A · B)  
Y = A + B  
tPD  
ns  
tPD  
ns  
NOR2  
Y = !(A + B)  
Y = A B  
Y = MAJ(A , B, C)  
Y = A B C  
Y = A !S + B S  
Y = A · B · C  
tPD  
ns  
XOR2  
tPD  
ns  
MAJ3  
tPD  
ns  
XOR3  
tPD  
ns  
MUX2  
tPD  
ns  
AND3  
tPD  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating  
values.  
Revision 5  
2-93  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
VersaTile Specifications as a Sequential Module  
The RT ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches. Each  
has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented  
for a representative sample from the library. For more details, refer to the IGLOO, Fusion, and ProASIC3  
Macro Library Guide.  
Data  
CLK  
Out  
Data  
Out  
D
Q
D
Q
En  
DFN1  
DFN1E1  
CLK  
PRE  
Data  
Data  
Out  
Out  
Q
D
D
Q
En  
DFN1C1  
DFI1E1P1  
CLK  
CLK  
CLR  
Figure 2-38 • Sample of Sequential Cells  
2-94  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
tCKMPWH CKMPWL  
t
50%  
tSUD  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
tHD  
50%  
50%  
Data  
EN  
0
50%  
tRECPRE  
50%  
tWPRE  
tREMPRE  
50%  
tHE  
50%  
tSUE  
PRE  
CLR  
Out  
tREMCLR  
50%  
tRECCLR  
50%  
tWCLR  
50%  
tPRE2Q  
50%  
tCLR2Q  
50%  
50%  
tCLKQ  
Figure 2-39 • Timing Model and Waveforms  
Revision 5  
2-95  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Timing Characteristics  
Table 2-154 • Register Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V  
Parameter  
tCLKQ  
Description  
–1  
Std. Units  
Clock-to-Q of the Core Register  
0.76 0.90  
0.59 0.70  
0.00 0.00  
0.63 0.74  
0.00 0.00  
0.55 0.65  
0.55 0.65  
0.00 0.00  
0.31 0.36  
0.00 0.00  
0.31 0.36  
0.30 0.34  
0.30 0.34  
0.56 0.64  
0.56 0.64  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSUD  
Data Setup Time for the Core Register  
tHD  
Data Hold Time for the Core Register  
tSUE  
Enable Setup Time for the Core Register  
tHE  
Enable Hold Time for the Core Register  
tCLR2Q  
tPRE2Q  
tREMCLR  
tRECCLR  
tREMPRE  
tRECPRE  
tWCLR  
Asynchronous Clear-to-Q of the Core Register  
Asynchronous Preset-to-Q of the Core Register  
Asynchronous Clear Removal Time for the Core Register  
Asynchronous Clear Recovery Time for the Core Register  
Asynchronous Preset Removal Time for the Core Register  
Asynchronous Preset Recovery Time for the Core Register  
Asynchronous Clear Minimum Pulse Width for the Core Register  
Asynchronous Preset Minimum Pulse Width for the Core Register  
Clock Minimum Pulse Width High for the Core Register  
Clock Minimum Pulse Width Low for the Core Register  
tWPRE  
tCKMPWH  
tCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
2-96  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Table 2-155 • Register Delays  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V  
Parameter  
tCLKQ  
Description  
–1  
Std. Units  
Clock-to-Q of the Core Register  
0.58 0.69  
0.45 0.53  
0.00 0.00  
0.48 0.57  
0.00 0.00  
0.42 0.50  
0.42 0.50  
0.00 0.00  
0.24 0.28  
0.00 0.00  
0.24 0.28  
0.30 0.34  
0.30 0.34  
0.56 0.64  
0.56 0.64  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSUD  
Data Setup Time for the Core Register  
tHD  
Data Hold Time for the Core Register  
tSUE  
Enable Setup Time for the Core Register  
tHE  
Enable Hold Time for the Core Register  
tCLR2Q  
tPRE2Q  
tREMCLR  
tRECCLR  
tREMPRE  
tRECPRE  
tWCLR  
Asynchronous Clear-to-Q of the Core Register  
Asynchronous Preset-to-Q of the Core Register  
Asynchronous Clear Removal Time for the Core Register  
Asynchronous Clear Recovery Time for the Core Register  
Asynchronous Preset Removal Time for the Core Register  
Asynchronous Preset Recovery Time for the Core Register  
Asynchronous Clear Minimum Pulse Width for the Core Register  
Asynchronous Preset Minimum Pulse Width for the Core Register  
Clock Minimum Pulse Width High for the Core Register  
Clock Minimum Pulse Width Low for the Core Register  
tWPRE  
tCKMPWH  
tCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-97  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Global Resource Characteristics  
RT3PE600L Clock Tree Topology  
Clock delays are device-specific. Figure 2-40 is an example of a global tree used for clock routing. The  
global tree presented in Figure 2-40 is driven by a CCC located on the west side of the RT3PE600L  
device. It is used to drive all D-flip-flops in the device.  
Central  
Global Rib  
CCC  
VersaTile  
Rows  
Global Spine  
Figure 2-40 • Example of Global Tree Use in an RT3PE600L Device for Clock Routing  
2-98  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Global Tree Timing Characteristics  
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not  
include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven  
and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer  
to the "Clock Conditioning Circuits" section on page 2-101. Table 2-156 to Table 2-159 on page 2-100  
present minimum and maximum global clock delays within each device. Minimum and maximum delays  
are measured with minimum and maximum loading.  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-156 • RT3PE600L Global Resource  
Military-Case Conditions: TJ = 125°C, VCC = 1.14 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Input High Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Units  
0.95 1.23 1.12 1.44  
0.94 1.26 1.10 1.48  
ns  
ns  
ns  
ns  
ns  
tRCKH  
tRCKMPWH Minimum Pulse Width High for Global Clock  
tRCKMPWL Minimum Pulse Width Low for Global Clock  
1.15  
1.33  
1.35  
1.56  
tRCKSW  
Maximum Skew for Global Clock  
0.32  
0.38  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating  
values.  
Table 2-157 • RT3PE3000L Global Resource  
Military-Case Conditions: TJ = 125°C, VCC = 1.14 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Input High Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Units  
1.81 2.09 2.13 2.45  
1.80 2.13 2.12 2.50  
ns  
ns  
ns  
ns  
ns  
tRCKH  
tRCKMPWH Minimum Pulse Width High for Global Clock  
tRCKMPWL Minimum Pulse Width Low for Global Clock  
1.15  
1.33  
1.35  
1.56  
tRCKSW  
Maximum Skew for Global Clock  
0.32  
0.38  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating  
values.  
Revision 5  
2-99  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
1.5 V DC Core Voltage  
Table 2-158 • RT3PE600L Global Resource  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Input High Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Units  
0.82 1.07 0.97 1.26  
0.81 1.10 0.95 1.30  
ns  
ns  
ns  
ns  
ns  
tRCKH  
tRCKMPWH Minimum Pulse Width High for Global Clock  
tRCKMPWL Minimum Pulse Width Low for Global Clock  
0.80  
0.98  
0.94  
1.15  
tRCKSW  
Maximum Skew for Global Clock  
0.30  
0.35  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating  
values.  
Table 2-159 • RT3PE3000L Global Resource  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Input High Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Units  
1.62 1.87 1.90 2.20  
1.61 1.90 1.89 2.24  
ns  
ns  
ns  
ns  
ns  
tRCKH  
tRCKMPWH Minimum Pulse Width High for Global Clock  
tRCKMPWL Minimum Pulse Width Low for Global Clock  
0.80  
0.98  
0.94  
1.15  
tRCKSW  
Maximum Skew for Global Clock  
0.30  
0.35  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating  
values.  
2-100  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Clock Conditioning Circuits  
CCC Electrical Specifications  
Timing Characteristics  
Table 2-160 • RT ProASIC3 CCC/PLL Specification  
For Devices Operating at 1.2 V DC Core Voltage  
Parameter  
Min.  
1.5  
Typ.  
Max.  
250  
Units  
MHz  
MHz  
ps  
Clock Conditioning Circuitry Input Frequency fIN_CCC  
Clock Conditioning Circuitry Output Frequency fOUT_CCC  
Delay Increments in Programmable Delay Blocks 1, 2  
Number of Programmable Values in Each Programmable Delay Block  
Serial Clock (SCLK) for Dynamic PLL4  
Input Cycle-to-Cycle Jitter (peak magnitude)  
Acquisition Time  
0.75  
250  
3603  
32  
100  
1
MHz  
ns  
LockControl = 0  
300  
6.0  
µs  
LockControl = 1  
ms  
Tracking Jitter5  
LockControl = 0  
2.5  
1.5  
ns  
ns  
%
LockControl = 1  
Output Duty Cycle  
48.5  
1.2  
51.5  
15.65  
15.65  
Delay Range in Block: Programmable Delay 1 1, 2  
Delay Range in Block: Programmable Delay 2 1, 2  
Delay Range in Block: Fixed Delay 1, 2  
CCC Output Peak-to-Peak Period Jitter FCCC_OUT  
ns  
ns  
ns  
0.025  
3.5  
Maximum peak-to-peak jitter data6,7  
SSO 2 SSO 4 SSO 8 SSO 16  
0.75 MHz to 50 MHz  
50 MHz to 160 MHz  
Notes:  
0.50%  
2.50%  
0.60%  
4.00%  
0.80%  
6.00%  
1.60%  
12.00%  
1. This delay is a function of voltage and temperature. See Table 2-5 on page 2-7 for deratings.  
2. T = 25°C, VCC = 1.2 V  
J
3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay  
increments are available. Refer to SmartGen online help for more information.  
4. Maximum value obtained for a –1 speed grade device in worst-case military conditions. For specific junction  
temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge.  
Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.  
6. Measurements done with LVTTL 3.3 V 8 mA I/O drive strength and high slew rate. VCC/VCCPLL = 1.14 V, VQ/PQ/TQ  
types of packages, 20 pF load.  
7. Switching I/Os are placed outside of the PLL bank.  
Revision 5  
2-101  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Table 2-161 • RT ProASIC3 CCC/PLL Specification  
For Devices Operating at 1.5 V DC Core Voltage  
Parameter  
Min.  
1.5  
Typ.  
Max.  
350  
Units  
MHz  
MHz  
ps  
Clock Conditioning Circuitry Input Frequency fIN_CCC  
Clock Conditioning Circuitry Output Frequency fOUT_CCC  
Delay Increments in Programmable Delay Blocks 1, 2  
Number of Programmable Values in Each Programmable Delay Block  
Serial Clock (SCLK) for Dynamic PLL4  
Input Cycle-to-Cycle Jitter (peak magnitude)  
Acquisition Time  
0.75  
350  
1603  
32  
110  
1.5  
MHz  
ns  
LockControl = 0  
300  
6.0  
µs  
LockControl = 1  
ms  
Tracking Jitter5  
LockControl = 0  
1.6  
0.8  
ns  
ns  
%
LockControl = 1  
Output Duty Cycle  
48.5  
0.6  
51.5  
5.56  
5.56  
Delay Range in Block: Programmable Delay 1 1, 2  
Delay Range in Block: Programmable Delay 2 1, 2  
Delay Range in Block: Fixed Delay 1, 2  
CCC Output Peak-to-Peak Period Jitter FCCC_OUT  
ns  
ns  
ns  
0.025  
2.2  
Maximum peak-to-peak period jitter data6,7  
SSO 2 SSO 4 SSO 8 SSO 16  
0.75 MHz to 50 MHz  
50 MHz to 200 MHz  
Notes:  
0.50%  
1.00%  
0.50%  
3.00%  
0.70%  
5.00%  
1.00%  
9.00%  
1. This delay is a function of voltage and temperature. See Table 2-5 on page 2-7 for deratings.  
2. T = 25°C, VCC = 1.5 V  
J
3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay  
increments are available. Refer to SmartGen online help for more information.  
4. Maximum value obtained for a –1 speed grade device in worst-case military conditions. For specific junction  
temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge.  
Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.  
6. Measurements done with LVTTL 3.3 V 8 mA I/O drive strength and high slew rate. VCC/VCCPLL = 1.425 V, VQ/PQ/TQ  
types of packages, 20 pF load.  
7. Switching I/Os are placed outside of the PLL bank.  
Output Signal  
Tperiod_max  
Tperiod_min  
Note: Peak-to-peak jitter measurements are defined by T  
= T  
– T  
.
peak-to-peak  
period_max  
period_min  
Figure 2-41 • Peak-to-Peak Jitter Definition  
2-102  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Embedded SRAM and FIFO Characteristics  
SRAM  
RAM4K9  
RAM512X18  
RADDR8  
RD17  
RD16  
ADDRA11 DOUTA8  
RADDR7  
DOUTA7  
DOUTA0  
ADDRA10  
ADDRA0  
DINA8  
RADDR0  
RD0  
DINA7  
RW1  
RW0  
DINA0  
WIDTHA1  
WIDTHA0  
PIPEA  
PIPE  
WMODEA  
BLKA  
WENA  
REN  
RCLK  
CLKA  
ADDRB11 DOUTB8  
ADDRB10 DOUTB7  
WADDR8  
WADDR7  
ADDRB0  
DOUTB0  
WADDR0  
WD17  
WD16  
DINB8  
DINB7  
WD0  
DINB0  
WW1  
WW0  
WIDTHB1  
WIDTHB0  
PIPEB  
WMODEB  
BLKB  
WEN  
WCLK  
WENB  
CLKB  
RESET  
RESET  
Figure 2-42 • RAM Models  
Revision 5  
2-103  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Timing Waveforms  
tCYC  
tCKH  
tCKL  
CLK  
[R|W]ADDR  
BLK  
tAS tAH  
A0  
A1  
A2  
tBKS  
tBKH  
tENS  
tENH  
WEN  
tCKQ1  
Dn  
D0  
D1  
D2  
DOUT|RD  
tDOH1  
Figure 2-43 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512×18  
tCYC  
tCKH  
tCKL  
CLK  
[R|W]ADDR  
BLK  
tAS tAH  
A0  
A1  
A2  
tBKS  
tBKH  
tENS  
tENH  
WEN  
tCKQ2  
Dn  
D0  
D1  
DOUT|RD  
tDOH2  
Figure 2-44 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512×18  
2-104  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
tCYC  
tCKH  
tCKL  
CLK  
tAS  
tAH  
A0  
tBKS  
A1  
A2  
[R|W]ADDR  
BLK  
tBKH  
tENS  
tENH  
WEN  
tDS  
tDH  
DI1  
DI0  
DIN|WD  
DOUT|RD  
Dn  
D2  
Figure 2-45 • RAM Write, Output Retained Output. Applicable to Both RAM4K9 and RAM512×18  
tCYC  
tCKH  
tCKL  
CLK  
ADDR  
BLK  
tAS tAH  
A0  
tBKS  
A1  
A2  
tBKH  
tENS  
WEN  
DIN  
tDS tDH  
DI1  
DI0  
DI2  
DOUT  
Dn  
DI0  
DI1  
(pass-through)  
DO  
DI0  
Dn  
DI1  
(pipelined)  
Figure 2-46 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only.  
Revision 5  
2-105  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
t
CYC  
t
t
CKL  
CKH  
CLK  
RESET  
t
RSTBQ  
D
D
DOUT|RD  
m
n
Figure 2-47 • RAM Reset. Applicable to Both RAM4K9 and RAM512×18.  
2-106  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
Table 2-162 • RAM4K9  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V  
Parameter  
tAS  
Description  
–1 Std. Units  
0.35 0.41 ns  
0.00 0.00 ns  
0.20 0.23 ns  
0.13 0.16 ns  
0.32 0.38 ns  
0.03 0.03 ns  
0.25 0.30 ns  
0.00 0.00 ns  
3.26 3.84 ns  
2.47 2.91 ns  
1.24 1.46 ns  
Address setup time  
tAH  
Address hold time  
tENS  
tENH  
tBKS  
tBKH  
tDS  
REN, WEN setup time  
REN, WEN hold time  
BLK setup time  
BLK hold time  
Input data (DIN) setup time  
tDH  
Input data (DIN) hold time  
tCKQ1  
Clock High to new data valid on DOUT (output retained, WMODE = 0)  
Clock High to new data valid on DOUT (flow-through, WMODE = 1)  
Clock High to new data valid on DOUT (pipelined)  
tCKQ2  
1
tC2CWWL  
Address collision clk-to-clk delay for reliable write after write on same address – 0.25 0.30 ns  
applicable to closing edge  
1
tC2CRWH  
Address collision clk-to-clk delay for reliable read access after write on same address 0.27 0.32 ns  
– applicable to opening edge  
1
tC2CWRH  
Address collision clk-to-clk delay for reliable write access after read on same address 0.37 0.44 ns  
– applicable to opening edge  
tRSTBQ  
RESET Low to data out Low on DOUT (flow-through)  
RESET Low to data out Low on DOUT (pipelined)  
1.28 1.50 ns  
1.28 1.50 ns  
0.40 0.47 ns  
2.08 2.44 ns  
0.66 0.76 ns  
6.08 6.99 ns  
164 143 MHz  
tREMRSTB RESET removal  
tRECRSTB RESET recovery  
tMPWRSTB RESET minimum pulse width  
tCYC  
Clock cycle time  
FMAX  
Notes:  
Maximum frequency  
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-  
Based cSoCs and FPGAs.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-107  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Table 2-163 • RAM4K9  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V  
Parameter  
tAS  
Description  
–1 Std. Units  
0.26 0.31 ns  
0.00 0.00 ns  
0.15 0.18 ns  
0.10 0.12 ns  
0.25 0.29 ns  
0.02 0.02 ns  
0.19 0.23 ns  
0.00 0.00 ns  
2.50 2.93 ns  
1.89 2.22 ns  
0.95 1.11 ns  
Address setup time  
Address hold time  
tAH  
tENS  
tENH  
tBKS  
tBKH  
tDS  
REN, WEN setup time  
REN, WEN hold time  
BLK setup time  
BLK hold time  
Input data (DIN) setup time  
Input data (DIN) hold time  
tDH  
tCKQ1  
Clock High to new data valid on DOUT (output retained, WMODE = 0)  
Clock High to new data valid on DOUT (flow-through, WMODE = 1)  
Clock High to new data valid on DOUT (pipelined)  
tCKQ2  
1
tC2CWWL  
Address collision clk-to-clk delay for reliable write after write on same address – 0.24 0.29 ns  
applicable to closing edge  
1
tC2CRWH  
Address collision clk-to-clk delay for reliable read access after write on same address 0.20 0.24 ns  
– applicable to opening edge  
1
tC2CWRH  
Address collision clk-to-clk delay for reliable write access after read on same address 0.25 0.30 ns  
– applicable to opening edge  
tRSTBQ  
RESET Low to data out Low on DOUT (flow-through)  
RESET Low to data out Low on DOUT (pipelined)  
0.98 1.15 ns  
0.98 1.15 ns  
0.30 0.36 ns  
1.59 1.87 ns  
0.59 0.67 ns  
5.39 6.20 ns  
185 161 MHz  
tREMRSTB RESET removal  
tRECRSTB RESET recovery  
tMPWRSTB RESET minimum pulse width  
tCYC  
Clock cycle time  
FMAX  
Notes:  
Maximum frequency  
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-  
Based cSoCs and FPGAs.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
2-108  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Table 2-164 • RAM512X18  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V  
Parameter  
tAS  
Description  
–1 Std. Units  
0.35 0.41 ns  
0.00 0.00 ns  
0.13 0.15 ns  
0.08 0.09 ns  
0.25 0.30 ns  
0.00 0.00 ns  
2.99 3.52 ns  
1.24 1.46 ns  
Address setup time  
tAH  
Address hold time  
tENS  
REN, WEN setup time  
REN, WEN hold time  
Input data (WD) setup time  
Input data (WD) hold time  
tENH  
tDS  
tDH  
tCKQ1  
tCKQ2  
Clock High to new data valid on RD (output retained)  
Clock High to new data valid on RD (pipelined)  
1
tC2CRWH  
Address collision clk-to-clk delay for reliable read access after write on same address 0.25 0.29 ns  
– applicable to opening edge  
1
tC2CWRH  
Address collision clk-to-clk delay for reliable write access after read on same address 0.31 0.36 ns  
– applicable to opening edge  
tRSTBQ  
RESET Low to data out Low on RD (flow through)  
RESET Low to data out Low on RD (pipelined)  
1.28 1.50 ns  
1.28 1.50 ns  
0.40 0.47 ns  
2.08 2.44 ns  
0.66 0.76 ns  
6.08 6.99 ns  
164 143 MHz  
tREMRSTB RESET removal  
tRECRSTB RESET recovery  
tMPWRSTB RESET minimum pulse width  
tCYC  
Clock cycle time  
FMAX  
Notes:  
Maximum frequency  
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-  
Based cSoCs and FPGAs.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-109  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Table 2-165 • RAM512X18  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V  
Parameter  
tAS  
Description  
–1 Std. Units  
0.26 0.31 ns  
0.00 0.00 ns  
0.10 0.11 ns  
0.06 0.07 ns  
0.19 0.23 ns  
0.00 0.00 ns  
2.29 2.69 ns  
0.95 1.12 ns  
Address setup time  
tAH  
Address hold time  
tENS  
REN, WEN setup time  
REN, WEN hold time  
Input data (WD) setup time  
Input data (WD) hold time  
tENH  
tDS  
tDH  
tCKQ1  
tCKQ2  
Clock High to new data valid on RD (output retained)  
Clock High to new data valid on RD (pipelined)  
1
tC2CRWH  
Address collision clk-to-clk delay for reliable read access after write on same address 0.18 0.21 ns  
– applicable to opening edge  
1
tC2CWRH  
Address collision clk-to-clk delay for reliable write access after read on same address 0.21 0.25 ns  
– applicable to opening edge  
tRSTBQ  
RESET Low to data out Low on RD (flow through)  
RESET Low to data out Low on RD (pipelined)  
0.98 1.15 ns  
0.98 1.15 ns  
0.30 0.36 ns  
1.59 1.87 ns  
0.59 0.67 ns  
5.39 6.20 ns  
185 161 MHz  
tREMRSTB RESET removal  
tRECRSTB RESET recovery  
tMPWRSTB RESET minimum pulse width  
tCYC  
Clock cycle time  
FMAX  
Notes:  
Maximum frequency  
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-  
Based cSoCs and FPGAs.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
2-110  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
FIFO  
FIFO4K18  
RW2  
RW1  
RW0  
RD17  
RD16  
WW2  
WW1  
WW0  
RD0  
ESTOP  
FSTOP  
FULL  
AFULL  
EMPTY  
AEVAL11  
AEVAL10  
AEMPTY  
AEVAL0  
AFVAL11  
AFVAL10  
AFVAL0  
REN  
RBLK  
RCLK  
WD17  
WD16  
WD0  
WEN  
WBLK  
WCLK  
RPIPE  
RESET  
Figure 2-48 • FIFO Model  
Revision 5  
2-111  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Timing Waveforms  
tCYC  
RCLK  
tENH  
tENS  
REN  
tBKS  
tBKH  
RBLK  
tCKQ1  
RD  
D1  
Dn  
D0  
D2  
(flow-through)  
tCKQ2  
RD  
(pipelined)  
Dn  
D0  
D1  
Figure 2-49 • FIFO Read  
tCYC  
WCLK  
tENS  
tENH  
WEN  
tBKS  
tBKH  
WBLK  
tDS  
tDH  
DI1  
DI0  
WD  
Figure 2-50 • FIFO Write  
2-112  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
RCLK/  
WCLK  
tMPWRSTB  
tRSTCK  
RESET  
EMPTY  
AEMPTY  
FULL  
tRSTFG  
tRSTAF  
tRSTFG  
tRSTAF  
AFULL  
WA/RA  
MATCH (A0)  
(Address Counter)  
Figure 2-51 • FIFO Reset  
tCYC  
RCLK  
tRCKEF  
EMPTY  
tCKAF  
AEMPTY  
WA/RA  
NO MATCH  
NO MATCH  
Dist = AEF_TH  
MATCH (EMPTY)  
(Address Counter)  
Figure 2-52 • FIFO EMPTY Flag and AEMPTY Flag Assertion  
Revision 5  
2-113  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
tCYC  
WCLK  
tWCKFF  
FULL  
tCKAF  
AFULL  
WA/RA  
NO MATCH  
NO MATCH  
Dist = AFF_TH  
MATCH (FULL)  
(Address Counter)  
Figure 2-53 • FIFO FULL Flag and AFULL Flag Assertion  
WCLK  
MATCH  
WA/RA  
NO MATCH  
NO MATCH  
2nd Rising  
Edge  
After 1st  
Write  
NO MATCH  
NO MATCH  
Dist = AEF_TH + 1  
(Address Counter)  
(EMPTY)  
1st Rising  
Edge  
After 1st  
Write  
RCLK  
EMPTY  
t
RCKEF  
t
CKAF  
AEMPTY  
Figure 2-54 • FIFO EMPTY Flag and AEMPTY Flag Deassertion  
RCLK  
WA/RA  
(Address Counter)  
Dist = AFF_TH – 1  
MATCH (FULL)  
1st Rising  
NO MATCH  
NO MATCH  
1st Rising  
Edge  
After 2nd  
Read  
NO MATCH  
NO MATCH  
Edge  
After 1st  
Read  
WCLK  
FULL  
t
WCKF  
t
CKAF  
AFULL  
Figure 2-55 • FIFO FULL Flag and AFULL Flag Deassertion  
2-114  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Timing Characteristics  
Table 2-166 • FIFO  
Worst Military-Case Conditions: TJ = 125°C, VCC = 1.14 V  
Parameter  
tENS  
Description  
–1  
Std. Units  
REN, WEN Setup Time  
REN, WEN Hold Time  
BLK Setup Time  
1.91 2.24  
0.03 0.03  
0.40 0.47  
0.00 0.00  
0.25 0.30  
0.00 0.00  
3.26 3.84  
1.24 1.46  
2.38 2.80  
2.26 2.66  
8.57 10.08  
2.34 2.76  
8.48 9.97  
1.28 1.50  
1.28 1.50  
0.40 0.47  
2.08 2.44  
0.66 0.76  
6.08 6.99  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
tENH  
tBKS  
tBKH  
BLK Hold Time  
tDS  
Input Data (WD) Setup Time  
tDH  
Input Data (WD) Hold Time  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock High to New Data Valid on RD (flow-through)  
Clock High to New Data Valid on RD (pipelined)  
RCLK High to Empty Flag Valid  
WCLK High to Full Flag Valid  
Clock High to Almost Empty/Full Flag Valid  
RESET Low to Empty/Full Flag Valid  
RESET Low to Almost Empty/Full Flag Valid  
RESET Low to Data Out Low on RD (flow-through)  
RESET Low to Data Out Low on RD (pipelined)  
RESET Removal  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
RESET Recovery  
RESET Minimum Pulse Width  
Clock Cycle Time  
FMAX  
Maximum Frequency for FIFO  
164  
143  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating  
values.  
Revision 5  
2-115  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs DC and Switching Characteristics  
Table 2-167 • FIFO  
Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V  
Parameter  
tENS  
Description  
–1  
Std. Units  
REN, WEN Setup Time  
REN, WEN Hold Time  
BLK Setup Time  
1.46 1.71  
0.02 0.02  
0.40 0.47  
0.00 0.00  
0.19 0.23  
0.00 0.00  
2.50 2.93  
0.95 1.11  
1.82 2.14  
1.73 2.03  
6.56 7.71  
1.79 2.11  
6.49 7.63  
0.98 1.15  
0.98 1.15  
0.30 0.36  
1.59 1.87  
0.59 0.67  
5.39 6.20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tENH  
tBKS  
tBKH  
BLK Hold Time  
tDS  
Input Data (WD) Setup Time  
tDH  
Input Data (WD) Hold Time  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock High to New Data Valid on RD (flow-through)  
Clock High to New Data Valid on RD (pipelined)  
RCLK High to Empty Flag Valid  
WCLK High to Full Flag Valid  
Clock High to Almost Empty/Full Flag Valid  
RESET Low to Empty/Full Flag Valid  
RESET Low to Almost Empty/Full Flag Valid  
RESET Low to Data Out Low on RD (flow-through)  
RESET Low to Data Out Low on RD (pipelined)  
RESET Removal  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
RESET Recovery  
RESET Minimum Pulse Width  
Clock Cycle Time  
FMAX  
Maximum Frequency for FIFO  
185 161 MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating  
values.  
2-116  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Embedded FlashROM Characteristics  
t
t
t
SU  
SU  
SU  
CLK  
t
t
t
HOLD  
HOLD  
HOLD  
Address  
A
A
1
0
t
t
t
CKQ2  
CKQ2  
CKQ2  
D
D
D
Data  
0
0
1
Figure 2-56 • Timing Diagram  
Timing Characteristics  
Table 2-168 • Embedded FlashROM Access Time  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V  
Parameter  
tSU  
Description  
–1  
Std.  
Units  
ns  
Address Setup Time  
Address Hold Time  
Clock to Out  
0.74  
0.00  
16.18  
15  
0.87  
0.00  
19.02  
15  
tHOLD  
tCK2Q  
ns  
ns  
FMAX  
Maximum Clock Frequency  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Table 2-169 • Embedded FlashROM Access Time  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V  
Parameter  
tSU  
Description  
Address Setup Time  
–1  
0.58  
0.00  
12.77  
15  
Std.  
0.68  
0.00  
15.01  
15  
Units  
ns  
tHOLD  
tCK2Q  
Address Hold Time  
Clock to Out  
ns  
ns  
FMAX  
Maximum Clock Frequency  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating values.  
Revision 5  
2-117  
JTAG 1532 Characteristics  
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to  
the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O  
Characteristics" section on page 2-16 for more details.  
Timing Characteristics  
Table 2-170 • JTAG 1532  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V  
Parameter  
tDISU  
Description  
Test Data Input Setup Time  
–1  
Std.  
0.94  
1.88  
0.94  
1.88  
7.52  
31.33  
15.90  
0.56  
0.00  
TBD  
Units  
ns  
0.80  
1.60  
0.80  
1.60  
6.39  
26.63  
18.70  
0.48  
0.00  
TBD  
tDIHD  
Test Data Input Hold Time  
Test Mode Select Setup Time  
Test Mode Select Hold Time  
Clock to Q (data out)  
ns  
tTMSSU  
ns  
tTMDHD  
ns  
tTCK2Q  
ns  
tRSTB2Q  
FTCKMAX  
tTRSTREM  
tTRSTREC  
tTRSTMPW  
Reset to Q (data out)  
ns  
TCK Maximum Frequency  
ResetB Removal Time  
ResetB Recovery Time  
ResetB Minimum Pulse  
MHz  
ns  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating  
values.  
Table 2-171 • JTAG 1532  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V  
Parameter  
tDISU  
Description  
Test Data Input Setup Time  
–1  
Std.  
0.71  
1.42  
0.71  
1.42  
7.10  
28.41  
19.00  
0.00  
0.28  
TBD  
Units  
ns  
0.60  
1.21  
0.60  
1.21  
6.04  
24.15  
22.00  
0.00  
0.24  
TBD  
tDIHD  
Test Data Input Hold Time  
Test Mode Select Setup Time  
Test Mode Select Hold Time  
Clock to Q (data out)  
ns  
tTMSSU  
ns  
tTMDHD  
ns  
tTCK2Q  
ns  
tRSTB2Q  
FTCKMAX  
tTRSTREM  
tTRSTREC  
tTRSTMPW  
Reset to Q (data out)  
ns  
TCK Maximum Frequency  
ResetB Removal Time  
ResetB Recovery Time  
ResetB Minimum Pulse  
MHz  
ns  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-7 for derating  
values.  
3 – Pin Descriptions  
Supply Pins  
GND  
Ground  
Ground supply voltage to the core, I/O outputs, and I/O logic.  
GNDQ  
Ground (quiet)  
Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is  
decoupled from the simultaneous switching noise originated from the output buffer ground domain. This  
minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always  
be connected to GND on the board.  
VCC  
Core Supply Voltage  
Supply voltage to the FPGA core, nominally 1.5 V or 1.2 V. VCC is required for powering the JTAG state  
machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected  
devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.  
VCC can be switched dynamically from 1.2 V to 1.5 V or vice versa. This allows in-system programming  
(ISP) when VCC is at 1.5 V and the benefit of low power operation when VCC is at 1.2 V.  
VCCIBx  
I/O Supply Voltage  
Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to  
eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a  
separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.2 V,  
1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI  
pins tied to GND.  
VMVx  
I/O Supply Voltage (quiet)  
Quiet supply voltage to the input buffers of each I/O bank. x is the bank number. Within the package, the  
VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within  
the package and improves input signal integrity. Each bank must have at least one VMV connection, and  
no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to  
provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2 V, 1.5 V, 1.8 V,  
2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND.  
VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be  
connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1,  
etc.).  
VCCPLA/B/C/D/E/F  
PLL Supply Voltage  
Supply voltage to analog PLL, nominally 1.5 V or 1.2 V.  
When the PLLs are not used, the Microsemi Libero SoC place-and-route tool automatically disables the  
unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to  
ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple  
VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning  
Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the Radiation-Tolerant  
ProASIC3 Low Power Spaceflight FPGA Fabric User’s Guide for a complete board solution for the PLL  
analog power supply and ground.  
There are six VCCPLX pins on RT ProASIC3 devices.  
VCOMPLA/B/C/D/E/F  
PLL Ground  
Ground to analog PLL power supplies. When the PLLs are not used, the Microsemi Libero SoC place-  
and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie  
unused VCCPLx and VCOMPLx pins to ground.  
There are six VCOMPL pins (PLL ground) on RT ProASIC3 devices.  
Revision 5  
3-1  
Pin Descriptions  
VJTAG  
JTAG Supply Voltage  
RT ProASIC3 devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at  
any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives  
greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is  
neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It  
should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a  
device is in a JTAG chain of interconnected boards, the board containing the device can be powered  
down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be  
able to transition the device, even in bypass mode.  
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent  
filtering capacitors rather than supplying them from a common rail.  
VPUMP  
Programming Supply Voltage  
During programming, VPUMP should be 3.3 V nominal. During operation, VPUMP should be tied to  
ground to optimize total ionizing dose performance in spaceflight applications.  
When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of  
oscillation from the charge pump circuitry.  
For proper programming, 0.01 µF and 0.33 µF capacitors (both rated at 16 V) are to be connected in  
parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.  
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent  
filtering capacitors rather than supplying them from a common rail.  
User-Defined Supply Pins  
VREF  
I/O Voltage Reference  
Reference voltage for I/O minibanks in RT ProASIC3 devices. A minibank is the region of scope of a  
VREF pin. Refer to the "I/O Banks and I/O Standards Compatibility" section of the I/O Structures in  
IGLOOe and ProASIC3 Devices chapter of the Radiation-Tolerant ProASIC Low Power Spaceflight  
FPGA Fabric User’s Guide for more information. VREF pins are configured by the user from regular I/Os,  
and any I/O in a bank, except JTAG I/Os, can be designated the voltage reference I/O. Only certain I/O  
standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and (II), and  
GTL/GTL+. One VREF pin can support the number of I/Os available in its minibank.  
User Pins  
I/O  
User Input/Output  
The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are  
compatible with the I/O standard selected. 5 V input and output tolerance can be achieved with certain  
I/O standards and configuration; refer to the Radiation-Tolerant ProASIC3 Low Power Spaceflight FPGA  
Fabric User’s Guide for more information.  
During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC  
supplies continuously powered up, when the device transitions from programming to operating mode, the  
I/Os are instantly configured to the desired user configuration.  
Unused I/Os are configured as follows:  
Output buffer is disabled (with tristate value of high impedance)  
Input buffer is disabled (with tristate value of high impedance)  
Weak pull-up is programmed  
GL  
Globals  
GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the  
global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have  
identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.  
See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power  
Flash Devices and Mixed Signal FPGAs" chapter of the Radiation-Tolerant ProASIC3 Low Power  
3-2  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Spaceflight FPGA Fabric User’s Guide. All inputs labeled GC/GF are direct inputs into the quadrant  
clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to  
the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest  
are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one  
input can be used as a global input.  
Refer to the "I/O Structures in IGLOOe and ProASIC3E Devices" section of the Radiation-Tolerant  
ProASIC3 Low Power Spaceflight FPGA Fabric User’s Guide for an explanation of the naming of global  
pins.  
FF  
Flash*Freeze Mode Activation Pin  
Flash*Freeze mode is available on RT ProASIC3 devices. The FF pin is a dedicated input pin used to  
enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-  
ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the  
design, the FF pin is available as a regular I/O. The FF pin can be configured as a Schmitt trigger input.  
When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering  
Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.  
The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in  
which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin  
should be treated as a sensitive asynchronous signal. When defining pin placement and board layout,  
simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be  
considered.  
Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both  
Flash*Freeze mode and normal operation mode. No user intervention is required.  
Table 3-1 shows the Flash*Freeze pin location on the available packages for RT ProASIC3 devices. The  
Flash*Freeze pin location is independent of device, allowing migration to larger or smaller devices while  
maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology and Low Power  
Modes" chapter of the Radiation-Tolerant ProASIC3 Low Power Spaceflight FPGA Fabric User’s Guide  
for more information on I/O states during Flash*Freeze mode.  
Table 3-1 • Flash*Freeze Pin Location in RT ProASIC3 Packages (device-independent)  
RT ProASIC3 Packages  
CG/LG484  
Flash*Freeze Pin  
W6  
CG/LG896  
AH4  
Revision 5  
3-3  
Pin Descriptions  
JTAG Pins  
Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run  
at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to  
operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the  
part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a  
separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB  
design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST  
pin could be tied to GND.  
Table 3-2 gives JTAG pin recommendations for flight  
Table 3-2 • JTAG Pins – Recommendations for Flight  
JTAG Pins  
TCK  
Configurations  
Tied off TCK to ground through a resistor placed close to the FPGA pins  
Must be left unconnected  
TDO  
TDI  
Can be left unconnected (equipped with internal weak pull-up resistor)  
Can be left unconnected (equipped with internal weak pull-up resistor)  
Tied off TRST to ground through a resistor placed close to the FPGA pin.  
TMS  
TRST  
TCK  
Test Clock  
Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-  
up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor  
placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.  
Note that to operate at all VJTAG voltages, 500 Ω to 1 kΩ will satisfy the requirements. Refer to Table 3-3  
for more information.  
Table 3-3 • Recommended Tie-Off Values for the TCK and TRST Pins  
VJTAG  
Tie-Off Resistance  
200 Ω to 1 kΩ  
200 Ω to 1 kΩ  
500 Ω to 1 kΩ  
500 Ω to 1 kΩ  
VJTAG at 3.3 V  
VJTAG at 2.5 V  
VJTAG at 1.8 V  
VJTAG at 1.5 V  
Notes:  
1. Equivalent parallel resistance if more than one device is on the JTAG chain  
2. The TCK pin can be pulled up/down.  
3. The TRST pin is pulled down.  
TDI  
Test Data Input  
Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor  
on the TDI pin.  
TDO  
Serial output for JTAG boundary scan, ISP, and UJTAG usage.  
TMS Test Mode Select  
Test Data Output  
The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an  
internal weak pull-up resistor on the TMS pin.  
TRST  
Boundary Scan Reset Pin  
The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan  
circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-  
down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor  
values must be chosen from Table 3-3 and must satisfy the parallel resistance value requirement. The  
3-4  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
values in Table 3-3 correspond to the resistor recommended when a single device is used, and the  
equivalent parallel resistor when multiple devices are connected via a JTAG chain.  
In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In  
such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA  
pin.  
Note that to operate at all VJTAG voltages, 500 Ω to 1 kΩ will satisfy the requirements.  
Special Function Pins  
NC  
No Connect  
This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be  
left floating with no effect on the operation of the device.  
DC  
Do Not Connect  
This pin should not be connected to any signals on the PCB. These pins should be left unconnected.  
Related Documents  
User’s Guides  
Radiation-Tolerant ProASIC3 Low Power Spaceflight FPGA Fabric User’s Guide  
http://www.microsemi.com/soc/documents/RTPA3_UG.pdf  
Packaging  
The following documents provide packaging information and device selection for low power flash  
devices.  
Product Catalog  
http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf  
Lists devices currently recommended for new designs and the packages available for each member of  
the family. Use this document or the datasheet tables to determine the best package for your design, and  
which package drawing to use.  
Package Mechanical Drawings  
http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf  
This document contains the package mechanical drawings for all packages currently or previously  
supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.  
Additional packaging materials are on the Microsemi SoC Products Group website at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
Revision 5  
3-5  
4 – Package Pin Assignments  
CQ256  
1
192  
191  
190  
189  
Pin 1  
2
3
4
Ceramic  
Tie Bar  
256-Pin CQFP  
61  
62  
63  
64  
132  
131  
130  
129  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
Revision 5  
4-1  
Package Pin Assignments  
CQ256  
CQ256  
CQ256  
Pin  
Pin  
Number RT3PE600L Function  
Pin  
Number RT3PE600L Function  
Number RT3PE600L Function  
1
VCCPLA  
VCOMPLA  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
IO115NDB6V1  
GFA0/IO118NDB6V1  
GFA1/IO118PDB6V1  
IO112PDB6V1  
IO112NDB6V1  
IO114PDB6V1  
IO114NDB6V1  
VCC  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
GND  
2
VCCIB5  
3
GNDQ  
IO98NDB5V2  
IO98PDB5V2  
IO94NDB5V1  
IO94PDB5V1  
IO96NDB5V2  
IO96PDB5V2  
IO92NDB5V1  
IO92PDB5V1  
GND  
4
VCCIB7  
5
GAC2/IO132PDB7V1  
IO132NDB7V1  
GAA2/IO134PDB7V1  
IO134NDB7V1  
VCC  
6
7
8
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
GND  
VCCIB6  
VCCIB7  
IO109PDB6V0  
IO109NDB6V0  
IO110PDB6V0  
IO110NDB6V0  
IO108PDB6V0  
IO108NDB6V0  
IO106PDB6V0  
IO106NDB6V0  
VCC  
IO128PDB7V1  
IO128NDB7V1  
IO130PDB7V1  
IO130NDB7V1  
IO124PDB7V0  
IO124NDB7V0  
IO126PDB7V0  
IO126NDB7V0  
VCC  
VCCIB5  
IO90NDB5V1  
IO90PDB5V1  
IO93NDB5V1  
IO93PDB5V1  
IO88NDB5V0  
IO88PDB5V0  
VCC  
GND  
GND  
GND  
VCCIB6  
VCCIB5  
VCCIB7  
GEC1/IO104PDB6V0  
GEC0/IO104NDB6V0  
GEA1/IO102PDB6V0  
GEA0/IO102NDB6V0  
VCCIB6  
IO86NDB5V0  
IO86PDB5V0  
IO87NDB5V0  
IO87PDB5V0  
IO80NDB4V1  
IO80PDB4V1  
IO79NDB4V1  
IO79PDB4V1  
VCC  
IO123PDB7V0  
IO123NDB7V0  
IO122PDB7V0  
IO122NDB7V0  
GFC1/IO120PDB7V0  
GFC0/IO120NDB7V0  
GFB1/IO119PDB7V0  
GFB0/IO119NDB7V0  
GND  
GNDQ  
VCOMPLE  
VCCPLE  
GNDQ  
IO101NDB5V2  
GEA2/IO101PDB5V2  
IO100NDB5V2  
GEB2/IO100PDB5V2  
VCC  
GND  
VCOMPLF  
VCCIB4  
VCCPLF  
IO78NDB4V1  
IO78PDB4V1  
IO76NDB4V1  
GND  
GFC2/IO115PDB6V1  
4-2  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
CQ256  
CQ256  
CQ256  
Pin  
Number RT3PE600L Function  
Pin  
Number RT3PE600L Function  
Pin  
Number RT3PE600L Function  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
IO76PDB4V1  
IO77NDB4V1  
IO77PDB4V1  
GND  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
GND  
VCC  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
IO44NDB2V1  
IO44PDB2V1  
IO42NDB2V0  
IO42PDB2V0  
IO40NDB2V0  
IO40PDB2V0  
VCCIB2  
IO62NDB3V1  
IO62PDB3V1  
IO60NDB3V1  
IO60PDB3V1  
IO61NDB3V1  
IO61PDB3V1  
VCCIB3  
VCCIB4  
IO74NDB4V1  
IO74PDB4V1  
IO71NDB4V0  
IO71PDB4V0  
IO72NDB4V0  
IO72PDB4V0  
IO70NDB4V0  
GDC2/IO70PDB4V0  
VCC  
GND  
VCC  
GND  
IO38NDB2V0  
GBC2/IO38PDB2V0  
IO36NDB2V0  
GBA2/IO36PDB2V0  
VCCIB2  
VCC  
IO58NDB3V0  
IO58PDB3V0  
IO56NDB3V0  
IO56PDB3V0  
IO55NDB3V0  
GCC2/IO55PDB3V0  
GCA1/IO52PDB3V0  
GCA0/IO52NDB3V0  
GND  
GND  
GNDQ  
VCCIB4  
VCOMPLB  
IO68NDB4V0  
GDA2/IO68PDB4V0  
GDB2/IO69PSB4V0  
GNDQ  
VCCPLB  
GNDQ  
GBA1/IO35PDB1V1  
GBA0/IO35NDB1V1  
GBB1/IO34PDB1V1  
GBB0/IO34NDB1V1  
VCCIB1  
TCK  
VCCPLC  
TDI  
VCOMPLC  
TMS  
GND  
VCCPLD  
IO49PSB2V1  
GCC0/IO50NDB2V1  
GCC1/IO50PDB2V1  
IO48NDB2V1  
IO48PDB2V1  
IO47NDB2V1  
IO47PDB2V1  
IO46NDB2V1  
IO46PDB2V1  
VCCIB2  
GND  
VCOMPLD  
VPUMP  
VCC  
GBC1/IO33PDB1V1  
GBC0/IO33NDB1V1  
IO29PDB1V1  
IO29NDB1V1  
IO30PDB1V1  
IO30NDB1V1  
VCCIB1  
GNDQ  
TDO  
TRST  
VJTAG  
GDB0/IO66NDB3V1  
GDB1/IO66PDB3V1  
IO64NDB3V1  
IO64PDB3V1  
VCCIB3  
GND  
GND  
IO31PDB1V1  
IO31NDB1V1  
VCC  
Revision 5  
4-3  
Package Pin Assignments  
CQ256  
CQ256  
Pin  
Pin  
Number RT3PE600L Function  
Number RT3PE600L Function  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
IO25PDB1V0  
IO25NDB1V0  
IO27PDB1V0  
IO27NDB1V0  
IO24PDB1V0  
IO24NDB1V0  
VCCIB1  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
IO07NDB0V1  
IO03PDB0V0  
IO03NDB0V0  
VCCIB0  
GND  
VCC  
GAB1/IO01PDB0V0  
GAB0/IO01NDB0V0  
GAA1/IO00PDB0V0  
GAA0/IO00NDB0V0  
GNDQ  
GND  
VCC  
IO23PDB1V0  
IO23NDB1V0  
IO22PDB1V0  
IO22NDB1V0  
IO19PDB0V2  
IO19NDB0V2  
IO15PDB0V2  
IO15NDB0V2  
VCCIB0  
GND  
VCC  
IO13PDB0V2  
IO13NDB0V2  
IO11PDB0V1  
IO11NDB0V1  
IO14PDB0V2  
IO14NDB0V2  
IO09PDB0V1  
IO09NDB0V1  
VCCIB0  
GND  
IO05PDB0V0  
IO05NDB0V0  
IO08PDB0V1  
IO08NDB0V1  
IO07PDB0V1  
4-4  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
CQ256  
CQ256  
CQ256  
Pin  
Number RT3PE3000L Function  
Pin  
Number RT3PE3000L Function  
Pin  
Number RT3PE3000L Function  
1
VCCPLA  
VCOMPLA  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
IO267NDB6V4  
GFA0/IO273NDB6V4  
GFA1/IO273PDB6V4  
IO259PDB6V3  
IO259NDB6V3  
IO264PDB6V3  
IO264NDB6V3  
VCC  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
GND  
2
VCCIB5  
3
GNDQ  
IO223NDB5V3  
IO223PDB5V3  
IO226NDB5V4  
IO226PDB5V4  
IO215NDB5V2  
IO215PDB5V2  
IO218NDB5V3  
IO218PDB5V3  
GND  
4
VCCIB7  
5
GAB2/IO308PDB7V4  
IO308NDB7V4  
GAA2/IO309PDB7V4  
IO309NDB7V4  
VCC  
6
7
8
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
GND  
VCCIB6  
VCCIB7  
IO251PDB6V2  
IO251NDB6V2  
IO256PDB6V2  
IO256NDB6V2  
IO243PDB6V1  
IO243NDB6V1  
IO248PDB6V1  
IO248NDB6V1  
VCC  
IO304PDB7V3  
IO304NDB7V3  
IO299PDB7V3  
IO299NDB7V3  
IO296PDB7V2  
IO296NDB7V2  
IO291PDB7V2  
IO291NDB7V2  
VCC  
VCCIB5  
IO207NDB5V1  
IO207PDB5V1  
IO210NDB5V2  
IO210PDB5V2  
IO199NDB5V0  
IO199PDB5V0  
VCC  
GND  
GND  
GND  
VCCIB6  
VCCIB5  
VCCIB7  
GEB1/IO235PDB6V0  
GEB0/IO235NDB6V0  
IO240PDB6V0  
IO240NDB6V0  
VCCIB6  
IO202NDB5V1  
IO202PDB5V1  
IO194NDB5V0  
IO194PDB5V0  
IO192NDB4V4  
IO192PDB4V4  
IO186NDB4V4  
IO186PDB4V4  
VCC  
IO288PDB7V1  
IO288NDB7V1  
IO283PDB7V1  
IO283NDB7V1  
IO280PDB7V0  
IO280NDB7V0  
GFC1/IO275PDB7V0  
GFC0/IO275NDB7V0  
GND  
GNDQ  
VCOMPLE  
VCCPLE  
GNDQ  
IO233NDB5V4  
GEA2/IO233PDB5V4  
IO232NDB5V4  
GEB2/IO232PDB5V4  
VCC  
GND  
VCOMPLF  
VCCIB4  
VCCPLF  
IO183NDB4V3  
IO183PDB4V3  
IO178NDB4V3  
GND  
IO267PDB6V4  
Revision 5  
4-5  
Package Pin Assignments  
CQ256  
CQ256  
CQ256  
Pin  
Pin  
Number RT3PE3000L Function  
Pin  
Number RT3PE3000L Function  
Number RT3PE3000L Function  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
IO178PDB4V3  
IO175NDB4V2  
IO175PDB4V2  
GND  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
GND  
VCC  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
IO96NDB2V1  
IO96PDB2V1  
IO91NDB2V1  
IO91PDB2V1  
IO88NDB2V0  
IO88PDB2V0  
VCCIB2  
IO144NDB3V3  
IO144PDB3V3  
IO131NDB3V2  
IO131PDB3V2  
IO136NDB3V2  
IO136PDB3V2  
VCCIB3  
VCCIB4  
IO170NDB4V2  
IO170PDB4V2  
IO167NDB4V1  
IO167PDB4V1  
IO162NDB4V1  
IO162PDB4V1  
IO159NDB4V0  
IO159PDB4V0  
VCC  
GND  
VCC  
GND  
IO83NDB2V0  
GBB2/IO83PDB2V0  
IO82NDB2V0  
GBA2/IO82PDB2V0  
VCCIB2  
VCC  
IO128NDB3V1  
IO128PDB3V1  
IO123NDB3V1  
IO123PDB3V1  
IO120NDB3V0  
IO120PDB3V0  
GCA1/IO114PDB3V0  
GCA0/IO114NDB3V0  
GND  
GND  
GNDQ  
VCCIB4  
VCOMPLB  
IO154NDB4V0  
GDA2/IO154PDB4V0  
GDB2/IO155PSB4V0  
GNDQ  
VCCPLB  
GNDQ  
GBA1/IO81PDB1V4  
GBA0/IO81NDB1V4  
GBB1/IO80PDB1V4  
GBB0/IO80NDB1V4  
VCCIB1  
TCK  
VCCPLC  
TDI  
VCOMPLC  
TMS  
GND  
VCCPLD  
GCB1/IO113PSB2V3  
GCC0/IO112NDB2V3  
GCC1/IO112PDB2V3  
IO107NDB2V3  
IO107PDB2V3  
IO104NDB2V2  
IO104PDB2V2  
IO99NDB2V2  
IO99PDB2V2  
VCCIB2  
GND  
VCOMPLD  
VPUMP  
VCC  
IO75PDB1V4  
IO75NDB1V4  
IO72PDB1V3  
IO72NDB1V3  
IO67PDB1V3  
IO67NDB1V3  
VCCIB1  
GNDQ  
TDO  
TRST  
VJTAG  
GDB0/IO152NDB3V4  
GDB1/IO152PDB3V4  
IO139NDB3V3  
IO139PDB3V3  
VCCIB3  
GND  
GND  
IO64PDB1V2  
IO64NDB1V2  
VCC  
4-6  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
CQ256  
CQ256  
Pin  
Number RT3PE3000L Function  
Pin  
Number RT3PE3000L Function  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
IO59PDB1V2  
IO59NDB1V2  
IO56PDB1V1  
IO56NDB1V1  
IO51PDB1V1  
IO51NDB1V1  
VCCIB1  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
IO11NDB0V1  
GAC1/IO02PDB0V0  
GAC0/IO02NDB0V0  
VCCIB0  
GND  
VCC  
GAB1/IO01PDB0V0  
GAB0/IO01NDB0V0  
GAA1/IO00PDB0V0  
GAA0/IO00NDB0V0  
GNDQ  
GND  
VCC  
IO48PDB1V0  
IO48NDB1V0  
IO42PDB1V0  
IO42NDB1V0  
IO40PDB0V4  
IO40NDB0V4  
IO32PDB0V3  
IO32NDB0V3  
VCCIB0  
GND  
VCC  
IO35PDB0V4  
IO35NDB0V4  
IO24PDB0V2  
IO24NDB0V2  
IO27PDB0V3  
IO27NDB0V3  
IO16PDB0V1  
IO16NDB0V1  
VCCIB0  
GND  
IO19PDB0V2  
IO19NDB0V2  
IO08PDB0V0  
IO08NDB0V0  
IO11PDB0V1  
Revision 5  
4-7  
Package Pin Assignments  
CG484  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
4-8  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
CG484  
RT3PE600L  
CG484  
RT3PE600L  
CG484  
RT3PE600L  
Pin Number  
A2  
Pin Number  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AB1  
Pin Number  
B8  
GND  
IO71NDB4V0  
IO71PDB4V0  
NC  
IO11NDB0V1  
IO17NDB0V2  
IO14PDB0V2  
IO19PDB0V2  
IO22NDB1V0  
IO26NDB1V0  
NC  
A3  
VCCIB0  
B9  
A4  
IO06NDB0V1  
IO06PDB0V1  
IO08NDB0V1  
IO08PDB0V1  
IO11PDB0V1  
IO17PDB0V2  
IO18NDB0V2  
IO18PDB0V2  
IO22PDB1V0  
IO26PDB1V0  
IO29NDB1V1  
IO29PDB1V1  
IO31NDB1V1  
IO31PDB1V1  
IO32NDB1V1  
NC  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C1  
A5  
NC  
A6  
NC  
A7  
VCCIB3  
A8  
GND  
A9  
GND  
NC  
A10  
A11  
AB2  
GND  
IO30NDB1V1  
IO30PDB1V1  
IO32PDB1V1  
NC  
AB3  
VCCIB5  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AB4  
IO97NDB5V2  
IO97PDB5V2  
IO93NDB5V1  
IO93PDB5V1  
IO87NDB5V0  
IO87PDB5V0  
NC  
AB5  
AB6  
NC  
AB7  
VCCIB2  
GND  
AB8  
AB9  
VCCIB7  
NC  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
B1  
C2  
NC  
C3  
NC  
VCCIB1  
IO75NDB4V1  
IO75PDB4V1  
IO72NDB4V0  
IO72PDB4V0  
IO73NDB4V0  
IO73PDB4V0  
NC  
C4  
NC  
GND  
C5  
GND  
GND  
C6  
IO04NDB0V0  
IO04PDB0V0  
VCC  
GND  
C7  
VCCIB6  
C8  
NC  
C9  
VCC  
IO98PDB5V2  
IO96NDB5V2  
IO96PDB5V2  
IO86NDB5V0  
IO86PDB5V0  
IO85PDB5V0  
IO85NDB5V0  
IO78PPB4V1  
IO79NDB4V1  
IO79PDB4V1  
NC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
IO14NDB0V2  
IO19NDB0V2  
NC  
NC  
VCCIB4  
GND  
NC  
GND  
VCC  
GND  
VCC  
B2  
VCCIB7  
NC  
B3  
NC  
NC  
B4  
IO03NDB0V0  
IO03PDB0V0  
IO07NDB0V1  
IO07PDB0V1  
GND  
B5  
NC  
B6  
NC  
NC  
B7  
NC  
Revision 5  
4-9  
Package Pin Assignments  
CG484  
CG484  
RT3PE600L  
CG484  
RT3PE600L  
Pin Number  
C22  
D1  
RT3PE600L  
Pin Number  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
F1  
Pin Number  
G6  
VCCIB2  
NC  
IO24PDB1V0  
GBC1/IO33PDB1V1  
GBB0/IO34NDB1V1  
GNDQ  
GAC2/IO132PDB7V1  
VCOMPLA  
GNDQ  
G7  
D2  
NC  
G8  
D3  
NC  
G9  
IO09NDB0V1  
IO09PDB0V1  
IO13PDB0V2  
IO21PDB1V0  
IO25PDB1V0  
IO27NDB1V0  
GNDQ  
D4  
GND  
GBA2/IO36PDB2V0  
IO42NDB2V0  
GND  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
H1  
D5  
GAA0/IO00NDB0V0  
GAA1/IO00PDB0V0  
GAB0/IO01NDB0V0  
IO05PDB0V0  
IO10PDB0V1  
IO12PDB0V2  
IO16NDB0V2  
IO23NDB1V0  
IO23PDB1V0  
IO28NDB1V1  
IO28PDB1V1  
GBB1/IO34PDB1V1  
GBA0/IO35NDB1V1  
GBA1/IO35PDB1V1  
GND  
D6  
D7  
NC  
D8  
NC  
D9  
NC  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E1  
F2  
IO131NDB7V1  
IO131PDB7V1  
IO133NDB7V1  
IO134NDB7V1  
VMV7  
VCOMPLB  
GBB2/IO37PDB2V0  
IO39PDB2V0  
IO39NDB2V0  
IO43PDB2V0  
IO43NDB2V0  
NC  
F3  
F4  
F5  
F6  
F7  
VCCPLA  
F8  
GAC0/IO02NDB0V0  
GAC1/IO02PDB0V0  
IO15NDB0V2  
IO15PDB0V2  
IO20PDB1V0  
IO25NDB1V0  
IO27PDB1V0  
GBC0/IO33NDB1V1  
VCCPLB  
F9  
NC  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
G1  
H2  
NC  
H3  
VCC  
NC  
H4  
IO128NDB7V1  
IO129NDB7V1  
IO132NDB7V1  
IO130PDB7V1  
VMV0  
NC  
H5  
NC  
H6  
NC  
H7  
E2  
NC  
H8  
E3  
GND  
VMV2  
H9  
VCCIB0  
E4  
GAB2/IO133PDB7V1  
GAA2/IO134PDB7V1  
GNDQ  
IO36NDB2V0  
IO42PDB2V0  
NC  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
VCCIB0  
E5  
IO13NDB0V2  
IO21NDB1V0  
VCCIB1  
E6  
E7  
GAB1/IO01PDB0V0  
IO05NDB0V0  
IO10NDB0V1  
IO12NDB0V2  
IO16PDB0V2  
IO20NDB1V0  
IO24NDB1V0  
NC  
E8  
NC  
VCCIB1  
E9  
IO127NDB7V1  
IO127PDB7V1  
NC  
VMV1  
E10  
E11  
E12  
E13  
G2  
GBC2/IO38PDB2V0  
IO37NDB2V0  
IO41NDB2V0  
IO41PDB2V0  
G3  
G4  
IO128PDB7V1  
IO129PDB7V1  
G5  
4-10  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
CG484  
RT3PE600L  
CG484  
RT3PE600L  
CG484  
RT3PE600L  
Pin Number  
H20  
H21  
H22  
J1  
Pin Number  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
L1  
Pin Number  
M4  
VCC  
NC  
GND  
GND  
GFA2/IO117PDB6V1  
GFA1/IO118PDB6V1  
VCCPLF  
M5  
NC  
VCC  
M6  
IO123NDB7V0  
IO123PDB7V0  
NC  
VCCIB2  
M7  
IO116NDB6V1  
GFB2/IO116PDB6V1  
VCC  
J2  
GCC1/IO50PPB2V1  
IO44NDB2V1  
IO44PDB2V1  
IO49NPB2V1  
IO45NPB2V1  
IO48NDB2V1  
IO46NDB2V1  
NC  
M8  
J3  
M9  
J4  
IO124PDB7V0  
IO125PDB7V0  
IO126PDB7V0  
IO130NDB7V1  
VCCIB7  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
N1  
GND  
J5  
GND  
J6  
GND  
J7  
GND  
J8  
VCC  
J9  
GND  
GCB2/IO54PPB3V0  
GCA1/IO52PPB3V0  
GCC2/IO55PPB3V0  
VCCPLC  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
K1  
VCC  
L2  
IO122PDB7V0  
IO122NDB7V0  
GFB0/IO119NPB7V0  
GFA0/IO118NDB6V1  
GFB1/IO119PPB7V0  
VCOMPLF  
VCC  
L3  
VCC  
L4  
VCC  
L5  
GCA2/IO53PDB3V0  
IO53NDB3V0  
IO56PDB3V0  
NC  
GND  
L6  
VCCIB2  
L7  
IO38NDB2V0  
IO40NDB2V0  
IO40PDB2V0  
IO45PPB2V1  
NC  
L8  
GFC0/IO120NPB7V0  
VCC  
L9  
IO114PPB6V1  
IO111NDB6V1  
NC  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
M1  
GND  
N2  
GND  
N3  
GND  
N4  
GFC2/IO115PPB6V1  
IO113PPB6V1  
IO112PDB6V1  
IO112NDB6V1  
VCCIB6  
IO48PDB2V1  
IO46PDB2V1  
IO121NDB7V0  
IO121PDB7V0  
NC  
GND  
N5  
VCC  
N6  
GCC0/IO50NPB2V1  
GCB1/IO51PPB2V1  
GCA0/IO52NPB3V0  
VCOMPLC  
N7  
K2  
N8  
K3  
N9  
VCC  
K4  
IO124NDB7V0  
IO125NDB7V0  
IO126NDB7V0  
GFC1/IO120PPB7V0  
VCCIB7  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
GND  
K5  
GCB0/IO51NPB2V1  
IO49PPB2V1  
IO47NDB2V1  
IO47PDB2V1  
NC  
GND  
K6  
GND  
K7  
GND  
K8  
VCC  
K9  
VCC  
VCCIB3  
K10  
K11  
GND  
M2  
IO114NPB6V1  
IO117NDB6V1  
IO54NPB3V0  
IO57NPB3V0  
GND  
M3  
Revision 5  
4-11  
Package Pin Assignments  
CG484  
CG484  
RT3PE600L  
CG484  
RT3PE600L  
Pin Number  
N18  
N19  
N20  
N21  
N22  
P1  
RT3PE600L  
Pin Number  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
T1  
Pin Number  
U2  
IO55NPB3V0  
IO57PPB3V0  
NC  
VCCIB5  
IO84NDB5V0  
IO84PDB5V0  
VCCIB4  
IO107PDB6V0  
IO107NDB6V0  
GEB1/IO103PDB6V0  
GEB0/IO103NDB6V0  
VMV6  
U3  
U4  
IO56NDB3V0  
IO58PDB3V0  
NC  
U5  
VCCIB4  
U6  
VMV3  
U7  
VCCPLE  
P2  
IO111PDB6V1  
IO115NPB6V1  
IO113NPB6V1  
IO109PPB6V0  
IO108PDB6V0  
IO108NDB6V0  
VCCIB6  
VCCPLD  
U8  
IO101NPB5V2  
IO95PPB5V1  
IO92PDB5V1  
IO90PDB5V1  
IO82PDB5V0  
IO76NDB4V1  
IO76PDB4V1  
VMV4  
P3  
GDB1/IO66PPB3V1  
GDC1/IO65PDB3V1  
IO61NDB3V1  
VCC  
U9  
P4  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
V1  
P5  
P6  
P7  
IO59NDB3V0  
IO62PDB3V1  
NC  
P8  
P9  
GND  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
R1  
VCC  
T2  
IO110NDB6V0  
NC  
TCK  
VCC  
T3  
VPUMP  
VCC  
T4  
IO105PDB6V0  
IO105NDB6V0  
GEC1/IO104PPB6V0  
VCOMPLE  
TRST  
VCC  
T5  
GDA0/IO67NDB3V1  
NC  
GND  
T6  
VCCIB3  
T7  
IO64NDB3V1  
IO63PDB3V1  
NC  
GDB0/IO66NPB3V1  
IO60NDB3V1  
IO60PDB3V1  
IO61PDB3V1  
NC  
T8  
GNDQ  
T9  
GEA2/IO101PPB5V2  
IO92NDB5V1  
IO90NDB5V1  
IO82NDB5V0  
IO74NDB4V1  
IO74PDB4V1  
GNDQ  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
U1  
V2  
NC  
V3  
GND  
V4  
GEA1/IO102PDB6V0  
GEA0/IO102NDB6V0  
GNDQ  
IO59PDB3V0  
IO58NDB3V0  
NC  
V5  
V6  
V7  
GEC2/IO99PDB5V2  
IO95NPB5V1  
IO91NDB5V1  
IO91PDB5V1  
IO83NDB5V0  
IO83PDB5V0  
IO77NDB4V1  
IO77PDB4V1  
IO69NDB4V0  
R2  
IO110PDB6V0  
VCC  
VCOMPLD  
VJTAG  
V8  
R3  
V9  
R4  
IO109NPB6V0  
IO106NDB6V0  
IO106PDB6V0  
GEC0/IO104NPB6V0  
VMV5  
GDC0/IO65NDB3V1  
GDA1/IO67PDB3V1  
NC  
V10  
V11  
V12  
V13  
V14  
V15  
R5  
R6  
R7  
IO64PDB3V1  
IO62NDB3V1  
NC  
R8  
R9  
VCCIB5  
4-12  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
CG484  
RT3PE600L  
CG484  
Pin Number  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W1  
Pin Number  
RT3PE600L  
IO94PDB5V1  
VCC  
GDB2/IO69PDB4V0  
Y7  
TDI  
GNDQ  
TDO  
Y8  
Y9  
VCC  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
IO89PDB5V0  
IO80PDB4V1  
IO78NPB4V1  
NC  
GND  
NC  
IO63NDB3V1  
NC  
VCC  
W2  
NC  
VCC  
W3  
NC  
NC  
W4  
GND  
NC  
W5  
IO100NDB5V2  
GND  
W6  
FF/GEB2/IO100PDB  
5V2  
NC  
NC  
W7  
W8  
IO99NDB5V2  
IO88NDB5V0  
IO88PDB5V0  
IO89NDB5V0  
IO80NDB4V1  
IO81NDB4V1  
IO81PDB4V1  
IO70NDB4V0  
GDC2/IO70PDB4V0  
IO68NDB4V0  
GDA2/IO68PDB4V0  
TMS  
NC  
VCCIB3  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y1  
GND  
NC  
NC  
NC  
VCCIB6  
Y2  
NC  
Y3  
NC  
Y4  
IO98NDB5V2  
GND  
Y5  
Y6  
IO94NDB5V1  
Revision 5  
4-13  
Package Pin Assignments  
CG484  
CG484  
RT3PE3000L  
CG484  
RT3PE3000L  
Pin  
RT3PE3000L  
Pin  
Pin  
Number  
Function  
Number  
Function  
IO170PDB4V2  
IO166NDB4V1  
IO166PDB4V1  
IO160NDB4V0  
IO160PDB4V0  
IO158NPB4V0  
VCCIB3  
Number  
Function  
IO14NDB0V1  
IO14PDB0V1  
IO18NDB0V2  
IO24NDB0V2  
IO34PDB0V4  
IO40PDB0V4  
IO46NDB1V0  
IO54NDB1V1  
IO62NDB1V2  
IO62PDB1V2  
IO68NDB1V3  
IO68PDB1V3  
IO72PDB1V3  
IO74PDB1V4  
IO76NPB1V4  
VCCIB2  
A2  
A3  
GND  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AB1  
B6  
B7  
VCCIB0  
A4  
IO10NDB0V1  
IO10PDB0V1  
IO16NDB0V1  
IO16PDB0V1  
IO18PDB0V2  
IO24PDB0V2  
IO28NDB0V3  
IO28PDB0V3  
IO46PDB1V0  
IO54PDB1V1  
IO56NDB1V1  
IO56PDB1V1  
IO64NDB1V2  
IO64PDB1V2  
IO72NDB1V3  
IO74NDB1V4  
VCCIB1  
B8  
A5  
B9  
A6  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C1  
A7  
A8  
A9  
GND  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
GND  
AB2  
GND  
AB3  
VCCIB5  
AB4  
IO216NDB5V2  
IO216PDB5V2  
IO210NDB5V2  
IO210PDB5V2  
IO208NDB5V1  
IO208PDB5V1  
IO197NDB5V0  
IO197PDB5V0  
IO174NDB4V2  
IO174PDB4V2  
IO172NDB4V2  
IO172PDB4V2  
IO168NDB4V1  
IO168PDB4V1  
IO162NDB4V1  
IO162PDB4V1  
VCCIB4  
AB5  
AB6  
AB7  
AB8  
AB9  
GND  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
B1  
VCCIB7  
C2  
IO303PDB7V3  
IO305PDB7V3  
IO06NPB0V0  
GND  
GND  
C3  
GND  
C4  
GND  
C5  
VCCIB6  
C6  
IO12NDB0V1  
IO12PDB0V1  
VCC  
IO228PDB5V4  
IO224PDB5V3  
IO218NDB5V3  
IO218PDB5V3  
IO212NDB5V2  
IO212PDB5V2  
IO198PDB5V0  
IO198NDB5V0  
IO188PPB4V4  
IO180NDB4V3  
IO180PDB4V3  
IO170NDB4V2  
C7  
C8  
C9  
VCC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
IO34NDB0V4  
IO40NDB0V4  
IO48NDB1V0  
IO48PDB1V0  
VCC  
GND  
GND  
GND  
B2  
VCCIB7  
VCC  
B3  
IO06PPB0V0  
IO08NDB0V0  
IO08PDB0V0  
IO70NDB1V3  
IO70PDB1V3  
GND  
B4  
B5  
4-14  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
CG484  
RT3PE3000L  
CG484  
RT3PE3000L  
CG484  
RT3PE3000L  
Pin  
Pin  
Pin  
Number  
Function  
IO76PPB1V4  
IO88NDB2V0  
IO94PPB2V1  
VCCIB2  
Number  
Function  
IO30NDB0V3  
IO38PDB0V4  
IO44NDB1V0  
IO58NDB1V2  
IO58PDB1V2  
GBC1/IO79PDB1V4  
GBB0/IO80NDB1V4  
GNDQ  
Number  
Function  
IO289NDB7V1  
IO289PDB7V1  
IO291PPB7V2  
IO295PDB7V2  
IO297PDB7V2  
GAC2/IO307PDB7V4  
VCOMPLA  
C19  
C20  
C21  
C22  
D1  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
F1  
G1  
G2  
G3  
G4  
IO293PDB7V2  
IO303NDB7V3  
IO305NDB7V3  
GND  
G5  
D2  
G6  
D3  
G7  
D4  
G8  
GNDQ  
D5  
GAA0/IO00NDB0V0  
GAA1/IO00PDB0V0  
GAB0/IO01NDB0V0  
IO20PDB0V2  
IO22PDB0V2  
IO30PDB0V3  
IO38NDB0V4  
IO52NDB1V1  
IO52PDB1V1  
IO66NDB1V3  
IO66PDB1V3  
GBB1/IO80PDB1V4  
GBA0/IO81NDB1V4  
GBA1/IO81PDB1V4  
GND  
GBA2/IO82PDB2V0  
IO86NDB2V0  
GND  
G9  
IO26NDB0V3  
IO26PDB0V3  
IO36PDB0V4  
IO42PDB1V0  
IO50PDB1V1  
IO60NDB1V2  
GNDQ  
D6  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
H1  
D7  
D8  
IO90NDB2V1  
IO98PDB2V2  
IO299NPB7V3  
IO301NDB7V3  
IO301PDB7V3  
IO308NDB7V4  
IO309NDB7V4  
VMV7  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E1  
F2  
F3  
VCOMPLB  
F4  
GBB2/IO83PDB2V0  
IO92PDB2V1  
IO92NDB2V1  
IO102PDB2V2  
IO102NDB2V2  
IO105NDB2V2  
IO286PSB7V1  
IO291NPB7V2  
VCC  
F5  
F6  
F7  
VCCPLA  
F8  
GAC0/IO02NDB0V0  
GAC1/IO02PDB0V0  
IO32NDB0V3  
IO32PDB0V3  
IO44PDB1V0  
IO50NDB1V1  
IO60PDB1V2  
GBC0/IO79NDB1V4  
VCCPLB  
F9  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
IO88PDB2V0  
IO90PDB2V1  
IO94NPB2V1  
IO293NDB7V2  
IO299PPB7V3  
GND  
H2  
H3  
H4  
IO295NDB7V2  
IO297NDB7V2  
IO307NDB7V4  
IO287PDB7V1  
VMV0  
H5  
E2  
H6  
E3  
H7  
E4  
GAB2/IO308PDB7V4  
GAA2/IO309PDB7V4  
GNDQ  
VMV2  
H8  
E5  
IO82NDB2V0  
IO86PDB2V0  
IO96PDB2V1  
IO96NDB2V1  
IO98NDB2V2  
H9  
VCCIB0  
E6  
H10  
H11  
H12  
H13  
VCCIB0  
E7  
GAB1/IO01PDB0V0  
IO20NDB0V2  
IO22NDB0V2  
IO36NDB0V4  
IO42NDB1V0  
VCCIB1  
E8  
E9  
Revision 5  
4-15  
Package Pin Assignments  
CG484  
CG484  
RT3PE3000L  
CG484  
RT3PE3000L  
Pin  
RT3PE3000L  
Pin  
Pin  
Number  
Function  
Number  
Function  
IO283NDB7V1  
IO281NDB7V0  
GFC1/IO275PPB7V0  
VCCIB7  
Number  
Function  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
J1  
VCCIB1  
K5  
K6  
L18  
L19  
L20  
L21  
L22  
M1  
VCOMPLC  
VMV1  
GCB0/IO113NPB2V3  
IO110PPB2V3  
IO111NDB2V3  
IO111PDB2V3  
GNDQ  
GBC2/IO84PDB2V0  
IO83NDB2V0  
IO100NDB2V2  
IO100PDB2V2  
VCC  
K7  
K8  
K9  
VCC  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
L1  
GND  
GND  
M2  
IO255NPB6V2  
IO272NDB6V4  
GFA2/IO272PDB6V4  
GFA1/IO273PDB6V4  
VCCPLF  
VMV2  
GND  
M3  
IO105PDB2V2  
IO285NDB7V1  
IO285PDB7V1  
VMV7  
GND  
M4  
VCC  
M5  
J2  
VCCIB2  
M6  
J3  
GCC1/IO112PPB2V3  
IO108NDB2V3  
IO108PDB2V3  
IO110NPB2V3  
IO106NPB2V3  
IO109NDB2V3  
IO107NDB2V3  
IO257PSB6V2  
IO276PDB7V0  
IO276NDB7V0  
GFB0/IO274NPB7V0  
GFA0/IO273NDB6V4  
GFB1/IO274PPB7V0  
VCOMPLF  
M7  
IO271NDB6V4  
GFB2/IO271PDB6V4  
VCC  
J4  
IO279PDB7V0  
IO283PDB7V1  
IO281PDB7V0  
IO287NDB7V1  
VCCIB7  
M8  
J5  
M9  
J6  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
N1  
GND  
J7  
GND  
J8  
GND  
J9  
GND  
GND  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
K1  
VCC  
VCC  
VCC  
L2  
GCB2/IO116PPB3V0  
GCA1/IO114PPB3V0  
GCC2/IO117PPB3V0  
VCCPLC  
VCC  
L3  
VCC  
L4  
GND  
L5  
VCCIB2  
L6  
GCA2/IO115PDB3V0  
IO115NDB3V0  
IO126PDB3V1  
IO124PSB3V1  
IO255PPB6V2  
IO253NDB6V2  
VMV6  
IO84NDB2V0  
IO104NDB2V2  
IO104PDB2V2  
IO106PPB2V3  
GNDQ  
L7  
L8  
GFC0/IO275NPB7V0  
VCC  
L9  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
GND  
GND  
N2  
IO109PDB2V3  
IO107PDB2V3  
IO277NDB7V0  
IO277PDB7V0  
GNDQ  
GND  
N3  
GND  
N4  
GFC2/IO270PPB6V4  
IO261PPB6V3  
IO263PDB6V3  
IO263NDB6V3  
VCCIB6  
VCC  
N5  
K2  
GCC0/IO112NPB2V3  
GCB1/IO113PPB2V3  
GCA0/IO114NPB3V0  
N6  
K3  
N7  
K4  
IO279NDB7V0  
N8  
4-16  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
CG484  
RT3PE3000L  
CG484  
RT3PE3000L  
CG484  
RT3PE3000L  
Pin  
Pin  
Pin  
Number  
Function  
Number  
Function  
IO128NDB3V1  
IO247NDB6V1  
IO245PDB6V1  
VCC  
Number  
Function  
IO186NDB4V4  
IO186PDB4V4  
GNDQ  
N9  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
P1  
VCC  
P22  
R1  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
U1  
GND  
GND  
R2  
GND  
R3  
VCOMPLD  
GND  
R4  
IO249NPB6V1  
IO251NDB6V2  
IO251PDB6V2  
GEC0/IO236NPB6V0  
VMV5  
VJTAG  
VCC  
R5  
GDC0/IO151NDB3V4  
GDA1/IO153PDB3V4  
IO144PDB3V3  
IO140PDB3V3  
IO134NDB3V2  
IO240PPB6V0  
IO238PDB6V0  
IO238NDB6V0  
GEB1/IO235PDB6V0  
GEB0/IO235NDB6V0  
VMV6  
VCCIB3  
R6  
IO116NPB3V0  
IO132NPB3V2  
IO117NPB3V0  
IO132PPB3V2  
GNDQ  
R7  
R8  
R9  
VCCIB5  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
T1  
VCCIB5  
IO196NDB5V0  
IO196PDB5V0  
VCCIB4  
U2  
IO126NDB3V1  
IO128PDB3V1  
IO247PDB6V1  
IO253PDB6V2  
IO270NPB6V4  
IO261NPB6V3  
IO249PPB6V1  
IO259PDB6V3  
IO259NDB6V3  
VCCIB6  
U3  
U4  
VCCIB4  
U5  
P2  
VMV3  
U6  
P3  
VCCPLD  
U7  
VCCPLE  
P4  
GDB1/IO152PPB3V4  
GDC1/IO151PDB3V4  
IO138NDB3V3  
VCC  
U8  
IO233NPB5V4  
IO222PPB5V3  
IO206PDB5V1  
IO202PDB5V1  
IO194PDB5V0  
IO176NDB4V2  
IO176PDB4V2  
VMV4  
P5  
U9  
P6  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
V1  
P7  
P8  
IO130NDB3V2  
IO134PDB3V2  
IO243PPB6V1  
IO245NDB6V1  
IO243NPB6V1  
IO241PDB6V0  
IO241NDB6V0  
GEC1/IO236PPB6V0  
VCOMPLE  
P9  
GND  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
VCC  
VCC  
T2  
VCC  
T3  
TCK  
VCC  
T4  
VPUMP  
GND  
T5  
TRST  
VCCIB3  
T6  
GDA0/IO153NDB3V4  
IO144NDB3V3  
IO140NDB3V3  
IO142PDB3V3  
IO239PDB6V0  
IO240NPB6V0  
GND  
GDB0/IO152NPB3V4  
IO136NDB3V2  
IO136PDB3V2  
IO138PDB3V3  
VMV3  
T7  
T8  
GNDQ  
T9  
GEA2/IO233PPB5V4  
IO206NDB5V1  
IO202NDB5V1  
IO194NDB5V0  
T10  
T11  
T12  
V2  
IO130PDB3V2  
V3  
Revision 5  
4-17  
Package Pin Assignments  
CG484  
CG484  
RT3PE3000L  
Pin  
RT3PE3000L  
Pin  
Number  
Function  
GEA1/IO234PDB6V0  
GEA0/IO234NDB6V0  
GNDQ  
Number  
Function  
IO154NDB4V0  
GDA2/IO154PDB4V0  
TMS  
V4  
V5  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y1  
V6  
V7  
GEC2/IO231PDB5V4  
IO222NPB5V3  
IO204NDB5V1  
IO204PDB5V1  
IO195NDB5V0  
IO195PDB5V0  
IO178NDB4V3  
IO178PDB4V3  
IO155NDB4V0  
GDB2/IO155PDB4V0  
TDI  
GND  
V8  
IO150NDB3V4  
IO146NDB3V4  
IO148PPB3V4  
VCCIB6  
V9  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W1  
W2  
W3  
W4  
W5  
W6  
Y2  
IO237NDB6V0  
IO228NDB5V4  
IO224NDB5V3  
GND  
Y3  
Y4  
Y5  
Y6  
IO220NDB5V3  
IO220PDB5V3  
VCC  
Y7  
GNDQ  
Y8  
TDO  
Y9  
VCC  
GND  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
IO200PDB5V0  
IO192PDB4V4  
IO188NPB4V4  
IO187PSB4V4  
VCC  
IO146PDB3V4  
IO142NDB3V3  
IO239NDB6V0  
IO237PDB6V0  
IO230PSB5V4  
GND  
VCC  
IO164NDB4V1  
IO164PDB4V1  
GND  
IO232NDB5V4  
FF/GEB2/IO232PDB5  
V4  
IO158PPB4V0  
IO150PDB3V4  
IO148NPB3V4  
VCCIB3  
W7  
W8  
IO231NDB5V4  
IO214NDB5V2  
IO214PDB5V2  
IO200NDB5V0  
IO192NDB4V4  
IO184NDB4V3  
IO184PDB4V3  
IO156NDB4V0  
GDC2/IO156PDB4V0  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
4-18  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
CG896  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
Note: This is the bottom view.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
Revision 5  
4-19  
Package Pin Assignments  
CG896  
CG896  
RT3PE3000L  
CG896  
RT3PE3000L  
Pin  
RT3PE3000L  
Pin  
Pin  
Number  
Function  
Number  
Function  
IO245NDB6V1  
GEB1/IO235PPB6V0  
VCC  
Number  
Function  
IO206PDB5V1  
IO198NDB5V0  
IO198PDB5V0  
IO192NDB4V4  
IO192PDB4V4  
IO178NDB4V3  
IO178PDB4V3  
IO174NDB4V2  
IO162NPB4V1  
VCC  
A2  
A3  
GND  
AA8  
AA9  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AC1  
GND  
A4  
IO14NPB0V1  
GND  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA30  
AB1  
A5  
IO226PPB5V4  
VCCIB5  
A6  
IO07NPB0V0  
GND  
A7  
VCCIB5  
A8  
IO09NDB0V1  
IO17NDB0V2  
IO17PDB0V2  
IO21NDB0V2  
IO21PDB0V2  
IO33NDB0V4  
IO33PDB0V4  
IO35NDB0V4  
IO35PDB0V4  
IO41NDB1V0  
IO43NDB1V0  
IO43PDB1V0  
IO45NDB1V0  
IO45PDB1V0  
IO57NDB1V2  
IO57PDB1V2  
GND  
VCCIB5  
A9  
VCCIB5  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
VCCIB4  
VCCIB4  
VCCIB4  
VCCPLD  
VCCIB4  
VCCIB3  
IO174PDB4V2  
VCC  
IO150PDB3V4  
IO148PDB3V4  
IO147NDB3V4  
IO145PDB3V3  
IO143PDB3V3  
IO137PDB3V2  
IO254PDB6V2  
IO254NDB6V2  
IO240PDB6V0  
GEC1/IO236PDB6V0  
IO237PDB6V0  
IO237NDB6V0  
VCOMPLE  
IO142NPB3V3  
IO144NDB3V3  
IO144PDB3V3  
IO146NDB3V4  
IO146PDB3V4  
IO147PDB3V4  
IO139NDB3V3  
IO139PDB3V3  
IO133NDB3V2  
IO256NDB6V2  
IO244PDB6V1  
IO244NDB6V1  
IO241PDB6V0  
IO241NDB6V0  
IO243NPB6V1  
VCCIB6  
AC2  
AC3  
AC4  
AC5  
IO69PPB1V3  
GND  
AC6  
AB2  
AC7  
GBC1/IO79PPB1V4  
GND  
AB3  
AC8  
GND  
AB4  
AC9  
IO226NPB5V4  
IO222NDB5V3  
IO216NPB5V2  
IO210NPB5V2  
IO204NDB5V1  
IO204PDB5V1  
IO194NDB5V0  
IO188NDB4V4  
IO188PDB4V4  
GND  
AB5  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
IO256PDB6V2  
IO248PDB6V1  
IO248NDB6V1  
IO246NDB6V1  
GEA1/IO234PDB6V0  
GEA0/IO234NDB6V0  
IO243PPB6V1  
AB6  
AB7  
AB8  
VCCPLE  
AB9  
VCC  
AB10  
AB11  
AB12  
IO222PDB5V3  
IO218PPB5V3  
IO206NDB5V1  
4-20  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
CG896  
RT3PE3000L  
CG896  
RT3PE3000L  
CG896  
RT3PE3000L  
Pin  
Pin  
Pin  
Number  
Function  
IO182PPB4V3  
IO170NPB4V2  
IO164NDB4V1  
IO164PDB4V1  
IO162PPB4V1  
GND  
Number  
Function  
Number  
Function  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AD1  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AE1  
TCK  
AE28  
AE29  
AE30  
AF1  
VMV3  
VCC  
VCC  
TRST  
IO149PDB3V4  
GND  
VCCIB3  
GDA0/IO153NDB3V4  
GDC0/IO151NDB3V4  
GDC1/IO151PDB3V4  
GND  
AF2  
IO238PPB6V0  
VCCIB6  
AF3  
VCOMPLD  
AF4  
IO220NPB5V3  
VCC  
IO150NDB3V4  
IO148NDB3V4  
GDA1/IO153PDB3V4  
IO145NDB3V3  
IO143NDB3V3  
IO137NDB3V2  
GND  
AF5  
IO242PPB6V1  
VCC  
AF6  
IO228NDB5V4  
VCCIB5  
AE2  
AF7  
AE3  
IO239PDB6V0  
IO239NDB6V0  
VMV6  
AF8  
IO230PDB5V4  
IO229NDB5V4  
IO229PDB5V4  
IO214PPB5V2  
IO208NDB5V1  
IO208PDB5V1  
IO200PDB5V0  
IO196NDB5V0  
IO186NDB4V4  
IO186PDB4V4  
IO180NDB4V3  
IO180PDB4V3  
IO168NDB4V1  
IO168PDB4V1  
IO160NDB4V0  
IO158NPB4V0  
VCCIB4  
AE4  
AF9  
AE5  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF30  
AG1  
AE6  
GND  
AD2  
IO242NPB6V1  
IO240NDB6V0  
GEC0/IO236NDB6V0  
VCCIB6  
AE7  
GNDQ  
AD3  
AE8  
IO230NDB5V4  
IO224NPB5V3  
IO214NPB5V2  
IO212NDB5V2  
IO212PDB5V2  
IO202NPB5V1  
IO200NDB5V0  
IO196PDB5V0  
IO190NDB4V4  
IO184PDB4V3  
IO184NDB4V3  
IO172PDB4V2  
IO172NDB4V2  
IO166NDB4V1  
IO160PDB4V0  
GNDQ  
AD4  
AE9  
AD5  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AD6  
GNDQ  
AD7  
VCC  
AD8  
VMV5  
AD9  
VCCIB5  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
IO224PPB5V3  
IO218NPB5V3  
IO216PPB5V2  
IO210PPB5V2  
IO202PPB5V1  
IO194PDB5V0  
IO190PDB4V4  
IO182NPB4V3  
IO176NDB4V2  
IO176PDB4V2  
IO170PPB4V2  
IO166PDB4V1  
VCCIB4  
IO154NPB4V0  
VCC  
TDO  
VCCIB3  
VMV4  
GNDQ  
GND  
GND  
GDB0/IO152NDB3V4  
GDB1/IO152PDB3V4  
IO238NPB6V0  
VCC  
AG2  
Revision 5  
4-21  
Package Pin Assignments  
CG896  
CG896  
RT3PE3000L  
CG896  
RT3PE3000L  
Pin  
RT3PE3000L  
Pin  
Pin  
Number  
Function  
IO232NPB5V4  
GND  
Number  
Function  
IO219PDB5V3  
IO227NDB5V4  
IO227PDB5V4  
IO225PPB5V3  
IO223PPB5V3  
IO211NDB5V2  
IO211PDB5V2  
IO205PPB5V1  
IO195NDB5V0  
IO185NDB4V3  
IO185PDB4V3  
IO181PDB4V3  
IO177NDB4V2  
IO171NPB4V2  
IO165PPB4V1  
IO161PPB4V0  
IO157NDB4V0  
IO157PDB4V0  
IO155NDB4V0  
VCCIB4  
Number  
Function  
IO203NDB5V1  
IO203PDB5V1  
IO197NDB5V0  
IO195PDB5V0  
IO183NDB4V3  
IO183PDB4V3  
IO179NPB4V3  
IO177PDB4V2  
IO173NDB4V2  
IO173PDB4V2  
IO163NDB4V1  
IO163PDB4V1  
IO167NPB4V1  
VCC  
AG3  
AG4  
AH7  
AH8  
AJ12  
AJ13  
AJ14  
AJ15  
AJ16  
AJ17  
AJ18  
AJ19  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
AJ30  
AK2  
AG5  
IO220PPB5V3  
IO228PDB5V4  
IO231NDB5V4  
GEC2/IO231PDB5V4  
IO225NPB5V3  
IO223NPB5V3  
IO221PDB5V3  
IO221NDB5V3  
IO205NPB5V1  
IO199NDB5V0  
IO199PDB5V0  
IO187NDB4V4  
IO187PDB4V4  
IO181NDB4V3  
IO171PPB4V2  
IO165NPB4V1  
IO161NPB4V0  
IO159NDB4V0  
IO159PDB4V0  
IO158PPB4V0  
GDB2/IO155PDB4V0  
GDA2/IO154PPB4V0  
GND  
AH9  
AG6  
AH10  
AH11  
AH12  
AH13  
AH14  
AH15  
AH16  
AH17  
AH18  
AH19  
AH20  
AH21  
AH22  
AH23  
AH24  
AH25  
AH26  
AH27  
AH28  
AH29  
AH30  
AJ1  
AG7  
AG8  
AG9  
AG10  
AG11  
AG12  
AG13  
AG14  
AG15  
AG16  
AG17  
AG18  
AG19  
AG20  
AG21  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
AG28  
AG29  
AG30  
AH1  
IO156NPB4V0  
VCC  
TMS  
GND  
GND  
GND  
TDI  
AK3  
GND  
VCC  
AK4  
IO217PPB5V2  
GND  
VPUMP  
AK5  
GND  
AK6  
IO215PPB5V2  
GND  
GND  
AK7  
VJTAG  
AJ2  
GND  
AK8  
IO207NDB5V1  
IO207PDB5V1  
IO201NDB5V0  
IO201PDB5V0  
IO193NDB4V4  
IO193PDB4V4  
IO197PDB5V0  
IO191NDB4V4  
IO191PDB4V4  
IO189NDB4V4  
VCC  
AJ3  
GEA2/IO233PPB5V4  
VCC  
AK9  
IO149NDB3V4  
GND  
AJ4  
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
AK16  
AK17  
AJ5  
IO217NPB5V2  
VCC  
AH2  
IO233NPB5V4  
VCC  
AJ6  
AH3  
AJ7  
IO215NPB5V2  
IO213NDB5V2  
IO213PDB5V2  
IO209NDB5V1  
IO209PDB5V1  
AH4  
FF/GEB2/IO232PPB5  
V4  
AJ8  
AJ9  
AH5  
AH6  
VCCIB5  
AJ10  
AJ11  
IO219NDB5V3  
4-22  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
CG896  
RT3PE3000L  
CG896  
RT3PE3000L  
CG896  
RT3PE3000L  
Pin  
Pin  
Pin  
Number  
Function  
IO189PDB4V4  
IO179PPB4V3  
IO175NDB4V2  
IO175PDB4V2  
IO169NDB4V1  
IO169PDB4V1  
GND  
Number  
Function  
IO69NPB1V3  
VCC  
Number  
Function  
GBA1/IO81PPB1V4  
GND  
AK18  
AK19  
AK20  
AK21  
AK22  
AK23  
AK24  
AK25  
AK26  
AK27  
AK28  
AK29  
B1  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
C1  
C29  
C30  
D1  
GBC0/IO79NPB1V4  
VCC  
IO303PPB7V3  
VCC  
D2  
IO64NPB1V2  
GND  
D3  
IO305NPB7V3  
GND  
D4  
GND  
D5  
GAA1/IO00PPB0V0  
GAC1/IO02PDB0V0  
IO06NPB0V0  
GAB0/IO01NDB0V0  
IO05NDB0V0  
IO11NDB0V1  
IO11PDB0V1  
IO23NDB0V2  
IO23PDB0V2  
IO27PDB0V3  
IO40PDB0V4  
IO47NDB1V0  
IO47PDB1V0  
IO55NPB1V1  
IO65NDB1V3  
IO65PDB1V3  
IO71NDB1V3  
IO71PDB1V3  
IO73NDB1V4  
IO73PDB1V4  
IO74NDB1V4  
GBB0/IO80NPB1V4  
GND  
IO167PPB4V1  
GND  
GND  
D6  
C2  
IO309NPB7V4  
VCC  
D7  
GDC2/IO156PPB4V0  
GND  
C3  
D8  
C4  
GAA0/IO00NPB0V0  
VCCIB0  
D9  
GND  
C5  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
E1  
GND  
C6  
IO03PDB0V0  
IO03NDB0V0  
GAB1/IO01PDB0V0  
IO05PDB0V0  
IO15NPB0V1  
IO25NDB0V3  
IO25PDB0V3  
IO31NPB0V3  
IO27NDB0V3  
IO39NDB0V4  
IO39PDB0V4  
IO55PPB1V1  
IO51PDB1V1  
IO59NDB1V2  
IO63NDB1V2  
IO63PDB1V2  
IO67NDB1V3  
IO67PDB1V3  
IO75NDB1V4  
IO75PDB1V4  
VCCIB1  
B2  
GND  
C7  
B3  
GAA2/IO309PPB7V4  
VCC  
C8  
B4  
C9  
B5  
IO14PPB0V1  
VCC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
B6  
B7  
IO07PPB0V0  
IO09PDB0V1  
IO15PPB0V1  
IO19NDB0V2  
IO19PDB0V2  
IO29NDB0V3  
IO29PDB0V3  
IO31PPB0V3  
IO37NDB0V4  
IO37PDB0V4  
IO41PDB1V0  
IO51NDB1V1  
IO59PDB1V2  
IO53PDB1V1  
IO53NDB1V1  
IO61NDB1V2  
IO61PDB1V2  
B8  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
GBA0/IO81NPB1V4  
VCC  
GBA2/IO82PPB2V0  
GND  
IO64PPB1V2  
VCC  
E2  
IO303NPB7V3  
VCCIB7  
E3  
Revision 5  
4-23  
Package Pin Assignments  
CG896  
CG896  
RT3PE3000L  
CG896  
RT3PE3000L  
Pin  
RT3PE3000L  
Pin  
Pin  
Number  
Function  
IO305PPB7V3  
VCC  
Number  
Function  
IO12PDB0V1  
IO10PDB0V1  
IO16PDB0V1  
IO22NDB0V2  
IO30NDB0V3  
IO30PDB0V3  
IO36PDB0V4  
IO48NDB1V0  
IO48PDB1V0  
IO50NDB1V1  
IO58NDB1V2  
IO60PDB1V2  
IO77NDB1V4  
IO72NDB1V3  
IO72PDB1V3  
GNDQ  
Number  
Function  
IO38NPB0V4  
IO36NDB0V4  
IO46NDB1V0  
IO46PDB1V0  
IO56NDB1V1  
IO56PDB1V1  
IO66NDB1V3  
IO66PDB1V3  
VCCIB1  
E4  
E5  
F9  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
F27  
F28  
F29  
F30  
G1  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
G25  
G26  
G27  
G28  
G29  
G30  
H1  
E6  
GAC0/IO02NDB0V0  
VCCIB0  
E7  
E8  
IO06PPB0V0  
IO24NDB0V2  
IO24PDB0V2  
IO13NDB0V1  
IO13PDB0V1  
IO34NDB0V4  
IO34PDB0V4  
IO40NDB0V4  
IO49NDB1V1  
IO49PDB1V1  
IO50PDB1V1  
IO58PDB1V2  
IO60NDB1V2  
IO77PDB1V4  
IO68NDB1V3  
IO68PDB1V3  
VCCIB1  
E9  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
E30  
F1  
VMV1  
VCC  
GNDQ  
VCCIB2  
IO86NDB2V0  
IO92NDB2V1  
IO100PPB2V2  
GND  
GND  
VMV2  
IO294PDB7V2  
IO294NDB7V2  
IO300NDB7V3  
IO300PDB7V3  
IO295PDB7V2  
IO299PDB7V3  
VCOMPLA  
IO86PDB2V0  
IO92PDB2V1  
VCC  
H2  
H3  
H4  
IO74PDB1V4  
VCC  
IO100NPB2V2  
GND  
H5  
H6  
GBB1/IO80PPB1V4  
VCCIB2  
G2  
IO296NPB7V2  
IO306NDB7V4  
IO297NDB7V2  
VCCIB7  
H7  
G3  
H8  
GND  
IO82NPB2V0  
GND  
G4  
H9  
IO08NDB0V0  
IO08PDB0V0  
IO18PDB0V2  
IO26NPB0V3  
IO28NDB0V3  
IO28PDB0V3  
IO38PPB0V4  
IO42NDB1V0  
IO52NDB1V1  
IO52PDB1V1  
G5  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
IO296PPB7V2  
VCC  
G6  
GNDQ  
F2  
G7  
VCC  
F3  
IO306PDB7V4  
IO297PDB7V2  
VMV7  
G8  
VMV0  
F4  
G9  
VCCIB0  
F5  
G10  
G11  
G12  
G13  
IO10NDB0V1  
IO16NDB0V1  
IO22PDB0V2  
IO26PPB0V3  
F6  
GND  
F7  
GNDQ  
F8  
IO12NDB0V1  
4-24  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
CG896  
RT3PE3000L  
CG896  
RT3PE3000L  
CG896  
RT3PE3000L  
Pin  
Pin  
Pin  
Number  
Function  
IO62NDB1V2  
IO62PDB1V2  
IO70NDB1V3  
IO70PDB1V3  
GND  
Number  
Function  
Number  
Function  
IO93PDB2V1  
IO93NDB2V1  
IO286NDB7V1  
IO286PDB7V1  
IO298NDB7V3  
IO298PDB7V3  
IO283PDB7V1  
IO291NDB7V2  
IO291PDB7V2  
IO293PDB7V2  
IO293NDB7V2  
IO307NPB7V4  
VCC  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H29  
H30  
J1  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
K1  
VCCIB2  
K29  
K30  
L1  
IO90PDB2V1  
IO90NDB2V1  
GBB2/IO83PDB2V0  
IO83NDB2V0  
IO91PDB2V1  
IO91NDB2V1  
IO288NDB7V1  
IO288PDB7V1  
IO304NDB7V3  
IO304PDB7V3  
GAB2/IO308PDB7V4  
IO308NDB7V4  
IO301PDB7V3  
IO301NDB7V3  
GAC2/IO307PPB7V4  
VCC  
L2  
L3  
VCOMPLB  
L4  
GBC2/IO84PDB2V0  
IO84NDB2V0  
IO96PDB2V1  
IO96NDB2V1  
IO89PDB2V0  
IO89NDB2V0  
IO290NDB7V2  
IO290PDB7V2  
IO302NDB7V3  
IO302PDB7V3  
IO295NDB7V2  
IO299NDB7V3  
VCCIB7  
L5  
L6  
K2  
L7  
K3  
L8  
K4  
L9  
K5  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L30  
M1  
M2  
M3  
K6  
J2  
K7  
VCC  
J3  
K8  
VCC  
J4  
K9  
VCC  
J5  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
K25  
K26  
K27  
K28  
VCC  
J6  
IO04PPB0V0  
VCCIB0  
VCC  
J7  
VCC  
J8  
VCCPLA  
VCCIB0  
VCC  
J9  
VCC  
VCCIB0  
VCC  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
IO04NPB0V0  
IO18NDB0V2  
IO20NDB0V2  
IO20PDB0V2  
IO32NDB0V3  
IO32PDB0V3  
IO42PDB1V0  
IO44NDB1V0  
IO44PDB1V0  
IO54NDB1V1  
IO54PDB1V1  
IO76NPB1V4  
VCC  
VCCIB0  
VCC  
VCCIB1  
IO78NPB1V4  
IO104NPB2V2  
IO98NDB2V2  
IO98PDB2V2  
IO87PDB2V0  
IO87NDB2V0  
IO97PDB2V1  
IO101PDB2V2  
IO103PDB2V2  
IO119NDB3V0  
IO282NDB7V1  
IO282PDB7V1  
IO292NDB7V2  
VCCIB1  
VCCIB1  
VCCIB1  
IO76PPB1V4  
VCC  
IO78PPB1V4  
IO88NDB2V0  
IO88PDB2V0  
IO94PDB2V1  
IO94NDB2V1  
IO85PDB2V0  
IO85NDB2V0  
VCCPLB  
Revision 5  
4-25  
Package Pin Assignments  
CG896  
CG896  
RT3PE3000L  
CG896  
RT3PE3000L  
Pin  
RT3PE3000L  
Pin  
Pin  
Number  
Function  
IO292PDB7V2  
IO283NDB7V1  
IO285PDB7V1  
IO287PDB7V1  
IO289PDB7V1  
IO289NDB7V1  
VCCIB7  
Number  
Function  
IO281PDB7V0  
VCCIB7  
Number  
Function  
M4  
M5  
N9  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
P1  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
R1  
GND  
GND  
M6  
VCC  
GND  
M7  
GND  
GND  
M8  
GND  
GND  
M9  
GND  
GND  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M30  
N1  
GND  
VCC  
VCC  
GND  
VCCIB2  
GND  
GND  
GCC1/IO112PDB2V3  
IO110PDB2V3  
IO110NDB2V3  
IO109PPB2V3  
IO111NPB2V3  
IO105PDB2V2  
IO105NDB2V2  
GCC2/IO117PDB3V0  
IO117NDB3V0  
GFC2/IO270PDB6V4  
GFB1/IO274PPB7V0  
VCOMPLF  
GFA0/IO273NDB6V4  
GFB0/IO274NPB7V0  
IO271NDB6V4  
GFB2/IO271PDB6V4  
IO269PDB6V4  
IO269NDB6V4  
VCCIB7  
GND  
GND  
GND  
GND  
GND  
VCC  
GND  
VCCIB2  
GND  
IO106NDB2V3  
IO106PDB2V3  
IO108PDB2V3  
IO108NDB2V3  
IO95NDB2V1  
IO99NDB2V2  
IO99PDB2V2  
IO107PDB2V3  
IO107NDB2V3  
IO276NDB7V0  
IO278NDB7V0  
IO280NDB7V0  
IO284NDB7V1  
IO279NDB7V0  
GFC1/IO275PDB7V0  
GFC0/IO275NDB7V0  
IO277PDB7V0  
IO277NDB7V0  
VCCIB7  
GND  
GND  
VCC  
VCCIB2  
NC  
R2  
IO104PPB2V2  
IO102PDB2V2  
IO102NDB2V2  
IO95PDB2V1  
IO97NDB2V1  
IO101NDB2V2  
IO103NDB2V2  
IO119PDB3V0  
IO276PDB7V0  
IO278PDB7V0  
IO280PDB7V0  
IO284PDB7V1  
IO279PDB7V0  
IO285NDB7V1  
IO287NDB7V1  
IO281NDB7V0  
R3  
R4  
R5  
R6  
P2  
R7  
P3  
R8  
P4  
R9  
P5  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
P6  
VCC  
N2  
P7  
GND  
N3  
P8  
GND  
N4  
P9  
GND  
N5  
P10  
P11  
P12  
P13  
GND  
N6  
VCC  
GND  
N7  
GND  
GND  
N8  
GND  
GND  
4-26  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
CG896  
RT3PE3000L  
CG896  
RT3PE3000L  
CG896  
RT3PE3000L  
Pin  
Pin  
Pin  
Number  
Function  
Number  
Function  
IO118NDB3V0  
IO122NPB3V1  
GCA1/IO114PPB3V0  
GCB0/IO113NPB2V3  
GCA2/IO115PPB3V0  
VCCPLC  
Number  
Function  
IO125PDB3V1  
IO121NDB3V0  
IO268NDB6V4  
IO262PDB6V3  
IO260PDB6V3  
IO252PDB6V2  
IO257NPB6V2  
IO261NPB6V3  
IO255PDB6V2  
IO259PDB6V3  
IO259NDB6V3  
VCCIB6  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
T1  
GND  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
U1  
U29  
U30  
V1  
VCC  
VCCIB2  
GCC0/IO112NDB2V3  
GCB2/IO116PDB3V0  
IO118PDB3V0  
IO111PPB2V3  
IO122PPB3V1  
GCA0/IO114NPB3V0  
VCOMPLC  
GCB1/IO113PPB2V3  
IO115NPB3V0  
IO270NDB6V4  
VCCPLF  
V2  
V3  
V4  
IO121PDB3V0  
IO268PDB6V4  
IO264NDB6V3  
IO264PDB6V3  
IO258PDB6V3  
IO258NDB6V3  
IO257PPB6V2  
IO261PPB6V3  
IO265NDB6V3  
IO263NDB6V3  
VCCIB6  
V5  
V6  
U2  
V7  
U3  
V8  
U4  
V9  
U5  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V30  
W1  
W2  
W3  
U6  
VCC  
T2  
U7  
GND  
T3  
GFA2/IO272PPB6V4  
GFA1/IO273PDB6V4  
IO272NPB6V4  
IO267NDB6V4  
IO267PDB6V4  
IO265PDB6V3  
IO263PDB6V3  
VCCIB6  
U8  
GND  
T4  
U9  
GND  
T5  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
U23  
U24  
U25  
U26  
U27  
U28  
GND  
T6  
VCC  
GND  
T7  
GND  
GND  
T8  
GND  
GND  
T9  
GND  
GND  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
GND  
VCC  
VCC  
GND  
VCCIB3  
GND  
GND  
IO120NDB3V0  
IO128NDB3V1  
IO132PDB3V2  
IO130PPB3V2  
IO126NDB3V1  
IO129NDB3V1  
IO127NDB3V1  
IO125NDB3V1  
IO123PDB3V1  
IO266NDB6V4  
IO262NDB6V3  
IO260NDB6V3  
GND  
GND  
GND  
GND  
GND  
VCC  
GND  
VCCIB3  
GND  
IO120PDB3V0  
IO128PDB3V1  
IO124PDB3V1  
IO124NDB3V1  
IO126PDB3V1  
IO129PDB3V1  
IO127PDB3V1  
GND  
GND  
VCC  
VCCIB3  
IO109NPB2V3  
IO116NDB3V0  
Revision 5  
4-27  
Package Pin Assignments  
CG896  
CG896  
RT3PE3000L  
Pin  
RT3PE3000L  
Pin  
Number  
Function  
IO252NDB6V2  
IO251NDB6V2  
IO251PDB6V2  
IO255NDB6V2  
IO249PPB6V1  
IO253PDB6V2  
VCCIB6  
Number  
Function  
IO253NDB6V2  
GEB0/IO235NPB6V0  
VCC  
W4  
W5  
Y9  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
W6  
W7  
VCC  
W8  
VCC  
W9  
VCC  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
Y1  
VCC  
VCC  
VCC  
GND  
VCC  
GND  
VCC  
GND  
VCC  
GND  
VCC  
GND  
IO142PPB3V3  
IO134NDB3V2  
IO138NDB3V3  
IO140NDB3V3  
IO140PDB3V3  
IO136PPB3V2  
IO141NDB3V3  
IO135NDB3V2  
IO131NDB3V2  
IO133PDB3V2  
GND  
GND  
GND  
VCC  
VCCIB3  
IO134PDB3V2  
IO138PDB3V3  
IO132NDB3V2  
IO136NPB3V2  
IO130NPB3V2  
IO141PDB3V3  
IO135PDB3V2  
IO131PDB3V2  
IO123NDB3V1  
IO266PDB6V4  
IO250PDB6V2  
IO250NDB6V2  
IO246PDB6V1  
IO247NDB6V1  
IO247PDB6V1  
IO249NPB6V1  
IO245PDB6V1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
4-28  
Revision 5  
5 – Datasheet Information  
List of Changes  
The following table lists critical changes that were made in each revision of the RT ProASIC3 datasheet.  
Revision  
Changes  
Page  
Revision 5  
The "Security" section was modified to clarify that Microsemi does not support read-  
1-2  
(September 2012) back of programmed data.  
Revision 4  
"LVCMOS 2.5 V / 5.0 V Input" was removed from the "Advanced and Pro I, 2-35,  
(August 2012)  
(Professional) I/Os" section. The following sentence was removed from the "2.5 V  
LVCMOS" section:  
3-2  
"It uses a 5 V–tolerant input buffer and push-pull output buffer."  
The following sentence was added to the "I/O User Input/Output" pin description:  
"5 V input and output tolerance can be achieved with certain I/O standards and  
configuration; refer to the Radiation-Tolerant ProASIC3 Low Power Spaceflight FPGA  
Fabric User’s Guide for more information" (SAR 36961).  
"RT ProASIC3 Ordering Information" was revised to add Extended Flow and PROTO.  
The Temperature Grade Offerings table was retitled "Screening Levels". Extended  
Flow and PROTO information was added to "Screening Levels" and the "Speed  
Grade Offerings" (SAR 39780).  
III  
The "Extended Flow (E Flow)" section was added (SAR 38635).  
V
tDOUT was corrected to tDIN in Figure 2-5 • Input Buffer Timing Model and Delays  
(example) (SAR 37113).  
2-17  
In Table 2-20 • Summary of AC Measuring Points*, the Input/Output Supply Voltage  
column of values was corrected. Most of the values had been incorrect due to the  
column being offset by one row (SAR 36646).  
2-22  
IIH and IIL were changed from 10 µA or 15 µA to 5 µA in the following tables to align  
with actual testing values used (SAR 39976).  
2-29  
through  
2-71  
Minimum and Maximum DC Input Levels: Table 2-32, Table 2-39, Table 2-46,  
Table 2-53, Table 2-60, Table 2-67, Table 2-72, Table 2-76, Table 2-81, Table 2-86,  
Table 2-91, Table 2-96, Table 2-101, Table 2-106, Table 2-111, Table 2-116,  
Table 2-121, Table 2-126, Table 2-130.  
The values for maximum VIH and VIL for LVPECL in Table 2-134 • Minimum and  
Maximum DC Input and Output Levels was corrected to 3.6 V across all supply  
voltages (SAR 37694).  
2-73  
2-99  
Minimum pulse width High and Low values were added to the tables in the "Global  
Tree Timing Characteristics" section. The maximum frequency for global clock through  
parameter was removed from Table 2-156 • RT3PE600L Global Resource through  
Table 2-159 • RT3PE3000L Global Resource because a frequency on the global is  
only an indication of what the global network can do. There are other limiters such as  
the SRAM, I/Os, and PLL. SmartTime software should be used to determine the  
design frequency (SAR 28993).  
2-100  
Figure 2-49 • FIFO Read and Figure 2-50 • FIFO Write are new (SAR 34850).  
2-112  
3-4  
The units were corrected from W to Ω in the last paragraph of the "TRST Boundary  
Scan Reset Pin" description (SAR 36562).  
Revision 5  
5-1  
Datasheet Information  
Revision  
Changes  
Page  
Revision 4  
(continued)  
The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)"  
section: "Within the package, the VMV plane is decoupled from the simultaneous  
switching noise originating from the output buffer VCCI domain." The replacement  
text is "Within the package, the VMV plane biases the input stage of the I/Os in the  
I/O banks” (SAR 38325). The "VMVx I/O Supply Voltage (quiet)" section states that  
"VMV pins must be connected to the corresponding VCCI pins," which is for an ESD  
enhancement.  
3-1  
Table 3-2 • JTAG Pins – Recommendations for Flight is new (SAR 36563).  
3-4  
II  
Revision 3  
(October 2011)  
Values for the CQ256 package were added to the "I/Os Per Package 1" table (SAR  
33799).  
The reference to guidelines for global spines and VersaTile rows, given in the "Global  
Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture"  
section of the Global Resources chapter in the RT ProASIC3 FPGA Fabric  
User's Guide (SAR 34168).  
2-14  
The notes regarding drive strength in the "Summary of I/O Timing Characteristics –  
2-22,  
Default I/O Software Settings" section, "3.3 V LVCMOS Wide Range" section and 2-32, 2-46  
"1.2 V LVCMOS Wide Range" section tables were revised for clarification. They now  
state that the minimum drive strength for the default software configuration when run  
in wide range is ±100 µA. The drive strength displayed in software is supported in  
normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 25700).  
The formula for R(WEAK PULL-DOWN-MAX), given in a note for Table 2-26 • I/O Weak  
Pull-Up/Pull-Down Resistances, was corrected to the following (SAR 32470):  
2-26  
R(WEAK PULL-DOWN-MAX) = VOLspec / I(WEAK PULL-DOWN-MIN)  
The following notes were removed from Table 2-130 • Minimum and Maximum DC  
Input and Output Levels (SAR 29428):  
2-71  
±5%  
Differential input voltage = ±350 mV  
Table 2-160 • RT ProASIC3 CCC/PLL Specification and Table 2-161 • RT ProASIC3 2-101,  
CCC/PLL Specification were updated. A note was added to both tables indicating that  
when the CCC/PLL core is generated by Microsemi core generator software, not all  
delay values of the specified delay increments are available (SAR 25705).  
2-102  
A table note was added to tables in the SRAM "Timing Characteristics" section to  
reference an application note, Simultaneous Read-Write Operations in Dual-Port  
SRAM for Flash-Based cSoCs and FPGAs, which covers simultaneous read/write  
cases in detail (SAR 21770).  
2-107  
Package names used in the "Package Pin Assignments" section were revised to  
match standards given in Package Mechanical Drawings (SAR 27395).  
4-1  
4-1  
I
The "CQ256" section and pin tables for RT3PE600L and RT3PE3000L are new (SAR  
33771).  
Revision 2  
(July 2011)  
The "Low Power" section was revised, deleting text regarding Flash*Freeze mode,  
single-voltage operation, and low-impedance switches. The "Radiation Tolerant"  
section was renamed to "Radiation Performance" and the performance information  
was updated (SAR 30167).  
The "In-System Programming (ISP) and Security" section and "Security" section were  
revised to clarify that although no existing security measures can give an absolute  
guarantee, Microsemi FPGAs implement the best security available in the industry  
(SAR 32865).  
I, 2  
5-2  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Revision  
Changes  
Page  
Revision 2  
(continued)  
The "RT ProASIC3 Device Status" table was revised to change the status for  
RT3PE600L and RT3PE3000L from advance to production (SARs 32097, 32395).  
II  
The Y security option and Licensed DPA Logo were added to the "RT ProASIC3  
Ordering Information" section. The trademarked Licensed DPA Logo identifies that a  
product is covered by a DPA counter-measures license from Cryptography Research  
(SAR 32151).  
Table 2 • MIL-STD-883 Class B Product Flow for RT ProASIC3 Devices* is new (SAR  
27924).  
IV  
Reference to flash programming and retention maximum limits in a note for Table 2-1  
• Absolute Maximum Ratings was removed. This information will be added in a future  
revision of the datasheet (SAR 31645).  
2-1  
Table 2-2 • Recommended Operating Conditions1,2 was updated for wide range  
(SARs 29700, 30472). VPUMP during operating was changed from "0 to 3.6" to 0.  
The table note stating VPUMP can be left floating during normal operation was  
revised to state, "VPUMP should be tied to 0 V to optimize total ionizing dose  
performance during operation in spaceflight applications" (SAR 32490).  
2-2  
Table 2-4 • Package Thermal Resistivities was updated with information for the  
CG896 package (SARs 31947, 28960).  
2-7  
2-7  
Table 2-5 Temperature and Voltage Derating Factors for Timing Delays was  
updated to reflect the latest changes in the software (SAR 32395).  
Table 2-6 • Power Supply State per Mode is new (SARs 24112, 32181, 32490).  
2-8  
2-8  
New information was added to the following tables in the "Quiescent Supply  
Current " section (SAR 30619, SAR 30397):  
Table 2-7 • Quiescent Supply Current (IDD) Characteristics, Flash*Freeze Mode*  
Table 2-9 • Quiescent Supply Current (IDD) Characteristics Shutdown Mode  
Table 2-10 • Quiescent Supply Current (IDD), Static Mode and Active Mode1 (the  
name of this table changed from "Quiescent Supply Current IDD, RT ProASIC  
Flash*Freeze Mode" per SAR 32181)  
Tables in the "Power per I/O Pin" section were updated and 3.3 V LVCMOS and 1.2 V  
LVCMOS wide range were added (SAR 29700).  
2-10  
More information was added to the note explaining PDC6 in the following tables (SAR 2-10, 2-11  
32181):  
Table 2-11 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software  
Settings  
Table 2-12 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software  
Settings1  
Global parameters were updated in the dynamic power consumption tables in the  
"Power Consumption of Various Internal Resources" section (SAR 32451).  
2-12  
2-13  
Table 2-15 • Different Components Contributing to the Static Power Consumption in  
RT ProASIC3 Devices and "Total Static Power Consumption—PSTAT" were updated  
to add PDC0 (SARs 32451, 32181).  
The "Timing Model" was updated to reflect changes made in the I/O timing tables  
(SARs 29793, 32097, 32395).  
2-16  
2-22  
The title of Table 2-20 • Summary of AC Measuring Points* was revised. It was  
formerly "Summary of AC Memory Points" (SAR 32446).  
Revision 5  
5-3  
Datasheet Information  
Revision  
Changes  
Page  
Revision 2  
(continued)  
Table 2-18 • Summary of Maximum and Minimum DC Output Levels and related  
tables for each I/O standard were updated to note differences in VOL and VOH for  
the following ranges:  
2-20  
–55ºC TJ 100°C  
100 ºC < TJ 125°C  
The TJ range for each parameter is specified in the tables (SAR 29793).  
The drive strength for 3.3 V GTL and 2.5 V GTL was changed from 25 mA to 20 mA  
in the following tables (SARs 31995, 27973).  
2-20  
through  
2-27  
Table 2-18 • Summary of Maximum and Minimum DC Output Levels  
Table 2-22 • Summary of I/O Timing Characteristics—Software Default Settings  
Table 2-23 • Summary of I/O Timing Characteristics—Software Default Settings  
Table 2-25 • I/O Output Buffer Maximum Resistances1  
Table 2-27 • I/O Short Currents IOSH/IOSL (SAR 31718)  
The following tables were updated in accordance with SmartTime and SmartPower  
software (SARs 32097, 32457, 32395):  
2-24  
2-34  
2-34  
2-50  
Table 2-23 • Summary of I/O Timing Characteristics—Software Default Settings  
Table 2-43 • 3.3 V LVCMOS Wide Range Low Slew  
Table 2-44 • 3.3 V LVCMOS Wide Range High Slew  
Timing characteristics tables for 1.5 V in the "Voltage-Referenced I/O Characteristics"  
section  
2-71  
2-29  
Table 2-133 • LVDS and Table 2-137 • LVPECL  
The AC Loading figures in the "Single-Ended I/O Characteristics" section were  
updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O  
Software Settings" section (SAR 32448).  
Table 2-26 • I/O Weak Pull-Up/Pull-Down Resistances was updated (SAR 29793).  
3.3 V LVCMOS and 1.2 V LVCMOS wide range were added (SARs 29700, 31926).  
2-26  
2-20 to  
2-68  
Values were revised in the "Global Tree Timing Characteristics" section tables (SAR  
30698).  
2-99  
Table 2-160 • RT ProASIC3 CCC/PLL Specification and Table 2-161 • RT ProASIC3 2-101,  
CCC/PLL Specification were updated (SAR 79388). Specification of jitter in the  
presence of SSO was added (SAR 32526).  
2-102  
The following figures were deleted (SAR 29991). Future application notes will cover  
these timing issues in detail (SAR 21770).  
N/A  
Figure 2-47 • Write Access after Write onto Same Address  
Figure 2-48 • Read Access after Write onto Same Address  
Figure 2-49 • Write Access after Read onto Same Address  
2-104,  
2-107  
The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics"  
tables, Figure 2-51 • FIFO Reset, and the FIFO "Timing Characteristics" tables were  
revised to ensure consistency with the software names (SAR 29991).  
The values for tCKQ1 in Table 2-162 • RAM4K9 and Table 2-163 • RAM4K9 were 2-107,  
reversed with respect to WMODE and have been corrected (SAR 32344). 2-108  
The timing tables in the "SRAM" section were updated, including changes in the 2-107 to  
names and definitions of address collision parameters (SAR 21770).  
2-110  
Table 2-169 • Embedded FlashROM Access Time was updated (SAR 32393).  
2-117  
5-4  
Revision 5  
Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs  
Revision  
Changes  
Page  
Revision 2  
(continued)  
The "Pin Descriptions" chapter was added (SAR 21642).  
3-1  
Pin A1 was removed from the package diagram for the "CG484" package and the  
corresponding pin tables (SAR 30549).  
4-8  
July 2010  
Revision 1  
The versioning system for datasheets has been changed. Datasheets are assigned a  
revision number that increments each time the datasheet is revised. The "Screening  
Levels" table on page III indicates the status for each device in the device family.  
N/A  
The CQFP package was added. The tables in this chapter and the "RT ProASIC3 I-I to I-III  
(November 2009) Ordering Information" section were revised to reflect this.  
Revision 5  
5-5  
Datasheet Information  
Datasheet Categories  
Categories  
In order to provide the latest information to designers, some datasheet parameters are published before  
data has been fully characterized from silicon devices. The data provided for a given device, as  
highlighted in the "RT ProASIC3 Device Status" table on page II, is designated as either "Product Brief,"  
"Advance," "Preliminary," or "Production." The definitions of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advance or production) and contains general  
product information. This document gives an overview of specific device and family information.  
Advance  
This version contains initial estimated information based on simulation, other products, devices, or speed  
grades. This information can be used as estimates, but not for production. This label only applies to the  
DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not  
been fully characterized.  
Preliminary  
The datasheet contains information based on simulation and/or initial characterization. The information is  
believed to be correct, but changes are possible.  
Unmarked (production)  
This version contains information that is considered to be final.  
International Traffic in Arms Regulations (ITAR)  
The product described in this datasheet are subject to the International Traffic in Arms Regulations  
(ITAR). They require an approved export license prior to export from the United States. An export  
includes release of product or disclosure of technology to a foreign national inside or outside the United  
States.  
Safety Critical, Life Support, and High-Reliability Applications  
Policy  
The products described in this advance status document may not have completed Microsemi’s  
qualification process. Microsemi may amend or enhance products during the product introduction and  
qualification process, resulting in changes in device functionality or performance. It is the responsibility of  
each customer to ensure the fitness of any product (but especially a new product) for a particular  
purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications.  
Consult Terms and Conditions for specific liability exclusions relating to life-support applications. A  
reliability report covering all Microsemi SoC products is available on the SoC Products Group website at  
http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced  
qualification and lot acceptance screening procedures. Contact your local sales office for additional  
reliability information.  
5-6  
Revision 5  
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor  
solutions for: aerospace, defense and security; enterprise and communications; and industrial  
and alternative energy markets. Products include high-performance, high-reliability analog and  
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and  
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at  
www.microsemi.com.  
Microsemi Corporate Headquarters  
One Enterprise, Aliso Viejo CA 92656 USA  
Within the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of  
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.  
Fax: +1 (949) 215-4996  
51700107-5/9.12  

相关型号:

RT3PE600L-LG484B

Radiation-Tolerant ProASIC3 Low-Power Space- Flight Flash FPGAs
ACTEL

RT3PE600L-LG484B

Field Programmable Gate Array, 13824 CLBs, 600000 Gates, 250MHz, 13824-Cell, CMOS, 1 MM PITCH, LGA-484
MICROSEMI

RT3S4LC4

Relay package consisting of RT relay, DIN-rail socket, plastic
TE

RT3S4R24

Relay package consisting of RT relay, DIN-rail socket, plastic
TE

RT3S4S15

Relay package consisting of RT relay, DIN-rail socket, plastic
TE

RT3S4T30

Relay package consisting of RT relay, DIN-rail socket, plastic
TE

RT3S5LC4

Relay package consisting of RT relay, DIN-rail socket, plastic
TE

RT3S5R24

Relay package consisting of RT relay, DIN-rail socket, plastic
TE

RT3S5T30

Relay package consisting of RT relay, DIN-rail socket, plastic
TE

RT3T11M

Composite Transistor With Resistor
ISAHAYA