RTSX32SU-CQ208EV [MICROSEMI]

Field Programmable Gate Array, 2880 CLBs, 48000 Gates, 310MHz, 2880-Cell, CMOS, CQFP208, CERAMIC, QFP-208;
RTSX32SU-CQ208EV
型号: RTSX32SU-CQ208EV
厂家: Microsemi    Microsemi
描述:

Field Programmable Gate Array, 2880 CLBs, 48000 Gates, 310MHz, 2880-Cell, CMOS, CQFP208, CERAMIC, QFP-208

时钟 栅 可编程逻辑
文件: 总100页 (文件大小:5065K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Designed for Space  
Specifications  
SEU-Hardened Registers Eliminate the Need to Implement  
Triple-Module Redundancy (TMR)  
0.25 µm Metal-to-Metal Antifuse Process (UMC)  
48,000 to 108,000 Available System Gates  
Up to 2,012 SEU-Hardened Flip-Flops  
– Immune to Single Event Upsets (SEU) to LET > 40 MeV-  
th  
2
cm /mg,  
Up to 360 User-Programmable I/O Pins  
–10  
– SEU Rate  
<
10  
Upset/Bit-Day in Worst-Case  
Geosynchronous Orbit  
Up to 100 krad (Si) Total Ionizing Dose (TID)  
Features  
Very Low Power Consumption (Up to 68 mW at Standby)  
3.3 V and 5 V Mixed Voltage  
Configurable I/O Support for 3.3 V/5 V PCI, LVTTL, TTL, and  
CMOS  
– Parametric Performance Supported with Lot-Specific Test  
Data  
Single-Event Latch-Up (SEL) Immunity to LET > 104  
TH  
MeVcm2/mg  
TM1019.5 Test Data Available  
QML Certified Devices  
– 5 V Input Tolerance and 5 V Drive Strength  
– Slow Slew Rate Option  
– Configurable Weak Resistor Pull-Up/Down for Tristated  
Outputs at Power-Up  
High Performance  
– Hot-Swap Compliant with Cold-Sparing Support  
Secure Programming Technology Designed to Protect Against  
Reverse Engineering and Design Theft  
100% Circuit Resource Utilization with 100% Pin Locking  
Unique In-System Diagnostic and Verification Capability with  
Silicon Explorer II  
Deterministic, User-Controllable Timing  
JTAG Boundary Scan Testing in Compliance with IEEE  
Standard 1149.1 – Dedicated JTAG Reset (TRST) Pin  
230 MHz System Performance  
310 MHz Internal Performance  
9.5 ns Input Clock to Output Pad  
Processing Flows  
B-Flow – MIL-STD-883B  
E-Flow – Extended Flow  
EV-Flow – Class V Equivalent Flow Processing Consistent with  
MIL-PRF 38535  
Prototyping Options  
Commercial SX-A Devices for Functional Verification  
RTSX-SU PROTO Devices with Same Functional and Timing  
Characteristics as Flight Unit in a Non-Hermetic Package  
Table 1 • RTSX-SU Product Profile  
Device  
RTSX32SU  
RTSX72SU  
Capacity  
Typical Gates  
System Gates  
32,000  
48,000  
72,000  
108,000  
Logic Modules  
Combinatorial Cells  
SEU-Hardened Register Cells (Dedicated Flip-Flops)  
2,880  
1,800  
1,080  
6,036  
4,024  
2,012  
Maximum Flip-Flops  
Maximum User I/Os  
Clocks  
1,980  
227  
3
4,024  
360  
3
Quadrant Clocks  
Speed Grades  
0
4
Std., –1  
Std., –1  
Package (by pin count)  
CQ  
CG  
CC  
84, 208, 256  
256  
208, 256  
624  
January 2012  
i
© 2012 Microsemi Corporation  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Ordering Information  
RTSX72SU  
1
CQ  
256  
B
Application (T emperature Range)  
B= MIL-STD-883 Class B  
E= E-Flow (Space Level Flow)  
= Military Temperature  
M
= Class V Equivalent Flow Processing  
Consistent with MIL-PRF-38535  
= Prototyping Flow  
EV  
PROTO  
Package Lead Count  
Package Type  
=
CQ Ceramic Quad Flat Pack  
=
CG Ceramic Column Grid Aray  
=
CC Ceramic Chip Carrier Land Grid  
Speed Grade  
Blank = Standard Speed  
1 = Approximately 15% Faster than Standard  
Part Number  
RTSX32SU 32,000 RadTolerant Typical Gates  
=
RTSX72SU 72,000 RadTolerant Typical Gates  
=
RTSX-SU Device Status  
RTSX-SU Devices  
RTSX32SU  
Status  
Production  
Production  
RTSX72SU  
ii  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Ceramic Device Resources  
User I/Os (including clock buffers)  
Device  
CQ84  
62  
CQ208  
173  
CQ256  
227  
CC256  
202  
CG624  
RTSX32SU  
RTSX72SU  
170  
212  
360  
Temperature Grade and Application Offering  
Package  
CQ84  
RTSX32SU  
B, E, EV, PROTO  
B, E, EV, PROTO  
B, E, EV, PROTO  
M, B, E, EV, PROTO  
RTSX72SU  
CQ208  
CQ256  
CC256  
CG624  
B, E, EV, PROTO  
B, E, EV, PROTO  
B, E, EV, PROTO  
Note: M = Military Temperature  
B = MIL-STD-883 Class B  
E = E-Flow  
EV = Microsemi SoC Products Group V Equivalent Flow (Class V Processing Consistent with MIL-PRF-38535)  
PROTO = RTSX-SU prototype units.  
Speed Grade and Temperature Grade Matrix  
RTSX32SU  
RTSX72SU  
STD  
–1  
Notes:  
1. Data applies to M, B, E, EV, and PROTO flow devices.  
2. Contact your Microsemi SoC Products Group representative for availability.  
Revision 8  
iii  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
QML Certification  
Microsemi has achieved full QML certification, demonstrating that quality management procedures, processes, and controls are in  
place and comply with MIL-PRF-38535 (the performance specification used by the U.S. Department of Defense for monolithic  
integrated circuits).  
MIL-STD-883 Class B Product Flow  
Table 2 • MIL-STD-883 Class B Product Flow* for RTSX32SU and RTSX72SU  
883–Class B  
Step  
Screen  
883 Method  
Requirement  
100%  
1
2
3
4
5
Internal Visual  
2010, Test Condition B  
1010, Test Condition C  
Temperature Cycling  
100%  
Constant Acceleration  
2001, Test Condition B or D, Y1, Orientation Only  
100%  
Particle Impact Noise Detection  
2020, Condition A  
1014  
100%  
Seal  
a.Fine  
b.Gross  
100%  
100%  
6
7
Visual Inspection  
2009  
100%  
100%  
Pre-Burn-In  
Electrical Parameters  
In accordance with applicable Microsemi  
device specification  
8
9
Dynamic Burn-In  
1015, Condition D,  
160 hours at 125°C or 80 hours at 150°C  
100%  
100%  
Interim (Post-Burn-In)  
Electrical Parameters  
In accordance with applicable Microsemi  
device specification  
10  
11  
Percent Defective Allowable  
5%  
All Lots  
100%  
Final Electrical Test  
a.Static Tests  
In accordance with applicable Microsemi  
device specification, which includes a, b, and  
(1)25°C  
(Subgroup 1, Table I)  
(2)–55°C and +125°C  
(Subgroups 2, 3, Table I)  
b.Functional Tests  
(1)25°C  
5005  
5005  
100%  
(Subgroup 7, Table I)  
(2)–55°C and +125°C  
(Subgroups 8A and 8B, Table I)  
c.Switching Tests at 25°C  
(Subgroup 9, Table I)  
5005  
5005  
100%  
100%  
5005  
2009  
12.  
External Visual  
Note: *For CCGA devices, all Assembly, Screening, and TCI testing are performed at LGA level. Only QA electrical and mechanical  
visual are performed after solder column attachment.  
iv  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Extended Flow  
Table 3 • Extended Flow for RTSX32SU and RTSX72SU1,2  
Step  
Screen  
Destructive In-Line Bond Pull3  
Internal Visual  
Method  
Requirement  
Sample  
100%  
1
2
3
4
5
6
7
8
9
2011, Condition D  
2010, Condition A  
Serialization  
100%  
Temperature Cycling  
Constant Acceleration  
Particle Impact Noise Detection  
Radiographic  
1010, Condition C  
100%  
2001, Condition B or D, Y1 Orientation Only  
2020, Condition A  
100%  
100%  
2012 (one view only)  
100%  
Pre-Burn-In Test  
In accordance with applicable Microsemi device specification  
100%  
Dynamic Burn-In  
1015, Condition D, 240 hours at 125°C or 120 hours at 150°C  
minimum  
100%  
10 Interim (Post-Burn-In) Electrical Parameters In accordance with applicable Microsemi device specification  
100%  
100%  
11 Static Burn-In  
1015, Condition C, 72 hours at 150°C or 144 hours at 125°C  
minimum  
12 Interim (Post-Burn-In) Electrical Parameters In accordance with applicable Microsemi device specification  
100%  
13 Percent Defective Allowable (PDA)  
Calculation  
5%, 3% Functional Parameters at 25°C  
All Lots  
14 Final Electrical Test  
In accordance with Microsemi applicable device specification  
which includes a, b, and c:  
100%  
100%  
a.Static Tests  
(1)25°C  
5005  
5005  
(Subgroup 1, Table1)  
(2)–55°C and +125°C  
(Subgroups 2, 3, Table 1)  
b.Functional Tests  
100%  
(1)25°C  
5005  
5005  
(Subgroup 7, Table 15)  
(2)–55°C and +125°C  
(Subgroups 8A and B, Table 1)  
c.Switching Tests at 25°C  
(Subgroup 9, Table 1)  
100%  
100%  
5005  
1014  
15 Seal  
a.Fine  
b.Gross  
16 External Visual  
2009  
100%  
Notes:  
1. Microsemi offers Extended Flow for users requiring additional screening beyond MIL-STD-833, Class B requirement. Microsemi  
offers this Extended Flow incorporating the majority of the screening procedures as outlined in Method 5004 of MIL-STD-883,  
Class S. The exceptions to Method 5004 are shown in notes 2 and 4 below.  
2. For CCGA devices, all Assembly/Screening/TCI testing are performed at LGA level. Only QA electrical and mechanical visual  
are performed after solder column attachment.  
3. Method 5004 requires a 100 percent, nondestructive bond-pull to Method 2003. Microsemi substitutes a destructive bond-pull  
to Method 2011 Condition D on a sample basis only.  
4. MIL-STD-883, Method 5004, requires a 100 percent radiation latch-up testing to Method 1020. Microsemi will NOT perform any  
radiation testing, and this requirement must be waived in its entirety.  
5. Wafer lot acceptance complies to commercial standards only (requirement per Method 5007 is not performed).  
Revision 8  
v
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
EV Flow (Class V Flow Equivalent Processing)  
Table 4 • EV Flow (Class V Equivalent Flow Processing) for RTSX32SU and RTSX72SU1, 2, 3  
Step  
Screen  
Destructive Bond Pull  
Method  
Requirement  
Extended Sample  
100%  
1
2
3
4
5
2011, Condition D  
2010, Condition A  
Internal Visual  
Serialization  
100%  
Temperature Cycling  
Constant Acceleration  
1010, Condition C, 50 cycles minimum  
2001, Y1 Orientation Only  
100%  
100%  
2001, Test Condition B or D, Y1, Orientation Only  
2020, Condition A  
6
7
8
Particle Impact Noise Detection  
Radiographic (X-Ray)  
100%  
100%  
100%  
2012, One View (Y1 Orientation) Only  
Pre-Burn-In Electrical Parameters  
In accordance with applicable Microsemi device  
specification  
9
Dynamic Burn-In  
1015, Condition D,  
100%  
240 hours at 125°C or 120 hours at 150°C  
minimum  
10  
11  
12  
Interim (Post-Dynamic-Burn-In) Electrical  
Parameters  
In accordance with applicable Microsemi device  
specification  
100%  
100%  
100%  
Static Burn-In  
1015, Condition C, 72 hours at 150°C or 144  
hours at 125°C minimum  
Interim (Post-Static-Burn-In) Electrical  
Parameters  
In accordance with applicable Microsemi device  
specification  
13  
14  
Percent Defective Allowable (PDA) Calculation  
Final Electrical Test  
5% Overall, 3% Functional Parameters at 25°C  
All Lots  
100%  
In accordance with applicable Microsemi device  
specification, which includes a, b, and c:  
a. Static Tests  
(1) 25°C  
5005, Table 1, Subgroup 1  
5005, Table 1, Subgroup 2, 3  
(2) –55°C and +125°C  
b. Functional Tests  
(1) 25°C  
5005, Table 1, Subgroup 7  
5005, Table 1, Subgroup 8a, 8b  
(2) –55°C and +125°C  
5005, Table 1, Subgroup 9  
c. Switching Tests at 25°C  
Seal (Fine & Gross Leak Test)  
External Visual  
15  
16  
1014  
100%  
100%  
2009  
17  
Wafer Lot Specific Life Test (Group C)  
MIL-PRF-38535, Appendix B, sec. B.4.2.c  
All Wafer Lots  
Notes:  
1. Microsemi offers EV flow for users requiring full compliance to MIL-PRF-38535 class V requirement.  
The EV process flow is expanded from the existing E-flow requirement (it still meets the full SMD requirement for current E-flow  
devices) with the intention to be in full compliance to MIL-PRF-38535 Table IA and Appendix B requirement, but without the  
official class V certification from DSCC.  
2. For CCGA devices, all Assembly/Screening/TCI testing are performed at LGA level. Only QA electrical and mechanical visual  
are performed after solder column attachment.  
3. As an enhancement to the Au ball bonding process control, two set-up units are required to go through 300°C bake for 60  
minutes prior to the wire pull test. The minimum bond strength limit is 3.0 grams force, with no Au ball Lift mode (Au ball-to-Al  
pad separation) allowed regardless of bond strength.  
vi  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Table of Contents  
General Description  
Device Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Programmable Interconnect Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
I/O Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Logic Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  
Global Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
Design Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
Low-Cost Prototyping Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7  
In-System Diagnostic and Debug Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7  
Radiation Survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8  
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9  
Detailed Specifications  
General Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
I/O Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11  
Module Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30  
Routing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35  
Global Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37  
Other Architectural Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-45  
Package Pin Assignments  
CQ84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
CQ208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
CQ256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7  
CC256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12  
CG624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21  
Datasheet Information  
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4  
Export Administration Regulations (EAR) or International Traffic in Arms Regulations (ITAR) . . . . . . . . . . . . . . . . . 4-4  
Revision 8  
I
1 – General Description  
RTSX-SU radiation-tolerant FPGAs are enhanced versions of Microsemi’s SX-A family of devices,  
specifically designed for enhanced radiation performance.  
Featuring SEU-hardened D-type flip-flops that offer the benefits of Triple Module Redundancy (TMR)  
without the associated overhead, the RTSX-SU family is a unique product offering for space applications.  
Manufactured using 0.25 µm technology at the United Microelectronics Corporation (UMC) facility in  
Taiwan, RTSX-SU offers levels of radiation survivability far in excess of typical CMOS devices.  
Device Architecture  
RTSX-SU architecture, derived from the highly successful SX-A sea-of-modules architecture, has been  
designed to improve upset and total-dose performance in radiation environments.  
With three layers of metal interconnect in the RTSX32SU and four metal layers in RTSX72SU, the RTSX-  
SU family provides efficient use of silicon by locating the routing interconnect resources between the top  
two metal layers. This completely eliminates the channels of routing and interconnect resources between  
logic modules as found in traditional FPGAs. In a sea-of-modules architecture, the entire floor of the  
FPGA is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or  
routing.  
The RTSX-SU architecture adds several enhancements over the SX-A architecture to improve its  
performance in radiation environments, such as SEU-hardened flip-flops, wider clock lines, and stronger  
clock drivers.  
Programmable Interconnect Elements  
Interconnection between logic modules is achieved using Microsemi’s patented metal-to-metal  
programmable antifuse interconnect elements. The antifuses are normally open circuit and form a  
permanent, low-impedance connection when programmed.  
The metal-to-metal antifuse is made up of a combination of amorphous silicon and dielectric material with  
barrier metals and has a programmed (“on” state) resistance of 25 Ω with capacitance of 1.0 fF for low  
signal impedance (Figure 1-1 on page 1-2).  
Revision 8  
1-1  
General Description  
Routing Tracks  
Amorphous Silicon/  
Dielectric Antifuse  
Tungsten Plug Via  
Metal 4  
Metal 3  
Tungsten Plug Via  
Metal 2  
Metal 1  
Tungsten Plug Contact  
Silicon Substrate  
Figure 1-1 • RTSX-SU Family Interconnect Elements  
These antifuse interconnects reside between the top two layers of metal and thereby enable the sea-of-  
modules architecture in an FPGA.  
The extremely small size of these interconnect elements gives the RTSX-SU family abundant routing  
resources and provides excellent protection against design theft. Reverse engineering is virtually  
impossible because it is extremely difficult to distinguish between programmed and unprogrammed  
antifuses. Additionally, since RTSX-SU is a nonvolatile, single-chip solution, there is no configuration  
bitstream to intercept.  
The RTSX-SU interconnect (i.e., the antifuses and metal tracks) also has lower capacitance and  
resistance than that of any other device of similar capacity, leading to the fastest signal propagation in the  
industry for the radiation tolerance offered.  
I/O Structure  
The RTSX-SU family features a flexible I/O structure that supports 3.3 V LVTTL, 5 V TTL, 5 V CMOS,  
and 3.3 V and 5 V PCI. All I/O standards are hot-swap compliant, cold-sparing capable, and 5 V tolerant  
(except for 3.3 V PCI).  
In addition, each I/O on an RTSX-SU device can be configured as an input, an output, a tristate output, or  
a bidirectional pin. Mixed I/O standards are allowed and can be set on a pin-by-pin basis. High or low  
slew rate can be set on individual output buffers (except for PCI, which defaults to high slew), as well as  
the power-up configuration (either pull-up or pull-down).  
Even without the inclusion of dedicated I/O registers, these I/Os, in combination with array registers, can  
achieve clock-to-output-pad timing as fast as 9.5 ns. In most FPGAs, I/O cells that have embedded  
latches and flip-flops require instantiation in HDL code; this is a design complication not encountered in  
RTSX-SU FPGAs. Fast pin-to-pin timing ensures that the device will have little trouble interfacing with  
any other device in the system, which in turn, enables parallel design of system components and reduces  
overall design time.  
1-2  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Logic Modules  
The RTSX-SU family provides two types of logic modules to the designer (Figure 1-2 on page 1-4): the  
register cell (R-cell) and the combinatorial cell (C-cell).  
The C-cell implements a range of combinatorial functions with up to five inputs. Inclusion of the DB input  
and its associated inverter function dramatically increases the number of combinatorial functions that can  
be implemented in a single module from 800 options (as in previous architectures) to more than 4,000 in  
the RTSX-SU architecture. An example of the improved flexibility enabled by the inversion capability is  
the ability to integrate a three-input exclusive-OR function into a single C-cell. This facilitates the  
construction of nine-bit parity-tree functions. At the same time, the C-cell structure is extremely  
synthesis-friendly, simplifying the overall design and reducing synthesis time.  
The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable  
(using the S0 and S1 lines) control signals. The R-cell registers feature programmable clock polarity,  
selectable on a register-by-register basis. This provides additional flexibility during mapping of  
synthesized functions into the RTSX-SU FPGA. The clock source for the R-cell can be chosen from the  
hardwired clock, the routed clocks, or the internal logic.  
While each SEU-hardened R-cell appears as a single D-type flip-flop to the user, each is implemented  
employing triple redundancy to achieve a LET threshold of greater than 40 MeV-cm2/mg. Each TMR R-  
cell consists of three master-slave latch pairs, each with asynchronous, self-correcting feedback paths.  
The output of each latch on the master or slave side is voted with the outputs of the other two latches on  
that side. If one of the three latches is struck by an ion and starts to change state, the voting with the  
other two latches prevents the change from feeding back and permanently latching. Care was taken in  
the layout to ensure that a single ion strike could not affect more than one latch (see the "R-Cell" section  
on page 2-31 for more details).  
Microsemi has arranged all C-cell and R-cell logic modules into horizontal banks called Clusters. There  
are two types of clusters: Type 1 contains two C-cells and one R-cell, while Type 2 contains one C-cell  
and two R-cells.  
To increase design efficiency and device performance, Microsemi has further organized these modules  
into SuperClusters. SuperCluster 1 is a two-wide grouping of Type 1 clusters. SuperCluster 2 is a two-  
wide group containing one Type 1 cluster and one Type 2 cluster. RTSX-SU devices feature more  
SuperCluster 1 modules than SuperCluster 2 modules because designers typically require significantly  
more combinatorial logic than flip-flops (Figure 1-2 on page 1-4).  
Revision 8  
1-3  
General Description  
Routing  
R-cells and C-cells within Clusters and SuperClusters can be connected through the use of two  
innovative local routing resources called FastConnect and DirectConnect, which enable extremely fast  
and predictable interconnection of modules within Clusters and SuperClusters. This routing architecture  
also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest  
possible performance (Figure 1-3 and Figure 1-4).  
DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring  
R-cell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable  
interconnection to achieve its fast signal propagation time of less than 0.1 ns.  
FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and  
vertical routing with the SuperCluster immediately below it. Only one programmable connection is used  
in a FastConnect path, delivering a maximum interconnect propagation delay of 0.4 ns.  
In addition to DirectConnect and FastConnect, the architecture makes use of two globally-oriented  
routing resources known as segmented routing and high-drive routing. Microsemi’s segmented routing  
structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact  
combination of track lengths and antifuses within each path is chosen by the 100-percent-automatic  
place-and-route software to minimize signal propagation delays.  
C-Cell  
R-Cell  
Routed  
Data Input  
S0  
D0  
D1  
S1  
PRE  
CLR  
Y
D2  
D3  
Direct  
Connect  
Input  
D
Q
Y
Sb  
Sa  
HCLK  
CLKA,  
CLKB,  
DB  
Internal Logic  
CKS  
CKP  
A0 B0  
A1 B1  
Cluster 1  
Cluster 1  
Cluster 2  
Cluster 1  
Type 1 SuperCluster  
Type 2 SuperCluster  
Figure 1-2 • R-Cell, C-Cell and Cluster Organization  
1-4  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
DirectConnect  
• No antifuses for  
smallest routing delay  
FastConnect  
• One antifuse  
Routing Segments  
• Typically 2 antifuses  
• Max. 5 antifuses  
Type 1 SuperClusters  
Figure 1-3 • DirectConnect and FastConnect for SuperCluster 1’s  
DirectConnect  
• No antifuses for  
smallest routing delay  
FastConnect  
• One antifuse  
Routing Segments  
• Typically 2 antifuses  
• Max. 5 antifuses  
Type 2 SuperClusters  
Figure 1-4 • DirectConnect and FastConnect for SuperCluster 2’s  
Revision 8  
1-5  
General Description  
Global Resources  
Microsemi’s high-drive routing structure provides three clock networks: hardwired clocks (HCLK), routed  
clocks (CLKA, CLKB), and quadrant clocks (QCLKA, QCLKB, QCLKC, QCLKD) (Table 1-1).  
Table 1-1 • RTSX-SU Global Resources  
RTSX32SU  
RTSX72SU  
Routed Clocks (CLKA, CLKB)  
2
1
0
2
1
4
Hardwired Clocks (HCLK)  
Quadrant Clocks (QCLKA, QCLKB, QCLKC, QCLKD)  
The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select MUX in each R-cell.  
HCLK cannot be connected to combinational logic. This provides a fast propagation path for the clock  
signal, enabling the 9.5 ns clock-to-out (pad-to-pad) performance of the RTSX-SU devices.  
The second type of clock, routed clocks (CLKA, CLKB), are global clocks that can be sourced from either  
external pins or internal logic signals within the device. CLKA and CLKB may be connected to sequential  
cells (R-cells) or to combinational logic (C-cells).  
The last type of clock, quadrant clocks, are only found in the RTSX72SU. Similar to the routed clocks, the  
four quadrant clocks (QCLKA, QCLKB, QCLKC, QCLKD) can be sourced from external pins or from  
internal logic signals within the device. Each of these clocks can individually drive up to a quarter of the  
chip, or they can be grouped together to drive multiple quadrants.  
Design Environment  
The RTSX-SU radiation-tolerant family of FPGAs is fully supported by both Libero® Integrated Design  
Environment (IDE) software and Designer FPGA development software. Libero IDE is a design  
management environment, seamlessly integrating design tools while guiding the user through the design  
flow, managing all design and log files, and passing necessary design data among tools. Additionally,  
Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the  
entire design in a single environment. Libero IDE includes Synplify® from Synplicity®, ViewDraw from  
Mentor Graphics, ModelSim™ HDL Simulator from Mentor Graphics®, WaveFormer Lite™ from  
SynaptiCAD™, and Designer software from Microsemi. Refer to the Libero flow (located on the  
Microsemi SoC Products Group website) diagram for more information.  
Designer software is a place-and-route tool and provides a comprehensive suite of backend support  
tools for FPGA development. The Designer software includes timing-driven place-and-route, and a  
world-class integrated static timing analyzer and constraints editor. With the Designer software, a user  
can select and lock package pins while only minimally impacting the results of place-and-route.  
Additionally, the back-annotation flow is compatible with all the major simulators and the simulation  
results can be cross-probed with Silicon Explorer II, Microsemi’s integrated verification and logic analysis  
tool. Another tool included in the Designer software is the SmartGen core generator, which easily creates  
popular and commonly used logic functions for implementation into your schematic or HDL design.  
Designer software is compatible with the most popular FPGA design entry and verification tools from  
companies such as Mentor Graphics, Synplicity, Synopsys®, and Cadence Design Systems. The  
Designer software is available for both the Windows and UNIX operating systems.  
Programming  
Programming support is provided through Microsemi's Silicon Sculptor series programmers, single-site  
programmers driven via a PC-based GUI. Factory programming is available as well.  
1-6  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Low-Cost Prototyping Solution  
Since the enhanced radiation characteristics of radiation-tolerant devices are not required during the  
prototyping phase of the design, Microsemi has developed two prototyping solutions for RTSX-SU. For  
early design development and functional verification Microsemi offers the commercial SX-A devices,  
while for final flight design verification in hardware, Microsemi offers the RTSX-SU PROTO device that  
has the same fit, form and function as the flight silicon.  
Prototyping with SX-A Units  
The prototyping solution consists of two parts:  
A well-documented design flow that allows the customer to target an RTSX-SU design to the  
equivalent commercial SX-A device  
Either footprint-compatible packages or prototyping sockets to adapt commercial SX-A packages  
to the RTSX-SU package footprints  
This methodology provides the user with a cost-effective solution while maintaining the short time-to-  
market associated with Microsemi FPGAs. Please see the application note Prototyping for the RTSX-S  
Enhanced Aerospace FPGA for more details.  
Prototyping with RTSX-SU PROTO Units  
The RTSX-SU PROTO units offer a prototyping solution that can be used for final timing verification of  
the flight design. The RTSX-SU PROTO prototype units have the same timing attributes as the RTSX-SU  
flight units.  
Prototype units are offered in non-hermetic ceramic packages. The prototype units include "PROTO" in  
their part number, and "PROTO" is marked on devices to indicate that they are not intended for space  
flight. They also are not intended for applications, which require the quality of space-flight units, such as  
qualification of space-flight hardware. RT-PROTO units offer no guarantee of hermeticity, and no  
MIL-STD-883B processing. At a minimum, users should plan on using class B level devices for all  
qualification activities.  
The RT-PROTO units are electrically tested in a manner to guarantee their performance over the full  
military temperature range. The RT-PROTO units will also be offered in –1 or standard speed grades, so  
as to enable customers to validate the timing attributes of their space designs using actual flight silicon.  
In-System Diagnostic and Debug Capabilities  
The RTSX-SU family of FPGAs includes internal probe circuitry, allowing the designer to dynamically  
observe and analyze any signal inside the FPGA without disturbing normal device operation. Two  
individual signals can be brought out to two multipurpose pins (PRA and PRB) on the device. The probe  
circuitry is accessed and controlled via Silicon Explorer II, Microsemi's integrated verification and logic  
analysis tool, which attaches to the serial port of a PC and communicates with the FPGA via the JTAG  
port.  
Revision 8  
1-7  
General Description  
Figure 1-5 shows Silicon Explorer II and its connections.  
RTSX-SU FPGA  
TDI*  
TCK*  
TMS*  
Silicon Explorer II  
Serial Connection  
TDO*  
PRA*  
PRB*  
Note: *Refer to the "Pin Descriptions" section on page 2-11 for more information.  
Figure 1-5 • Probe Setup  
Radiation Survivability  
The RTSX-SU RadTolerant devices have varying total-dose radiation survivability. The ability of these  
devices to survive radiation effects is both device and lot dependent.  
Total-dose results are summarized in two ways. The first summary is indicated by the maximum total-  
dose level achieved before the device fails to meet an individual performance specification but remains  
functional. For Microsemi FPGAs, the parameter that first exceeds the specification is ICC (standby  
supply current). The second summary is indicated by the maximum total dose achieved prior to the  
functional failure of the device.  
Microsemi provides total-dose radiation test data on each lot. Reports are available on the Microsemi  
SoC Products Group website or from local sales representatives. Listings of available lots and devices  
can also be provided.  
For a radiation performance summary, see Radiation Data. This summary also shows single event upset  
(SEU) and single event latch-up (SEL) testing that has been performed on Microsemi FPGAs.  
All radiation performance information is provided for informational purposes only and is not guaranteed.  
Total dose effects are lot-dependent, and Microsemi does not guarantee that future devices will continue  
to exhibit similar radiation characteristics. In addition, actual performance can vary widely due to a variety  
of factors, including but not limited to, characteristics of the orbit, radiation environment, proximity to the  
satellite exterior, the amount of inherent shielding from other sources within the satellite, and actual bare  
die variations. For these reasons, it is the sole responsibility of the user to determine whether the device  
will meet the requirements of the specific design.  
Summary  
The RTSX-SU family of radiation-tolerant FPGAs extends Microsemi’s highly successful offering of  
FPGAs for radiation environments with the industry’s first FPGA designed specifically for enhanced  
radiation performance.  
1-8  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Related Documents  
Application Notes  
Simultaneous Switching Noise and Signal Integrity  
http://www.microsemi.com/soc/documents/SSN_AN.pdf  
Implementation of Security in Actel Antifuse FPGAs  
http://www.microsemi.com/soc/documents/Antifuse_Security_AN.pdf  
Using A54SX72A and RT54SX72S Quadrant Clocks  
http://www.microsemi.com/soc/documents/QCLK_AN.pdf  
Actel eX, SX-A and RTSX-S I/Os  
http://www.microsemi.com/soc/documents/AntifuseIO_AN.pdf  
IEEE Standard 1149.1 (JTAG) in the SX/RTSX/SX-A/eX/RT54SX-S Families  
http://www.microsemi.com/soc/documents/SX_SXAJTAG_AN.pdf  
Prototyping for the RT54SX-S Enhanced Aerospace FPGA  
http://www.microsemi.com/soc/documents/RTSXS_Proto_AN.pdf  
Actel CQFP to FBFA Adapter Socket Instructions  
http://www.microsemi.com/soc/documents/CQ352-FPGA_Adapter_AN.pdf  
Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications  
http://www.microsemi.com/soc/documents/HotSwapColdSparing_AN.pdf  
User’s Guides and Manuals  
Antifuse Macro Library Guide  
http://www.microsemi.com/soc/documents/libguide_ug.pdf  
SmartGen Core Reference Guide  
http://www.microsemi.com/soc/documents/gen_refguide_ug.pdf  
Libero SoC User's Guide  
http://www.microsemi.com/soc/documents/libero_ug.pdf  
Silicon Sculptor Software v5.0 for Silicon Sculptor II and Silicon Sculptor 3 Programmer User’s Guide  
http://www.microsemi.com/soc/documents/SiliSculptII_Sculpt3_ug.pdf  
Silicon Explorer User’s Guide  
http://www.microsemi.com/soc/documents/Silexpl_ug.pdf  
White Papers  
Design Security in Nonvolatile Flash and Antifuse FPGAs  
http://www.microsemi.com/soc/documents/DesignSecurity_WP.pdf  
Understanding Actel Antifuse Device Security  
http://www.microsemi.com/soc/documents/AntifuseSecurityWP.pdf  
Revision 8  
1-9  
2 – Detailed Specifications  
General Conditions  
Table 2-1 • Supply Voltages  
VCCA  
2.5 V  
2.5 V  
VCCI  
3.3 V  
5 V  
Maximum Input Tolerance  
Maximum Output Drive  
5 V*  
5 V  
3.3 V  
5 V  
Note: *3.3 V PCI is not 5 V tolerant  
Table 2-2 • Characteristics for All I/O Configurations  
I/O Standard  
TTL, LVTTL  
3.3 V PCI  
Hot Swappable  
Slew Rate Control  
Yes. Affects falling edge outputs only  
No. High slew rate only  
Power-Up Resistor*  
Pull-up or Pull-down  
Pull-up or Pull-down  
Pull-up or Pull-down  
Yes  
No  
5 V PCI  
Yes  
No. High slew rate only  
Note: *The pull-ups range from 25–35 Kohms and pull-downs range from 45–55 Kohm. The resistance values depend  
on VCCI, temperature, drive strength selection, and process. For board-level considerations and accurate  
modelling, use the corresponding IBIS models located on the Microsemi SoC Products Group website:  
http://www.microsemi.com/soc/download/ibis/milaero.aspx.  
Revision 8  
2-1  
Detailed Specifications  
Operating Conditions  
Absolute Maximum Conditions  
Stresses beyond those listed in Table 2-3 may cause permanent damage to the device. Exposure to  
absolute maximum rated conditions may affect device reliability. Devices should not be operated outside  
the recommendations in Table 2-4.  
Table 2-3 • Absolute Maximum Conditions1  
Symbol  
TJ  
Parameter  
Limits  
–55 to 150  
–0.3 to 3.3  
Units  
°C  
V
Junction Temperature  
VCCA  
VCCA  
VCCI  
VI  
AC Core Supply Voltage2  
DC Core Supply Voltage  
DC I/O Supply Voltage  
Input Voltage3, 4  
–0.3 to 3.0  
V
–0.3 to 6.0  
V
–0.5 to 6.0  
V
VI  
Input Voltage for PCI Inputs  
Output Voltage  
–0.5 to VCCI + 0.5  
–0.5 to 6.0  
–65 to 150  
V
VO  
V
TSG  
Storage Temperature  
°C  
Notes:  
1. Absolute maximum conditions are meant for short periods of transients only. They are not meant for  
operation of device for extended periods of time.  
2. The AC transient VCCA limit is for radiation-induced transients less than 10 µs duration and not intended  
for repetitive use. Core voltage spikes from a single event transient will not negatively affect the reliability  
of the device if, for this non-repetitive event, the transient does not exceed 3.3 V at any time and the total  
time that the transient exceeds 2.75 V does not exceed 10 µs in duration.  
3. For AC signals, the input signal may undershoot during transitions to –1.2 V for no longer than 11 ns.  
Current during the transition must not exceed 95 mA.  
4. For AC signals, the 5 V non-PCI input signals may overshoot during transitions to VCCI + 1.2 V for no  
longer than 11 ns. The 3.3V non-PCI input signals may overshoot during transitions to 6.0 V for no longer  
than 11 ns. Current during the transition must not exceed 95 mA. Refer to PCI specifications for the PCI  
input overshoot limit.  
Table 2-4 • Recommended Operating Conditions  
Parameter  
Limits  
–55 to +125  
2.25 to 2.75  
3.0 to 3.6  
4.5 to 5.5  
25  
Units  
°C  
V
Temperature Range  
2.5 V Core Supply Voltage  
3.3 V I/O Supply Voltage  
5 V I/O Supply Voltage  
ICC (maximum) Standby Current (ICCA + ICCI  
V
V
)
mA  
Power-Up and Power-Cycling  
The RTSX-SU family does not require any specific power-up or power-cycling sequence.  
2-2  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Power Dissipation  
A critical element of system reliability is the ability of electronic devices to safely dissipate the heat  
generated during operation. The thermal characteristics of a circuit depend on the device and package  
used, the operating temperature, the operating current, and the system's ability to dissipate heat.  
A complete power evaluation should be performed early in the design process to help identify potential  
heat-related problems in the system and to prevent the system from exceeding the device’s maximum  
allowed junction temperature.  
The actual power dissipated by most applications is significantly lower than the power the package can  
dissipate. However, a thermal analysis should be performed for all projects. To perform a power  
evaluation, follow these steps:  
1. Estimate the power consumption of the application.  
2. Calculate the maximum power allowed for the device and package.  
3. Compare the estimated power and maximum power values.  
Table 2-5 • RTSX-SU Standby Current  
Device  
Temperature  
25°C (typical)  
125°C  
ICCA (mA)  
ICCI (mA)  
RTSX72SU  
3
10  
1.5  
5
7
15  
7
RTSX32SU  
25°C (typical)  
125°C  
15  
Estimating Power Dissipation  
The total power dissipation for the RTSX-SU family is the sum of the DC power dissipation and the AC  
power dissipation:  
PTotal = PDC + PAC  
EQ 1  
DC Power Dissipation  
The power due to standby current is typically a small component of the overall power. The DC power  
dissipation is defined as:  
PDC = ICCA * VCCA + ICCI * VCCI  
EQ 2  
Revision 8  
2-3  
Detailed Specifications  
AC Power Dissipation  
The power dissipation of the RTSX-SU family is usually dominated by the dynamic power dissipation.  
Dynamic power dissipation is a function of frequency, equivalent capacitance, and power supply voltage.  
The AC power dissipation is defined as follows:  
PAC(32SU)  
=
PC-Cells + PR-Cells + PCLKA + PCLKB + PHCLK + POutput Buffer + PInput Buffer  
EQ 3  
EQ 4  
PAC(72SU)  
=
PC-Cells + PR-Cells + PCLKA + PCLKB + PHCLK + POutput Buffer + PInput Buffer  
or:  
PAC(32SU)  
=
=
VCCA2 * [(m * CEQCM * fm)C-Cells + (m * CEQSM * fm)R-Cells + (n * CEQI * fn)Input Buffer  
(p * (CEQO + CL) * fp)Output Buffer + (0.5 * (q1 * CEQCR * fq1) + (r1 * fq1))CLKA  
(0.5 * (q2 * CEQCR * fq2) + (r2 * fq2))CLKB + (0.5 * (s1 * CEQHV * fs1) + (CEQHF * fs1))HCLK  
+
+
]
EQ 5  
PAC(72SU)  
VCCA2 * [(mc * CEQCM * fmc)C-Cells + (mS * CEQSM * fmS)R-Cells  
(n * CEQI * fn)Input Buffer + (0.5 * (q1 * CEQCR * fq1) + (r1 * fq1))RCLKA  
+
+
(0.5 * (q2 * CEQCR * fq2) + (r2 * fq2))RCLKB + (0.5 * (s1 * CEQHV * fs1) + (CEQHF * fs1)HCLK  
+
(0.5 * (qcA * CEQCQ * FqcA) + (r_cq * FqcA))QCLKA + (0.5 * (qcB * CEQCQ * FqcB) +  
(r_cq * FqcB))QCLKB + (0.5* (qcC * CEQCQ * FqcC) + (r_cq * FqcC))QCLKC  
(0.5 * (qcD * CEQCQ * FqcD) + (r_cq * FqcD QCLKD] +  
VCCI2 * [(p * (Ceqo + CL) * fp)Output Buffer  
+
)
]
EQ 6  
Where:  
CEQCM = Equivalent capacitance of combinatorial modules (C-Cells) in pF  
CEQSM = Equivalent capacitance of sequential modules (R-Cells) in pF  
C
EQI = Equivalent capacitance of input buffers in pF  
CEQO = Equivalent capacitance of output buffers in pF  
EQCR = Equivalent capacitance of CLKA/B in pF  
EQHV = Variable capacitance of HCLK in pF  
C
C
CEQHF = Fixed capacitance of HCLK in pF  
CL = Output load capacitance in pF  
f
m = Average logic module switching rate in MHz  
fn = Average input buffer switching rate in MHz  
fp = Average output buffer switching rate in MHz  
q1 = Average CLKA rate in MHz  
f
f
q2 = Average CLKB rate in MHz  
fs1 = Average HCLK rate in MHz  
FqcA,B,C,D = Average QCLKA,QCLKB,QCLKC,QCLKD rate in MHz  
m = Number of logic modules switching at fm  
n = Number of input buffers switching at fn  
2-4  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
p = Number of output buffers switching at fp  
q1 = Number of clock loads on CLKA  
q2 = Number of clock loads on CLKB  
qcA, qcB, qcC, qcD = Number of clock loads on QCLKA, QCLKB, QCLKC, QCLKD  
r1 = Fixed capacitance due to CLKA  
r2 = Fixed capacitance due to CLKB  
r_cq = Fixed capacitance due to QCLKA, QCLKB, QCLKC or QCLKD  
s1 = Number of clock loads on HCLK  
x = Number of I/Os at logic low  
y = Number of I/Os at logic high  
Table 2-6 • Fixed Power Parameters  
Parameter  
CEQCM  
CEQSM  
CEQI  
RTSX32SU  
3.00  
3.00  
1.40  
7.40  
3.50  
4.30  
300  
RTSX72SU  
3.00  
Units  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
3.00  
1.30  
CEQO  
CEQCR  
CEQHV  
CEQHF  
CEQCQ  
r1  
7.40  
3.50  
4.30  
690  
3.5  
100  
245  
r2  
100  
245  
r_cq  
61.25  
Revision 8  
2-5  
Detailed Specifications  
Guidelines for Estimating Power  
The following guidelines are meant to represent worst-case scenarios; they can be generally used to  
predict the upper limits of power dissipation:  
Logic Modules (m) = 20% of modules  
Inputs Switching (n) = # inputs/4  
Outputs Switching (p) = # output/4  
CLKA Loads (q1) = 20% of R-cells  
CLKB Loads (q2) = 20% of R-cells  
Load Capacitance (CL) = 35 pF  
Average Logic Module Switching Rate (fm) = f/10  
Average Input Switching Rate (fn) =f/5  
Average Output Switching Rate (fp) = f/10  
Average CLKA Rate (fq1) = f/2  
Average CLKB Rate (fq2) = f/2  
Average HCLK Rate (fs1) = f  
HCLK loads (s1) = 20% of R-cells  
To assist customers in estimating the power dissipations of their designs, Microsemi has published the  
eX, SX-A and RT54SX-S Power Calculator worksheet.  
2-6  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Thermal Characteristics  
Introduction  
The temperature variable in Microsemi’s Designer software refers to the junction temperature, not the  
ambient, case, or board temperatures. This is an important distinction because dynamic and static power  
consumption cause the chip junction to be higher than the ambient, case, or board temperatures. EQ 7,  
EQ 8, and EQ 9 give the relationship between thermal resistance, temperature gradient and power.  
Tj Ta  
----------------  
θja  
=
P
EQ 7  
EQ 8  
EQ 9  
Tj Tc  
----------------  
P
θjc  
=
=
Tj Tb  
----------------  
P
θjb  
Where:  
θ
θ
= Junction-to-air thermal resistance of the package. θ numbers are located in Table 2-7.  
ja  
ja  
= Junction-to-case thermal resistance of the package. θ numbers are located in  
jc  
jc  
Table 2-7.  
θ
= Junction-to-board thermal resistance of the package. θjb for a 624-pin CCGA is located  
jb  
in the notes for Table 2-7.  
Tj = Junction Temperature  
Ta = Ambient Temperature  
Tb = Board Temperature  
Tc = Case Temperature  
= Power  
P
Revision 8  
2-7  
Detailed Specifications  
Package Thermal Characteristics  
The device thermal characteristics θjc and θja are given in Table 2-7. The thermal characteristics for θja  
are shown with two different air flow rates. Note that the absolute maximum junction temperature is  
150°C.  
Table 2-7 • Package Thermal Characteristics  
θja  
Pin  
Package Type  
Count  
θjc Still Air θja 1.0m/s θja 2.5m/s Units  
Ceramic Quad Flat Pack (CQFP)  
Ceramic Quad Flat Pack (CQFP)  
Ceramic Quad Flat Pack (CQFP)  
84  
2.0 1  
2.0 1  
2.0 1  
0.5 1  
40  
22  
33.0  
19.8  
16.5  
17.3  
30.0  
18.0  
15.0  
15.7  
°C/W  
°C/W  
°C/W  
°C/W  
208  
256  
208  
20  
Ceramic Quad Flat Pack (CQFP) with  
heatsink  
21.0  
Ceramic Quad Flat Pack (CQFP) with  
heatsink  
256  
0.5 1  
19.0  
15.7  
14.2  
°C/W  
Ceramic Chip Carrier Land Grid (CCLG)  
Ceramic Column Grid Array (CCGA)  
Notes:  
256  
624  
1.1 1  
6.5 2  
12.1  
8.9  
10.0  
8.5  
9.1  
8.0  
°C/W  
°C/W  
1.  
θ for CQFP and CCLG packages refers to the thermal resistance between the junction and the bottom of  
jc  
the package.  
for the CCGA 624 refers to the thermal resistance between the junction and the top surface of the  
2.  
θ
jc  
package. Thermal resistance from junction to board (θ ) for CG624 package is 3.4 °C/W.  
jb  
Maximum Allowed Power Dissipation  
Shown below are example calculations to estimate the maximum allowed power dissipation for a given  
device based on two different thermal environments while maintaining the device junction temperature at  
or below worst-case military operating conditions (125°C).  
Example 1:  
This example assumes that there is still air in the environment. The heat flow is shown by the arrows in  
Figure 2-1 on page 2-8. The maximum ambient air temperature is assumed to be 50°C. The device  
package used is the 624-pin CCGA.  
Max. Junction Temp. Max. Ambient Temp.  
125°C 50°C  
--------------------------------------------------------------------------------------------------------------------  
-----------------------------------  
=
Maximum Allowed Power =  
θja  
8.9°C/W  
EQ 10  
Air  
Solder Columns  
PCB  
Figure 2-1 • Hear Flow when Air is Present  
2-8  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Example 2:  
This example assumes that the primary heat conduction path will be through the bottom of the package  
(neglecting the heat conducted through the package pins) to the board for a package mounted with  
thermal paste. The heat flow is shown by the arrows in Figure 2-2. The maximum board temperature is  
assumed to be 70°C. The device package used is the CQ352. The thermal resistance (θcb) of the thermal  
paste is assumed to be 0.58 °Χ/Ω.  
Tj Tj  
---------------  
θjb  
Tj Tb  
---------------------  
125°C 70°C  
2.0°C/W + 0.58°C/W  
------------------------------------------------------  
= 21.32 W  
Max. Allowed Power =  
=
=
θ
jc + θcb  
EQ 11  
Thermal Adhesive  
PCB  
Figure 2-2 • Heat Flow in a Vacuum  
Timing Derating  
RTSX-SU devices are manufactured in a CMOS process; therefore, device performance is dependent on  
temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating  
voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect  
minimum operating voltage, maximum operating temperature, and worst-case processing. The derating  
factors shown in Table 2-8 should be applied to all timing data contained within this datasheet.  
Table 2-8 • Temperature and Voltage Derating Factors  
(Normalized to Worst-Case Military Conditions, TJ = 125°C, VCCA = 2.25 V)  
Junction Temperature (Tj)  
VCCA  
2.25  
–55°C  
0.71  
–40°C  
0.72  
0°C  
0.78  
0.73  
0.69  
25°C  
0.80  
0.75  
0.70  
70°C  
0.90  
0.84  
0.79  
85°C  
0.94  
0.87  
0.82  
125°C  
1.00  
2.50  
0.67  
0.67  
0.93  
2.75  
0.62  
0.63  
0.88  
Note: The user can set the junction temperature in Microsemi’s Designer software to be any integer  
value in the range of –55°C to 175°C, and the core voltage to be any value between 2.25 V and  
2.75 V.  
Revision 8  
2-9  
Detailed Specifications  
Timing Model  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
Combinatorial  
Cell  
t
t
= 0.8 ns  
= 1.0 ns  
I/O Module  
I/O Module  
RD1  
RD2  
t
= 0.7 ns  
INYH  
t
= 3.8 ns  
DHL  
t
= 1.2 ns  
PD  
t
t
t
= 0.8 ns  
RD1  
= 1.5 ns  
RD4  
= 2.9 ns  
RD8  
I/O Module  
t
t
t
t
= 3.8 ns  
Register  
Cell  
DHL  
D
Q
t
t
RD1  
= 0.8 ns  
= 0.0 ns  
= 0.8 ns  
SUD  
HD  
t
= 2.5 ns  
ENZL  
Routed  
Clock  
t
= 5.3 ns  
RCKH  
t
= 1.0 ns  
(100% Load)  
RCO  
I/O Module  
= 3.8 ns  
DHL  
Register  
Cell  
I/O Module  
t
= 0.7 ns  
INYH  
D
Q
t
t
t
RD1  
= 0.8 ns  
= 0.0 ns  
= 0.8 ns  
SUD  
= 2.5 ns  
ENZL  
HD  
Hardwired  
Clock  
t
t
RCO  
= 3.9 ns  
= 1.0 ns  
HCKH  
Figure 2-3 • RTSX-SU Timing Model  
Values shown for RTSX32SU, –1, 0 krad (Si), 5 V TTL worst-case military conditions  
Table 2-9 • Hardwired Clock  
External Setup  
Clock-to-Out (pad-to-pad)  
= tHCKH + tRCO + tRD1 + tDHL  
= 3.9 + 1.0 + 0.8 + 3.8 = 9.5 ns  
= (tINYH + tRD2 + tSUD) – tHCKH  
= 0.7 + 1.0 + 0.8 – 3.9 = –1.4 ns  
Table 2-10 • Routed Clock  
External Setup  
Clock-to-Out (pad-to-pad)  
= (tINYH + tRD2 + tSUD) – tRCKH  
= 0.7 + 1.0 + 0.8 – 5.3= –2.8 ns  
= tRCKH + tRCO + tRD1 + tDHL  
= 5.3+ 1.0 + 0.8 + 3.8 = 10.9 ns  
2-10  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
I/O Specifications  
Pin Descriptions  
Supply Pins  
GND  
Ground  
Low supply voltage.  
VCCI  
Supply Voltage  
Supply voltage for I/Os. See Table 2-1 on page 2-1.  
VCCA Supply Voltage  
Supply voltage for Array. See Table 2-1 on page 2-1.  
Global Pins  
CLKA/B  
Routed Clock A and B  
These pins are clock inputs for clock distribution networks. Input levels are compatible with standard TTL,  
LVTTL, 3.3 V PCI, or 5 V PCI specifications. The clock input is buffered prior to clocking the R-cells.  
When not used, this pin must be set Low or High on the board. When used, this pin should be held Low  
or High during power-up to avoid unwanted static power.  
For RTSX72SU, these pins can be configured as user I/Os. When used, this pin offers a built-in  
programmable pull-up or pull-down resistor active during power-up only.  
QCLKA/B/C/D  
Quadrant Clock A, B, C, and D / I/O  
These four pins are the quadrant clock inputs and are only found on the RTSX72SU. They are clock  
inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, 3.3 V PCI or  
5 V PCI specifications. Each of these clock inputs can drive up to a quarter of the chip, or they can be  
grouped together to drive multiple quadrants. The clock input is buffered prior to clocking the core cells.  
These pins can be configured as user I/Os. When not used, these pins must not be left floating. They  
must be set Low or High on the board. When used, these pins offer a built-in programmable pull-up or  
pull-down resistor, active during power-up only.  
HCLK  
Dedicated (Hardwired) Array Clock  
This pin is the clock input for sequential modules. Input levels are compatible with standard TTL, LVTTL,  
3.3 V PCI or 5 V PCI specifications. This input is buffered prior to clocking the R-cells. It offers clock  
speeds independent of the number of R-cells being driven. When not used, this pin must not be left  
floating. It must be set to Low or High on the board. When used, this pin should be held Low or High  
during power-up to avoid unwanted static power.  
Revision 8  
2-11  
Detailed Specifications  
JTAG/Probe Pins  
1
PRA/PRB , I/O  
Probe A/B  
The probe pin is used to output data from any user-defined design node within the device. This  
independent diagnostic pin can be used in conjunction with the other probe pin to allow real-time  
diagnostic output of any signal path within the device. The probe pin can be used as a user-defined I/O  
when verification has been completed. The pin’s probe capabilities can be permanently disabled to  
protect programmed design confidentiality.  
1
TCK , I/O  
Test Clock  
Test clock input for diagnostic probe and device programming. In flexible mode, TCK becomes active  
when the TMS pin is set Low (Table 2-34 on page 2-45). This pin functions as an I/O when the boundary  
scan state machine reaches the “logic reset” state.  
1
TDI , I/O  
Test Data Input  
Serial input for boundary scan testing and diagnostic probe. In flexible mode, TDI is active when the TMS  
pin is set Low (Table 2-34 on page 2-45). This pin functions as an I/O when the boundary scan state  
machine reaches the “logic reset” state.  
2
TDO , I/O  
Test Data Output  
Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set Low  
(Table 2-34 on page 2-45). This pin functions as an I/O when the boundary scan state machine reaches  
the logic reset state. When Silicon Explorer II is being used, TDO will act as an output when the  
checksum command is run. It will return to user I/O when checksum is complete.  
2
TMS  
Test Mode Select  
The TMS pin controls the use of the IEEE 1149.1 boundary scan pins (TCK, TDI, TDO, TRST). In flexible  
mode when the TMS pin is set Low, the TCK, TDI, and TDO pins are boundary scan pins (Table 2-34 on  
page 2-45). Once the boundary scan pins are in test mode, they will remain in that mode until the internal  
boundary scan state machine reaches the “logic reset” state. At this point, the boundary scan pins will be  
released and will function as regular I/O pins. The “logic reset” state is reached five TCK cycles after the  
TMS pin is set High. In dedicated test mode, TMS functions as specified in the IEEE 1149.1  
specifications.  
1. Microsemi SoC Products Group recommends that you use a series termination resistor on every probe connector (TDI,  
TCK, TDO, PRA, and PRB). The series termination is used to prevent data transmission corruption (i.e., due to reflection  
from the FPGA to the probe connector) during probing and reading back the checksum. With an internal set-up we have  
seen 70-ohm termination resistor improved the signal transmission. Since the series termination depends on the setup,  
Microsemi SoC Products Group recommends users calculate the termination resistor for their own setup. Below is a  
guideline on how to calculate the resistor value.  
The resistor value should be chosen so that the sum of it and the probe signal’s driver impedance equals the effective trace  
impedance.  
Z0 = Rs + Zd  
Z0 = trace impedance (Silicon Explorer’s breakout cable’s resistance + PCB trace impedance), Rs= series termination, Zd=  
probe signal’s driver impedance.  
The termination resistor should be placed as close as possible to the driver.  
Among the probe signals, TDI, TCK, and TMS are driven by Silicon Explorer. A54SX16 is used in Silicon Explorer and  
hence the driver impedances needs to be calculated from the SX08/SX16/SX32 IBIS Model IBIS Model (Mixed Voltage  
Operation). PRA, PRB, and TDO are driven by the FPGA and driver impedance can also be calculated from the IBIS  
Model.  
Silicon Explorer’s breakout cable’s resistance is usually close to 1 ohm.  
2. Microsemi SoC Products Group recommends that you use a series termination resistor on every probe connector (TDI,  
TCK, TDO, PRA, and PRB). The series termination is used to prevent data transmission corruption (i.e., due to reflection  
from the FPGA to the probe connector) during probing and reading back the checksum. With an internal set-up we have  
seen 70-ohm termination resistor improved the signal transmission. Since the series termination depends on the setup,  
Microsemi SoC Products Group recommends users to calculate the termination resistor for their own setup. Below is a  
guideline on how to calculate the resistor value.  
The resistor value should be chosen so that the sum of it and the probe signal’s driver impedance equals the effective trace  
impedance.  
Z0 = Rs + Zd  
Z0 = trace impedance (Silicon Explorer’s breakout cable’s resistance + PCB trace impedance), Rs= series termination, Zd=  
probe signal’s driver impedance.  
The termination resistor should be placed as close as possible to the driver.  
Among the probe signals, TDI, TCK, and TMS are driven by Silicon Explorer. A54SX16 is used in Silicon Explorer and  
hence the driver impedances needs to be calculated from the SX08/SX16/SX32 IBIS Model (Mixed Voltage Operation).  
PRA, PRB, and TDO are driven by the FPGA and driver impedance can also be calculated from the IBIS Model.  
Silicon Explorer’s breakout cable’s resistance is usually close to 1 ohm.  
2-12  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
TRST  
Boundary Scan Reset Pin  
The TRST pin functions as an active-low input to asynchronously initialize or rest the boundary scan  
circuit. The TRST pin is equipped with an internal pull-up resistor. For flight applications, the TRST pin  
should be hardwired to GND.  
User I/O  
I/O  
Input/Output  
The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output levels are  
compatible with standard TTL, LVTTL, 3.3 V/5 V PCI, or 5 V CMOS specifications. Unused I/O pins are  
automatically tristated by the Designer software. Care must be exercised when using JTAG (HIGHZ  
command) to tristate all I/Os because the pull-ups and pull-downs will be enabled if programmed. See  
the "User I/O" section on page 2-13 for more details.  
Special Functions  
NC  
No Connection  
This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be  
left floating with no effect on the operation of the device.  
User I/O  
The RTSX-SU family features a flexible I/O structure that supports 3.3 V LVTTL, 5 V TTL, 5 V CMOS,  
and 3.3 V and 5 V PCI. All I/O standards are hot-swap compliant, cold-sparing capable, and 5V tolerant  
(except for 3.3 V PCI).  
Each I/O module has an available power-up resistor of approximately 50 kΩ that can configure the I/O to  
a known state during power-up. Just slightly before VCCA reaches 2.5 V, the resistors are disabled so  
the I/Os will behave normally.  
Note: Care must be exercised when using JTAG (HIGHZ command) to tristate all I/Os because the pull-  
ups and pull-downs will be enabled if programmed.  
For more information about the power-up resistors, refer to Microsemi’s application note Microsemi SX-A  
and RTSX-SU Devices in Hot-Swap and Cold-Sparing Applications.  
RTSX-SU inputs should be driven by high-speed push-pull devices with a low-resistance pull-up device.  
If the input voltage is greater than VCCI and a fast push-pull device is NOT used, the high-resistance  
pull-up of the driver and the internal circuitry of the RTSX-SU I/O may create a voltage divider (when a  
user I/O is configured as an input, the associated output buffer is tristated). This voltage divider could pull  
the input voltage below specification for some devices connected to the driver. A logic ‘1’ may not be  
correctly presented in this case. For example, if an open drain driver is used with a pull-up resistor to 5 V  
to provide the logic ‘1’ input, and VCCI is set to 3.3 V on the RTSX-SU device, the input signal may be  
pulled down by the RTSX-SU input.  
Hot Swapping  
RTSX-SU I/Os can be configured to be hot swappable in compliance with the Compact PCI Specification.  
However, 3.3 V PCI I/Os are not hot swappable. When the RTSX-SU FPGA is plugged into an  
electrically-active system, designers should wait for the device to complete its power-up initialization  
before expecting valid levels on the outputs. Refer to Microsemi’s application note, SX-A and RTSX-S  
Devices in Hot-Swap and Cold-Sparing Applications for more information on hot swapping.  
Customizing the I/O  
Each user I/O on an RTSX-SU device can be configured as an input, an output, a tristate output, or a  
bidirectional pin. Mixed I/O standards are allowed and can be set on a pin-by-pin basis. High or low slew  
rates can be set on individual output buffers (except for PCI which defaults to high slew), as well as the  
power-up configuration (either pull-up or pull-down).  
The user selects the desired I/O by setting the I/O properties in PinEditor, Microsemi’s graphical pin-  
placement and I/O properties editor. See the PinEditor online help for more information.  
Revision 8  
2-13  
Detailed Specifications  
Unused I/Os  
All unused user I/Os are automatically tristated by Microsemi’s Designer software. Although termination  
is not required, it is recommended that the user tie off all unused I/Os to GND externally. If the I/O clamp  
diode is disabled, then unused I/Os are 5 V tolerant, otherwise unused I/Os are tolerant to VCCI.  
Using the Weak Pull-Up and Pull-Down Circuits  
Each RTSX-SU I/O comes with a weak pull-up (25-35 Kohm range) and pull-down circuit  
(45-55 Kohm range). I/O macros are provided for various standards (TTL, CMOS) and can be  
instantiated if a pull-up/pull-down is required. The resistance values depend on VCCI,  
temperature, drive strength selection, and process. For board-level considerations and  
accurate modelling, use the corresponding IBIS models, located on the Microsemi SoC  
Products Group website at http://www.microsemi.com/soc/download/ibis/milaero.aspx.  
I/O Macros  
There are nine I/O macros available to the user for RTSX-SU:  
CLKBUF/CLKBUFI: Clock Buffer, noninverting and inverting  
CLKBIBUF/CLKBIBUFI: Bidirectional Clock Buffer, noninverting and inverting  
QCLKBUF/QCLKBUFI: Quad Clock Buffer, noninverting and inverting  
QCLKBIBUF/QCLKBIBUFI: Quad Bidirectional Clock Buffer, noninverting and inverting  
HCLKBUF: Hardwired Clock Buffer  
INBUF: Input Buffer  
OUTBUF: Output Buffer  
TRIBUF: Tristate Buffer  
BIBUF: Bidirectional Buffer  
Table 2-11 • User I/O Features  
Function  
Description  
Input Buffer Threshold • 5 V: CMOS, PCI, TTL  
Selections  
3.3 V: PCI, LVTTL  
5 V: CMOS, PCI, TTL  
3.3 V: PCI, LVTTL  
Flexible Output Driver  
Selectable on an individual I/O basis  
Output Buffer  
Hot-Swap Capability  
I/Os on an unpowered device does not sink the current (Power supplies  
are at 0 V)  
Can be used for cold sparing  
Individually selectable slew rate, high or low slew (The default is high slew  
rate). The slew rate selection only affects the falling edge of an output. There  
is no change on the rising edge of the output or any inputs  
Power-Up  
Individually selectable pull-ups and pull-downs during power-up (default is to  
power-up in tristate mode)  
Enables deterministic power-up of a device  
VCCA and VCCI can be powered in any order  
2-14  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
I/O Module Timing Characteristics  
E
D
TRIBUFF  
PAD To AC test loads (shown below)  
VCC  
50% 50%  
VOH  
VCC  
VCC  
GND  
D
E
GND  
10%  
E
50%  
50%  
VCC  
GND  
90%  
50% 50%  
VOH  
VMEAS  
VOL  
VMEAS  
Pad  
Pad  
VMEAS  
VPad  
VMEAS  
VOL  
GND  
tDLH  
tDHL  
tENZL tENLZ  
tENZH  
tENHZ  
Figure 2-4 • Output Timing Model and Waveforms  
VCCI  
V
0 V  
Pad  
V
MEAS  
MEAS  
VCC  
Y
PAD  
INBUF  
50%  
Y
GND  
50%  
tINYH  
tINYL  
Figure 2-5 • Input Timing Model and Waveforms  
Load 2  
(Used to measure enable delays)  
Load 3  
(Used to measure disable delays)  
Load 1  
(Used to measure  
propagation delay)  
GND  
GND  
VCC  
VCC  
To the output  
under test  
R to VCC for t  
R to VCC for t  
35 pF  
PZL  
PLZ  
R to GND for t  
R = 1 kΩ  
R to GND for t  
R = 1 kΩ  
PZH  
PHZ  
To the output  
under test  
To the output  
under test  
35 pF  
5 pF  
Figure 2-6 • AC Test Loads  
Revision 8  
2-15  
Detailed Specifications  
5 V TTL and 3.3 V LVTTL  
Table 2-12 • 5 V TTL and 3.3 V LVTTL Electrical Specifications  
Military  
Symbol  
Parameter  
Min.  
Max.  
Units  
VOH  
VCCI = Min.  
VI = VIH or VIL  
(IOH = –1mA)  
(IOH = –8mA)  
(IOL= 1mA)  
0.9 VCCI  
V
VCCI = Min.  
VI = VIH or VIL  
2.4  
V
V
V
VOL  
VCCI = Min.  
VI = VIH or VIL  
0.1 VCCI  
0.4  
VCCI = Min.  
(IOL= 12mA)  
VI = VIH or VIL  
VIL1  
VIH  
Input Low Voltage  
Input High Voltage  
–0.5  
2.0  
0.8  
V
V
IIL / IIH  
Input Leakage Current, VIN = VCCI or GND  
(VCCI 5.25 V)  
(VCCI 5.5 V)  
–20  
–70  
20  
70  
µA  
µA  
IOZ  
Tristate Output Leakage Current, VOUT = VCCI or (VCCI 5.25 V)  
–20  
–70  
20  
70  
µA  
µA  
GND  
(VCCI 5.5 V)  
2
tR, tF  
CIN  
Input Transition Time  
Input Pin Capacitance3  
CLK Pin Capacitance3  
10  
20  
20  
ns  
pF  
pF  
V
CCLK  
VMEAS  
Trip point for Input buffers and Measuring point for  
Output buffers  
1.5  
IV Curve4 Can be derived from the IBIS model on the web.  
Notes:  
1. For AC signals, the input signal may undershoot during transitions to –1.2 V for no longer than 11 ns. Current during the  
transition must not exceed 95 mA.  
2. If t or t exceeds the limit of 10 ns, Microsemi can guarantee reliability but not functionality.  
R
F
3. Absolute maximum pin capacitance, which includes package and I/O input capacitance.  
4. The IBIS model can be found at www.microsemi.com/soc/techdocs/models/ibis.html.  
2-16  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Timing Characteristics  
Table 2-13 • RTSX32SU 5 V TTL and 3.3 V LVTTL I/O Module  
Worst-Case Military Conditions VCCA = 2.25 V, TJ = 125°C  
Radiation Level = 0 krad (Si)  
–1 Speed  
Std. Speed  
Min. Max.  
Parameter  
Description  
Min.  
Max.  
Units  
5 V TTL Output Module Timing (VCCI = 4.5 V)  
tINYH  
tINYL  
Input Data Pad-to-Y High  
0.7  
1.1  
0.9  
1.3  
ns  
ns  
Input Data Pad-to-Y Low  
tDLH  
Data-to-Pad Low to High  
3.1  
3.6  
ns  
tDHL  
Data-to-Pad High to Low  
3.8  
4.4  
ns  
tDHLS  
tENZL  
tDENZLS  
tENZH  
tENLZ  
tENHZ  
tENZHS  
Data-to-Pad High to Low – low slew  
Enable-to-Pad, Z to Low  
9.8  
11.5  
4.4  
ns  
3.8  
ns  
Enable-to-Pad, Z to Low – low slew  
Enable-to-Pad, Z to High  
9.8  
11.5  
3.6  
ns  
3.1  
ns  
Enable-to-Pad, Low to Z  
3.1  
3.6  
ns  
Enable-to-Pad, High to Z  
3.8  
4.4  
ns  
Enable-to-Pad, H to Z – low slew  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
Delta Delay vs. Load High to Low – low slew  
9.8  
11.5  
0.046  
0.038  
0.064  
ns  
2
dTLH  
0.036  
0.029  
0.049  
ns/pF  
ns/pF  
ns/pF  
2
dTHL  
2
dTHLS  
3.3 V LVTTL Output Module Timing (VCCI = 3.0 V)  
tINYH  
tINYL  
Input Data Pad-to-Y High  
0.8  
1.1  
0.9  
1.3  
ns  
ns  
Input Data Pad-to-Y Low  
tDLH  
Data-to-Pad Low to High  
4.1  
4.8  
ns  
tDHL  
Data-to-Pad High to Low  
3.7  
4.4  
ns  
tDHLS  
tENZL  
tDENZLS  
tENZH  
tENLZ  
tENHZ  
tENZHS  
Data-to-Pad High to Low – low slew  
Enable-to-Pad, Z to L  
13.2  
3.7  
15.6  
4.4  
ns  
ns  
Enable-to-Pad, Z to Low – low slew  
Enable-to-Pad, Z to H  
13.2  
4.1  
15.6  
4.8  
ns  
ns  
Enable-to-Pad, L to Z  
4.1  
4.8  
ns  
Enable-to-Pad, H to Z  
3.7  
4.4  
ns  
Enable-to-Pad, H to Z – low slew  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
Delta Delay vs. Load High to Low – low slew  
13.2  
0.064  
0.031  
0.069  
15.6  
0.081  
0.040  
0.088  
ns  
2
dTLH  
ns/pF  
ns/pF  
ns/pF  
2
dTHL  
2
dTHLS  
Notes:  
1. Output delays based on 35 pF loading.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following  
equation:  
Slew Rate [V/ns] = ±(0.1 * VCCI - 0.9 * VCCI)/ (C  
* d  
|d  
|d  
)
load  
TLH THL THLS  
where C  
is the load capacitance driven by the I/O in pF;  
load  
d
|d  
|d  
is the worst case delta value from the datasheet in ns/pF.  
TLH THL THLS  
Revision 8  
2-17  
Detailed Specifications  
Table 2-14 • RTSX72SU 5 V TTL and 3.3 V LVTTL I/O Module  
Worst-Case Military Conditions VCCA = 2.25 V, TJ = 125°C  
Radiation Level = 0 krad (Si)  
–1 Speed  
Min. Max.  
Std. Speed  
Min. Max.  
Parameter  
Description  
Units  
5 V TTL Output Module Timing (VCCI = 4.5 V)  
tINYH  
tINYL  
Input Data Pad-to-Y High  
0.7  
1.1  
0.9  
1.3  
ns  
ns  
Input Data Pad-to-Y Low  
tDLH  
Data-to-Pad Low to High  
3.2  
3.7  
ns  
tDHL  
Data-to-Pad High to Low  
4.0  
4.7  
ns  
tDHLS  
tENZL  
tDENZLS  
tENZH  
tENLZ  
tENHZ  
tENHZS  
Data-to-Pad High to Low – low slew  
Enable-to-Pad, Z to Low  
10.3  
4.0  
12.1  
4.7  
ns  
ns  
Enable-to-Pad, Z to Low – low slew  
Enable-to-Pad, Z to High  
10.3  
3.2  
12.1  
3.7  
ns  
ns  
Enable-to-Pad, Low to Z  
3.2  
3.7  
ns  
Enable-to-Pad, High to Z  
4.0  
4.7  
ns  
Enable-to-Pad, High to Z – low slew  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
Delta Delay vs. Load High to Low – low slew  
10.3  
0.036  
0.029  
0.049  
12.1  
0.046  
0.038  
0.064  
ns  
2
dTLH  
ns/pF  
ns/pF  
ns/pF  
2
dTHL  
2
dTHLS  
3.3 V LVTTL Output Module Timing (VCCI = 3.0 V)  
tINYH  
tINYL  
Input Data Pad-to-Y High  
1.0  
2.2  
1.2  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Input Data Pad-to-Y Low  
tDLH  
Data-to-Pad Low to High  
4.0  
4.6  
tDHL  
Data-to-Pad High to Low  
3.6  
4.2  
tDHLS  
tENZL  
tDENZLS  
tENZH  
tENLZ  
tENHZ  
tENHZS  
Data-to-Pad High to Low – low slew  
Enable-to-Pad, Z to L  
12.7  
3.6  
14.9  
4.2  
Enable-to-Pad, Z to Low – low slew  
Enable-to-Pad, Z to H  
12.7  
4.0  
14.9  
4.6  
Enable-to-Pad, L to Z  
4.0  
4.6  
Enable-to-Pad, H to Z  
3.6  
4.2  
Enable-to-Pad, High to Z – low slew  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
Delta Delay vs. Load High to Low – low slew  
12.7  
0.064  
0.031  
0.069  
14.9  
0.081  
0.04  
0.088  
2
dTLH  
ns/pF  
ns/pF  
ns/pF  
2
dTHL  
2
dTHLS  
Notes:  
1. Output delays based on 35 pF loading.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following  
equation:  
Slew Rate [V/ns] = ±(0.1 * VCCI - 0.9 * VCCI)/ (C  
* d  
|d  
|d  
)
load  
TLH THL THLS  
where C  
is the load capacitance driven by the I/O in pF;  
load  
d
|d  
|d  
is the worst case delta value from the datasheet in ns/pF.  
TLH THL THLS  
2-18  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
5 V CMOS  
Table 2-15 • 5 V CMOS Electrical Specifications  
Military  
Symbol  
Parameter  
Min.  
Max.  
Units  
VOH  
VCCI = MIN,  
(IOH = –20 µA) VCCI – 0.1  
V
VI = VCCI or GND  
VOL  
VCCI = MIN,  
VI = VCCI or GND  
(IOL= ±20 µA)  
0.1  
V
VIL1  
VIH  
Input Low Voltage, VOUT = VOL (maximum)  
Input High Voltage, VOUT = VOH (minimum)  
Input Leakage Current, VIN = VCCI or GND  
– 0.5  
0.3 VCC  
V
V
0.7 VCC  
I
IL /IIH  
(VCCI 5.25 V)  
(VCCI 5.5 V)  
–20  
–70  
20  
70  
µA  
µA  
IOZ  
Tristate Output Leakage Current, VOUT = VCCI or GND (VCCI 5.25 V)  
(VCCI 5.5 V)  
–20  
–70  
20  
70  
µA  
µA  
tR, tF  
CIN  
Input Transition Time  
Input Pin Capacitance2  
CLK Pin Capacitance2  
10  
20  
20  
ns  
pF  
pF  
V
CCLK  
VMEAS Trip point for Input buffers and Measuring point for  
Output buffers  
2.5  
IV  
Can be derived from the IBIS model on the web.  
Curve2  
Notes:  
1. For AC signals, the input signal may undershoot during transitions –1.2 V for no longer than 11 ns. Current during the  
transition must not exceed 95 mA.  
2. The IBIS model can be found at www.microsemi.com/soc/techdocs/models/ibis.html.  
Revision 8  
2-19  
Detailed Specifications  
Timing Characteristics  
Table 2-16 • RTSX32SU 5 V CMOS I/O Module  
Worst-Case Military Conditions VCCA = 2.25 V, VCCI = 4.5 V, TJ = 125°C  
Radiation Level = 0 krad (Si)  
–1 Speed  
Min. Max.  
Std. Speed  
Min. Max.  
Parameter  
Description  
Units  
5 V CMOS Output Module Timing  
tINYH  
tINYL  
Input Data Pad-to-Y High  
0.7  
1.1  
0.9  
1.3  
ns  
ns  
Input Data Pad-to-Y Low  
tDLH  
Data-to-Pad Low to High  
3.4  
4.0  
ns  
tDHL  
Data-to-Pad High to Low  
3.6  
4.2  
ns  
tDHLS  
tENZL  
tDENZLS  
tENZH  
tENLZ  
tENHZ  
tENHZS  
Data-to-Pad High to Low – low slew  
Enable-to-Pad, Z to Low  
8.7  
10.3  
4.0  
ns  
3.4  
ns  
Enable-to-Pad, Z to Low – low slew  
Enable-to-Pad, Z to High  
8.7  
10.3  
4.2  
ns  
3.6  
ns  
Enable-to-Pad, Low to Z  
3.6  
4.2  
ns  
Enable-to-Pad, High to Z  
3.4  
4.0  
ns  
Enable-to-Pad, High to Z — low slew  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
Delta Delay vs. Load High to Low – low slew  
8.7  
10.3  
10.21  
0.038  
0.064  
ns  
2
dTLH  
8.68  
0.029  
0.049  
ns/pF  
ns/pF  
ns/pF  
2
dTHL  
2
dTHLS  
Notes:  
1. Output delays based on 35 pF loading.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following  
equation:  
Slew Rate [V/ns] = ±(0.1 * VCCI - 0.9 * VCCI)/ (C  
* d  
|d  
|d  
)
load  
TLH THL THLS  
where C  
is the load capacitance driven by the I/O in pF;  
load  
d
|d  
|d  
is the worst case delta value from the datasheet in ns/pF.  
TLH THL THLS  
2-20  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Table 2-17 • RTSX72SU 5 V CMOS I/O Module  
Worst-Case Military Conditions VCCA = 2.25 V, VCCI = 4.5 V, TJ = 125°C  
Radiation Level = 0 krad (Si)  
–1 Speed  
Std. Speed  
Min. Max.  
Parameter  
Description  
Min.  
Max.  
Units  
5 V CMOS Output Module Timing  
tINYH  
tINYL  
Input Data Pad-to-Y High  
0.7  
1.1  
0.9  
1.3  
ns  
ns  
Input Data Pad-to-Y Low  
tDLH  
Data-to-Pad Low to High  
3.6  
4.2  
ns  
tDHL  
Data-to-Pad High to Low  
3.8  
4.5  
ns  
tDHLS  
tENZL  
tDENZLS  
tENZH  
tENLZ  
tENHZ  
tENZHS  
Data-to-Pad High to Low – low slew  
Enable-to-Pad, Z to Low  
9.2  
10.8  
4.2  
ns  
3.6  
ns  
Enable-to-Pad, Z to Low – low slew  
Enable-to-Pad, Z to High  
9.2  
10.8  
4.5  
ns  
3.8  
ns  
Enable-to-Pad, Low to Z  
3.8  
4.5  
ns  
Enable-to-Pad, High to Z  
3.6  
4.2  
ns  
Enable-to-Pad, High to Z – low slew  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
9.2  
10.8  
0.046  
0.038  
0.064  
ns  
2
dTLH  
0.036  
0.029  
0.049  
ns/pF  
ns/pF  
ns/pF  
2
dTHL  
2
dTHLS  
Delta Delay vs. Load High to Low – low  
slew  
Notes:  
1. Output delays based on 35 pF loading.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following  
equation:  
Slew Rate [V/ns] = ±(0.1* VCCI - 0.9 * VCCI)/ (C  
* d  
|d  
|d  
)
load  
TLH THL THLS  
where C  
is the load capacitance driven by the I/O in pF;  
load  
d
|d  
|d  
is the worst case delta value from the datasheet in ns/pF.  
TLH THL THLS  
Revision 8  
2-21  
Detailed Specifications  
5 V PCI  
The RTSX-SU family supports 5 V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1.  
Table 2-18 • 5 V PCI DC Specifications  
Symbol  
VCCA  
VCCI  
VIH  
Parameter  
Condition  
Min.  
2.25  
4.5  
Max.  
2.75  
Units  
V
Supply Voltage for Array  
Supply Voltage for I/Os  
Input High Voltage1  
5.5  
V
2.0  
VCCI + 0.5  
0.8  
V
VIL  
Input Low Voltage1  
–0.5  
V
IIH  
Input High Leakage Current  
Input Low Leakage Current  
Output High Voltage  
VIN = 2.75  
VIN = 0.5  
70  
µA  
µA  
V
IIL  
–70  
VOH  
VOL  
CIN  
IOUT = –2 mA  
IOUT = 3 mA, 6 mA  
2.4  
5
Output Low Voltage2  
Input Pin Capacitance3  
CLK Pin Capacitance  
0.55  
10  
V
pF  
pF  
V
CCLK  
12  
VMEAS Trip Point for Input Buffers and Measuring Point for  
Output Buffers  
1.5  
Notes:  
1. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.  
2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull-up must have 6 mA; the latter  
include, FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used AD[63:32],  
C/BE[7:4]#, PAR64, REQ64#, and ACK64#.  
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK) with an exception granted to motherboard-  
only devices, which could be up to 16 pF in order to accommodate PGA packaging. This mean that components for  
expansion boards need to use alternatives to ceramic PGA packaging (i.e., PBGA,PQFP, SGA, etc.).  
4. For AC signals, the input signal may undershoot during transitions to –1.2 V for no longer than 11 ns. Current during the  
transition must not exceed 95 mA.  
200.0  
I
Max. Specification  
OL  
I
OL  
150.0  
100.0  
50.0  
I
Min. Specification  
OL  
0.0  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
I
5
5.5  
6
–50.0  
–100.0  
–150.0  
–200.0  
I
Min. Specification  
OH  
Max. Specification  
OH  
I
OH  
Voltage Out (V)  
Figure 2-7 • 5 V PCI V/I Curve for RTSX-SU  
2-22  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Equation A  
IOH = 11.9 * (VOUT – 5.25) * (VOUT + 2.45)  
for VCCI > VOUT > 3.1 V  
Equation B  
IOL = 78.5 * VOUT * (4.4 – VOUT)  
for 0 V < VOUT < 0.71 V  
Table 2-19 • 5 V PCI AC Specifications  
Symbol  
Parameter  
Condition  
Min.  
–44  
Max.  
Units  
mA  
IOH(AC)  
0 < VOUT < 1.4 1  
Switching Current High 1.4 < VOUT < 2.4 1, 2  
3.1 < VOUT < VCCI 1, 3  
(–44 + (VOUT – 1.4)/0.024)  
mA  
"Equation A"  
–142  
(Test Point)  
VOUT = 3.1 3  
mA  
mA  
mA  
IOL(AC)  
VOUT = 2.2 1  
Switching Current Low 2.2 > VOUT > 0.55 1  
0.71 > VOUT > 0 1, 3  
95  
(VOUT/0.023)  
"Equation B"  
206  
(Test Point)  
VOUT = 0.71  
mA  
mA  
ICL  
Low Clamp Current  
–5 < VIN –1  
–25 + (VIN + 1)/0.015  
slewR  
slewF  
Notes:  
Output Rise Slew Rate 0.4 V to 2.4 V load4  
Output Fall Slew Rate 2.4 V to 0.4 V load4  
1
1
5
5
V/ns  
V/ns  
1. Refer to the V/I curves in Figure 2-7 on page 2-22. Switching current characteristics for REQ# and GNT# are permitted  
to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does  
not apply to CLK and RST#, which are system outputs. The “Switching Current High” specification is not relevant to  
SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.  
2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point  
rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional  
N-channel pull-up.  
3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these  
maximums (A and B) are provided with the respective curves in Figure 2-7 on page 2-22. The equation defined  
maximum should be met by the design. In order to facilitate component testing, a maximum current test point is defined  
for each side of the output driver.  
4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the  
instantaneous rate at any point within the transition range. The specified load is optional; i.e., the designer may elect to  
meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification (Figure 2-8). However,  
adherence to both the maximum and minimum parameters is now required (the maximum is no longer simply a  
guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there  
may be components in the market that have faster edge rates; therefore, motherboard designers must bear in mind that  
rise and fall times faster than this specification could occur and should ensure that signal integrity modeling accounts for  
this. Rise slew rate does not apply to open drain outputs.  
Pin  
Output  
Buffer  
50 pF  
Figure 2-8 • 5 V PCI Output Loading  
Revision 8  
2-23  
Detailed Specifications  
Timing Characteristics  
Table 2-20 • RTSX32SU 5 V PCI I/O Module  
Worst-Case Military Conditions VCCA = 2.25 V, VCCI = 4.5 V, TJ= 125°C  
Radiation Level = 0 krad (Si)  
–1 Speed  
Min. Max.  
Std. Speed  
Min. Max.  
Parameter  
Description  
Units  
5 V PCI Output Module Timing  
tINYH  
tINYL  
tDLH  
Input Data Pad-to-Y High  
0.7  
1.1  
0.9  
1.3  
ns  
ns  
Input Data Pad-to-Y Low  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Enable-to-Pad, Z to Low  
Enable-to-Pad, Z to High  
Enable-to-Pad, Low to Z  
Enable-to-Pad, High to Z  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
3.4  
4.0  
ns  
tDHL  
4.1  
4.8  
ns  
tENZL  
tENZH  
tENLZ  
tENHZ  
4.1  
4.8  
ns  
3.4  
4.0  
ns  
3.4  
4.0  
ns  
4.1  
4.8  
ns  
2
dTLH  
0.036  
0.029  
0.046  
0.038  
ns/pF  
ns/pF  
2
dTHL  
Notes:  
1. Output delays based on 35 pF loading.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following  
equation:  
Slew Rate [V/ns] = ±(0.1 * VCCI - 0.9 * VCCI)/ (C  
* d  
|d  
|d  
)
load  
TLH THL THLS  
where C  
is the load capacitance driven by the I/O in pF;  
load  
d
|d  
|d  
is the worst case delta value from the datasheet in ns/pF.  
TLH THL THLS  
2-24  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Table 2-21 • RTSX72SU 5 V PCI I/O Module  
Worst-Case Military Conditions VCCA = 2.25 V, VCCI = 4.5 V, TJ= 125°C  
Radiation Level = 0 krad (Si)  
–1 Speed  
Std. Speed  
Min. Max.  
Parameter  
Description  
Min.  
Max.  
Units  
5 V PCI Output Module Timing  
tINYH  
tINYL  
tDLH  
Input Data Pad-to-Y High  
0.7  
1.1  
0.9  
1.3  
ns  
ns  
Input Data Pad-to-Y Low  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Enable-to-Pad, Z to Low  
Enable-to-Pad, Z to High  
Enable-to-Pad, Low to Z  
Enable-to-Pad, High to Z  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
3.5  
4.1  
ns  
tDHL  
4.3  
5.1  
ns  
tENZL  
tENZH  
tENLZ  
tENHZ  
4.3  
5.1  
ns  
3.5  
4.1  
ns  
3.5  
4.1  
ns  
4.3  
5.1  
ns  
2
dTLH  
0.036  
0.029  
0.046  
0.038  
ns/pF  
ns/pF  
2
dTHL  
Notes:  
1. Output delays based on 35 pF loading.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following  
equation:  
Slew Rate [V/ns] = ±(0.1 * VCCI - 0.9 * VCCI)/ (C  
* d  
|d  
|d  
)
load  
TLH THL THLS  
where C  
is the load capacitance driven by the I/O in pF;  
load  
d
|d  
|d  
is the worst case delta value from the datasheet in ns/pF.  
TLH THL THLS  
Revision 8  
2-25  
Detailed Specifications  
3.3 V PCI  
The RTSX-SU family supports 3.3 V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1.  
Table 2-22 • 3.3 V PCI DC Specifications  
Symbol  
VCCA  
VCCI  
VIH  
Parameter  
Supply Voltage for Array  
Condition  
Min.  
2.25  
3.0  
Max.  
2.75  
3.6  
Units  
V
Supply Voltage for I/Os  
Input High Voltage  
V
0.5 VCCI VCCI + 0.5  
V
VIL  
Input Low Voltage  
–0.5  
0.3 VCCI  
V
IIPU  
Input Pull-up Voltage1  
0.7 VCCI  
V
IIL/IIH  
VOH  
VOL  
Input Leakage Current2  
0 < VIN < VCCI  
IOUT = –500 µA  
IOUT = 1500 µA  
±20  
µA  
V
Output High Voltage  
0.9 VCCI  
Output Low Voltage  
0.1 VCCI  
V
CIN  
Input Pin Capacitance3  
10  
12  
pF  
pF  
V
CCLK  
VMEAS  
CLK Pin Capacitance  
5
Trip point for Input buffers  
Output buffer measuring point - rising edge  
Output buffer measuring point - falling edge  
0.4 * VCCI  
0.285 * VCCI  
0.615 * VCCI  
Notes:  
1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to  
pull a floated network. Applications sensitive to static power utilization should assure that the input buffer is conducting  
minimum current at this input VIN.  
2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.  
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK) with an exception granted to motherboard-  
only devices, which could be up to 16 pF, in order to accommodate PGA packaging. This means that components for  
expansion boards would need to use alternatives to ceramic PGA packaging.  
4. For AC signals, the input signal may undershoot during transitions to –1.2 V for no longer than 11 ns. Current during the  
transition must not exceed 95 mA.  
5. For AC signals, the input signal may overshoot during transitions to VCCI + 1.2 V for no longer than 11 ns. Current  
during the transition must not exceed 95 mA.  
150.0  
I
Max. Specification  
OL  
I
OL  
100.0  
50.0  
I
Min. Specification  
OL  
0.0  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
–50.0  
–100.0  
–150.0  
I
Min. Specification  
OH  
I
Max. Specification  
I
OH  
OH  
Voltage Out (V)  
Figure 2-9 • 3.3 V PCI V/I Curve for the RTSX-SU Family  
2-26  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Equation C  
IOH = (98.0/VCCI) * (VOUT – VCCI) * (VOUT + 0.4 VCCI)  
for VCCI > VOUT > 0.7 VCCI  
Equation D  
IOL = (256/VCCI) * VOUT * (VCCI – VOUT)  
for 0 V < VOUT < 0.18 VCCI  
Table 2-23 • 3.3 V PCI AC Specifications  
Symbol Parameter Condition  
Min.  
Max.  
Units  
mA  
IOH(AC) Switching Current 0 < VOUT 0.3 VCCI 1  
–12 VCCI  
High  
0.3 VCCI VOUT < 0.9 VCCI 1 (–17.1 + (VCCI – VOUT))  
0.7 VCCI < VOUT < VCCI 1, 2  
mA  
"Equation C"  
–32 VCCI  
(Test Point)  
VOUT = 0.7 VCC 2  
mA  
mA  
mA  
IOL(AC) Switching Current VCCI > VOUT 0.6 VCCI 1  
16 VCCI  
Low  
0.6 VCCI > VOUT > 0.1 VCCI 1  
(26.7 VOUT)  
0.18 VCCI > VOUT > 0 1, 2  
"Equation D"  
38 VCCI  
(Test Point)  
VOUT = 0.18 VCC 2  
mA  
mA  
ICL  
Low Clamp Current –3 < VIN –1  
–25 + (VIN + 1)/0.015  
ICH  
High Clamp Current VCCI + 4 > VIN VCCI + 1  
Output Rise Slew 0.2 VCCI to 0.6 VCCI load 3  
Rate  
25 + (VIN – VCCI – 1)/0.015  
1
mA  
slewR  
4
4
V/ns  
slewF  
Output Fall Slew 0.6 VCCI to 0.2 VCCI load 3  
Rate  
1
V/ns  
Notes:  
1. Refer to the V/I curves in Figure 2-9 on page 2-26. Switching current characteristics for REQ# and GNT# are permitted  
to be one half of that specified here; i.e., half-size output drivers may be used on these signals. This specification does  
not apply to CLK and RST#, which are system outputs. The “Switching Current High” specification is not relevant to  
SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.  
2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these  
maximums (C and D) are provided with the respective curves in Figure 2-9 on page 2-26. The equation defined  
maximum should be met by the design. In order to facilitate component testing, a maximum current test point is defined  
for each side of the output driver.  
3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the  
instantaneous rate at any point within the transition range. The specified load is optional (Figure 2-10); i.e., the designer  
may elect to meet this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification.  
However, adherence to both maximum and minimum parameters is required (the maximum is no longer simply a  
guideline). Rise slew rate does not apply to open drain outputs.  
Pin  
1/2 in. max.  
Pin  
1/2 in. max.  
Output  
Buffer  
Output  
Buffer  
10 pF  
VCC  
1 k/25 Ω  
1 k/25 Ω  
10 pF  
Figure 2-10 • 3.3 V PCI Output Loading  
Revision 8  
2-27  
Detailed Specifications  
Timing Characteristics  
Table 2-24 • RTSX32SU 3.3 V PCI I/O Module  
Worst-Case Military Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 125°C  
Radiation Level = 0 krad (Si)  
–1 Speed  
Min. Max.  
Std.’Speed  
Min. Max.  
Parameter  
Description  
Units  
3.3 V PCI Output Module Timing  
tINYH  
tINYL  
tDLH  
Input Data Pad-to-Y High  
Input Data Pad-to-Y Low  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Enable-to-Pad, Z to Low  
Enable-to-Pad, Z to High  
Enable-to-Pad, Low to Z  
Enable-to-Pad, High to Z  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
0.8  
0.9  
0.9  
1.1  
ns  
ns  
3.0  
3.5  
ns  
tDHL  
3.0  
3.5  
ns  
tENZL  
tENZH  
tENLZ  
tENHZ  
3.0  
3.5  
ns  
3.0  
3.5  
ns  
3.0  
3.5  
ns  
3.0  
3.5  
ns  
2
dTLH  
0.067  
0.031  
0.085  
0.040  
ns/pF  
ns/pF  
2
dTHL  
Notes:  
1. Output delays based on 35 pF loading.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following  
equation:  
Slew Rate [V/ns] = ±(0.1 * VCCI - 0.9 * VCCI)/ (C  
* d  
|d  
|d  
)
load  
TLH THL THLS  
where C  
is the load capacitance driven by the I/O in pF;  
load  
d
|d  
|d  
is the worst case delta value from the datasheet in ns/pF.  
TLH THL THLS  
2-28  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Table 2-25 • RTSX72SU 3.3 V PCI I/O Module  
Worst-Case Military Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 125°C  
Radiation Level = 0 krad (Si)  
–1 Speed  
Std. Speed  
Min. Max.  
Parameter  
Description  
Min.  
Max.  
Units  
3.3 V PCI Output Module Timing  
tINYH  
tINYL  
tDLH  
Input Data Pad-to-Y High  
Input Data Pad-to-Y Low  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Enable-to-Pad, Z to Low  
Enable-to-Pad, Z to High  
Enable-to-Pad, Low to Z  
Enable-to-Pad, High to Z  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
0.7  
0.9  
0.8  
1.1  
ns  
ns  
2.8  
3.3  
ns  
tDHL  
2.8  
3.3  
ns  
tENZL  
tENZH  
tENLZ  
tENHZ  
2.8  
3.3  
ns  
2.8  
3.3  
ns  
2.8  
3.3  
ns  
2.8  
3.3  
ns  
2
dTLH  
0.067  
0.031  
0.085  
0.040  
ns/pF  
ns/pF  
2
dTHL  
Notes:  
1. Output delays based on 35 pF loading.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following  
equation:  
Slew Rate [V/ns] = ±(0.1 * V  
- 0.9 * V )/ (C  
* d  
|d  
|d  
)
CCI  
CCI  
load  
TLH THL THLS  
where C  
is the load capacitance driven by the I/O in pF;  
load  
d
|d  
|d  
is the worst case delta value from the datasheet in ns/pF.  
TLH THL THLS  
Revision 8  
2-29  
Detailed Specifications  
Module Specifications  
C-Cell  
Introduction  
The C-cell is one of the two logic module types in the RTSX-SU architecture. It is the combinatorial logic  
resource in the device. The RTSX-SU architecture uses the same C-cell configuration as found in the SX  
and SX-A families.  
The C-cell features the following (Figure 2-11):  
Eight-input MUX (data: D0-D3, select: A0, A1, B0, B1). User signals can be routed to any one of  
these inputs. C-cell inputs (A0, A1, B0, B1) can be tied to one of the either the routed or quad  
clocks (CLKA/B or QCLKA/B/C/D).  
Inverter (DB input) can be used to drive a complement signal of any of the inputs to the C-cell.  
A hardwired connection (direct connect) to the associated R-cell with a signal propagation time of  
less than 0.1 ns.  
This layout of the C-cell enables the implementation of over 4,000 functions of up to five bits. For  
example, two C-cells can be used together to implement a four-input XOR function in a single cell delay.  
The C-cell configuration is handled automatically for the user with Microsemi's extensive macro library  
(refer to the Antifuse Macro Library Guide for a complete listing of available RTSX-SU macros).  
D0  
D1  
Y
D2  
D3  
Sa  
Sb  
DB  
A0 B0  
A1 B1  
Figure 2-11 • C-Cell  
VCC  
GND  
S, A or B  
50% 50%  
VCC  
S
A
B
Y
50%  
50%  
Y
GND  
tPD  
tPD  
VCC  
50%  
Y
GND  
tPD  
50%  
tPD  
Figure 2-12 • C-Cell Timing Model and Waveforms  
2-30  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Timing Characteristics  
Table 2-26 • C-Cell  
Worst-Case Military Conditions VCCA = 2.25 V, VCCI = 3.0 V  
TJ= 125°C, Radiation Level = 0 krad (Si)  
–1’Speed  
Std. Speed  
Paramet  
er  
Description  
Min. Max.  
Min. Max.  
Units  
C-cell Propagation Delays  
tPD Internal Array Module  
1.2  
1.4  
ns  
Note: For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn or tPD1 + tRD1  
tSUD, whichever is appropriate.  
+
R-Cell  
Introduction  
The R-cell, the sequential logic resource of RTSX-SU devices, is the second logic module type in the  
RTSX-SU family architecture. The RTSX-SU R-cell is an SEU-enhanced version of the SX and SX-A R-  
cell (Figure 2-13).  
The main features of the R-cell include the following:  
Direct connection to the adjacent C-cell through the hardwired connection DCIN. DCIN is driven  
by the DCOUT of an adjacent C-cell via the Direct-Connect routing resource, providing a  
connection with less than 0.1 ns of routing delay.  
The R-cell can be used as a standalone flip-flop. It can be driven by any other C-cell or I/O  
modules through the regular routing structure (using DIN as a routable data input). This gives the  
option of using it as a 2:1 MUXed flip-flop as well.  
Independent active-low asynchronous clear (CLRB).  
Independent active-low asynchronous preset (PSETB). If both CLRB and PSETB are Low, CLRB  
has higher priority.  
Clock can be driven by any of the following (CKP input selects clock polarity):  
The high-performance, hardwired, fast clock (HCLK)  
One of the two routed clocks (CLKA/B)  
One of the four quad clocks (QCLKA/B/C/D) in the case of the RTSX72SU  
User signals  
S0, S1, PSETB, and CLRB can be driven by CLKA/B, QCLKA/B/C/D (for the RTSX72SU) or user  
signals.  
Routed Data Input and S1 can be driven by user signals.  
Revision 8  
2-31  
Detailed Specifications  
As with the C-cell, the configuration of the R-cell to perform various functions is handled automatically for  
the user through Microsemi's extensive macro library (see the Antifuse Macro Library Guide for a  
complete listing of available RTSX-SU macros).  
Routed  
Data Input  
S1  
S0  
PSETB  
Direct  
Connect  
Input  
D
Q
Y
HCLK  
CLKA,  
CLKB,  
Internal Logic  
CLRB  
CKS  
CKP  
Figure 2-13 • R-Cell  
SEU-Hardened D Flip-Flop  
In order to meet the stringent SEU requirements of a LET threshold greater than 40MeV-cm2/gm, the  
internal design of the R-cell was modified without changing the functionality of the cell.  
Figure 2-14 is a simplified representation of how the D flip-flop in the R-cell is implemented in the SX-A  
architecture. The flip-flop consists of a master and a slave latch gated by opposite edges of the clock.  
Each latch is constructed by feeding back the output to the input stage. The potential problem in a space  
environment is that either of the latches can change state when hit by a particle with enough energy.  
To achieve the SEU requirements, the D flip-flop in the RTSX-SU R-cell is enhanced (Figure 2-15). Both  
the master and slave latches are each implemented with three latches. The asynchronous self-correcting  
feedback paths of each of the three latches is voted with the outputs of the other two latches. If one of the  
three latches is struck by an ion and starts to change state, the voting with the other two latches prevents  
the change from feeding back and permanently latching. Care was taken in the layout to ensure that a  
single ion strike could not affect more than one latch. Figure 2-16 shows a simplified schematic of the  
test circuitry that has been added to test the functionality of all the components of the flip-flop. The inputs  
to each of the three latches are independently controllable so the voting circuitry in the asynchronous  
self-correcting feedback paths can be tested exhaustively. This testing is performed on an  
unprogrammed array during wafer sort, final test, and post-burn-in test. This test circuitry cannot be used  
to test the flip-flops once the device has been programmed.  
Q
D
CLK  
CLK  
Figure 2-14 • SX-A R-Cell Implementation of a D Flip-Flop  
2-32  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Q
D
CLK  
CLK  
Voter  
Gate  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
Figure 2-15 • RTSX-SU R-Cell Implementation of D Flip-Flop Using Voter Gate Logic  
Q
D
Tst1  
Tst2  
Tst3  
Voter  
Gate  
CLK  
Test  
Circuitry  
Figure 2-16 • R-Cell Implementation – Test Circuitry  
Revision 8  
2-33  
Detailed Specifications  
PRE  
CLR  
D
Q
CLK  
(Positive edge triggered)  
tHD  
D
tHPWH  
tRPWH  
tSUD  
tHP  
CLK  
tRCO  
tHPWL  
tRPWL  
Q
tPRESET  
tCLR  
tWASYN  
CLR  
PRESET  
Figure 2-17 • R-Cell Timing Models and Waveforms  
Timing Characteristics  
Table 2-27 • R-Cell  
Worst-Case Military Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 125°C  
Radiation Level = 0 krad (Si)  
–1 Speed  
Min. Max.  
Std. Speed  
Min. Max.  
Parameter  
Description  
Units  
R-Cell Propagation Delays  
tRCO  
Sequential Clock-to-Q  
1.0  
0.8  
1.1  
0.8  
0.0  
2.8  
0.7  
0.7  
1.2  
1.0  
1.3  
1.0  
0.0  
3.3  
0.8  
0.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
tPRESET  
tSUD  
tHD  
tWASYN  
tRECASYN Asynchronous Recovery Time  
tHASYN Asynchronous Hold Time  
2-34  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Routing Specifications  
Routing Resources  
The routing structure found in RTSX-SU devices enables any logic module to be connected to any other  
logic module in the device while retaining high performance. There are multiple paths and routing  
resources that can be used to route one logic module to another, both within a SuperCluster and  
elsewhere on the chip.  
There are three primary types of routing within the RTSX-SU architecture: DirectConnect, FastConnect,  
and Vertical and Horizontal Routing.  
DirectConnect  
DirectConnects provide a high-speed connection between an R-cell and its adjacent C-cell (Figure 1-3  
and Figure 1-4 on page 1-5). This connection can be made from the Y output of the C-cell to the  
DirectConnect input of the R-cell by configuring of the S0 line of the R-cell. This provides a connection  
that does not require an antifuse and has a delay of less than 0.1 ns.  
FastConnect  
For high-speed routing of logic signals, FastConnects can be used to build a short distance connection  
using a single antifuse (Figure 1-3 and Figure 1-4 on page 1-5). FastConnects provide a maximum delay  
of 0.4 ns. The outputs of each logic module connect directly to the output tracks within a SuperCluster.  
Signals on the output tracks can then be routed through a single antifuse connection to drive the inputs of  
logic modules either within one SuperCluster or in the SuperCluster immediately below.  
Horizontal and Vertical Routing  
In addition to DirectConnect and FastConnect, the architecture makes use of two globally-oriented  
routing resources known as segmented routing and high-drive routing. Microsemi’s segmented routing  
structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact  
combination of track lengths and antifuses within each path is chosen by the 100-percent-automatic  
place-and-route software to minimize signal propagation delays.  
Critical Nets and Typical Nets  
Propagation delays are expressed only for typical nets, which are used for the initial design performance  
evaluation. Critical net delays can then be applied to the most time-critical paths. Critical nets are  
determined by net property assignment prior to placement and routing. Up to six percent of the nets in a  
design may be designated as critical, while 90 percent of the nets in a design are typical.  
Long Tracks  
Some nets in the design use long tracks. Long tracks are special routing resources that span multiple  
rows, columns, or modules. Long tracks employ three and sometimes five antifuse connections. This  
increases capacitance and resistance results in longer net delays for macros connected to long tracks.  
Typically up to six percent of nets in a fully utilized device require long tracks. Long tracks can cause a  
delay from 4.0 ns to 8.4 ns. This additional delay is represented statistically in higher fanout routing  
delays in the "Timing Characteristics" section on page 2-36.  
Revision 8  
2-35  
Detailed Specifications  
Timing Characteristics  
Table 2-28 • RTSX32SU  
Worst-Case Military Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 125°C  
Radiation Level = 0 krad (Si)  
–1 Speed  
Min. Max.  
Std. Speed  
Min. Max.  
Parameter Description  
Predicted Routing Delays  
Units  
tDC  
FO = 1 Routing Delay, DirectConnect  
0.1  
0.4  
0.8  
1.0  
1.4  
1.5  
2.9  
4.0  
0.1  
0.4  
0.9  
1.2  
1.6  
1.8  
3.4  
4.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
FO = 1 Routing Delay, FastConnect  
FO = 1 Routing Delay  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
FO = 12 Routing Delay  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
tRD12  
Note: Routing delays are for typical designs across worst-case operating conditions. These parameters  
should be used for estimating device performance. Post-route timing analysis or simulation is  
required to determine actual worst-case performance.  
Table 2-29 • RTSX72SU  
Worst-Case Military Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 125°C  
Radiation Level = 0 krad (Si)  
–1 Speed  
Min. Max.  
Std. Speed  
Min. Max.  
Parameter Description  
Predicted Routing Delays  
Units  
tDC  
FO = 1 Routing Delay, DirectConnect  
0.1  
0.4  
0.9  
1.2  
1.8  
1.9  
3.7  
5.1  
0.1  
0.4  
1.0  
1.4  
2.0  
2.3  
4.3  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
FO = 1 Routing Delay, FastConnect  
FO = 1 Routing Delay  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
FO = 12 Routing Delay  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
tRD12  
Note: Routing delays are for typical designs across worst-case operating conditions. These parameters  
should be used for estimating device performance. Post-route timing analysis or simulation is  
required to determine actual worst-case performance.  
2-36  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Global Resources  
One of the most important aspects of any FPGA architecture is its global resource or clock structure. The  
RTSX-SU family provides flexible and easy-to-use global resources without the limitations normally  
found in other FPGA architectures.  
The RTSX-SU architecture contains three types of global resources, the HCLK (hardwired clock) and  
CLK (routed clock) and in the RTSX72SU, QCLK (quadrant clock). Each RTSX-SU device is provided  
with one HCLK and two CLKs. The RTSX72SU has an additional four QCLKs.  
Hardwired Clock  
The hardwired (HCLK) is a low-skew network that can directly drive the clock inputs of all R-cells in the  
device with no antifuse in the path. The HCLK is available everywhere on the chip.  
Upon power-up of the RTSX-SU device, four clock pulses must be detected on HCLK before the clock  
signal will be propagated to registers in the device.  
Routed Clocks  
The routed clocks (CLKA and CLKB) are low-skew networks that can drive the clock inputs of all R-cells  
in the device (logically equivalent to the HCLK). CLK has the added flexibility in that it can drive the S0  
(Enable), S1, PSETB, and CLRB inputs of R-cells as well as any of the inputs of any C-cell in the device.  
This allows CLKs to be used not only as clocks but also for other global signals or high fanout nets. Both  
CLKs are available everywhere on the chip.  
If CLKA or CLKB pins are not used or sourced from signals, then these pins must be set as Low or High  
on the board. They must not be left floating (except in RTSX72SU, where these clocks can be configured  
as regular I/Os).  
Revision 8  
2-37  
Detailed Specifications  
Quadrant Clocks  
The RTSX72SU device provides four quadrant clocks (QCLKA, QCLKB, QCLKC, QCLKD) to the user,  
which can be sourced from external pins or from internal logic signals within the device. Each of these  
clocks can individually drive up to one full quadrant of the chip, or they can be grouped together to drive  
multiple quadrants (Figure 2-18). If QCLKs are not used as quadrant clocks, they can behave as regular  
I/Os. See Microsemi’s application note Using A54SX72A and RT54SX72S Quadrant Clocks for more  
information.  
4 QCLKBUFS  
4
Quadrant 2  
Quadrant 3  
5:1  
5:1  
QCLKINT  
(to array)  
QCLKINT  
(to array)  
4
Quadrant 0  
Quadrant 1  
5:1  
5:1  
QCLKINT  
(to array)  
QCLKINT  
(to array)  
Figure 2-18 • RTSX-SU QCLK Structure  
2-38  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Timing Characteristics  
Table 2-30 • RTSX32SU at VCCI = 3.0 V  
Worst-Case Military Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 125°C  
Radiation Level = 0 krad (Si)  
–1 Speed  
Std. Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
Dedicated (Hardwired) Array Clock Network  
tHCKH  
tHCKL  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Pad to R-Cell Input Low to High  
Pad to R-Cell Input High to Low  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
3.9  
3.9  
4.6  
4.6  
ns  
ns  
2.1  
2.1  
2.5  
2.5  
ns  
ns  
1.6  
1.9  
ns  
Minimum Period  
4.2  
5.0  
ns  
fHMAX  
Maximum Frequency  
238  
200  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCHKL  
tRCKH  
tRCKL  
Pad to R-cell Input High to Low (Light Load))  
4.2  
3.9  
5.0  
4.3  
5.6  
4.9  
4.9  
4.6  
5.9  
5.1  
6.5  
5.7  
ns  
ns  
Pad to R-cell Input Low to High (Light Load))  
Pad to R-cell Input Low to High (50% Load)  
Pad to R-cell Input High to Low (50% Load)  
Pad to R-cell Input Low to High (100% Load)  
Pad to R-cell Input High to Low (100% Load)  
Minimum Pulse Width High  
ns  
ns  
tRCKH  
tRCKL  
ns  
ns  
tRPWH  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
tRP  
2.1  
2.1  
2.5  
2.5  
ns  
Minimum Pulse Width Low  
ns  
Maximum Skew (Light Load)  
2.8  
2.8  
2.8  
3.3  
3.3  
3.3  
ns  
Maximum Skew (50% Load)  
ns  
Maximum Skew (100% Load)  
ns  
Minimum Period  
4.2  
5.0  
ns  
fRMAX  
Maximum Frequency  
238  
200  
MHz  
Revision 8  
2-39  
Detailed Specifications  
Table 2-31 • RTSX32SU at VCCI = 4.5 V  
Worst-Case Military Conditions VCCA = 2.25 V, VCCI = 4.5 V, TJ = 125°C  
Radiation Level = 0 krad (Si)  
–1 Speed  
Std. Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
Dedicated (Hardwired) Array Clock Network  
tHCKH  
tHCKL  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Pad to R-Cell Input Low to High  
Pad to R-Cell Input High to Low  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
3.9  
3.9  
4.6  
4.6  
ns  
ns  
2.1  
2.1  
2.5  
2.5  
ns  
ns  
1.6  
1.9  
ns  
Minimum Period  
4.2  
5.0  
ns  
fHMAX  
Maximum Frequency  
238  
200  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCHKL  
tRCKH  
tRCKL  
Pad to R-cell Input High to Low (Light Load))  
3.9  
3.7  
4.7  
4.1  
5.3  
4.7  
4.6  
4.4  
5.6  
4.9  
6.2  
5.5  
ns  
ns  
Pad to R-cell Input Low to High (Light Load))  
Pad to R-cell Input Low to High (50% Load)  
Pad to R-cell Input High to Low (50% Load)  
Pad to R-cell Input Low to High (100% Load)  
Pad to R-cell Input High to Low (100% Load)  
Minimum Pulse Width High  
ns  
ns  
tRCKH  
tRCKL  
ns  
ns  
tRPWH  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
tRP  
2.1  
2.1  
2.5  
2.5  
ns  
Minimum Pulse Width Low  
ns  
Maximum Skew (Light Load)  
2.8  
2.8  
2.8  
3.3  
3.3  
3.3  
ns  
Maximum Skew (50% Load)  
ns  
Maximum Skew (100% Load)  
ns  
Minimum Period  
4.2  
5.0  
ns  
fRMAX  
Maximum Frequency  
238  
200  
MHz  
2-40  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Table 2-32 • RTSX72SU at VCCI = 3.0 V  
Worst-Case Military Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 125°C  
Radiation Level = 0 krad (Si)  
–1 Speed  
Std. Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
Dedicated (Hardwired) Array Clock Network  
tHCKH  
tHCKL  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Pad to R-cell Input Low to High  
Pad to R-cell Input High to Low  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
3.2  
3.5  
3.8  
4.1  
ns  
ns  
2.7  
2.7  
3.2  
3.2  
ns  
ns  
2.7  
3.1  
ns  
Minimum Period  
5.4  
6.4  
ns  
fHMAX  
Maximum Frequency  
185  
156  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRPWH  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
tRP  
Pad to R-cell Input Low to High (Light Load))  
5.7  
6.5  
5.7  
6.5  
5.7  
6.5  
6.7  
7.7  
6.7  
7.7  
6.7  
7.7  
ns  
ns  
Pad to R-cell Input High to Low (Light Load)  
Pad to R-cell Input Low to High (50% Load)  
Pad to R-cell Input High to Low (50% Load)  
Pad to R-cell Input Low to High (100% Load)  
Pad to R-cell Input High to Low (100% Load)  
Minimum Pulse Width High  
ns  
ns  
ns  
ns  
2.7  
2.7  
3.2  
3.2  
ns  
Minimum Pulse Width Low  
ns  
Maximum Skew (Light Load)  
5.1  
4.9  
4.9  
6.0  
5.8  
5.8  
ns  
Maximum Skew (50% Load)  
ns  
Maximum Skew (100% Load)  
ns  
Minimum Period  
5.4  
6.4  
ns  
fRMAX  
Maximum Frequency  
185  
156  
MHz  
Quadrant Array Clock Networks  
tQCKH  
tQCKL  
tQCKH  
tQCKL  
tQCKH  
tQCKL  
tQPWH  
tQPWL  
tQCKSW  
tQCKSW  
tQCKSW  
tQP  
Pad to R-cell Input Low to High (Light Load)  
3.6  
3.6  
3.7  
3.9  
4.0  
4.1  
4.2  
4.2  
4.3  
4.5  
4.7  
4.8  
ns  
ns  
Pad to R-cell Input High to Low (Light Load)  
Pad to R-cell Input Low to High (50% Load)  
Pad to R-cell Input High to Low (50% Load)  
Pad to R-cell Input Low to High (100% Load)  
Pad to R-cell Input High to Low (100% Load)  
Minimum Pulse Width High  
ns  
ns  
ns  
ns  
2.7  
2.7  
3.2  
3.2  
ns  
Minimum Pulse Width Low  
ns  
Maximum Skew (Light Load)  
0.6  
1.0  
1.0  
0.7  
1.1  
1.1  
ns  
Maximum Skew (50% Load)  
ns  
Maximum Skew (100% Load)  
ns  
Minimum Period  
5.4  
6.4  
ns  
fQMAX  
Maximum Frequency  
185  
156  
MHz  
Revision 8  
2-41  
Detailed Specifications  
Table 2-33 • RTSX72SU at VCCI = 4.5 V  
Worst-Case Military Conditions VCCA = 2.25 V, VCCI = 4.5 V, TJ = 125°C  
Radiation Level = 0 krad (Si)  
–1 Speed  
Std. Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
Dedicated (Hardwired) Array Clock Network  
tHCKH  
tHCKL  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Pad to R-cell Input Low to High  
Pad to R-cell Input High to Low  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
4.1  
4.1  
4.8  
4.8  
ns  
ns  
2.8  
2.8  
3.3  
3.3  
ns  
ns  
3.2  
3.7  
ns  
Minimum Period  
5.6  
6.6  
ns  
fHMAX  
Maximum Frequency  
179  
152  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRPWH  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
tQP  
Pad to R-cell Input Low to High (Light Load))  
6.8  
8.2  
6.8  
8.2  
6.8  
8.2  
8.0  
9.7  
8.0  
9.7  
8.0  
9.7  
ns  
ns  
Pad to R-cell Input High to Low (Light Load)  
Pad to R-cell Input Low to High (50% Load)  
Pad to R-cell Input High to Low (50% Load)  
Pad to R-cell Input Low to High (100% Load)  
Pad to R-cell Input High to Low (100% Load)  
Minimum Pulse Width High  
ns  
ns  
ns  
ns  
2.8  
2.8  
3.3  
3.3  
ns  
Minimum Pulse Width Low  
ns  
Maximum Skew (Light Load)  
7.0  
6.8  
6.8  
8.2  
8.0  
8.0  
ns  
Maximum Skew (50% Load)  
ns  
Maximum Skew (100% Load)  
ns  
Minimum Period  
5.6  
6.6  
ns  
fQMAX  
Maximum Frequency  
179  
152  
MHz  
Quadrant Array Clock Networks  
tQCKH  
tQCKL  
tQCKH  
tQCKL  
tQCKH  
tQCKL  
tQPWH  
tQPWL  
tQCKSW  
tQCKSW  
tQCKSW  
tQP  
Pad to R-cell Input Low to High (Light Load))  
3.9  
4.2  
4.2  
4.5  
4.5  
5.0  
4.6  
4.9  
4.9  
5.3  
5.3  
5.9  
ns  
ns  
Pad to R-cell Input High to Low (Light Load)  
Pad to R-cell Input Low to High (50% Load)  
Pad to R-cell Input High to Low (50% Load)  
Pad to R-cell Input Low to High (100% Load)  
Pad to R-cell Input High to Low (100% Load)  
Minimum Pulse Width High  
ns  
ns  
ns  
ns  
2.8  
2.8  
3.3  
3.3  
ns  
Minimum Pulse Width Low  
ns  
Maximum Skew (Light Load)  
0.7  
1.3  
1.4  
0.8  
1.5  
1.6  
ns  
Maximum Skew (50% Load)  
ns  
Maximum Skew (100% Load)  
ns  
Minimum Period  
5.6  
6.6  
ns  
fQMAX  
Maximum Frequency  
179  
152  
MHz  
2-42  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Global Resource Access Macros  
The user can configure which global resource is used in the design as well as how each global resource  
is driven through the use of the following macros:  
HCLKBUF – used to drive the hardwired clock (HCLK) in both devices from an external pin  
CLKBUF and CLKBUFI – noninverting and inverting inputs used to drive either routed clock  
(CLKA or CLKB) in both devices from external pins  
CLKINT and CLKINTI – noninverting and inverting inputs used to drive either routed clock (CLKA  
or CLKB) in both devices from internal logic  
QCLKBUF and QCLKBUFI – noninverting and inverting inputs used to drive quadrant routed  
clocks (QCLKA/B/C/D) in the RTSX72SU from external pins  
QCLKINT and QCLKINTI – noninverting and inverting inputs used to drive quadrant routed clocks  
(QCLKA/B/C/D) in the RTSX72SU from internal logic  
QCLKBIBUF and QCLUKBIBUFI – noninverting and inverting inputs used to drive quadrant  
routed clocks (QCLKA/B/C/D) in the RTSX72SU alternatively from either external pins or internal  
logic  
Figure 2-19, Figure 2-20, and Figure 2-21 illustrate the various global-resource access macros.  
Constant Load  
Clock Network  
HCLKBUF  
Figure 2-19 • Hardwired Clock Buffer  
Clock Network  
From Internal Logic  
CLKBUF  
CLKBUFI  
CLKINT  
CLKINTI  
Figure 2-20 • Routed Clock Buffers in RTSX32SU  
Revision 8  
2-43  
Detailed Specifications  
OE  
From Internal Logic  
Clock Network  
From Internal Logic  
CLKBUF  
CLKBUFI  
CLKINT  
QCLKBUF  
QCLKBUFI  
QCLKINT  
CLKINTI  
CLKBIBUF  
CLKBIBUFI  
QCLKINTI  
QCLKBIBUF  
QCLKBIBUFI  
Figure 2-21 • Routed and Quadrant Clock Buffers in RTSX72SU  
2-44  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Other Architectural Features  
JTAG Interface  
All RTSX-SU devices are IEEE 1149.1 compliant and offer superior diagnostic and testing capabilities by  
providing Boundary Scan Testing (BST) and probing capabilities. The BST function is controlled through  
special JTAG pins (TMS, TDI, TCK, TDO, and TRST). The functionality of the JTAG pins is defined by  
two available modes: dedicated and flexible (Table 2-34). Note that TRST and TMS cannot be employed  
as user I/Os in either mode.  
Table 2-34 • Boundary Scan Pin Functionality  
Dedicated Test Mode  
Flexible Mode  
TCK, TDI, TDO are dedicated BST pins  
No need for pull-up resistor for TMS  
TCK, TDI, TDO are flexible and may be used as user I/Os  
Use a pull-up resistor of 10 kΩ on TMS  
Dedicated Mode  
In dedicated mode, all JTAG pins are reserved for BST; users cannot employ them as regular I/Os. An  
internal pull-up resistor (on the order of 17 kΩ to 22 kΩ3) is automatically enabled on both TMS and TDI  
pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification.  
To enter dedicated mode, users need to reserve the JTAG pins in Microsemi’s Designer software during  
device selection. To reserve the JTAG pins, users can check the Reserve JTAG box in the Device  
Selection Wizard in the Designer software (Figure 2-22).  
Figure 2-22 • Device Selection Wizard  
Flexible Mode  
In flexible mode, TDI, TCK, and TDO may be employed as either user I/Os or as JTAG input pins. The  
internal resistors on the TMS and TDI pins are not present in flexible JTAG mode.  
To enter the flexible mode, users need to clear the Reserve JTAG box in the Device Selection Wizard in  
Designer software. TDI, TCK, and TDO pins may function as user I/Os or BST pins in flexible mode. This  
functionality is controlled by the BST TAP controller. The TAP controller receives two control inputs: TMS  
and TCK. Upon power-up, the TAP controller enters the Test-Logic-Reset state. In this state, TDI, TCK,  
and TDO function as user I/Os. The TDI, TCK, and TDO are transformed from user I/Os into BST pins  
when a rising edge on TCK is detected while TMS is at logic Low. To return to the Test-Logic-Reset state,  
in the absences of TRST assertion, TMS must be held High for at least five TCK cycles. An external, 10  
kΩ pull-up resistor tied to VCCI should be placed on the TMS pin to pull it High by default.  
Table 2-35 describes the different configurations of the BST pins and their functionality in different  
modes.  
Table 2-35 • JTAG Pin Configurations and Functions  
Mode  
Designer Reserve JTAG Selection  
TAP Controller State  
Any  
Dedicated (JTAG)  
Flexible (User I/O)  
Flexible (JTAG)  
Checked  
Unchecked  
Unchecked  
Test-Logic-Reset  
Other  
3. On a given device, the value of the internal pull-up resistor varies within 1 kW between the TMS and TDI pins.  
Revision 8  
2-45  
Detailed Specifications  
TRST Pin  
The TRST pin functions as a dedicated boundary scan reset pin. An internal pull-up resistor is  
permanently enabled on the TRST pin. Additionally, the TRST pin must be grounded for flight  
applications. This will prevent single event upsets (SEU) in the TAP controller from inadvertently placing  
the device into JTAG mode.  
Probing Capabilities  
RTSX-SU devices also provide internal probing capability that is accessed with the JTAG pins.  
Silicon Explorer II Probe Interface  
Silicon Explorer II is an integrated hardware and software solution that, in conjunction with Designer  
software, allows users to examine any of the internal nets of the device while it is operating in a prototype  
or a production system. The user can probe two nodes at a time without changing the placement or  
routing of the design and without using any additional device resources. Highlighted nets in Designer’s  
ChipEditor can be accessed using Silicon Explorer II in order to observe their real time values.  
Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the  
debug cycle. In addition, Silicon Explorer II does not require relayout or additional MUXes to bring signals  
out to external pins, which is necessary when using programmable logic devices from other suppliers. By  
eliminating multiple place-and-route cycles, the integrity of the design is maintained throughout the  
debug process.  
Both members of the RTSX-SU family have two external pads: PRA and PRB. These can be used to  
bring out two probe signals from the device. To disallow probing, the SFUS security fuse in the silicon  
signature has to be programmed. Table 2-36 shows the possible device configuration options and their  
effects on probing.  
During probing, the Silicon Explorer II Diagnostic Hardware is used to control the TDI, TCK, TMS, and  
TDO pins to select the desired nets for debugging. The user simply assigns the selected internal nets in  
the Silicon Explorer II software to the PRA/PRB output pins for observation. Probing functionality is  
activated when the BST pins are in JTAG mode and the TRST pin is driven High. If the TRST pin is held  
Low, the TAP controller will remain in the Test-Logic-Reset state, so no probing can be performed. Silicon  
Explorer II automatically places the device into JTAG mode, but the user must drive the TRST pin High or  
allow the internal pull-up resistor to pull TRST High.  
Silicon Explorer II connects to the host PC using a standard serial port connector. Connections to the  
circuit board are achieved using a nine-pin D-Sub connector (Figure 1-5 on page 1-8). Once the design  
has been placed-and-routed and the RTSX-SU device has been programmed, Silicon Explorer II can be  
connected and the Silicon Explorer software can be launched.  
Silicon Explorer II comes with an additional optional PC-hosted tool that emulates an 18-channel logic  
analyzer. Two channels are used to monitor two internal nodes, and 16 channels are available to probe  
external signals. The software included with the tool provides the user with an intuitive interface that  
allows for easy viewing and editing of signal waveforms.  
Table 2-36 • Device Configuration Options for Probe Capability  
JTAG Mode TRST Security Fuse Programmed  
PRA and PRB1  
User I/O2  
TDI, TCK, and TDO1  
Probing Unavailable  
User I/O2  
Dedicated  
Flexible  
Dedicated  
Flexible  
Low  
Low  
High  
High  
No  
No  
No  
No  
Yes  
User I/O2  
Probe Circuit Outputs  
Probe Circuit Outputs  
Probe Circuit I/O  
Probe Circuit I/O  
Probe Circuit Secured Probe Circuit Secured  
Notes:  
1. Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports during probing. Since  
these pins are active during probing, input signals will not pass through these pins and may cause  
contention.  
2. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. Unused pins are  
automatically tristated by the Designer software.  
2-46  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Security Fuses  
Microsemi antifuse FPGAs, with FuseLock technology, offer the highest level of design security available  
in a programmable logic device. Since antifuse FPGAs are live at power-up, there is no bitstream that  
can be intercepted, and no bitstream or programming data is ever downloaded to the device, thus  
making device cloning virtually impossible. In addition, special security fuses are hidden throughout the  
fabric of the device and may be programmed by the user to thwart attempts to reverse engineer the  
device by attempting to exploit either the programming or probing interfaces. Both invasive and  
noninvasive attacks against an RTSX-SU device that access or bypass these security fuses will destroy  
access to the rest of the device. Refer to the Understanding Actel Antifuse Device Security white paper  
for more information.  
Look for this symbol to ensure your valuable IP is protected with the highest level of security available in  
the industry (Figure 2-23).  
®
FuseLock  
Figure 2-23 • FuseLock Logo  
To ensure maximum security in RTSX-SU devices, it is recommended that the user program the device  
security fuse (SFUS). When programmed, the Silicon Explorer II testing probes are disabled to prevent  
internal probing, and the programming interface is also disabled. All JTAG public instructions are still  
accessible by the user. For more information, refer to the Implementation of Security in Actel Antifuse  
FPGAs application note.  
Programming  
Device programming is supported through the Silicon Sculptor series programmers. These programmers  
are single-site, robust and compact device-programmers for the PC. Multiple Silicon Sculptor  
programmers can be daisy-chained and controlled from a single PC host. The number of programmers  
that can be daisy chained depends on the programmer model. With standalone software for the PC,  
Silicon Sculptor programmers are designed to allow concurrent programming of multiple units from the  
same PC when daisy-chained.  
Silicon Sculptor programmers program devices independently to achieve the fastest programming times  
possible. Each fuse is verified by Silicon Sculptor programmers to ensure correct programming.  
Furthermore, at the end of programming, there are integrity tests that are run to ensure that programming  
was completed properly.  
Not only do they test programmed and nonprogrammed fuses, Silicon Sculptor programmers also  
provide a self-test to extensively test their own hardware.  
Programming an RTSX-SU device using a Silicon Sculptor programmer is similar to programming any  
other antifuse device. The procedure is as follows:  
1. Load the *.AFM file  
2. Select the device to be programmed  
3. Begin programming  
When the design is ready to go to production, Microsemi offers volume programming services either  
through distribution partners or via our In-House Programming Center. For more details on programming  
RTSX-SU devices, refer to the Silicon Sculptor Software v5.0 for Silicon Sculptor II and Silicon Sculptor 3  
Programmer User’s Guide. Find more information on the Microsemi SoC Products Group website:  
http://www.microsemi.com/soc/products/hardware/program_debug/ss/default.aspx#docs.  
Revision 8  
2-47  
3 – Package Pin Assignments  
CQ84  
Pin 1 indicator  
may be in a different  
shape for different  
devices.  
84  
64  
1
63  
21  
22  
43  
42  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/default.aspx.  
Revision 8  
3-1  
Package Pin Assignments  
CQ84  
CQ84  
CQ84  
Pin Number RTSX32SU Function  
Pin Number RTSX32SU Function  
Pin Number RTSX32SU Function  
1
I/O  
I/O  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
GND  
I/O  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
CLKB  
PRA, I/O  
I/O  
2
3
TMS  
I/O  
TDO, I/O  
I/O  
4
I/O  
5
VCCI  
GND  
I/O  
I/O  
I/O  
6
I/O  
GND  
VCCA  
I/O  
7
I/O  
8
I/O  
I/O  
9
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
I/O  
VCCA  
VCCI  
GND  
I/O  
TCK, I/O  
TDI, I/O  
I/O  
TRST  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
I/O  
I/O  
GND  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
HCLK  
I/O  
VCCI  
GND  
I/O  
I/O  
I/O  
VCCA  
CLKA  
3-2  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
CQ208  
1
2
3
4
156  
155  
154  
153  
Pin 1  
Ceramic  
Tie Bar  
208-Pin CQFP  
49  
50  
51  
52  
108  
107  
106  
105  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/default.aspx.  
Revision 8  
3-3  
Package Pin Assignments  
CQ208  
CQ208  
RTSX32SU  
Function  
RTSX72SU  
Function  
RTSX32SU  
Function  
RTSX72SU  
Function  
Pin Number  
Pin Number  
38  
1
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2
39  
3
40  
VCCI  
VCCA  
I/O  
VCCI  
VCCA  
I/O  
4
I/O  
I/O  
41  
5
I/O  
I/O  
42  
6
I/O  
I/O  
43  
I/O  
I/O  
7
I/O  
I/O  
44  
I/O  
I/O  
8
I/O  
I/O  
45  
I/O  
I/O  
9
I/O  
I/O  
46  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
I/O  
I/O  
47  
I/O  
I/O  
TMS  
VCCI  
I/O  
TMS  
VCCI  
I/O  
48  
I/O  
I/O  
49  
I/O  
I/O  
50  
I/O  
I/O  
I/O  
I/O  
51  
I/O  
I/O  
I/O  
I/O  
52  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
53  
I/O  
I/O  
54  
I/O  
I/O  
I/O  
GND  
VCCA  
I/O  
55  
I/O  
I/O  
I/O  
56  
I/O  
I/O  
I/O  
57  
I/O  
I/O  
I/O  
I/O  
58  
I/O  
I/O  
I/O  
I/O  
59  
I/O  
I/O  
I/O  
I/O  
60  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
61  
NC  
I/O  
62  
I/O  
I/O  
GND  
VCCA  
GND  
I/O  
GND  
VCCA  
GND  
I/O  
63  
I/O  
I/O  
64  
I/O  
I/O  
65  
NC  
I/O  
I/O  
66  
I/O  
TRST  
I/O  
TRST  
I/O  
67  
I/O  
I/O  
68  
I/O  
I/O  
I/O  
I/O  
69  
I/O  
I/O  
I/O  
I/O  
70  
I/O  
I/O  
I/O  
I/O  
71  
I/O  
I/O  
I/O  
I/O  
72  
I/O  
I/O  
I/O  
I/O  
73  
I/O  
I/O  
I/O  
I/O  
74  
I/O  
QCLKA, I/O  
3-4  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
CQ208  
CQ208  
RTSX32SU  
Function  
RTSX72SU  
Function  
RTSX32SU  
Function  
RTSX72SU  
Function  
Pin Number  
75  
Pin Number  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
I/O  
PRB, I/O  
GND  
VCCA  
GND  
NC  
I/O  
PRB, I/O  
GND  
VCCA  
GND  
NC  
I/O  
I/O  
I/O  
I/O  
76  
77  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
GND  
VCCA  
I/O  
78  
79  
80  
I/O  
81  
I/O  
I/O  
I/O  
82  
HCLK  
I/O  
HCLK  
VCCI  
QCLKB, I/O  
I/O  
I/O  
I/O  
83  
I/O  
I/O  
84  
I/O  
I/O  
I/O  
85  
I/O  
I/O  
I/O  
86  
I/O  
I/O  
I/O  
I/O  
87  
I/O  
I/O  
I/O  
I/O  
88  
I/O  
I/O  
I/O  
I/O  
89  
I/O  
I/O  
I/O  
I/O  
90  
I/O  
I/O  
I/O  
I/O  
91  
I/O  
I/O  
I/O  
I/O  
92  
I/O  
I/O  
GND  
VCCA  
GND  
NC  
GND  
VCCA  
GND  
I/O  
93  
I/O  
I/O  
94  
I/O  
I/O  
95  
I/O  
I/O  
96  
I/O  
I/O  
I/O  
I/O  
97  
I/O  
I/O  
I/O  
I/O  
98  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
99  
I/O  
I/O  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
VCCI  
Revision 8  
3-5  
Package Pin Assignments  
CQ208  
CQ208  
RTSX32SU  
Function  
RTSX72SU  
Function  
RTSX32SU  
Function  
RTSX72SU  
Function  
Pin Number  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
Pin Number  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
I/O  
I/O  
I/O  
I/O  
PRA, I/O  
I/O  
PRA, I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKC, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKD, I/O  
I/O  
I/O  
CLKA  
CLKB  
NC  
GND  
VCCA  
GND  
CLKA, I/O  
CLKB, I/O  
NC  
GND  
VCCA  
GND  
3-6  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
CQ256  
1
2
3
4
192  
191  
190  
189  
Pin 1  
Ceramic  
Tie Bar  
256-Pin CQFP  
61  
62  
63  
64  
132  
131  
130  
129  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/default.aspx.  
Revision 8  
3-7  
Package Pin Assignments  
CQ256  
CQ256  
RTSX32SU  
Function  
RTSX72SU  
Function  
RTSX32SU  
Function  
RTSX72SU  
Function  
Pin Number  
Pin Number  
38  
1
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2
39  
3
40  
I/O  
4
I/O  
I/O  
41  
I/O  
5
I/O  
I/O  
42  
I/O  
6
I/O  
I/O  
43  
I/O  
7
I/O  
I/O  
44  
I/O  
8
I/O  
I/O  
45  
I/O  
9
I/O  
I/O  
46  
VCCA  
VCCI  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
I/O  
I/O  
47  
TMS  
I/O  
TMS  
I/O  
48  
49  
I/O  
I/O  
I/O  
50  
I/O  
I/O  
I/O  
51  
I/O  
I/O  
I/O  
52  
I/O  
I/O  
I/O  
53  
I/O  
I/O  
VCCI  
I/O  
54  
I/O  
I/O  
55  
I/O  
I/O  
I/O  
56  
GND  
I/O  
I/O  
I/O  
57  
I/O  
I/O  
58  
I/O  
I/O  
I/O  
59  
GND  
I/O  
I/O  
I/O  
60  
I/O  
I/O  
61  
I/O  
I/O  
I/O  
62  
I/O  
I/O  
I/O  
63  
I/O  
I/O  
I/O  
64  
I/O  
VCCI  
GND  
VCCA  
GND  
I/O  
VCCI  
GND  
VCCA  
GND  
I/O  
65  
I/O  
66  
I/O  
67  
I/O  
68  
I/O  
69  
I/O  
I/O  
I/O  
70  
I/O  
TRST  
I/O  
TRST  
I/O  
71  
I/O  
72  
I/O  
I/O  
VCCA  
GND  
73  
VCCI  
I/O  
I/O  
74  
3-8  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
CQ256  
CQ256  
RTSX32SU  
Function  
RTSX72SU  
Function  
RTSX32SU  
Function  
RTSX72SU  
Function  
Pin Number  
75  
Pin Number  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
76  
77  
I/O  
I/O  
I/O  
I/O  
78  
I/O  
I/O  
I/O  
I/O  
79  
I/O  
I/O  
I/O  
I/O  
80  
I/O  
I/O  
I/O  
I/O  
81  
I/O  
I/O  
I/O  
I/O  
82  
I/O  
I/O  
I/O  
I/O  
83  
I/O  
I/O  
I/O  
VCCI  
I/O  
84  
I/O  
I/O  
I/O  
85  
I/O  
I/O  
I/O  
I/O  
86  
I/O  
I/O  
I/O  
I/O  
87  
I/O  
I/O  
I/O  
I/O  
88  
I/O  
I/O  
I/O  
I/O  
89  
I/O  
QCLKA, I/O  
PRB, I/O  
GND  
VCCI  
GND  
VCCA  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
90  
PRB, I/O  
GND  
VCCI  
GND  
VCCA  
I/O  
91  
GND  
I/O  
GND  
I/O  
92  
93  
I/O  
I/O  
94  
I/O  
I/O  
95  
I/O  
I/O  
96  
HCLK  
I/O  
HCLK  
I/O  
I/O  
I/O  
97  
I/O  
I/O  
98  
I/O  
QCLKB, I/O  
I/O  
I/O  
I/O  
99  
I/O  
I/O  
I/O  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
VCCI  
GND  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
Revision 8  
3-9  
Package Pin Assignments  
CQ256  
CQ256  
RTSX32SU  
Function  
RTSX72SU  
Function  
RTSX32SU  
Function  
RTSX72SU  
Function  
Pin Number  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
Pin Number  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
NC  
GND  
VCCI  
I/O  
GND  
NC  
I/O  
I/O  
I/O  
I/O  
GND  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
GND  
I/O  
VCCA  
GND  
GND  
I/O  
I/O  
I/O  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKD, I/O  
CLKA, I/O  
CLKB, I/O  
VCCI  
GND  
I/O  
I/O  
CLKA  
CLKB  
VCCI  
GND  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
3-10  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
CQ256  
RTSX32SU  
Function  
RTSX72SU  
Function  
Pin Number  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
NC  
GND  
PRA, I/O  
I/O  
NC  
GND  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKC, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
Revision 8  
3-11  
Package Pin Assignments  
CC256  
Top View  
A1 Index Corner  
256  
193  
192  
Extenral Wire-Bond Number  
1
64  
129  
65  
128  
Bottom View  
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/default.aspx.  
3-12  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
CC256*  
CC256*  
External Wire-  
Bond Number  
RTSX32SU  
Function  
External Wire-  
Bond Number  
RTSX32SU  
Function  
Pin Number  
A1  
Pin Number  
C3  
1
GND  
TCK, I/O  
I/O  
65  
252  
249  
245  
239  
230  
226  
218  
210  
201  
197  
211  
178  
195  
12  
GND  
I/O  
A2  
256  
255  
251  
243  
238  
232  
228  
227  
221  
216  
209  
203  
200  
2
C4  
A3  
C5  
I/O  
A4  
I/O  
C6  
I/O  
A5  
I/O  
C7  
I/O  
A6  
I/O  
C8  
I/O  
A7  
I/O  
C9  
CLKA  
I/O  
A8  
I/O  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
D1  
A9  
CLKB  
I/O  
I/O  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
I/O  
I/O  
13  
D2  
8
I/O  
242  
22  
D3  
10  
I/O  
B2  
GND  
I/O  
D4  
7
I/O  
B3  
254  
253  
248  
241  
234  
33  
D5  
250  
244  
237  
229  
217  
208  
206  
199  
205  
173  
190  
188  
16  
I/O  
B4  
I/O  
D6  
I/O  
B5  
I/O  
D7  
I/O  
B6  
I/O  
D8  
PRA, I/O  
I/O  
B7  
I/O  
D9  
B8  
VCCA  
I/O  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
I/O  
B9  
222  
220  
212  
207  
202  
198  
32  
I/O  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
196  
6
E2  
15  
I/O  
I/O  
E3  
9
I/O  
C2  
4
TDI,I/O  
E4  
11  
I/O  
Note: *This table was sorted by the pin number.  
Note: *This table was sorted by the pin number.  
Revision 8  
3-13  
Package Pin Assignments  
CC256*  
CC256*  
External Wire-  
Bond Number  
RTSX32SU  
Function  
External Wire-  
Bond Number  
RTSX32SU  
Function  
Pin Number  
E5  
Pin Number  
G7  
5
I/O  
I/O  
43  
54  
GND  
GND  
GND  
GND  
VCCI  
I/O  
E6  
240  
233  
231  
223  
219  
213  
167  
183  
189  
187  
186  
17  
G8  
E7  
I/O  
G9  
67  
E8  
I/O  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
H1  
77  
E9  
I/O  
87  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
F1  
I/O  
169  
180  
176  
179  
175  
29  
I/O  
GND  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
H2  
31  
I/O  
I/O  
H3  
160  
35  
VCCA  
TRST  
I/O  
F2  
18  
I/O  
H4  
F3  
20  
I/O  
H5  
37  
F4  
14  
TMS  
I/O  
H6  
108  
86  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
F5  
19  
H7  
F6  
28  
I/O  
H8  
96  
F7  
3
VCCI  
VCCI  
VCCI  
VCCI  
I/O  
H9  
107  
118  
128  
165  
170  
168  
166  
174  
30  
F8  
23  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
F9  
44  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
55  
157  
97  
I/O  
VCCA  
I/O  
I/O  
177  
185  
184  
181  
24  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J2  
38  
I/O  
I/O  
J3  
40  
I/O  
G2  
25  
I/O  
J4  
41  
I/O  
G3  
27  
I/O  
J5  
39  
I/O  
G4  
26  
I/O  
J6  
139  
127  
140  
VCCI  
GND  
GND  
G5  
21  
I/O  
J7  
G6  
66  
VCCI  
J8  
Note: *This table was sorted by the pin number.  
Note: *This table was sorted by the pin number.  
3-14  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
CC256*  
CC256*  
External Wire-  
Bond Number  
RTSX32SU  
Function  
External Wire-  
Bond Number  
RTSX32SU  
Function  
Pin Number  
J9  
Pin Number  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
151  
161  
150  
159  
163  
164  
162  
158  
34  
GND  
GND  
VCCI  
I/O  
103  
149  
146  
148  
145  
147  
42  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
K1  
I/O  
I/O  
I/O  
I/O  
M2  
53  
I/O  
M3  
61  
K2  
45  
I/O  
M4  
60  
K3  
47  
I/O  
M5  
72  
K4  
50  
VCCA  
I/O  
M6  
81  
K5  
48  
M7  
89  
K6  
171  
172  
182  
192  
204  
191  
153  
155  
156  
152  
154  
36  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
M8  
95  
K7  
M9  
101  
105  
114  
111  
141  
142  
137  
144  
49  
K8  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
N1  
K9  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
I/O  
I/O  
I/O  
I/O  
N2  
57  
I/O  
N3  
63  
L2  
46  
I/O  
N4  
79  
L3  
51  
I/O  
N5  
70  
L4  
58  
I/O  
N6  
76  
L5  
52  
I/O  
N7  
83  
L6  
91  
I/O  
N8  
99  
L7  
194  
214  
235  
246  
VCCI  
VCCI  
VCCI  
VCCI  
N9  
109  
117  
112  
124  
L8  
N10  
N11  
N12  
L9  
L10  
Note: *This table was sorted by the pin number.  
Note: *This table was sorted by the pin number.  
Revision 8  
3-15  
Package Pin Assignments  
CC256*  
CC256*  
External Wire-  
Bond Number  
RTSX32SU  
Function  
External Wire-  
Bond Number  
RTSX32SU  
Function  
Pin Number  
N13  
N14  
N15  
N16  
P1  
Pin Number  
R15  
R16  
T1  
121  
133  
135  
136  
59  
I/O  
I/O  
225  
193  
236  
69  
GND  
GND  
GND  
I/O  
I/O  
I/O  
T2  
I/O  
T3  
71  
I/O  
P2  
138  
56  
GND  
I/O  
T4  
75  
I/O  
P3  
T5  
80  
I/O  
P4  
74  
I/O  
T6  
84  
I/O  
P5  
64  
I/O  
T7  
88  
I/O  
P6  
82  
I/O  
T8  
93  
I/O  
P7  
90  
I/O  
T9  
224  
102  
110  
116  
122  
125  
129  
247  
VCCA  
I/O  
P8  
94  
I/O  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
P9  
104  
113  
119  
123  
143  
131  
132  
134  
62  
I/O  
I/O  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
TDO,I/O  
GND  
I/O  
Note: *This table was sorted by the pin number.  
I/O  
I/O  
R2  
215  
68  
GND  
I/O  
R3  
R4  
73  
I/O  
R5  
78  
I/O  
R6  
85  
I/O  
R7  
92  
I/O  
R8  
98  
I/O  
R9  
100  
106  
115  
120  
126  
130  
HCLK  
I/O  
R10  
R11  
R12  
R13  
R14  
I/O  
I/O  
I/O  
I/O  
Note: *This table was sorted by the pin number.  
3-16  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
CC256*  
CC256*  
External Wire-  
Bond Number  
RTSX32SU  
Function  
External Wire-  
Bond Number  
RTSX32SU  
Function  
Pin Number  
A1  
Pin Number  
H4  
L1  
1
GND  
GND  
VCCI  
TDI,I/O  
I/O  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
TRST  
I/O  
A15  
F7  
2
3
H5  
J2  
I/O  
C2  
E5  
4
I/O  
5
J5  
I/O  
C1  
D4  
D2  
E3  
6
I/O  
J3  
I/O  
7
I/O  
J4  
I/O  
8
I/O  
M1  
G7  
F9  
I/O  
9
I/O  
GND  
VCCI  
I/O  
D3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
I/O  
E4  
I/O  
K2  
D1  
I/O  
L2  
I/O  
A16  
F4  
GND  
TMS  
I/O  
K3  
I/O  
K5  
I/O  
E2  
N1  
K4  
I/O  
E1  
I/O  
VCCA  
I/O  
F1  
I/O  
L3  
F2  
I/O  
L5  
I/O  
F5  
I/O  
M2  
G8  
F10  
P3  
I/O  
F3  
I/O  
GND  
VCCI  
I/O  
G5  
B2  
I/O  
GND  
VCCI  
I/O  
F8  
N2  
L4  
I/O  
G1  
G2  
G4  
G3  
F6  
I/O  
I/O  
P1  
I/O  
I/O  
M4  
M3  
R1  
N3  
P5  
I/O  
I/O  
I/O  
I/O  
I/O  
H1  
I/O  
I/O  
J1  
I/O  
I/O  
H2  
I/O  
C3  
G6  
G9  
R3  
GND  
VCCI  
GND  
I/O  
B15  
B8  
GND  
VCCA  
I/O  
K1  
Note: *This table was sorted by the wire-bond number.  
Note: *This table was sorted by the wire-bond number.  
Revision 8  
3-17  
Package Pin Assignments  
CC256*  
CC256*  
External Wire-  
Bond Number  
RTSX32SU  
Function  
External Wire-  
Bond Number  
RTSX32SU  
Function  
Pin Number  
T2  
Pin Number  
L11  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
I/O  
I/O  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
I/O  
I/O  
N5  
P9  
T3  
I/O  
M10  
R10  
H9  
I/O  
M5  
R4  
I/O  
I/O  
I/O  
GND  
VCCI  
I/O  
P4  
I/O  
H6  
T4  
I/O  
N9  
N6  
I/O  
T11  
I/O  
G10  
R5  
GND  
I/O  
M12  
N11  
P10  
M11  
R11  
T12  
N10  
H10  
P11  
R12  
N13  
T13  
P12  
N12  
T14  
R13  
J7  
I/O  
I/O  
N4  
I/O  
I/O  
T5  
I/O  
I/O  
M6  
P6  
I/O  
I/O  
I/O  
I/O  
N7  
I/O  
I/O  
T6  
I/O  
GND  
I/O  
R6  
I/O  
H7  
GND  
VCCI  
I/O  
I/O  
G11  
T7  
I/O  
I/O  
M7  
P7  
I/O  
I/O  
I/O  
I/O  
L6  
I/O  
I/O  
R7  
I/O  
I/O  
T8  
I/O  
GND  
VCCI  
TDO,I/O  
I/O  
P8  
I/O  
H11  
T15  
R14  
P14  
P15  
N14  
P16  
N15  
N16  
M8  
H8  
PRB, I/O  
GND  
VCCA  
I/O  
F12  
R8  
I/O  
I/O  
N8  
I/O  
I/O  
R9  
HCLK  
I/O  
I/O  
M9  
T10  
I/O  
I/O  
I/O  
Note: *This table was sorted by the wire-bond number.  
Note: *This table was sorted by the wire-bond number.  
3-18  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
CC256*  
CC256*  
External Wire-  
Bond Number  
RTSX32SU  
Function  
External Wire-  
Bond Number  
RTSX32SU  
Function  
Pin Number  
M15  
P2  
Pin Number  
K6  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
I/O  
GND  
VCCI  
GND  
I/O  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
VCCI  
GND  
I/O  
K7  
J6  
D14  
H16  
G16  
G14  
F13  
C15  
G15  
G13  
F16  
K8  
J8  
I/O  
M13  
M14  
P13  
M16  
L15  
L13  
L16  
L14  
L12  
J11  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
E13  
F15  
F14  
E16  
E15  
D16  
E14  
D15  
K11  
K9  
VCCI  
GND  
I/O  
I/O  
J9  
I/O  
K15  
K12  
K16  
K13  
K14  
F11  
J16  
J12  
H3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
GND  
GND  
VCCI  
I/O  
I/O  
I/O  
R16  
L7  
VCCA  
GND  
I/O  
J10  
J15  
J13  
J14  
H12  
H15  
E12  
H14  
G12  
H13  
C16  
B16  
C13  
B14  
D12  
A14  
C12  
B13  
A13  
K10  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
Note: *This table was sorted by the wire-bond number.  
Note: *This table was sorted by the wire-bond number.  
Revision 8  
3-19  
Package Pin Assignments  
CC256*  
CC256*  
External Wire-  
Bond Number  
RTSX32SU  
Function  
External Wire-  
Bond Number  
RTSX32SU  
Function  
Pin Number  
D13  
D11  
B12  
D10  
A12  
C11  
C14  
B11  
E11  
L8  
Pin Number  
C7  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
I/O  
I/O  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
I/O  
I/O  
E6  
I/O  
B6  
I/O  
I/O  
B1  
I/O  
I/O  
A5  
I/O  
I/O  
D6  
I/O  
I/O  
C6  
I/O  
I/O  
L10  
T16  
B5  
VCCI  
GND  
I/O  
I/O  
VCCI  
GND  
I/O  
R2  
C5  
I/O  
A11  
D9  
D5  
I/O  
I/O  
A4  
I/O  
C10  
E10  
B10  
A10  
B9  
I/O  
C4  
I/O  
I/O  
B4  
I/O  
I/O  
B3  
I/O  
I/O  
A3  
I/O  
I/O  
A2  
TCK, I/O  
E9  
I/O  
Note: *This table was sorted by the wire-bond number.  
T9  
VCCA  
GND  
CLKA  
CLKB  
I/O  
R15  
C9  
A9  
A8  
D8  
PRA, I/O  
I/O  
C8  
E8  
I/O  
A7  
I/O  
E7  
I/O  
B7  
I/O  
L9  
VCCI  
GND  
I/O  
T1  
D7  
A6  
I/O  
Note: *This table was sorted by the wire-bond number.  
3-20  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
CG624  
25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/default.aspx.  
Revision 8  
3-21  
Package Pin Assignments  
CG624  
CG624  
RTSX72SU  
CG624  
RTSX72SU  
RTSX72SU  
Pin Number  
A2  
Function  
Pin Number  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
C1  
Function  
Pin Number  
C22  
C23  
C24  
C25  
D1  
Function  
NC  
I/O  
I/O  
A3  
NC  
I/O  
GND  
VCCI  
NC  
A4  
NC  
CLKB, I/O  
I/O  
A5  
I/O  
A6  
I/O  
I/O  
GND  
GND  
TDI, I/O  
GND  
I/O  
A7  
I/O  
I/O  
D2  
A8  
I/O  
I/O  
D3  
A9  
I/O  
I/O  
D4  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
B1  
I/O  
I/O  
D5  
I/O  
I/O  
D6  
I/O  
I/O  
GND  
VCCI  
GND  
NC  
D7  
I/O  
GND  
I/O  
D8  
I/O  
D9  
I/O  
I/O  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
E1  
I/O  
I/O  
NC  
I/O  
I/O  
C2  
VCCI  
GND  
I/O  
I/O  
I/O  
C3  
I/O  
I/O  
C4  
QCLKD, I/O  
I/O  
I/O  
C5  
I/O  
I/O  
C6  
I/O  
I/O  
GND  
NC  
C7  
I/O  
I/O  
C8  
I/O  
I/O  
NC  
C9  
I/O  
I/O  
NC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
I/O  
I/O  
NC  
QCLKC, I/O  
I/O  
I/O  
B2  
GND  
GND  
VCCI  
GND  
I/O  
VCCI  
GND  
GND  
GND  
I/O  
B3  
PRA, I/O  
CLKA, I/O  
I/O  
B4  
B5  
B6  
I/O  
B7  
I/O  
I/O  
E2  
I/O  
B8  
VCCI  
GND  
I/O  
I/O  
E3  
I/O  
B9  
I/O  
E4  
I/O  
B10  
B11  
I/O  
E5  
TCK, I/O  
I/O  
I/O  
I/O  
E6  
3-22  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
CG624  
RTSX72SU  
CG624  
RTSX72SU  
CG624  
RTSX72SU  
Pin Number  
E7  
Function  
Pin Number  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
G1  
Function  
Pin Number  
H2  
Function  
I/O  
I/O  
I/O  
E8  
I/O  
I/O  
H3  
I/O  
E9  
I/O  
I/O  
H4  
I/O  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
F1  
I/O  
I/O  
H5  
I/O  
I/O  
I/O  
H6  
I/O  
VCCA  
GND  
I/O  
I/O  
H7  
I/O  
I/O  
H8  
VCCI  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VCCI  
I/O  
I/O  
H9  
I/O  
I/O  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
J1  
I/O  
I/O  
I/O  
G2  
I/O  
I/O  
G3  
TMS  
I/O  
I/O  
G4  
I/O  
G5  
I/O  
I/O  
G6  
I/O  
I/O  
G7  
VCCI  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GND  
VCCI  
I/O  
I/O  
G8  
I/O  
G9  
I/O  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
G25  
H1  
I/O  
I/O  
I/O  
F2  
VCCI  
I/O  
I/O  
F3  
I/O  
F4  
I/O  
GND  
I/O  
F5  
I/O  
F6  
NC  
NC  
I/O  
I/O  
F7  
J2  
I/O  
F8  
J3  
I/O  
F9  
NC  
NC  
NC  
NC  
I/O  
J4  
I/O  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
J5  
I/O  
I/O  
J6  
I/O  
I/O  
J7  
NC  
NC  
VCCI  
NC  
NC  
I/O  
J8  
I/O  
I/O  
J9  
NC  
GND  
I/O  
J10  
J11  
I/O  
Revision 8  
3-23  
Package Pin Assignments  
CG624  
CG624  
RTSX72SU  
CG624  
RTSX72SU  
RTSX72SU  
Pin Number  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
K1  
Function  
Pin Number  
K22  
K23  
K24  
K25  
L1  
Function  
Pin Number  
M7  
Function  
NC  
I/O  
NC  
NC  
I/O  
M8  
NC  
NC  
I/O  
M9  
NC  
NC  
I/O  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
M25  
N1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
NC  
I/O  
VCCI  
NC  
L2  
I/O  
L3  
I/O  
NC  
L4  
I/O  
I/O  
L5  
I/O  
VCCA  
I/O  
L6  
I/O  
L7  
NC  
I/O  
L8  
NC  
NC  
I/O  
L9  
NC  
NC  
I/O  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L25  
M1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
I/O  
I/O  
GND  
I/O  
K2  
GND  
I/O  
K3  
I/O  
K4  
I/O  
GND  
I/O  
K5  
I/O  
K6  
GND  
NC  
I/O  
K7  
N2  
I/O  
K8  
NC  
NC  
N3  
I/O  
K9  
NC  
NC  
N4  
I/O  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
I/O  
N5  
VCCA  
I/O  
I/O  
N6  
I/O  
N7  
VCCA  
NC  
I/O  
N8  
I/O  
N9  
NC  
I/O  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
M2  
I/O  
NC  
M3  
I/O  
NC  
M4  
I/O  
I/O  
M5  
GND  
I/O  
I/O  
M6  
3-24  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
CG624  
RTSX72SU  
CG624  
RTSX72SU  
CG624  
RTSX72SU  
Pin Number  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
N25  
P1  
Function  
Pin Number  
R2  
Function  
Pin Number  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
T25  
U1  
Function  
GND  
GND  
GND  
GND  
GND  
NC  
NC  
I/O  
NC  
R3  
I/O  
VCCA  
I/O  
R4  
TRST  
I/O  
R5  
VCCA  
I/O  
R6  
GND  
NC  
R7  
I/O  
R8  
NC  
NC  
VCCI  
I/O  
R9  
NC  
NC  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
T1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
GND  
I/O  
I/O  
P2  
I/O  
I/O  
P3  
I/O  
I/O  
P4  
I/O  
I/O  
P5  
I/O  
I/O  
P6  
I/O  
I/O  
P7  
NC  
U2  
I/O  
P8  
NC  
NC  
U3  
I/O  
P9  
NC  
NC  
U4  
I/O  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
R1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
I/O  
U5  
I/O  
I/O  
U6  
I/O  
I/O  
U7  
I/O  
I/O  
U8  
NC  
I/O  
U9  
VCCI  
NC  
I/O  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
I/O  
NC  
T2  
I/O  
NC  
NC  
T3  
I/O  
NC  
NC  
T4  
I/O  
NC  
I/O  
T5  
I/O  
NC  
GND  
I/O  
T6  
I/O  
NC  
T7  
I/O  
VCCI  
NC  
I/O  
T8  
NC  
I/O  
T9  
NC  
NC  
I/O  
T10  
T11  
GND  
GND  
I/O  
I/O  
I/O  
Revision 8  
3-25  
Package Pin Assignments  
CG624  
CG624  
RTSX72SU  
CG624  
RTSX72SU  
RTSX72SU  
Pin Number  
U22  
U23  
U24  
U25  
V1  
Function  
Pin Number  
W7  
Function  
VCCI  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
I/O  
Pin Number  
Y17  
Function  
I/O  
I/O  
I/O  
W8  
Y18  
I/O  
I/O  
W9  
Y19  
I/O  
I/O  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
W23  
W24  
W25  
Y1  
Y20  
I/O  
I/O  
Y21  
I/O  
V2  
I/O  
Y22  
I/O  
V3  
I/O  
Y23  
I/O  
V4  
VCCA  
I/O  
Y24  
GND  
I/O  
V5  
Y25  
V6  
I/O  
AA1  
GND  
GND  
I/O  
V7  
GND  
VCCI  
NC  
AA2  
V8  
AA3  
V9  
VCCI  
I/O  
AA4  
I/O  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
V23  
V24  
V25  
W1  
NC  
AA5  
GND  
I/O  
NC  
I/O  
AA6  
NC  
I/O  
AA7  
I/O  
NC  
I/O  
AA8  
I/O  
NC  
I/O  
AA9  
I/O  
NC  
I/O  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AB1  
I/O  
NC  
I/O  
I/O  
NC  
Y2  
I/O  
I/O  
VCCI  
I/O  
Y3  
I/O  
VCCA  
GND  
I/O  
Y4  
I/O  
I/O  
Y5  
I/O  
I/O  
Y6  
I/O  
I/O  
VCCA  
I/O  
Y7  
I/O  
I/O  
Y8  
I/O  
I/O  
I/O  
Y9  
I/O  
I/O  
I/O  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
I/O  
I/O  
I/O  
NC  
GND  
I/O  
GND  
I/O  
W2  
VCCI  
I/O  
W3  
I/O  
W4  
I/O  
NC  
GND  
I/O  
I/O  
W5  
I/O  
GND  
NC  
W6  
I/O  
3-26  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
CG624  
RTSX72SU  
CG624  
RTSX72SU  
CG624  
RTSX72SU  
Pin Number  
AB2  
Function  
VCCI  
I/O  
Pin Number  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AD1  
Function  
PRB, I/O  
I/O  
Pin Number  
AD22  
AD23  
AD24  
AD25  
AE1  
Function  
GND  
VCCI  
GND  
NC  
AB3  
AB4  
GND  
I/O  
HCLK  
I/O  
AB5  
AB6  
I/O  
I/O  
NC  
AB7  
I/O  
I/O  
AE2  
NC  
AB8  
I/O  
I/O  
AE3  
NC  
AB9  
I/O  
I/O  
AE4  
GND  
I/O  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AC1  
I/O  
I/O  
AE5  
I/O  
I/O  
AE6  
I/O  
QCLKA, I/O  
I/O  
I/O  
AE7  
I/O  
GND  
I/O  
AE8  
I/O  
I/O  
AE9  
I/O  
I/O  
NC  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
I/O  
I/O  
NC  
I/O  
I/O  
AD2  
GND  
VCCI  
GND  
I/O  
I/O  
I/O  
AD3  
I/O  
I/O  
AD4  
QCLKB, I/O  
I/O  
I/O  
AD5  
TDO, I/O  
VCCI  
I/O  
AD6  
I/O  
I/O  
AD7  
I/O  
I/O  
AD8  
I/O  
I/O  
VCCI  
NC  
AD9  
I/O  
I/O  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
VCCI  
I/O  
I/O  
NC  
I/O  
AC2  
I/O  
I/O  
GND  
NC  
AC3  
GND  
I/O  
I/O  
AC4  
I/O  
NC  
AC5  
I/O  
I/O  
NC  
AC6  
I/O  
GND  
I/O  
AC7  
I/O  
AC8  
I/O  
I/O  
AC9  
I/O  
I/O  
AC10  
AC11  
I/O  
I/O  
I/O  
I/O  
Revision 8  
3-27  
4 – Datasheet Information  
List of Changes  
The following table lists critical changes that were made in each version of the document.  
Revision  
Changes  
Page  
Revision 8  
(January 2012)  
The "Designed for Space" section bullet regarding single event latch-up immunity was  
revised to "Single Event Latch-Up (SEL) Immunity to LETTH > 104 MeVcm2/mg" (SAR  
33213).  
i
The "Features" section and "Security Fuses" section were revised to clarify that i, 2-47  
although no existing security measures can give an absolute guarantee, Microsemi  
FPGAs implement the best security available in the industry (SAR 34672).  
Package names used throughout the document the were revised to match standards i, 3-1  
given in Package Mechanical Drawings (SAR 34783).  
Notes stating that All CCGA PROTOs will be offered in Six Sigma Columns were  
removed from the "Ordering Information" section and "Temperature Grade and  
Application Offering" section (SAR 36171).  
ii, iii  
vi  
A note was added to the "EV Flow (Class V Flow Equivalent Processing)" table  
regarding an enhancement to the Au ball bonding process control (SAR 36172).  
References to Silicon Sculptor II were changed to Silicon Sculptor series programmers 1-6,  
(SAR 36473).  
2-47  
The following note was added to Table 2-3 • Absolute Maximum Conditions1 (SAR  
32303):  
2-2  
For AC signals, the 5 V non-PCI input signals may overshoot during transitions to VCCI  
+ 1.2 V for no longer than 11 ns. The 3.3V non-PCI input signals may overshoot during  
transitions to 6.0 V for no longer than 11 ns. Current during the transition must not  
exceed 95 mA. Refer to PCI specifications for the PCI input overshoot limit.  
EQ 2 was changed from PDC = (ICC) * VCCA + (ICC) * VCCI to PDC = ICCA * VCCA +  
ICCI * VCCI (SAR 35679).  
The "Hot Swapping" section was revised. Table 2-3 • Time at which I/Os Become Active 2-13,  
by Ramp Rate was deleted. The information from this table is in the Microsemi SX-A  
and RTSX-SU Devices in Hot-Swap and Cold-Sparing Applications application note  
(SAR 35624).  
2-1  
The equation for slew rate, which first appears in the note for Table 2-13 • RTSX32SU 2-18  
5 V TTL and 3.3 V LVTTL I/O Module, was revised by adding "±." It is negative for falling  
edges and positive for rising edges. The equation was revised in each place it occurs in  
the datasheet (SAR 30955).  
Revision 7  
(October 2010)  
The range for VCCA DC core supply voltage in Table 2-3 • Absolute Maximum  
Conditions1 was erroneously changed in Revision 6 of the datasheet from "–0.3 to 3.0"  
to "0.3 to 3.0." It has now been changed back to the correct value of "–0.3 to 3.0."  
2-2  
Revision 6  
(May 2010)  
The versioning system for datasheets has been changed. Datasheets are assigned a  
revision number that increments each time the datasheet is revised. The "RTSX-SU  
Device Status" table indicates the status for each device in the family.  
N/A  
The "Processing Flows" section and "Prototyping Options" section are new.  
i
The "Ordering Information" table was updated to add the EV and PROTO application  
(temperature range) ordering codes.  
ii  
Revision 8  
4-1  
Datasheet Information  
Revision  
Changes  
Page  
Revision 6  
(continued)  
A note was added to the "Ordering Information" table and "Temperature Grade and  
Application Offering" table to explain that PROTO refers to RTSX-SU prototype units.  
All CCGA PROTOs will be offered in Six Sigma Columns.  
ii  
The note for the "Ceramic Device Resources" table regarding availability of the 256-pin  
CCLG package for military temperature only was deleted.  
iii  
iii  
EV and PROTO were added to the "Temperature Grade and Application Offering" table.  
The B and E codes were also added for the CG256 package for RTSX32SU.  
The "Speed Grade and Temperature Grade Matrix" table was replaced.  
iii  
A note regarding performing CCGA tests at LGA level was added to Table 2 • MIL-STD-  
883 Class B Product Flow* for RTSX32SU and RTSX72SU and Table 3 • Extended  
Flow for RTSX32SU and RTSX72SU1,2.  
iv, v  
Table 4 • EV Flow (Class V Equivalent Flow Processing) for RTSX32SU and  
RTSX72SU1, 2, 3 is new.  
vi  
The "Low-Cost Prototyping Solution" section was expanded to include prototyping with  
RTSX-SU PROTO units.  
1-7  
2-1  
2-2  
2-2  
A note was added to Table 2-2 • Characteristics for All I/O Configurations, giving  
information about power-up resistor pull.  
Table 2-3 • Absolute Maximum Conditions1 was revised. The TJ and VO parameters  
and some notes were added.  
Temperature range and the ICC standby current parameter were added to Table 2-4 •  
Recommended Operating Conditions (SAR 62430).  
Table 2-5 • RTSX-SU Standby Current is new.  
2-3  
2-4  
The "AC Power Dissipation" section was revised, including the addition of two formulas  
for power dissipation for the RTSX72SU device. Additional parameters were added to  
Table 2-6 • Fixed Power Parameters. The definition of CL given in relation to EQ 6 was  
changed to "output load capacitance in pF" (SAR 69980).  
A note was added to the "User I/O" section to exercise care when using JTAG to tristate 2-13  
all I/Os (SAR 79515).  
The "Using the Weak Pull-Up and Pull-Down Circuits" section is new (SAR 79515).  
2-14  
The minimum value for VIL (– 0.5 V) was added to Table 2-12 • 5 V TTL and 3.3 V 2-16,  
LVTTL Electrical Specifications and Table 2-15 • 5 V CMOS Electrical Specifications 2-19  
(SAR 41193). The second table note, regarding overshoot for AC signals, was  
deleted (SAR 68437).  
Values in the following tables were revised (SAR 68197). The tENHZS parameter was 2-17,  
added where applicable.  
2-18,  
2-20,  
2-21  
Table 2-13 • RTSX32SU 5 V TTL and 3.3 V LVTTL I/O Module  
Table 2-14 • RTSX72SU 5 V TTL and 3.3 V LVTTL I/O Module,  
Table 2-16 • RTSX32SU 5 V CMOS I/O Module  
Table 2-17 • RTSX72SU 5 V CMOS I/O Module  
A note regarding undershoot for AC signals was added to Table 2-18 • 5 V PCI DC 2-22  
Specifications (SAR 68437).  
Values in the following tables were revised (SAR 68197).  
Table 2-20 • RTSX32SU 5 V PCI I/O Module  
Table 2-21 • RTSX72SU 5 V PCI I/O Module  
2-24  
4-2  
Revision 8  
RTSX-SU Radiation-Tolerant FPGAs (UMC)  
Revision  
Changes  
Page  
Revision 6  
(continued)  
Notes regarding undershoot and overshoot for AC signals were added to Table 2-22 • 2-26  
3.3 V PCI DC Specifications (SAR 68437).  
Values in the following tables were revised (SAR 68197).  
Table 2-24 • RTSX32SU 3.3 V PCI I/O Module  
Table 2-25 • RTSX72SU 3.3 V PCI I/O Module  
2-28  
The note in the "CQ208" table stating that pin 65 is a no connect on commercial  
A54SX32S PQ208 was deleted (SAR 52216).  
3-4  
v2.2  
(March 2006)  
The notes in Table 2-12 • 5 V TTL and 3.3 V LVTTL Electrical Specifications were 2-16  
updated.  
The notes in Table 2-15 • 5 V CMOS Electrical Specifications were updated.  
Figure 1-5 • Probe Setup was updated and a note was added.  
2-19  
1-8  
v2.1  
Table 2-12 • 5 V TTL and 3.3 V LVTTL Electrical Specifications was updated to include 2-16  
Notes 2 and 3.  
Table 2-15 • 5 V CMOS Electrical Specifications was updated to include Notes 1 and 2.  
Footnote 1 and Footnote 2 in the "Pin Descriptions" section were updated.  
2-19  
2-11,  
2-12  
v2.0  
The "RTSX-SU Product Profile" table was updated to include the CQ84.  
The "Ceramic Device Resources" table was updated to include CQ84.  
The "Temperature Grade and Application Offering" table was updated to include CQ84.  
i
iii  
iii  
Table 2-3 • Time at which I/Os Become Active by Ramp Rate was updated. The  
2-1  
0.25V/ms was changed to 0.25V/μs and 0.025V/ms was changed to 0.025V/µs.  
Table 2-7 • Package Thermal Characteristics was updated to include the CQ84.  
2-8  
Table 2-13 • RTSX32SU 5 V TTL and 3.3 V LVTTL I/O Module through Table 2-17 • 2-17 to  
RTSX72SU 5 V CMOS I/O Module, Table 2-20 • RTSX32SU 5 V PCI I/O Module, 2-24,  
Table 2-21 • RTSX72SU 5 V PCI I/O Module, Table 2-24 • RTSX32SU 3.3 V PCI I/O 2-28  
Module, and Table 2-25 • RTSX72SU 3.3 V PCI I/O Module were updated to include  
Note 2.  
The headings in Table 2-34 • Boundary Scan Pin Functionality were updated to  
Dedicated Test Mode and Flexible Mode.  
2-8  
v2.0  
The "CQ84" section, which includes the package figure and the pin table, is new.  
3-1  
(continued)  
Advance v0.3  
Advance v0.2  
In Table 2-15 • 5 V CMOS Electrical Specifications, the IOH = –20μA and IOL = ±20 µA.  
2-19  
2-9  
Table 2-8 • Temperature and Voltage Derating Factors was updated.  
The following tables were updated:  
2-17  
through  
2-42  
Table 2-13 • RTSX32SU 5 V TTL and 3.3 V LVTTL I/O Module  
Table 2-14 • RTSX72SU 5 V TTL and 3.3 V LVTTL I/O Module  
Table 2-16 • RTSX32SU 5 V CMOS I/O Module,  
Table 2-17 • RTSX72SU 5 V CMOS I/O Module  
Table 2-20 • RTSX32SU 5 V PCI I/O Module  
Table 2-21 • RTSX72SU 5 V PCI I/O Module  
Table 2-24 • RTSX32SU 3.3 V PCI I/O Module  
Table 2-25 • RTSX72SU 3.3 V PCI I/O Module  
Table 2-27 • R-Cell through Table 2-33 • RTSX72SU at VCCI = 4.5 V  
Revision 8  
4-3  
Datasheet Information  
Datasheet Categories  
In order to provide the latest information to designers, some datasheets are published before data has  
been fully characterized from silicon devices. The data provided for a given device, as highlighted in the  
"RTSX-SU Device Status" table, is designated as "Product Brief," "Advance," "Production," or "Datasheet  
Supplement." The definitions of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advanced or production) containing general  
product information. This brief gives an overview of specific device and family information.  
Advance  
This datasheet version contains initial estimated information based on simulation, other products,  
devices, or speed grades. This information can be used as estimates, but not for production.  
Unmarked (production)  
This datasheet version contains information that is considered to be final.  
Datasheet Supplement  
The datasheet supplement gives specific device information for a derivative family that differs from the  
general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more  
detailed information and for specifications that do not differ between the two families.  
Export Administration Regulations (EAR) or International  
Traffic in Arms Regulations (ITAR)  
The product described in this datasheet could be subject to either the Export Administration Regulations  
(EAR) or in some cases the International Traffic in Arms Regulations (ITAR). They could require an  
approved export license prior to export from the United States. An export includes release of product or  
disclosure of technology to a foreign national inside or outside the United States.  
4-4  
Revision 8  
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor  
solutions for: aerospace, defense and security; enterprise and communications; and industrial  
and alternative energy markets. Products include high-performance, high-reliability analog and  
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and  
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at  
www.microsemi.com.  
Microsemi Corporate Headquarters  
One Enterprise Drive, Aliso Viejo CA 92656  
Within the USA: (800) 713-4113  
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of  
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.  
Outside the USA: (949) 221-7100  
Fax: (949) 756-0308 · www.microsemi.com  
51700053-8/1.12  

相关型号:

RTSX32SU-CQ256B

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX32SU-CQ256E

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX32SU-CQ256M

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-1CC256B

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-1CC256E

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-1CC256M

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-1CG256B

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-1CG256E

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-1CG256M

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-1CQ256B

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL

RTSX72SU-1CQ256E

RTSX-SU RadTolerant FPGAs (UMC)
ACTEL