SG3561AM-TR [MICROSEMI]

Analog Circuit;
SG3561AM-TR
型号: SG3561AM-TR
厂家: Microsemi    Microsemi
描述:

Analog Circuit

光电二极管
文件: 总19页 (文件大小:830K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
N
OT RECOMMENDED FOR NEW DESIGN  
SG3561A  
CONTROLLER  
P
OWER  
FACTOR  
D
A T A S H E E T  
T
H E  
I
N F I N I T E  
P
O W E R O F  
I N N O V A T I O N  
KEY FEATURES  
DESCRIPTION  
This monolithic integrated circuit provides all the pole output stage for directing driving of the  
necessary functions for designing an active power power MOSFET. In addition to the above, an  
„
„
MICRO-POWER START-UP  
MODE (250µA typ.)  
LOW OPERATING CURRENT  
CONSUMPTION  
factor correction circuit in conjunction with off-  
line power converters. Although the IC is  
internal logic circuit detects the zero crossing of  
the inductor current and maintains discontinuous  
„
„
„
INTERNAL 1.5% REFERENCE  
TOTEM POLE OUTPUT STAGE  
AUTOMATIC CURRENT  
LIMITING OF BOOST STAGE  
DISCNUOUS MODE OF  
OPITH NO  
CAPS  
NCOENSATION  
RED  
AVALE I& 14-PIN  
PLASTIAND 8-PIN SOIC  
PACKAGE  
optimized for electronic ballast applications, it can current mode of operation such that it allows no  
also be used in switched mode AC-DC power current gaps to appear. This type of operation  
converters. Included in the 8-pin DIP package are; provides a higher P.F. correction, as well as  
an under voltage lockout with a micropower start- lower harmonic distortion over the fixed  
„
up with a 2V hysteresis, an internal temperature  
compensated bandgap reference, a unity gain  
stable error amplifier, one quadrant multiplier  
stage, a current sense comparator and a totem  
frequency discontinuous current mode. The  
SG3561A is characterized for operation over the  
ambient temperature range of -25°C to +85°C.  
„
„
IMPORTANT: For the most current data, consult MICROSEMI’s website: http://www.microsemi.com  
„
E 1562/1563 FOR NEW  
NS  
PRODUCT HIGHGHT  
TYPICAL  
A
PPLICATION OF THE SG3561
IN A
FLUORESCENT  
L
AMP  
B
ALLAST WITH  
A
CTIVE  
P
OW
F
ACTOR  
C
ONTROL  
7  
T32  
R11  
560K  
Core: PQ2625  
L1 Ind: 450µH  
12  
0  
Gap:  
48mil  
C7  
0.1µF  
#22 - AWG
225V  
D6  
MR856  
110K  
R3  
1/2W  
D1  
D2  
D5  
1N4935  
1N4004 1N4004  
85  
R9  
1MΩ  
3  
F  
V  
2.2
V
IDET  
OUT  
IN  
R6  
47Ω  
AC+  
C8  
Q1  
IRF730  
C6  
100µF  
400V  
7
120V  
0.1µF  
C4  
0.22µF  
2
1
MULT  
IN  
COMP  
INV  
3
AC-  
R7  
330Ω  
R10  
11K  
4
C2  
0.01µF  
C.S.  
GND  
6
R13  
2KΩ  
C5  
R8  
1000pF 0.22Ω  
PACKAGE ORDER INFO  
Plastic DIP  
8-Pin  
Plastic DIP  
14-Pin  
Plastic SOIC  
8-Pin  
RoHS Compliant / Pb-free  
Transition DC: 0440  
M
N
DM  
TA (°C)  
RoHS Compliant / Pb-free Transition DC: 0503  
-25 to 85  
SG3561AM  
SG3561AN  
SG3561ADM  
Note: Available in Tape & Reel. Append the letters “TR” to the part number. (i.e. SG3561AM-TR)  
L
I N  
F
I N I T Y  
M
I C R O E L E C T R O N I C S  
I N C .  
Copyright © 1994  
Rev. 1.2a,2005-03-09  
1
11861 WESTERN  
A
VENUE, GARDEN GROVE, CA. 92841, 714-898-8121, FAX: 714-893-2570  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
PACKAGE PIN OUTS  
Supply Voltage (VIN)...................................................................................... -0.3V to 28V  
Peak Driver Output Current ................................................................................ ±500mA  
Driver Output Clamping Diodes  
VQ > VCC or VQ < -0.3V ....................................................................................... ±10mA  
Detector Clamping Diodes  
E.A. INV.  
COMP.  
MULT. INPUT  
C.S.  
1
2
3
4
8
7
6
5
VIN  
VO  
GROUND  
IDET  
M PACKAGE  
op View)  
VDET > 6V or VDET < 0.9V .................................................................................... ±10mA  
Error Amp, Multiplier, and Comparator Input Voltages ...............................-0.3V to 6V  
Detector Input Voltage (Note 2) ......................................................................0.95 to 6V  
Operating Junction Temperature  
Plastic (M, N and DM Packages) ......................................................................... 150°C  
Storage Temperature Range......................................................................-65°C to 150°C  
Peak Package Solder Reflow Temp. (40 seconds max. exposure).....................260°C (+0,-5)  
1
3
4
5
6
7
4  
13  
12  
11  
10  
9
C.  
E.A.INV  
N.C.  
N.C.  
VIN  
VO  
GROUND  
IDET  
COMP.  
LT UT  
N.C.  
Note 1. Values beyond which damage may occur. All voltages are specified with respect to  
ground, and all currents are positive into the specified terminal.  
Note 2. With no limiting resistor.  
8
MULT OUTPUT  
C.S.  
N PACKAGE  
(Top View)  
THERMAL DATA  
M PACKAGE:  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
N PACKAGE:  
5°C/W  
/W  
1
2
3
4
8
7
6
5
E.A. INV.  
COMP.  
MULT. INPUT  
C.S.  
VIN  
VO  
GROUND  
IDET  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
DM PACKAGE:  
DM PACKAGE  
(Top View)  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJ
165°C/W  
RoHS / Pb-free 100% Matte Tin Lead Finish  
Junction Temperature Calculation: TJ = TA + (PD x .  
The θJA numbers are guidelines for the thermal perof thvice/pc-board  
system. All of the above assume no ambient airflow.  
Copyright © 1994  
Rev. 1.2a  
2
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
RECOMMENDED OPERATING CONDITIONS  
(Note 3)  
Recommended Operating Conditions  
Parameter  
Symbol  
Units  
Min.  
Typ.  
Max.  
Supply Voltage Range  
VIN  
11  
25  
V
Peak Driver Output Current  
3ꢀꢀ  
mA  
Operating Ambient Temperature Range:  
SG3561A  
TA  
-25  
85  
°C  
Note 3. Range over which the device is functional.  
ELECTRICAL CHARACTERISTIC
(Unless otherwise specified, these specifications apply over the operating ambient temperatures for the A with T85°C; VIN=12V. Low  
duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to thnt temperat)  
SG3561A  
n. Typ.  
Parameter  
Symbol  
Test Conditions  
Units  
Max.  
Under-Voltage Lockout Section  
Start Threshold Voltage  
UV Lockout Hysteresis  
9.2  
1.6  
1ꢀ  
2.ꢀ  
1ꢀ.8  
2.4  
V
V
Supply Current Section  
Start-Up Supply Current  
Operating Supply Current  
Dynamic Operating Supply Current  
VIN < VTH  
VIN = 12V, Output Not g  
IN = 12V, 5ꢀKHz,
ꢀ.25  
6
ꢀ.5  
12  
15  
mA  
mA  
mA  
AVE  
V
1ꢀ  
Reference Section (Note 4)  
Initial Accuracy  
IREF = ꢀmA, TJ = 25
12V < V5V  
ꢀ < I2mA  
2.463  
2.5ꢀ  
ꢀ.1  
ꢀ.1  
2ꢀ  
2.538  
1ꢀ  
1ꢀ  
V
Line Regulation  
mV  
mV  
mV  
Load Regulation  
Temperature Stability  
Error Amplifier Section  
Input Offset Voltage (Note 4)  
Input Bias Current  
-15  
-2  
6ꢀ  
15  
mV  
µA  
dB  
-ꢀ.1  
86  
Large Signal Open Loop Voltage
Slew Rate  
4)  
ꢀ.6  
86  
v/µsec  
dB  
mA  
mA  
V
6ꢀ  
2
Power Supply RejectioNote 4)  
Output Source Cu
Output Sink Cur
OH = 3.5V  
OL = 2.ꢀV  
2
1.2  
V
4
Output Voltage
Unity Gain Band
No Load on E.A. Output  
1.ꢀ  
57  
MHz  
°
Phase Margin  
(Electrical Characteristics continued next page.)  
Copyright © 1994  
Rev. 1.2a  
3
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
ELECTRICAL CHARACTERISTICS (Cont'd.)  
SG3561A  
Min. Typ.  
Parameter  
Symbol  
Test Conditions  
Units  
Max.  
Multiplier Section  
M1 Input Voltage Range  
M2 Input Voltage Range  
Input Bias Current (M1)  
Multiplier Gain (Note 5), (Note 4)  
VREF  
-2  
2
VREF +1  
2
V
V
µA  
/V  
/V  
65  
65  
-ꢀ.
ꢀ.
ꢀ.78  
V
M1 = 1V, VEAꢀ = 3.5V  
VM1 = 2V, VEAꢀ = 3.5V  
%/°C  
V
Multiplier Gain Temperature Stability  
Maximum Multiplier Output Voltage  
V
M1 = 1V, VEAꢀ > 4V  
M1 = 2V, VEAꢀ > 4V  
V
V
Current Sense Comparator Section  
Input Bias Current  
Current Sense Delay to Output  
ꢀV VCS 1.7V  
E.A.OUT = 3.7V  
1
1
2ꢀꢀ  
5
5ꢀꢀ  
µA  
ns  
Detect Section  
Input Voltage Threshold  
Hysteresis  
1.3  
175  
1.6  
V
mV  
V
V
µA  
mA  
Input LO Clamp Voltage  
Input HI Clamp Voltage  
Input Current  
I
I
DET = 1ꢀꢀµA  
DET = 3mA  
ꢀ.95  
6.1  
-1ꢀ  
7.1  
1ꢀ  
3
1V VDET 6V  
VDET < ꢀ.9V, VDET >
Input HI/LO Clamp Diode Current  
Output Driver Section  
Output High Voltage  
Output Low Voltage  
Output Rise Time  
IL = -1ꢀmA, VIN = 1
IL = 1ꢀmN = 12V  
CL = ꢀꢀpF  
7
9
V
V
ꢀ.8  
1ꢀꢀ  
9ꢀ  
1.5  
2ꢀꢀ  
2ꢀꢀ  
ns  
ns  
Output Fall Time  
CL ꢀꢀꢀp
Notes: 4. Because the reference is not brought out extey, these cifications are tested at probe only, and cannot be tested on the packaged  
part. They are guaranteed by desigshown for illutive purposes only.  
VMO  
5. K =  
(VM1) x (VEA0 - VREF  
)
6. This parameter, although guaed in production.  
Copyright © 1994  
Rev. 1.2a  
4
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
BLOCK DIAGRAM  
/
PIN DESCRIPTIONS  
*MULT  
OUT  
*VREF  
UVLO  
8
REF  
VIN  
2.5V  
10V  
(2V HYST)  
_
+
VIN  
Σ
VM0  
VEAO  
1
2
INV  
COMP  
VM1  
CURRE
DETE
C  
3
4
7
VO  
MULT IN  
C.S.  
_
+
IDET  
5
* Available only in
6
GND  
FUNCTIONAL DESCRIPTION  
Pin  
#
Description  
VIN  
8
Input supply age.  
8
10V  
IIN 0.5mA VIN MAX < 25V  
IIN 15mA  
GND  
INV  
6
1
Input voltage always be the lowest potential of all the pins.  
he Erromplifier. The output of the Boost converter should be resistively divided to 2.5V and  
.  
COMP  
MULT  
C.S.  
2
3
4
ror Amplifier. A feedback compensation network is placed between this pin and the INV pin.  
Input ltiplier stage. The full-wave rectified AC is divided to less than 2V and is connected to this pin.  
Input to the PWM comparator. Current is sensed in the Boost stage MOSFET by a resistor in the source lead, and is  
fed to this pin through a low-pass filter  
IDET  
5
A current driven logic input with internal clamp.  
A second winding on the Boost inductor senses the flyback voltage associated with the zero crossing of the inductor  
current and feeds it to the IDET pin through a limiting resistor. The logic circuit processes this signal, such that the  
converter operates in a discontinuous conduction current mode, where there is no current gap between the switching  
cycles.  
VO  
7
PWM output pin. A totem-pole output stage specially designed for direct driving the MOSFET.  
Copyright © 1994  
Rev. 1.2a  
5
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
FIGURE INDEX  
Application Information  
FIGURE #  
1. GENERAL APPLICATION CIRCUIT  
2. START UP CIRCUITRY  
3. START UP VOLTAGE  
4. REFERENCE VOLTAGE vs. TEMPERATURE  
5. TYPICAL COMPENSATION CIRCUIT  
6. MULTIPLIER CIRCUIT  
7. CURRENT SENSE CIRCUIT  
8.  
IDETECT INPUT CIRCUIT  
9. TYPICAL START UP CIRCUIT USING DIAC  
10. IDETECT LOGIC CIRCUIT  
11. TYPICAL APPLICATION WITH 12ꢀV INPUT  
12. INDUCTOR CURRENT  
13. CURRENT DETECT EXAMPLE  
Typical Applications  
FIGURE #  
14. TYPICAL APPLICATION OF THE SG3561A IN AN 8ꢀW  
FLUORESCENT LAMP BALLAST WITH ACTIVE POWER FACTOR  
CONTROL - 120V  
15. TYPICAL APPLICATION OF THE SG3561A IN AN 8ꢀ
FLUORESCENT LAMP BALLAST WITH ACTIVE POWFACTO
CONTROL - 220V  
16. TYPICAL APPLICATION OF THE SG3561A IN AN 8ꢀW  
FLUORESCENT LAMP BALLAST WITH AWER FACT
CONTROL - 277V\  
17. TYPICAL APPLICATION OF THE
FLUORESCENT LAMP BALLAST WIACTOR  
CONTROL - 277OST AP
Copyright © 1994  
Rev. 1.2a  
6
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
APPLICATION INFORMATION  
HV BUS  
FUNCTIONAL DESCRIPTION  
The operation of the circuit is best described by referring to the  
diagram in Figure 1.  
R3  
D5  
L1  
The multiplier stage generates an output voltage (VM0) from  
the rectified waveform of the AC input (VM1) and the amplitude  
of the error amplifier output (VEA). This voltage controls the peak  
inductorcurrentbyturningthepowerMOSFEToffatathreshold,  
where the current sense voltage (VCS) reaches a given nominal  
value. This causes the power MOSFET to latch-off until the  
current in the inductor drops to zero. Once this happens, the  
secondary winding of the inductor changes its voltage polarity,  
and gets detected by an internal comparator stage. The polarity  
of the windings are chosen such that a low IDET voltage turns on  
the power MOSFET and maintains operation until the above  
process repeats itself. An external trigger voltage to the IDET is  
required to start-up the converter until the auxiliary winding of  
the inductor takes over the operation.  
C3  
6.7V  
INTERNAL  
CIRCUIT  
BIASING  
RA  
1.25V  
R
R5  
NP  
DC  
OUTPUT  
RECTIFIED  
OUTPUT  
FIGURE 2 — START UP CIRCUITRY  
NS  
R4  
VCC  
capacitor C3 is first charged by the current through  
3. Once this voltage exceeds 10V, then the IC starts  
g, requiring more supply current than R3 can provide.  
auses the energy stored in the capacitor to supply the IC  
with the operating current until the bootstrap winding on L1  
takes over the power to maintain operation.  
R9  
R1  
REF  
2.5V  
10V  
8V  
VM1  
VEA  
VMO  
INV  
ERROR AMP  
R2  
COMP  
G3  
G2  
1.3V  
R6  
R8  
G1  
VDS  
C3  
VC3  
DISCHARGE  
GND  
VSTART (TYP 10V)  
VHYST  
(TYP 2V)  
FIGPLICATICIRCUIT  
UNDERVOLTA
The purpose of tge lockout is to perform two  
functions: 1) to maina low quiescent current during  
power-up, 2) to guarantee that the IC is fully functional before  
the output stage is activated. To realize this, a micropower  
comparator with a start-up threshold of 10V and a built-in  
hysteresis of 2V is incorporated. This comparator acts as a switch  
for the pre-regulator stage, which supplies a stable bias to the  
internal circuitry of the IC. Figure 2 shows a simplified schematic  
of this section, as well as the external components required, in-  
order to generate bootstraping voltage from the secondary  
winding of inductor. The operation of the circuitry is as follows.  
BOOTSTRAP  
WINDING  
RT & CT TIME CONSTANT  
t
FIGURE 3 — START UP VOLTAGE  
RA  
RA  
RC  
VSTART = 1.25  
+ 1  
VHYST = 1.25  
RB ||RC  
Copyright © 1994  
Rev. 1.2a  
7
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
APPLICATION INFORMATION  
VOLTAGE REFERENCE  
MULTIPLIER  
The voltage reference is a low drift bandgap design which  
provides a stable +2.5V output with ±1.5% initial tolerance. This  
pin is internally connected to the non-inverting input of error  
amplifierandisonlyavailableina14-pinpackage. Itcanprovide  
up to 2mA of current for powering any external circuitries and  
is not internally current limited.  
The SG3561A features a one quadrant multiplier stage having  
two inputs: one is internally driven by a DC voltage (this being  
the difference of E.A. output and VREF (M2)), and the other (M1)  
is available for external connection. The output is internally tied  
to an input of the PWM comparator. he rectified AC input is  
typically divided down to less thaconnected to the  
"M1" input by a resistor dividerput of the multiplier  
which is a function oboth inprols inductor peak  
current during each oper.  
The multiplier is mnear if thut is limited to less  
than 1V and the E.A. ouis kept below 3.5V (under all  
specified load and line cons)The output clamps to a  
maximum valuypically e E.A. output is higher than  
2.500  
2.495  
2.490  
2.485  
2.480  
4V and VM1
MULT.  
OUTPUT  
E.A.  
OUTPUT  
2
2.475  
2.470  
M0  
VEA  
IN
-55  
-35  
-15  
5
25  
45  
65  
85  
105  
125  
M2  
EF  
Σ
Temperature - (°C)  
FIGURE 4 — REFERENCE VOLTAGE vs. TEMPERATURE  
1  
R2  
ERROR AMPLIFIER  
M1  
3
The error amplifier is an internally compensated Pnput stage  
with access to the inverting input and output pinhe N.It  
is internally connected to the voltage reference d ila
only in a 14-pin package. The amplifier is designeor an op
loop gain of 85dB, along with a typical idth of 1MHd  
57 degrees of phase margine amut bias current  
(2µA max.) results in a DC errIn order to  
minimize this effect, the current flust be much  
greater than the biaAs an a 1% error in  
output, the curret 200µe error amp output  
is provided fosation the feedback loop.  
This compenst a capacitor connected  
between this pput pin. The compensation  
capacitor is deswidth such that it adequately  
rejects the low frwhich is present at the output  
4
C.S.  
INPUT  
FIGURE 6 — MULTIPLIER CIRCUIT  
VM0  
K =  
where:  
VMO  
VM1  
K
Gain  
VM1 (VEA - VREF  
)
Mult. Output  
Mult. Input  
E.A. Output  
VEA  
CURRENT SENSE COMPARATOR / PWM LATCH  
Current Sense comparator is configured as a PNP input  
differential stage with one input internally tied to the multiplier  
output and the other available for current sensing. Current is  
converted to voltage using an external sense resistor in a series  
with the power MOSFET (Q1). When voltage across this resistor  
exceeds the threshold set by the multiplier output, the current  
sense comparator terminates the gate drive to Q1, as well as  
resetting the PWM latch. The latch ensures that the output  
remains in a low state once the switch current falls back to zero.  
An offset is built into current sense input to ensure that the  
output remains in a low state when the load is removed from the  
output of the converter. This offset is guaranteed to be higher  
than the multiplier offset during the above condition.  
voltage.  
VO  
R9  
I9  
1
1
BW =  
2π R9 C4  
IBIAS  
2
R10  
VREF  
FIGURE 5 — TYPICAL COMPENSATION CIRCUIT  
Copyright © 1994  
Rev. 1.2a  
8
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
APPLICATION INFORMATION  
CURRENT SENSE COMPARATOR / PWM LATCH (continued)  
Sense resistor R8 is designed according to the following  
VZ  
formula:  
VM0  
IL MAX  
R8 ≤  
where:  
K
Gain  
R4  
IDET  
0V  
VMO Mult. Output under  
min. line condition  
VM1 Mult. Input  
5
VEA E.A. Output  
IDET CP  
TO  
TO  
PIN 7  
Q1  
R7  
FLIPFLOP  
(1.3V T
VOFFSET  
4
R
FIGURE 8 INT CIRCUIT  
R8  
C5  
7
Since the iver is inhibited during the power-on  
e, an eriggesignal is required to start-up the  
coter befe IDET ding takes over the operation. The  
triggnal caed either from the second stage of the  
converte. the ballast voltage generator), or if stand alone  
operation esired from a circuit as shown in Figure 9.  
nally, signal should be low enough that the voltage  
detector winding is allowed to dominate during the  
peration.  
VMO  
R7 and C5 form a low pass filter to eliminate the  
leading edge current spike.  
FIGURE 7 — CURRENT SENSE CIRCUIT  
PWM DRIVER STAGE  
quations below describe the selection of R4 and R5 in  
10.  
The SG3561A output driver is designed for direct ving of  
power MOSFETs. It isa totempolestagewith ±0.5eakcurrent  
capability. This typically results in a 100 nanosecd rise
times into a 1000pF capacitive load. Additionatput
held low during the under voltage condition to ensure that
power MOSFET remains in the off sta
2500 VWP R4 400VWP  
where VWP Peak detector  
voltage  
VTR  
1.6  
R5 = 0.8 R4  
VTR Trigger voltage  
VTR  
D7  
R11  
TO  
VO  
CURRENT DETECT LOGIC  
RES R5  
R12  
C7  
The function of "cuct logihe operating  
state of the boto ethe output driver  
accordingly. e dowward slope of the  
inductor curritoring the voltage across a  
FIGURE 9 — TYPICAL START UP CIRCUIT USING DIAC  
separate windto the detector input (IDET  
)
VW  
pin. Once the is to zero, the sensed voltage  
reverses, setting a low-level, thus enabling the  
output driver. Since egative voltage, a level shifter as  
shown in Figure 8 is provided to prevent the IDET pin from going  
below the ground. The maximum current drawn from this pin  
must be limited to less than 3mA.  
TRIGGER  
SIGNAL  
R4  
I
DET 5  
VTR  
R5  
0V  
A high level voltage occurs when the inductor discharges.  
Referring to Figure 9, once the C.S. comparator inhibits the  
output driver and resets the flip-flop, the inductor voltage  
reverses and sets the IDET pin to a high level. This ensures the  
reset instruction of the current sense comparator and reduces its  
noise susceptibility. An internal zener diode with maximum  
current capability of 3mA limits the positive voltage swing to 7  
volts typically.  
VTH  
VDM  
7
4
C.S.  
COMP  
FIGURE 10 — IDETECT LOGIC CIRCUIT  
Copyright © 1994  
Rev. 1.2a  
9
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
APPLICATION INFORMATION  
TYPICAL APPLICATION  
The application circuit shown in Figure 11 uses the SG3561A as  
the controller to implement a boost type power factor regulator.  
The IC controls the regulator, such that the inductor current is  
always operating in a discontinuous conduction mode with no  
current gaps. This mode of operation has several advantages  
over the fixed frequency discontinuous conduction mode: 1)  
The switching frequency adjusts itself to the AC line envelope,  
causing a sinusoidal current draw, 2) Since there is no current  
gap between the switching cycles, the inductor voltage does not  
oscillate, causing less radiated noise, 3) The lower peak inductor  
current causes less power dissipation in the power MOSFET.  
A set of formulas have been derived specifically for this  
mode, and are used throughout the design procedure:  
The following are specifications for the boost converter:  
Input Voltage Range  
Output Voltage  
Output Power  
Efficiency  
Power Factor  
-
-
-
30V RMS  
DC  
% at fload  
t full load  
< 10% at full load  
Total Harmonic Distor
R11  
560K  
Core: PQ2625  
L1 Ind: 450µH  
Gap: 48mil  
R
7  
5  
300
0.1µF  
#22 - AWG 62T  
225V  
D6  
MR856  
R4  
5T  
110K  
R3  
1/2W  
D1  
D2  
D5  
1N4
1N4004 1N4004  
5
IDET  
R9  
1MΩ  
C3  
68µF  
V  
R1  
2.2M  
R6  
47Ω  
AC+  
C8  
Q1  
IRF730  
C6  
100µF  
400V  
7
C1  
1µF  
OUT  
120V  
C4  
0.22µF  
2
1
MULT  
IN  
COMP  
INV  
3
AC-  
R
R7  
330Ω  
R10  
11K  
D3  
4
C.S.  
1N4004 4  
GND  
6
R13  
2KΩ  
C5  
R8  
1000pF 0.22Ω  
FURE 11 — TYPICAL APPLICATION WITH 12ꢀV INPUT  
OUTPUT VOL
INDUCTOR PEAK CURRENT  
Since the convpe topology, it requires the  
output voltage to er than the input voltage. It is  
recommended to chooss voltage at least 15% higher than the  
maximum input voltage.  
It can be shown by referring to Figure 12 that the inductor peak  
current is always twice the average input current.  
Inductor Peak  
Current Envelope  
IL  
V 1.15 130 2 = 211 Volts  
*
O
Average  
AC Input Current  
TON TOFF  
FIGURE 12 — INDUCTOR CURRENT  
Copyright © 1994  
Rev. 1.2a  
10  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
APPLICATION INFORMATION  
INDUCTOR DESIGN (continued)  
Assume: PCU = 1.6W (2% of total output)  
INDUCTOR PEAK CURRENT (continued)  
IIN(t)  
= ΣAVE [I (t)]  
L
2
450 10-6 (2.4)2  
1.724 10-8  
*
*
*
= 3.21 10-12 m5  
*
1
(IL) (T)  
2
IL  
2
Kg =  
IIN  
=
0.15  
1.6  
T
ILP  
2
Step 2: Choose a core with highthe one calculated  
IINpeak = IP =  
ILP  
in Step 1.  
AW AE2  
Kg/core = k  
= Inductor peak current at peak input voltage.  
Maximum peak input current can be calculated by using:  
2PO  
where:  
k
A
ding coeft (typ. k=0.4)  
Bwindow area  
AW Effecarea  
IP  
=
ηVP  
Mean lh per turn  
where:  
η
Converter efficiency  
VP Peak AC input voltage  
Kg TDK PQ2625:  
= mm2  
W = 8mm2  
56.2mm  
assuming: η = 95%, PO = 80W, VPmin = 1002 = 141  
80  
2
*
IP=  
= 1.2A  
(47.7) (118)2  
56.2  
(.95) (141)  
Kg 4  
(mm)5 = 4.7 10-12 m5  
*
ILP/min AC = 2 1.2 = 2.4A  
*
Determine number of turns.  
INDUCTOR DESIGN  
L ILP  
N =  
The most important part of the circuit is to design the energ
storage element. To do this, we use the followination to  
B AE  
450 10-6 2.4  
0.15 118 10-6  
*
*
calculate the inductance value:  
N =  
= 61 turns  
- VP  
ηV  
T VP2  
OVO  
*
AW  
*
where: η ≡ Efficien
VO Output DC Voltage  
L1 =  
47.7  
4 PO  
AWIRE = k  
= 0.4  
= 0.31mm2  
= 480mil2  
N
61  
VInpuage  
T period  
wer  
choose #22 AWG with r = 0.0165/feet resistance.  
RW = N  
I
r
*
*
w
230 -
R
W = 0.185Ω  
.95  
(120
L1 =  
= 448µH  
Step 4: Calculate air gap.  
µO N2 AE  
Once the induwe can either use the area  
product methog (based on copper losses  
method), for selecre. In this example, we apply  
the Kg approach using ollowing steps:  
Ig  
=
L
4π 10-7 (61)2 118 10-6  
*
*
*
*
Iq =  
= 0.122cm = 48 mil  
450 10-6  
*
Step 1: Calculate Kg using  
VS  
VO  
Step 5: NS NP  
2
2
L1ILP  
B
PCU  
15  
230  
Kg =  
NS = 61  
= 4T where: VS secondary voltage  
where:  
L1 Required inductance  
NS may be adjusted to account for the drop in start-up  
capacitor.  
1.724 10-8  
m
*
B
Maximum flux density  
ILP Maximum peak inductor current  
PCU Maximum copper dissipation  
Copyright © 1994  
Rev. 1.2a  
11  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
APPLICATION INFORMATION  
POWER MOSFET SELECTION  
The voltage rating of MOSFET and rectifier must be higher than  
the maximum value of the output voltage.  
The values of R7 and C4 may be optimized further based on  
each specific application. Additionally R13 can be used to  
adjust the overall loop gain in order to maintain regulation at  
the minimum input voltage.  
VDS 1.2VO MAX  
VDS 282V  
The RMS current can be approximated by multiplying the RMS  
current at the peak of the line by 0.7.  
ERROR AMPLIFIER COMPONENT N  
The values of R9 and arcalcbased n the operating  
output voltage. The vf C5 is y scted to reject the  
120Hz ripple associah the outut voltage. Lack of  
adequate ripple rejection ses input current distortion;  
however, toomuctionwaslowloopresponseand  
a high voltagduring the turn-on.  
IRMS = 0.7 ILP D/3  
D On-time duty cycle  
ILP  
D = 0.39 at VAC = 100V  
ILPI = 2.4A  
IRMS = (0.7) (2.4) (.39/3) = 0.61A  
R9  
V
VREF  
=
D
PDC  
IRMS  
RDS  
2
IRMS/triangle = ILP D/3  
R9  
R10  
30  
-1 = 91  
PDC allowable power dissipation  
1
0.61  
uming 9 = 1MΩ  
Then: R10 = 11K  
RDS  
= 1.6Ω  
choose IRF730 with RDS = 1and VDS = 400V.  
ut voltages higher than 250V, safety regulations may  
wo ¼W resistors to be placed in series.  
CURRENT SENSE AND MULTIPLIER COMPONENT TION  
Assuming a 40dB rejection at 120Hz:  
1
Resistors R1 and R2 are selected such that the pevoltag
input (pin 3) is 1V at the maximum line voltag
Gain =  
Gain/120Hz 0.01  
2π f R9 C5  
100  
R1  
R2  
C5 ≥  
= VAC PEAK -1  
2π(120)(106)  
R1  
C5 0.133µf  
choose C5 = 0.22µf  
1
= 183  
if R1 =
12K  
R2  
ThevalueofRedusiingequations:  
1
BW =  
=
= 0.72Hz  
2π R9 C5  
2π (106)(.22 10-6)  
*
V
M0 = k VM
ximum voltage at M1 input  
er min. line condition  
INPUT RECTIFIER AND CAPACITOR SELECTION  
The current through each diode is a half-wave rectified sine  
wave. The maximum current happens at minimum line with a  
peak value of 1.2A.  
VM0 = (0.75) 0.58  
VMO 0.58  
2.4  
R8 =  
=
=
= 0.24Ω  
choose R8 = 0.22Ω  
ILP  
2.4  
IPEAK  
1.2  
IAVE  
=
=
= 0.38A  
π
π
To eliminate the turn-on current spike, a low pass filter with a  
high corner frequency must be designed such that:  
choose 1N4004 with 1A rating.  
PDISS = (IAVE) (V ) = 0.38 0.9 = 0.344W  
Turn-on  
Spike  
R7C4 1.6T  
*
F
if T = 100nsec  
TJ = TA + PD x θJA  
assuming θJA = 65°C/W for 1/8"  
lead length.  
R7C4 0.16µsec  
T
assuming C4 = 1000pF  
R7 160Ω  
TJ = 80 + (.344)(65) = 102°C  
Copyright © 1994  
Rev. 1.2a  
12  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
APPLICATION INFORMATION  
INPUT RECTIFIER AND CAPACITOR SELECTION (continued)  
Assuming ϕ is the percentage of allowable input current ripple,  
assuming T = 2ms  
C1 can be calculated using the following equations:  
15 10-3  
2
10-3  
*
*
*
C3 (T) ≥  
= 17µf  
2 PO  
1.8V  
REFF  
=
η IP2  
choose C3 = 68µF.  
1
C1 ≥  
fSW Switching frequency  
of inductor current  
OUTPUT CAPACITOR ELECTION  
ϕ 2π REFF fSW  
There are mainly two s for seoutput capacitor:  
A large enough capacitncmaintain a low ripple voltage, and  
a low ESR value in order to nt igh power dissipation due  
to RMS current
The outpnce can be approximated from the  
fowing eq
at peak input voltage.  
if ϕ = 3%  
2
80  
*
REFF  
=
= 117Ω  
(.95)(1.2)2  
1
C1 ≥  
= 0.9µF  
(.03)(2π)(117)(50000)  
C6
where: IDC DC output current  
V Output ripple  
2π fLIN
choose 1µF, 250V capacitor.  
230  
=
0.348A  
BIAS SUPPLY COMPONENT SELECTION  
ing 5% peak to peak ripple,  
A bleeding resistor (R3) off of either output voltage or capaci
C1 can be selected such that it provides sufficient start-up curre
for the IC, as well as charging the start-up capacito
0.348  
= 81µF  
2π (60) (11.5)  
choose C6 = 100µF.  
VP MIN  
R3 =  
IST  
VP MIN  
Stap nt  
Peak voltage
in. AC line  
IST  
140  
R3 =  
= 280K  
CURRENT DETECT COMPONENT SELECTION  
0.5 10-3  
*
VIN RMS iput  
The values of R4 and R5 can be calculated using the following  
equations:  
VIN MAX  
PR3  
=
0.25W  
R3  
2
R3 4VIN MAX  
400VWP R4 2500VWP  
280K R3
ose R3 0K  
VTR  
1.6  
R5 = 0.8R4  
The start-up osen such that it supplies  
power to the on the bootstrap winding  
exceeds the starypically around 10 volts). C3  
must also be designw ripple voltage at twice the line  
frequency.  
where:  
VWP Maximum detector winding voltage  
VTR Trigger voltage  
I
C3 (VR) ≥  
C3 (T) ≥  
C3 (VR) ≥  
I
Operating current  
2 fLINE VR  
fLINE Line frequency  
Vr Ripple voltage  
T Time allowed for bootstrap  
winding to reach start-up  
threshold  
IT  
VH  
15 10-3  
*
=62µF  
2
60 2  
*
*
Copyright © 1994  
Rev. 1.2a  
13  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
APPLICATION INFORMATION  
CURRENT DETECT COMPONENT SELECTION (continued)  
Assuming VWP = 15V and peak trigger voltage from the start-up  
circuitry is 7V, the values R4 and R5 using above formulas are:  
6KΩ ≤ R4 37.5KΩ  
choose R4 = 22K  
choose R5 = 51K  
7
R5 = 0.8 (22)  
-1 = 59.4KΩ  
1.6  
VZ  
TRIGGER  
SIGNAL  
VTR  
0V  
R5  
R4  
0V  
VWP  
VTH  
FIGURE 13 — CURRENT DETECT EXAMPL
Copyright © 1994  
Rev. 1.2a  
14  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
TYPICAL APPLICATIONS  
120V  
Pin numbers are for 8-pn dip package.  
D7  
HT32  
R11  
560K  
Core: PQ2625  
L1 Ind: 450µH  
R12  
300  
Gap: 48mil  
C7  
0.1µF  
R5  
39K  
#22 - AWG 62T  
V  
1
2
M
3
4
R4  
22K  
5T  
110K  
1/2W  
R3  
D1  
D2  
D5  
1N4935  
1N4004 1N4004  
8
VIN  
5
IDET  
MΩ  
C3  
68µF  
25V  
R1  
2.2M  
AC+  
C8  
Q1  
IRF730  
C6  
100µF  
400V  
C1  
1µF  
OUT  
120V  
0.1µF  
0
1
MULT  
IN  
COMP  
V  
3
AC-  
R2  
12K  
R7  
330Ω  
R10  
11K  
D3  
D4  
C2  
0.01µF  
C.S
1N4004 1N4004  
R
2KΩ  
C5  
R8  
3300pF 0.22Ω  
FIGURE 14 ICAL APPLICATION OF THE SG3561A IN AN 8ꢀW  
FLUORESCENT MP BALITH ACTIVE POWER FACTOR CONTROL.  
Electrical  
Specification  
120VAC Input 230VDC 80W Output  
Ref.  
Component  
Manuf.  
Ref.  
Component  
Manuf.  
IC  
L1  
SG3561AM  
PQ262Core  
IRF7
1
1
M
HT
2.2M
Linfinity  
TDK  
I.R.  
Motorola  
Motorola  
Motorola  
TECCOR  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
1µF/250V  
0.01µF/50V  
68µF/25V  
0.22µF/50V  
3300pF/50V  
100µF/400V  
0.1µF/50V  
0.1µF/50V  
Q1  
D1-D4  
D5  
D6  
D7  
R1  
R2  
12KΩ  
R3  
R4  
110K, ½W  
22K  
R5  
R6  
R7  
51K  
47Ω  
330Ω  
R8  
0.22, ½W - Carbon type  
1M, 1% Res  
11K, 1% Res  
560KΩ  
R9  
R10  
R11  
R12  
R13  
300Ω  
2KΩ  
Copyright © 1994  
Rev. 1.2a  
15  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
TYPICAL APPLICATIONS  
220V  
Pin numbers are for 8-pn dip package.  
D7  
HT32  
R11  
560K  
Core: PQ2620  
L1 Ind: 1.2mH  
R12  
300  
Gap: 48mil  
C7  
0.1µF  
R5  
39K  
#24 - AWG 80T  
V  
1
2
M
22K  
3
4
5
6
4T  
7T  
220K  
1/2W  
R3  
D1  
D2  
D5  
1N4935  
1N4004 1N4004  
8
VIN  
5
IDET  
MΩ  
1%  
R1  
2.2M  
C3  
68µF  
25V  
AC+  
C8  
Q1  
IRF830  
C6  
47µF  
450V  
C1  
0.22µF  
600V  
OUT  
220V  
0.1µF  
0
1
MUL
COMP  
V  
3
IN  
AC-  
R2  
12K  
R7  
330Ω  
R10  
6.19K  
1%  
D3  
D4  
C2  
0.01µF  
C.
1N4004 1N4004  
D  
R8  
1Ω  
1/2W  
R
OPEN  
C5  
3300pF  
FIGURE 15 CL APPLICATIOF THE SG3561A IN AN 8ꢀW  
FLUORESCENT MP BALLWITH ACTIVE POWER FACTOR CONTROL.  
Electrical  
Specification  
220VAC Input — 400VDC 80W Output  
Ref.  
Component  
Manuf.  
Ref.  
Component  
Manuf.  
IC  
L1  
SG3561A  
PQ262/Core  
IRF8
1
1
M
H
2.2
Linfinity  
TDK  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
0.22µF/600V  
0.01µF/50V  
68µF/25V  
0.22µF/50V  
3300pF/50V  
47µF/450V  
0.1µF/50V  
0.1µF/50V  
Q1  
D1-D4  
D5  
D6  
D7  
R1  
I.R.  
Motorola  
Motorola  
Motorola  
Teccor  
R2  
12KΩ  
220K, ½W  
22K  
R3  
R4  
R5  
R6  
39K  
47Ω  
R7  
330Ω  
R8  
1, ½W - Carbon type  
1M, 1% Res  
2.7MΩ  
R9  
R10  
R11  
R12  
R13  
560KΩ  
300Ω  
2KΩ  
Copyright © 1994  
Rev. 1.2a  
16  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
TYPICAL APPLICATIONS  
277V  
Pin numbers are for 8-pn dip package.  
D7  
HT32  
R11  
1.5M  
Core: PQ2620  
L1 Ind: 1.2mH  
R12  
300Ω  
Gap: 48mil  
C7  
0.1µF  
R5  
22K  
#24 - AWG 80T  
1
2
M
R4  
3
4
5
6
3T  
15T  
22K  
260K  
1W  
R3  
D1  
D2  
D5  
1N4935  
1N4007 1N4007  
R9  
Ω  
C6  
47µF  
315V  
8
VIN  
5
IDET  
R1  
2.2M  
C3  
68µF  
25V  
AC+  
C8  
Q1  
IRFBE42  
C1  
0.22µF  
600V  
OUT  
277V  
0.1µF  
0
1
MULT  
COMP  
V  
C9  
47µF  
315V  
3
IN  
AC-  
R2  
5.1K  
R7  
330Ω  
R10  
11.3K  
1%  
D3  
D4  
C.S
1N4007 1N4007  
D  
C2  
0.047µF  
R8  
0.51Ω  
1/2W  
R
OPEN  
C5  
3300pF  
FIGURE 16 CL APPLICATIOF THE SG3561A IN AN 8ꢀW  
FLUORESCENT MP BALLWITH ACTIVE POWER FACTOR CONTROL.  
Electrical  
Specification  
277VAC Input — 485VDC 80W Output  
Ref.  
Component  
Manuf.  
Ref.  
Component  
Manuf.  
IC  
L1  
SG3561A  
Linfinity  
TDK  
C1  
C2  
C3  
C4  
C5  
0.22µF/600V  
0.047µF/50V  
68µF/25V  
0.22µF/50V  
3300pF/50V  
PQ26201 Core  
IRFB
1
1
M
H
2.2
Q1  
D1-D4  
D5  
D6  
D7  
R1  
I.R.  
Motorola  
Motorola  
Motorola  
TECCOR  
C6, C9 47µF/315V  
C7  
C8  
0.1µF/50V  
0.1µF/50V  
R2  
5.1KΩ  
260K, 1W  
22KΩ  
R3  
R4  
R5  
R6  
22KΩ  
47Ω  
R7  
330Ω  
R8  
0.51, ½W - Carbon type  
2.2M, 1% Res  
11.3K, 1% Res  
1.5KΩ  
R9  
R10  
R11  
R12  
R13  
300Ω  
Copyright © 1994  
Rev. 1.2a  
17  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
TYPICAL APPLICATIONS  
277V - Buck Boost Application  
Pin numbers are for 8-pn dip package.  
5V  
0
-
Core: PQ2620  
L1 Ind: 1.2mH  
Gap: 48mil  
R5  
22K  
230V  
DC  
MUR480 or  
BYW96D  
#24 - AWG 80T  
+
1
2
R4  
3
4
5
6
4  
1%  
4T  
7T  
R16  
499K  
1%  
22K  
150K  
2W  
R3  
D1  
D2  
D5  
1N4935  
VCC  
1N4007 1N4007  
R13  
99K  
1%  
8
VIN  
5
IDET  
R1  
2.2M  
1%  
VC
R15  
499K  
1%  
C3  
68µF  
25V  
R6  
22  
IC2  
lm35n  
AC+  
C9  
IC1  
Q
IR
7
C1  
0.22µF  
600V  
OUT  
277V  
0.1µF  
2
1
MULT  
IN  
COMP  
INV  
R9  
3
AC-  
0.22
R11  
R2  
7.5K  
1%  
R
330Ω  
12.7K  
1%  
D3  
D4  
4
C2  
0.033µF  
C7  
C.S.  
R10  
130K  
1N4007 1N4007  
GND  
6
R12  
12.7K  
1%  
R
0.22
1/2W  
C8  
0.033µF  
0.033µF  
FIGURE 17 — TYPIAPPLICE SG3561A IN AN 8ꢀW  
FLUORESCENT LBALLAST WITH ATIVE POWER FACTOR CONTROL.  
Electrical  
Specification  
90-265VAC Input 30VD/ 80W Output  
Ref.  
Component  
Manuf.  
Ref.  
Component  
M
IC  
IC2  
L1  
Q1  
D1-D4  
D5  
D6  
R1  
R2  
R3  
SG3561A  
LM358N  
Linfinity  
C1  
C2  
C3  
C4  
C5  
C6  
0.22µF/600V  
0.033µF/50V  
68µF/25V  
0.22µF/50V  
3300pF/50V  
100µF/400V  
PQ262Core  
IRFP
1
1
B
2.
7.5K
150K, 2
22kΩ  
TDK  
I.R.  
Motorola  
Motorola  
C7, C8 0.033µF/50V  
C9 0.1µF/50V  
R4  
R5  
R6  
22K  
22Ω  
R7  
330Ω  
0.22, ½W  
20K  
R8  
R9  
R10  
R11  
R12  
130K  
12.7K, 1%  
12.7K, 1%  
R13, 14 499K, 350V  
R15, 16 499K, 350V  
Copyright © 1994  
Rev. 1.2a  
18  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
SG3561A  
P O W E R F A C T O R C O N T R O L L E R  
N O T R E C O M M E N D E D F O R N E W D E S I G N S  
TYPICAL APPLICATIONS  
90 - 265V  
Pin numbers are for 8-pn dip package.  
D7  
HT32  
R11  
1.5M  
Core: PQ2620  
L1 Ind: 1.2mH  
R12  
300  
Gap: 48mil  
C7  
0.1µF  
R5  
22K  
#24 - AWG 80T  
1
2
MR
R4  
3
4
5
6
3T  
15T  
22K  
130K  
1W  
R3  
D1  
D2  
D5  
1N4935  
1N4007 1N4007  
R9  
Ω  
C6  
47µF  
315V  
R1  
2.2M  
1%  
8
VIN  
5
IDET  
C3  
68µF  
25V  
AC+  
C8  
Q1  
IRFBE42  
C1  
0.47µF  
600V  
OUT  
90-265V  
0.1µF  
0
C9  
47µF  
315V  
1
MUL
COMP  
V  
3
IN  
AC-  
R2  
6.49K  
1%  
R10  
12.7K  
1%  
R7  
330Ω  
D3  
D4  
C.
1N4007 1N4007  
D  
C2  
0.047µF  
R8  
0.51Ω  
1/2W  
R
100Ω  
C5  
1000pF  
FIGURE 18 — TYPIAPPLICE SG3561A IN AN 8ꢀW  
FLUORESCENT LBALLAST WITH ATIVE POWER FACTOR CONTROL.  
Electrical  
Specification  
90-265VAC Input 32VD/ 80W Output  
Ref.  
Component  
Manuf.  
Ref.  
Component  
M
IC  
L1  
SG3561A  
Linfinity  
TDK  
C1  
C2  
C3  
C4  
C5  
0.47µF/600V  
0.047µF/50V  
68µF/25V  
0.22µF/50V  
1000pF/50V  
PQ2620/H7C1 Core  
IRFBE42
1N
1
M
H
2.
6.49
Q1  
D1-D4  
D5  
D6  
D7  
R1  
R2  
R3  
R4  
I.R.  
Motorola  
Motorola  
Motorola  
TECCOR  
C6, C9 47µF/315V  
C7  
C8  
0.1µF/50V  
0.1µF/50V  
130K,
22kΩ  
R5  
R6  
22K  
22Ω  
R7  
330Ω  
R8  
0.51, ½W - Carbon type  
2.2M, 1% Res  
12.7K, 1% Res  
1.5KΩ  
R9  
R10  
R11  
R12  
R13  
300Ω  
100Ω  
Copyright © 1994  
Rev. 1.2a  
19  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY