VSC8221HH [MICROSEMI]

Single Port 10/100/1000BASE-T PHY with1.25 Gbps SerDes for SFPs/GBICs;
VSC8221HH
型号: VSC8221HH
厂家: Microsemi    Microsemi
描述:

Single Port 10/100/1000BASE-T PHY with1.25 Gbps SerDes for SFPs/GBICs

局域网(LAN)标准 以太网:16GBASE-T 电信 电信集成电路
文件: 总138页 (文件大小:1143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VSC8221  
Data Sheet  
Single Port 10/100/1000BASE-T PHY with1.25 Gbps SerDes for SFPs/GBICs  
1 GENERAL DESCRIPTION  
Ideally suited for Ethernet Switches with SGMii/SerDes MAC  
interfaces, Media Converter applications, and SFP/GBiC  
modules, the industry-leading, low-power VSC8221 from  
Microsemi integrates a high-performance 1.25Gbps SerDes  
or to 100BASE-FX (over its copper media interface). in SGMii  
mode, the VSC8221 provides a fully compliant, 4-pin or 6-pin  
interface to MACs. The 1000BASE-X SerDes and SGMii  
interfaces offer either automatic or user-controlled auto-  
negotiation priority resolution between the 1000BASE-X and  
1000BASE-T auto-negotiation processes. A single chip  
copper-to-optics Media Converter can be easily implemented  
by simultaneous use of the SerDes and Cat-5 media  
interfaces.  
and  
a triple speed (10/100/1000BASE-T) transceiver,  
providing unmatched tolerance to noise and cable plant  
imperfections.  
Consuming approximately 700mW and eliminating the need  
for external power supply regulators, the device requires only  
a single 3.3V power supply. To further minimize system  
complexity and cost, the VSC8221's twisted pair interface  
features fully integrated line terminations, exceptionally low  
EMi, and robust Cable Sourced ESD (CESD) performance.  
To minimize power consumption, the VSC8221 offers several  
programmable power management modes. The device also  
supports the comprehensive VeriPHY® Cable Diagnostics  
feature from Microsemi, offering the system manufacturer  
and iT administrator a complete suite of cable plant  
diagnostics to simplify the manufacture, installation, and  
management of Gigabit-over-copper networks.  
The VSC8221 offers direct connectivity to SGMii or SerDes  
interfaces. in 1000BASE-X SerDes mode, the VSC8221 may  
be used to connect a MAC to copper media (MAC to Cat-5)  
2 FEATURES AND BENEFITS  
Features  
Benefits  
Very low power consumption  
Reduces power supply costs  
Fully compliant with SFP MSA’s power dissipation  
specification of less than 1W maximum per module  
Single 3.3V power supply with on-chip regulator  
SGMii & SerDes interfaces  
Eliminates external regulators, reducing system costs  
Connects to serial MACs or optical modules  
Supports triple-speed copper SFP/GBiC modules  
Patented line driver with integrated line side termination  
resistors  
May allow use of SimpliPHY’d Magnetics with up to 50%  
cost savings versus competition  
Saves over 12 external components per port and  
reduces PCB area and cost by 50%  
Can enable a superior, FCC Class B capable EMi  
solution for copper SFPs  
Over 150m of Cat-5 reach with the industry’s highest  
noise tolerance  
Ensures trouble-free deployment in real world Ethernet  
networks  
Several flexible power management modes  
Reduces power consumption and system cost  
Small footprint 9mm x 9mm, 100-TFBGA package  
Suitable for Gigabit switch ports, SFPs/GBiCs, and  
media converters  
3 APPLICATIONS  
Triple-speed SFP/GBiC modules  
Media converters  
VMDS-10106 Revision 4.1  
December 2006  
1 of 1  
Microsemi Corporation One Enterprise, Aliso Viejo, CA 92656 USA  
sales.support@microsemi.com www.microsemi.com  
VSC8221  
Data Sheet  
4 APPLICATIONS DIAGRAMS  
4.1 SFP/GBiC Serial interface (SGMii or 802.3z SerDes) to Cat-5  
3.3 V  
Quad  
Transformer  
Module  
SGMII  
or  
802.3z SerDes  
Cat-5 UTP  
10/100/1000BASE-T  
SerDes I/F  
GBIC/SFP  
Interface  
RJ-45  
VSC8221  
Optional I/F for  
Configuration  
Optional  
EEPROM  
4.2 Media Converter (1000BASE-X to Cat-5)  
3.3 V  
Quad  
Transformer  
Module  
CAT-5 UTP  
1000BASE-T  
1000BASE-LX  
1000BASE-SX  
Optical Module  
Single Mode Fiber  
Multimode Fiber  
SerDes I/F  
RJ-45  
VSC8221  
Optional I/F for  
Configuration  
Optional EEPROM  
2 of 2  
VMDS-10106 Revision 4.1  
December 2006  
2
VSC8221  
Data Sheet  
5 DEVICE BLOCK DIAGRAM  
The diagram below depicts the primary functional blocks and pins for the VSC8221 iC.  
TDP  
TXVPA  
TXVNA  
TBI  
TDN  
802.3z  
SerDes  
OR  
SGMII  
PCS  
PMA (DSP Data Pump)  
TX FIR  
MDI (Analog Front End)  
RDP  
RDN  
PCS  
ENCODER  
HYBRID  
SCLKP  
SCLKN  
DAC  
TXVPB  
TXVNB  
PAM-5 SYMBOL  
MAPPER,  
SCRAMBLER  
TBI  
NC1  
NC3  
NC2  
EC  
TXVPC  
TXVNC  
CMODE[3:0]  
RESET  
Control  
TXDIS/SRESET  
PCS  
DECODER  
TRELLIS  
DECODER  
FFE  
ADC  
VGA  
TXVPD  
TXVND  
+
X4  
PAM-5 SYMBOL  
DE-MAPPER,  
DESCRAMBLER  
TIMING RECOVERY  
CLKOUTMICRO  
PLL,  
OSCILLATOR  
MODDEF0/CLKOUTMAC  
XTAL2  
XTAL1REFCLK  
TDI  
TDO  
TMS  
TCK  
TEST  
MANAGER  
+ JTAG  
AUTO-NEGOTIATION  
REFFILT  
BIASING,  
SWITCHING  
REGULATOR  
TRST  
REFREXT  
REGEN  
REGOUT  
EEPROM and SERIAL  
MANAGEMENT  
INTERFACE  
MII  
MODDEF1/MDC  
MODDEF2/MDIO  
REGISTERS  
RXLOS/SIGDET  
LED0  
LED1  
LED2  
LED  
INTERFACE  
PLLMODE/EECLK  
EEDAT  
Figure 1. VSC8221 Block Diagram  
3 of 3  
VMDS-10106 Revision 4.1  
December 2006  
3
VSC8221  
Data Sheet  
6 RELEVANT SPECIFICATIONS & DOCUMENTATION  
The VSC8221 conforms to the following specifications. Please refer to these documents for additional information.  
Table 1. Specifications and Documentation  
Specification - Revision  
Description  
Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and  
Physical Layer Specifications. iEEE 802.3-2002 consolidates and supersedes the following  
specifications:  
iEEE 802.3-2002  
802.3ab (1000BASE-T), 802.3z (1000BASE-X), 802.3u (Fast Ethernet), with references to  
ANSi X3T12 TP-PMD standard (ANSi X3.263 TP-PMD)  
Test Access Port and Boundary Scan Architecture1.  
includes iEEE Standard 1149.1a-1993 and iEEE Standard 1149.1b-1994  
iEEE 1149.1-1990  
JEDEC EiA/JESD8-5  
JEDEC JESD22-A114-B  
JEDEC JESD22-A115-A  
2.5V±0.2V (Normal Range), and 1.8V to 2.7V (Wide Range) Power Supply Voltage and  
interface Standard for Nonterminated Digital integrated Circuits  
Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)  
Revision of JESD22-A114-A  
Electrostatic Discharge (ESD) Sensitivity Testing Machine Model (MM)  
Revision of EiA/JESD22-A115  
JEDEC EiA/JESD78  
MiL-STD-883E  
Cisco SGMii v1.7  
PiCMG 2.16  
iC Latch-Up Test Standard  
Miltary Test Method Standard for Microcircuits  
Cisco SGMii specification  
iP Backplane for CompactPCi  
Advanced TCA™ Base  
PiCMG 3.0  
iP Backplane specification for CompactPCi v3.0  
Cisco Systems inLine Power Detection:  
http://www.cisco.com/en/US/products/hw/phones/ps379/prod-  
ucts_tech_note09186a00801189b5.shtml  
Cisco inLine Power Detection  
Algorithm  
Small Form-factor Pluggable  
(SFP) Transceiver MultiSource  
Agreement  
Specification for pluggable fiber optic transceivers. Describes module data access protocol  
and interface  
1
Often referred to as the “JTAG” test standard.  
4 of 5  
VMDS-10106 Revision 4.1  
December 2006  
5
VSC8221  
Data Sheet  
7 DATA SHEET CONVENTIONS  
Conventions used throughout this data sheet are specified in the following table.  
Table 2. Data Sheet Conventions  
Convention  
Syntax  
Examples  
Description  
RegisterNumber.Bit  
or  
RegisterNumber.BitRange  
Register  
number  
23.10  
23.12:10  
Register 23 (address 17h), bit 10  
Register 23 (address 17h), bits 12, 11, and 10  
Extended  
Page Regis-  
ter Number1  
RegisterNumberE.Bit  
or  
RegiesterNumberE.BitRange  
23E.10  
23E.12:10  
Extended Register 23 (address 17h), bit 10  
Extended Register 23 (address 17h), bits 12, 11, and 10  
Signal name  
(active high)  
SiGNALNAME2  
SiGNALNAME2  
PLLMODE  
RESET  
Signal name for PLLMODE  
Signal name  
(active low)  
Active low reset signal  
Signal bus  
name  
BUSNAME[MSB:LSB]2  
RXD[4:2]  
Receive Data bus, bits 4, 3, and 2  
1
2
For more information about Mii Extended Page Registers, refer to Section 22: "PHY Register Set Conventions" on page 63.  
All signal names are in all CAPiTAL LETTERS.  
5 of 5  
VMDS-10106 Revision 4.1  
December 2006  
5
VSC8221  
Data Sheet  
Contents  
1
2
3
4
General Description .........................................................................................................................................................1  
Features and Benefits .....................................................................................................................................................1  
Applications .....................................................................................................................................................................1  
Applications Diagrams ....................................................................................................................................................2  
4.1 SFP/GBiC Serial interface (SGMii or 802.3z SerDes) to Cat-5 ............................................................ 2  
4.2 Media Converter (1000BASE-X to Cat-5) ............................................................................................. 2  
5
6
7
8
Device Block Diagram .....................................................................................................................................................3  
Relevant Specifications & Documentation ..................................................................................................................4  
Data Sheet Conventions .................................................................................................................................................5  
Package Pin Assignments & Signal Descriptions .................................................................................................. 14  
8.1 Package Ball Diagram ........................................................................................................................ 14  
8.2 Ball Locations and Signal Names ....................................................................................................... 15  
8.3 Signal Type Descriptions .................................................................................................................... 15  
8.4 Detailed Pin Descriptions ................................................................................................................... 16  
9
System Schematics ...................................................................................................................................................... 27  
9.1 System Schematic - SGMii/802.3z SerDes MAC to 1000Mbps CAT5 Media PHY Operating Mode . 27  
9.2 System Schematic - 100Mbps Fiber Media implementation .............................................................. 28  
10  
Twisted Pair interface ................................................................................................................................................... 29  
10.1 Twisted Pair Auto-Negotiation (iEEE802.3 Clause 28) ...................................................................... 29  
10.2 Twisted Pair Auto MDi/MDi-X Function .............................................................................................. 29  
10.3 Auto MDi/MDi-X in Forced 10/100 Link Speeds ................................................................................. 30  
10.4 Forcing the PHY into MDi or MDi-X mode in 10/100/1000 Link Speeds ............................................ 31  
10.5 Twisted Pair Link Speed Downshift .................................................................................................... 31  
10.6 100Mbps Fiber Support Over Copper Media interface ....................................................................... 31  
10.6.1  
Register Settings ...................................................................................................................................31  
11  
12  
Transformerless Operation for PiCMG 2.16 and 3.0 iP-based Backplanes ........................................................ 32  
Dual Mode Serial Management interface (SMi) ........................................................................................................ 33  
12.1 PHY Register Access with SMi in MSA mode .................................................................................... 33  
12.1.1  
12.1.2  
12.1.3  
12.1.4  
Write Operation - Random Write ..........................................................................................................35  
Write Operation - Sequential Write .......................................................................................................36  
Read Operation - Random Read .........................................................................................................37  
Read Operation - Sequential Read ......................................................................................................38  
12.2 PHY Register Access with SMi in iEEE Mode .................................................................................... 38  
6 of 10  
VMDS-10106 Revision 4.1  
December 2006  
10  
VSC8221  
Data Sheet  
12.3 SMi interrupt ....................................................................................................................................... 40  
13  
14  
LED interface ................................................................................................................................................................. 41  
13.1 Serial LED Output ............................................................................................................................... 43  
Test Mode interface (JTAG) ......................................................................................................................................... 44  
14.1 Supported instructions and instruction Codes .................................................................................... 45  
14.2 Boundary-Scan Register Cell Order ................................................................................................... 46  
15  
16  
17  
Enhanced ActiPHY Power Management ................................................................................................................... 47  
15.1 Operation in Enhanced ActiPHY Mode .............................................................................................. 47  
15.2 Low-Power State ................................................................................................................................ 48  
15.3 LP Wake-Up State .............................................................................................................................. 48  
15.4 Normal Operating State ...................................................................................................................... 48  
Ethernet in-line Powered Device Support ................................................................................................................ 49  
16.1 Cisco in-Line Powered Device Detection Mode ................................................................................. 49  
16.2 in-Line Power Ethernet Switch Diagram ............................................................................................. 49  
16.3 in-Line Powered Device Detection (Cisco Method) ............................................................................ 50  
16.4 iEEE 802.3af (DTE Power via MDi) .................................................................................................... 50  
Advanced Test Modes .................................................................................................................................................. 51  
17.1 Ethernet Packet Generator (EPG) ...................................................................................................... 51  
17.2 CRC Counter ...................................................................................................................................... 51  
17.3 Far-End Loopback .............................................................................................................................. 51  
17.4 Near-End Loopback ............................................................................................................................ 52  
17.5 Connector Loopback .......................................................................................................................... 52  
18  
19  
Hardware Configuration Using CMODE pins ........................................................................................................... 53  
18.1 Setting the CMODE Configuration Bits ............................................................................................... 53  
18.2 CMODE Bit Descriptions .................................................................................................................... 54  
18.3 Procedure for Selecting CMODE Pin Pull-Up/Pull-Down Resistor Values ......................................... 56  
EEPROM interface ........................................................................................................................................................ 57  
19.1 Programming Multiple VSC8221s Using the Same EEPROM ........................................................... 57  
20  
21  
22  
PHY Startup and initialization ..................................................................................................................................... 61  
PHY Operating Modes .................................................................................................................................................. 62  
PHY Register Set Conventions ................................................................................................................................... 63  
22.1 PHY Register Set Structure ................................................................................................................ 63  
22.2 PHY Register Set Nomenclature ........................................................................................................ 64  
22.3 PHY Register Bit types ....................................................................................................................... 64  
7 of 10  
VMDS-10106 Revision 4.1  
December 2006  
10  
VSC8221  
Data Sheet  
23  
PHY Register Set ........................................................................................................................................................... 65  
23.1 PHY Register Names and Addresses ................................................................................................ 65  
23.2 Mii Register Descriptions .................................................................................................................... 67  
23.2.1  
23.2.2  
23.2.3  
23.2.4  
23.2.5  
23.2.6  
23.2.7  
23.2.8  
23.2.9  
Register 0 (00h) – Mode Control Register ...........................................................................................67  
Register 1 (01h) – Mode Status Register ............................................................................................69  
Register 2 (02h) – PHY identifier Register #1 ....................................................................................70  
Register 3 (03h) – PHY identifier Register #2 .....................................................................................71  
Register 4 (04h) – Auto-Negotiation Advertisement Register ............................................................71  
Register 5 (05h) – Auto-Negotiation Link Partner Ability Register ....................................................72  
Register 6 (06h) – Auto-Negotiation Expansion Register ..................................................................73  
Register 7 (07h) – Auto-Negotiation Next-Page Transmit Register ...................................................74  
Register 8 (08h) – Auto-Negotiation Link Partner Next-Page Receive Register ..............................75  
23.2.10 Register 9 (09h) – 1000BASE-T Control Register .............................................................................76  
23.2.11 Register 10 (0Ah) – 1000BASE-T Status Register #1 .......................................................................78  
23.2.12 Register 11 (0Bh) – Reserved Register ...............................................................................................79  
23.2.13 Register 12 (0Ch) – Reserved Register ...............................................................................................80  
23.2.14 Register 13 (0Dh) – Reserved Register ...............................................................................................80  
23.2.15 Register 14 (0Eh) – Reserved Register ...............................................................................................80  
23.2.16 Register 15 (0Fh) – 1000BASE-T Status Register #2 .......................................................................80  
23.2.17 Register 16 (10h) – Reserved ..............................................................................................................81  
23.2.18 Register 17 (11h) – Reserved ..............................................................................................................81  
23.2.19 Register 18 (12h) – Bypass Control Register ......................................................................................81  
23.2.20 Register 19 (13h) – Reserved .............................................................................................................. 83  
23.2.21 Register 20 (14h) – Reserved ..............................................................................................................84  
23.2.22 Register 21 (15h) – Reserved ..............................................................................................................84  
23.2.23 Register 22 (16h) – Control & Status Register ....................................................................................84  
23.2.24 Register 23 (17h) – PHY Control Register #1 .....................................................................................86  
23.2.25 Register 24 (18h) – PHY Control Register #2 .....................................................................................87  
23.2.26 Register 25 (19h) – interrupt Mask Register ........................................................................................88  
23.2.27 Register 26 (1Ah) – interrupt Status Register ......................................................................................90  
23.2.28 Register 27 (1Bh) – LED Control Register ..........................................................................................92  
23.2.29 Register 28 (1Ch) – Auxiliary Control and Status Register ................................................................94  
23.2.30 Register 29 (1Dh) – Reserved ..............................................................................................................96  
23.2.31 Register 30 (1Eh) - MAC interface Clause 37 Auto-Negotiation Control and Status .......................96  
23.2.32 Register 31 (1Fh) – Extended Page Access .......................................................................................98  
23.3 Extended Mii Registers ....................................................................................................................... 98  
23.3.1  
23.3.2  
23.3.3  
23.3.4  
23.3.5  
23.3.6  
23.3.7  
23.3.8  
23.3.9  
Register 16E (10h) - Reserved .............................................................................................................98  
Register 17E (11h) - Serdes Control Register .....................................................................................98  
Register 18E (12h) - Reserved .............................................................................................................99  
Register 19E (13h) - SerDes Control # 2 .............................................................................................99  
Register 20E (14h) - Extended PHY Control Register #3 ................................................................100  
Register 21E (15h) - EEPROM interface Status and Control Register ...........................................101  
Register 22E (16h) - EEPROM Data Read/Write Register ..............................................................102  
Register 23E (17h) - Extended PHY Control Register #4 ................................................................103  
Register 24E (18h) - Reserved ...........................................................................................................103  
23.3.10 Register 25E (19h) - Reserved ...........................................................................................................104  
8 of 10  
VMDS-10106 Revision 4.1  
December 2006  
10  
VSC8221  
Data Sheet  
23.3.11 Register 26E (1Ah) - Reserved ..........................................................................................................104  
23.3.12 Register 27E (1Bh) - Reserved ..........................................................................................................104  
23.3.13 Register 28E (1Ch) - Reserved ..........................................................................................................104  
23.3.14 Register 29E (1Dh) - 1000BASE-T Ethernet Packet Generator (EPG) Register #1 ..................... 105  
23.3.15 Register 30E (1Eh) - 1000BASE-T Ethernet Packet Generator Register #2 .................................106  
24  
Electrical Specifications ............................................................................................................................................ 107  
24.1 Absolute Maximum Ratings .............................................................................................................. 107  
24.2 Recommended Operating Conditions .............................................................................................. 107  
24.3 Thermal Application Data ................................................................................................................. 108  
24.4 Package Thermal Specifications - 100 TFBGA ................................................................................ 109  
24.5 Current and Power Consumption Estimates .................................................................................... 109  
25  
26  
DC Specifications ....................................................................................................................................................... 114  
25.1 Digital Pins (VDDiO = 3.3 V) ............................................................................................................. 114  
25.2 Digital Pins (VDDiO = 2.5 V) ............................................................................................................. 114  
25.3 LED Output Pins (LED[2:0]) ............................................................................................................. 115  
Clocking Specifications ............................................................................................................................................. 116  
26.1 Reference Clock Option ................................................................................................................... 116  
26.2 Crystal Option ................................................................................................................................... 116  
27  
28  
SerDes Specifications ................................................................................................................................................ 117  
System Timing Specifications .................................................................................................................................. 118  
28.1 JTAG Timing ..................................................................................................................................... 118  
28.2 SMi Timing ........................................................................................................................................ 119  
28.3 MDiNT Timing ................................................................................................................................... 120  
28.4 Serial LED_CLK and LED_DATA Timing ......................................................................................... 120  
28.5 REFCLK Timing ................................................................................................................................ 121  
28.6 CLKOUT and CLKOUTMiCRO Timing ............................................................................................. 122  
28.7 Reset Timing .................................................................................................................................... 123  
29  
Packaging Specifications .......................................................................................................................................... 124  
29.1 100-Ball 9 × 9mm TFBGA Mechanical Specification ........................................................................ 124  
29.2 Package Moisture Sensitivity ............................................................................................................ 124  
30  
31  
Ordering information .................................................................................................................................................. 125  
30.1 Devices ............................................................................................................................................. 125  
Design Guidelines ....................................................................................................................................................... 126  
31.1 Required PHY Register Write Sequence .......................................................................................... 126  
31.2 interoperability with intel 82547Ei Gigabit Ethernet MAC+PHY iC ................................................... 126  
31.3 SerDes Jitter ..................................................................................................................................... 126  
31.4 SGMii 100BASE-TX Corruption of Packets with Odd Preambles .................................................... 127  
9 of 10  
VMDS-10106 Revision 4.1  
December 2006  
10  
VSC8221  
Data Sheet  
31.5 SGMii 100BASE-TX Corruption of Packets with no ESDs ............................................................... 127  
31.6 Software Reset Time ........................................................................................................................ 128  
31.7 Reducing EMi ................................................................................................................................... 128  
31.8 Clause 40 Auto MDi/MDi-X interoperability Testing ......................................................................... 129  
31.9 10BASE-T HDX issue with iXiA Test Suite ....................................................................................... 129  
31.10 100BASE-FX initialization Script ...................................................................................................... 129  
32  
33  
Product Support .......................................................................................................................................................... 133  
32.1 Available Documents and Application Notes .................................................................................... 133  
Document History and Notices ................................................................................................................................ 134  
10 of 10  
VMDS-10106 Revision 4.1  
December 2006  
10  
VSC8221  
Data Sheet  
Figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
VSC8221 Block Diagram........................................................................................................................................ 3  
100 Ball TFBGA Package Ball Diagram ............................................................................................................. 14  
Signal Type Descriptions ..................................................................................................................................... 15  
System Schematic - SGMii/802.3z SerDes MAC to 1000Mbps CAT5 Media PHY Operating Mode ............ 27  
System Schematic - 100Mbps Fiber Media implementation............................................................................. 28  
Twisted Pair interface........................................................................................................................................... 29  
Data Validity [D] .................................................................................................................................................... 34  
Start [S] and Stop [T] Definition ........................................................................................................................... 34  
Acknowledge (by Receiver) [A] ........................................................................................................................... 34  
Figure 10. Acknowledge (by Host) [H] .................................................................................................................................. 34  
Figure 11. No Acknowledge (by Host) [N] ............................................................................................................................ 35  
Figure 12. MDiO Read Frame............................................................................................................................................... 39  
Figure 13. MDiO Write Frame ............................................................................................................................................... 40  
Figure 14. Logical Representation of MDiNT Pin................................................................................................................. 40  
Figure 15. Test Access Port and Boundary Scan Architecture............................................................................................ 44  
Figure 16. Enhanced ActiPHY State Diagram...................................................................................................................... 47  
Figure 17. in-line Powered Ethernet Switch Diagram.......................................................................................................... 49  
Figure 18. Far-end Loopback Block Diagram ...................................................................................................................... 51  
Figure 19. Near-end Loopback Block Diagram.................................................................................................................... 52  
Figure 20. Connector Loopback............................................................................................................................................ 52  
Figure 21. EEPROM interface Connections......................................................................................................................... 58  
Figure 22. PHY Startup and initialization Sequence ............................................................................................................ 61  
Figure 23. Extended Page Register Diagram ...................................................................................................................... 63  
Figure 24. JTAG interface AC Timing................................................................................................................................... 118  
Figure 25. SMi AC Timing..................................................................................................................................................... 119  
Figure 26. LED_CLK and LED_DATA Output AC Timing.................................................................................................. 120  
Figure 27. REFCLK AC Timing ........................................................................................................................................... 121  
Figure 28. CLKOUT AC Timing........................................................................................................................................... 122  
Figure 29. CLKOUTMiCRO AC Timing .............................................................................................................................. 122  
Figure 30. RESET AC Timing.............................................................................................................................................. 123  
Figure 31. 100-Ball 9 × 9mm TFBGA Mechanical Specification....................................................................................... 124  
Figure 32. SGMii Rx Path from the PHY to the MAC ........................................................................................................ 127  
11 of 11  
VMDS-10106 Revision 4.1  
11  
December 2006  
VSC8221  
Data Sheet  
Tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Specifications and Documentation ........................................................................................................ 4  
Data Sheet Conventions ........................................................................................................................ 5  
Signal Type Descriptions ..................................................................................................................... 15  
Configuration and Control Signals ......................................................................................................16  
System Clock interface Signals (SCi) ................................................................................................. 17  
Regulator Control and Analog Bias Signals ....................................................................................... 18  
JTAG Access Port ................................................................................................................................ 19  
Serial Management interface Signals ................................................................................................. 20  
EEPROM interface Signals ................................................................................................................. 21  
Table 10. LED interface Signals ........................................................................................................................... 22  
Table 11. Serial MAC interface Signals ............................................................................................................... 22  
Table 12. Twisted Pair interface Signals ............................................................................................................. 24  
Table 13. Power Supply and Ground Connections ............................................................................................ 25  
Table 14. No Connects ......................................................................................................................................... 25  
Table 15. Power Supply and Associated Functional Signals ............................................................................. 26  
Table 16. MDi Wiring Pair Combinations ............................................................................................................ 30  
Table 17. SMi Pin Descriptions - MSA Mode ......................................................................................................33  
Table 18. SMi Pin Descriptions - iEEE Mode ......................................................................................................38  
Table 19. SMi Frame Format ............................................................................................................................... 39  
Table 20. LED Function Assignments ................................................................................................................. 41  
Table 21. Parallel LED Functions ........................................................................................................................ 41  
Table 22. LED Output Options ............................................................................................................................. 43  
Table 23. JTAG Device identification Register Description ................................................................................ 44  
Table 24. JTAG interface instruction Codes ........................................................................................................ 45  
Table 25. CMODE Pull-up/Pull-down Resistor Values ....................................................................................... 53  
Table 26. CMODE Bit to PHY Operating Condition Parameter Mapping ......................................................... 54  
Table 27. PHY Operating Condition Parameter Description .............................................................................. 54  
Table 28. Configuration EEPROM Data Format ................................................................................................ 58  
Table 29. PHY Operating Modes ......................................................................................................................... 62  
Table 30. Register Set Nomenclature ................................................................................................................. 64  
Table 31. PHY Register Bit Types ....................................................................................................................... 64  
12 of 13  
VMDS-10106 Revision 4.1  
13  
December 2006  
VSC8221  
Data Sheet  
Table 32. PHY Register Names and Addresses ................................................................................................. 65  
Table 33. PHY Operating Modes ......................................................................................................................... 86  
Table 34. Absolute Maximum Ratings ...............................................................................................................107  
Table 35. Recommended Operating Conditions ..............................................................................................107  
Table 36. Thermal Application Data ...................................................................................................................108  
Table 37. Thermal Resistances .........................................................................................................................108  
Table 38. Thermal Specifications - 100-Ball TFBGA 9 × 9mm package .........................................................109  
Table 39. VDDiO at 3.3 V, SerDes-Cat-5, SCLK Disabled ..............................................................................109  
Table 40. VDDiO at 3.3 V, SGMii-Cat-5 (1000 Mbps), SCLK Disabled .......................................................... 110  
Table 41. VDDiO at 3.3 V, SGMii-Cat-5 (100 Mbps), SCLK Disabled ............................................................ 110  
Table 42. VDDiO at 3.3 V, SGMii-Cat-5 (10 Mbps), SCLK Disabled ................................................................111  
Table 43. VDDiO at 3.3 V SerDes-Cat-5, SCLK Enabled .................................................................................111  
Table 44. VDDiO at 3.3 V SerDes-Cat-5, SFP Mode On ................................................................................. 112  
Table 45. VDDiO at 3.3V SGMii-100BASE-FX, SFP Mode Off ....................................................................... 112  
Table 46. VDDiO at 3.3 V SerDes-Cat-5, SFP Mode On, Regulator On ........................................................ 112  
Table 47. Digital Pins Specifications (VDDiO = 3.3 V) ..................................................................................... 114  
Table 48. Digital Pins Specifications (VDDiO = 2.5 V) ..................................................................................... 114  
Table 49. LED Output Pins Specification .......................................................................................................... 115  
Table 50. Reference Clock Option Specifications ............................................................................................ 116  
Table 51. Crystal Option Specifications ............................................................................................................. 116  
Table 52. SerDes Specifications ........................................................................................................................ 117  
Table 53. JTAG Timing Specifications ............................................................................................................... 118  
Table 54. SMi Timing Specifications .................................................................................................................. 119  
Table 55. MDiNT Timing Specifications .............................................................................................................120  
Table 56. Serial LED_CLK and LED_DATA Timing Specifications .................................................................120  
Table 57. REFCLK Timing Specifications .........................................................................................................121  
Table 58. CLKOUT and CLKOUTMiCRO Timing Specifications ....................................................................122  
Table 59. RESET AC Timing Specification .......................................................................................................123  
Table 60. Part Number for the VSC8221 ..........................................................................................................125  
Table 61. Software Reset Times ........................................................................................................................128  
13 of 13  
VMDS-10106 Revision 4.1  
13  
December 2006  
VSC8221  
Data Sheet  
8 PACKAGE PIN ASSIGNMENTS & SIGNAL DESCRIPTIONS  
8.1 Package Ball Diagram  
The following package ball diagram shows the view from the top of the package with the underlying BGA ball positions  
superimposed:  
1
2
3
4
5
6
7
8
9
10  
A
B
C
D
E
F
G
H
J
K
0.8 mm Ball Pitch (9 x 9 mm body size)  
(Top View)  
Figure 2. 100 Ball TFBGA Package Ball Diagram  
14 of 26  
VMDS-10106 Revision 4.1  
December 2006  
26  
VSC8221  
Data Sheet  
8.2 Ball Locations and Signal Names  
1
2
3
4
5
6
7
8
9
10  
MODDEF0/  
CLKOUT  
RESET  
LED1  
LED2  
CMODE0  
TXVPD  
TXVPC  
TXVPB  
TXVPA  
XTAL2  
A
B
C
D
E
F
A
RXLOS/  
SiGDET  
XTAL1/  
B
TDO  
TCK  
NC  
LED0  
TDi  
CMODE3  
CMODE1  
CMODE2  
VSS  
TXVND  
VSS  
TXVNC  
VSS  
TXVNB  
VDD33A  
VSS  
TXVNA  
VDDREG  
VDD33A  
VDD12A  
REFCLK  
VDDiOC-  
TRL  
NC  
NC  
NC  
NC  
NC  
REGEN  
C
TMS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
REGOUT  
D
NC  
TRST  
VDD12  
VDD12  
VSS  
VSS  
VSS  
VSS  
REFREXT  
E
EECLK/  
PLLMODE  
NC  
VSS  
VSS  
VSS  
VDD12  
REFFiLT  
F
TXDiS/  
SRESET  
NC  
VSS  
VSS  
VSS  
EEDAT  
MDiNT  
VDD12  
G
G
CLKOUTMi-  
CRO/OSC-  
VDDiOMi-  
CRO  
NC  
NC  
NC  
NC  
NC  
NC  
VDDiO  
NC  
NC  
NC  
VSS  
NC  
VDD12  
SCLKP  
H
H
DiS  
MODDEF2/  
MDiO  
MODDEF1/  
SCLKN  
J
J
MDC  
NC  
NC  
NC  
NC  
NC  
NC  
RDN  
RDP  
TDP  
TDN  
K
1
2
3
4
5
6
7
8
9
10  
Figure 3. Signal Type Descriptions  
8.3 Signal Type Descriptions  
Table 3. Signal Type Descriptions  
Symbol  
Signal Type  
Description  
i
Digital input  
Standard digital input signal. No internal pull-up or pull-down.  
Standard digital input. includes on-chip 100k pull-up to VDDiO,  
iPU  
Digital input with Pull-up  
Digital input with Pull-up  
VDDiOMiCRO,VDDiOCTRL or the VDD33A supply. Refer to Section 15: “Power  
Supply and Associated Functional Signals” for details.  
Standard digital input. includes on-chip 100k pull-up to  
VDDiO,VDDiOMiCRO,VDDiOCTRL or the TXVDD supply. Refer to  
Section 15: “Power Supply and Associated Functional Signals” for details. This  
input pin is 5v tolerant.  
iPU5V  
iPD  
Digital input with Pull-down Standard digital input. includes on-chip 100k pull-down to GND.  
Standard digital input. includes on-chip 100k pull-down to GND. This input pin is 5V  
iPD5V  
Digital input with Pull-down  
tolerant.  
SerDes differential input pair with 100or 150differential terminations. Pins  
Differential input Pair  
iDiFF  
should be AC-coupled with external 0.01µF capacitors.  
15 of 26  
VMDS-10106 Revision 4.1  
December 2006  
26  
VSC8221  
Data Sheet  
Table 3. Signal Type Descriptions (continued)  
Symbol  
Signal Type  
Description  
O
Digital Output  
Standard digital output signal.  
50integrated (on-chip) source series terminated, digital output signal. Used  
impedance Controlled Output primarily for timing-sensitive, 125MHz clock output pins, in addition to high speed  
manufacturing test mode pins.  
OZC  
SerDes differential output pair, with on-chip 100or 150differential terminations.  
Differential Output Pair  
ODiFF  
i/O  
Pins should be AC-coupled with external 0.01µF capacitors.  
Digital Bidirectional  
Digital Bidirectional  
Tristate-able, digital input and output signal.  
Tristate-able, digital input and output signal. includes on-chip 100k pull-up to  
VDDiO,VDDiOMiCRO,VDDiOCTRL or the VDD33A supply. Refer to  
Section 15: “Power Supply and Associated Functional Signals” for details.  
iPU/O  
Tristate-able, digital input and output signal. includes on-chip 100k pull-down to  
GND.  
i
PD/O  
OD  
Digital Bidirectional  
Open drain digital output signal. Must be pulled to VDDiOMiCRO through an  
external pull-up resistor.  
Digital Open Drain Output  
Analog Differential  
Analog Bias  
ADiFF  
ABiAS  
iA  
Analog differential signal pair for twisted pair interface.  
Analog bias or reference signal. Must be tied to external resistor and/or capacitor  
bias network, as shown in Section 9: “System Schematics”.  
Analog input  
Analog input for sensing variable voltage levels.  
Open source digital output signal. Must be pulled to GND through an external pull-  
down resistor.  
OS  
Open Source  
P
G
Power Supply  
GND  
Power supply connection. Must be connected to specified power supply plane.  
Ground Connection. Must be connected to ground.  
NC  
No Connect  
No connect signal. Must be left floating.  
8.4 Detailed Pin Descriptions  
Table 4. Configuration and Control Signals  
100 TFBGA  
Signal Name  
Type  
Description  
Ball  
Hardware Chip Mode Select.  
CMODE3  
CMODE2  
CMODE1  
CMODE0  
The CMODE inputs are used for hardware configuration of the various operating  
modes of the PHY. Each pin has multiple settings, each of which is established by  
an external 1% resistor tied to GND or VDD33A. See “Hardware Configuration  
Using CMODE pins,” page 53 for details on configuring the PHY with the CMODE  
pins.  
iA  
B4,C5,B5,A5  
Hardware Chip Reset.  
RESET is an active low input. When asserted, it powers down all of the internal  
reference voltages and the PLLs. it resets all internal logic, including the DSPs and  
the Mii Management Registers.  
A2  
RESET  
i
Hardware reset is distinct from soft reset which only resets the port to accept new  
configuration based on register settings.  
16 of 26  
VMDS-10106 Revision 4.1  
December 2006  
26  
VSC8221  
Data Sheet  
Table 4. Configuration and Control Signals (continued)  
100 TFBGA  
Signal Name  
Type  
Description  
Transmit Disable or Software Reset.  
Ball  
When asserted, it places the PHY in a low power state, which includes disabling the  
SerDes interface. Although the device is powered down, non-volatile Serial  
Management interface registers retain their values.  
TXDiS/  
SRESET  
iPU  
G8  
TXDiS and SRESET are simply two names for the same function. The assertion  
state (active high or low respectively) of this input pin is determined by the value of  
Mii Register 21E.15 'SFP MODE' set at startup using Hardware Configuration or  
using the EEPROM interface. Refer to “Hardware Configuration Using CMODE  
pins,” page 53 and “EEPROM interface,” page 57 for details on configuration at  
startup.  
Table 5. System Clock interface Signals (SCi)  
100  
TFBGA  
BALL  
Signal Name  
Type  
Description  
XTAL1 - Crystal Oscillator input.  
Enabled by pulling OSCDiS (internal Oscillator Disabled) high, a 25MHz parallel  
resonant crystal, with a +/- 50ppm frequency tolerance, should be connected  
across XTAL1 and XTAL2. 33pf capacitors should be connected from XTAL1 and  
XTAL2 to ground when using AT cut-type crystal rated for a parallel capacitance  
of 20pf. PLLMODE should be left floating (or pulled low) on reset when a 25MHz  
crystal is used.  
XTAL1/  
REFCLK  
B10  
i
REFCLK - PHY Reference Clock input.  
The reference input clock can either be a 25MHz (PLLMODE is low) or 125MHz  
(PLLMODE is high) reference clock, with a +/-100ppm frequency tolerance. See  
EECLK / PLLMODE pin description for more details.  
Crystal Output.  
25MHz parallel resonant crystal oscillator output. 33pF capacitors should be  
connected from both XTAL1 and XTAL2 to ground when using AT cut-type crystal  
rated for a parallel capacitance of 20pf. PLLMODE should be left floating (or tied  
low) on reset when using the 25MHz crystal.  
A10  
XTAL2  
O
This output can be left floating if driving XTAL1/REFCLK with a reference clock.  
CLKOUTMiCRO - Clock Output.  
This is a 4MHz (default) or a 125MHz output clock depending on the value of Mii  
Register 20E.8. The voltage levels of the clock are based on the VDDiOMiCRO  
power supply.  
CLKOUTMi-  
CRO/ OSCDiS  
iPU/O  
H10  
OSCDiS - Active Low on-chip Oscillator Disable input.  
This input is sampled during the device power-up sequence or on assertion of  
RESET. When sampled high, the PHY enables the internal on-chip oscillator  
allowing operation with a 25MHz crystal. When sampled low, the PHY’s oscillator  
is turned off and the PHY must be supplied with an external 25MHz or 125MHz  
clock on the REFCLK pin.  
17 of 26  
VMDS-10106 Revision 4.1  
December 2006  
26  
VSC8221  
Data Sheet  
Table 5. System Clock interface Signals (SCi) (continued)  
100  
TFBGA  
BALL  
Signal Name  
Type  
Description  
The functionality of this signal pin depends on the value for Mii Register 21E.15  
‘SFP Mode’ which is set at startup. Refer to “Hardware Configuration Using  
CMODE pins,” page 53, and “EEPROM interface,” page 57 for details on  
configuration at startup.  
MODDEF0 – Active Low PHY Ready indicator Output (valid in SFP Mode,  
when Mii Register 21E.15 = 1).  
This output is driven high immediately on PHY power-up or reset. This signal is  
asserted low after the PHY startup sequence has completed and the PHY has  
enabled access to the EEPROM connected to the EEPROM interface through the  
Serial Management interface. The minimum time this signal is high before being  
driven low is 10ms. The maximum time depends on the startup information stored  
in the EEPROM. Refer to “PHY Startup and initialization,” page 61 and “EEPROM  
interface,” page 57 for details.  
MODDEF0/  
CLKOUT  
A1  
O
CLKOUT – 125MHz Clock Output  
(valid in iEEE Mode, when Mii Register 21E.15 = 0).  
The PHY drives a 125MHz clock output after the PHY startup sequence has  
completed. This clock can be disabled by clearing Mii Register 18.0. The voltage  
levels of this clock are determined by the VDDiO power supply.  
Table 6. Regulator Control and Analog Bias Signals  
100 TFBGA  
Signal Name  
REFREXT  
REFFiLT  
Type  
ABiAS  
ABiAS  
Description  
BALL  
REFREXT - Reference External Resistor.  
Bias pin connects through external 2k(1%) resistor to analog ground.  
E10  
REFFiLT - Reference Filter.  
Filter internal reference through external 0.1µF (10%) capacitor to analog ground.  
F10  
C10  
REGEN- Regulator Enable.  
Tie to VDD33A (3.3v) to enable the internal 1.2v regulator for normal chip  
operation.  
ABiAS  
REGEN  
REGOUT - Regulator Supply Output.  
This is the output of the on-chip switching regulator, which generates the primary  
1.2v power supply voltage VDD12. REGOUT must be connected to an off-chip  
“LC” filter. See Section 9: “System Schematics” for more information.  
ABiAS  
D10  
REGOUT  
18 of 26  
VMDS-10106 Revision 4.1  
December 2006  
26  
VSC8221  
Data Sheet  
Table 7. JTAG Access Port  
100 TFBGA  
Signal Name  
BALL  
Type  
Description  
JTAG Test Data Serial input Data.  
Serial test pattern data is scanned into the device on this input pin, which is  
sampled with respect to the rising edge of TCK.  
iPU5V  
C3  
B2  
D3  
TDi  
This pin should be tied high to VDDiOCTRL in designs that do not require JTAG  
functionality.  
JTAG Test Data Serial Output Data.  
Serial test data from the PHY is driven out of the device on the falling edge of  
TCK. This pin should be left floating during normal chip operation.  
OZC  
TDO  
TMS  
JTAG Test Mode Select.  
This input pin, sampled on the rising edge of TCK, controls the TAP (Test Access  
Port) controller’s 16-state, instruction state machine.  
iPU5V  
This pin should be tied high to VDDiOCTRL in designs that do not require JTAG  
functionality.  
JTAG Test Clock.  
This input pin is the master clock source used to control all JTAG test logic in the  
device.  
iPU5V  
C2  
TCK  
This pin should be pulled down with a 2kpull-down resistor in designs that  
require JTAG functionality.  
This pin should be tied low in designs that do not require JTAG functionality.  
JTAG Reset.  
This active low input pin serves as an asynchronous reset to the JTAG TAP  
controller’s state machine. As required by the JTAG standard, this pin includes an  
integrated on-chip pull-up (to VDDiOCTRL) resistor. Because of the internal  
pull-up, if the JTAG controller on the printed circuit board does not utilize the  
TRST signal, then the device will still function correctly when the TRST pin is left  
unconnected on the board.  
iPU5V  
E3  
TRST  
if the JTAG port of the PHY is not used on the printed circuit board, then this pin  
should be pulled down with a 2kpull-down resistor or a falling edge must be  
provided to this pin after PHY power up.  
19 of 26  
VMDS-10106 Revision 4.1  
December 2006  
26  
VSC8221  
Data Sheet  
Table 8. Serial Management interface Signals  
100 TFBGA  
Signal Name  
Type  
Description  
BALL  
The Functionality of this pin is determined by the value of Mii Register 21E.15  
‘SFP MODE’ set at startup using CMODE Hardware Configuration or via the  
EEPROM interface.  
MODDEF1 - Serial MSA Clock (valid in SFP Mode, when Mii Register 21E.15  
= 1).  
MODDEF1 is the clock input of the two-wire serial interface for accessing the  
PHY’s registers or the EEPROM connected to the EEPROM interface using the  
protocol specified in the MSA specification. Although typically operated at  
100kHz, MODDEF1 can be operated at a maximum of 1MHz.  
MODDEF1/  
MDC  
J10  
i
MDC - Management Data Clock (valid in iEEE Mode, when Mii Register  
21E.15 = 0).  
MDC is the clock input of the two wire serial interface for accessing the PHY’s  
registers or the EEPROM connected to the EEPROM interface using the Serial  
Management interface protocol specified in the iEEE 802.3 specification.  
Although typically operated at less than 100kHz due to frequency limitations of  
the EEPROM used with the PHY, the PHY registers can be accessed at a  
maximum frequency of 1MHz.  
The Functionality of this pin is determined by the value of Mii Register 21E.15  
‘SFP MODE’ set at startup using CMODE Hardware Configuration or via the  
EEPROM interface.  
MODDEF2 - Serial i/O Data (valid in SFP Mode, when Mii Register 21E.15 =  
1).  
MODDEF2 is the data line of the two-wire serial interface for accessing the PHY’s  
registers or the EEPROM connected to the EEPROM interface using the protocol  
specified in the MSA specification. This pin normally requires a 1.5kto 4.7kΩ  
pull-up resistor to VDDiOMiCRO at the Station Manager. The value of the pull-up  
resistor depends on the MODDEF1 frequency and the capacitive load on the  
MODDEF2 line.  
MODDEF2/  
MDiO  
J9  
i/O  
MDiO - Serial i/OP Data (valid in iEEE Mode, when Mii Register 21E.15 = 0).  
MDiO is the data line of the two-wire serial interface for accessing the PHY’s  
registers or the EEPROM connected to the EEPROM interface using the Serial  
Management interface protocol specified in the iEEE 802.3 specification. This pin  
normally requires a 1.5kto 4.7kpull-up resistor to VDDiOMiCRO at the  
Station Manager. The value of the pull-up resistor depends on the MDC  
frequency and the capacitive load on the MDiO line.  
20 of 26  
VMDS-10106 Revision 4.1  
December 2006  
26  
VSC8221  
Data Sheet  
Table 8. Serial Management interface Signals (continued)  
100 TFBGA  
Signal Name  
Type  
Description  
BALL  
Management Data interrupt  
MDiNT is asserted whenever there is a change in the operating status of the  
device. This open drain signal indicates a change in the PHY's link operating  
conditions for which a Station Manager must interrogate to determine further  
information. See Mii Register 25 and Mii Register 26 for more information.  
The assertion polarity of MDiNT is determined by the presence of a pull-up or  
pulldown on the MDiNT pin.  
H9  
MDiNT  
OD  
if the MDiNT pin is pulled up to VDDiOMiCRO using a 4.7kΩ το 10kresistor, it  
becomes an active low signal.  
if the MDiNT pin is pulled down using a 4.7kΩ το 10kresistor, then it becomes  
an active high signal.  
Table 9. EEPROM interface Signals  
100 TFBGA  
Signal Name  
Type  
Description  
BALL  
EECLK - EEPROM Clock Output.  
This output is the clock line of the two-wire, MSA compliant, serial EEPROM  
interface. This pin should be connected to the SCL input pin of the AT24 series of  
Atmel EEPROMs. Refer to “EEPROM interface,” page 57 for details.  
PLLMODE - PLL Mode Select input.  
EECLK/  
PLLMODE  
OZC/iPD  
F9  
PLLMODE is sampled during the device power-up sequence or on reset. When  
PLLMODE is high, the PHY expects a 125MHz clock input as the PHY's  
reference clock.  
When low (default), a reference clock of 25MHz is expected at the REFCLK pin  
from either an external crystal or a clock reference. This pin is internally pulled  
down with a 100kresistor.  
EEPROM Serial i/O Data.  
This bidirectional signal is the data line of the two wire, MSA compliant, serial  
EEPROM interface. This pin should be connected to the SDA pin of the AT24  
series of Atmel EEPROMs. Refer to “EEPROM interface,” page 57 for details.  
The PHY determines that an external EEPROM is present by monitoring the  
EEDAT pin at power-up or when RESET is de-asserted. if EEDAT has a 4.7k-  
10kexternal pull-up (to VDDiOMiCRO) resistor, it assumes an EEPROM is  
present. The EEDAT pin can be left floating or grounded to indicate no EEPROM.  
OZC/iPD  
G9  
EEDAT  
21 of 26  
VMDS-10106 Revision 4.1  
December 2006  
26  
VSC8221  
Data Sheet  
Table 10. LED interface Signals  
100  
TFBGA  
BALL  
Signal Name  
Type  
Description  
LED - Direct-Drive LED Outputs.  
After reset, these pins serve as the direct drive, low EMi, LED driver output pins.  
All LEDs pins are active-low and driven at a 3.3V logic-high through the VDD33A  
analog power supply. The function of each LED can be set using hardware  
configuration or via Mii Register 27. Refer “Hardware Configuration Using  
CMODE pins,” page 53 and Mii Register 27 for details.  
LED2  
LED1  
LED0  
OZC  
A4,A3,B3  
Table 11. Serial MAC interface Signals  
100  
TFBGA  
BALL  
Signal  
Name  
Type  
Description  
Transmitter Data Differential input Pair.  
TDP  
TDN  
Differential 1.25Gbaud receiver inputs with register selectable on-chip 100or 150Ω  
differential termination. The TDP and TDN signals should be AC-coupled with external  
0.01µF series capacitors. See Section 9: “System Schematics” for further information.  
iDiFF  
K9,K10  
K8,K7  
Receiver Data Differential Output Pair.  
Differential 1.25 Gbaud transmitter outputs. External 0.01µF AC coupling capacitors  
should be located on the PHY side. The register selectable 100or 150differential  
termination should be placed near the MAC side. For more information, see Section 9.1,  
“System Schematic - SGMii/802.3z SerDes MAC to 1000Mbps CAT5 Media PHY  
Operating Mode” on page 9-27. For more information on adjusting the output swing of  
these pins, see “Register 17E (11h) - Serdes Control Register,” page 98.  
RDP  
RDN  
ODiFF  
SGMii Clock Differential Output Pair.  
This signal pair is a differential 625MHz SGMii clock for the SGMii data in accordance  
with Cisco’s SGMii specification. These pins should be AC-coupled with external 0.01µF  
series capacitors or left unconnected when not used. For more information, see Section  
9.1, “System Schematic - SGMii/802.3z SerDes MAC to 1000Mbps CAT5 Media PHY  
Operating Mode” on page 9-27. For more information on adjusting the output swing of  
these pins, see “Register 17E (11h) - Serdes Control Register,” page 98.  
SCLKP  
SCLKN  
ODiFF  
J7,J8  
22 of 26  
VMDS-10106 Revision 4.1  
December 2006  
26  
VSC8221  
Data Sheet  
Table 11. Serial MAC interface Signals (continued)  
100  
TFBGA  
BALL  
Signal  
Name  
Type  
Description  
The functionality of this signal pin depends on the value of Mii Register 21E.15 ‘SFP  
Mode’ which is set at startup. Refer to “Hardware Configuration Using CMODE pins,”  
page 53 and “EEPROM interface,” page 57 for details on configuration at startup.  
RXLOS - Receiver Loss of Signal Output (valid in SFP Mode, when Mii Register  
21E.15 = 1).  
This active high signal is asserted when the Cat-5 link goes down. The pulse width of the  
RXLOS signal is configurable. Refer to Mii Register 30.1:0 for details.  
SiGDET - SerDes Signal Detect (i/O) (valid in iEEE Mode, when Mii Register 21E.15  
= 0).  
SiGDET can be configured as an input or output and can be configured to function as  
active low or active high at startup using hardware configuration or the EEPROM  
interface. Refer to “Hardware Configuration Using CMODE pins,” page 53 or “EEPROM  
interface,” page 57 for details on configuration at startup.  
RXLOS/  
SiGDET  
B1  
i/O  
SiGDET as input:  
When used as an input, the SiGDET signal is meant to be connected to the signal detect  
output of the fiber optic transceiver. if SiGDET is high, this indicates receive activity on the  
fiber optic transceiver.  
if SiGDET is not used as an input, the PHY internally generates the signal detect function,  
from the incoming data on the TDP and TDN signal pins.  
SiGDET as Output:  
For Serial MAC to CAT5 Media PHY Operating modes, SiGDET is asserted if a valid  
CAT5 link has been established.  
23 of 26  
VMDS-10106 Revision 4.1  
December 2006  
26  
VSC8221  
Data Sheet  
Table 12. Twisted Pair interface Signals  
100  
TFBGA  
BALL  
Signal  
Name  
Type  
Description  
TX/RX Channel “A” Positive Signal.  
Positive differential signal connected to the positive primary side of the transformer. This  
signal forms the positive signal of the “A” data channel. in all three speeds, this signal  
generates the secondary side signal, normally connected to RJ-45 pin 1. in 100BASE-FX  
mode, it is connected instead to the positive SFP transmit data signal (SFP_TD+). See  
Section 9: “System Schematics” for details.  
ADiFF  
A9  
B9  
TXVPA  
TX/RX Channel “A” Negative Signal.  
Negative differential signal connected to the negative primary side of the transformer.  
This signal forms the negative signal of the “A” data channel. in all three speeds, this  
signal generates the secondary side signal, normally connected to RJ-45 pin 2. in  
100BASE-FX mode, it is connected instead to the negative SFP transmit data signal  
ADiFF  
TXVNA  
(SFP_TD–). See Section 9: “System Schematics” for details.  
TX/RX Channel “B” Positive Signal.  
Positive differential signal connected to the positive primary side of the transformer. This  
signal forms the positive signal of the “B” data channel. in all three speeds, this signal  
generates the secondary side signal, normally connected to RJ-45 pin 3. in 100BASE-FX  
mode, it is connected instead to the positive SFP receive data signal (SFP_RD+). See  
Section 9: “System Schematics” for details.  
ADiFF  
A8  
B8  
TXVPB  
TXVNB  
TX/RX Channel “B” Negative Signal.  
Negative differential signal connected to the negative primary side of the transformer.  
This signal forms the negative signal of the “B” data channel. in all three speeds, this  
signal generates the secondary side signal, normally connected to RJ-45 pin 6. in  
100BASE-FX mode, it is connected instead to the negative SFP receive data signal  
(SFP_RD–). See Section 9: “System Schematics” for details.  
ADiFF  
TX/RX Channel “C” Positive Signal.  
Positive differential signal connected to the positive primary side of the transformer. This  
signal forms the positive signal of the “C” data channel. in 1000Mb mode, this signal  
generates the secondary side signal, normally connected to RJ-45 pin 4 (not used in 10M/  
100M modes). See Section 9: “System Schematics” for details.  
ADiFF  
ADiFF  
ADiFF  
ADiFF  
A7  
B7  
A6  
B6  
TXVPC  
TXVNC  
TXVPD  
TXVND  
TX/RX Channel “C” Negative Signal.  
Negative differential signal connected to the negative primary side of the transformer.  
This signal forms the negative signal of the “C” data channel. in 1000Mb mode, this signal  
generates the secondary side signal, normally connected to RJ-45 pin 5 (not used in the  
10M/100M modes). See Section 9: “System Schematics” for details.  
TX/RX Channel “D” Positive Signal.  
Positive differential signal connected to the positive primary side of the transformer. This  
signal forms the positive signal of the “D” data channel. in 1000Mb mode, this signal  
generates the secondary side signal, normally connected to RJ-45 pin 7 (not used in the  
10M/100M modes). See Section 9: “System Schematics” for details.  
TX/RX Channel “D” Negative Signal.  
Negative differential signal connected to the negative primary side of the transformer.  
This signal forms the negative signal of the “D” data channel. in 1000Mb mode, this signal  
generates the secondary side signal, normally connected to RJ-45 pin 8 (not used in the  
10M/100M modes). See Section 9: “System Schematics” for details.  
24 of 26  
VMDS-10106 Revision 4.1  
December 2006  
26  
VSC8221  
Data Sheet  
Table 13. Power Supply and Ground Connections  
100  
TFBGA  
BALL  
Nominal  
Supply  
Voltage  
(V)  
Supply  
Name  
Recommended PCB  
Power Plane  
Type  
Description  
Digital i/O Power Supply Pins  
3.3V or  
2.5V  
Power for the RXLOS/SiGDET and  
MODDEF0/CLKOUT pins  
VDDiO1  
H4  
V+iO  
V+iO  
V+iO  
P
P
P
3.3V or  
2.5V  
VDDiOMiCRO1  
H8  
Power for SMi and EEPROM interface  
Power for JTAG i/O  
3.3V or  
2.5V  
VDDiOCTRL1  
C4  
Digital Core Power Supply Pins  
G10,F3,G3,  
VDD12  
Power for internal digital logic, PLL and  
SerDes/SGMii i/O Power  
V+12  
P
P
1.2V  
F8,H7  
Analog Power Pins  
Power for MDi, CMODE, PLL, and LED  
blocks  
C8,D9  
VDD33A  
V+33A  
3.3V  
C9  
E9  
VDDREG  
VDD12A  
V+33REG  
V+12A  
P
P
3.3V  
1.2V  
Power for on-chip switching regulator  
Power for internal PLL and ADC  
Ground Pins  
D4,D5,D6,  
D7,E4,E5,  
E6,E7,F4,  
F5,F6,F7,  
G4,G5,G6,  
G7,C6,C7,  
D8,E8,H6  
VSS  
GND  
G
0V  
Ground for all blocks  
1
The i/O power supplies on the PHY are separated on the chip itself to facilitate support for different VDDiO supply voltages. These VDDiO  
supplies can be run independently at 2.5V OR 3.3V i/O.  
Table 14. No Connects  
100 TFBGA  
Signal Name  
Type  
Description  
BALL  
C1,D1,E1,  
F1,G1,H1,  
J1,K1,D2,  
E2,F2,G2,  
H2,J2,K2,  
H3,J3,K3,  
J4,K4,H5,  
J5,K5,J6,K6  
NC  
NC  
No Connect - must be left floating  
25 of 26  
VMDS-10106 Revision 4.1  
December 2006  
26  
VSC8221  
Data Sheet  
Table 15. Power Supply and Associated Functional Signals  
Power Sup-  
Nominal Voltages  
ply Pins  
Associated Functional Pins  
RXLOS/SiGDET, MODDEF0/CLKOUT  
VDDiO  
3.3V or 2.5V  
3.3V or 2.5V  
VDDiO-  
MiCRO  
EECLK/PLLMODE, EEDAT, TXDiS/SRESET, MDiNT, MODDEF1/MDC,  
MODDEF2/MDiO, CLKOUTMiCRO/OSCDiS  
VDDiOC-  
TRL  
3.3V or 2.5V  
3.3V  
RESET, TDO, TDi, TMS, TCK, TRST  
LED[2:0], CMODE[3:0], TXVND, TXVPD, TXVNC, TXVPC, TXVNB, TXVPB, TXVNA,  
TXVPA, XTAL2, XTAL1/REFCLK, REFFiLT, REFREXT  
VDD33A  
VDDREG  
VDD12  
3.3v  
1.2V  
1.2V  
REGOUT  
RDP, RDN, TDP, TDN, SCLKP, SCLKN  
VDD12A  
26 of 26  
VMDS-10106 Revision 4.1  
December 2006  
26  
VSC8221  
Data Sheet  
9 SYSTEM SCHEMATICS  
9.1 System Schematic SGMii/802.3z SerDes MAC to 1000Mbps CAT5 Media PHY Operating Mode  
4.7-5.6µH  
….  
100  
or  
100  
or  
100  
or  
150  
150  
150  
10k  
4.7k  
100  
or  
150  
100  
or  
150  
4.7k  
Figure 4. System Schematic SGMii/802.3z SerDes MAC to 1000Mbps CAT5 Media PHY Operating Mode  
27 of 28  
VMDS-10106 Revision 4.1  
December 2006  
28  
VSC8221  
Data Sheet  
9.2 System Schematic 100Mbps Fiber Media implementation  
VDD33  
VDD33  
LINK100/ACTIVITY  
LEDn  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
1
2
Veet  
Tfault  
Veer  
RD-  
PHY_TXVNB  
PHY_TXVPB  
SFP_RD-  
SFP_RD+  
TXVNB  
TXVPB  
SFP_TXFAULT  
SFP_TXDIS  
SFP_SDA  
3
Tdis  
RD+  
Veer  
Vccr  
Vcct  
Veet  
TD+  
TD-  
4
MOD_DEF2  
MOD_DEF1  
MOD_DEF0  
Rate Select  
LOS  
5
SFP_SCL  
6
SFP_PRESENT  
7
PHY_TXVPA  
PHY_TXVNA  
SFP_TD+  
SFP_TD-  
8
TXVPA  
TXVNA  
SFP_RX_LOS  
9
Veer  
10  
Veer  
Veet  
SFP Connector  
VDD33  
1uH  
10uF  
100nF  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
1
2
GND1  
GND2  
GND11  
GND12  
GND13  
GND14  
GND15  
GND16  
GND17  
GND18  
GND19  
GND20  
3
10uF  
100nF  
GND3  
4
TXVPC  
TXVNC  
GND4  
GND5  
5
6
TXVPD  
TXVND  
GND6  
7
1uH  
GND7  
GND8  
8
100nF  
9
GND9  
10  
GND10  
SFP Cage  
VSC8211/VSC8221  
Figure 5. System Schematic 100Mbps Fiber Media implementation  
28 of 28  
VMDS-10106 Revision 4.1  
December 2006  
28  
VSC8221  
Data Sheet  
10 TWISTED PAIR INTERFACE  
The twisted pair interface on the VSC8221 is fully compliant with the iEEE802.3-2000 specification for CAT-5 media. All passive  
components necessary to connect the PHY to an external 1:1 transformer have been integrated into the VSC8221. The  
connection of the twisted pair interface is shown in the following figure:  
VSC8221  
*
TXVPA  
0.1µF  
J1  
RJ-45  
A+  
A-  
TXVNA  
1
2
TXVPB  
0.1µF  
3
6
B+  
B-  
TXVNB  
TXVPC  
4
5
0.1µF  
C+  
C-  
TXVNC  
TXVPD  
7
8
D+  
D-  
0.1µF  
S1  
S2  
TXVND  
75  
75  
75  
75  
PHY Port  
1000pF, 2kV  
* SimpliPHY’d magnetics may be used.  
For information, refer to the SimpliPHY’d Magnetics  
application note.  
Figure 6. Twisted Pair interface  
Unlike other Gigabit PHYs, which do not integrate the line terminations in the PHY, the VSC8221’s twisted pair interface is  
compatible with a wide variety of standard magnetics and RJ-45 modules from common module vendors. Depending upon the  
application (the number of ports, EMi performance requirements such as FCC Class A or B, the type and quality of the  
equipment shielding, and other EMi design practices, for example), the twisted pair interface may be used with standard (12- or  
8-core) magnetics as well as SimpliPHY’d (4-core) magnetics modules available from many module vendors. in addition, this  
interface is also used to provide support for 100Mbps fiber module connection. For more information on the suitability of using  
SimpliPHY’d magentics for a particular design, see the Magnetics Guide, available from the Microsemi Web site.  
10.1 Twisted Pair Auto-Negotiation (iEEE802.3 Clause 28)  
The VSC8221 supports twisted pair auto-negotiation, as defined in iEEE 802.3-2002 clause 28. (However, auto-negotiation is  
not defined by iEEE for the 100BASE-FX mode and is therefore not supported.) This process evaluates the advertised  
capabilities of the local PHY and its link partner to determine the best possible operating mode. in particular, auto-negotiation  
can determine speed, duplex, and MASTER/SLAVE modes for 1000BASE-T. Auto-negotiation also allows the local MAC to  
communicate with the Link Partner MAC (via optional “Next-Pages”) to set attributes that may not be defined in the standard. if  
the link partner does not support auto-negotiation, the VSC8221 will automatically use parallel-detect to select the appropriate  
link speed.  
Clause 28 twisted-pair auto-negotiation can be disabled by clearing Mii Register 0.12 – Auto-Negotiation Enable. if auto-  
negotiation is disabled, the operating speed and duplex mode of the VSC8221 is determined by the state of Mii Register 0.13,  
0.6 – Forced Speed Selection and Mii Register 0.8 – Duplex Mode.  
10.2 Twisted Pair Auto MDi/MDi-X Function  
For trouble-free configuration and management of Ethernet links, the VSC8221 includes robust Automatic Crossover Detection  
functionality for all three speeds on the twisted pair interface (10BASE-T, 100BASE-TX, and 1000BASE-T) – fully compliant with  
29 of 31  
VMDS-10106 Revision 4.1  
31  
December 2006  
VSC8221  
Data Sheet  
the iEEE standard. in addition, the VSC8221 detects and corrects polarity errors on all MDi pairs, beyond what is required by the  
standard. Both the Automatic MDi/MDi-X and Polarity Correction functions are enabled by default. However, complete user  
control of these two features is contained in Mii Register bits 18.5:4. Status bits for each of these functions are indicated in Mii  
Register 28 (1Ch) – Auxiliary Control and Status Register.  
The VSC8221’s Automatic MDi/MDi-X algorithm will successfully detect, correct, and operate with any of the MDi wiring pair  
combinations listed in the following table:  
Table 16. MDi Wiring Pair Combinations  
RJ-45 Connections  
Comments  
1,2  
3,6  
4,5  
7,8  
Normal MDi mode  
Normal DTE/NiC mode  
No crossovers  
A
B
C
D
MDi-X mode  
B
A
A
B
C
D
D
C
Normal for switches & repeaters  
Crossover on A and B pairs only  
MDi Pair  
Connection  
Combinations  
Accepted by  
VSC8221  
Normal MDi mode  
Normal for DTEs (NiCs)  
No crossovers  
Pair swap on C and D pairs  
Normal MDi-X mode  
Normal switch/repeater mode  
Crossovers assumed  
B
A
D
C
Crossover on A and B pairs  
Pair swap on C and D pairs  
10.3 Auto MDi/MDi-X in Forced 10/100 Link Speeds  
The VSC8221 includes the ability to perform Auto MDi/MDi-X even when auto-negotiation is disabled (Mii Register 0.12 = 0)  
and the link is forced into 10/100 link speeds. in order to enable this feature, additional Mii register write settings are also  
needed in the following order:  
To enable Auto MDi/MDi-X in forced 10/100 link speeds:  
Write Mii Register 31 = 0x52b5  
Write Mii Register 18 = 0x0012  
Write Mii Register 17 = 0x2803  
Write Mii Register 16 = 0x87fa  
Write Mii Register 31 = 0x0000  
To disable Auto MDi/MDi-X in forced 10/100 link speeds:  
Write Mii Register 31 = 0x52b5  
Write Mii Register 18 = 0x0012  
Write Mii Register 17 = 0x3003  
Write Mii Register 16 = 0x87fa  
Write Mii Register 31 = 0x0000  
30 of 31  
VMDS-10106 Revision 4.1  
December 2006  
31  
VSC8221  
Data Sheet  
10.4 Forcing the PHY into MDi or MDi-X mode in 10/100/1000 Link Speeds  
if the Auto-MDi/MDi-X feature is disabled by setting Mii Register 18.5, or by disabling auto-negotiation, the PHY’s default  
behavior is to establish a link in MDi mode. To force the PHY into MDi-X mode:  
Write Mii Register 31 = 0x2A30  
Write Mii Register 5 = 0x1038  
Write Mii Register 31 = 0x0000  
To force the PHY into MDi mode:  
Write Mii Register 31 = 0x2A30  
Write Mii Register 5 = 0x1030  
Write Mii Register 31 = 0x0000  
To disable the forcing of MDi/MDi-X mode:  
Write Mii Register 31 = 0x2A30  
Write Mii Register 5 = 0x1020  
Write Mii Register 31 = 0x0000  
10.5 Twisted Pair Link Speed Downshift  
in addition to automatic crossover detection, the VSC8221 supports an automatic link speed “downshift” option for operation in  
cabling environments incompatible with 1000BASE-T. When this feature is enabled, the VSC8221 will automatically change its  
auto-negotiation advertisement to 100BASE-TX after a set number of failed attempts at 1000BASE-T. This is especially useful  
in setting up networks using older cable installations which may include only pairs A and B and not pairs C and D. The link  
speed downshift feature is configured and monitored through Mii Register 20E (14h) - Extended PHY Control Register #3.  
10.6 100Mbps Fiber Support Over Copper Media interface  
The VSC8221 supports 100BASE-FX over its copper media interface by using pairs A and B, which provide TX and RX  
differential connections, respectively. if the fiber module does not have internal AC coupling capacitors, then they are required  
between the PHY and fiber module. The value should be 0.1µF.  
The RXLOS/SiGDET signal is not used in this mode.  
A separate 1000BASE-X fiber module may be connected to the PHY through the 1000BASE-X SerDes pins.  
10.6.1 Register Settings  
The PHY can be brought into the 100BASE-FX operation mode using the following configuring sequence:  
1. initialize the PHY into the specific MAC-to-copper operating mode for the MAC interface type required (register 23).  
2. Disable auto-negotiation and force the 100BASE-T FDX mode (register 0).  
3. Run the 100BASE-FX initialization script; for more information, see Section 31.10: "100BASE-FX initialization  
Script".  
4. Configure other settings, such as LEDs.  
31 of 31  
VMDS-10106 Revision 4.1  
31  
December 2006  
VSC8221  
Data Sheet  
11 TRANSFORMERLESS OPERATION FOR PICMG 2.16 AND 3.0 IP-BASED BACKPLANES  
The twisted pair interface supports capacitively coupled links, such as those specified by the PiCMG 2.16 and 3.0  
specifications. With proper AC coupling, the typical category-5 magnetic isolation can be replaced with capacitors. Refer to  
Microsemi Application Note #3 (AN003 - Transformerless Ethernet Concept and Applications) for more information. See MII  
Register Bit 24.12 for more information.  
By enabling the PiCMG Miser mode, power consumption can be reduced to under 500mW.  
32 of 32  
VMDS-10106 Revision 4.1  
32  
December 2006  
VSC8221  
Data Sheet  
12 DUAL MODE SERIAL MANAGEMENT INTERFACE (SMI)  
The Serial Management interface provides access to the PHY registers for device configuration and Status information. it also  
provides access to the EEPROM connected to the EEDAT and EECLK pins (EEPROM interface) of the PHY. For details on  
EEPROM access through the SMi interface, refer to Section 19 on page 57.  
The MODDEF1/MDC, MODDEF2/MDiO, and MDiNT pins comprise the SMi interface.  
By writing to Mii Register 21E.15 at startup (Refer to Section 18 on page 53 and Section 19 on page 57 for details), the SMi of  
the PHY can be set to operate in one of the following two modes:  
1. MSA  
2. iEEE  
12.1 PHY Register Access with SMi in MSA mode  
in this mode, the PHY registers are accessed using the standard MSA compliant protocol. This protocol is generally used for  
reading and writing to Atmel’s AT24 series compatible EEPROMs.  
in this mode, the SMi pins function as follows:  
Table 17. SMi Pin Descriptions - MSA Mode  
Pin Name  
Description  
MODDEF1  
Clock input. Connect to the SCL pin of the AT24 series of EEPROMs.  
Bidirectional Data. Connect to the SDA pin of the AT24 series of EEPROMs. This  
pin should be pulled high on the board using a 4.7kto 10kpullup resistor.  
MODDEF2  
MDiNT  
interrupt Signal.  
According to the protocol described in the MSA specification, the following conditions are defined:  
Start [S]: A high to low transition on the MODDEF2 pin when MODDEF1 is high.  
Data [D]: A transition on the MODDEF2 pin when MODDEF1 is low. A low to high transition is '1' and a high to low  
transition is '0'.  
Stop [T]: A low to high transition on the MODDEF2 pin when MODDEF1 is high.  
Acknowledge (By Receiver) [A]: A low driven by the PHY/Receiver after 8 Data states. The transition on MODDEF2  
takes place when MODDEF1 is low. The host does not drive the MODDEF2 Data line in this condition.  
Acknowledge (By Host) [H]: A low driven by the host after 8 Data states. The transition on MODDEF2 takes place when  
MODDEF1 is low. The PHY/Receiver does not drive the MODDEF2 Data line in this condition.  
No Acknowledge (By Host) [N]: A high driven by the host after 8 Data states. The transition on MODDEF2 takes place  
when MODDEF1 is low. The PHY/Receiver does not drive the MODDEF2 Data line in this condition  
33 of 40  
VMDS-10106 Revision 4.1  
40  
December 2006  
VSC8221  
Data Sheet  
MODDEF2  
MODDEF1  
Data  
Change  
Data Stable  
Data Stable  
Figure 7. Data Validity [D]  
MODDEF2  
MODDEF1  
START [S]  
STOP [T]  
Figure 8. Start [S] and Stop [T] Definition  
1
8
9
MODDEF1  
MODDEF2  
(Driven by Receiver)  
START  
ACKNOWLEDGE  
Figure 9. Acknowledge (by Receiver) [A]  
1
8
9
MODDEF1  
MODDEF2  
(Driven by Host)  
START  
ACKNOWLEDGE  
Figure 10. Acknowledge (by Host) [H]  
34 of 40  
VMDS-10106 Revision 4.1  
December 2006  
40  
VSC8221  
Data Sheet  
1
8
9
MODDEF1  
MODDEF2  
(Driven by Host)  
START  
ACKNOWLEDGE  
Figure 11. No Acknowledge (by Host) [N]  
12.1.1 Write Operation - Random Write  
S
S
1
1
0
0
1
1
0
0
1
1
1
1
0
0
0
0
A
A
0
0
0
0
0
0
R4 R3 R2 R1 R0  
A
A
M7 M6 M5 M4 M3 M2 M1 M0  
A
A
T
T
R4 R3 R2 R1 R0  
L7 L6 L5 L4 L3 L2 L1 L0  
From Host to PHY/Receiver  
From PHY/Receiver to Host  
• R4..R0 are the 5 bits of the Register address R.  
• M7..M0 are bits of the Upper byte of the 16 bit Register data  
• L7..L0 are bits of the Upper byte of the 16 bit Register data  
The PHY register is written only after the host performs the lower data byte write operation.  
35 of 40  
VMDS-10106 Revision 4.1  
40  
December 2006  
VSC8221  
Data Sheet  
12.1.2 Write Operation - Sequential Write  
MSB for Register R  
S
1
0
1
0
1
1
0
0
A
0
0
0
R4 R3 R2 R1 R0  
A
M7 M6 M5 M4 M3 M2 M1 M0  
A
LSB for Register R  
MSB for Register R+1  
L7 L6 L5 L4 L3 L2 L1 L0  
A
A
A
M7 M6 M5 M4 M3 M2 M1 M0  
A
LSB for Register R+1  
MSB for Register R+n  
L7 L6 L5 L4 L3 L2 L1 L0  
M7 M6 M5 M4 M3 M2 M1 M0  
A
LSB for Register R+n  
L7 L6 L5 L4 L3 L2 L1 L0  
T
From Host to PHY/Receiver  
From PHY/Receiver to Host  
• R4..R0 are the 5 bits of the Register address R.  
• M7..M0 are bits of the Upper byte of the 16 bit Register data  
• L7..L0 are bits of the Upper byte of the 16 bit Register data  
The PHY register is written only after the host performs the lower data byte write operation.  
36 of 40  
VMDS-10106 Revision 4.1  
40  
December 2006  
VSC8221  
Data Sheet  
12.1.3 Read Operation - Random Read  
S
S
S
S
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
0
1
A
A
A
A
0
0
0
R4 R3 R2 R1 R0  
A
M7 M6 M5 M4 M3 M2 M1 M0  
N
T
0
0
0
R4 R3 R2 R1 R0  
A
L7 L6 L5 L4 L3 L2 L1 L0  
N
T
From Host to PHY/Receiver  
From PHY/Receiver to Host  
• R4..R0 are the 5 bits of the Register address  
• M7..M0 are bits of the Upper byte of the 16 bit Register data  
• L7..L0 are bits of the Lower byte of the 16 bit Register data  
37 of 40  
VMDS-10106 Revision 4.1  
December 2006  
40  
VSC8221  
Data Sheet  
12.1.4 Read Operation - Sequential Read  
S
1
0
1
0
1
1
0
0
0
1
A
A
0
0
0
R4 R3 R2 R1 R0  
A
MSB for Register R  
S
1
0
1
0
1
1
M7 M6 M5 M4 M3 M2 M1 M0  
MSB for Register R+1  
H
LSB for Register R  
L7 L6 L5 L4 L3 L2 L1 L0  
H
H
N
M7 M6 M5 M4 M3 M2 M1 M0 H  
LSB for Register R+1  
LSB for Register R+n  
L7 L6 L5 L4 L3 L2 L1 L0  
M7 M6 M5 M4 M3 M2 M1 M0 H  
LSB for Register R+n  
L7 L6 L5 L4 L3 L2 L1 L0  
T
From Host to PHY/Receiver  
From PHY/Receiver to Host  
• R4..R0 are the 5 bits of the Register address  
• M7..M0 are bits of the Upper byte of the 16 bit Register data  
• L7..L0 are bits of the Lower byte of the 16 bit Register data  
12.2 PHY Register Access with SMi in iEEE Mode  
in iEEE mode, the SMi is fully compliant with the iEEE 802.3-2000 Mii interface specifications.  
in iEEE mode, the SMi pins function as follows:  
Table 18. SMi Pin Descriptions - iEEE Mode  
Pin Name  
Description  
MDC  
Clock input, 0 – 12.5 Mhz.  
Bidirectional Data. This pin should be pulled high on the board using a 4.7kto  
10kresistor.  
MDiO  
Active Low or Active High open drain interrupt output.  
MDiNT  
As many as 32 PHYs (32 distinct PHY Addresses) can share a common iEEE SMi signal pair (MDC, MDiO).  
38 of 40  
VMDS-10106 Revision 4.1  
40  
December 2006  
VSC8221  
Data Sheet  
Data is transferred over the iEEE SMi using 32-bit frames with an optional and arbitrary length preamble. The iEEE SMi frame  
format is described in the following table.  
Table 19. SMi Frame Format  
Direction  
Start of  
Frame  
PHY  
Address  
Register  
Address  
Turn-  
Around  
from  
Preamble  
Op Code  
Data  
idle  
VSC8221  
# of  
bits  
1+  
2
2
5
5
2
16  
?
Output  
input  
Z’s  
1’s  
Z’s  
1’s  
ZZ  
01  
ZZ  
01  
ZZ  
10  
ZZ  
01  
Z’s  
Z’s  
Z0  
ZZ  
ZZ  
10  
data  
Z’s  
Z’s  
Z’s  
Z’s  
Z’s  
Read  
Write  
addr  
Z’s  
addr  
Z’s  
Output  
input  
Z’s  
addr  
addr  
data  
• idle: During idle, the MDiO node goes to a high-impedance state. This allows an external pull-up resistor to pull the MDiO  
node up to a logical “1” state. Since idle mode should not contain any transitions on MDiO, the number of bits is  
undefined during idle.  
• Preamble: For the VSC8221, the preamble is optional. By default, preambles are not expected or required. The preamble  
is a string of “1”s. if it exists, the preamble must be at least one bit, but otherwise may be arbitrarily long. See Mii Register  
1.6 for more information.  
• Start of Frame: A “01” pattern indicates the start of frame. if these bits are anything other than “01”, all following bits are  
ignored until the next “preamble:0” pattern is detected.  
• Operation Code: A “10” pattern indicates a read. A “01” pattern indicates a write. if these bits are anything other than “01”  
or “10”, all following bits are ignored until the next “preamble:0” pattern is detected.  
• PHY Address: The next five bits are the PHY address. The PHY responds to a message frame only when the received  
PHY address matches its physical address. The PHY's address is indicated by the CMODE1[2] and CMODE0[3:0] bits.  
• Register Address: The next five bits are the register address.  
• Turn-Around: The next two bits are “turn-around” (TA) bits. They are used to avoid contention when a read operation is  
performed on the MDiO. During read operations, the VSC8221 will drive the second TA bit, which is a logical “0”.  
• Data: The next sixteen bits are data bits. When data is being read from the PHY, data is valid at the output of the PHY  
from one rising edge of MDC to the next rising edge of MDC. When data is being written to the PHY, data must be valid  
around the rising edge of MDC.  
• idle: The sequence is repeated.  
The following two figures diagram iEEE SMi read and iEEE SMi write operations.  
Station Manager Drives MDIO  
PHY Drives MDIO  
MDC  
MDIO  
Z
Z
1
0
1
1
0
A4 A3 A2 A1 A0 R4 R3 R2 R1 R0  
Z
0
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Register Data from PHY  
Z
Z
Idle Preamble SFD  
(optional)  
Read  
PHY Address  
Register Address  
to PHY  
TA  
Idle  
Figure 12. MDiO Read Frame  
39 of 40  
VMDS-10106 Revision 4.1  
December 2006  
40  
VSC8221  
Data Sheet  
Station Manager Drives MDIO (PHY tristates MDIO during entire sequence)  
MDC  
MDIO  
Z
Z
1
0
1
0
1
A4 A3 A2 A1 A0 R4 R3 R2 R1 R0  
1
0
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Register Data from PHY  
Z
Z
Idle Preamble SFD  
(optional)  
Write  
PHY Address  
Register Address  
to PHY  
TA  
Idle  
Figure 13. MDiO Write Frame  
12.3 SMi interrupt  
The SMi includes an output signal MDiNT for signaling the Station Manager when certain events occur in the PHY. The MDiNT  
pin can be configured for active-low or active-high operation by tying the pin to either a pull-up resistor to VDDiOMiCRO or to a  
pull-down resistor to GND.  
VDDIOMICRO  
VSC8221  
4.7k-10k External  
Pull-up  
at Station Manager  
MDINT  
MDINT  
(to Station Manager)  
Interrupt Enable (Register 25.15)  
Interrupt Status (Register 26.15)  
PHY  
4.7k-10k External  
Pull-down  
at Station Manager  
Figure 14. Logical Representation of MDiNT Pin  
40 of 40  
VMDS-10106 Revision 4.1  
December 2006  
40  
VSC8221  
Data Sheet  
13 LED INTERFACE  
The PHY has dedicated pins LED[2:0] to drive 3 LEDs directly. For power savings, all LED outputs can be configured to pulse at  
5kHz with a 20% duty cycle. All LED outputs are active-low and driven with 3.3V from the VDD33A power supply when  
deasserted.  
Because the 100BASE-FX mode uses 100BASE-T resources, its indications are those of the 100BASE-T mode.  
Four different functions have been assigned to each LED pin. Selection is done through CMODE hardware configuration (see  
Section 18 on page 53) or through Mii Register 27 (1Bh) – LED Control Register. The functions are assigned according to the  
following table:  
Table 20. LED Function Assignments  
LED Configuration Bits  
Value  
11  
LED Function Selection  
TX1  
10  
01  
00  
11  
Link/Activity  
LED Pin 2 Config [1:0]  
Duplex/Collision2  
Link10/Activity  
Link100/1000/Activity1  
Link/Activity  
10  
01  
00  
11  
LED Pin 1 Config [1:0]  
Link10/100/Activity2  
Link100/Activity  
RX1  
10  
01  
00  
Fault  
LED Pin 0 Config [1:0]  
Link/Act (with serial output on LED pins 1 and 2)2  
Link1000/Activity  
1
When using Enable Force LED in Mii Register 20E.13, this setting is “Force on”. For more information, see Section 23.3.5 on page 100.  
When using Enable Force LED in Mii Register 20E.13, this setting is “Force Off”. For more information, see Section 23.3.5 on page 100.  
2
LED functions are summarized in the following table:  
Table 21. Parallel LED Functions  
Function Name  
State  
Description  
No link in 1000BASE-T or 1000BASE-X  
1
0
Link1000/Activity1  
Valid 1000BASE-T link or 1000BASE-X link  
Valid 1000BASE-T link and activity present (optional)  
No link in 100BASE-Tx  
Pulse-stretch/Blink2  
1
0
Link100/Activity1  
Valid 100BASE-Tx link  
Pulse-stretch/Blink2  
(optional) Valid 100BASE-Tx link and activity present  
41 of 43  
VMDS-10106 Revision 4.1  
December 2006  
43  
VSC8221  
Data Sheet  
Table 21. Parallel LED Functions (continued)  
Function Name  
State  
Description  
1
0
No link in 10BASE-T  
Valid 10BASE-T link  
Link10/Activity1  
Pulse-stretch/Blink2  
(optional) Valid 10BASE-T link and activity present  
No link in 10BASE-T or 100BASE-Tx  
1
0
Link10/100/Activi-  
ty1  
Valid 10BASE-T link or valid 100BASE-Tx link  
Pulse-stretch/Blink2  
(optional) Valid 10BASE-T link or valid 100BASE-Tx link and activity present  
No link in 100BASE-Tx or 1000BASE-T  
Valid 100BASE-Tx link or valid 1000BASE-T link  
(optional) Valid 100BASE-Tx link or valid 1000BASE-T link and activity present  
No link in any speed  
1
0
Link100/1000/  
Activity1  
Pulse-stretch/Blink2  
1
0
Link/Act3  
Valid link in any speed  
Pulse-stretch/Blink2  
1
Valid link in any speed and activity present  
No collisions detected  
Collision  
Activity  
Fiber  
Pulse-stretch/blink2  
1
Collisions detected  
No activity  
Pulse-stretch/blink2  
Activity present  
1
0
1
0
**  
1
0
No valid 1000BASE-X link established  
Fiber media detected on SerDes interface and valid 1000BASE-X link established  
No iEEE Clause 37/28 auto-negotiation fault  
iEEE Clause 37/28 auto-negotiation fault  
See serial interface specification  
Fault  
Serial  
Link established in half-duplex mode, or no link established  
Link established in full-duplex mode  
(optional) Link established in half duplex mode and collisions present  
No activity on Rx side  
Duplex/Collision4  
Pulse-stretch/Blink2  
1
Rx  
Tx  
1
Pulse-stretch/blink2  
1
Activity present on Rx side  
No activity on Tx side  
Pulse-stretch/blink2  
Activity present on Tx side  
The “Linkxxx” functions are combined with “Activity” by default. To use the LED as a dedicated “Linkxxx,” LED Mii register bit 27.1 must be set.  
Function can either blink or be pulse-stretched when active. See Table 22 below.  
2
3
4
The “Link” functions are combined with “Activity” by default. To use the LED as a dedicated “Link,” LED Mii Register bit 27.2 must be set.  
The “Duplex” function is combined with “Collision” by default. To use the LED as a dedicated “Duplex,” LED Mii register bit 27.0 must be set.  
42 of 43  
VMDS-10106 Revision 4.1  
December 2006  
43  
VSC8221  
Data Sheet  
in addition to function selection, several options are available for the LED outputs through the use of Mii register 27.5:0. These  
are summarized below:  
Table 22. LED Output Options  
Mii  
LED Option Bits  
LED Function Selection  
Reg Bits  
0 = 5 Hz blink rate/200 ms pulse-stretch  
1 = 10 Hz blink rate/100 ms pulse-stretch  
5
LED Pulse-stretch Rate/ Blink Rate  
1 = Enable 5 kHz, 20% duty cycle LED pulsing for power  
4
3
LED Pulsing Enable  
savings  
0 = LED pulsing disabled  
1 = Collision, Activity, Rx and Tx functions will flash at a rate  
selected by Blink/Pulse-Stretch Rate bits  
0 = Collision, Activity, Rx and Tx functions will blink at a rate  
selected by Blink/Pulse-Stretch Rate bits  
LED Pulse-Stretch / Blink Select  
1 = Link function indicates link status only  
0 = Link/Activity function will blink or flash when activity is pres-  
ent. Blink/flash behavior is selected by Pulse-Stretch  
Enable and Blink/Pulse-Stretch Rate bits.  
2
1
Link/Activity Behaviour  
1 = Link function indicates link status only  
0 = All link functions will blink or flash when activity is present.  
Blink/flash behavior is selected by Pulse-Stretch Enable  
and Blink/Pulse-Stretch Rate bits.  
LED Linkxxxx/Activity1 Behavior  
LED Duplex/Collision Behavior  
1 = Duplex function indicates duplex status only  
0 = Duplex function will blink or flash when collision is present  
0
1
Linkxxxx/Activity stands for Link10/Activity,Link100/Activity,Link1000/Activity,Link10/100/Activity and Link100/1000/Activity. its  
definition does not include the Link/Activity function.  
13.1 Serial LED Output  
A serial output option is available which allows access to all LED signals through two pins. This option is selected by setting  
LED Pin 0 configuration bits to 01 on the PHY. in this mode, LED pins 1 and 2 function as serial data and clock. LED function  
outputs for the PHY are clocked out on the rising edge of data clock. The clock rate is approximately 1MHz.  
The serial bitstream outputs each LED signal as described by the numbered list below.The individual signals shall be clocked  
out in the following order:  
1. Link1000/Act  
2. Link/Act  
3. Link100/Act  
4. Act  
5. Link10/Act  
6. Dup/Col  
7. Tx  
8. Col  
9. Rx  
10. Fault  
11. Fiber/Copper  
43 of 43  
VMDS-10106 Revision 4.1  
43  
December 2006  
VSC8221  
Data Sheet  
14 TEST MODE INTERFACE (JTAG)  
The PHY supports the Test Access Port and Boundary Scan Architecture iEEE 1149.1 standards. The device includes an iEEE  
1149.1 compliant test interface, often referred to as a “JTAG TAP interface”. iEEE 1149.1 defined test logic provides the  
following standardized test methodologies:  
Testing the interconnections between integrated circuits once they have been assembled onto a printed circuit board or  
other substrate.  
Testing the integrated circuit itself during iC and systems manufacture.  
• Observing or modifying circuit activity during the component’s normal operation.  
The JTAG Test interface logic on the PHY, accessed through a Test Access Port (TAP) interface, consists of a boundary- scan  
register and other logic control blocks. The TAP controller includes all iEEE-required signals (TMS, TCK, TDi, and TDO), in  
addition to the optional asynchronous reset signal TRST.  
The following figure diagrams the TAP and Boundary Scan Architecture.  
Boundary-Scan  
Register  
Device Identification  
Register  
Bypass Register  
Mux,  
DFF  
TDO  
control  
Instruction Register,  
Instruction Decode,  
Control  
TDI  
control  
TMS  
TRSTz  
TCK  
select  
Test Access Port  
Controller  
tdoenable  
Figure 15. Test Access Port and Boundary Scan Architecture  
The PHY also includes the optional Device identification Register, shown in the following table, which allows the manufacturer,  
part number, and version number of the device to be determined through the TAP Controller. See Chapter 11 of the iEEE  
1149.1-1990 specifications for more details. Also, note that some of the information in the identification register is duplicated in  
the iEEE-specified bit fields in Mii Register 3 (PHY identifier Register #2).  
Table 23. JTAG Device identification Register Description  
Device Version Number Part Number  
Microsemi’s  
Manufacturer identity  
Description  
Bit Field  
LSB  
(or Revision Code)  
(or Model Number)  
31 - 28  
27 - 12  
11 - 1  
0
1
Binary Value 0001  
1000 0010 0010 0001  
001 1001 1000  
44 of 46  
VMDS-10106 Revision 4.1  
December 2006  
46  
VSC8221  
Data Sheet  
14.1 Supported instructions and instruction Codes  
After a TAP reset, the Device identification Register is serially connected between TDi and TDO by default. The TAP instruction  
Register is loaded either from a shift register (when a new instruction is shifted in), or, if there is no new instruction in the shift  
register, a hard-wired default value of 0110 (iDCODE) is loaded. Using this method, there is always a valid code in the  
instruction register, and the problem of toggling instruction bits during a shift is avoided. Unused codes are mapped to the  
BYPASS instruction.  
The VSC8221 supports the instruction codes listed in the following table and described below.  
Table 24. JTAG interface instruction Codes  
instruction  
EXTEST  
Code  
0000  
0001  
0110  
0010  
0011  
0111  
Selected Register  
Register Width  
Specification  
Boundary-Scan Register  
Boundary-Scan Register  
Device identification Register  
Bypass Register  
72  
72  
32  
1
Mandatory iEEE 1149.1  
Mandatory iEEE 1149.1  
Optional iEEE 1149.1  
Optional iEEE 1149.1  
Optional iEEE 1149.1  
Mandatory iEEE 1149.1  
SAMPLE/PRELOAD  
iDCODE  
CLAMP  
HiGHZ  
Bypass Register  
1
BYPASS  
Bypass Register  
1
0100, 1000,  
1001, 1010,  
1011, 1100,  
1101,1110,  
1111  
Reserved  
EXTEST  
The mandatory EXTEST instruction allows testing of off-chip circuitry and board-level interconnections by sampling input pins  
and loading data onto output pins. Outputs are driven by the contents of the boundary-scan cells, which have to be updated with  
valid values (with the PRELOAD instruction) prior to the EXTEST instruction.1  
SAMPLE/PRELOAD  
The mandatory SAMPLE/PRELOAD instruction allows a snapshot of inputs and outputs during normal system operation to be  
taken and examined. it also allows data values to be loaded into the boundary-scan cells prior to the selection of other  
boundary-scan test instructions.  
iDCODE  
The optional iDCODE instruction provides the version number (bits 31:28), part number (bits 27:12), and Microsemi’s  
manufacturer identity (bits 11:1) to be serially read from the PHY.  
CLAMP  
The optional CLAMP instruction allows the state of the signals driven from the component pins to be determined from the  
Boundary-Scan Register while the Bypass Register is selected as the serial path between TDi and TDO. While the CLAMP  
instruction is selected, the signals driven from the component pins will not change.1  
HiGHZ  
The optional HiGHZ instruction places the component in a state in which all of its system logic outputs are placed in a high  
impedance state. in this state, an in-circuit test system may drive signals onto the connections normally driven by a component  
output without incurring a risk of damage to the component. This makes it possible to use a board where not all of the  
components are compatible with the iEEE 1149.1 standard.1  
1Following the use of this instruction, the on-chip system logic may be in an indeterminate state that will persist until a system reset is applied.  
Therefore, the on-chip system logic may need to be reset on return to normal (i.e., non-test) operation.  
45 of 46  
VMDS-10106 Revision 4.1  
46  
December 2006  
VSC8221  
Data Sheet  
BYPASS  
The Bypass Register contains a single shift-register stage and is used to provide a minimum-length serial path (one TCK clock  
period) between TDi and TDO to bypass the device when no test operation is required.  
14.2 Boundary-Scan Register Cell Order  
All inputs and outputs are observed in the Boundary-Scan Register cells. All outputs are additionally driven by the contents of  
Boundary-Scan Register cells. Bidirectional pins have all three related Boundary-Scan Register cells: the input, the output, and  
the control. The full boundary scan cell order is available from Microsemi Semiconductor in *.BSD file format.  
46 of 46  
VMDS-10106 Revision 4.1  
46  
December 2006  
VSC8221  
Data Sheet  
15 ENHANCED ACTIPHY POWER MANAGEMENT  
in addition to the iEEE-specified power-down control bit (Mii Register 0.11), the VSC8221 implements an Enhanced ActiPHY™  
power management mode. This mode enables support for power-sensitive applications by utilizing a signal-detect function that  
monitors the media interface for the absence of a link to determine when to automatically power-down the PHY. The Station  
Manager is in control of this mode. The PHY then ‘wakes up’ at a programmable interval and attempts to ‘wake-up’ the link  
partner PHY by sending a fast link pulse (FLP) on the Media interface.  
The Enhanced ActiPHY™ power management mode can be set at startup (Refer to Section 18 on page 53 and Section 19 on  
page 57 for details) or at any time during normal operation by writing to Mii Register 28.6.  
15.1 Operation in Enhanced ActiPHY Mode  
There are three PHY operating states when Enhanced ActiPHYTM mode is enabled:  
• Low power state  
• LP Wake up state  
• Normal operating state (link up state)  
The PHY switches between the low power state and LP wake up state at a programmable rate (sleep timer) until signal energy  
has been detected on the media interface pins. When signal energy is detected, the PHY enters the normal operating state.  
When the PHY is in the normal operating state and link is lost, the PHY returns to the low power state after the link status  
timeout timer has expired. After reset, the PHY enters the low power state.  
When auto-negotiation is enabled in the PHY, the ActiPHYTM state machine will operate as described above. if auto-negotiation  
is disabled and the link is forced to 10BT or 100BTX mode while the PHY is in the low power state, the PHY continues to  
transition between the low power and LP wakeup states until signal energy is detected on the media pins. At that time, the PHY  
transitions to the normal operating state and stays in that state even when the link is dropped. if auto-negotiation is disabled  
while the PHY is in the normal operation state, the PHY stays in that state when the link is dropped and does not transition back  
to the low power state.  
Low Power State  
Signal Energy Detect on  
Media (CAT5 or Fiber)  
FLP Sent  
Sleep timer Expires  
Timeout timer expires after  
link has been dropped and  
auto-negotiation is enabled.  
LP Wake-up State  
Normal Operation  
Figure 16. Enhanced ActiPHY State Diagram  
47 of 48  
VMDS-10106 Revision 4.1  
48  
December 2006  
VSC8221  
Data Sheet  
15.2 Low-Power State  
in the low-power state, all major digital blocks are powered down. However the following functionality is provided:  
• SMi interface (MDC/MODDEF1, MDiO/MODDEF2, MDiNT)  
• CLKOUT and CLKOUTMiCRO  
in this state, the PHY monitors the media interface pins for signal energy. The PHY comes out of the low power state and  
transitions to the Normal operating state when signal energy is detected on the media. This happens when the PHY is  
connected to one of the following:  
• Auto-negotiation capable link partner  
• Auto-negotiation incapable (blind/forced) 100BTX only link partner  
• Auto-negotiation incapable (blind/forced) 10BT only link partner  
• Another PHY in enhanced ActiPHY LP wakeup state  
in the absence of signal energy on the media pins, the PHY will transition from the low power state to the LP Wake up state  
periodically based on the programmable sleep timer. Two register bits (Mii Register bits 28.1:0) are provided to program the  
value of the sleep timer. The sleep timer can be programmed to 2'b00 (1sec), 2'b01 (2sec), 2'b10 (3sec), or 2'b11 (4sec). The  
default value is 2 seconds. The actual sleep time duration is randomized by -80ms to +60ms to prevent two PHYs in Enhanced  
ActiPHY mode from entering a lock-up state.  
15.3 LP Wake-Up State  
in this state, the PHY attempts to wake up the link partner. One complete FLP (Fast link Pulse) is sent on both pairs A and B of  
the CAT5 media. in this state, the following functionality is provided:  
• SMi interface (MDC/MODDEF1, MDiO/MODDEF2, MDiNT)  
• CLKOUT and CLKOUTMiCRO  
After sending signal energy on the relevant media, the PHY returns to the Low power state.  
15.4 Normal Operating State  
in this state, the PHY establishes a link with a link partner. When the media is unplugged or the link partner is powered down,  
the PHY waits for the duration programmed through a link status timeout timer and then enters the low power state. The Link  
Status Timeout timer can be programmed to 2'b00 (1sec), 2'b01 (2sec), 2'b10 (3sec) or 2'b11 (4sec). The default value for this  
timer is 2 seconds.  
48 of 48  
VMDS-10106 Revision 4.1  
48  
December 2006  
VSC8221  
Data Sheet  
16 ETHERNET IN-LINE POWERED DEVICE SUPPORT  
16.1 Cisco in-Line Powered Device Detection Mode  
Used to detect in-line powered devices and devices that derive power from CAT-5 cable for their operation in Ethernet network  
applications, the VSC8221 device's in-line powered device detection mode can be part of a system that allows iP-phones and  
other devices to receive power from an Ethernet cable, similar to office digital phones receiving power from a PBX (Private  
Branch Exchange) office switch via the phone cable. This can eliminate the need for an iP-Phone to have an external power  
supply, since the Ethernet cable provides power. it also enables the in-line powered device to remain active during a power  
outage (assuming the Ethernet switch is connected to an uninterrupted power supply, battery, back-up power generator, etc.).  
This mode is disabled by default and must be enabled in order to perform in-line powered device detection. Please refer to http:/  
/www.cisco.com/en/US/products/hw/phones/ps379/products_tech_note09186a00801189b5.shtml for additional information.  
16.2 in-Line Power Ethernet Switch Diagram  
Processor  
Gigabit Switch/MAC  
MAC  
Interface  
Control  
SMI  
VSC8221  
10/100/  
IN-LINE  
POWER  
SUPPLY  
UNIT  
1000BT PHY  
X-former  
RJ-45  
I/F  
CAT-5  
Figure 17. in-line Powered Ethernet Switch Diagram  
49 of 50  
VMDS-10106 Revision 4.1  
December 2006  
50  
VSC8221  
Data Sheet  
16.3 in-Line Powered Device Detection (Cisco Method)  
This section describes the flow process an Ethernet switch must perform in order to process in-line power requests made by a  
link partner (LP) capable of receiving in-line power.  
1. The in-line powered device detection mode is enabled by setting Mii Register bit 23E.10 = 1 and ensuring that the  
Auto-Negotiation Enable Bit is set (Mii Register 0.12 = 1). An interrupt can also be asserted on the MDiNT pin when in-  
line power is needed. This is set by Mii Register 25.9 = 1 and ensuring Mii Register 25.15 = 1 in order to enable the  
MDiNT pin.  
2. The PHY will then start sending a special Fast Link Pulse (FLP) signal to the LP. Mii Register 23E.9:8 will equal 00  
during the search for devices needing in-line power.  
3. The PHY monitors for the special FLP signal looped back by the LP. An LP device capable of receiving in-line power  
will loopback the special FLP pulses when it is in a powered-down state. This is reported when Mii Register 23E.9:8 =  
01. if enabled, an interrupt on the MDiNT pin will also be asserted. This can be verified as an in-line power detection  
interrupt by reading Mii Register 26.9 = 1, which will subsequently be cleared and the interrupt de-asserted after the  
read. if an LP device does not loopback the special FLP after a specific time, then Mii Register 23E.9:8 = 10.  
4. if the PHY reports that the LP needs in-line power, then the Ethernet switch needs to enable in-line power to this port  
external of the PHY.  
5. The PHY automatically disables in-line powered device detection after Event #3 above and now changes to the normal  
Auto-negotiation process. A link is then auto-negotiated and established when the link status register is set (Mii Regis-  
ter bit 1.2 = 1).  
6. in a link down event (Mii Register bit 1.2 = 0), the in-line power should be disabled to the in-line powered device exter-  
nal of the PHY. The PHY will disable the normal auto-negotiation process and re-enable in-line powered device detec-  
tion mode.  
16.4 iEEE 802.3af (DTE Power via MDi)  
The VSC8221 is fully compatible with switch designs used in systems that supply power to DTE (Data Terminal Equipment) by  
means of a MDi (Media Dependent interface, or twisted pair cable), as specified by iEEE 802.3af standard (Clause 33).  
50 of 50  
VMDS-10106 Revision 4.1  
50  
December 2006  
VSC8221  
Data Sheet  
17 ADVANCED TEST MODES  
17.1 Ethernet Packet Generator (EPG)  
For system-level debugging and in-system production testing, the VSC8221 includes an Ethernet packet generator. This can be  
used to isolate problems between the MAC and PHY and between a local PHY and remote link partner. it is intended for use  
with lab testing equipment or in-system test equipment only, and should not be used when the VSC8221 is connected to a live  
network.  
To use the EPG, it must be enabled by writing a “1” to Mii Register 29E.15. This effectively disables all MAC-interface transmit  
pins and selects the EPG as the source for all data transmitted onto the VSC8221 media interface. For this reason, packet loss  
will occur if the EPG is enabled during transmission of packets from MAC to PHY. The MAC receive pins will still be active when  
the EPG is enabled, however. if it is necessary to disable the MAC receive pins as well, this can be done by writing a “1” to MII  
Register bit 0.10.  
When a “1” is written to MII Register Bit 29E.14, the VSC8221 will begin transmitting iEEE802.3 layer-2 compliant packets with  
a data pattern of repeating 16-bit words as specified in MII Register 30E. The source and destination addresses for each  
packet, packet size, interpacket gap, FCS state and transmit duration can all be controlled through Mii Register 29E. Note that if  
MII Register Bit 29E.13 is cleared, MII Register Bit 29E.14 will be cleared automatically after 30,000,000 packets have been  
transmitted.  
17.2 CRC Counter  
When the EPG is enabled, a bad-CRC counter is also available for all incoming packets. This counter is available in MII  
Register Bits 23E.7:0 - CRC Counter and is automatically cleared when read.  
17.3 Far-End Loopback  
Far-end loopback mode, when enabled (Mii Register bit 23.3 = 1), forces incoming data from a link partner on the media  
interface to be retransmitted back to the link partner on the media interface as shown in the figure below. in addition, the  
incoming data will also appear on the receive data pins (RDP/RDN) of the MAC interface. Data present on the transmit pins of  
the MAC interface are ignored in this mode. For more information, please refer to MII Register 23 (Extended PHY Control  
Register #1).  
Link Partner  
VSC8221  
RX  
RDP/RDN  
TDP/TDN  
CAT-5 or Fiber  
Serial  
MAC  
TX  
Figure 18. Far-end Loopback Block Diagram  
51 of 52  
VMDS-10106 Revision 4.1  
December 2006  
52  
VSC8221  
Data Sheet  
17.4 Near-End Loopback  
When Near-end loopback is set (Mii Register bit 0.14 = 1), the Transmit Data (TDP/TDN) on the MAC interface is looped back  
onto the Receive Data (RDP/RDN) pins to the MAC as shown in the figure below. in this mode, the CAT-5 media link is dropped.  
Link Partner  
VSC8221  
RX  
CAT-5 or Fiber  
RDP/RDN  
TDP/TDN  
Serial  
MAC  
TX  
Figure 19. Near-end Loopback Block Diagram  
17.5 Connector Loopback  
Connector Loopback allows for the twisted pair interface to be looped back externally. in this mode the PHY must be connected  
to a loopback connector or a loopback cable. For this loopback, pair A should be connected to the corresponding wire of pair B  
using a 100resistor, and each wire of pair C should be connected to the corresponding wire of pair D using a 100resistor.  
This loopback will work in all speeds selected for the interface.  
VSC8221  
A
B
RDP/RDN  
TDP/TDN  
Serial  
MAC  
C
D
Figure 20. Connector Loopback  
The auto-negotiation, speed, and duplex can be configured using Mii registers 0,4 and 9. For 1000BT connector loopback only  
the following additional writes are required in the specific order.  
1. Master/Slave configuration forced to Master (Mii Register Bits 9.12:11 = 11)  
2. Enable 1000BT connector loopback (Mii Register 24.0 = 1)  
3. Disable pair swap correction (Mii Register Bit 18.5=1)  
4. Disable auto-negotiation and force 1000BT link (Mii Register Bit 0.12=0, Mii Register Bit 0.6=1, and Mii Register Bit 0.12=0)  
and force either full or half duplex (Mii Register Bit 0.8=0 or 1).  
This loopback is also available in the 100BASE-FX mode.  
52 of 52  
VMDS-10106 Revision 4.1  
52  
December 2006  
VSC8221  
Data Sheet  
18 HARDWARE CONFIGURATION USING CMODE PINS  
Each of the four CMODE pins (CMODE[3:0]) are used to latch a four bit value at PHY reset. A total of sixteen CMODE  
configuration bits are set at reset. Each CMODE bit represents the default value of a particular PHY register bit and therefore  
sets a default PHY operating condition at startup.  
18.1 Setting the CMODE Configuration Bits  
The CMODE bits are set by connecting each CMODE pin to either VDD33A or VSS (ground) through an external 1% resistor.  
The four bit value latched by the PHY on each CMODE pin depends upon the value of the resistor used to pull-up or pull-down  
the CMODE pin. CMODE resistor values and connections are defined in the following table:  
Table 25. CMODE Pull-up/Pull-down Resistor Values  
CMODE  
CMODE  
CMODE  
CMODE  
CMODE  
Tied to  
bit 3 value  
bit 2 value  
bit 1 value  
bit 0 value  
Resistor Value  
VDD33A or GND  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
GND  
GND  
GND  
GND  
2.26k  
4.02k  
5.90k  
0
1
0
8.25k  
GND  
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
12.1k  
16.9k  
22.6k  
0
GND  
GND  
GND  
VDD33A  
VDD33A  
VDD33A  
VDD33A  
VDD33A  
VDD33A  
VDD33A  
VDD33A  
2.26k  
4.02k  
5.90k  
8.25k  
12.1k  
16.9k  
22.6k  
53 of 56  
VMDS-10106 Revision 4.1  
December 2006  
56  
VSC8221  
Data Sheet  
18.2 CMODE Bit Descriptions  
The following table outlines the mapping of each CMODE bit to a PHY operating condition parameter. Each of the PHY  
operating condition parameters is described in detail in Table 27: “PHY Operating Condition Parameter Description”.  
Table 26. CMODE Bit to PHY Operating Condition Parameter Mapping  
CMODE Pin Name  
‘CMODE Bit’ to ‘PHY Operating Condition Parameter’ Mapping  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMODE0  
CMODE1  
PHY Address[3]  
PHY Address[2]  
PHY Address[1]  
PHY Address[0]  
SerDes Line imped-  
ance  
SFP Mode Disable  
PHY Address[4]  
SiGDET pin direction  
PHY Operating  
Mode[3]  
PHY Operating  
Mode[2]  
PHY Operating  
Mode[1]  
PHY Operating  
Mode[0]  
CMODE2  
CMODE3  
Auto-negotiation  
Advertisement Con-  
trol[1]  
LED Control[1]  
SQE Enable  
Reserved  
Each of the PHY Operating Condition Parameters mentioned in Table 26 above is described in detail in Table 27.  
Table 27. PHY Operating Condition Parameter Description  
PHY Operating  
Condition Parame-  
ter Name  
CMODE Pin Name and  
Value  
Description  
Bit Position  
31-0  
Sets the PHY Address used to access PHY Registers when the  
PHY’s SMi is in iEEE mode. The value latched is reflected in  
Extended Mii Register 23.15:11.  
CMODE1[2],  
CMODE0[3:0]  
PHY Address[4:0]  
These CMODE bits set the default PHY Operating Mode by setting the  
default values of Mii Register 23.15:12,2:1.  
0000  
802.3z SerDes to CAT5 Media, Clause 37 auto-negotiation  
auto-sense enabled.  
0100  
0101  
1010  
1110  
1111  
802.3z SerDes to CAT5 Media, Clause 37 disabled.  
SGMii to CAT5 Media, SCLK enabled.  
PHY Operating  
Mode[3:0]  
CMODE2[3:0]  
802.3z SerDes to CAT5 Media, Media Connector Mode.  
802.3z SerDes to CAT5 Media, Clause 37 enabled.  
SGMii to CAT5 Media, SCLK disabled.  
This sets the default behavior of LED pins LED[2:0] by setting the startup  
values of MII Register Bit Register 27 (1Bh) – LED Control Register.  
0
LED[2:0] = {Link10/Activity, Link100/Activity, Link1000/Activity}  
(Mii Reg 27 = 0000h)  
LED Control[1]  
CMODE3[3]  
1
LED[2:0] = {Link/Activity, Link/Activity, Fault}  
(Mii Reg 27 = AA80h)  
54 of 56  
VMDS-10106 Revision 4.1  
December 2006  
56  
VSC8221  
Data Sheet  
Table 27. PHY Operating Condition Parameter Description (continued)  
PHY Operating  
Condition Parame-  
ter Name  
CMODE Pin Name and  
Value  
Description  
Bit Position  
These CMODE bits set the default auto-negotiation advertisement  
defaults by setting the defaults of Mii Registers 4 and 9.  
Auto-negotiation  
Advertisement  
Control[1]  
CMODE3[0]  
0
1
10/100/1000BASE-T HDX, FDX  
10/100BASE-T HDX, FDX  
This CMODE bit sets the default value of Mii Register 21E.15 .  
This sets Mii Register 21E.15 = 1.  
0
Sets the following PHY defaults:  
TXDiS/SRESET is active high i.e. behaves like TXDiS.  
MODDEF0/CLKOUT pin functions like MODDEF0 i.e this pin  
is asserted low by the PHY once the EEPROM inter-  
face is released for access through the SMi interface.  
RXLOS/SiGDET pins functions like the RXLOS.  
The SMi interface is set in MSA mode.  
SFP Mode Disable  
CMODE1[3]  
This sets Mii Register 21E.15 = 0.  
1
Sets the following PHY defaults:  
TXDiS/SRESET is active low i.e. behaves like SRESET.  
MODDEF0/CLKOUT pin functions like CLKOUT i.e this pin  
drive out a 125Mhz clock.  
RXLOS/SiGDET pin functions like the SiGDET.  
The SMi interface is set in iEEE mode  
The value of this bit is valid in non-SFP mode when CMODE bit  
CMODE1[3] is 1. This CMODE bit set the direction of the SiGDET pin by  
setting the default value of Extended Mii Register 19E.1  
SiGDET pin direction CMODE1[1]  
0
1
input  
Output  
Sets the internal end termination resistance value of the Serial MAC/  
Media interface input pins.  
SerDes Line  
CMODE1[0]  
impedance  
0
1
50 Ω  
75Ω  
Sets the default value of Mii Register 22.12.  
SQE Enable  
CMODE3[2]  
0
1
SQE Disabled (Mii Register 22.12=1)  
SQE Enabled (Mii Register 22.12=0)  
55 of 56  
VMDS-10106 Revision 4.1  
December 2006  
56  
VSC8221  
Data Sheet  
18.3 Procedure for Selecting CMODE Pin Pull-Up/Pull-Down Resistor Values  
1. Using the descriptions in Table 27 column D (“Description”), choose the desired PHY operating condition parameter  
values from column C (“Value”).  
2. Using Table 27 Column B (“CMODE Pin Name and Bit Position”) and the chosen PHY operating condition parameter  
values, enter the value of each CMODE bit in Table 26: “CMODE Bit to PHY Operating Condition Parameter Mapping”.  
3. Choose the value of each CMODE pull-up or pull-down resistor from Table 25: “CMODE Pull-up/Pull-down Resistor  
Values” based on the CMODE Bit values in Table 26.  
56 of 56  
VMDS-10106 Revision 4.1  
56  
December 2006  
VSC8221  
Data Sheet  
19 EEPROM INTERFACE  
The EEPROM interface consists of the EEDAT and EECLK pins of the PHY. if this interface is used, these pins should connect  
to the SDA and SCL pins respectively of a serial EEPROM that is compatible with the AT24xxx series of ATMEL EEPROMs.  
The EEPROM interface on the VSC8221 serves the following purposes:  
• it provides the PHY with the ability to self configure its internal registers.  
• The system manager can access the EEPROM to obtain information pertaining to the system/module configuration.  
• A single EEPROM can be shared among multiple PHYs for their custom configuration.  
The PHY detects the EEPROM based on the presence of a pullup on the EEDAT pin. it is initialized using the configuration  
EEPROM (if present) under the following conditions:  
• RESET deassertion.  
• TXDiS/SRESET deassertion and Extended Mii Register 21E.14 is set.  
• S/W reset (Mii Register 0.15) is asserted and Extended Mii Register 21E.14 is set.  
if an EEPROM is present, the start-up control block looks for a “Microsemi Header” (value:16’hBDBD’) at address 0 and 1 of the  
EEPROM. The address is incremented by 256 until the Microsemi Header is found. if the Microsemi Header is not found, or no  
EEPROM is connected, the VSC8221 bypasses the EEPROM read step.  
Once the Microsemi header is located, the EEPROM interface block of the PHY searches for its PHY address in bit position 7:3  
in the subsequent EEPROM location. Once the PHY address is located, the 11 bit EEPROM address location for the start of the  
configuration script is read. At this point, the PHY begins reading from this 11 bit EEPROM address and initializes its Register  
values based on the EEPROM configuration script contents. Refer to Table 28: “Configuration EEPROM Data Format” for  
details on the configuration EEPROM data format.  
The total number of EEPROM bytes needed for a configuration script is equal to:  
((Number of Register writes) * 3 + 2 (BDBD) + 2 (PHY address and Configuration Script Address) + 2 (Length of configuration  
script)).  
Data is read from the EEPROM sequentially (at 50 Khz, or 50 kbits/s) until all PHY registers are set. Once all of the PHY  
registers are set, the PHY enters the ‘NORMAL STATE’. For more information, see Section 20 on page 61.  
if the PHY is in the ‘NORMAL STATE’ state, the user can access the EEPROM connected to the EEPROM interface through the  
SMi. if the SMi is in iEEE mode, the EEPROM can be accessed via the SMi using Extended Mii Registers 21E and 22E. if the  
SMi is in MSA mode, the EEPROM can be accessed directly via the SMi i.e. the PHY behaves as if the MODDEF2 and  
MODDEEF1 pins of the SMi are directly connected to the EEDAT and EECLK pins of the PHY.1  
One exception is the memory portion with device/page address ‘110’. This is reserved for the PHY Register access when the  
PHY’s SMi is set in MSA mode.  
if an EEPROM is present, but the EEPROM does not acknowledge (according to the ATMEL EEPROM protocol), the VSC8221  
waits for an acknowledgement for approximately 3 seconds. if there is no acknowledgement within 3 seconds, the VSC8221 will  
abort and continue into normal operation.  
19.1 Programming Multiple VSC8221s Using the Same EEPROM  
To prevent contention on the 2 wire bus when multiple PHYs use the same EEPROM for initialization, the EEPROM start-up  
block of each VSC8221 monitors the bus for (PHY Address[4:0] + 1) * 9 + 92 clock cycles for no bus activity and only then  
attempts to access the EEPROM bus. PhyAddress[4:0] is chosen because these are the PHY Address bits that are unique to  
each VSC8221 (that is, VSC8221 with lowest PHY Address gets priority in this bus).  
1EEPROM memory with device address ‘110’ cannot be accessed directly when the SMi is in MSA mode. This device address is reserved for  
PHY Register access in MSA mode. To access an EEPROM with device address ‘110’ in MSA mode, Extended Mii Registers 21E and 22E  
should be used.  
57 of 60  
VMDS-10106 Revision 4.1  
60  
December 2006  
VSC8221  
Data Sheet  
.
REFCLK  
Source  
RESET  
Source  
VSC8221  
(1)  
VSC8221  
(2)  
SCL  
SDA  
EEPROM  
Figure 21. EEPROM interface Connections  
NOTE: The same clock must be used for each VSC8221's REFCLK input. in addition, the RESET pin for each VSC8221 must  
be driven from the same source to ensure that the reference clock modes within each device are correctly set.  
This prevents using the CLKOUT or CLKOUTMiCRO output from one VSC8221 to drive the clock input of another VSC8221, if  
the devices are sharing the same EEPROM.  
Table 28. Configuration EEPROM Data Format  
Address  
-------------  
-------------  
-------------  
-------------  
O+7  
Contents  
----------------------------------------------------  
----------------------------------------------------  
----------------------------------------------------  
----------------------------------------------------  
Data to be written (LSB)  
O+6  
Data to be written (MSB)  
O+5  
RegAddress b  
O+4  
Data to be written (LSB)  
O+3  
Data to be written (MSB)  
58 of 60  
VMDS-10106 Revision 4.1  
December 2006  
60  
VSC8221  
Data Sheet  
Table 28. Configuration EEPROM Data Format (continued)  
Address  
O+2  
Contents  
RegAddress a  
O+1  
Number of PHY Register writes *3[7:0]  
Number of PHY Register writes *3[15:8]  
{bpage_ad-  
dr3,s_addr3} = O  
-------------  
-------------  
-------------  
-------------  
M+7  
----------------------------------------------------  
----------------------------------------------------  
----------------------------------------------------  
----------------------------------------------------  
Data to be written (LSB)  
M+6  
Data to be written (MSB)  
M+5  
RegAddress b  
M+4  
Data to be written (LSB)  
M+3  
Data to be written (MSB)  
M+2  
RegAddress a  
M+1  
Number of PHY Register writes *3[7:0]  
{bpage_ad-  
dr2,s_addr2} = M  
Number of PHY Register writes *3[15:8]  
-------------  
N+7  
----------------------------------------------------  
Data to be written (LSB)  
Data to be written (MSB)  
RegAddress b  
N+6  
N+5  
N+4  
Data to be written (LSB)  
Data to be written (MSB)  
RegAddress a  
N+3  
N+2  
N+1  
Number of PHY Register writes *3[7:0]  
{bpage_ad-  
dr1,s_addr1} = N  
Number of PHY Register writes *3[15:8]  
-------------  
7,263,519,..  
6,262,518,..  
5,261,517,..  
4,260,516,..  
3,259,515,..  
----------------------------------------------------  
Starting address for initializing PHY3 s_addr3  
{PHY Address 1[4:0], 3’bpage_addr3}  
Starting address for initializing PHY2 s_addr2  
{PHY Address 2[4:0], 3’bpage_addr2}  
Starting address for initializing PHY1 s_addr1  
59 of 60  
VMDS-10106 Revision 4.1  
December 2006  
60  
VSC8221  
Data Sheet  
Table 28. Configuration EEPROM Data Format (continued)  
Address  
2,258,514,..  
1,257,513..  
0,256,512...  
Contents  
{PHY Address 1[4:0], 3’bpage_addr1}  
8’hBD  
8’hBD  
Using the EEPROM Data Format of Table 28 enables multiple PHYs to be initialized in a similar way by reading the same  
locations from the EEPROM. if the PHYs have to be initialized differently, then the 'Address pointers' will differ for each PHY,  
along with different PHY configuration data values.  
60 of 60  
VMDS-10106 Revision 4.1  
60  
December 2006  
VSC8221  
Data Sheet  
20 PHY STARTUP AND INITIALIZATION  
The PHY Startup and initialization sequence is detailed in the flowchart below.  
A
Start - 3.3v supply is up  
B
N
Drive out CLKOUT and CLKOUTMICRO if  
enabled during Initialzation.  
C
If RESETz=1  
Y
N
Y
If REGEN=1  
N
N
Is external 1.2v  
supply up  
1. Turn on on-chip  
Is TXDIS/SRESETz deasserted  
(The assertion polarity is based on  
setting of Extended MII register  
21E.15, which can be initialized  
using Hardware or EEPROM  
Initialization)  
regulator and wait for  
1.2v supply to come up.  
Is REFCLK  
input present  
Y
Y
Latch EEDAT,PLLMODE,OSCDISz and MDINTz  
polarity using internally generated rising edge  
Y
1.Perfom Hardware Initialization - i.e. overwrite  
default PHY Register values based on resister  
values on CMODE[3:0]  
2.Store startup CMODE initialization values  
3. Set Internal variable SR=0.  
If SR=1  
Y
If EEDAT=1  
If MII Register 22.9 ‘Sticky Reset Enable’=0  
(On RESETz deassertion this bit will be set to 1)  
Y
Perform EEPROM Initialization - i.e. overwrite  
default PHY Register values using configuration  
EEPROM data  
Y
N
1.Perfom Initialization - i.e. overwrite  
default PHY Register values based on stored  
CMODE values.  
N
A
N
If Extended MII Register 21E.14 ‘Reread  
EEPROM on s/w reset’=1  
(On RESETz deassertion this bit will be set to 0)  
Y
NORMAL STATE  
Start - 3.3v supply is up  
If EEDAT=1  
N
N
Y
Is TXDIS/  
SRESETz  
asserted  
If RESETz=0  
N
N
Perform EEPROM Initialization - i.e. overwrite  
default PHY Register values using configuration  
EEPROM data  
Y
B
Y
SR=1  
NORMAL STATE  
C
1. Enter Normal Operating Mode  
2. Release SMI for user access.  
Figure 22. PHY Startup and initialization Sequence  
61 of 61  
VMDS-10106 Revision 4.1  
December 2006  
61  
VSC8221  
Data Sheet  
21 PHY OPERATING MODES  
The PHY Operating Mode is set according to the value of Mii Register 23.15:12,23.2:1. For more information, see Section 18 on  
page 53 and Section 19 on page 57 for details on PHY Operating Mode configuration at startup. The following table summarizes  
the PHY operating modes.  
Table 29. PHY Operating Modes  
Mii  
Operating  
Mode  
Category  
Register CMODE2  
23.15:12,  
23.2:1  
MAC  
interface  
Media  
interface  
Other Settings  
[3:0]  
802.3z Ser-  
Des  
1111, 00  
1110, 01  
1110, 10  
1110, 00  
0100  
CAT5  
Clause 37 disabled  
802.3z Ser-  
Des  
1110  
1010  
0000  
CAT5  
CAT5  
CAT5  
Clause 37 enabled  
802.3z Ser-  
Des  
Clause 37 enabled, Media Convertor Mode  
With Clause 37 Auto-Negotiation Detection  
Serial MAC  
PHY Oper-  
ating Modes  
802.3z Ser-  
Des  
1010, 01 1111  
1000, 01 0101  
SGMii  
SGMii  
CAT5  
CAT5  
625Mhz SCLK Clock Disabled  
625MHz SCLK Clock Enabled  
Modified Clause 37 auto-negotiation disabled,  
625MHz SCLK Clock Enabled  
1001, 00  
1011, 00  
SGMii  
SGMii  
CAT5  
CAT5  
Modified Clause 37 auto-negotiation disabled,  
625MHz SCLK Clock Disabled  
Note: For more information about VSC8221 operating modes, see Designing a Copper SFP using the VSC8221 application  
note available on the Microsemi Web site.  
62 of 62  
VMDS-10106 Revision 4.1  
62  
December 2006  
VSC8221  
Data Sheet  
22 PHY REGISTER SET CONVENTIONS  
The user can control the PHY's features, operating modes, etc. by setting the PHY Registers to the desired values. The PHY  
provides access to its Registers using the Serial Management interface. For details on PHY Register access, refer to Section 12  
on page 33.  
22.1 PHY Register Set Structure  
The register access protocol, as defined by the iEEE 802.3 specification, reserves 5 bits for register addressing. This limits the  
register space to 32, 16 bit wide registers. Of these, registers addressed 0 through 15 are defined by the iEEE 802.3  
specification and registers addressed 16 through 31 are vendor specific. To provide extensive feature control of the PHY, the  
vendor specific registers addressed 16 through 31 have been divided into two Page views, called PAGE0 and PAGE1, enabling  
access to 32 vendor specific registers instead of 16.  
PAGE0 is the default page view. To switch to PAGE1 write 0001 to PHY Register 31. To switch to PAGE0 write 0000h to PHY  
Register 31.  
Normal Page  
Registers  
0
1
2
3
.
.
.
.
.
.
.
Extended Page  
Registers  
15  
16  
16E  
17  
17E  
18  
18E  
19  
19E  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
30  
30E  
0000  
0001  
31  
Figure 23. Extended Page Register Diagram  
63 of 64  
VMDS-10106 Revision 4.1  
December 2006  
64  
VSC8221  
Data Sheet  
22.2 PHY Register Set Nomenclature  
Table 30. Register Set Nomenclature  
Register Address  
Page View  
- NA-  
Naming Convention  
Mii Register  
0-15  
16-31  
PAGE0  
Mii Register  
Extended Page Mii Register (Referred to with  
an ‘E’ after the register number e.g. 20E.15 is  
Page 1 Register 20 bit 15)  
16-31  
PAGE1  
22.3 PHY Register Bit types  
PHY Register bit types are defined in the table below:  
Table 31. PHY Register Bit Types  
Register Bit Type  
Description  
R/W  
RO  
Read and Write, effective immediately  
Read Only (must be written ‘0’, unless specified otherwise)  
Read Only, Self Clears after Read  
Latched High, Clears after Read  
Latched Low, Clears after Read  
Self-Cleared  
RO SC  
LH  
LL  
SC  
Read and Write, effective after s/w reset. This register will read the new value only  
after s/w reset.  
RWSW  
“Sticky” refers to the behavior of the register bit(s) after a software reset. if an “S” appears in the sticky column, the  
corresponding bit(s) will retain their values after a software reset, as long as Mii Register bit 22.9 - Sticky Reset Enable is set.  
if an “SS” appears in the sticky column, the corresponding bit(s) will retain their values after a software reset, regardless of the  
state of Mii Register bit 22.9 - Sticky Reset Enable.  
64 of 64  
VMDS-10106 Revision 4.1  
64  
December 2006  
VSC8221  
Data Sheet  
23 PHY REGISTER SET  
23.1 PHY Register Names and Addresses  
Table 32. PHY Register Names and Addresses  
Register Name  
Register Address  
Register Number  
(hex)  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
Mode Control  
0
Mode Status  
1
PHY identifier Register # 1  
PHY identifier Register # 2  
Auto-Negotiation Advertisement  
Auto-Negotiation Link Partner Ability  
Auto-Negotiation Expansion  
Auto-Negotiation Next-Page Transmit  
Auto-Negotiation Link Partner Next Page Receive  
1000BASE-T Control  
1000BASE-T Status Register # 1  
Reserved  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Reserved  
Reserved  
Reserved  
1000BASE-T Status Register #2  
Reserved  
Reserved  
Bypass Control  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
Reserved  
Reserved  
Reserved  
Control & Status  
PHY Control # 1  
PHY Control # 2  
interrupt Mask  
interrupt Status  
LED Control  
Auxiliary Control & Status  
65 of 106  
VMDS-10106 Revision 4.1  
December 2006  
106  
VSC8221  
Data Sheet  
Table 32. PHY Register Names and Addresses (continued)  
Register Address  
Register Name  
Register Number  
(hex)  
1D  
1E  
1F  
10  
Reserved  
29  
MAC interface Clause 37 Auto-negotiation Control & Status  
30  
Extended Page Access  
Reserved  
31  
16E  
17E  
18E  
19E  
20E  
21E  
22E  
23E  
24E  
25E  
26E  
27E  
28E  
29E  
30E  
SerDes Control #2  
11  
Reserved  
12  
SerDes Control Register # 2  
Extended PHY Control # 3  
EEPROM interface Status and Control  
EEPROM Data Read/Write  
Extended PHY Control # 4  
Reserved  
13  
14  
15  
16  
17  
18  
Reserved  
19  
Reserved  
1A  
1B  
1C  
1D  
1E  
Reserved  
Reserved  
1000BASE-T Ethernet Packet Generator (EPG) # 1  
1000BASE-T Ethernet Packet Generator (EPG) # 2  
66 of 106  
VMDS-10106 Revision 4.1  
December 2006  
106  
VSC8221  
Data Sheet  
23.2 Mii Register Descriptions  
23.2.1 Register 0 (00h) – Mode Control Register  
Register 0 (00h) – Mode Control Register  
Bit  
Name  
Access States  
Reset Value  
Sticky  
1 = Reset asserted  
0 = Reset de-asserted  
1 = Loopback on  
Software Reset1  
15  
R/W SC  
R/W  
0
14  
Near End Loopback  
0
0 = Loopback off  
00 = 10Mbps  
01 = 100Mbps  
10 = 1000Mbps  
6, 13 Forced Speed Selection  
R/W  
10  
11 = Reserved  
1 = Auto-negotiation enabled  
0 = Auto-negotiation disabled  
1 = Power-down  
12  
11  
10  
9
Auto-Negotiation Enable  
R/W  
1
0
0
0
Power-Down2  
isolate  
R/W  
0 = Power-up  
1 = Disable MAC outputs  
0 = Normal Operation  
1 = Restart Mii  
0 = Normal operation  
1 = Full duplex  
R/W  
Restart Auto-Negotiation  
Duplex Mode  
R/W SC  
8
R/W  
RO  
0
0 = Half duplex  
7
Reserved  
0
MSB for Speed Selection  
(see bit 13 above)  
Reserved  
6
See “Forced Speed Selection” Above  
1
5:0  
000000  
1
2
in MSA mode, when this bit is set, the PHY does not return the correct values for the subsequent register read operations. in order to read the correct PHY register  
values, the station manager must provide 70 clock cycles on the MODDEF1/MDC pin or perform two byte read operations on any eeprom address other than in  
page ‘110’ immediately following s/w reset.  
The status of the Link Status bit, Mii Register 1.2, remains unchanged when this bit is set.  
0.15 – Software Reset  
Writing a “1” to bit 0.15 initiates a software reset. Once Software Reset is asserted, the PHY is returned to normal operating  
mode and is ready for the next SMi transaction, so Software Reset always reads back “0”. Software Reset restores all SMi  
registers to their default states, except for registers marked with an “S” or “SS” in the sticky column.  
0.14 – Near End Loopback  
When Near End Loopback is asserted, the Transmit Data (TXD) on the MAC interface is looped back as Receive Data (RXD). in  
loopback mode, no signal is transmitted over the network media. The loopback mechanism works in all (10/100/1000) modes of  
operation. The operating mode is determined by bits 0.13 and 0.6 (forced speed selection).  
0.13, 0.6 – Forced Speed Selection  
These bits determine the 10/100/1000 speed when auto-negotiation is disabled by clearing control bit 0.12. These bits are  
ignored if control bit 0.12 is set. These bits also determine the operating mode when Near End Loopback (0.14) is set to “1”.  
67 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
0.12 – Auto-Negotiation Enable  
After a power-up or reset, the PHY automatically activates the auto-negotiation state machine, setting bit 0.12 to a “1”. if a “0” is  
written to bit 0.12, the auto-negotiation process is disabled and the present contents of the PHY’s SMi register bits determine  
the operating characteristics. Note that auto-negotiation is always required in 1000BASE-T mode.  
0.11 – Power-Down  
Power-Down functions the same as Software Reset, except that it is not self-clearing, and that R/W SMi bits are not restored to  
their default states by Power-Down. The RGMii pins (except for SMi pins MDC, MDiO, and MDiNT#) are electrically isolated  
during power-down. After Power-Down is released (i.e., set to “0”), the PHY will be ready for normal operation before the next  
SMi transaction. if auto-negotiation is enabled, the PHY will begin auto-negotiation immediately upon exiting Power-Down.  
0.10 – isolate1  
When isolate is asserted (i.e., set to “1”), all Serial MAC outputs (except for MDiO) will be high impedance. Operation of the  
PHY is otherwise unaffected. For example, if isolate is asserted while CAT5 auto-negotiation is under way, auto-negotiation will  
continue unaffected.  
0.9 – Restart Auto-Negotiation  
When restart auto-negotiation is asserted (i.e., set to “1”), the auto-negotiation state machine will restart the auto-negotiation  
process, even if it is in the midst of an auto-negotiation process. This control bit is self-clearing, meaning that it will always return  
a “0” when read.  
0.8 – Duplex Mode  
Bit 0.8 determines the duplex mode of the VSC8221 when auto-negotiation is disabled. Changes to the state of Duplex Mode  
while auto-negotiation is enabled are ignored.  
0.7 – Reserved  
0.5:0 – Reserved  
1When set, while the PHY’s SerDes side auto-negotiation function is enabled, the PHY will drop the CAT5 link. Also, setting of this bit does not  
disable the output clock on the SCLKP and SCLKN pins.  
68 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
23.2.2 Register 1 (01h) – Mode Status Register  
Register 1 (01h) – Mode Status Register  
Bit  
15  
14  
13  
12  
11  
10  
9
Name  
Access States  
Reset Value Sticky  
100BASE-T4 Capability  
100BASE-X FDX Capability  
100BASE-X HDX Capability  
10BASE-T FDX Capability  
10BASE-T HDX Capability  
100BASE-T2 FDX Capability  
100BASE-T2 HDX Capability  
Extended Status Enable  
Reserved  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
1 = 100BASE-T4 capable  
0
1
1
1
1
0
0
1 = 100BASE-X FDX capable  
1 = 100BASE-X HDX capable  
1 = 10BASE-T FDX capable  
1 = 10BASE-T HDX capable  
1 = 100BASE-T2 FDX capable  
1 = 100BASE-T2 HDX capable  
8
7
1 = Extended status information present in R15 1  
0
1 = MF preamble may be suppressed  
0 = MF preamble always required  
1 = Auto-negotiation complete  
0 = Auto-negotiation not complete  
6
5
Preamble Suppression Capability RO  
1
Auto-Negotiation Complete  
RO  
0
1 = Far-end fault detected  
0 = No fault detected  
1 = Auto-negotiation capable  
1 = Link is up  
0 = Link is down  
4
3
2
Remote Fault  
RO LH  
RO  
0
Auto-Negotiation Capability  
Link Status1  
1
0
RO LL  
1 = Jabber condition detected  
0 = No jabber condition detected  
1 = Extended register capable  
1
0
Jabber Detect  
RO LH  
RO  
0
1
Extended Capability  
1
The status of this bit remains unchanged when the PHY is put in Power Down mode by setting Mii Register 0.11 or by asserting the TXDiS/SRESET pin.  
1.15 – 100BASE-T4 Capability  
The VSC8221 is not 100BASE-T4 capable, so this bit is hard-wired to “0”.  
1.14 – 100BASE-X FDX Capability  
The VSC8221 is 100BASE-X FDX capable, so this bit is hard-wired to “1”.  
1.13 – 100BASE-X HDX Capability  
The VSC8221 is 100BASE-X HDX capable, so this bit is hard-wired to “1”.  
1.12 – 10BASE-T FDX Capability  
The VSC8221 is 10BASE-T FDX capable, so this bit is hard-wired to “1”.  
1.11 – 10BASE-T HDX Capability  
The VSC8221 is 10BASE-T HDX capable, so this bit is hard-wired to “1”.  
1.10 – 100BASE-T2 FDX Capability  
The VSC8221 is not 100BASE-T2 FDX capable, so this bit is hard-wired to “0”.  
1.9 – 100BASE-T2 HDX Capability  
The VSC8221 is not 100BASE-T2 HDX capable, so this bit is hard-wired to “0”.  
69 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
1.8 – Extended Status Enable  
The VSC8221 is extended status capable, so this bit is hard-wired to “1”.  
1.7 – Reserved  
1.6 – Preamble Suppression Capability  
The VSC8221 accepts management frames on the SMi without preambles, so preamble suppression capability is hard-wired to  
“1”. The management frame preamble may be as short as 1 bit.  
1.5 – Auto-Negotiation Complete  
When this bit is a “1”, the contents of Registers 4, 5, 6, 10 and 28 are valid.  
1.4 – Remote Fault  
Bit 1.4 will be set to “1” if the Link Partner signals a far-end fault. The bit is cleared automatically upon a read if the far-end fault  
condition has been removed.  
1.3 – Auto-Negotiation Capability  
The VSC8221 is auto-negotiation capable, so this bit is hard-wired to “1”. Note that this bit will read a “1” even if auto-negotiation  
is disabled via bit 0.12.  
1.2 – Link Status  
This bit will return a “1” when the VSC8221 link state machine has reached the “link pass” state, meaning that a valid link has  
been established. if the link is subsequently lost, the Link Status will revert to a “0” state. it will remain a “0” until Link Status is  
read while the link state machine is in the “link pass” state.  
1.1 – Jabber Detect  
Note that Jabber Detect is required for 10BASE-T mode only. Jabber Detect will be set to “1” when the jabber condition is  
detected. Jabber Detect will be cleared automatically when this register is read.  
1.0 – Extended Capability  
The VSC8221 has extended register capability, so this bit is hard-wired to “1”.  
23.2.3 Register 2 (02h) – PHY identifier Register #1  
Register 2 (02h) – PHY identifier Register #1  
Bit  
Name  
Access States  
Reset Value  
0000000000001111  
or  
Sticky  
OUi most significant bits  
(Microsemi OUi bits 3:18)  
15:0 Organizationally Unique identifier RO  
(000Fh)  
2.15:0 – PHY identifier Register #1  
Microsemi has been assigned an OUi from the iEEE of 0003F1h. Per iEEE requirements, only OUi bits 3 to 18 are used in this  
register.  
70 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
23.2.4 Register 3 (03h) – PHY identifier Register #2  
Register 3 (03h) – PHY identifier Register #2  
Bit  
Name  
Access States  
Reset Value  
110001  
Sticky  
OUi least significant bits  
15:10 Organizationally Unique identifier RO  
(Microsemi OUi bits 19:24)  
Vendor’s model number (iC)  
Vendor’s revision number (iC)  
9:4  
3:0  
Vendor Model Number  
Vendor Revision Number  
RO  
RO  
010101 = VSC8221  
0001 = Silicon Revision C  
3.15:10 – OUi  
Microsemi has been assigned an OUi from the iEEE of 0003F1h. Per iEEE requirements, only OUi bits 19 to 24 are used in this  
register.  
3.9:4 - Vendor Model Number  
The Model no. of this iC is ‘010101’.  
3.3:0 - Vendor Revision Number  
The current Revision Number of this iC is ‘0001’.  
23.2.5 Register 4 (04h) – Auto-Negotiation Advertisement Register  
Register 4 (04h) – Auto-Negotiation Advertisement Register  
Bit  
15  
14  
13  
12  
11  
10  
9
Name  
Access States  
Reset Value  
0
0
0
Sticky  
Next-Page Transmission Request R/W  
Reserved  
Transmit Remote Fault  
Reserved  
Advertise Asymmetric Pause  
Advertise Symmetric Pause  
1 = Next-Page transmission request  
RO  
R/W  
RO  
1 = Transmit remote fault  
0
R/W  
R/W  
1 = Advertise Asymmetric Pause capable  
1 = Advertise Symmetric Pause capable  
1 = 100BASE-T4 capable  
CMODE  
CMODE  
0
Advertise 100BASE-T4 Capability R/W  
8
7
6
5
Advertise 100BASE-TX FDX  
Advertise 100BASE-TX HDX  
Advertise 10BASE-T FDX  
Advertise 10BASE-T HDX  
Advertise Selector Field  
R/W  
R/W  
R/W  
R/W  
R/W  
1 = 100BASE-TX FDX capable  
1 = 100BASE-TX HDX capable  
1 = 10BASE-T FDX capable  
CMODE  
CMODE  
CMODE  
CMODE  
00001  
1 = 10BASE-T HDX capable  
4:0  
This register controls the advertised abilities of the local (not remote) PHY. The state of this register is latched when the auto-  
negotiation state machine enters the ABiLiTY_DETECT state. Thus, any writes to this register prior to completion of auto-  
negotiation as indicated by Mii Register bit 1.5 should be followed by a re-negotiation for the new values to be properly used for  
auto-negotiation. Once auto-negotiation has completed, this register value may be read via the SMi to determine the highest  
common denominator technology.  
4.15 – Auto-Negotiation Additional Next-Page Transmission Request  
The VSC8221 supports additional Next-Page transmission through Mii Register bit 4.15. See description of Mii Register bit 18.1  
for more details on Next-Page exchanges.  
4.14, 4.12 – Reserved  
71 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
4.13 – Transmit Remote Fault  
This bit is used by the local MAC to communicate a fault condition to the link partner during auto-negotiation. This bit does not  
have any effect on the local PHY operation. This bit is automatically cleared following a successful negotiation with the Link  
Partner. Note that iEEE Clause-37 provides for two remote fault bits, while Clause-28 provides only a single remote fault bit.  
This discrepancy is handled in Mii Extended register bits 16E.2:1 - Remote Fault Mapping Mask and 16E.0 - Remote Fault  
Mapping OR.  
4.11 – Advertise Asymmetric Pause Capability  
This bit is used by the local MAC to communicate Asymmetric Pause Capability to the link partner during auto-negotiation. This  
has no effect on PHY operation. Changing this bit in Clause-28 view will also change bit 4.8 in Clause-37 view.  
4.10 – Advertise Symmetric Pause Capability  
This bit is used by the local MAC to communicate Symmetric Pause Capability to the link partner during auto-negotiation. This  
has no effect on PHY operation. Changing this bit in Clause-28 view will also change bit 4.9 in Clause-37 view.  
4.9:5 – Advertise Capability  
Bits 4.9:5 allow the user to customize the ability information transmitted to the Link Partner during auto-negotiation. By writing a  
“1” to any of these bits, the corresponding ability will be advertised to the Link Partner. Writing a “0” to any bit causes the  
corresponding ability to be suppressed from transmission. The state of these bits has no other effect on the operation of the  
local PHY. Resetting the chip restores the default bit values. Note that the default values of these bits indicate the true ability of  
the VSC8221. These bits are not available for read or write in Clause-37 view.  
4.4:0 – Advertise Selector Field  
Since the VSC8221 is a member of the 802.3 class of PHYs, the Advertise Selector Field defaults to “00001”. These bits are  
R/W because the Ethernet standard requires them to be R/W. Changing the value of these bits has no effect on PHY operation.  
23.2.6 Register 5 (05h) – Auto-Negotiation Link Partner Ability Register  
Register 5 (05h) – Auto-Negotiation Link Partner Ability Register  
Bit Name  
Access States  
Reset Value Sticky  
15 LP Next-Page Transmit Request  
14 LP Acknowledge  
13 LP Remote Fault  
12 Reserved  
11 LP Asymmetric Pause Capability  
10 LP Symmetric Pause Capability  
RO  
RO  
RO  
RO  
RO  
RO  
1 = LP NP transmit request  
1 = LP acknowledge  
1 = LP remote fault  
0
0
0
0
1 = LP Advertise Asymmetric Pause capable 0  
1 = LP Advertise Symmetric Pause capable  
1 = LP Advertise 100BASE-T4 capable  
1 = LP 100BASE-TX FDX capable  
1 = LP 100BASE-TX HDX capable  
1 = LP 10BASE-T FDX capable  
0
0
0
0
0
0
9
8
7
6
5
LP Advertise 100BASE-T4 Capability RO  
LP Advertise 100BASE-TX FDX  
LP Advertise 100BASE-TX HDX  
LP Advertise 10BASE-T FDX  
LP Advertise 100BASE-T HDX  
RO  
RO  
RO  
RO  
RO  
1 = LP 100BASE-T HDX capable  
LP Advertise Selector Field  
4:0 LP Advertise Selector Field  
00000  
5.15 – LP Next-Page Transmit Request  
Bit 5.15 returns a “1” when the Link Partner implements the Next-Page function and has Next-Page information it wants to  
transmit. The state of this bit is valid when the Auto-Negotiation Complete bit (1.5) or the Page Received bit (6.1) is set.  
72 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
5.14 – LP Acknowledge  
Bit 5.14 returns a “1” when the Link Partner signals that it has successfully received the Link Code Word from the local PHY. The  
local PHY uses this bit for proper Link Code Word exchange, as defined in Clause 28 of iEEE 802.3.  
5.13 – LP Remote Fault  
Bit 5.13 returns a “1” when the Link Partner signals that a remote fault (from its perspective) has occurred. The local PHY does  
not otherwise use this bit. Note that iEEE Clause-37 provides for two remote fault bits, while Clause-28 provides only a single  
remote fault bit. This difference is handled in Extended Mii register bits 16E.2:1 - Remote Fault Mapping Mask and 16E.0 -  
Remote Fault Mapping OR. The state of this bit is valid when the Auto-Negotiation Complete bit (1.5) is set.  
5.12 – Reserved  
5.11 – LP Asymmetric Pause Capability  
The LP Asymmetric Pause Capability bit indicates whether the Link Partner has asymmetric pause capability. The state of this  
bit is valid when the Auto-Negotiation Complete bit (1.5) is set.  
5.10 – LP Symmetric Pause Capability  
The LP Symmetric Pause Capability bit indicates whether the Link Partner supports symmetric pause frame capability. This bit  
is used by the Link Partner’s MAC to communicate symmetric pause capability to the local MAC. it has no effect on PHY  
operation. The state of this bit is valid when the Auto-Negotiation Complete bit (1.5) is set.  
5.9:5 – LP Advertise Capability  
Bits 5.9:5 reflect the abilities of the Link Partner. A “1” on any of these bits indicates that the Link Partner advertises capability of  
performing the corresponding mode of operation. These bits are not available for read in Clause-37 view, but remain valid for  
CAT-5 copper media and can be viewed by switching to Clause-28 view.  
5.4:0 – LP Advertise Selector Field  
Bits 5.4:0 indicate the state of the Link Partner’s Selector Field. The local PHY does not otherwise use these bits.  
23.2.7 Register 6 (06h) – Auto-Negotiation Expansion Register  
Register 6 (06h) – Auto-Negotiation Expansion Register  
Bit  
Name  
Access  
RO  
States  
Reset Value  
00000000000  
Sticky  
15:5 Reserved  
4
3
2
1
0
Parallel Detection Fault  
LP Next-Page Able  
Local PHY Next-Page Able  
Page Received  
LP Auto-Negotiation Able  
RO LH  
RO  
RO  
RO LH  
RO  
1 = Parallel detection fault  
1 = LP Next-Page capable  
1 = Next-Page capable  
1 = New page has been received  
1 = LP auto-negotiation capable  
0
0
1
0
0
6.15:5 – Reserved  
6.4 – Parallel Detection Fault  
Parallel Detection Fault returns a “1” when a parallel detection fault occurs in the local auto-negotiation state machine. Once  
set, this bit is automatically cleared when (and only when) Register 6 is read.  
73 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
6.3 – LP Next-Page Able  
LP Next-Page Able returns a “1” when the Link Partner has Next-Page capabilities. This bit is used in the auto-negotiation state  
machines, as defined in Clause 28 of iEEE 802.3. The state of this bit is valid when either the Auto-Negotiation Complete bit  
(1.5) or the Page Received bit (6.1) is set.  
6.2 – Local PHY Next-Page Able  
Since the VSC8221 is next-page capable during Clause-28 auto-negotiation, this bit is hard-wired to “1”.  
6.1 – Page Received  
Page Received is set to “1” when a new Link Code Word is received from the Link Partner, validated, and acknowledged. Page  
Received is automatically cleared when (and only when) Register 6 is read via the SMi.  
6.0 – LP Auto-Negotiation Able  
LP Auto-Negotiation Able is set to “1” if the Link Partner advertises auto-negotiation capability. The state of this bit is valid when  
the Auto-Negotiation Complete bit (1.5) or the Page Received bit (6.1) is set.  
23.2.8 Register 7 (07h) – Auto-Negotiation Next-Page Transmit Register  
Register 7 (07h) – Auto-Negotiation Next-Page Transmit Register  
Bit  
15  
14  
13  
Name  
Access States  
Reset Value  
Sticky  
1 = More pages follow  
0 = Last page  
Next Page  
Reserved  
Message Page  
R/W  
RO  
0
0
1
1 = Message page  
0 = Unformatted page  
R/W  
1 = Will comply with request  
0 = Cannot comply with request  
1 = Previous transmitted LCW == 0  
0 = Previous transmitted LCW == 1  
12  
11  
Acknowledge2  
Toggle  
R/W  
0
RO  
0
10:0 Message/Unformatted Code  
R/W  
00000000001  
7.15 – Next Page  
The Next Page bit indicates whether this is the last Next-Page to be transmitted. By default, this bit is set to “0”, indicating that  
this is the last page.  
7.14 – Reserved  
7.13 – Message Page  
The Message Page bit indicates whether this page is a message page or an unformatted page. This bit does not otherwise  
affect the operation of the local PHY. By default, this bit is set to “1”, indicating that this is a message page.  
7.12 – Acknowledge2  
The Acknowledge2 bit indicates if the local MAC reports that it is able to act on the information (or perform the task) indicated in  
the previous message. The local PHY does not interpret or act on changes in the state of this bit.  
74 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
7.11 – Toggle  
The Toggle bit is used by the arbitration function in the local PHY to ensure synchronization with the Link Partner during Next-  
Page exchanges. The Toggle bit is automatically set to the opposite state of the Toggle bit in the previously exchanged Link  
Code Word.  
7.10:0 – Message/Unformatted Code  
The Message/Unformatted Code bits indicate the message code being transmitted to the Link Partner. The local PHY passes  
the message code to the Link Partner without interpreting or reacting to it. By default, this code is set to “000 0000 0001”,  
indicating a null message.  
23.2.9 Register 8 (08h) – Auto-Negotiation Link Partner Next-Page Receive Register  
Register 8 (08h) – Auto-Negotiation Link Partner Next-Page Receive Register  
Bit  
15  
14  
13  
12  
11  
Name  
Access States  
1 = More pages follow  
Reset Value  
Sticky  
LP Next Page  
LP Acknowledge  
LP Message Page  
LP Acknowledge2  
LP Toggle  
RO  
RO  
RO  
RO  
RO  
RO  
0
0 = Last page  
1 = LP acknowledge  
1 = Message page  
0 = Unformatted page  
1 = LP will comply with request  
1 = Previous transmitted LCW == 0  
0 = Previous transmitted LCW == 1  
0
0
0
0
10:0 LP Message/Unformatted Code  
00000000000  
SMi Register 8 contains the Link Partner’s Next-Page register contents. The contents of this register are only valid when the  
Page Received bit (6.1) is set.  
8.15 – LP Next Page  
This bit indicates if more pages follow from the Link Partner.  
8.14 – LP Acknowledge  
This bit returns a “1” when the Link Partner signals that it has received the Link Code Word from the local PHY. The local PHY  
uses this bit for proper Link Code Word exchange, as defined in Clause 28 of iEEE 802.3.  
8.13 – LP Message Page  
The Message Page bit indicates if the page received from the Link Partner is a message page or an unformatted page.  
8.12 – LP Acknowledge2  
The Acknowledge2 bit indicates whether the Link Partner MAC reports that it is able to act on the information (or perform the  
task) indicated in the message. The local PHY does not interpret or act on changes in the state of this bit.  
8.11 – LP Toggle  
The Toggle bit is used by the arbitration function in the local PHY to ensure synchronization with the Link Partner during Next-  
Page exchanges. in the Link Partner, the Toggle bit is automatically set to the opposite state of the Toggle bit in the previously  
exchanged Link Code Word from the Link Partner.  
75 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
8.10:0 – LP Message/Unformatted Code  
The Message/Unformatted Code bits indicate the message code being transmitted by the Link Partner.  
23.2.10 Register 9 (09h) – 1000BASE-T Control Register  
Register 9 (09h) – 1000BASE-T Control Register  
Acces  
Bit  
Name  
States  
Reset Value Sticky  
s
15:13 Transmitter Test Mode  
R/W  
Described below, per iEEE 802.3, 40.6.1.1.2  
1 = Enable MASTER/SLAVE Manual Configu-  
ration value  
0 = Disable MASTER/SLAVE Manual Configu-  
ration value  
000  
MASTER/SLAVE Manual  
12  
R/W  
0
Configuration Enable  
1 = Configure PHY as MASTER during MAS-  
TER/SLAVE negotiation, only when bit 9.12 is  
set to logical one.  
0 = Configure PHY as SLAVE during MASTER/  
SLAVE negotiation, only when bit 9.12 is set to  
logical one.  
MASTER/SLAVE Manual  
Configuration Value  
11  
R/W  
R/W  
0
0
1 = Multi-port device  
0 = Single-port device  
10  
Port Type  
9
8
7:0  
1000BASE-T FDX Capability  
1000BASE-T HDX Capability  
Reserved  
R/W  
R/W  
R/W  
1 = PHY is 1000BASE-T FDX capable  
1 = PHY is 1000BASE-T HDX capable  
CMODE  
CMODE  
00000000  
9.15:13 – Transmitter/Receiver Test Mode1  
This test is valid only in 1000BASE-T mode. Refer to iEEE 802.3-2002, section 40.6.1.1.2 for more information.  
Bit 1  
Bit 2  
Bit 3  
Test Mode  
(9.15) (9.14) (9.13)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Normal operation  
Test Mode 1 – Transmit waveform test  
Test Mode 2 – Transmit jitter test in MASTER mode  
Test Mode 3 – Transmit jitter test in SLAVE mode  
Test Mode 4 – Transmitter distortion test  
Reserved; operation not defined  
Reserved; operation not defined  
Reserved; operation not defined  
Test Mode 1: The PHY repeatedly transmits the following sequence of data symbols from all four transmitters: {{"+2"  
followed by 127 "0" symbols}, {"-2" followed by 127 "0" symbols}, {"+1" followed by 127 "0" symbols}, {"-1" followed by  
127 "0" symbols}, {128 "+2" symbols, 128 "-2" symbols, 128 "+2" symbols, 128 "-2" symbols}, {1024 "0" symbols}}. The  
transmitter should use a 125.00 MHz ± 0.01% clock and should operate in MASTER timing mode.  
1The state of this register is internally latched when the auto-negotiation state machine enters the ABiLiTY_DETECT state. Changes to the  
states of these bits are recognized only at that time. This register is valid only in 1000BASE-T mode.  
76 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
Test Mode 2: The PHY transmits the data symbol sequence {+2, -2} repeatedly on all channels. The transmitter should  
use a 125.00 MHz ± 0.01% clock in the MASTER timing mode.  
Test Mode 3: The PHY transmits the data symbol sequence {+2, -2} repeatedly on all channels. The transmitter should  
use a 125.00 MHz ± 0.01% clock and should operate in SLAVE timing mode.  
Test Mode 4: The PHY transmits the sequence of symbols generated by the following scrambler generator polynomial,  
bit generation, and level mappings:  
The maximum-length shift register used to generate the sequences defined by this polynomial is updated once per  
symbol interval (8ns). The bits stored in the shift register delay line at a particular time n are denoted by Scrn[10:0]. At  
each symbol period, the shift register is advanced by one bit, and one new bit represented by Scrn[0] is generated. Bits  
Scrn[8] and Scrn[10] are exclusive-OR'd together to generate the next Scrn[0] bit. The bit sequences, x0n, x1n, and x2n,  
generated from combinations of the scrambler bits as shown in the following equations, shall be used to generate the  
quinary symbols, sn, as shown in the following table. The transmitter should use a 125.00 MHz ± 0.01% clock and should  
operate in MASTER timing mode.  
x2n  
x1n  
x0n  
Quinary Symbol, sn  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
-1  
0
1
-2  
-1  
9.12 – MASTER/SLAVE Manual Configuration Enable1  
When this bit is set to “0” (default), the MASTER/SLAVE designation of the local PHY is determined using the arbitration  
protocol established in the iEEE Ethernet standard. When this bit is set to “1”, the MASTER/SLAVE designation of the local PHY  
is set by bit 9.11. Note that MASTER/SLAVE configuration is valid only in 1000BASE-T mode.  
9.11 – MASTER/SLAVE Configuration Value1  
This bit is ignored when bit 9.12 is set to “0”. However, if bit 9.12 is set to “1”, bit 9.11 determines the MASTER/SLAVE  
designation of the local PHY. if bit 9.12 is set to “1” and bit 9.11 set to “0” (default), the local PHY is forced to be a SLAVE. if bit  
9.12 is set to “1” and bit 9.11 set to “1”, the local PHY is forced to be a MASTER. Note that MASTER/SLAVE configuration is  
valid only in 1000BASE-T mode.  
9.10 – Port Type1  
Since the VSC8221 is a single port physical layer transceiver, bit 9.10 is set to “0” by default. When set to “0”, this bit indicates a  
preference for operation as a SLAVE. if the Link Partner does not indicate the same preference, the local PHY will operate as a  
SLAVE, and the Link Partner will be a MASTER. Otherwise, the normal MASTER/SLAVE assignment protocol is used.  
1The state of this register is internally latched when the auto-negotiation state machine enters the ABiLiTY_DETECT state. Changes to the  
states of these bits are recognized only at that time. This register is valid only in 1000BASE-T mode.  
77 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
9.9 – 1000BASE-T FDX1  
Since the VSC8221 is 1000BASE-T FDX capable, this bit is “1” by default. if bit 9.9 is written to be “0”, the auto-negotiation state  
machine for the local PHY will be blocked from advertising 1000BASE-T FDX. Note that the Link Partner will be notified of the  
state of bit 9.9 during auto-negotiation. After auto-negotiation is complete, changing the state of this bit has no effect unless  
auto-negotiation is manually restarted.  
9.8 – 1000BASE-T HDX1  
Since the VSC8221 is 1000BASE-T HDX capable, this bit is “1” by default. if bit 9.8 is written to be “0”, the auto-negotiation state  
machine for the local PHY will be blocked from advertising 1000BASE-T HDX. Note that the Link Partner will be notified of the  
state of bit 9.8 during auto-negotiation. After auto-negotiation is complete, changing the state of this bit has no effect unless  
auto-negotiation is manually restarted.  
9.7:0 – Reserved  
23.2.11 Register 10 (0Ah) – 1000BASE-T Status Register #1  
Register 10 (0Ah) – 1000BASE-T Status Register #1  
Bit Name  
Access  
States  
Reset Value Sticky  
1 = MASTER/SLAVE configuration fault detected  
RO LH SC 0 = No MASTER/SLAVE configuration fault  
detected  
MASTER/SLAVE Configuration  
Fault  
15  
14  
0
MASTER/SLAVE Configuration  
Resolution  
1 = Local PHY configuration resolved to MASTER  
0 = Local PHY configuration resolved to SLAVE  
1 = Local receiver OK  
(loc_rcvr_status == OK)  
0 = Local receiver not OK  
(loc_rcvr_status == NOT_OK)  
1 = Remote receiver OK  
(rem_rcvr_status == OK)  
0 = Remote receiver not OK  
RO  
1
0
13 Local Receiver Status  
12 Remote Receiver Status  
RO  
RO  
0
(rem_rcvr_status == NOT_OK)  
1 = LP 1000BASE-T FDX capable  
11 LP 1000BASE-T FDX Capability RO  
10 LP 1000BASE-T HDX Capability RO  
0
0
0 = LP not 1000BASE-T FDX capable  
1 = LP is 1000BASE-T HDX capable  
0 = LP is not 1000BASE-T HDX capable  
9:8 Reserved  
RO  
00  
7:0 idle Error Count  
RO SC  
00000000  
10.15 – MASTER/SLAVE Configuration Fault2  
This bit indicates whether a MASTER/SLAVE configuration fault has been detected by the local PHY. A configuration fault  
occurs if both the local and remote PHYs are forced to the same MASTER/SLAVE state, or if no resolution is reached after  
seven retries. When such a fault has been detected, this bit is set to “1”, but the PHY continues to renegotiate until the  
MASTER/SLAVE configuration is resolved. Once set, this bit is automatically cleared when (and only when) Register 10 is read  
via the SMi.  
1The state of this register is internally latched when the auto-negotiation state machine enters the ABiLiTY_DETECT state. Changes to the  
states of these bits are recognized only at that time. This register is valid only in 1000BASE-T mode.  
2This bit is valid only when the Page Received bit (6.1) is set to a “1” and if Mii Register bit 9.9 or 9.8 is set.  
78 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
10.14 – MASTER/SLAVE Configuration Resolution1  
By default, the MASTER/SLAVE configuration is determined as part of the auto-negotiation process. However, the MASTER/  
SLAVE status can optionally be manually forced via bits in Mii Register 9. Bit 10.14 indicates the final MASTER/SLAVE  
configuration status for the local PHY. This bit can change state only as a result of the reset or subsequent restart of the auto-  
negotiation process. This bit is only valid when the Auto-Negotiation Complete bit (1.5) is set.  
10.13 – Local Receiver Status1  
Bit 10.13 indicates the state of the loc_rcvr_status flag within the PMA receive function within the local PHY.  
10.12 – Remote Receiver Status1  
Bit 10.12 indicates the state of the rem_rcvr_status flag within the PMA receive function within the local PHY.  
10.11 – LP 1000BASE-T FDX Capability1  
Bit 10.11 is set to “1” if the Link Partner PHY advertises 1000BASE-T FDX capability. Otherwise, this bit is set to “0”. The state  
of this bit is valid when the Auto-Negotiation Complete bit (1.5) is set.  
10.10 – LP 1000BASE-T HDX Capability1  
Bit 10.10 is set to “1” if the Link Partner PHY advertises 1000BASE-T HDX capability. Otherwise, this bit is set to “0”. The state  
of this bit is valid when the Auto-Negotiation Complete bit (1.5) is set.  
10.9:8 – Reserved  
10.7:0 – idle Error Count1  
Bits 10.7:0 indicate the idle Error count, where 10.7 is the most significant bit. These bits contain a cumulative count of the  
errors detected when the receiver is receiving idles and PMA_TXMODE.indicate is equal to SEND_N (indicating that both the  
local and remote receiver status have been detected to be OK). The counter is incremented every symbol period that  
rx_error_status in the PMA receive function is equal to ERROR. Bits 10.7:0 are reset to all “0”s when the error count is read by  
the management function, or upon execution of the PCS reset function, and they are saturated to all “1”s in case of overflow.  
23.2.12 Register 11 (0Bh) – Reserved Register  
Register 11 (0Bh) – Reserved Register  
Bit  
Name  
Access States  
Reset Value  
Sticky  
15:0 Reserved  
RO  
00000000 00000000  
11.15:0 – Reserved  
1This bit is valid only when the Page Received bit (6.1) is set to a “1” and if Mii Register bit 9.9 or 9.8 is set.  
79 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
23.2.13 Register 12 (0Ch) – Reserved Register  
Register 12 (0Ch) – Reserved Register  
Bit  
Name  
Access States  
RO  
Reset Value  
00000000 00000000  
Sticky  
Sticky  
Sticky  
Sticky  
15:0 Reserved  
12.15:0 – Reserved  
23.2.14 Register 13 (0Dh) – Reserved Register  
Register 13 (0Dh) – Reserved Register  
Bit  
Name  
Access  
States  
Reset Value  
00000000 00000000  
15:0 Reserved  
RO  
13.15:0 – Reserved  
23.2.15 Register 14 (0Eh) – Reserved Register  
Register 14 (0Eh) – Reserved Register  
Bit  
Name  
Access  
States  
Reset Value  
00000000 00000000  
15:0 Reserved  
RO  
14.15:0 – Reserved  
23.2.16 Register 15 (0Fh) – 1000BASE-T Status Register #2  
Register 15 (0Fh) – 1000BASE-T Status Register #2  
Bit  
Name  
Access States  
Reset Value  
1 = PHY is 1000BASE-X FDX capable  
0 = PHY is not 1000BASE-X FDX capable  
15  
1000BASE-X FDX Capability  
RO  
RO  
RO  
0
1 = PHY is 1000BASE-X HDX capable  
0 = PHY is not 1000BASE-X HDX capable  
1 = PHY is 1000BASE-T FDX capable  
0 = PHY is not 1000BASE-T FDX capable  
1 = PHY is 1000BASE-T HDX capable  
0 = PHY is not 1000BASE-T HDX capable  
14  
13  
12  
1000BASE-X HDX Capability  
1000BASE-T FDX Capability  
1000BASE-T HDX Capability  
0
1
RO  
RO  
1
11:0 Reserved  
0000 00000000  
15.15 – 1000BASE-X FDX Capability  
The VSC8221 is not 1000BASE-X capable, so this bit is hard-wired to “0”.  
80 of 106  
VMDS-10106 Revision 4.1  
December 2006  
106  
VSC8221  
Data Sheet  
15.14 – 1000BASE-X HDX Capability  
The VSC8221 is not 1000BASE-X capable, so this bit is hard-wired to “0”.  
15.13 – 1000BASE-T FDX Capability  
The VSC8221 is 1000BASE-T FDX capable, so this bit is hard-wired to “1”.  
15.12 – 1000BASE-T HDX Capability  
The VSC8221 is 1000BASE-T HDX capable, so this bit is hard-wired to “1”.  
15.11:0 – Reserved  
23.2.17 Register 16 (10h) – Reserved  
Register 16 (10h) – Reserved Register  
Bit  
Name  
Access  
States  
Reset Value  
Sticky  
15:0 Reserved  
RO  
00000000 00000000  
16.15:0 – Reserved  
23.2.18 Register 17 (11h) – Reserved  
Register 17 (11h) – Reserved Register  
Bit  
Name  
Access  
States  
Reset Value  
Sticky  
15:0 Reserved  
RO  
00000000 00000000  
17.15:0 – Reserved  
23.2.19 Register 18 (12h) – Bypass Control Register  
Register 18 (12h) – Bypass Control Register  
Reset  
Value  
0
Bit  
15  
14  
Name  
Access States  
Sticky  
Reserved  
RO  
1 = Bypass 4B5B encoder/decoder  
0 = Enable 4B5B encoder/decoder  
1 = Bypass scrambler  
Bypass 4B5B Encoder/Decoder  
R/W  
R/W  
0
0
13  
Bypass Scrambler  
0 = Enable scrambler  
1 = Bypass descrambler  
0 = Enable descrambler  
12  
Bypass Descrambler  
Reserved  
R/W  
RO  
0
11:9  
000  
1 = Enable internal TXCLK test output on CLK-  
OUTMiCRO pin  
0 = Disable internal TXCLK test output on CLK-  
OUTMiCRO pin  
8
Transmitter Test Clock Enable  
R/W  
0
81 of 106  
VMDS-10106 Revision 4.1  
December 2006  
106  
VSC8221  
Data Sheet  
Register 18 (12h) – Bypass Control Register  
Reset  
Value  
01  
Bit  
7:6  
5
Name  
Access States  
Sticky  
Reserved  
Disable Automatic Pair Swap Cor-  
rection  
RO  
1=Disable  
0=Enable  
1=Disable  
0=Enable  
R/W  
R/W  
0
0
4
Disable Polarity inversion  
1 = Do not ignore advertised ability  
0 = ignore advertised ability  
3
2
Parallel-Detect Control  
Reserved  
R/W  
RO  
1
0
S
1 = Disable automatic 1000BASE-T Next-Page  
exchanges  
0 = Enable automatic 1000BASE-T Next-Page  
exchanges  
1 = Enable output clock pins CLKOUT  
0 = Disable output clock pins CLKOUT  
Disable Automatic 1000BASE-T  
Next-Page Exchange  
1
0
R/W  
R/W  
0
1
S
S
CLKOUT Output Enable  
18.15 – Reserved  
18.14 – Bypass 4B5B Encoder/Decoder 1  
When bit 18.14 is set to “1”, the 5B codes (TXER and TXD[3:0]) will be passed from the Mii interface directly to the scrambler,  
bypassing the 4B5B encoder. Note that in this mode, J/K and T/R code insertion will not be performed. The receiver will pass  
descrambled/aligned 5B codes directly to the Mii interface (RXER and RXD[3:0]), bypassing the 4B5B decoder. Carrier sense  
(CRS) is still asserted when a valid frame is detected.  
18.13 – Bypass Scrambler2  
When bit 18.13 is set to “1”, the scrambler is disabled.  
18.12 – Bypass Descrambler2  
When bit 18.12 is set to “1”, the descrambler is disabled.  
18.11:9 – Reserved  
18.8 – Transmitter Test Clock Enable  
When a “1” is written to bit 18.8, the CLKOUTMiCRO output pin becomes a test pin for the transmit clock “TXCLK”. This  
capability is intended to enable measurement of transmitter timing jitter, as specified in iEEE Standard 802.3-2002, section  
40.6.1.2.5. When in iEEE-specified transmitter test modes 2 or 3 (see iEEE 802.3-2002, section 40.6.1.1.2 and Mii Register bits  
9.15:13), the peak-to-peak jitter of the zero-crossings of the differential signal output at the MDi, relative to the corresponding  
edge of TXCLK, is measured. The corresponding edge of TXCLK is the edge of the transmit test clock, in polarity and time, that  
generates the zero-crossing transition being measured.  
While transmitter test mode clock TXCLK is intended only for characterization test purposes, CLKOUTMiCRO is intended to  
serve as a general purpose system or MAC reference clock.  
18.7:6 – Reserved  
1This bit applies only in 100BASE-TX mode.  
2This bit applies only in 100BASE-TX and 1000BASE-T modes.  
82 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
18.5 - Disable Automatic Pair Swap Correction  
When set to ‘1’, the automatic pair swap correction feature of the PHY is disabled.  
18.4 - Disable Polarity inversion  
When set to ‘1’, the automatic polarity inversion feature of the PHY is disabled.  
18.3 – Parallel-Detect Control  
When bit 18.3 is “1”, Mii Register 4, bits [8:5], are taken into account when attempting to parallel-detect. This is the default  
behavior expected by the standard. Setting 18.3 to a “0” will result in auto-negotiation ignoring the advertised abilities, as  
specified in Mii Register 4, during parallel detection of a non-auto-negotiating 10BASE-T or 100BASE-TX PHY.  
18.2 – Reserved  
18.1 – Disable Automatic 1000BASE-T Next-Page Exchanges  
Bit 18.1 is used to control the automatic exchange of 1000BASE-T Next-Pages defined in iEEE 802.3-2002 (Annex 40C). When  
this bit is set, the automatic exchange of these pages is disabled, and the control is returned to the user through the SMi after  
the base page has been exchanged. You then have the complete responsibility to both of the following:  
• Send the correct sequence of Next-Pages to the Link Partner.  
• Determine common capabilities and force the device into the correct configuration following successful exchange of  
pages.  
When bit 18.1 is reset to “0”, the 1000BASE-T related Next-Pages are automatically exchanged without user intervention. if the  
Next Page bit 4.15 was set by the user in the Auto-Negotiation Advertisement register at the time the auto-negotiation was  
restarted, control is returned to the user for additional Next-Pages following the 1000BASE-T Next-Page exchange.  
if both bit 18.1 and Mii Register bit 4.15 are reset when an auto-negotiation sequence is initiated, all Next-Page exchange is  
automatic, including sourcing of null pages. No user notification is provided until either auto-negotiation completes or fails. See  
the description of Mii Register bit 4.15 for more details on standard Next-Page exchanges.  
18.0 – CLKOUT Output Enable  
When bit 18.0 is set to “1”, the VSC8221 provides a 125MHz clock on the CLKOUT output pin. The electrical specification for  
this clock corresponds to the current settings for VDDiO. This clock is for use by the MAC, system manager CPU, or control  
logic. By default, this pin is enabled, which enables the clock output independent of the status of any link, unless the hardware  
reset is active (which also powers down the PLL). When disabled, the clock pins are normally driven low.  
23.2.20 Register 19 (13h) – Reserved  
Register 19 (13h) – Reserved  
Bit  
Name  
Access  
States  
Reset Value  
Sticky  
15:0 Reserved  
RO  
00000000 00000000  
19.15:0 - Reserved  
83 of 106  
VMDS-10106 Revision 4.1  
December 2006  
106  
VSC8221  
Data Sheet  
23.2.21 Register 20 (14h) – Reserved  
Register 20 (14h) – Reserved  
Bit  
Name  
Access  
States  
Reset Value  
Sticky  
15:0 Reserved  
RO  
00000000 00000000  
20.15:0 – Reserved  
23.2.22 Register 21 (15h) – Reserved  
Register 21 (15h) – Reserved  
Bit  
Name  
Access  
States  
Reset Value  
Sticky  
15:0 Reserved  
RO  
00000000 00000000  
21.15:0 – Reserved  
23.2.23 Register 22 (16h) – Control & Status Register  
Register 22 (16h) – Control & Status Register  
Name Access States  
Disable Link integrity State Machine R/W  
Reset  
Value  
Bit  
Sticky  
1 = Disable link integrity test  
0 = Enable link integrity test  
1 = Disable jabber detect  
0 = Enable jabber detect  
15  
0
S
S
14  
13  
12  
Disable jabber Detect  
Reserved  
R/W  
RO  
0
0
1=Disable SQE Transmit  
0=Enable SQQ Transmit  
SQE Disable Mode  
R/W  
CMODE  
S
S
00 = Normal squelch  
01 = Low squelch  
10 = High squelch  
11 = Reserved  
11:10 10BASE-T Squelch Control  
R/W  
R/W  
00  
1 = All bits marked as sticky will retain their  
values during software reset  
0 = All bits marked as sticky will be changed to  
default values during software reset  
1 = EOF error detected since last read  
0 = EOF error not detected since last read  
1 = 10BASE-T link disconnected  
0 = 10BASE-T link connected  
1 = 10BASE-T link active  
9
Sticky Reset Enable  
1
SS  
8
7
EOF Error  
RO SC  
RO SC  
0
0
10BASE-T Disconnect State  
6
10BASE-T Link Status  
Reserved  
RO  
RO  
0
0 = 10BASE-T link inactive  
5:0  
000000  
84 of 106  
VMDS-10106 Revision 4.1  
December 2006  
106  
VSC8221  
Data Sheet  
22.15 – Disable Link-integrity State Machine1  
When bit 22.15 is set to “0”, the VSC8221 link integrity state machine runs automatically. When bit 22.15 is set to “1”, the link  
integrity state machine is bypassed and the PHY is forced into link pass status.  
22.14 – Disable Jabber Detect1  
When bit 22.14 is set to “0”, the VSC8221 automatically shuts off the transmitter when a transmission request exceeds the  
iEEE-specified time limit. When bit 22.14 is set to “1”, transmission requests are allowed to be arbitrarily long without shutting  
down the transmitter.  
22.13 – Reserved  
22.12 – SQE Disable Mode2  
When bit 22.12 is set to “1”, SQE (Signal Quality Error) pulses are not sent. Note that this control bit applies in 10BASE-T HDX  
mode only.  
22.11:10 – 10BASE-T Squelch Control2  
When bits 22.11:10 are set to “00”, the VSC8221 uses the squelch threshold levels prescribed by the iEEE’s 10BASE-T  
specification. When bits 22.11:10 are set to “01”, the squelch level is decreased, which may improve the bit error rate  
performance on long loops. When bits 22.11:10 are set to “10”, the squelch level is increased, which may improve the bit error  
rate in high-noise environments.  
22.9 - Sticky Reset Enable  
When bit 22.9 is set, all Mii register bits that are marked with an “S” in the “sticky” column will retain their values during a  
software reset. When cleared, all Mii register bits that are marked with an “S” in the “sticky” column will be changed to their  
default values during a software reset. Note that bits marked with an “SS” retain their values across software reset regardless of  
the setting of bit 22.9.  
22.8 – EOF Error2  
When bit 22.8 returns a “1”, a defective EOF (End-of-Frame) sequence has been received since the last time this bit was read.  
This bit is automatically set to “0” when it is read.  
22.7 – 10BASE-T Disconnect State  
Bit 22.7 is set to “1” if the 10BASE-T connection has been broken by the carrier integrity monitor since the last read of this bit.  
Otherwise, this bit is set to “0”.  
22.6 – 10BASE-T Link Status  
Bit 22.6 is set to “1” if the 10BASE-T link is active. Otherwise, this bit is set to “0”.  
22.5:0 – Reserved  
1This bit applies only in 10BASE-T mode.  
2This bit applies only in 10BASE-T HDX mode.  
85 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
23.2.24 Register 23 (17h) – PHY Control Register #1  
Register 23 (17h) – PHY Control Register #1  
Reset  
Value  
Bit  
Name  
Access States  
Sticky  
15:12 MAC/Media interface Mode Select RWSW See Table 33 below  
CMODE  
Reserved1  
Far End (Media-Side) Loopback  
Enable  
11:4  
3
RO  
1010 0010  
1 = Far End (Media side) loopback is enabled  
0 = Far End (Media side) loopback is disabled  
R/W  
0
2:1  
MAC/Media interface Mode Select RWSW See Table 33 below  
1 = EEPROM is detected on EEPROM interface  
CMODE  
0
EEPROM Status  
RO  
0 = EEPROM is not detected on EEPROM inter- 0  
face  
1
Writes to Mii Register 23 must preserve the value of bits 11:4, i.e., all writes to Mii Register 23 must be in the format xA2xh.  
23.15:12, 2:1– MAC/Media interface Mode Select  
Bits 23.15:12 and 23.2:1 are used to select the MAC interface modes and media interface modes. The reset value for these bits  
is dependent upon the state of the MAC interface bits in the CMODE hardware configuration. All combinations of these bits not  
indicated below are reserved:  
Table 33. PHY Operating Modes  
Mii  
Operating  
Mode  
Category  
Register CMODE2  
23.15:12,  
23.2:1  
MAC  
interface  
Media interface  
Other Settings  
[3:0]  
802.3z Ser-  
Des  
1111,00  
1110, 01  
1110,10  
1110,00  
0100  
CAT5  
Clause 37 disabled  
802.3z Ser-  
Des  
1110  
1010  
0000  
CAT5  
CAT5  
CAT5  
Clause 37 enabled  
802.3z Ser-  
Des  
Clause 37 enabled, Media Convertor Mode  
With Clause 37 Auto-Negotiation Detection  
Serial MAC  
PHY Oper-  
ating Modes  
802.3z Ser-  
Des  
1010,01  
1000,01  
1111  
SGMii  
SGMii  
CAT5  
CAT5  
625Mhz SCLK Clock Disabled  
625MHz SCLK Clock Enabled  
0101  
Modified Clause 37 Auto-Negotiation disabled,  
625MHz SCLK Clock Enabled  
1001,00  
1011,00  
SGMii  
SGMii  
CAT5  
CAT5  
Modified Clause 37 Auto-Negotiation disabled,  
625MHz SCLK Clock Disabled  
Note: For more information about VSC8221 operating modes, see Designing a Copper SFP using the VSC8221 application  
note available on the Microsemi Web site.  
86 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
23.11:4 – Reserved  
Writes to Mii Register 23 must preserve the value of bits 11:4, i.e., all writes to Mii Register 23 must be in the format xA2xh.  
23.3 – Far End (Media-Side) Loopback Enable  
When bit 23.3 is set to “1”, all incoming data from the link partner on the media interface is retransmitted back to the link partner  
on the media interface. in addition, the incoming data will also appear on the RDP/RDN pins of the MAC interface. Any data  
present on the TDP/TDN pins of the MAC interface is ignored by the VSC8221 when bit 23.3 is set. in order to avoid loss of  
data, bit 23.3 should not be set while the VSC8221 is receiving data on the media interface. Bit 23.3 applies to all operating  
modes of the VSC8221. When bit 23.3 is cleared, the VSC8221 resumes normal operation. This bit is cleared by default. Refer  
to Section 17.3 on page 51.  
23.0 – EEPROM Status  
When bit 23.0 is set to “1”, an EEPROM has been detected on the external EEPROM interface. When cleared, bit 23.0 indicates  
that no EEPROM has been detected.  
23.2.25 Register 24 (18h) – PHY Control Register #2  
Register 24 (18h) – PHY Control Register #2  
Reset  
Value  
Bit  
Name  
Access States  
Sticky  
Reserved1  
15:13  
12  
RO  
111  
S
S
1 = PiCMG miser mode is enabled  
0 = PiCMG miser mode is disabled  
Enable PiCMG Miser Mode2  
R/W  
RO  
0
11:10 Reserved  
00  
000 to 010 = Reserved  
011 = Jumbo packet mode  
100 = iEEE mode  
101 to 111 = Reserved  
000 to 010 = Reserved  
011 = Jumbo packet mode  
100 = iEEE mode  
9:7  
6:4  
TX FiFO Depth Control  
R/W  
R/W  
100  
100  
S
S
RX FiFO Depth Control  
101 to 111 = Reserved  
3:1  
0
Reserved  
RO  
000  
0
1 = Active (See Section 17.3 on page 51 for  
details)  
Connector Loopback  
R/W  
0 = Disable  
1
2
These bits must always be written to as ‘111’.  
See Section 11 on page 32 for more information.  
24.15:13 – Reserved  
These bits must always be written to as ‘111’.  
24.12 - Enable PiCMG Miser Mode1  
Setting bit 24.12 turns off some portions of the PHY's DSP block and reduces the PHY's Operating power. This bit can be set in  
order to reduce power consumption in applications where the signal to noise ratio on the CAT-5 media is high, such as ethernet  
over the backplane or where the cable length is short (<10m).  
1See Section 11 on page 32 for more information.  
87 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
24.11:10 - Reserved  
24.9:7 – TX FiFO Depth Control1  
Bits 24.9:7 control symbol buffering for the transmit synchronization FiFO used in all 1000BT modes. An internal FiFO is used to  
synchronize the clock domains between the MAC transmit clock and the PHY’s clock (e.g., REFCLK), used to transmit symbols  
on the local PHY’s twisted pair interface.  
The iEEE mode supports up to 1518-byte packet size with the minimum inter-packet gap (iPG). The jumbo packet mode adds  
latency to the path to support up to 9600-byte packets with the minimum inter-packet gap (iPG). When using jumbo packet  
mode, a larger iPG is recommended due to the possible compression of the iPG at the output of the FiFO.  
24.6:4 – RX FiFO Depth Control1  
Used in 1000BT , bits 24.6:4 control symbol buffering as determined by the receive synchronization FiFO. An internal FiFO is  
used to synchronize the clock domains between the MAC receive clock and the PHY’s clock (e.g., REFCLK), used to receive  
symbols on the local PHY’s twisted pair interface.  
The iEEE mode supports up to 1518-byte packet size with the minimum inter-packet gap (iPG). The jumbo packet mode adds  
latency to the path to support up to 9600-byte packets with the minimum inter-packet gap (iPG). When using jumbo packet  
mode, a larger iPG is recommended due to the possible compression of the iPG at the output of the FiFO.  
24.3:1 – Reserved  
24.0 - Connector Loopback  
See Section 17.3 on page 51 for details.  
23.2.26 Register 25 (19h) – interrupt Mask Register  
Register 25 (19h) – interrupt Mask Register  
Reset  
Value  
Bit  
Name  
Access States  
Sticky  
1 = Enable interrupt pin  
0 = Disable interrupt pin  
15  
14  
13  
12  
11  
interrupt Pin Enable  
Reserved  
R/W  
RO  
0
0
0
0
0
S
1 = Enable Link State/ Energy Detect interrupt  
0 = Disable Link State/ Energy Detect interrupt  
Link State-Change interrupt Mask  
R/W  
RO  
S
S
S
Reserved  
Auto-Negotiation Error interrupt  
Mask  
1 = Enable Auto-Negotiation Error interrupt  
0 = Disable Auto-Negotiation Error interrupt  
1 = Enable Auto-Negotiation-Done/ interlock Done  
interrupt  
0 = Disable Auto-Negotiation-Done/ interlock  
Done interrupt  
1 = Enable inline Powered Device Detected inter-  
rupt  
0 = Disable inline Powered Device Detected inter-  
rupt  
R/W  
Auto-Negotiation-Done / interlock  
Done interrupt Mask  
10  
9
R/W  
R/W  
0
0
inline Powered Device Detected  
interrupt Mask  
S
1 = Enable Symbol Error interrupt  
0 = Disable Symbol Error interrupt  
1 = Enable Lock-Lost interrupt  
0 = Disable Lock-Lost interrupt  
8
7
Symbol Error interrupt Mask  
R/W  
R/W  
0
0
S
S
Descrambler Lock-Lost interrupt  
Mask  
1The TX and RX FiFOs are not used for 10BASE-T and 100BASE-TX.  
88 of 106  
VMDS-10106 Revision 4.1  
December 2006  
106  
VSC8221  
Data Sheet  
Register 25 (19h) – interrupt Mask Register  
Reset  
Value  
Bit  
Name  
Access States  
Sticky  
1 = Enable TX FiFO interrupt  
6
TX FiFO interrupt Mask  
R/W  
0
S
S
0 = Disable TX FiFO interrupt  
1 = Enable RX FiFO interrupt  
0 = Disable RX FiFO interrupt  
5
4
3
RX FiFO interrupt Mask  
Reserved  
R/W  
RO  
0
0
0
1 = Enable False Carrier interrupt  
0 = Disable False Carrier interrupt  
1 = Enable Cable impairment Detect interrupt  
0 = Disable Cable impairment Detect interrupt  
1 = Enable MASTER/SLAVE interrupt  
0 = Disable MASTER/SLAVE interrupt  
1 = Enable RX_ER interrupt  
False Carrier interrupt Mask  
R/W  
S
S
S
S
Cable impairment Detect interrupt  
Mask  
MASTER/SLAVE Resolution Error  
interrupt Mask  
2
1
0
R/W  
R/W  
R/W  
0
0
0
RXER interrupt Enable  
0 = Disable RX_ER interrupt  
25.15 – interrupt Pin Enable  
When bit 25.15 is set to “1”, the hardware interrupt is enabled, meaning that the state of the external interrupt pin (MDiNT) can  
be influenced by the state of the interrupt Status bit (26.15). When bit 25.15 is set to “0”, the interrupt status bits (Register 26)  
continue to be set in response to interrupts, but the interrupt hardware pin MDiNT on the VSC8221 will not be influenced by this  
particular PHY.  
25.14 – Reserved  
25.13 – Link State-Change interrupt Mask  
When bit 25.13 is set to “1”, the Link State-Change / Energy Detect interrupt is enabled.  
25.12 – Reserved  
25.11 – Auto-Negotiation Error interrupt Mask  
When bit 25.11 is set to “1”, the Auto-Negotiation Error interrupt is enabled.  
25.10 – Auto-Negotiation-Done / interlock Done interrupt Mask  
When bit 25.10 is set to “1”, the Auto-Negotiation-Done interrupt is enabled.  
25.9 – inline Powered Device Detected interrupt Mask  
When bit 25.9 is set to “1”, the inline Powered Device Detected interrupt is enabled.  
25.8 – Symbol Error interrupt Mask  
When bit 25.8 is set to “1”, the Symbol Error interrupt is enabled.  
25.7 – Descrambler Lock-Lost interrupt Mask  
When bit 25.7 is set to “1”, the Descrambler Lock-Lost interrupt is enabled.  
25.6 – TX FiFO interrupt Mask  
When bit 25.6 is set to “1”, the TX FiFO interrupt is enabled.  
89 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
25.5 – RX FiFO interrupt Mask  
When bit 25.5 is set to “1”, the RX FiFO interrupt is enabled.  
25.4 – Reserved  
25.3 – False Carrier interrupt Mask  
When bit 25.3 is set to “1”, the False Carrier interrupt is enabled.  
25.2 – Cable impairment Detect interrupt Mask1  
When bit 25.2 is set to “1”, the Cable impairment Detect interrupt is enabled.  
25.1 – MASTER/SLAVE Resolution Error interrupt Mask  
When bit 25.1 is set to “1”, the MASTER/SLAVE Resolution Error interrupt is enabled.  
25.0 – RXER interrupt Enable  
When bit 25.0 is set to “1”, the RXER interrupt is enabled.  
23.2.27 Register 26 (1Ah) – interrupt Status Register  
Register 26 (1Ah) – interrupt Status Register  
Reset  
Value  
Bit  
Name  
Access States  
Sticky  
1 = interrupt pending  
0 = No interrupt pending  
15  
14  
13  
12  
11  
interrupt Status  
Reserved  
RO SC  
RO  
0
0
0
0
0
1 = Link State-Change/ Energy Detect interrupt  
pending  
Link State-Change interrupt Status RO SC  
Reserved  
Auto-Negotiation Error interrupt  
Status  
RO  
RO SC 1 = Auto-Negotiation Error interrupt pending  
Auto-Negotiation-Done / interlock  
Done interrupt Status  
inline Powered Device Detected  
interrupt Status  
Symbol Error interrupt Status  
Descrambler Lock-Lost interrupt  
Status  
1 = Auto-Negotiation-Done/ interlock Done inter-  
rupt pending  
1 = inline Powered Device Detected interrupt  
pending  
10  
RO SC  
0
9
8
7
RO SC  
0
0
0
RO SC 1 = Symbol Error interrupt pending  
RO SC 1 = Lock-Lost interrupt pending  
6
5
4
3
TX FiFO interrupt Status  
RX FiFO interrupt Status  
Reserved  
False Carrier interrupt Status  
Cable impairment Detect interrupt  
Status  
RO SC 1 = TX FiFO interrupt pending  
RO SC 1 = RX FiFO interrupt pending  
RO  
0
0
0
0
RO SC 1 = False Carrier interrupt pending  
2
1
0
RO SC 1 = Cable impairment Detect interrupt pending  
RO SC 1 = MASTER/SLAVE Error interrupt pending  
0
0
0
MASTER/SLAVE Resolution inter-  
rupt Status  
1 = RXER interrupt pending  
RO  
RXER interrupt Status  
0 = No RXER interrupt pending  
1This interrupt is vaild only when 10/100 speeds are advertised.  
90 of 106  
VMDS-10106 Revision 4.1  
December 2006  
106  
VSC8221  
Data Sheet  
26.15 – interrupt Status  
When bit 26.15 is set to “1”, an unacknowledged interrupt is pending. The cause of the interrupt can be determined by reading  
the interrupt status bits in this register. This bit is automatically cleared when read.  
26.14 – Reserved  
26.13 – Link State-Change interrupt Status  
When the link status of the PHY changes, bit 26.13 is set to “1” if bit 25.13 is also set to “1”. This bit is automatically cleared  
when read.  
26.12 – Reserved  
26.11 – Auto-Negotiation Error interrupt Status  
When an error is detected by the Auto-Negotiation state machine, bit 26.11 is set to “1” if bit 25.11 is also set to “1”. This bit is  
automatically cleared when read.  
26.10 – Auto-Negotiation-Done / interlock Done interrupt Status  
When the auto-negotiation state machine finishes a negotiation process, bit 26.10 is set to “1” if bit 25.10 is also set to “1”. This  
bit is automatically cleared when read.  
26.9 – inline Powered Device Detected interrupt Status  
When a device requiring inline power over CAT-5 is detected, bit 26.9 is set to “1” if bit 25.9 is also set to “1”. This bit is  
automatically cleared when read.  
26.8 – Symbol Error interrupt Status  
When a symbol error is detected by the descrambler, bit 26.8 is set to “1” if bit 25.8 is also set to “1”. This bit is automatically  
cleared when read.  
26.7 – Descrambler Lock-Lost interrupt Status  
When the descrambler loses lock, bit 26.7 is set to “1” if bit 25.7 is also set to “1”. This bit is automatically cleared when read.  
26.6 – TX FiFO interrupt Status  
When the TX FiFO enters an underflow or overflow condition, bit 26.6 is set to “1” if bit 25.6 is also set to “1”. This bit is  
automatically cleared when read.  
26.5 – RX FiFO interrupt Status  
When the RX FiFO enters an underflow or overflow condition, bit 26.5 is set to “1” if bit 25.5 is also set to “1”. This bit is  
automatically cleared when read.  
26.4 – Reserved  
26.3 – False Carrier interrupt Status  
When the PHY has detected a false carrier, bit 26.3 is set to “1” if bit 25.3 is also set to “1”. This bit is automatically cleared when  
read,  
26.2 – Cable impairment Detect interrupt Status  
When the PHY has detected an impairment on the CAT-5 media, bit 26.3 is set to “1” if bit 25.3 is also set to “1”. This bit is  
automatically cleared when read.  
91 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
26.1 – MASTER/SLAVE Resolution Error interrupt Status  
When a MASTER/SLAVE resolution error is detected, bit 26.1 is set to “1” if bit 25.1 is also set to “1”. This bit is automatically  
cleared when read.  
26.0 – RXER interrupt Status  
When an RXER condition occurs, bit 26.0 is set to “1” if bit 25.0 is also set to “1”.This bit is automatically cleared when read.  
23.2.28 Register 27 (1Bh) – LED Control Register  
Register 27 (1Bh) – LED Control Register  
Reset  
Value  
Bit  
Name  
Access States  
Sticky  
15:12 Reserved  
RO  
CMODE  
00 = Link10/Activity  
011 = Duplex/Collision  
10 = Link/Activity  
11:10 LED Pin 2 Configuration  
R/W  
CMODE S  
112 = Tx  
00 = Link100/Activity  
01 = Link10/100/Activity  
10 = Link/Activity  
11 = Link100/1000/Activity  
00 = Link1000/Activity  
01 = Link/Activity w/ Serial output on LED pins 1 and 2  
10 = Fault  
9:8  
7:6  
LED Pin 1 Configuration  
LED Pin 0 Configuration  
R/W  
R/W  
CMODE S  
CMODE S  
11 = Rx  
LED Pulse-stretch Rate/ Blink  
Rate  
0 = 5 Hz blink rate/200 ms pulse-stretch  
1 = 10 Hz blink rate/100 ms pulse-stretch  
1 = Enable 5 kHz, 20% duty cycle LED pulsing for  
power savings  
5
4
R/W  
R/W  
0
0
S
S
LED Pulsing Enable  
0 = LED pulsing disabled  
1 = Collision, Activity, Rx and Tx functions will flash at  
a rate selected by Blink/Pulse-Stretch Rate bits  
0 = Collision, Activity, Rx and Tx functions will blink at  
a rate selected by Blink/Pulse-Stretch Rate bits  
1 = Link function indicates link status only  
0 = Link/Activity function will blink or flash when  
activity is present. Blink/flash behavior is selected  
by Pulse-Stretch Enable and Blink/Pulse-Stretch  
Rate bits.  
3
2
LED Pulse-Stretch / Blink Select R/W  
0
0
S
Link/Activity Behaviour  
R/W  
1 = Link function indicates link status only  
0 = All link functions will blink or flash when activity is  
present. Blink/flash behavior is selected by Pulse-  
Stretch Enable and Blink/Pulse-Stretch Rate bits.  
1 = Duplex function indicates duplex status only  
0 = Duplex function will blink or flash when collision is  
present  
LED Linkxxxx/Activity3 Behavior  
LED Duplex/Collision Behavior  
1
0
R/W  
R/W  
0
0
S
S
1
2
3
This setting is ‘Force off’ when Mii Register 20E.13 is set.  
This setting is ‘Force on’ when Mii Register 20E.13 is set.  
Linkxxxx/Activity stands for Link10/Activity,Link100/Activity,Link1000/Activity,Link10/100/Activity and Link100/1000/Activity. its definition does not include the Link/  
Activity function.  
27.15:12 - Reserved  
92 of 106  
VMDS-10106 Revision 4.1  
December 2006  
106  
VSC8221  
Data Sheet  
27.11:6 – LED Pin Configuration  
Each of the three LED pins on the VSC8221 can be configured for one of four functions. These functions are different for each  
LED pin.1 Bits 27.11:6 are used to select the function for each LED pin. The reset value of these bits is set by the LED  
configuration bits in the CMODE hardware configuration.  
7.5 – LED Pulse-Stretch/Blink Rate  
The Collision, Activity, Tx and Rx LED functions can be set to either blink at a constant rate or visibly flash through the use of  
pulse-stretching. The blink rate and pulse-stretch length are set with this bit.  
27.4 – LED Pulsing Enable  
When bit 27.4 is set to “1”, all LED outputs are pulsed at a 5kHz rate with 20% duty cycle in order to save power.  
27.3 – LED Pulse-Stretch / Blink Select  
When bit 27.3 is set to “1”, Collision, Activity, Tx and Rx LED functions will be pulse-stretched. When bit 27.3 is cleared, these  
LED functions will blink at a constant rate. Bit 27.5 are used to select the pulse-stretch / blink rate.  
27.2 – LED Link/Activity Behavior  
When bit 27.2 is set to “0”, the link status LED function will blink or flash when activity is present. Blink / flash behavior is  
selected by bits 27.3 and 27.5.  
27.1 – LED Linkxxxx/Activity Behavior  
When bit 27.1 is set to “0”, all linkxxxx status LED functions (Link10, Link100, Link1000, Link10/100, Link100/1000) will blink or  
flash when activity is present. Blink / flash behavior is selected by bits 27.3 and 27.5.  
27.0 – LED Duplex/Collision Behavior  
When bit 27.0 is set to “1”, the Duplex LED function indicates duplex status only. When bit 27.0 is cleared, the Duplex function  
will blink or flash when collision is present. Blink / flash behavior is selected by bits 27.3 and 27.5.  
1Note that if bits 27.7:6 are set to “01”, LED pins 1 and 2 are used as serial output pins and the values of bits 27.11:8 are ignored.  
93 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
23.2.29 Register 28 (1Ch) – Auxiliary Control and Status Register  
Register 28 (1Ch) – Auxiliary Control and Status Register  
Reset  
Value  
Bit  
15  
14  
13  
12  
11  
10  
9
Name  
Access States  
1 = Auto-negotiation complete  
Sticky  
Auto-Negotiation Complete  
Auto-Negotiation Disabled  
MDi/MDi-X Crossover indication  
CD Pair Swap  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0
0
0
0
0
0
0
0 = Auto-negotiation not complete  
1 = Auto-negotiation was disabled  
0 = Auto-negotiation is enabled  
1 = MDi/MDi-X crossover detected  
0 = MDi/MDi-X crossover not detected  
1 = CD pairs are swapped  
0 = CD pairs are not swapped  
1 = Polarity swapped on pair A  
0 = Polarity not swapped on pair A  
1 = Polarity swapped on pair B  
0 = Polarity not swapped on pair B  
1 = Polarity swapped on pair C  
0 = Polarity not swapped on pair C  
1 = Polarity swapped on pair D  
0 = Polarity not swapped on pair D  
-
A Polarity inversion  
B Polarity inversion  
C Polarity inversion  
8
7
D Polarity inversion  
Reserved  
RO  
RO  
0
--  
1 = Enable enhanced ActiPHY power manage-  
ment  
0 = Disable enhanced ActiPHY power manage-  
ment  
1 = Full Duplex  
0 = Half Duplex  
6
5
Enhanced ActiPHY Mode Enable  
FDX Status  
R/W  
RO  
0
0
S
00 = Speed is 10BASE-T  
01 = Speed is 100BASE-TX or 100BASE-FX  
10 = Speed is 1000BASE-T  
11 = Reserved  
4:3  
2
Speed Status  
RO  
RO  
R/W  
00  
1
Reserved1  
00=1 second  
01=2 seconds  
10-3 seconds  
11=4 seconds  
Enhanced ActiPHYTM Sleep Timer  
1:0  
01  
1
This bit must always be set to ‘1’.  
28.15 – Auto-Negotiation Complete  
This bit is a copy of bit 1.5, duplicated here for convenience.  
28.14 – Auto-Negotiation Disabled  
When bit 28.14 is read as a “1”, this bit indicates that the auto-negotiation process has been disabled. This happens only when  
register bit 0.12 is set to “0”.  
28.13 – MDi/MDi-X Crossover indication  
When bit 28.13 returns a “1”, the auto-negotiation state machine has determined that crossover does not exist in the signal path.  
The crossover will therefore be performed internally to the PHY, as described by the MDi/MDi-X crossover specification.1  
1This bit is valid only after descrambler lock has been achieved and as long as bit 18.5 is set to “0”.  
94 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
28.12 – CD Pair Swap1  
When bit 28.12 returns a “1”, the PHY has determined that subchannel cable pairs C and D have been swapped between the  
far-end transmitted and the receiver. When bit 28.12 returns a “1”, the PHY internally swaps pairs C and D (as long as bit 18.5 is  
set to “0”).1  
28.11 – A Polarity inversion  
When bit 28.11 returns a “1”, the PHY has determined that the polarity of subchannel cable pair A has been inverted between  
the far-end transmitter and the near-end receiver. When bit 28.11 returns a “1”, the PHY internally corrects the pair inversion.  
Polarity-inversion correction runs in all three modes; as a result, the state of 28.11 is valid only when bit 1.5 is set to “1”.  
28.10 – B Polarity inversion  
When bit 28.10 returns a “1”, the PHY has determined that the polarity of subchannel cable pair B has been inverted between  
the far-end transmitter and the near-end receiver. When bit 28.10 returns a “1”, the PHY internally corrects the pair inversion.  
Polarity-inversion correction runs in all three modes; as a result, the state of 28.10 is valid only when bit 1.5 is set to “1”.  
28.9 – C Polarity inversion2  
When bit 28.9 returns a “1”, the PHY has determined that the polarity of subchannel cable pair C has been inverted between the  
far-end transmitter and the near-end receiver. When bit 28.9 returns a “1”, the PHY internally corrects the pair inversion.  
Polarity-inversion correction runs in all three modes; as a result, the state of 28.9 is valid only when bit 1.5 is set to “1”.  
28.8 – D Polarity inversion1  
When bit 28.8 returns a “1”, the PHY has determined that the polarity of subchannel cable pair D has been inverted between the  
far-end transmitter and the near-end receiver. When bit 28.8 returns a “1”, the PHY internally corrects the pair inversion.  
Polarity-inversion correction runs in all three modes; as a result, the state of 28.8 is valid only when bit 1.5 is set to “1”.  
28.7 – Reserved  
28.6 - Enable Enhanced ActiPHY Mode  
When bit 28.6 is set to a “1”, the enhanced ActiPHY power management mode is set in the VSC8221. The reset value for this bit  
is determined by the Enhanced ActiPHY bit in the CMODE hardware configuration.  
28.5 – FDX Status  
Bit 28.5 indicates the actual FDX/HDX operating mode of the PHY.  
28.4:3 – Speed Status  
Bits 27.4:3 indicate the actual operating speed of the PHY.  
28.2 – Reserved  
This bit must always be set to ‘1’.  
28.1:0 - Enhanced ActiPHYTM Sleep Timer  
This sets the time period the PHY stays in ‘Low Power’ State when Enhanced ActiPHYTM mode is enabled, before entering the  
‘LP Wake-up State’. Refer to Section 15 on page 47 for details.  
1This bit applies only in 1000BASE-T mode.  
2This bit applies only in 1000BASE-T mode.  
95 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
23.2.30 Register 29 (1Dh) – Reserved  
Register 29 (1Dh) – Reserved  
Bit  
Name  
Access  
States  
Reset Value  
Sticky  
15:0 Reserved  
RO  
00000000 00000000  
29.15:0 - Reserved  
23.2.31 Register 30 (1Eh) - MAC interface Clause 37 Auto-Negotiation Control and Status  
Register 30 (1Eh) – MAC interface Clause 37 Auto-Negotiation Control and Status  
Reset  
Value  
0
Bit  
15  
14  
Name  
Access States  
Sticky  
Reserved  
RO  
1 = Disable clause 37 auto-negotiation  
0 = Enable clause 37 auto-negotiation  
Correspond to remote fault bits sent by MAC  
during clause 37 auto-negotiation  
Corresponds to Asymmetric Pause bit sent by  
MAC during clause 37 auto-negotiation  
Corresponds to Symmetric Pause bit sent by  
MAC during clause 37 auto-negotiation  
1 = initiate restart of clause 37 auto-negotiation  
0 = Normal operation  
Clause 37 Auto-Negotiation Disable R/W  
0
S
13:12 MAC Remote Fault  
RO  
RO  
RO  
00  
0
11  
10  
9
MAC Asymmetric Pause  
MAC Symmetric Pause  
Clause 37 Restart Auto-Negotiaton  
MAC Full Duplex  
0
R/W  
SC  
0
Corresponds to Full Duplex Ability bit sent by  
MAC during clause 37 auto-negotiation  
Corresponds to Half Duplex Ability bit sent by  
MAC during clause 37 auto-negotiation  
8
RO  
0
7
6
MAC Half Duplex  
Reserved  
RO  
RO  
0
0
1 = Clause 37 auto-negotiation has completed  
successfully  
0 = Clause 37 auto-negotiation has not completed  
Clause 37 Auto-Negotiation Com-  
plete  
5
RO  
0
4
3
Reserved  
RO  
RO  
0
0
1 = Clause 37/28 auto-negotiation interlock could  
not complete  
Link interlock Fail  
1 = Clause 37/28 auto-negotiation interlock com-  
pleted  
00 = 0ms (always stays low)  
01 = 20ms  
10 = 200ms  
2
Link interlock Complete  
RXLOS Pulse Delay1  
RO  
0
1:0  
R/W  
01  
11 = 500ms  
1
in SGMii to CAT-5, Modified Clause 37 Auto-negotiation-Enabled PHY Operating modes, the RXLOS signal is always driven, regardless of the settings of Mii  
Register 30.1:0. For more information about PHY operating modes, see Table 33, “PHY Operating Modes,” on page 86.  
30.15 – Reserved  
30.14 - Clause 37 Auto-Negotiation Disable  
When bit 30.14 is set to a “1”, the clause 37 auto-negotiation state machine is disabled in the VSC8221. Bit 30.14 is cleared by  
default.  
96 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
30.13:12 - MAC Remote Fault  
Bits 30.13:12 correspond to the Remote Fault bits sent to the VSC8221 by the MAC during the clause 37 auto-negotiation  
process.  
30.11 - MAC Asymmetric Pause  
Bit 30.11 corresponds to the Asymmetric Pause bit sent to the VSC8221 by the MAC during the clause 37 auto-negotiation  
process.  
30.10 - MAC Symmetric Pause  
Bit 30.10 corresponds to the Symmetric Pause bit sent to the VSC8221 by the MAC during the clause 37 auto-negotiation  
process.  
30.9 - Clause 37 Restart Auto-Negotiation  
When bit 30.9 is set to a “1”, the clause 37 auto-negotiation process is restarted. This bit is self-clearing and always reads back  
as “0”.  
30.8 - MAC Full Duplex  
Bit 30.8 corresponds to the Full Duplex Ability bit sent to the VSC8221 by the MAC during the clause 37 auto-negotiation  
process.  
30.7 - MAC Half Duplex  
Bit 30.7 corresponds to the Half Duplex Ability bit sent to the VSC8221 by the MAC during the clause 37 auto-negotiation  
process.  
30.6 - Reserved  
30.5 - Clause 37 Auto-Negotiation Complete  
When bit 30.5 is set to a “1”, the clause 37 auto-negotiation has completed successfully.  
30.4 - Reserved  
30.3 - Link interlock Fail  
Bit 30.3 is set to indicate a failure to complete interlock between Clause-37 auto-negotiation and Clause-28 auto-negotiation.  
This bit is valid only in SerDes to CAT5 PHY operating modes.  
30.2 - Link interlock Complete  
Bit 30.2 is set to indicate a complete interlock between Clause-37 auto-negotiation and Clause-28 auto-negotiation. This bit is  
valid only in SerDes to CAT5 PHY operating modes.  
30.1:0 - RXLOS Pulse Delay  
Bits 30.1:0 specify the RXLOS Pulse Delay. it sets the time the RXLOS/SiGDET signal pin is asserted when the CAT5 Media  
Link is dropped. This bit is only valid when the ‘SFP Mode’ bit Extended Mii Register 21E.15 = “1”.  
97 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
23.2.32 Register 31 (1Fh) – Extended Page Access  
Register 31 (1Fh) – Extended Page Access  
1
Bit  
Name  
Access  
States  
Reset Value  
Sticky  
15:1 Reserved  
RO  
00000000 0000000  
1 = Mii registers 16:30 will access extended  
register set  
0 = Mii registers 16:30 will access standard  
register set  
0
Extended Page Access R/W  
0
1
This register will always read zero.  
31.15:1 – Reserved  
31.0 - Extended Page Access  
in order to provide additional functionality beyond the iEEE802.3 specified 32 Mii registers, the VSC8221 contains an extended  
register set which supports an additional 15 registers. When bit 31.0 is set to a “1”, Mii registers 16:30 will access the extended  
set of registers. The state of bit 31.0 has no effect on Mii registers 0:15.  
23.3 Extended Mii Registers  
23.3.1 Register 16E (10h) - Reserved  
Register 16E (10h) – Reserved  
Bit  
Name  
Access States  
Reset Value  
Sticky  
15:0 Reserved  
RO  
00000000 00000000  
16E.15:0 – Reserved  
23.3.2 Register 17E (11h) - Serdes Control Register  
Register 17E (11h) – SerDes Control Register  
Bit  
Name  
Access  
States  
Reset Value  
Sticky  
15:5 Reserved  
RO  
00000000 000  
000=0.4mv(p-p)  
001=0.6mv(p-p)  
010=0.8mv(p-p)  
011=1.0mv(p-p)  
100=1.2mv(p-p)  
101=1.4mv(p-p)  
110/111=1.6mv(p-p)  
1=Disable  
RDP/RDN SCLKP/SCLKN  
Output Swing Control  
4:2  
R/W  
100  
1
0
25mv Hysteresis Disable  
CLKOUTMiCRO Enable  
R/W  
R/W  
0
1
0=Enable  
1=Enable  
0=Disable  
98 of 106  
VMDS-10106 Revision 4.1  
December 2006  
106  
VSC8221  
Data Sheet  
17E.15:5 - Reserved  
17E.4:2 - RDP/RDN SCLKP/SCLKN Output Swing Control  
These bits set the output swing amplitude (peak-to-peak voltage) on the RDP/RDN SCLKP/SCKLN Output Swing output pins.  
17E.1 - 25mv Hysteresis Disable  
When set, this bit disables the 25mv Hysteresis built into the TDP/TDN and SDiP/SDiN high speed differential input pins.  
17E.0 - CLKOUTMiCRO Enable  
When set, the CLKOUTMiCRO clock output is enabled.  
23.3.3 Register 18E (12h) - Reserved  
Register 18E (12h) – Reserved  
Bit  
Name  
Access  
States  
Reset Value  
Sticky  
15:0 Reserved  
RO  
00000001 11111111  
18E.15:0 - Reserved  
23.3.4 Register 19E (13h) - SerDes Control # 2  
Register 19E (13h) – SerDes Control #2  
Bit  
Name  
Access  
States  
Reset Value  
Sticky  
15:2 Reserved  
RO  
00000000 00000000  
0 = input  
1 = Output  
0 = Active High  
1 = Active Low  
1
0
SiGDET Pin Direction  
SiGDET Pin Polarity  
R/W  
R/W  
CMODE  
0
19E.15:2 - Reserved  
19E.1 - SiGDET Pin Direction  
This bit is valid in non-SFP modes i.e. when Mii Register 21E.15 is clear. in non-SFP mode, the RXLOS/SiGDET pin behaves  
like the SiGDET pin. When set as an input, the assertion of the SiGDET pin enables the SerDes block in Serial MAC to CAT5  
category of PHY operating modes. When set as an output in Serial MAC to CAT5 Media operating modes, the SiGDET pin is  
asserted when the CAT5 Media link is up. in Fiber Media operating modes, the SiGDET output is asserted if the PHY sees valid  
8B/10B encoded signals on the TDP/TDN pins.  
19E.0 - SiGDET Pin Polarity  
This bits sets the assertion polarity of the SiGDET pins. This bit is valid in both cases i.e when SiGDET is an input or an output.  
99 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
23.3.5 Register 20E (14h) - Extended PHY Control Register #3  
Register 20E (14h) – Extended PHY Control Register #3  
Reset  
Value  
Bit  
Name  
Access States  
Sticky  
0 = Enable  
1 = Disable  
15  
14  
13  
12:9  
8
Disable Byte Sync  
Reserved  
R/W  
RO  
0
S
0
1 = Enable LED force  
0 = Disable LED force  
Enable Force LED  
R/W  
0
S
S
Reserved1  
1000  
0
1 = 125MHz clock output on CLKOUTMiCRO  
0 = 4MHz clock output on CLKOUTMiCRO  
00 = No media selected  
01 = Copper media selected  
10 = Reserved  
11 = Reserved  
1=75 ohm impedance.  
0=50 ohm impedance  
1 = Enable auto link speed downshift  
0 = Disable auto link speed downshift  
00 = Downshift after 2 failed attempts  
01 = Downshift after 3 failed attempts  
10 = Downshift after 4 failed attempts  
11 = Downshift after 5 failed attempts  
0 = No downshift  
CLKOUTMiCRO Frequency  
R/W  
RO  
RO  
7:6  
Media Mode Status  
0
Serial MAC interface Line imped-  
ance  
5
4
CMODE S  
Enable Link Speed Auto-Downshift R/W  
Link Speed Auto-Downshift Control R/W  
Link Speed Auto-Downshift Status RO  
0
S
S
3:2  
01  
1
0
0
0
1 = Downshift is required or has occurred  
Reserved  
RO  
1
Writes to Extended Mii Register 20E must preserve the value of bits 12:9, i.e., all writes to Extended Mii Register 20E must be in the format xxx1000xxxxxxxxxb.  
20E.15 Disable Byte Sync  
When enabled, the PHY aligns the 10bit data to the boundary of the COMMA character.  
20E.14 - Reserved  
These bits must always be set to ‘”0”.  
20E.13 - Enable LED force  
When this bit is set, the LED configuration setting “01” becomes ‘Force off’ and the LED configuration setting “11” becomes  
‘Force on’. Refer to Section 23.2.28: "Register 27 (1Bh) – LED Control Register" for details.  
20E.12:9 Reserved  
Writes to Extended Mii Register 20E must preserve the value of bits 12:9, i.e., all writes to Extended Mii Register 20E must be in  
the format xxx1000xxxxxxxxxb.  
20E.8 - CLKOUTMiCRO Frequency  
The frequency of the CLKOUTMiCRO pin can be changed by using bit 20E.8.  
100 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
20E.7:6 - Media Mode Status  
Bits 20E.7:6 reflect the media interface status.  
20E.5 - SerDes Line impedance  
The internal termination impedance of the high speed serial interface inside the VSC8221 can be selected using bit 20E.5. This  
applies to the SerDes/SGMii pins on the device. The reset value of this bit is determined by the SerDes Line impedance bit in  
the CMODE hardware configuration.  
20E.4 - Enable Link Speed Auto-Downshift  
When bit 20E.4 is set to a “1”, the VSC8221 will “downshift” the auto-negotiation advertisement to 100BASE-TX after the  
number of failed 1000BASE-T auto-negotiation attempts specified in bits 20E.3:2. The reset value of this bit is determined by  
the Link Speed Downshift bit in the CMODE hardware configuration.  
20E.3:2 - Link Speed Auto-Downshift Control  
Bits 20E.3:2 determine the number of unsuccessful 1000BASE-T auto-negotiation attempts that are required before the auto-  
negotiation advertisement is “downshifted” to 100BASE-TX. These bits are valid only if bit 20E.4 is set.  
20E.1 - Link Speed Auto-Downshift Status  
When bit 20E.1 is set to a “1” and bit 20E.4 is set to a “1”, the current link speed is the result of a “downshift” to 100BASE-TX.  
When bit 20E.1 is set to a “1” and bit 20E.4 is cleared, the current link requires a “downshift” in order to be established.  
20E.0 - Reserved  
23.3.6 Register 21E (15h) - EEPROM interface Status and Control Register  
Register 21E (15h) - EEPROM interface Status and Control Register  
Bit  
Name  
Access  
States  
Reset Value  
Sticky  
1 = SFP MODE  
0 = iEEE MODE  
15  
SFP MODE  
R/W  
CMODE  
SS  
1 = Contents of EEPROM should be re-  
read on software reset  
0 = Contents of EEPROM should not be  
re-read on software reset  
Re-Read EEPROM on Software  
Reset  
14  
R/W  
0
SS  
R/W  
SC  
13  
12  
11  
EEPROM Access Enable  
EEPROM Read/Write  
EEPROM Ready1  
1 = Execute read or write to EEPROM  
0
1
1 = Read from EEPROM  
0 = Write to EEPROM  
1 = EEPROM is ready for read/write  
0 = EEPROM is busy  
R/W  
RO  
1
10:0 EEPROM Address  
R/W  
EEPROM address to read/write  
000 00000000  
1
After an EEPROM write operation, the station manager or controller must wait an additional 10 ms before performing the next EEPROM read or write operation.  
This delay is needed for the EEPROM to complete its internal memory write process. Note that this additional wait is not needed after an EEPROM read operation.  
101 of 106  
VMDS-10106 Revision 4.1  
December 2006  
106  
VSC8221  
Data Sheet  
21E.15 - SFP MODE  
SFP Mode (bit 15 =”1”) sets the following PHY defaults:  
• TXDiS/SRESET is active high, i.e. behaves like TXDiS.  
• MODDEF0/CLKOUT pin functions like MODDEF0, i.e this pin is asserted low by the PHY once the EEPROM interface is  
released for access through the SMi interface.  
• RXLOS/SiGDET pins functions like RXLOS.  
• The SMi interface is set in MSA mode.  
iEEE Mode (bit 15 = “0”) sets the following PHY defaults:  
• TXDiS/SRESET is active low, i.e. behaves like SRESET.  
• MODDEF0/CLKOUT pin functions like CLKOUT, i.e this pin drives out a 125MHz clock.  
• RXLOS/SiGDET pin functions like SiGDET.  
• The SMi interface is set in iEEE mode.  
21E.14 - Re-Read EEPROM on Software Reset  
When bit 21E.14 is set to a “1”, the contents of the EEPROM will be re-read and reloaded into the Mii registers upon software  
reset.  
21E.13 - EEPROM Access Enable  
When bit 21E.13 is set to a “1”, the EEPROM address in bits 21E.10:0 is written to or read from, based on the state of bit  
21E.12. The data to read/write resides in register 22E.  
21E.12 - EEPROM Read/Write  
When bit 21E.12 is set to a “1”, the VSC8221 will read from the EEPROM when bit 21E.13 is set. When bit 21E.12 is cleared,  
the VSC8221 will write to the EEPROM when bit 21E.13 is set.  
21E.11 - EEPROM Ready  
When the VSC8221 is busy reading/writing to the EEPROM, bit 21E.11 will be cleared. Bit 21E.13 should not be set while bit  
21E.11 is cleared.  
21E.10:1 - EEPROM Address  
These bits contain the EEPROM address that the VSC8221 will read from or write to when bit 21E.13 is set.  
23.3.7 Register 22E (16h) - EEPROM Data Read/Write Register  
Register 22E (16h) - EEPROM Data Read/Write Register  
Reset  
Bit  
15:8 EEPROM Read Data  
7:0 EEPROM Write Data  
Name  
Access States  
Sticky  
Value  
RO  
R/W  
8-bit data read from EEPROM  
8-bit data to write to EEPROM  
00000000  
00000000  
22E.15:18 - EEPROM Read Data  
After an EEPROM read has occurred by setting bits 21E.13 and 21E.12 to a “1”, the data read from the EEPROM is placed in  
these bits.  
102 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
22E.7:0 - EEPROM Write Data  
When an EEPROM write is initiated by setting bits 21E.13 to a “1” and clearing bit 21E.12, the data from these bits is written to  
the EEPROM.  
23.3.8 Register 23E (17h) - Extended PHY Control Register #4  
Register 23E (17h) - Extended PHY Control Register #4  
Bit  
Name  
Access States  
Reset Value Sticky  
15:11 PHY Address  
RO  
PHY address latched on reset  
CMODE  
Enable in-line Powered Device  
Detection  
1 = in-line powered device detection is enabled  
0 = in-line powered device detection is disabled  
00 = Searching for devices  
10  
R/W  
0
S
01 = Device found which requires in-line power  
10 = Device found which does not require in-  
line power  
in-line Powered Device Detection  
Status  
9:8  
7:0  
RO  
00  
11 = Reserved  
CRC Counter  
RO SC CRC counter for Ethernet packet generator  
00000000  
23E.15:11 - PHY Address  
These bits contain the PHY address of the current PHY port. The reset value of these bits is determined by the PHY Address  
bits in the CMODE hardware configuration.  
23E.10 - Enable in-line Powered Device Detection  
When bit 23E.10 is set to a “1”, the VSC8221 will search for devices requiring CAT-5 in-line power as part of the auto-  
negotiation process.  
23E.9:8 - in-line Powered Device Detection Status  
Bits 23E.9:8 are used by the station manager to determine if a device which requires in-line power is connected to the  
VSC8221.  
23E.7:0 - CRC Counter  
When the Ethernet Packet Generator is enabled by setting Mii Register 29.15, these bits count the number of packets received  
that contain a CRC error. This counter will saturate at FFh and is cleared when read.  
23.3.9 Register 24E (18h) - Reserved  
Register 24E (18h) - Reserved Register  
Bit  
Name  
Access States  
Reset Value  
Sticky  
15:0 Reserved  
RO  
00000000 00000000  
24E.15:0 - Reserved  
103 of 106  
VMDS-10106 Revision 4.1  
December 2006  
106  
VSC8221  
Data Sheet  
23.3.10 Register 25E (19h) - Reserved  
Register 25E (19h) - Reserved Register  
Bit  
Name  
Access States  
Reset Value  
Sticky  
15:0 Reserved  
RO  
00000000 00000000  
25E.15:0 - Reserved  
23.3.11 Register 26E (1Ah) - Reserved  
Register 26E (1Ah) - Reserved Register  
Bit  
Name  
Access States  
RO  
Reset Value  
00000000 00000000  
Sticky  
Sticky  
Sticky  
15:0 Reserved  
26E.15:0 - Reserved  
23.3.12 Register 27E (1Bh) - Reserved  
Register 27E (1Bh) - Reserved Register  
Bit  
15:0  
Name  
Reserved  
Access  
States  
Reset Value  
00000000 00000000  
RO  
27E.15:0 - Reserved  
23.3.13 Register 28E (1Ch) - Reserved  
Register 28E (1Ch) - Reserved Register  
Bit  
Name  
Access  
States  
Reset Value  
15:0 Reserved  
RO  
00000000 00000000  
28E.15:0 - Reserved  
104 of 106  
VMDS-10106 Revision 4.1  
December 2006  
106  
VSC8221  
Data Sheet  
23.3.14 Register 29E (1Dh) - 1000BASE-T Ethernet Packet Generator (EPG) Register #1  
Register 29E (1Dh) - 1000BASE-T Ethernet Packet Generator (EPG) Register #1  
1
Reset  
Value  
Bit  
15  
14  
13  
Name  
Access States  
Sticky  
1 = Enable EPG  
EPG Enable  
R/W  
R/W  
R/W  
0
0 = Disable EPG  
1 = Run EPG  
EPG Run/Stop  
Transmission Duration  
0
0
0 = Stop EPG  
1 = Continuous  
0 = Send 30,000,000 packets and stop  
00 = 125 bytes  
01 = 64 bytes  
10 = 1518 bytes  
11 = 10,000 bytes (jumbo packet)  
1 = 8,192 ns  
0 = 96 ns  
12:11 Packet Length  
R/W  
00  
0
10  
inter-packet Gap  
R/W  
9:6  
5:2  
Destination Address  
Source Address  
R/W  
R/W  
MSB’s lower nibble of the 6-byte destination address 0001  
MSB’s lower nibble of the 6-byte source address  
1 = Assert TXER  
0 = Do not assert TXER  
0000  
1
0
TXER Control  
R/W  
R/W  
0
1 = Generate packets with bad FCS  
0 = Generate packets with good FCS  
Bad FCS Generation  
0
1
Refer to Section 17.1 on page 51 for more information.  
29E.15 - EPG Enable  
When bit 29E.15 is set to a “1”, the EPG is selected as the driving source for the PHY transmit signals, and the MAC transmit  
pins are disabled. When bit 29E.15 is cleared, the MAC has full control of the PHY transmit signals.  
29E.14 - EPG Run/Stop  
Bit 29E.14 controls the beginning and end of packet transmission. When this bit is set to a “1”, the EPG begins the transmission  
of packets. When this bit is cleared, the EPG ends the transmission of packets, after the current packet is transmitted. Bit  
29E.14 is valid only if bit 29E.15 is set to a “1”.  
29E.13 - Transmission Duration  
When bit 29E.13 is set to a “1”, the EPG will continuously transmit packets as long as bit 29E.14 is set to a “1”. if bit 29E.13 is  
cleared, the EPG will begin transmission of 30,000,000 packets when bit 29E.14 is set to a “1”, after which time, bit 29E.14 is  
automatically cleared. if bit 29E.13 changes during packet transmission, the new value will not take effect until the EPG Run/  
Stop bit (29E.14) has been cleared and set to a “1” again.  
29E.12:11 - Packet Length  
Bits 29E.12:11 select the length of the packets to be generated by the EPG. Note that when these bits are set to “11”, a 10,000-  
byte “jumbo” packet is sent, which may not be compatible with all Ethernet equipment. if bits 29E.12:11 change during packet  
transmission, the new values will not take effect until the EPG Run/Stop bit (29E.14) has been cleared and set to a “1” again.  
29E.10 - inter-packet Gap  
Bit 29E.10 selects the inter-packet gap for packets generated by the EPG. if bit 29E.10 changes during packet transmission, the  
new value will not take effect until the EPG Run/Stop bit (29E.14) has been cleared and set to a “1” again.  
105 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
29E.9:6 - Destination Address  
The 6-byte destination address for packets generated by the EPG is assigned one of 16 values in the range 0xF0 FF FF FF FF  
FFh through 0xFF FF FF FF FF FFh. The most significant byte’s lower nibble bits of the destination address are selected by bits  
29E.9:6. if bits 29E.9:6 change during packet transmission, the new values will not take effect until the EPG Run/Stop bit  
(29E.14) has been cleared and set to a “1” again.  
29E.5:2 - Source Address  
The 6-byte source address for packets generated by the EPG is assigned one of 16 values in the range 0xF0 FF FF FF FF FFh  
through 0xFF FF FF FF FF FFh. The most significant byte’s lower nibble bits of the source address are selected by bits 29E.5:2.  
if bits 29E.5:2 change during packet transmission, the new values will not take effect until the EPG Run/Stop bit (29E.14) has  
been cleared and set to a “1” again.  
29E.1 - TXER Control  
When bit 29E.1 is set to a “1”, all packets generated by the EPG will have the TXER signal asserted. When this bit is cleared,  
TXER is not asserted. if bit 29E.1 changes during packet transmission, the new value will not take effect until the EPG Run/Stop  
bit (29E.14) has been cleared and set to a “1” again.  
29E.0 - Bad FCS Generation  
When bit 29E.0 is set to a “1”, the EPG will generate packets containing an invalid Frame Check Sequence (FCS). When this bit  
is cleared, the all EPG packets will contain a valid Frame Check Sequence. if bit 29E.0 changes during packet transmission, the  
new value will not take effect until the EPG Run/Stop bit (29E.14) has been cleared and set to a “1” again.  
23.3.15 Register 30E (1Eh) - 1000BASE-T Ethernet Packet Generator Register #2  
1
Register 30E (1Eh) - 1000BASE-T Ethernet Packet Generator Register #2  
Bit  
Name  
Access  
States  
Reset Value  
Sticky  
15:0 EPG Packet Payload  
R/W  
Data for packets generated by EPG 00000000 00000000  
1
Refer to Section 17.1 on page 51 for more information.  
30E.15:0 - EPG Packet Payload  
Each packet generated by the EPG contains a repeating sequence of bits 30E.15:0 as the data payload. if bits 30E.15:0 change  
during packet transmission, the new values will not take effect until the EPG Run/Stop bit (29E.14) has been cleared and set to  
a “1” again.  
106 of 106  
VMDS-10106 Revision 4.1  
106  
December 2006  
VSC8221  
Data Sheet  
24 ELECTRICAL SPECIFICATIONS  
24.1 Absolute Maximum Ratings  
Stresses listed under the Absolute Maximum Ratings may be applied to devices one at a time without causing permanent  
damage. Functionality at or above the values listed is not implied. Exposure to these values for extended periods may affect  
device reliability.  
Table 34. Absolute Maximum Ratings  
Symbol  
Min  
-65  
Max  
150  
4.0  
Unit  
°C  
V
Parameter Description & Conditions  
Storage temperature range.  
TStorage  
VDD33A(Analog)  
VDDREG  
-0.5  
-0.5  
DC voltage on analog i/O supply pin.  
DC voltage on Regulator supply pin.  
4.0  
V
VDDiO/VDDiO-  
MiCRO/  
-0.5  
4.0  
V
DC voltage on any digital i/O supply pin.  
VDDiOCTRL  
VDD(5V)  
-0.5  
-0.5  
-0.5  
-0.5  
5.5  
1.5  
V
V
V
V
DC voltage on any 5 V-tolerant digital input pin.  
DC voltage on any digital core supply pin.  
DC voltage on any 1.2 V analog supply pin.  
DC voltage on any non-supply pin.  
VDD12  
VDD12A  
VPin(DC)  
1.5  
VDD + 0.5  
ESD voltage on any pin, per event, according to the Human  
Body Model.  
VESD(HBM)  
2
kV  
CESD  
2
kV  
Cable-sourced ESD tolerance, per event, at 200 meters.  
T = +85 °C, valid for all i/O signal pins.  
iLATCHUP  
-200  
+200  
mA  
ELECTROSTATiC DiSCHARGE  
This device can be damaged by ESD. Microsemi recommends that all integrated cir-  
cuits be handled with appropriate precautions. Failure to observe proper handling  
and installation procedures may adversely affect reliability of the device.  
24.2 Recommended Operating Conditions  
Table 35. Recommended Operating Conditions  
Symbol  
VDD33A  
VDDREG  
VDD12A  
Min  
3.0  
Typ  
3.3  
3.3  
1.2  
Max  
3.6  
Unit  
V
Parameter Description & Conditions  
DC voltage on VDD33A pins  
3.0  
3.6  
V
DC voltage on Regulator Supply pin  
DC voltage on VDD12A pins  
1.14  
1.26  
V
VDDiO/  
VDDiOMiCRO/  
VDDiOCTRL  
DC voltage on VDDiO pins  
Note: The on-chip i/O calibration is only valid  
within these recommended operating conditions.  
3.0  
2.25  
3.3  
2.5  
3.6  
2.75  
V
107 of 123  
VMDS-10106 Revision 4.1  
December 2006  
123  
VSC8221  
Data Sheet  
Table 35. Recommended Operating Conditions (continued)  
Symbol  
Min  
Typ  
Max  
Unit  
Parameter Description & Conditions  
VDD12  
1.14  
1.2  
1.26  
V
DC voltage on VDD12 pins  
Local reference clock (REFCLK) nominal  
frequency. Refer to FTOL for minimum and  
25  
125  
FREFCLK  
MHz  
ppm  
maximum values.  
Reference clock frequency offset tolerance over  
specified temperature range  
FTOL (REFCLK)  
-100  
+100  
(25 MHz or 125 MHz)  
CAT5 link partner frequency offset tolerance (for  
any link speed)  
FTOL (LiNK)  
REXT  
-1500  
+1500  
ppm  
kΩ  
µF  
External reference circuit bias resistor  
(1% tolerance).  
2.00  
0.1  
External reference generator filter capacitor  
(10% tolerance).  
CREF_FiLT  
Operating temperature. Lower limit of  
specification is ambient temperature, and upper  
limit is case temperature.  
TOPER  
0
100  
°C  
24.3 Thermal Application Data  
Table 36. Thermal Application Data  
Printed Circuit Board Conditions (JEDEC JESD51-9)  
PCB Layers  
4
PCB Dimensions (mm x mm)  
101.6 × 114.3  
1.6  
PCB Thickness (mm)  
Environment Conditions  
Maximum operating junction temperature (ºC)  
Ambient free-air operating temperature (ºC)  
Worst Case Power Dissipation (W)  
125  
70  
1
Table 37. Thermal Resistances  
Symbol  
Typ  
Unit  
Parameter Description & Conditions  
40.8  
°C/W  
Junction-to-ambient thermal resistance  
θ
θ
θ
JA (0 m/s airflow)  
JA (1 m/s airflow)  
JA (2 m/s airflow)  
35.5  
34.1  
0.17  
0.19  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-ambient thermal resistance  
Junction-to-ambient thermal resistance  
Junction-to-top center of case thermal resistance  
Junction-to-top center of case thermal resistance  
ψ
JT (0 m/s airflow)  
JT (1 m/s airflow)  
ψ
108 of 123  
VMDS-10106 Revision 4.1  
December 2006  
123  
VSC8221  
Data Sheet  
Table 37. Thermal Resistances (continued)  
ψ
JT (2 m/s airflow)  
0.24  
28.6  
13.6  
°C/W  
°C/W  
°C/W  
Junction-to-top center of case thermal resistance  
Junction-to-board thermal resistance  
Junction-to-case thermal resistance  
θJB  
θJC  
24.4 Package Thermal Specifications - 100 TFBGA  
Table 38. Thermal Specifications - 100-Ball TFBGA 9 × 9mm package  
Symbol  
Min  
Typ  
Max  
70  
Unit  
°C  
Parameter Description & Conditions  
Ambient free-air operating temperature  
Maximum operating junction temperature  
TA  
0
TJ  
125  
°C  
θJC  
13.6  
0.17  
°C/W  
°C/W  
Junction-to-case thermal resistance  
Junction-to-top center of case thermal  
resistance  
ΨJT  
24.5 Current and Power Consumption Estimates  
Power supply current and power consumption information is provided below for PCB design targets.  
VDDiO at 3.3 V, SerDes-Cat-5, FD,1518-byte random data packet,100% utilization, SCLK disabled, SFP mode off, regulator off  
Table 39. VDDiO at 3.3 V, SerDes-Cat-5, SCLK Disabled  
Symbol  
Min  
Typ  
Max  
Unit  
Description  
Analog 3.3 V power supply current into  
VDD33A pins  
iVDD33A  
109  
111  
114  
mA  
1.2 V regulator power supply current into the  
VDDREG pins  
iVDDREG  
0.5  
0.5  
0.5  
mA  
iVDDiO  
8
2
8
2
10  
2
mA  
mA  
mA  
Digital i/O supply current into VDDiO  
iVDDiOMiCRO  
iVDDiOCTRL  
Digital i/O supply current into VDDiOMiCRO  
Digital i/O supply current into VDDiOCTRL  
0.5  
0.5  
0.5  
Digital 1.2 V core power supply current into  
VDD12 pins  
iVDD12  
295  
330  
367  
mA  
Analog 1.2 V core power supply current into  
VDD12A pins  
iVDD12A  
PD  
31  
36  
39  
mA  
731.64  
841.8  
968.76  
mW  
Power consumption  
109 of 123  
VMDS-10106 Revision 4.1  
December 2006  
123  
VSC8221  
Data Sheet  
VDDiO at 3.3 V, SGMii-Cat-5 (1000 Mbps), FD, 1518-byte random data packet,100% utilization, SCLK disabled, SFP mode off,  
regulator off  
Table 40. VDDiO at 3.3 V, SGMii-Cat-5 (1000 Mbps), SCLK Disabled  
Symbol  
Min  
Typ  
Max  
Unit  
Description  
Analog 3.3 V power supply current into  
VDD33A pins  
iVDD33A  
109  
111  
114  
mA  
1.2 V regulator power supply current into the  
VDDREG pins  
iVDDREG  
0.5  
0.5  
0.5  
mA  
iVDDiO  
8
2
8
2
10  
2
mA  
mA  
mA  
Digital i/O supply current into VDDiO  
iVDDiOMiCRO  
iVDDiOCTRL  
Digital i/O supply current into VDDiOMiCRO  
Digital i/O supply current into VDDiOCTRL  
0.5  
0.5  
0.5  
Digital 1.2 V core power supply current into  
VDD12 pins  
iVDD12  
295  
330  
367  
mA  
Analog 1.2 V core power supply current into  
VDD12A pins  
iVDD12A  
PD  
31  
36  
39  
mA  
731.64  
841.8  
968.76  
mW  
Power consumption  
VDDiO at 3.3 V, SGMii-Cat-5 (100 Mbps), FD, 1518-byte random data packet, 100% utilization, SCLK disabled, SFP mode off,  
regulator off  
Table 41. VDDiO at 3.3 V, SGMii-Cat-5 (100 Mbps), SCLK Disabled  
Symbol  
Min  
Typ  
Max  
Unit  
Description  
Analog 3.3 V power supply current into  
VDD33A pins  
iVDD33A  
89  
91  
94  
mA  
1.2 V regulator power supply current into the  
VDDREG pins  
iVDDREG  
0.5  
0.5  
0.5  
mA  
iVDDiO  
8
2
8
2
10  
2
mA  
mA  
mA  
Digital i/O supply current into VDDiO  
iVDDiOMiCRO  
iVDDiOCTRL  
Digital i/O supply current into VDDiOMiCRO  
Digital i/O supply current into VDDiOCTRL  
0.5  
0.5  
0.5  
Digital 1.2 V core power supply current into  
VDD12 pins  
iVDD12  
110  
122  
135  
mA  
Analog 1.2 V core power supply current into  
VDD12A pins  
iVDD12A  
PD  
22  
24  
28  
mA  
450.48  
511.8  
590.58  
mW  
Power consumption  
110 of 123  
VMDS-10106 Revision 4.1  
December 2006  
123  
VSC8221  
Data Sheet  
VDDiO at 3.3 V, SGMii-Cat-5 (10 Mbps), FD, 1518-byte random data packet, 100% utilization, SCLK disabled, SFP mode off,  
regulator off  
Table 42. VDDiO at 3.3 V, SGMii-Cat-5 (10 Mbps), SCLK Disabled  
Symbol  
Min  
Typ  
Max  
Unit  
Description  
Analog 3.3 V power supply current into  
VDD33A pins  
iVDD33A  
146  
151  
155  
mA  
1.2 V regulator power supply current into the  
VDDREG pins  
iVDDREG  
0.5  
0.5  
0.5  
mA  
iVDDiO  
8
2
8
2
10  
2
mA  
mA  
mA  
Digital i/O supply current into VDDiO  
iVDDiOMiCRO  
iVDDiOCTRL  
Digital i/O supply current into VDDiOMiCRO  
Digital i/O supply current into VDDiOCTRL  
0.5  
0.5  
0.5  
Digital 1.2 V core power supply current into  
VDD12 pins  
iVDD12  
53  
56  
61  
mA  
Analog 1.2 V core power supply current into  
VDD12A pins  
iVDD12A  
PD  
22  
25  
28  
mA  
556.5  
631.8  
716.94  
mW  
Power consumption  
VDDiO at 3.3 V SerDes-Cat-5, FD,1518-byte random data packet,100% utilization, SCLK enabled, SFP mode off, regulator off  
Table 43. VDDiO at 3.3 V SerDes-Cat-5, SCLK Enabled  
Symbol  
Min  
Typ  
Max  
Unit  
Description  
Analog 3.3 V power supply current into  
VDD33A pins  
iVDD33A  
109  
111  
114  
mA  
1.2 V regulator power supply current into the  
VDDREG pins  
iVDDREG  
0.5  
0.5  
0.5  
mA  
iVDDiO  
8
2
8
2
10  
2
mA  
mA  
mA  
Digital i/O supply current into VDDiO  
iVDDiOMiCRO  
iVDDiOCTRL  
Digital i/O supply current into VDDiOMiCRO  
Digital i/O supply current into VDDiOCTRL  
0.5  
0.5  
0.5  
Digital 1.2 V core power supply current into  
VDD12 pins  
iVDD12  
305  
340  
379  
mA  
Analog 1.2 V core power supply current into  
VDD12A pins  
iVDD12A  
PD  
31  
36  
39  
mA  
743.04  
853.8  
983.88  
mW  
Power consumption  
111 of 123  
VMDS-10106 Revision 4.1  
December 2006  
123  
VSC8221  
Data Sheet  
VDDiO at 3.3 V, SerDes-Cat-5, FD,1518-byte random data packet,100% utilization, SCLK disabled, SFP mode on, regulator off  
Table 44. VDDiO at 3.3 V SerDes-Cat-5, SFP Mode On  
Symbol  
Min  
Typ  
Max  
Unit  
Description  
Analog 3.3 V power supply current into  
VDD33A pins  
iVDD33A  
109  
111  
114  
mA  
1.2 V regulator power supply current into the  
VDDREG pins  
iVDDREG  
0.5  
0.5  
0.5  
mA  
iVDDiO  
8
2
8
2
10  
2
mA  
mA  
mA  
Digital i/O supply current into VDDiO  
iVDDiOMiCRO  
iVDDiOCTRL  
Digital i/O supply current into VDDiOMiCRO  
Digital i/O supply current into VDDiOCTRL  
0.5  
0.5  
0.5  
Digital 1.2 V core power supply current into  
VDD12 pins  
iVDD12  
258  
275  
283  
mA  
Analog 1.2 V core power supply current into  
VDD12A pins  
iVDD12A  
PD  
31  
36  
39  
mA  
689.46  
775.80  
862.92  
mW  
Power consumption  
VDDiO @ 3.3V, SGMii-100BASE-FX, FDX, 1518 Byte Random data packet, 100% Utilization, SFP Mode Off  
Table 45. VDDiO at 3.3V SGMii-100BASE-FX, SFP Mode Off  
Symbol  
iVDD12  
iVDD12A  
Min  
Typ  
Max  
Unit  
Description  
+
Power supply current into VDD12 and VDD12A  
pins  
145  
mA  
Analog 3.3V power supply current into  
VDD33A pins  
iVDD33A  
96  
mA  
iVDDiOMAC  
iVDDiOCTRL  
iVDDiOMiCRO  
+
Digital i/O supply current into VDDiOMAC,  
VDDiOCTRL, and VDDiOMiCRO pins  
+
19  
mA  
PD  
554  
mW  
Power dissipation  
VDDiO at 3.3 V, SerDes-Cat-5, FD,1518-byte random data packet, 100% utilization, SCLK disabled, SFP mode on, regulator on  
Table 46. VDDiO at 3.3 V SerDes-Cat-5, SFP Mode On, Regulator On  
Symbol  
Min  
Typ  
Max  
Unit  
Description  
Analog 3.3 V power supply current into  
VDD33A pins  
iVDD33A  
109  
111  
114  
mA  
1.2 V regulator power supply current into the  
VDDREG pins  
iVDDREG  
iVDDiO  
149.5  
8
139.5  
8
129.5  
10  
mA  
mA  
Digital i/O supply current into VDDiO  
112 of 123  
VMDS-10106 Revision 4.1  
December 2006  
123  
VSC8221  
Data Sheet  
Table 46. VDDiO at 3.3 V SerDes-Cat-5, SFP Mode On, Regulator On (continued)  
Symbol  
Min  
2
Typ  
2
Max  
2
Unit  
mA  
Description  
iVDDiOMiCRO  
Digital i/O supply current into VDDiOMiCRO  
Digital i/O supply current into VDDiOCTRL  
Power consumption  
iVDDiOCTRL  
PD  
0.5  
0.5  
0.5  
mA  
807.0  
861.3  
921.6  
mW  
113 of 123  
VMDS-10106 Revision 4.1  
December 2006  
123  
VSC8221  
Data Sheet  
25 DC SPECIFICATIONS  
25.1 Digital Pins (VDDiO = 3.3 V)  
The following specifications are valid only when TAmbient = 25 °C, VDDiO = 3.3 V, VDD12 = 1.2 V, VDD33A = 3.3 V, VSS = 0 V.  
Table 47. Digital Pins Specifications (VDDiO = 3.3 V)  
Symbol  
Min  
Typ  
Max  
Unit  
Parameter Description & Conditions  
Output high voltage.  
VOH  
2.4  
VDDiO  
V
VDDiO = MiN, iOH = -1.5 mA  
Output low voltage.  
VDDiO = MiN, iOL = 1.5 mA  
VOL  
GND  
2.0  
0.4  
V
ViH  
ViL  
V
V
input high voltage.  
0.8  
10  
10  
input low voltage.  
iiLeak  
iOLeak  
-10  
-10  
µA  
µA  
input leakage current.  
Output leakage current.  
25.2 Digital Pins (VDDiO = 2.5 V)  
The following specifications are valid only when TAmbient = 25 °C, VDDiO = 2.5 V, VDD12 = 1.2 V, VDD33A = 3.3 V, VSS = 0 V.  
Table 48. Digital Pins Specifications (VDDiO = 2.5 V)  
Symbol  
Min  
Typ  
Max  
Unit  
Parameter Description & Conditions  
Output high voltage.  
VOH  
2.0  
VDDiO  
V
VDDiO = MiN, iOH = -1.0 mA  
Output low voltage.  
VDDiO = MiN, iOL = 1.0 mA  
VOL  
ViH  
ViL  
GND  
1.7  
0.4  
V
V
V
input high voltage.  
VDDiO = MiN  
input low voltage.  
VDDiO = MiN  
0.7  
iiLeak  
-10  
-10  
10  
10  
µA  
µA  
input leakage current.  
Output leakage current.  
iOLeak  
114 of 123  
VMDS-10106 Revision 4.1  
December 2006  
123  
VSC8221  
Data Sheet  
25.3 LED Output Pins (LED[2:0])  
The following specifications are valid over a voltage range of 2.3 V to 1.3 V applied to the LED[2:0] pins.1  
Table 49. LED Output Pins Specification  
Recommended1  
Symbol  
Max  
Unit  
Parameter Description  
Current sinking capability of the LED drivers  
isinking  
40  
8
mA  
1
This recommendation is purely from a power savings view point.  
1it is assumed that a typical LED will have a forward voltage drop of between 1v and 2v, thereby asserting a 1.3v (3.3v-2v) to 2.3v (3.3v-1v) sig-  
nal across the LED.  
115 of 123  
VMDS-10106 Revision 4.1  
123  
December 2006  
VSC8221  
Data Sheet  
26 CLOCKING SPECIFICATIONS  
26.1 Reference Clock Option  
The following component specifications should be used to select a clock reference for use with the VSC8221. For more  
information about clocking and frequency offset tolerance specifications when jumbo packet support is required, see the  
application note Using Jumbo Packets with SimpliPHYs, available from the Microsemi Web site.  
Table 50. Reference Clock Option Specifications  
Symbol  
Min  
Typ  
Max  
Unit  
Parameter Description & Conditions  
Total frequency offset tolerance (25 MHz clock  
option), including, initial offset, stability over  
temperature.  
FTOL-25MHZ  
-100 ppm  
25  
+100 ppm  
MHz  
Rise and fall time (20% to 80%), 25 MHz clock  
option.  
TR1, TF1  
4
ns  
ns  
%
Rise and fall time (20% to 80%), 125 MHz clock  
option.  
TR2, TF2  
0.8  
55  
Duty cycle (25 MHz and 125 MHz clock  
options).  
DUTY  
45  
26.2 Crystal Option  
The following component specifications should be used to select a crystal for use with the VSC8221. For more information  
about clocking and frequency offset tolerance specifications when jumbo packet support is required, see the application note  
Using Jumbo Packets with SimpliPHYs, available from the Microsemi Web site.  
Table 51. Crystal Option Specifications  
Symbol  
Min  
Typ  
Max  
Unit  
Parameter Description & Conditions  
Fundamental mode, AT-cut type, parallel  
resonant crystal reference frequency.  
FREF  
25  
MHz  
Fundamental mode, AT-cut type, parallel  
resonant crystal total frequency offset, including,  
initial offset, stability over temperature, aging  
and capacitive loading.  
FTOL(TOTAL)  
-50  
18  
+50  
20  
ppm  
CL  
pF  
pF  
Crystal parallel load capacitance.  
Crystal external load capacitors to GND.1  
Equivalent series resistance of crystal.  
Crystal oscillator drive level.  
CL-EXT  
30  
10  
ESR  
PD  
30  
0.5  
mW  
1
These values can depend on board parasitics.  
116 of 123  
VMDS-10106 Revision 4.1  
December 2006  
123  
VSC8221  
Data Sheet  
27 SERDES SPECIFICATIONS  
All specifications valid for TAmbient = 0°C to 70°C.  
Table 52. SerDes Specifications  
Symbol  
Min  
100  
350  
Typ  
Max  
2400  
1400  
Unit  
Parameter Description & Conditions  
T_lock  
500  
uS  
Frequency Lock Time  
Peak to peak differential voltage (TDP-TDN)  
Vidiff  
mV  
mV  
terminated with a 100 (differential) Load  
Peak to peak differential voltage (RDP-RDN),  
100 (differential) termination in the module,  
recommended voltage range is 500 mV to  
1200 mV  
Vodiff1  
1200  
Vicm  
0.437 x VDD12 .45 x VDD12 0.464 x VDD12  
V
V
input common mode voltage  
Output common mode voltage  
Vocm  
0.4 x VDD12 .45 x VDD12  
0.5 x VDD12  
300  
20%-80% Transition time.  
Trise / Tfall of high speed output driver.  
Tr_HS / Tf_HS  
ps  
Random jitter (1 sigma) as per 802.3 standard.  
random jitter component at RDP, RDN in serial  
MAC to CAT5 media category of PHY operating  
modes.  
RJ  
18  
38  
ps RMS  
With a K28.5+/K28.5- Pattern.  
ps pk-pk Deterministic jitter at RDP, RDN in serial MAC to  
CAT5 media category of PHY operating modes.  
DJ  
SerDes  
Data Rate  
1249.375  
1250  
1250.625  
Mbps SerDes data rate. (+/- 500 ppm)  
1
Vodiff is controlled by Extended Mii Register 17E.4:2. The default output swing is 1200mV. For more information, see <HyperLink>Section 23.3.2 on page 98.  
117 of 123  
VMDS-10106 Revision 4.1  
December 2006  
123  
VSC8221  
Data Sheet  
28 SYSTEM TIMING SPECIFICATIONS  
28.1 JTAG Timing  
The following specifications are valid only when the i/O power supply (VDDiOCTRL) is at either 3.3 V, ±5%, or 2.5 V, ±5%.  
Table 53. JTAG Timing Specifications  
Symbol  
Min  
100  
45  
Typ  
Max  
Unit  
ns  
Parameter Description & Conditions  
TCK period.  
TTCK-Period  
TTCK-High  
TTCK-Low  
ns  
TCK minimum pulse width high.  
TCK minimum pulse width low.  
(TMS or TDi) to TCK setup time.  
(TMS or TDi) to TCK hold time.  
TDO delay from TCK.  
45  
ns  
TTDi/TMS-Setup  
TTDi/TMS-Hold  
TTDO-Delay  
10  
ns  
10  
ns  
15  
ns  
TTDI/TMS-Setup  
TTDI/TMS-Hold  
TDI  
TMS  
TTCK-Period  
TCK  
TDO  
TTCK-Low  
TTCK-High  
TTDO-Delay  
Figure 24. JTAG interface AC Timing  
118 of 123  
123  
VMDS-10106 Revision 4.1  
December 2006  
VSC8221  
Data Sheet  
28.2 SMi Timing  
The following specifications are valid only when the i/O power supply (VDDiOMiCRO) is at either 3.3 V, ±5%, or 2.5 V, ±5%.  
Table 54. SMi Timing Specifications  
Symbol  
Min  
0
Typ  
2.5  
50  
Max  
Unit  
MHz  
ns  
Parameter Description & Conditions  
MDC clock frequency.  
FMDC  
12.5  
TMDC-High  
TMDC-Low  
20  
20  
MDC clock pulse width high.  
MDC clock pulse width low.  
50  
ns  
MDiO to MDC setup time when sourced by the  
station manager.  
TMDiO-Setup  
TMDiO-Hold  
10  
10  
ns  
ns  
MDiO to MDC hold time when sourced by the  
station manager.  
MDC to MDiO delay time from VSC8221.  
Delay depends on the value of external pull-up  
resistor on MDiO pin.  
TMDiO-Delay  
10  
300  
ns  
Note: A 4.7k to 10k pullup is recommended on the MDiNT.  
MDC  
TMDIO-Setup  
TMDIO-Hold  
MDIO  
(input)  
Data  
TMDC-Low  
TMDC-High  
MDC  
FMDC  
TMDIO-Delay  
MDIO  
(output)  
Data  
Figure 25. SMi AC Timing  
119 of 123  
VMDS-10106 Revision 4.1  
December 2006  
123  
VSC8221  
Data Sheet  
28.3 MDiNT Timing  
The following specifications are valid only when the i/O power supply (VDDiOMiCRO) is at either 3.3 V, ±5%, or 2.5 V, ±5%.  
Table 55. MDiNT Timing Specifications  
Symbol  
Min  
Typ  
Max  
Unit  
Parameter Description & Conditions  
MDiNT fall time, assuming a 2.2 kΩ external  
pull-up resistor and a 50 pF total capacitive load.  
tF  
110  
ns  
28.4 Serial LED_CLK and LED_DATA Timing  
The following specifications are valid only when the i/O power supply (VDD33A) is at 3.3V, ±5%.  
Table 56. Serial LED_CLK and LED_DATA Timing Specifications  
Symbol  
Min  
Typ  
Max  
Unit  
Parameter Description & Conditions  
TLED_CLK  
1
µs  
LED_CLK output period.  
LED_CLK pause between LED bit sequence  
repeat (un-preambled mode).  
TLED_CLK-Pause  
TLED_DATA-Delay  
25  
ms  
LED_DATA propagation delay from rising edge  
of LED_CLK.  
0.5  
µs  
TLED_CLK  
TLED_CLK-Pause  
LED_CLK  
TLED_DATA-Delay  
.......................  
Bit 1 of 36  
Bit 36 of 36  
LED_DATA  
Bit 1 of 36  
Figure 26. LED_CLK and LED_DATA Output AC Timing  
120 of 123  
123  
VMDS-10106 Revision 4.1  
December 2006  
VSC8221  
Data Sheet  
28.5 REFCLK Timing  
The following specifications are valid only when the VDD33A is at 3.3 V, ±5%.  
Table 57. REFCLK Timing Specifications  
Symbol  
Min  
Typ  
Max  
Unit  
Parameter Description & Conditions  
Reference clock period, PLLMODE = 0  
(25 MHz reference).  
TREFCLK25  
40  
ns  
Reference clock period, PLLMODE = 1  
(125 MHz reference).  
TREFCLK125  
FSTABiLiTY  
TDUTY  
8
ns  
ppm  
%
Reference clock frequency stability  
(0 °C to 70 °C).  
100  
60  
REFCLK duty cycle in both 25 MHz and  
125 MHz modes.  
40  
50  
JREFCLK25,  
JREFCLK125  
Total jitter of 25 MHz or 125 MHz reference  
clock (peak-to-peak).  
300  
ps  
Reference clock rise time, 25 MHz mode  
(20% to 80%).  
tR/F (REFCLK25)  
tR/F (REFCLK125)  
4
1
ns  
ns  
Reference clock rise time, 125 MHz mode  
(20% to 80%).  
TDUTY  
TREFCLK  
80%  
20%  
REFCLK  
tR, tF  
Figure 27. REFCLK AC Timing  
121 of 123  
123  
VMDS-10106 Revision 4.1  
December 2006  
VSC8221  
Data Sheet  
28.6 CLKOUT and CLKOUTMiCRO Timing  
The following specifications are valid only when the i/O power supply (VDDiO for CLKOUT and VDDiOMiCRO for  
CLKOUTMiCRO) is at either 3.3 V ±5%, or 2.5 V ±5%.  
.
Table 58. CLKOUT and CLKOUTMiCRO Timing Specifications  
Symbol  
Min  
Typ  
Max  
Unit  
Parameter Description & Conditions  
Clock period.  
TCLKOUT  
8
ns  
Clock period. Either:  
4 MHz or  
125 MHz.  
TCLKOUTMiCRO  
250  
8
ns  
FSTABiLiTY  
TDUTY  
100  
60  
ppm  
%
Clock frequency stability (0 °C to 70 °C).  
Clock duty cycle.  
40  
50  
JCLK125  
300  
1
ps  
Total jitter of clock (peak-to-peak).  
Clock rise time (20% to 80%).  
tR/F (CLK125)  
ns  
TDUTY  
TCLKOUT  
80%  
20%  
CLKOUT  
tR, tF  
Figure 28. CLKOUT AC Timing  
TDUTY  
TCLKOUTMICRO  
80%  
20%  
CLKOUTMICRO  
tR, tF  
Figure 29. CLKOUTMiCRO AC Timing  
122 of 123  
123  
VMDS-10106 Revision 4.1  
December 2006  
VSC8221  
Data Sheet  
28.7 Reset Timing  
The following specifications are valid only when the i/O power supply (VDDiOmicro) is at either 3.3 V, ±5%, or 2.5 V, ±5%.  
Table 59. RESET AC Timing Specification  
Symbol  
Min  
Typ  
Max  
Unit  
Description  
Conditions  
TRESET  
100  
ns  
Reset assertion time  
if EEPROM is present, an  
additional 100ms is  
required  
TREADY  
13  
20  
ms  
Reset to SMi active time  
REFCLK  
TRESET  
RESET  
MDIO  
TREADY  
Figure 30. RESET AC Timing  
123 of 123  
VMDS-10106 Revision 4.1  
December 2006  
123  
VSC8221  
Data Sheet  
29 PACKAGING SPECIFICATIONS  
29.1 100-Ball 9 × 9mm TFBGA Mechanical Specification  
Dimensions are in millimeters (mm).  
Ball Pitch : 0.80  
Ball Diameter: 0.4  
Substrate Thickness: 0.21  
Mold Thickness: 0.53  
Figure 31. 100-Ball 9 × 9mm TFBGA Mechanical Specification  
29.2 Package Moisture Sensitivity  
Moisture sensitivity level ratings for Microsemi products comply with JEDEC standard iPC/JEDEC J-STD-020B. All Microsemi  
products are rated moisture sensitivity level 3 or better unless specified otherwise. For more information, see the JEDEC  
standard.  
124 of 124  
VMDS-10106 Revision 4.1  
124  
December 2006  
VSC8221  
Data Sheet  
30 Ordering information  
Lead-free products from Microsemi comply with the temperatures and profiles defined in the JEDEC standard  
PC/JEDEC J-STD-020. For more information, see the JEDEC standard.  
30.1 Devices  
Table 60. Part Number for the VSC8221  
Part Number  
Package Type  
Description  
100 TFBGA  
0.8mm ball pitch  
9mm x 9mm  
body  
VSC8221HH  
Single port, low power, triple-speed PHY  
100 TFBGA  
0.8mm ball pitch  
9mm x 9mm  
body  
VSC8221XHH  
Lead-free, single port, low power, triple-speed PHY  
125 of 125  
125  
VMDS-10106 Revision 4.1  
December 2006  
VSC8221  
Data Sheet  
31 DESIGN GUIDELINES  
Although copper-based Ethernet physical layer devices (PHY) have been developed from an established iEEE standard, some  
PHYs available in the marketplace are either non-compliant with the standard or implement non-standard features that cause  
interoperability issues with the SimpliPHYTM series of gigabit Ethernet PHYs.  
31.1 Required PHY Register Write Sequence  
issue: At initialization, a number of internal registers must be changed from their default values.  
Description: A series of register writes must be performed after device power-up or reset. These writes can be done using the  
EEPROM connected to the EEPROM interface or by the Switch/Station Manager.  
Workaround: The required register writes are as follows:  
• 2A30h to PHY Register 31  
• 0212h to PHY Register 8  
• 52B5h to PHY Register 31  
• 000Fh to PHY Register 2  
• 472Ah to PHY Register 1  
• 8FA4h to PHY Register 0  
• 2A30h to PHY Register 31  
• 0012h to PHY Register 8  
• 0000h to PHY Register 31  
31.2 interoperability with intel 82547Ei Gigabit Ethernet MAC+PHY iC  
issue: Due to a non-standard startup-sequence in the intel 82547Ei MAC+PHY iC, the VSC8221 might take multiple attempts to  
establish link.  
Workaround: The following PHY register write can be performed to avoid this issue:  
• 0049h to Mii Register 18  
31.3 SerDes Jitter  
issue: Under worst case conditions, total jitter performance may exceed the iEEE specifications for 1000BASE-X, as noted in  
the table below.  
impact: in typical applications with robust PCB design practices, however, actual performance is typically better than the figures  
noted below.  
Symbol  
Min  
Typ  
Max  
Unit  
Parameter Description and Conditions  
Worst case total transmit jitter in media converter  
applications.  
J(TOTAL, TX)  
290  
ps  
Worst case total receive jitter tolerance in media  
converter applications.  
J(TOTAL, RX)  
400  
ps  
Workaround: None.  
126 of 132  
VMDS-10106 Revision 4.1  
December 2006  
132  
VSC8221  
Data Sheet  
31.4 SGMii 100BASE-TX Corruption of Packets with Odd Preambles  
Description: in SGMii-CAT5 mode and while receiving 100BASE-TX packets with odd preambles, the VSC8221 device’s  
receive rate adaptation block will not properly encode the packet.  
The following diagram is an excerpt from Figure 2 of the Cisco SGMii Specification v1.7.  
RXD[3:0] for 10/100BT  
RXD[7:0] for 1000BT  
RX  
RX_ER  
RX  
ENC_RXD [0:9]  
PCS  
Transmit  
State  
PHY  
Receive  
Rate  
Serializer  
RXD[7:0]  
RX_CLK @ 2.5/25/125 MHz  
From CAT-5  
Machine  
Adaptation  
RX_CLK @ 25 MHz  
To MAC  
Figure 32. SGMii Rx Path from the PHY to the MAC  
impact: This will cause a normal packet with an odd preamble to become corrupted. The corruption occurs while encoding the  
SFD. This may cause an otherwise normal packet to be dropped at the MAC.  
Example:  
Case i : even preamble (correct)  
55555Dxyz : encoded as 55, 55, D5, yx …  
Case ii : odd preamble (incorrect)  
5555Dxyz : encoded as 55, 55, xD, zy …  
Note no SFD in above  
Workaround: There is no workaround at the physical layer of the PHY’s packet transmission. if higher layers are being  
employed on this receive path such as TCP/iP, then a re-transmission request could occur to recover from the loss. This is a  
problem only when the preamble is corrupted by noise in the CAT5 link or when the link partner PHY is transmitting a non-  
compliant preamble.  
31.5 SGMii 100BASE-TX Corruption of Packets with no ESDs  
Description: in SGMii-to-CAT5 mode and while receiving 100BASE-XT packets with no ESD from the CAT5 interface, the  
100BASE-TX receive PCS extends the packet by a nibble while asserting RX_ER.  
impact: The rate adaption block subsequently will not transmit this additional nibble and the RX_ER to the MAC. The MAC may  
then consider this a normal packet.  
Workaround: There is no workaround at the PHY’s SGMii layer. The likelihood of receiving a packet with no ESD and no CRC  
error is low. During such an event (if it does occur), the data address and payload are not corrupted. The only item that would  
be lost is that an RX_ER event occurred to mark the missing ESD during transmission.  
For more information, see Figure 32, above.  
127 of 132  
VMDS-10106 Revision 4.1  
132  
December 2006  
VSC8221  
Data Sheet  
31.6 Software Reset Time  
Description: The VSC8221 device’s software reset timing depends on the values of its Mii Register 22.9 (Sticky Reset Enable)  
and its Extended Mii Register 21.14 (Re-Read EEPROM on Software Reset).  
Table 61. Software Reset Times  
Re-Read  
EEPROM  
(21E.14)  
Sticky Reset  
Enable (22.9)  
Reset Time  
1
0
0
1
0
0
1
1
4 microseconds (default)  
300 microseconds  
200 milliseconds  
200 milliseconds  
For more information, see Register 0 (00h) – Mode Control Register, page 67, Register 21E (15h) - EEPROM interface Status  
and Control Register, page 101, and Register 22 (16h) – Control & Status Register, page 84.  
impact: May cause errors if sufficient delay is not added between software reset and the next register access.  
Workaround: System software must ensure that adequate delay is inserted between software reset and the next register  
address.  
31.7 Reducing EMi  
Description: in systems that do not use the CLKOUT or the CLKOUTmicro outputs, radiated emissions can be reduced by  
disabling these outputs. Under the default PHY settings, CLKOUT and CLKOUTmicro are enabled.  
impact: Reduction of radiated emissions by disabling these unused clock outputs may enable customers to use less expensive  
system enclosures or shielding methods to reduce system cost.  
Workaround: For information about enabling or disabling the CLKOUT output, see Register 18 (12h) – Bypass Control  
Register, page 81. For information about enabling or disabling the CLKOUTmicro output, see Register 17E (11h) - Serdes  
Control Register, page 98.  
128 of 132  
VMDS-10106 Revision 4.1  
132  
December 2006  
VSC8221  
Data Sheet  
31.8 Clause 40 Auto MDi/MDi-X interoperability Testing  
Description: The VSC8221 device’s Auto MDi/MDi-X will not pass the UNH iOL’s Clause 40 Auto-crossover test suite.  
impact: Although the VSC8221 will not technically pass the entire Auto MDi/MDi-X test suite at the UNH iOL, extensive Auto  
MDi/MDi-X interoperability testing has been performed in Microsemi’s internal interoperability lab, in addition to performing  
standard interoperability testing at the UNH iOL. Due to the robust Auto MDi/MDi-X implementation in the VSC8221, there are  
no known interoperability issues with Auto MDi/MDi-X at any speed. Please contact Microsemi for additional interoperability and  
validation results, including the UNH iOL Test Report.  
Workaround: None.  
31.9 10BASE-T HDX issue with iXiA Test Suite  
Description: A jam signal generated by an iXiA tester and sent to the VSC8221 in 10BASE-T HDX cannot be seen by a  
receiving MAC. When a jam signal of 0xFF is generated by an iXiA test suite and transmitted at the start of the packet, the PHY  
does not report any receive information on its SGMii interface. in SGMii, carrier sense in the MAC is derived from TX_DX, so the  
MAC is not able to detect a collision.  
impact: The only known situation that could be affected by this issue is if a receive error corrupts the entire preamble. Extensive  
testing has only shown this error to occur when used with an iXiA tester. This error has not occurred in interoperability testing.  
Workaround: None.  
31.10 100BASE-FX initialization Script  
The 100BASE-FX initialization script does the following:  
initializes the copper section of DSP to support the 100BASE-FX mode  
Disables the pair swap option  
Sets 100BASE-X PCS into FX mode  
Forces the PHY into 100Mbps mode  
The following script is provided as an attached text file so that you can copy it electronically. in Acrobat, double-click the  
attachment icon.  
//--100BASE-FX initialization script for VSC8221.--//  
phy_write( phynum(dec), regnum(dec), value(hex) );  
phy_write(0, 31, 0x2a30);  
phy_write(0, 8, 0x0212);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xa7fa);  
phy_write(0, 2, 0x0012);  
phy_write(0, 1, 0x3001);  
phy_write(0, 0, 0x87fa);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xa240);  
129 of 132  
VMDS-10106 Revision 4.1  
132  
December 2006  
VSC8221  
Data Sheet  
phy_write(0, 2, 0x0000);  
phy_write(0, 1, 0x0001);  
phy_write(0, 0, 0x8240);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xa70c);  
phy_write(0, 2, 0x00e0);  
phy_write(0, 1, 0x000d);  
phy_write(0, 0, 0x870c);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xa70c);  
phy_write(0, 2, 0x00e0);  
phy_write(0, 1, 0x0000);  
phy_write(0, 0, 0x870c);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xa258);  
phy_write(0, 2, 0x0000);  
phy_write(0, 1, 0x2140);  
phy_write(0, 0, 0x8258);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xa258);  
phy_write(0, 2, 0x0000);  
phy_write(0, 1, 0x21c0);  
phy_write(0, 0, 0x8258);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xa25a);  
phy_write(0, 2, 0x0000);  
phy_write(0, 1, 0x2940);  
phy_write(0, 0, 0x825a);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xa25a);  
phy_write(0, 2, 0x0000);  
phy_write(0, 1, 0x29c0);  
phy_write(0, 0, 0x825a);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xa25c);  
phy_write(0, 2, 0x0000);  
130 of 132  
VMDS-10106 Revision 4.1  
December 2006  
132  
VSC8221  
Data Sheet  
phy_write(0, 1, 0x3000);  
phy_write(0, 0, 0x825c);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xa25c);  
phy_write(0, 2, 0x0000);  
phy_write(0, 1, 0x3000);  
phy_write(0, 0, 0x825c);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xa25e);  
phy_write(0, 2, 0x0000);  
phy_write(0, 1, 0x38a0);  
phy_write(0, 0, 0x825e);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xa25e);  
phy_write(0, 2, 0x0000);  
phy_write(0, 1, 0x3800);  
phy_write(0, 0, 0x825e);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xafa2);  
phy_write(0, 2, 0x0098);  
phy_write(0, 1, 0x000);  
phy_write(0, 0, 0x8fa2);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xafa2);  
phy_write(0, 2, 0x009c);  
phy_write(0, 1, 0x0000);  
phy_write(0, 0, 0x8fa2);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xafa0);  
phy_write(0, 2, 0x0013);  
phy_write(0, 1, 0x1b00);  
phy_write(0, 0, 0x8fa0);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xafa0);  
phy_write(0, 2, 0x0013);  
phy_write(0, 1, 0x9b00);  
131 of 132  
VMDS-10106 Revision 4.1  
December 2006  
132  
VSC8221  
Data Sheet  
phy_write(0, 0, 0x8fa0);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xa708);  
phy_write(0, 2, 0x000e);  
phy_write(0, 1, 0x0004);  
phy_write(0, 0, 0x8708);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xa708);  
phy_write(0, 2, 0x000e);  
phy_write(0, 1, 0x000c);  
phy_write(0, 0, 0x8708);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xa708);  
phy_write(0, 2, 0x000e);  
phy_write(0, 1, 0x001c);  
phy_write(0, 0, 0x8708);  
phy_write(0, 31, 0x52b5);  
phy_write(0, 0, 0xa708);  
phy_write(0, 2, 0x000e);  
phy_write(0, 1, 0x003c);  
phy_write(0, 0, 0x8708);  
phy_write(0, 31, 0x0000);  
phy_write(0, 18, 0x0069);  
phy_write(0, 31, 0x0000);  
phy_write(0, 18, 0x7069);  
phy_write(0, 31, 0x0000);  
phy_write(0, 0, 0x2100);  
132 of 132  
VMDS-10106 Revision 4.1  
December 2006  
132  
VSC8221  
Data Sheet  
32 Product Support  
All support documents for the VSC8221 can be accessed on the Microsemi Web site at www.Microsemi.com. Access to some  
documents may require filing a non-disclosure agreement with Microsemi.  
32.1 Available Documents and Application Notes  
iBiS Model  
OrCAD Symbol  
BSDL File  
Copper SFP PHY Performance Comparison White Paper  
Design and Layout Guidelines application note  
Magnetics Guide  
Using Jumbo Packets with SimpliPHYs application note  
UNH Test Report (requires NDA)  
Designing a Copper SFP using the VSC8221 PHY application note  
For additional application notes and information about reference designs using the VSC8221 PHY device, visit the Microsemi  
Web site at www.Microsemi.com.  
Microsemi Corporate Headquarters  
One Enterprise, Aliso Viejo, CA 92656 USA  
Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com  
www.microsemi.com  
© 2004–2006 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All  
other trademarks and service marks are the property of their respective owners.  
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any  
particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder  
and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or  
applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other  
testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters  
provided by Microsemi. it is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information  
provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely with the Buyer.  
Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other iP rights, whether with regard to such information itself or  
anything described by such information. information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes  
to the information in this document or to any products and services at any time without notice.  
About Microsemi  
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data  
center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASiCs;  
power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF  
solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions;  
Power-over-Ethernet iCs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has  
approximately 4,800 employees globally. Learn more at www.microsemi.com.  
133 of 133  
VMDS-10106 Revision 4.1  
133  
December 2006  
VSC8221  
Data Sheet  
33 DOCUMENT HISTORY AND NOTICES  
Revision  
Date  
Comments  
Number  
0.1.0  
Feb 10, 04  
May 11, 04  
First Preliminary Release  
Added VDD12A pin reference.  
Added Errata Section and added errata no. 6  
Updated ‘specification’ section with VDD12A reference  
Updated LED ECO  
0.1.1  
Added ‘Connector Loopback section’  
Added power consumption data.  
Removed Errata Section, added design guidelines section.  
0.1.2  
Jun 22, 04  
Updated Mii Register 0.15, 24.0 removed column S.no from table 27.2 (Register 23)  
Updated document style to reflect Microsemi corporate standards.  
Added two power consumption tables.  
2.0  
2.1  
Aug 18, 04  
Sep 13, 04  
Added new package diagram.  
Replaced Cicada silicon revision conventions with the Microsemi silicon revision  
conventions. A0 (Cicada) is now A (Microsemi). A1 (Cicada) is now C (Microsemi).  
Changed ambient free-air operating temperature and thermal resistance specifications.  
Removed reference to support of 100BASE-FX (100 Mbps) modules in the Features  
and Benefits section.  
Changed description of the System Clock interface Signals - in XTAL1 crystal oscillator  
input section. For more information, see Table 5, “System Clock interface Signals  
(SCi),” on page 17.  
Deleted the system schematics that showed power supply connections.  
Added descriptive information to the section about the device twisted pair interface. For  
more information, see Section 10, “Twisted Pair interface” on page 10-29.  
Added information about the device Auto-MDi/MDi-X in Forced 10/100 Link Speeds.  
For more information, see Section 10.3, “Auto MDi/MDi-X in Forced 10/100 Link  
Speeds” on page 10-30.  
Added information about Forcing the PHY into MDi or MDi-X mode in 10/100/1000 Link  
Speeds. For more information, see Section 10.4, “Forcing the PHY into MDi or MDi-X  
mode in 10/100/1000 Link Speeds” on page 10-31.  
4.0  
May 02, 05  
Changed title of SMi pin descriptions table. For more information, see Table 18, “SMi  
Pin Descriptions - iEEE Mode,” on page 38.  
Added information to the LED Function Assignments table. For more information, see  
Table 20, “LED Function Assignments,” on page 41.  
Changed the information associated with the device Parallel LED functions. For more  
information, see Table 21, “Parallel LED Functions,” on page 41.  
Changed information associated with the device identification register. For more  
information, see Section 14, “Test Mode interface (JTAG)” on page 14-44.  
in the Operation in enhanced ActiPHY mode section, changed the illustration showing  
the enhanced ActiPHY state. For more information, see Figure 16 on page 15-47.  
in the description of near-end loopback testing, the information about what happens to  
the signal was changed. For more information, see Section 17.4, “Near-End Loopback”  
on page 17-52.  
(continues)  
134 of 138  
138  
VMDS-10106 Revision 4.1  
December 2006  
VSC8221  
Data Sheet  
Revision  
Number  
Date  
Comments  
(continued)  
in the description of the connector loopback, the information about connecting the PHY  
to a loopback connector or loopback cable. For more information, see Section 17.5,  
“Connector Loopback” on page 17-52.  
Deleted information about the device SGMii-to-100BASE-FX operation (was page 60 in  
the previous version of the datasheet).  
Deleted information about the device’s iEEE 802.3 Clause 28 and 37 Remote Fault  
indication support (was page 61 in the previous version of the datasheet).  
Added information to the description of the device mode control register. For more  
information, see Section 23.2.1, “Register 0 (00h) – Mode Control Register” on page  
23-67.  
Added information to the description of the device mode status register. For more  
information, see Section 23.2.2, “Register 1 (01h) – Mode Status Register” on page 23-  
69.  
Changed information associated with the reset value of the device identification register  
#2. For more information, see Section 23.2.4, “Register 3 (03h) – PHY identifier  
Register #2” on page 23-71.  
Changed the information associated with certain reset values in the device PHY control  
register #2. For more information, see Section 23.2.25, “Register 24 (18h) – PHY  
Control Register #2” on page 23-87.  
Changed the information associated with the reset value in the device LED control  
register. For more information, see Section 23.2.28, “Register 27 (1Bh) – LED Control  
Register” on page 23-92.  
Changed the information associated with the enhanced ActiPHY mode enable bit in the  
device auxilliary control and status register. For more information, see Section 23.2.29,  
“Register 28 (1Ch) – Auxiliary Control and Status Register” on page 23-94.  
4.0  
(continued)  
May 02, 05  
information on the SiGDET pin direction when the device is operating in serial MAC-to-  
CAT-5 media and Fiber media modes was changed. For more information, see Section  
23.3.4, “Register 19E (13h) - SerDes Control # 2” on page 23-99.  
The reset value for bits 8 and 4 in the Extended PHY control register #3 were changed.  
For more information, see Section 23.3.5, “Register 20E (14h) - Extended PHY Control  
Register #3” on page 23-100. Also changed description of bit 5 in this register.  
The specification for ESD according to the Machine Model (VESD(MM)) was deleted  
from the Electrical Specifications section.  
information about the ESD sensitivity of the device was added. For more information,  
see Section 24.1, “Absolute Maximum Ratings” on page 24-107.  
The device operating temperature specification was changed. For more information,  
see Section 24.2, “Recommended Operating Conditions” on page 24-107.  
Added qualifying description to estimates of current and power consumption. For more  
information, see Section 24.5, “Current and Power Consumption Estimates” on page  
24-109.  
Changed the power consumption specification for the device with VDDiO at 3.3V, in  
SerDes-to-Cat-5 mode, FD, 1518-byte randmom data packet, 100% utilization; and  
with SCLK, SFT and regulator off. For more information, see Table 39, “VDDiO at 3.3 V,  
SerDes-Cat-5, SCLK Disabled,” on page 109.  
Changed the power consumption specification for the device with VDDiO at 3.3V, in  
SGMii-to-Cat-5 mode (1000 Mbps), FD, 1518-byte randmom data packet, 100%  
utilization; and with SCLK, SFT and regulator off. For more information, see Table 40,  
“VDDiO at 3.3 V, SGMii-Cat-5 (1000 Mbps), SCLK Disabled,” on page 110.  
(continues)  
135 of 138  
VMDS-10106 Revision 4.1  
December 2006  
138  
VSC8221  
Data Sheet  
Revision  
Number  
Date  
Comments  
(continued)  
Changed the power consumption specification for the device with VDDiO at 3.3V, in  
SGMii-to-Cat-5 mode (100 Mbps), FD, 1518-byte randmom data packet, 100%  
utilization; and with SCLK, SFT and regulator off. For more information, see Table 41,  
“VDDiO at 3.3 V, SGMii-Cat-5 (100 Mbps), SCLK Disabled,” on page 110.  
Changed the power consumption specification for the device with VDDiO at 3.3V, in  
SGMii-to-Cat-5 mode (10 Mbps), FD, 1518-byte randmom data packet, 100%  
utilization; and with SCLK, SFT and regulator off. For more information, see Table 42,  
“VDDiO at 3.3 V, SGMii-Cat-5 (10 Mbps), SCLK Disabled,” on page 111.  
Changed the power consumption specification for the device with VDDiO at 3.3V, in  
SerDes-to-Cat-5 mode, FD, 1518-byte randmom data packet, 100% utilization; and  
with SFT and regulator off, SCLK on. For more information, see Table 43, “VDDiO at  
3.3 V SerDes-Cat-5, SCLK Enabled,” on page 111.  
Changed the output high voltage specification for the digital pins when VDDiO = 3.3 V.  
Also changed the specification for the output low voltage. Also changed the  
specification for the input high voltage. Also changed the specification for the input low  
voltage. For more information, see Table 47, “Digital Pins Specifications (VDDiO =  
3.3 V),” on page 114.  
Changed the specification for random jitter (RJ) in the SerDes specifications table. For  
more information, see Table 52, “SerDes Specifications,” on page 117. Also changed  
deterministic jitter specification (DJ) in the same table.  
4.0  
(continued)  
May 02, 05  
Added specifications for the device reset timing. For more information, see Section  
28.7, “Reset Timing” on page 24-123.  
Added information about the moisture sensitivity of the device package. For more  
information, see Section 29.2, “Package Moisture Sensitivity” on page 25-124.  
Deleted temperature range information from the device ordering information.  
Added descriptive information and specifications for the device SerDes jitter. For more  
information, see Section 31.3, “SerDes Jitter” on page 27-126.  
Added descriptive information, specifications, illustrations and example cases related to  
the device's corruption of packets with odd preambles when operating in SGMii  
100BASE-TX mode. For more information, see Section 31.4, “SGMii 100BASE-TX  
Corruption of Packets with Odd Preambles” on page 27-127.  
Added descriptive information related to the device's corruption of packets with no  
ESDs when operating in SGMii 100BASE-TX mode. For more information, see Section  
31.5, “SGMii 100BASE-TX Corruption of Packets with no ESDs” on page 27-127.  
Added descriptive information and specifications related to the device's software reset  
timing. For more information, see Section 31.6, “Software Reset Time” on page 27-128.  
Added descriptive information related to the reduction of EMi. For more information,  
see Section 31.7, “Reducing EMi” on page 27-128.  
136 of 138  
138  
VMDS-10106 Revision 4.1  
December 2006  
VSC8221  
Data Sheet  
Revision  
Number  
Date  
Comments  
in the media converter application diagram, the RJ-45 speed was corrected from 10/  
100/1000BASE-T to 1000BASE-T.  
Throughout the datasheet, information was added regarding the 100BASE-FX  
mode. The following lists the main information:  
For information about twisted pair signals in 100BASE-FX mode, see Table 12:  
“Twisted Pair interface Signals”.  
For information about 100BASE-FX system schematics, see Figure 5: "System  
Schematic - 100Mbps Fiber Media implementation".  
For information about 100BASE-FX connections and initialization, see Section  
10.6: "100Mbps Fiber Support Over Copper Media interface" and Section 31.10:  
"100BASE-FX initialization Script".  
4.1  
December 06  
For information about 100BASE-FX current consumption, see Table 45: “VDDiO  
at 3.3V SGMii-100BASE-FX, SFP Mode Off”.  
in the listing of JTAG interface instruction codes, the register width given for the  
instructions EXTEST and SAMPLE/PRELOAD was corrected from 196 bits to  
72 bits.  
in the reset AC timing diagram, the MDiO signal pulse width was widened to be  
more accurate relative to the pulse width of the REFCLK signal. For more  
information about this specification, see Figure 30: "RESET AC Timing".  
in the reset AC timing specifications, TREADY signal, a condition was added that if  
EEPROM is present, an additional 100ms is required. For more information about  
reset AC timing, see Table 59: “RESET AC Timing Specification”.  
137 of 138  
138  
VMDS-10106 Revision 4.1  
December 2006  
VSC8221  
Data Sheet  
Microsemi Corporate Headquarters  
One Enterprise, Aliso Viejo, CA 92656 USA  
Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com  
www.microsemi.com  
© 2004–2006, 2018 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation.  
All other trademarks and service marks are the property of their respective owners.  
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any  
particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder  
and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or  
applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other  
testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters  
provided by Microsemi. it is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information  
provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely with the Buyer.  
Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other iP rights, whether with regard to such information itself or  
anything described by such information. information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes  
to the information in this document or to any products and services at any time without notice.  
About Microsemi  
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data  
center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASiCs;  
power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF  
solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions;  
Power-over-Ethernet iCs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has  
approximately 4,800 employees globally. Learn more at www.microsemi.com.  
138 of 138  
VMDS-10106 Revision 4.1  
138  
December 2006  

相关型号:

VSC8221XHH

Ethernet Transceiver, 1-Trnsvr, PBGA100,
VITESSE

VSC8221XHH

Single Port 10/100/1000BASE-T PHY with1.25 Gbps SerDes for SFPs/GBICs
MICROSEMI

VSC8222

Multi-rate SONET/SDH, Fibre Channel, and Gigabit Ethernet CDR
VITESSE

VSC8223

Multi-rate SONET/SDH, Fibre Channel, and Gigabit Ethernet CDR
VITESSE

VSC8223RV

ATM/SONET/SDH Clock Recovery Circuit, CMOS, PQFP48,
MICROSEMI

VSC8223XRV

ATM/SONET/SDH Clock Recovery Circuit, CMOS, PQFP48,
MICROSEMI

VSC8224

Quad Port 10/100/1000BASE-T and 1000BASE-X PHY with RGMII and RTBI MAC Interfaces
VITESSE

VSC8224HG

Ethernet Transceiver, CMOS, PBGA260, 19 X 19 MM, 1 MM PITCH, PLASTIC, HSBGA-260
MICROSEMI

VSC8224HG

Ethernet Transceiver, CMOS, PBGA260, 19 X 19 MM, PLASTIC, HSBGA-260
VITESSE

VSC8224XHG

Ethernet Transceiver, CMOS, PBGA260, 19 X 19 MM, LEAD FREE, PLASTIC, HSBGA-260
VITESSE

VSC8228

Dual Channel Multirate Signal Conditioner and Retimer
VITESSE

VSC8233

Telecom IC
VITESSE