WED9LC6816V1310BI [MICROSEMI]

Memory Circuit, SDRAM+SRAM, 4MX32, CMOS, PBGA153, 14 X 22 MM, MO-163, BGA-153;
WED9LC6816V1310BI
型号: WED9LC6816V1310BI
厂家: Microsemi    Microsemi
描述:

Memory Circuit, SDRAM+SRAM, 4MX32, CMOS, PBGA153, 14 X 22 MM, MO-163, BGA-153

动态存储器 静态存储器 内存集成电路
文件: 总26页 (文件大小:1482K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WED9LC6816V  
256Kx32 SSRAM/4Mx32 SDRAM – External Memory  
Solution for Texas Instruments TMS320C6000 DSP  
FEATURES  
DESCRIPTION  
 Clock speeds:  
The WED9LC6816V is a 3.3V, 256K x 32 Synchronous Pipeline  
SRAM and a 4Mx32 Synchronous DRAM array constructed with  
one 256K x 32 SBSRAM and two 4Mx16 SDRAM die mounted on  
a multilayer laminate substrate. The device is packaged in a 153  
lead, 14mm x 22mm, BGA.  
• SSRAM: 200, 166,150, and 133 MHz  
• SDRAMs: 125 and 100 MHz  
 DSP Memory Solution  
Texas Instruments TMS320C6201  
Texas Instruments TMS320C6701  
 Packaging:  
The WED9LC6816V provides a total memory solution for the  
Texas Instruments TMS320C6201 and the TMS320C6701 DSPs  
The Synchronous Pipeline SRAM is available with clock speeds  
of 200, 166,150 and 133 MHz, allowing the user to develop a fast  
external memory for the SSRAM interface port .  
• 153 pin BGA, JEDEC MO-163  
 3.3V Operating supply voltage  
The SDRAM is available in clock speeds of 125 and 100 MHz,  
allowing the user to develop a fast external memory for the SDRAM  
interface port.  
 Direct control interface to both the SSRAM and SDRAM  
ports on the “C6x”  
The WED9LC6816V is available in both commercial and industrial  
temperature ranges.  
 Common address and databus  
 65% space savings vs. monolithic solution  
 Reduced system inductance and capacitance  
This product is subject to change without notice.  
Figure 1 – PIN CONFIGURATION  
TOP VIEW  
PIN DESCRIPTION  
A0-17  
DQ0-31  
SSCK  
Address Bus  
Data Bus  
1
2
3
4
5
6
7
8
9
DQ19  
DQ18  
VCCQ  
DQ17  
DQ16  
VCCQ  
NC  
DQ23  
DQ22  
VCCQ  
DQ21  
DQ20  
VCCQ  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
NC  
A8  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
A2  
DQ24  
DQ25  
VCCQ  
DQ26  
DQ27  
VCCQ  
A4  
DQ28  
DQ29  
VCCQ  
DQ30  
DQ31  
VCCQ  
A5  
A
B
C
D
E
F
SSRAM Clock  
SDCE#  
SSADC#  
SSWE#  
SSOE#  
SDCK  
SSRAM Address Status Control  
SSRAM Write Enable  
SSRAM Output Enable  
SDRAM Clock  
SDWE# SDA10  
VSS  
VSS  
VSS  
VSS  
SDCK  
VSS  
SDRAS#  
SDCAS#  
SDWE#  
SDA10  
SDRAM Row Address Strobe  
SDRAM Column Address Strobe  
SDRAM Write Enable  
SDRAM Address 10/auto precharge  
SDRAS# SDCAS#  
G
H
J
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A1  
A3  
A10  
A6  
A7  
A9  
A0  
A11  
A12  
BWE0-3#  
SSRAM Byte Write Enables SDRAM  
SDQM 0-3  
A17  
NC/A18 NC/A19  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
A13  
A14  
K
L
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
BWE2# BWE3#  
BWE0# BWE1#  
A15  
A16  
SSCE#  
SDCE#  
VCC  
Chip Enable SSRAM Device  
Chip Enable SDRAM Device  
Power Supply pins  
VCCQ  
DQ12  
DQ13  
VCCQ  
DQ14  
DQ15  
VCCQ  
DQ11  
DQ10  
VCCQ  
DQ9  
DQ8  
VCCQ  
DQ4  
DQ5  
VCCQ  
DQ6  
DQ7  
VCCQ  
DQ0  
DQ1  
VCCQ  
DQ2  
DQ3  
M
N
P
R
T
VSS  
VSS  
VSS  
VSS  
SSCK  
VSS  
VCCQ  
VSS  
Data Bus Power Supply pins,  
Ground  
NC  
No Contact  
SSADC# SSWE#  
SSOE# SSCE#  
U
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
1
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
Figure 2 – BLOCK DIAGRAM  
A
0-17  
A
0
1
A0  
A
A1  
A2  
A3  
A4  
DQ1-8  
DQ0-7  
A5  
A6  
DQ9-16  
DQ8-15  
DQ16-23  
A7  
A8  
DQ17-24  
DQ25-32  
A9  
DQ24-31  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
SSWE#  
BWE#  
BWE  
BWE  
BWE  
BWE  
0
1
2
3
#
#
#
#
BW1  
BW2  
BW3  
BW4  
#
#
#
#
SSCE#  
SSOE#  
CE  
2
#
OE#  
SSADC#  
ADSC#  
CK#  
SSCK#  
DQ0-31  
A
A
A
A
A
A
A
A
A
A
A
A
0
1
2
3
4
5
6
7
8
DQ0-7  
DQ0-7  
9
DQ8-15 DQ8-15  
11  
SDA10  
10/AP  
A
12  
13  
BA  
BA  
0
A
1
LDQM#  
UDQM#  
CS#  
SDCE#  
SDRAS#  
SDCAS#  
SDWE#  
RAS#  
CAS#  
WE#  
SDCK#  
CK#  
A
A
A
A
A
A
A
A
A
A
A
A
0
1
2
3
4
5
6
7
8
DQ16-23  
DQ0-7  
9
DQ24-31  
DQ8-15  
11  
10/AP  
BA  
A
12  
13  
0
A
BA  
1
LDQM#  
UDQM#  
CS#  
RAS#  
CAS#  
WE#  
CK#  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
2
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
OUTPUT FUNCTIONAL DESCRIPTIONS  
Symbol  
Type  
Signal  
Polarity  
Function  
SSCK  
Input  
Pulse  
Positive Edge The system clock input. All of the SSRAM inputs are sampled on the rising edge of the clock.  
SSADC#  
SSOE#  
SSWE#  
When sampled at the positive rising edge of the clock, SSADC#, SSOE#, and SSWE# dene the operation  
to be executed by the SSRAM.  
Input  
Pulse  
Active Low  
SSCE#  
SDCK  
Input  
Input  
Input  
Pulse  
Pulse  
Pulse  
Active Low  
SSCE# disable or enable SSRAM device operation.  
Positive Edge The system clock input. All of the SDRAM inputs are sampled on the rising edge of the clock.  
SDCE#  
Active Low  
Active Low  
SDCE# disable or enable device operation by masking or enabling all inputs except SDCK and BWE0  
SDRAS#  
SDCAS#  
SDWE#  
When sampled at the positive rising edge of the clock, SDCAS#, SDRAS#, and SDWE# dene  
the operation to be executed by the SDRAM.  
Input  
Input  
Pulse  
Level  
Address bus for SSRAM and SDRAM  
A0 and A1 are the burst address inputs for the SSRAM  
During a Bank Active command cycle, A0-11, SDA10 denes the row address (RA0-10) when sampled at the  
rising clock edge.  
During a Read or Write command cycle, A0-7 denes the column address (CA0-7) when sampled at the  
rising clock edge. In addition to the row address, SDA10 is used to invoke autoprecharge operation at the  
end of the Burst Read or Write Cycle. If SDA10 is high, autoprecharge is selected and A12 and A13 dene  
the bank to be precharged. If SDA10 is low, autoprecharge is disabled.  
During a Precharge command cycle, SDA10 is used in conjunction with A12 and A13 to control which  
bank(s) to precharge. If SDA10 is high, all banks will be precharged regardless of the state of A12 and A13.  
If SDA10 is low, then A12 and A13 are used to dene which bank to precharge.  
A0-17,  
SDA10  
Input  
Output  
DQ0-31  
Level  
Pulse  
Data Input/Output are multiplexed on the same pins.  
BWE0-3# perform the byte write enable function for the SSRAM and DQM function for the SDRAM. BWE0#  
is associated with DQ0-7, BWE1# with DQ8-15, BWE2# with DQ16-23 and BWE3# with DQ24-31.  
BWE0-3#  
Input  
VCC, VSS  
VCCQ  
Supply  
Supply  
Power and ground for the input buffers and the core logic.  
Data power supply pins, VCC and VCCQ are internally tied together  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
3
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
ABSOLUTE MAXIMUM RATINGS  
RECOMMENDED DC OPERATING CONDITIONS  
(0°C tA 70°C, Commercial; -40°C tA 85°C, Industrial)  
Voltage on VCC Relative to VSS  
IN (DQx)  
-0.5V to +4.6V  
-0.5V to VCC +0.5V  
-55°C to +125°C  
+150°C  
V
Parameter  
Symbol  
VCC  
VIH  
Min  
3.135  
2.0  
Max  
3.6  
Units  
V
Storage Temperature (BGA)  
Junction Temperature  
Supply Voltage (1)  
Input High Voltage (1,2)  
Input Low Voltage (1,2)  
Input Leakage Current 0 VIN VCC  
Output Leakage (Output Disabled) 0 ≤  
VCC +0.3  
0.8  
V
Short Circuit Output Current  
100 mA  
VIL  
-0.3  
-10  
V
*Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device at these or any other  
conditions greater than those indicated in operational sections of this specications is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
ILI  
10  
μA  
μA  
ILO  
-10  
10  
VIN VCC  
SSRAM Output High (IOH = -4mA) (1)  
SSRAM Output Low (IOL = 8mA) (1)  
SDRAM Output High (IOH = -2mA)  
SDRAM Output Low (IOL = 2mA)  
VOH  
VOL  
VOH  
VOL  
2.4  
0.4  
V
V
V
V
2.4  
0.4  
NOTES:  
1. All voltages referenced to VSS (GND).  
2. Overshoot: VIH +6.0V for t tKC/2  
Underershoot: VIL -2.0V for t tKC/2  
DC ELECTRICAL CHARACTERISTICS  
(0°C tA 70°C, Commercial; -40°C tA 85°C, Industrial)  
Description  
Conditions  
Symbol  
Frequency  
133MHz  
150MHz  
166MHz  
200MHz  
133MHz  
150MHz  
166MHz  
200MHz  
83MHz  
Typ  
500  
500  
550  
600  
325  
350  
400  
450  
500  
500  
550  
20.0  
Max  
Units  
Power Supply Current Operating  
(1,2,3)  
SSRAM Active / DRAM Auto Refresh  
ICC1  
ICC2  
ICC3  
625  
650  
700  
800  
425  
450  
495  
585  
625  
650  
700  
40.0  
mA  
mA  
mA  
Power Supply Current Operating  
(1,2,3)  
SSRAM Active / DRAM Idle  
Power Supply Current Operating  
(1,2,3)  
SSRAM Active / SSRAM Idle  
100MHz  
125MHz  
CMOS Standby  
TTL Standby  
SSCE# and SDCE# VCC -0.2V, All other inputs at VSS +0.2 ≤  
VIN or VIN VCC -0.2V, CK frequency = 0  
ISB1  
ISB2  
ICC5  
mA  
mA  
mA  
SSCE# and SDCE# VIH min All other inputs at VIL max VIN  
or VIN VCC -0.2V, CK frequency = 0  
30.0  
250  
55.0  
300  
Auto Refresh  
NOTES:  
1.  
ICC (operating) is specied with no output current. ICC (operating) increases with faster cycle times and greater output loading.  
2. "Device idle" means device is deselected (CE = VIH) Clock is running at max frequency and Addresses are switching each cycle.  
3. Typical values are measured at 3.3V, 25°C. ICC (operating) is specied at specied frequency.  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
4
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
SSRAM AC CHARACTERISTICS  
(0°C tA 70°C, Commercial; -40°C tA 85°C, Industrial)  
200MHz  
Min  
166MHz  
Min  
150MHz  
Min  
133MHz  
Parameter  
Symbol  
tKHKH  
tKLKH  
tKHKL  
tKHQV  
tKHQX  
tKQLZ  
tKQHZ  
tOELQV  
tOELZ  
tOEHZ  
tS  
Max  
Max  
Max  
Min  
8
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Cycle Time  
5
6
7
Clock HIGH Time  
1.6  
1.6  
2.4  
2.4  
2.6  
2.6  
2.8  
2.8  
Clock LOW Time  
Clock to output valid  
2.5  
3.5  
3.8  
4.0  
Clock to output invalid  
1.5  
0
1.5  
0
1.5  
0
1.5  
0
Clock to output on Low-Z  
Clock to output in High-Z  
Output Enable to output valid  
Output Enable to output in Low-Z  
Output Enable to output in High-Z  
Address, Control, Data-in Setup Time to Clock  
Address, Control, Data-in Hold Time to Clock  
1.5  
3
1.5  
3.5  
3.5  
1.5  
3.8  
3.8  
1.5  
4.0  
4.0  
2.5  
0
0
0
0
3.0  
3.5  
3.5  
3.8  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
tH  
SSRAM OPERATION TRUTH TABLE  
Operation  
Address Used  
None  
SSCE#  
SSADC#  
SSWE#  
SSOE#  
DQ  
Deselected Cycle, Power Down  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
H
L
L
L
X
L
X
X
L
High-Z  
External  
External  
External  
Current  
Current  
Current  
Current  
Current  
Current  
D
Q
L
L
H
H
H
H
H
H
L
L
L
H
L
High-Z  
Q
X
X
H
H
X
H
H
H
H
H
H
H
H
L
High-Z  
Q
H
X
X
High-Z  
D
L
D
NOTE:  
1. X means “don’t care”, H means logic HIGH. L means logic LOW.  
2. All inputs except SSOE# must meet setup and hold times around the rising edge (LOW to HIGH) of SSCK.  
3. Suspending burst generates wait cycle  
4. For a write operation following a read operation, SSOE# must be HIGH before the input data required setup time plus High-Z time for SSOE# and staying HIGH through out the input data hold time.  
5. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.  
BGA CAPACITANCE  
Description  
Conditions  
Symbol  
CI  
Max  
8
Units  
pF  
Address Input Capacitance (1)  
Input/Output Capacitance (DQ) (1)  
Control Input Capacitance (1)  
Clock Input Capacitance (1)  
tA = 25°C; f = 1MHz  
tA = 25°C; f = 1MHz  
tA = 25°C; f = 1MHz  
tA = 25°C; f = 1MHz  
CO  
10  
8
pF  
CA  
pF  
CCK  
6
pF  
NOTE:  
1. This parameter is sampled.  
SSRAM PARTIAL TRUTH TABLE  
Function  
SSWE#  
BWE0#  
BWE1#  
BWE2#  
BWE3#  
READ  
H
L
L
X
L
L
X
H
L
X
H
L
X
H
L
WRITE one Byte (DQ0-7)  
WRITE all Bytes  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
5
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
Figure 3 – SSRAM READ TIMING  
tKHKL tKLKH  
tKHKH  
SSCK  
tS  
tH  
SSADC#  
SSCE#  
tS  
tS  
tH  
A1  
A5  
A2  
A3  
A4  
ADDR  
tH  
SSOE#  
tOEHZ  
tOELQV  
SSWE#  
DQ  
tKHQX  
tKQLZ  
tKHQV  
Q(A2)  
Q(A1)  
Q(A3)  
Q(A4)  
Q(A5)  
Figure 4 – SSRAM WRITE TIMING  
tKHKH  
tKHKL tKLKH  
SSCK  
tS  
tH  
SSADC#  
tH  
SSCE#  
tH  
tS  
A4  
A1  
A2  
A3  
A5  
ADDR  
SSOE#  
SSWE#  
tH  
tOEHZ  
Must be HIGH  
KHGWX  
tS  
tH  
tH  
tS  
D(A1)  
D(A2)  
D(A3)  
D(A5)  
D(A4)  
DQ  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
6
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
SDRAM AC CHARACTERISTICS  
(0°C tA 70°C, Commercial; -40°C tA 85°C, Industrial)  
Parameter  
Symbol  
125MHz  
100MHz  
83MHz  
Units  
Min  
8
Max  
1000  
1000  
6
Min  
10  
Max  
1000  
1000  
7
Min  
12  
Max  
1000  
1000  
8
Clock Cycle Time (1)  
CL = 3  
CL = 2  
tCC  
tCC  
tSAC  
tOH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CK  
CK  
CK  
CK  
ea  
10  
12  
15  
Clock to valid Output delay (1,2)  
Output Data Hold Time (2)  
Clock HIGH Pulse Width (3)  
Clock LOW Pulse Width (3)  
Input Setup Time (3)  
3
3
3
2
1
2
3
3
3
2
1
2
3
3
3
2
1
2
tCH  
tCL  
tSS  
Input Hold Time (3)  
tSH  
CK to Output Low-Z (2)  
tSLZ  
tSHZ  
tRRD  
tRCD  
tRP  
CK to Output High-Z  
7
7
8
Row Active to Row Active Delay (4)  
RAS\ to CAS\ Delay (4)  
20  
20  
20  
50  
70  
70  
1
20  
20  
20  
50  
80  
80  
1
24  
24  
24  
60  
90  
90  
1
Row Precharge Time (4)  
Row Active Time (4)  
tRAS  
tRC  
10,000  
10,000  
10,000  
Row Cycle Time - Operation (4)  
Row Cycle Time - Auto Refresh (4,8)  
tRFC  
tCDL  
tRDL  
tBDL  
tCCD  
Last Data in to New Column Address Delay (5)  
Last Data in to Row Precharge (5)  
1
1
1
Last Data in to Burst Stop (5)  
1
1
1
Column Address to Column Address Delay (6)  
Number of Valid Output Data (7)  
1.5  
2
1.5  
2
1.5  
2
1
2
1
NOTES:  
1. Parameters depend on programmed CAS# latency.  
2. If clock rise time is longer than 1ns (tRISE/2 -0.5)ns should be added to the parameter.  
3. Assumed input rise and fall time = 1ns. If trise of tfall are longer than 1ns. [(tRISE = tFALL)/2] - 1ns should be added to the parameter.  
4. The minimum number of clock cycles required is detemined by dividing the minimum time required by the clock cycle time and then rounding up to the next higher integer.  
5. Minimum delay is required to complete write.  
6. All devices allow every cycle column address changes.  
7. In case of row precharge interrupt, auto precharge and read burst stop.  
8. A new command may be given tRFC after self-refresh exit.  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
7
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
CLOCK FREQUENCY AND LATENCY PARAMETERS – 125MHz SDRAM (Unit = number of clock)  
CAS  
Latency  
tRC  
70ns  
tRAS  
50ns  
tRP  
20ns  
tRRD  
20ns  
tRCD  
20ns  
tCCD  
10ns  
tCDL  
10ns  
tRDL  
10ns  
Frequency  
125MHz (8.0ns)  
100MHz (10.0ns)  
83MHz (12.0ns)  
3
3
2
9
7
6
6
5
4
3
2
2
2
2
2
3
2
2
1
1
1
1
1
1
1
1
1
CLOCK FREQUENCY AND LATENCY PARAMETERS – 100MHz SDRAM (Unit = number of clock)  
CAS  
Latency  
tRC  
70ns  
tRAS  
50ns  
tRP  
20ns  
tRRD  
20ns  
tRCD  
20ns  
tCCD  
10ns  
tCDL  
10ns  
tRDL  
10ns  
Frequency  
100MHz (10.0ns)  
83MHz (12.0ns)  
3
2
7
6
5
5
2
2
2
2
2
2
1
1
1
1
1
1
REFRESH CYCLE PARAMETERS  
-10  
-12  
Parameter  
Symbol  
tREF  
Units  
Min  
Max  
Min  
Max  
Refresh Period (1,2)  
64  
64  
ms  
NOTES:  
1. 4096 cycles  
2. Any time that the Refresh Period has been exceeded, a minimum of two Auto (CBR) Refresh commands must be given to "wake-up" the device.  
SDRAM COMMAND TRUTH TABLE  
Function  
SDCE#  
SDRAS#  
SDCAS#  
SDWE#  
BWE#  
A12, A13  
SDA10 A11-0  
Notes  
Mode Register Set  
Auto Refresh (CBR)  
L
L
L
L
L
L
L
L
L
L
L
H
X
X
L
L
L
L
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
L
OP CODE  
X
BA  
X
X
L
Single Bank  
L
H
H
H
L
2
Precharge  
Precharge all Banks  
L
L
H
Bank Activate  
Write  
L
H
L
BA  
BA  
BA  
BA  
BA  
X
Row Address  
2
2
2
2
2
3
H
H
H
H
H
H
X
X
X
L
H
L
Write with Auto Precharge  
Read  
L
L
L
L
Read with Auto Precharge  
Burst Termination  
No Operation  
L
H
L
H
X
X
X
X
X
H
H
X
X
X
H
X
X
X
X
Device Deselect  
X
Data Write/Output Disable  
Data Mask/Output Disable  
NOTES:  
X
4
4
H
X
1. All of the SDRAM operations are dened by states of SDCE#, SDWE#, SDRAS#, SDCAS#, and BWE 0-3 at the positive rising edge of the clock.  
2. Bank Select (BA), A12 (BA0) and A13 (BA1) select between different banks.  
3. During a Burst Write cycle there is a zero clock delay, for a Burst Read cycle the delay is equal to the CAS latency.  
4. The BWE# has two functions for the data DQ Read and Write operations. During a Read cycle, when BWE# goes high at a clock timing the data outputs are disabled and become high impedance after a two  
clock delay. BWE# also provides a data mask function for Write cycles. When it activates, the Write operation at the clock is prohibited (zero clock latency).  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
8
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
MODE REGISTER SET TABLE  
A11 A10  
A9  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
Address Bus  
Mode Register (Mx)  
Reserved* WB Op Mode  
CAS Latency BT  
Burst Length  
*Should program  
M11, M10 = "0, 0"  
to ensure compatibility  
with future devices.  
Burst Length  
M2 M1 M0  
M3 = 0  
M3 = 1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
1
2
2
4
4
8
8
Reserved  
Reserved  
Reserved  
Full Page  
Reserved  
Reserved  
Reserved  
Reserved  
Burst Type  
M3  
0
Sequential  
Interleaved  
1
CAS Latency  
M6 M5 M4  
Reserved  
Reserved  
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
3
Reserved  
Reserved  
Reserved  
Reserved  
M8  
0
M7  
0
M6-M0  
Defined  
-
Operating Mode  
Standard Operation  
-
-
All other states reserved  
Write Burst Mode  
M9  
0
Programmed Burst Length  
Single Location Access  
1
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
9
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
SDRAM CURRENT STATE TRUTH TABLE  
Current  
State  
Command  
Action  
Notes  
SDCE#  
SDRAS# SDCAS#  
SDWE#  
A12 & A13  
(BA)  
A11-A0  
Description  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
OP Code  
Mode Register Set  
Auto or Self Refresh  
Precharge  
Set the Mode Register  
Start Auto  
1
1
Idle  
Row Active  
Read  
X
X
X
L
H
H
L
X
No Operation  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write w/o Precharge  
Read w/o Precharge  
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
Activate the specied bank and row  
ILLEGAL  
H
H
H
H
X
L
Column  
2
1
1
L
H
L
Column  
ILLEGAL  
H
H
X
L
X
X
X
No Operation  
H
X
L
X
No Operation  
X
No Operation  
OP Code  
ILLEGAL  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
Precharge  
3
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
1
H
H
H
H
X
L
Column  
Start Write; Determine if Auto Precharge  
Start Read; Determine if Auto Precharge  
No Operation  
4,5  
4,5  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
H
X
L
X
No Operation  
X
No Operation  
OP Code  
ILLEGAL  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
Terminate Burst; Start the Precharge  
ILLEGAL  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
2
H
H
H
H
X
L
Column  
Terminate Burst; Start the Write cycle  
Terminate Burst; Start a new Read cycle  
Terminate the Burst  
Continue the Burst  
Continue the Burst  
ILLEGAL  
5,6  
5,6  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
H
X
L
X
X
OP Code  
Write  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
Terminate Burst; Start the Precharge  
ILLEGAL  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
2
H
H
H
H
X
Column  
Terminate Burst; Start a new Write cycle  
Terminate Burst; Start the Read cycle  
Terminate the Burst  
Continue the Burst  
Continue the Burst  
5,6  
5,6  
L
H
L
Column  
Read  
H
H
X
X
X
X
Burst Termination  
No Operation  
Device Deselect  
H
X
X
X
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
10  
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
SDRAM CURRENT STATE TRUTH TABLE (cont'd)  
Current  
State  
Command  
Action  
Notes  
SDCE#  
SDRAS# SDCAS#  
SDWE#  
A12 & A13  
(BA)  
A11-A0  
Description  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
OP Code  
Mode Register Set  
Auto or Self Refresh  
Precharge  
ILLEGAL  
Read with Auto  
Precharge  
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
2
2
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
ILLEGAL  
H
H
H
H
X
L
Column  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
ILLEGAL  
H
X
L
X
Continue the Burst  
Continue the Burst  
ILLEGAL  
X
OP Code  
Write with Auto  
Precharge  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
2
2
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
H
H
H
H
X
L
Column  
ILLEGAL  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
ILLEGAL  
H
X
L
X
Continue the Burst  
Continue the Burst  
ILLEGAL  
X
OP Code  
Precharging  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
No Operation; Bank(s) idle after tRP  
ILLEGAL  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write w/o Precharge  
Read w/o Precharge  
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
2
2
H
H
H
H
X
L
Column  
ILLEGAL  
L
H
L
Column  
ILLEGAL  
20  
H
H
X
L
X
X
X
No Operation; Bank(s) idle after tRP  
No Operation; Bank(s) idle after tRP  
No Operation; Bank(s) idle after tRP  
ILLEGAL  
H
X
L
X
X
OP Code  
Row Activating  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
2
2
2
2
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
H
H
H
H
X
Column  
ILLEGAL  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
X
X
X
Burst Termination  
No Operation  
Device Deselect  
No Operation; Row active after tRCD  
No Operation; Row active after tRCD  
No Operation; Row active after tRCD  
H
X
X
X
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
11  
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
SDRAM Current State Truth Table (cont'd)  
Current  
State  
Command  
Action  
Notes  
SDCE#  
SDRAS# SDCAS#  
SDWE#  
A12 & A13  
(BA)  
A11-A0  
Description  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
OP Code  
Mode Register Set  
Auto orSelf Refresh  
Precharge  
ILLEGAL  
Write Recovering  
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
2
2
6
6
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
Start Write; Determine if Auto Precharge  
Start Read; Determine if Auto Precharge  
No Operation; Row active after tDPL  
No Operation; Row active after tDPL  
No Operation; Row active after tDPL  
ILLEGAL  
H
H
H
H
X
L
Column  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto orSelf Refresh  
Precharge  
H
X
L
X
X
OP Code  
Write Recovering  
with Auto  
Precharge  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
2
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
2
H
H
H
H
X
L
Column  
ILLEGAL  
2,6  
2,6  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
No Operation; Precharge after tDPL  
No Operation; Precharge after tDPL  
No Operation; Precharge after tDPL  
ILLEGAL  
H
X
L
X
X
OP Code  
Refreshing  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
H
H
H
H
X
L
Column  
ILLEGAL  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
No Operation; Idle after tRC  
No Operation; Idle after tRC  
No Operation; Idle after tRC  
ILLEGAL  
H
X
L
X
X
OP Code  
Mode Register  
Accessing  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
H
H
H
H
X
Column  
ILLEGAL  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
X
X
X
Burst Termination  
No Operation  
Device Deselect  
ILLEGAL  
H
X
X
No Operation; Idle after two clock cycles  
No Operation; Idle after two clock cycles  
X
NOTES:  
1. Both Banks must be idle otherwise it is an illegal action.  
2. The Current State refers only refers to one of the banks, if BA selects this bank then the action is illegal. If BA selects the bank not being referenced by the Current State then the action may be legal  
depending on the state of that bank.  
3. The minimum and maximum Active time (tRAS) must be satised.  
4. The RAS# to CAS# Delay (tRCD) must occur before the command is given.  
5. Address SDA10 is used to determine if the Auto Precharge function is activated.  
6. The command must satisfy any bus contention, bus turn around, and/or write recovery requirements.  
The command is illegal if the minimum bank to bank delay time (tRRD) is not satised.  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
12  
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
Figure 5 – SDRAM SINGLE BIT READ-WRITE-READ CYCLE (SAME PAGE) @ CAS LATENCY = 3,  
BURST LENGTH = 1  
6
0
1
2
3
4
5
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCK  
tCH  
tCL  
tCC  
tRCD  
tRAS  
SDCE#  
tSS  
tSH  
tRP  
tRCD  
tSH  
tSS  
SDRAS#  
tCCD  
tSS  
tSH  
SDCAS#  
ADDR  
tSS  
tSH  
tSH  
tSS  
Cb  
BS  
Cc  
Ra  
Ca  
Rb  
BA0, 1  
[A12,A13]  
BS  
Rb  
BS  
Ra  
BS  
BS  
BS  
SDA10  
tRAC  
tSS  
tSS  
tSS  
tSH  
tSH  
tSH  
tSAC  
Qa  
Db  
Qc  
DQ  
tSLZ  
tOH  
SDWE#  
BWE#  
Read  
Read  
Write  
Row Active  
Row Active  
DON’T CARE  
Precharge  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
13  
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
Figure 6 – SDRAM POWER UP SEQUENCE  
6
0
1
2
3
4
5
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCK  
SDCE#  
tRFC  
tRFC  
tRP  
SDRAS#  
SDCAS#  
ADDR  
Key  
RAa  
BA0,1  
[A12,A13]  
RAa  
SDA10  
DQ  
HIGH-Z  
SDWE#  
BWE#  
High level is necessary  
Auto Refresh  
Mode Register Set  
Precharge  
(All Banks)  
Auto Refresh  
Row Active  
(A-Bank)  
DON’T CARE  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
14  
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
Figure 7 – SDRAM READ & WRITE CYCLE AT SAME BANK @ BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCK  
SDCE#  
Note 1  
tRC  
tRCD  
SDRAS#  
SDCAS#  
ADDR  
Ra  
Ca0  
Rb  
Cb0  
BA0, 1  
[A12,A13]  
Ra  
Rb  
SDA10  
tSHZ Note 4  
tRAC  
Note 3  
tRDL  
Db0 Db1 Db2 Db3  
tOH  
tSAC  
Qa0 Qa1 Qa2 Qa3  
CL=2  
DQ  
tSHZ Note 4  
tRAC  
Note 3  
tRDL  
tOH  
tSAC  
Qa3  
Db0 Db1 Db2 Db3  
Qa0 Qa1 Qa2  
CL=3  
SDWE#  
BWE#  
Row Active  
(A-Bank)  
Write  
(A-Bank)  
Read  
(A-Bank)  
Row Active  
(A-Bank)  
Precharge  
(A-Bank)  
Precharge  
(A-Bank)  
DON’T CARE  
NOTES:  
1. Minimum row cycle times are required to complete internal DRAM operation.  
2. Row precharge can interrupt burst on any cycle. (CAS Latency - 1) number of valid output data is available after Row precharge. Last valid output will be Hi-Z (tSHZ  
)
after the clock.  
3. Access time from Row active command. tCC *(tRCD + CAS Latency - 1) + tSAC.  
4. Output will be Hi-Z after the end of burst. (1, 2, 4, 8 & Full page bit burst)  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
15  
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
Figure 8 – SDRAM PAGE READ & WRITE CYCLE AT SAME BANK @ BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCK  
SDCE#  
tRCD  
SDRAS#  
Note 2  
SDCAS#  
ADDR  
Ra  
Ca0  
Cb0  
Cc0  
Cd0  
BA0, 1  
[A12,A13]  
Ra  
SDA10  
tRDL  
Dd1  
Qa0  
Qa1  
Qb1  
Qb2  
Dc0  
Dc0  
Dc1  
tCDL  
Dc1  
Qb0  
Dd0  
CL=2  
DQ  
Qa3  
Dd0 Dd1  
Qa0 Qa1 Qa2  
CL=3  
SDWE#  
BWE#  
Note 3  
Note 1  
Read  
(A-Bank)  
Read  
(A-Bank)  
Write  
(A-Bank)  
Write  
(A-Bank)  
Row Active  
(A-Bank)  
Precharge  
(A-Bank)  
DON’T CARE  
NOTES:  
1. To write data before burst read ends. BWE# should be asserted three cycle prior to write command to avoid bus contention.  
2. Row precharge will interrupt writing. Last data input, tRDL before Row precharge will be written.  
3. BWE# should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input data after Row precharge cycle will be  
masked internally.  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
16  
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
Figure 9 – SDRAM PAGE READ CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCK  
Note 1  
SDCE#  
SDRAS#  
SDCAS#  
ADDR  
Note 2  
RAa  
CAa RBb  
CBb  
CAc  
CAe  
CBd  
BA0, 1  
[A12,A13]  
RAa  
RBb  
SDA10  
QAa0 QAa1 QAa2  
QAa0 QAa1  
QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1  
QAa3  
QAa2  
CL=2  
DQ  
QAa3 QBb0 QBb1 QBb2 Qbb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1  
CL=3  
SDWE#  
BWE#  
Read  
Read  
(A-Bank)  
Read  
(B-Bank)  
Read  
(A-Bank)  
Row Active  
(A-Bank)  
Row Active  
Precharge  
(A-Bank)  
(B-Bank)  
(B-Bank)  
DON’T CARE  
Read  
(A-Bank)  
NOTES:  
1. SDCE# can be “don’t care” when SDRAS#, SDCAS# and SDWE# are high at the clock going high edge.  
2. To interrupt a burst read by Row precharge, both the read and the precharge banks must be the same.  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
17  
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
Figure 10 – SDRAM PAGE WRITE CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCK  
SDCE#  
SDRAS#  
Note 2  
SDCAS#  
ADDR  
RAa  
CAa RBb  
CBb  
CAc  
CBb  
BA0, 1  
[A12,A13]  
SDA10  
DQ  
RAa  
RBb  
tCDL  
tRDL  
DBd1  
DAa3  
DBb1 DBb2 DBb3 DAc0 DAc1  
DAa0 DAa1 DAa2  
DBb0  
DBd0  
SDWE#  
BWE#  
Note 1  
Row Active  
(A-Bank)  
Write  
(A-Bank)  
Row Active  
(A-Bank)  
Write  
(B-Bank)  
Precharge  
(Both Banks)  
Write  
(B-Bank)  
Write  
(A-Bank)  
DON’T CARE  
NOTES:  
1. To interrupt burst write by Row precharge, BWE# should be asserted to mask invalid input data.  
2. To interrupt a burst read by Row precharge, both the read and the precharge banks must be the same.  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
18  
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
Figure 11 – SDRAM READ & WRITE CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCK  
SDCE#  
SDRAS#  
SDCAS#  
ADDR  
RAa  
CAa  
RBb  
CBb  
RAc  
CAc  
BA0, 1  
[A12,A13]  
RAa  
RBb  
RAc  
SDA10  
tCDL  
Note 1  
QAa0  
DBb0 DBb1  
DBb0 DBb1  
DBb3  
DBb3  
QAc0 QAc1 QAc2  
QAc0 QAc1  
QAa1 QAa2  
QAa0 QAa1  
DBb2  
DBb2  
QAa3  
QAa2  
CL=2  
DQ  
CL=3  
QAa3  
SDWE#  
BWE#  
Write  
(B-Bank)  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Read  
(A-Bank)  
DON’T CARE  
Row Active  
(A-Bank)  
Row Active  
(A-Bank)  
NOTES:  
1. CDL should be met to complete write.  
t
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
19  
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
Figure 12 – SDRAM READ & WRITE CYCLE WITH AUTO PRECHARGE @ BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE#  
SDRAS#  
SDCAS#  
ADDR  
Ra  
Rb  
Ca  
Cb  
BA0, 1  
[A12,A13]  
Ra  
Rb  
SDA10  
Qa0  
Db0  
Db0  
Db1 Db2  
Db3  
Qa1 Qa2 Qa3  
CL=2  
DQ  
CL=3  
Qa3  
Db1  
Db3  
Qa0 Qa1  
Db2  
Qa2  
SDWE#  
BWE#  
Row Active  
(A-Bank)  
Auto Precharge  
Start Point  
(B-Bank)  
Write with  
Auto Precharge  
(B-Bank)  
Read with  
Auto Precharge  
(A-Bank)  
Auto Precharge  
Start Point  
(A-Bank)  
Row Active  
(B-Bank)  
DON’T CARE  
NOTES:  
1. CDL should be controlled to meet minimum tRAS before internal precharge start.  
(In the case of Burst Length = 1 & 2 and BRSW mode)  
t
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
20  
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
Figure 13 – SDRAM READ INTERRUPTED BY PRECHARGE COMMAND & READ BURST STOP @  
BURST LENGTH = FULL PAGE  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCK  
SDCE#  
SDRAS#  
SDCAS#  
ADDR  
RAa  
CAa  
CAb  
BA0, 1  
[A12,A13]  
RAa  
SDA10  
CL=2  
Note 2  
1
1
QAb2 QAb3 QAb4 QAb5  
QAb0  
QAb1  
QAa0 QAa1  
QAa3 QAa4  
QAa2  
DQ  
2
2
QAa0 QAa1 QAa2 QAa3 QAa4  
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5  
CL=3  
SDWE#  
BWE#  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Read  
(A-Bank)  
Row Active  
(A-Bank)  
Burst Stop  
DON’T CARE  
NOTES:  
1. At full page mode, burst is end at the end of burst. So auto precharge is possible.  
2. About the valid DQs after burst stop, it is the same as the case of SDRAS# interrupt. Both cases are illustrated in the above timing diagram. See the label 1, 2 on  
each of them. But at burst write, burst stop and SDRAS# interrupt should be compared carefully. Refer to the timing diagram of “Full page write burst stop cycle”.  
3. Burst stop is valid at every burst length.  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
21  
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
Figure 14 – SDRAM WRITE INTERRUPTED BY PRECHARGE COMMAND & WRITE BURST STOP @  
BURST LENGTH = FULL PAGE  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCK  
SDCE#  
SDRAS#  
SDCAS#  
ADDR  
RAa  
CAa  
CAb  
BA0, 1  
[A12,A13]  
RAa  
SDA10  
DQ  
tBDL  
tRDL  
Note 2  
DAb0 DAb1 DAb2 DAb3 DAB4 DAb5  
DAa0 DAa1 DAa2 DAa3 DAa4  
SDWE#  
BWE#  
Write  
(A-Bank)  
Row Active  
(A-Bank)  
Burst Stop  
Precharge  
(A-Bank)  
Write  
(A-Bank)  
DON’T CARE  
NOTES:  
1. At full page mode, burst is end at the end of burst. So auto precharge is possible.  
2. Data-in at the cycle of interrupted by precharge can not be written into the corresponding memory cell. It is dened by AC parameter of tRDL. BWE# at write interrupt by  
precharge command is needed to prevent invalid write.  
BWE# should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input data after Row recharge cycle will be masked  
internally.  
3. Burst stop is valid at every burst length.  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
22  
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
Figure 15 – SDRAM BURST READ SINGLE BIT WRITE CYCLE @ BURST LENGTH = 2  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCK  
SDCE#  
SDRAS#  
SDCAS#  
ADDR  
RAa  
CAa  
RBb CAb  
RAc  
CBc  
CAd  
BA0, 1  
[A12,A13]  
RAa  
RBb  
RAc  
SDA10  
DAa0  
DAa0  
QAb0  
DBc0  
DBc0  
QAd1  
QAb1  
QAd0  
CL=2  
DQ  
CL=3  
QAd0 QAd1  
QAa1 QAb1  
SDWE#  
BWE#  
Row Active  
(A-Bank)  
Precharge  
(Both Banks)  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Write with  
Auto Precharge  
(B-Bank)  
Row Active  
(B-Bank)  
Read with  
Write  
Auto Precharge  
(A-Bank)  
(A-Bank)  
DON’T CARE  
NOTES:  
1. BRSW modes enabled by setting A9 “High” at MRS (Mode Register Set).  
At the BRSW Mode, the burst length at Write is xed to “1” regardless of programmed burst length.  
2. When BRSW write command with auto precharge is executed, keep it in mind that tRAS should not be violated. Auto precharge is executed at the burst-end cycle, so in  
the case of BRSW write command, the next cycle starts the precharge.  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
23  
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
Figure 16 –  
SDRAM MODE REGISTER SET CYCLE  
SDRAM AUTO REFRESH CYCLE  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
9
10  
SDCK  
HIGH  
SDCE#  
Note 2  
tRFC  
SDRAS#  
Note 1  
Note 3  
SDCAS#  
ADDR  
Key  
Ra  
DQ  
HI-Z  
HI-Z  
SDWE#  
BWE#  
MRS  
New  
Command  
Auto Refresh  
New Command  
DON'T CARE  
*Both banks precharge should be completed before Mode Register Set cycle and Auto refresh cycle.  
NOTES:  
MODE REGISTER SET CYCLE  
1. SDCE#, SDRAS#, SDCAS# & SDWE# activation at the same clock cycle with address key will set internal mode register.  
2. Minimum 2 clock cycles should be met before new SDRAS# activation.  
3. Please refer to Mode Register Set Table.  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
24  
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
PACKAGE DESCRIPTION: 153 LEAD BGA (17 X 9 BALL ARRAY) JEDEC MP-163  
153x Ø 0.762 (0.030) NOM  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
0.61 (0.024)  
NOM  
1.27 (0.050) TYP  
10.16 (0.400) NOM  
14.1 (0.555) MAX  
1.97 (0.078)  
MAX  
NOTE:  
Ball attach pad for above BGA package is 480 microns in diameter. Pad is solder mask dened.  
ALL LINEAR DIMENSIONS ARE MILLIMETERS AND PARENTHETICALLY IN INCHES  
Ordering Information  
Commercial (0°C TA 70°C)  
Industrial (-40°C TA 85°C)  
Part Number  
SSRAM Access  
200MHz  
SDRAM Access  
Part Number  
SSRAM Access  
200MHz  
SDRAM Access  
WED9LC6816V2012BC  
WED9LC6816V2010BC  
WED9LC6816V1612BC  
WED9LC6816V1610BC  
WED9LC6816V1512BC  
WED9LC6816V1510BC  
WED9LC6816V1312BC  
WED9LC6816V1310BC  
125MHz  
100MHz  
125MHz  
100MHz  
125MHz  
100MHz  
125MHz  
100MHz  
WED9LC6816V2012BI  
WED9LC6816V2010BI  
WED9LC6816V1612BI  
WED9LC6816V1610BI  
WED9LC6816V1512BI  
WED9LC6816V1510BI  
WED9LC6816V1312BI  
WED9LC6816V1310BI  
125MHz  
100MHz  
125MHz  
100MHz  
125MHz  
100MHz  
125MHz  
100MHz  
200MHz  
200MHz  
166MHz  
166MHz  
166MHz  
166MHz  
150MHz  
150MHz  
150MHz  
150MHz  
133MHz  
133MHz  
133MHz  
133MHz  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
25  
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  
WED9LC6816V  
Document Title  
256Kx32 SSRAM/4Mx32 SDRAM – External Memory Solution for Texas Instruments TMS320C6000 DSP  
Revision History  
Rev #  
History  
Release Date Status  
Rev 2  
Changes (Pg. 1, 26)  
July 2010  
FINAL  
2.1 Corrected pinout – Row C missing - added, B4 - VSS, B5 - SDCE#  
2.2 Corrected MO drawing  
Microsemi Corporation reserves the right to change products or specications without notice.  
July 2010 © 2010 Microsemi Corporation. All rights reserved.  
Rev. 2  
26  
Microsemi Corporation • (602) 437-1520 • www.whiteedc.com  

相关型号:

WED9LC6816V1312BC

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1312BI

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1510BC

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1510BI

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1512BC

Memory Circuit, SDRAM+SRAM, 4MX32, CMOS, PBGA153, 14 X 22 MM, MO-163, BGA-153
MICROSEMI

WED9LC6816V1512BC

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1512BI

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1610BC

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1610BI

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1612BC

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1612BI

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V2010BC

Memory Circuit, SDRAM+SRAM, 4MX32, CMOS, PBGA153, 14 X 22 MM, MO-163, BGA-153
MICROSEMI