ZL50074GDC [MICROSEMI]

Digital Time Switch, PBGA484, 23 X 23 MM, 1 MM PITCH, PLASTIC, BGA-484;
ZL50074GDC
型号: ZL50074GDC
厂家: Microsemi    Microsemi
描述:

Digital Time Switch, PBGA484, 23 X 23 MM, 1 MM PITCH, PLASTIC, BGA-484

电信 电信集成电路
文件: 总55页 (文件大小:827K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZL50074  
32 K x 32 K Channel TDM Switch  
with 128 Input and 128 Output Streams  
Data Sheet  
January 2004  
Ordering Information  
Features  
32,768 channel x 32,768 channel non-blocking  
digital TDM switch at 65.536 Mbps, 32.768 Mbps  
or 16.384 Mbps  
ZL50074GDC 484 Ball LBGA  
16,384 channel x 16,384 channel non-blocking  
digital TDM switch at 8.192 Mbps  
-40°C to +85°C  
128 inputs and 128 outputs at 16 Mbps or 8 Mbps  
64 inputs and 64 outputs at 32 Mbps  
32 inputs and 32 outputs at 65 Mbps  
ST-BUS or GCI-Bus modes  
IEEE 1149.1 (JTAG) test port  
3.3 V I/O with 5 V tolerant inputs; 1.8 V core  
Applications  
Per-stream bit delay on TDM inputs  
Per-stream bit advancement on TDM outputs  
Large Switching Platforms  
Central Office Switches  
Per-channel constant or variable throughput  
delay for frame integrity and low latency  
applications  
Wireless Base Stations and Controllers  
Multi-service Access Platforms  
Digital Loop Carriers  
Per-channel high impedance output control  
Per-channel force-high output control  
Per-channel message mode  
Time Division Multiplexers  
Media Gateways  
Connection Memory block programming  
Control interface compatible with Intel and  
Motorola Selectable 32 bit and 16 bit  
non-multiplexed buses  
VDD_CORE  
VDD_IO  
VSS  
ODE  
PWR  
STiA0  
STiB0  
STiC0  
STiD0  
:
SToA0  
SToB0  
SToC0  
SToD0  
Data Memory  
P/S  
Converter  
S/P  
Converter  
:
:
:
STiA31  
STiB31  
STiC31  
STiD31  
SToA31  
SToB31  
Connection Memory  
SToC31  
SToD31  
Input  
Timing  
Output  
Timing  
FPi2-0  
CKi2-0  
CK_SEL1-0  
FPo3-0  
Timing  
Test Access  
Port  
Microprocessor Interface  
and Control Registers  
CKo3-0  
Figure 1 - ZL50074 Functional Block Diagram  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2004, Zarlink Semiconductor Inc. All Rights Reserved.  
ZL50074  
Data Sheet  
Description  
The ZL50074 is a 32K x 32K channel non-blocking Time Division Multiplex (TDM) switch. The device can switch  
64 kbps or Nx64 kbps TDM channels from any input stream to any output stream.  
All TDM input and output streams operate at the same rate, either 65 Mbps, 32 Mbps, 16 Mbps or 8 Mbps,  
programmed by the Global Rate Control Register. In 65 Mbps mode, only STiA and SToA streams are used,  
resulting in 32 input and 32 output streams. In 32 Mbps mode, both STiA, SToA, STiB and SToB streams are  
available, resulting in 64 input and 64 output streams. In 16 Mbps or 8 Mbps mode, STiA, SToA, STiB, SToB, STiC,  
SToC, STiD and SToD streams are available, resulting in 128 input and 128 output streams.  
The ZL50074 uses a master clock (CKi0) and frame pulse (FPi0) to define the input frame boundary and timing. An  
Analog Phase Lock Loop (APLL) is used to generate the internal system clock. The ZL50074 has the option to  
clock the input and output TDM data streams with either an internal APLL derived clock or directly using the CKi0  
master reference.  
The ZL50074 has a variety of user configurable options designed to provide flexibility when data streams are  
connected to multiple TDM components or circuits. These include:  
Two additional programmable reference inputs, CKi2 - 1 and FPi2 - 1, which can be used to provide  
alternative sources for input and output stream timing  
Variable input bit delay and output advancement, to accommodate delays and frame offsets of streams  
connected through different data paths  
Four timing outputs, CKo3 - 0 and FPo3 - 0, which can be configured independently to provide a variety of  
clock and frame pulse options  
Support of both ST-BUS and GCI-Bus formats  
The device contains two types of internal memory: Data Memory and Connection Memory. Incoming TDM data is  
stored in the Data Memory. TDM Data is read from the Data Memory controlled by the Connection Memory, and  
output on the TDM Output Streams.  
There are two modes of operation: Connection Mode and Message Mode. In Connection Mode, the contents of the  
Connection Memory define, for each output stream and channel, the input source stream and channel. In Message  
Mode, the Connection Memory is used for the storage of microprocessor data. Using Zarlink's Message Mode  
capability, microprocessor data can be broadcast to the data output streams on a per-channel basis. This feature is  
useful for transferring control and status information for external circuits or other TDM devices.  
The non-multiplexed microprocessor port provides access to the internal Data Memory, Connection Memory and  
configuration registers used to program ZL50074 options. The port is configurable to interface with either Motorola  
or Intel-type microprocessors.  
The mandatory requirements of IEEE 1149.1 (JTAG) standard are fully supported via the dedicated test access  
port.  
2
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
Pin Diagram (as viewed through top of package)  
A1 corner identified by metallized marking  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22  
CKo STiA D[30] D[25] D[20] D[16] D[15] D[11] D[7] D[4] D[0] A[18] A[14] A[10] A[7] A[2] A[1]  
[0] [0]  
IC  
DTA PWR SToA TCK  
[31]  
A
B
C
D
E
SToB STiD SToA D[31] D[26] D[21] D16B D[13] D[9] D[5] D[3] A[17] A[11] A[8] A[6] A[0] BERR SIZ[0] SToB STiA TDo STiA  
[1] [1] [0] [31] [31] [30]  
STiA STiA STiB STiD IM D[27] D[22] D[19] D[12] D[6] D[1] A[15] A[9] A[3] R/W CS  
[2] [3] [1] [0]  
FPo STiD TRST SToD STiB STiD  
[3] [31] [30] [30] [29]  
STiC STiD SToC SToD SToB STiC D[28] D[23] D[17] D[8] A[16] A[13] A[5]  
[3] [2] [1] [0] [0] [0]  
DS WAIT SToD STiB TDi SToB STiC SToA SToD  
[31] [31] [30] [30] [29] [28]  
STiD SToB STiC SToA STiA SToC STiB D[24] D[18] D[14] D[2] A[12] A[4] CKo SIZ[1] STiC TMS SToC STiD SToD STiA STiB  
[4] [3] [2] [1] [1] [0] [0] [3] [31] [30] [30] [29] [29] [28]  
SToB SToC SToB SToD STiC VSS VDD_ D[29] VDD_ VDD_ D[10] VDD_ VDD_ SToC VDD_ VSS VDD_ SToA SToC STiC SToB STiA  
[4] [3] [2] [1] [1] [31] [30] [29] [29] [28] [28]  
F
CORE  
IO  
CORE  
IO  
CORE  
IO  
CORE  
SToD SToD SToD STiB FPo VDD_ VSS VSS VDD_ VDD_ VSS VDD_ VDD_ VSS VDD_ VDD_ VSS SToB STiB STiC CKi STiD  
[4] [3] [2] [2] [0] [29] [29] [28] [2] [27]  
G
H
J
IO  
CORE  
IO  
CORE  
IO  
CORE  
IO  
STiA STiA STiD SToC SToA VDD_ VDD_ VSS VSS VDD_ VDD_ VSS VDD_ VDD_ VSS VDD_ SToA SToC STiD SToD STiC STiA  
[5] [4] [3] [2] [2] [28] [28] [28] [27] [27] [27]  
CORE  
IO  
CORE  
IO  
CORE  
IO  
CORE  
STiB CKi STiC SToA STiB VDD_ VDD_ VDD_ VSS VSS VSS VSS VSS VSS VDD_ VSS VDD_ SToB SToC STiB  
[5] [1] [4] [3] [3] [27] [27] [27]  
IC SToC  
[26]  
IO  
CORE  
IO  
IO  
IO  
SToB STiD FPi SToC SToA STiB VSS VDD_ VSS VSS VSS VSS VSS VSS VDD_ VDD_ VDD_ SToA FPi SToA SToB STiD  
[5] [5] [1] [4] [4] [4] [27] [2] [26] [26] [26]  
K
L
CORE  
CORE  
IO  
CORE  
ODE SToD SToC STiD STiC VDD_ VDD_ VSS VSS VSS VSS VSS VSS VSS VSS VDD_ SToD STiC STiB STiA SToD SToC  
[5] [5] [6] [5] [26] [26] [26] [26] [25] [25]  
CORE  
IO  
CORE  
STiA STiB STiC STiC SToA VDD_ VDD_ VDD_ VSS VSS VSS VSS VSS VSS VDD_ VSS VDD_ STiA STiD SToB SToA IC  
[6] [6] [6] [7] [5] [25] [25] [25] [25]  
M
N
P
IO  
CORE  
IO  
IO  
IO  
SToB SToC SToD SToA SToA VSS VSS VDD_ VSS VSS VSS VSS VSS VSS VDD_ VDD_ SToD SToC STiD SToB STiB STiC  
[6] [6] [6] [7] [6] [23] [24] [24] [24] [25] [25]  
CORE  
CORE  
IO  
STiA STiB SToB STiA SToA VDD_ VDD_ VDD_ VSS VSS VSS VSS VSS VSS VDD_ VDD_ VDD_ SToA STiC STiB SToA SToD  
[7] [7] [7] [8] [8] [23] [23] [24] [24] [24]  
CORE  
IO  
IO  
IO  
CORE CORE  
STiD SToC IC SToB STiB VDD_ VDD_ VSS VSS VDD_ VDD_ VSS VDD_ VDD_ VSS VSS VDD_ CKo STiD STiB STiA STiC  
[7] [7] [8] [8] [2] [22] [23] [24] [24]  
R
T
IO  
CORE  
CORE  
IO  
CORE  
IO  
IO  
SToD VSS SToC STiD STiB SToD VSS VSS VDD_ VDD_ VSS VDD_ VSS VSS VDD_ VDD_ VSS SToA FPo SToC STiD SToC  
[7] [8] [9] [10] [9] [21] [2] [22] [23] [23]  
CORE  
IO  
CORE  
CORE  
IO  
STiC SToD STiC STiA SToC VSS VDD_ SToC VDD_ VDD_ STiA VDD_ VDD_ SToA VDD_ STiC VDD_ SToC STiD STiC SToD SToB  
[8] [8] [9] [10] [10] [12] [16] [18] [19] [20] [21] [22] [22] [23]  
U
V
IO  
IO  
CORE  
IO  
CORE  
IO  
CORE  
STiD STiB SToC SToB SToD SToB STiC STiB SToA STiC SToB SToC IC  
[8] [9] [9] [10] [10] [11] [12] [13] [13] [15] [16] [16]  
CK_ STiB SToA STiA SToB SToD SToC SToA STiA  
SEL[1] [18] [19] [20] [20] [20] [21] [22] [23]  
STiA SToB STiD STiA SToA STiB SToD STiC STiA SToD SToC CKi  
[9] [9] [10] [11] [11] [12] [12] [13] [14] [14] [15] [0]  
IC SToB CK_ SToC STiD SToD STiD STiC STiA SToB  
[17] SEL[0] [18] [19] [19] [20] [21] [22] [22]  
W
Y
SToA SToA STiB SToC SToA FPo STiD STiB SToB STiD SToD SToD IC  
[9] [10] [11] [11] [12] [1] [13] [14] [14] [15] [15] [16]  
STiC SToC STiA SToB STiB STiB SToA SToB STiB  
[17] [17] [18] [18] [19] [20] [20] [21] [22]  
STiC STiC SToD STiD STiA SToB SToD SToA STiA SToA STiB SToA FPi STiA SToA IC  
IC SToD SToB SToC STiA SToD  
[18] [19] [19] [21] [21]  
AA  
AB  
[10] [11]  
[11] [12] [13] [13] [13] [14] [15] [15] [16] [16]  
[0]  
[17] [17]  
STiD STiA SToB CKo SToC STiC STiD SToC STiB SToB STiC STiD NC  
[11] [12] [12] [1] [13] [14] [14] [14] [15] [15] [16] [16]  
NC STiB STiD SToD STiC STiD STiA STiC STiB  
[17] [17] [17] [18] [18] [19] [20] [21]  
Table 1 - ZL50074 23 mm x 23 mm 484 Ball PBGA  
3
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
Pin Description  
Pin  
Name  
Description  
TDM Interface  
F7, F10, F13, F17,  
G9, G12, G15, H6,  
H10, H13, H16, J7,  
K8, K15, K17, L6, L16,  
M7, N8, N15, P6, P16,  
P17, R7, R10, R13,  
T9, T12, T15, U10,  
U13, U17  
V
Power Supply for the Core Logic: +1.8 V  
Power Supply for the I/O: +3.3 V  
Ground  
DD_CORE  
F9, F12, F15, G6,  
G10, G13, G16, H7,  
H11, H14, J6, J8, J15,  
J17, K16, L7, M6, M8,  
M15, M17, N16, P7,  
P8, P15, R6, R11,  
V
DD_IO  
R14, R17, T10, T16,  
U7, U9, U12, U15  
F6, F16, G7, G8, G11,  
G14, G17, H8, H9,  
H12, H15, J9, J10,  
J11, J12, J13, J14,  
J16, K7, K9, K10, K11,  
K12, K13, K14, L8, L9,  
L10, L11, L12, L13,  
L14, L15, M9, M10,  
M11, M12, M13, M14,  
M16, N6, N7, N9, N10,  
N11, N12, N13, N14,  
P9, P10, P11, P12,  
P13, P14, R8, R9,  
R12, R15, R16, T2,  
T7, T8, T11, T13, T14,  
T17, U6  
V
SS  
A2, E5, C1, C2, H2,  
H1, M1, P1, P4, W1,  
U4, W4, AB2, AA5,  
W9, AA9, U11, AA14,  
Y16, AB20, V17,  
AA21, W21, V22, R21,  
M18, L20, H22, F22,  
E21, B22, B20  
STiA0-31  
STiB0-31  
Serial TDM Input Data ’A’ Streams (5 V Tolerant Input with Internal  
Pull-down)  
32 serial TDM input data streams. All streams are at the same rate:  
either 65.536 Mbps, 32.678 Mbps, 16.384 Mbps or 8.192 Mbps,  
programmed by the Global Rate Control Register, see Section 15.5.  
Unused inputs are pulled low by internal pull-down resistors and may be  
left unconnected.  
E7, C3, G4, J5, K6,  
J1, M2, P2, R5, V2,  
T5, Y3, W6, V8, Y8,  
AB9, AA11, AB15,  
V15, Y18, Y19, AB22,  
Y22, R20, P20, N21,  
L19, J20, E22, G19,  
C21, D17  
Serial TDM Input Data ’B’ Streams (5 V Tolerant Input with Internal  
Pull-down)  
32 serial TDM input data streams. All streams are at the same rate:  
either 65.536 Mbps, 32.678 Mbps, 16.384 Mbps or 8.192 Mbps,  
programmed by the Global Rate Control Register, see Section 15.5.  
Unused inputs are pulled low by internal pull-down resistors and may be  
left unconnected.  
4
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
Pin Description (continued)  
Pin  
Name  
Description  
D6, F5, E3, D1, J3,  
L5, M3, M4, U1, U3,  
AA1, AA2, V7, W8,  
AB6, V10, AB11, Y14,  
AB18, U16, AB21,  
W20, U20, P19, R22,  
N22, L18, H21, G20,  
F20, D20, E16  
STiC0-31  
STiD0-31  
SToA0-31  
SToB0-31  
SToC0-31  
Serial TDM Input Data ’C’ Streams (5 V Tolerant Input with Internal  
Pull-down)  
32 serial TDM input data streams. All streams are at the same rate:  
either 16.384 Mbps or 8.192 Mbps, programmed by the Global Rate  
Control Register, see Section 15.5.  
Unused inputs are pulled low by internal pull-down resistors and may be  
left unconnected.  
C4, B2, D2, H3, E1,  
K2, L4, R1, V1, T4,  
W3, AB1, AA4, Y7,  
AB7, Y10, AB12,  
Serial TDM Input Data ’D’ Streams (5 V Tolerant Input with Internal  
Pull-down)  
32 serial TDM input data streams. All streams are at the same rate:  
either 16.384 Mbps or 8.192 Mbps, programmed by the Global Rate  
Control Register, see Section 15.5.  
AB16, AB19, W17,  
W19, U19, R19, T21,  
N19, M19, K22, G22,  
H19, C22, E19, C18  
Unused inputs are pulled low by internal pull-down resistors and may be  
left unconnected.  
B3, E4, H5, J4, K5,  
M5, N5, N4, P5, Y1,  
Y2, W5, Y5, V9, AA8,  
AA10, AA12, AA15,  
U14, V16, Y20, T18,  
V21, P18, P21, M21,  
K20, K18, H17, D21,  
F18, A21  
Serial TDM Output Data ’A’ Streams (5 V Tolerant, 3.3 V Tri-state  
Slew-Rate Controlled Outputs)  
32 serial TDM output data streams. All streams in are at the same rate:  
65.536 Mbps, 32.678 Mbps, 16.384 Mbps or 8.192 Mbps. These pins  
are activated when outputs are programmed for 32 Mbps, 16 Mbps or  
8 Mbps operation via the Global Rate Control Register, see Section  
15.5.  
D5, B1, F3, E2, F1,  
K1, N1, P3, R4, W2,  
V4, V6, AB3, AA6, Y9,  
AB10, V11, W14, Y17,  
AA19, V18, Y21, W22,  
U22, N20, M20, K21,  
J18, F21, G18, D19,  
B19  
Serial TDM Output Data ’B’ Streams (5 V Tolerant, 3.3 V Tri-state  
Slew-Rate Controlled Outputs)  
32 serial TDM output data streams. All streams in are at the same rate:  
32.678 Mbps, 16.384 Mbps or 8.192 Mbps. These pins are activated  
when outputs are programmed for 32 Mbps, 16 Mbps or 8 Mbps  
operation via the Global Rate Control Register, see Section 15.5. When  
not activated, these outputs are high impedance.  
E6, D3, H4, F2, K4,  
L3, N2, R2, T3, V3,  
U5, Y4, U8, AB5, AB8,  
W11, V12, Y15, W16,  
AA20, U18, V20, T20,  
T22, N18, L22, J22,  
J19, H18, F19, E18,  
F14  
Serial TDM Output Data ’C’ Streams (5 V Tolerant, 3.3 V Tri-state  
Slew-Rate Controlled Outputs)  
32 serial TDM output data streams. All streams in are at the same rate:  
16.384 Mbps or 8.192 Mbps. These pins are activated when outputs are  
programmed for 32 Mbps, 16 Mbps or 8 Mbps operation via the Global  
Rate Control Register, see Section 15.5. When not activated, these  
outputs are high impedance.  
5
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
Pin Description (continued)  
Pin  
Name  
SToD0-31  
Description  
D4, F4, G3, G2, G1,  
L2, N3, T1, U2, T6,  
V5, AA3, W7, AA7,  
W10, Y11, Y12, AB17,  
AA18, W18, V19,  
Serial TDM Output Data ’D’ Streams (5 V Tolerant, 3.3 V Tri-state  
Slew-Rate Controlled Outputs)  
32 serial TDM output data streams. All streams in are at the same rate:  
16.384 Mbps or 8.192 Mbps. These pins are activated when outputs are  
programmed for 32 Mbps, 16 Mbps or 8 Mbps operation via the Global  
Rate Control Register, see Section 15.5. When not activated, these  
outputs are high impedance.  
AA22, U21, N17, P22,  
L21, L17, H20, D22,  
E20, C20, D16  
W12  
CKi0  
ST-BUS/GCI-Bus Clock Input (5 V Tolerant Schmitt-Triggered  
Input)  
This pin accepts an 8.192 MHz, 16.384 MHz, 32.678 MHz or  
65.536 MHz clock. This clock must be provided for correct operation of  
the ZL50074. The frequency of the CKi0 input is selected by the  
CK_SEL1-0 inputs. The active clock edge may be either rising or falling,  
programmed by the Input Clock Control Register, see Section 15.1.  
AA13  
FPi0  
ST-BUS/GCI-Bus Frame Pulse Input (5 V Tolerant Input)  
This pin accepts the 8 kHz frame pulse which marks the frame  
boundary of the TDM data streams. The pulse width is nominally one  
CKi0 clock period (Assuming ST-BUS mode) selected by the CK_SEL1-  
0 inputs. The active state of the frame pulse may be either high or low,  
programmed by the Input Clock Control Register, see Section 15.1.  
J2, G21  
CKi1-2  
ST-BUS/GCI-Bus Clock Inputs (5 V Tolerant Schmitt Triggered  
Inputs)  
These optional TDM clock inputs are at 8.192 MHz, 16.384 MHz,  
32.678 MHz or 65.536 MHz. The frequency of each clock input is  
automatically detected by the ZL50074. Refer to Section 2.0 for TDM  
timing options. The active clock edge may be either rising or falling,  
programmed by the Input Clock Control Register, see Section 15.1.  
Unused inputs must be connected to either high or low.  
K3, K19  
FPi1-2  
ST-BUS/GCI-Bus Frame Pulse Inputs (5 V Tolerant Inputs)  
These 8 kHz input pulses correspond to the optional CKi2-1 clock  
inputs. The frame pulses mark the frame boundary of the TDM data  
streams. Refer to Section 2.0 for TDM timing options. Each pulse width  
is nominally one CKi clock period (Assuming ST-BUS mode). The active  
state of the frame pulse may be either high or low, programmed by the  
Input Clock Control Register, see Section 15.1. Unused inputs must be  
connected to a logic 1 or logic 0.  
A1, AB4, R18, E14  
CKo0-3  
ST-BUS/GCI-Bus Clock Outputs (3.3 V Outputs with Slew-Rate  
Control)  
These clock outputs can be programmed to generate an 8.192 MHz,  
16.384 MHz, 32.678 MHz or 65.536 MHz TDM clock output. The active  
edge can be programmed to be either rising or falling. The source of the  
clock outputs can be derived from either the CKi2-0 inputs or the  
internal system clock. The frequency, active edge and source of each  
clock output can be programmed independently by the Output Clock  
Control Register, see Section 15.2.  
6
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
Pin Description (continued)  
Pin  
Name  
FPo0-3  
Description  
G5, Y6, T19, C17  
W15, V14  
L1  
ST-BUS/GCI-Bus Frame Pulse Outputs (3.3 V Outputs with Slew-  
Rate Control)  
These 8 kHz output pulses mark the frame boundary of the TDM data  
streams. The pulse width is nominally one clock period of the  
corresponding CKo output. The active state of each frame pulse may be  
either high or low, independently programmed by the Output Clock  
Control Register, see Section 15.2.  
CK_SEL0-1 Master Clock Input Select (5 V Tolerant Inputs)  
Inputs used to select the frequency and frame alignment of CKi0 and  
FPi0:  
CK_SEL1 = 0, CK_SEL0 = 0, 8.192 MHz  
CK_SEL1 = 0, CK_SEL0 = 1, 16.384 MHz  
CK_SEL1 = 1, CK_SEL0 = 0, 32.768 MHz  
CK_SEL1 = 1, CK_SEL0 = 1, 65.536 MHz  
ODE  
Output Drive Enable (5 V Tolerant Input with Internal Pull-up)  
This is the asynchronous output enable control for the output streams.  
When it is high, the streams are enabled. When it is low, the output  
streams are tristated.  
A18, J21, M22, R3,  
V13, W13, Y13, AA16,  
AA17  
IC  
Internal Connections  
In normal mode these pins MUST be connected low  
AB13, AB14  
NC  
No Connection  
In normal mode these pins MUST be left unconnected.  
Microprocessor Port and Reset  
A11, C11, E11, B11,  
A10, B10, C10, A9,  
D10, B9, F11, A8, C9,  
B8, E10, A7, A6, D9,  
E9, C8, A5, B6, C7,  
D8, E8, A4, B5, C6,  
D7, F8, A3, B4  
D0-31  
Microprocessor Port Data Bus (5 V Tolerant Bi-directional with  
Slew-Rate Output Control)  
32 or 16 bit bidirectional data bus. Used for microprocessor access to  
internal memories and registers. When 16 bit mode is selected (D16B is  
logic 1), D31-16 are unused and must be connected to either high or  
low.  
B16, A17, A16, C14,  
E13, D13, B15, A15,  
B14, C13, A14, B13,  
E12, D12, A13, C12,  
D11, B12, A12  
A0-18  
Microprocessor Port Address Bus (5 V Tolerant Inputs)  
19 bit address bus for the internal memories and registers. In 16 bit bus  
mode (D16B is logic 1), please note A0 is not used and must be  
connected to either high or low.  
In Intel 32 bit mode: A1 = BE , A0 = BE  
3
2
C16  
CS  
DS  
Chip Select Input (5 V Tolerant Input)  
Active low input used with DS to enable read and write access to the  
ZL50074.  
D14  
Data Strobe Input (5 V Tolerant Input)  
Active low input used with CS to enable read and write access to the  
ZL50074.  
7
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
Pin Description (continued)  
Pin  
Name  
Description  
Read/Write Input (5 V Tolerant Input)  
C15  
R/W  
This input controls the direction of the data bus lines (D31 - 0) during a  
microprocessor access. This pin is set high and low for the read and  
write access respectively.  
A19  
B17  
DTA  
Data Transfer Acknowledge (5 V Tolerant, 3.3 V Tri-state Output  
with Slew-Rate)  
This active low output indicates that a data bus transfer is complete. An  
external pull-up resistor is required to hold this pin HIGH when not in  
use.  
BERR  
Transfer Bus Error Output with Slew Rate Control (5 V Tolerant,  
3.3 V Tri-state Outputs with Slew-Rate Control)  
This pin goes low whenever the microprocessor attempts to access an  
invalid memory space inside the device. In Motorola bus mode, if this  
bus error signal is activated, the data transfer acknowledge signal, DTA,  
will not be generated. In Intel bus mode, the generation of the DTA is  
not affected by this BERR signal. An external pull-up resistor is required  
to hold a HIGH level when output is high-impedance.  
D15  
WAIT  
Data Transfer Wait Output (5 V Tolerant, 3.3 V Tri-state Output with  
Slew Rate)  
Active low wait signal output  
B18, E15  
SIZ0-1  
Data Transfer Size/Upper and Lower Data Strobe Inputs (5 V  
Tolerant Inputs)  
Motorola 32-bit mode - signals indicate data transfer size, refer to  
Section 8.0.  
Motorola 16-bit mode:SIZ0 - LDS, SIZ1 - UDS.  
Active low upper and lower data strobes, UDS and LDS, indicate  
whether the upper byte, D15 - 8, and/or lower byte, D7 - 0, is being  
accessed.  
Intel 32/16-bit mode: SIZ0 - BE0, SIZ1 - BE1  
Active low Intel type bus-enable signals, BE1 and BE0  
C5  
B7  
IM  
Microprocessor Port Bus Mode Select (5 V Tolerant Input)  
Control input:  
0 = Motorola mode  
1 = Intel mode  
D16B  
Microprocessor Port Bus 16/32 Bit Mode Select (5 V Tolerant Input  
with Internal Pull-down)  
Control input:  
0 = 32 bit data bus  
1 = 16 bit data bus  
A20  
PWR  
Device Reset (5 V Tolerant Schmitt-Triggered Input)  
Asynchronous reset input used to initialize the ZL50074.  
0 = Reset  
1 = Normal  
See Section 9.0, Power-up and Initialization of the ZL50074 for detailed  
description of Reset state.  
8
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
Pin Description (continued)  
Pin  
Name  
Description  
IEEE 1149.1 Test Access Port (TAP)  
D18  
TDi  
Test Data (5 V Tolerant Input with Internal Pull-up)  
Serial test data input. When not used, this input may be left  
unconnected.  
B21  
A22  
TDo  
TCK  
Test Data (3.3 V Output)  
Serial test data output  
Test Clock (5 V Tolerant Schmitt-Triggered Input with Internal Pull-  
up)  
Provides the clock to the JTAG test logic  
C19  
TRST  
Test Reset (5 V Tolerant Schmitt-Triggered Input with Internal Pull-  
up)  
Asynchronously initializes the JTAG TAP controller by putting it in the  
Test-Logic-Reset state. This pin should be pulsed low during power-up  
to ensure that the device is in the normal functional mode. When JTAG  
is not being used, this pin should be pulled low during normal operation.  
E17  
TMS  
Test Mode Select (5 V Tolerant Input with Internal Pull-up)  
JTAG signal that controls the state transitions of the TAP controller. This  
pin is pulled high by an internal pull-up resistor when it is not driven.  
9
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
Table of Contents  
1.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
1.2 Switching Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
1.3 Stream Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.0 Input Clock (CKi) and Input Frame Pulse (FPi) Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.0 Output Clock (CKo) and Output Frame Pulse (FPo) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.0 Output Channel Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.0 Data Input Delay and Data Output Advancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.1 Input Sampling Point Delay Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.2 Fractional Bit Advancement on Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.0 Message Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.1 Data Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.2 Connection Memory Block Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.0 Data Delay Through the Switching Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
8.0 Microprocessor Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
8.1 Addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
8.2 32 bit Bus Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
8.3 16 bit Bus Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
8.4 Bus Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
8.4.1 Read Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
8.4.2 Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
9.0 Power-up and Initialization of the ZL50074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
9.1 Device Reset and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
9.2 Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
9.3 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
10.0 IEEE 1149.1 Test Access Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10.1 Test Access Port (TAP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10.2 Instruction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10.3 Test Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
10.4 Boundary Scan Description Language (BSDL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
11.0 Memory Map of ZL50074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
12.0 Connection Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
12.1 Connection Memory Bit Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
13.0 Connection Memory LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
14.0 Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
15.0 Group Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
15.1 Input Clock Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
15.2 Output Clock Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
15.3 Block Init Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
15.4 Block Init Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
15.5 Global Rate Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
10  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
List of Figures  
Figure 1 - ZL50074 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2 - Input Sampling Point Delay Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 3 - Output Bit Advance Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 4 - Data Throughput Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 5 - Read Cycle Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 6 - Write Cycle Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 7 - Frame Pulse Input and Clock Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 8 - Frame Skew Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 9 - Serial Data Timing to CKi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 10 - Serial Data Timing to CKo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 11 - Microprocessor Bus Interface Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 12 - Intel Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 13 - JTAG Test Port & PWR Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
11  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
List of Tables  
Table 1 - ZL50074 23 mm x 23 mm 484 Ball PBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Table 2 - Data Rate and Maximum Switch Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 3 - TDM Stream Bit Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 4 - CKi0 and FPi0 Setting via CK_SEL1 - 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 5 - Example of Address and Byte Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 6 - 32 bit Motorola Mode Byte Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 7 - 32 bit Motorola Mode Access Transfer Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 8 - 32 bit Intel Mode Bus Enable Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 9 - Byte Enable Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 10 - 16 bit Mode Word Alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 11 - 16 bit Mode Example Byte Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 12 - Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 13 - Connection Memory Stream Control Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 14 - Output Control at Various Output Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 15 - Stream Offset Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 16 - Connection Memory Bits (CMB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 17 - Connection Memory LSB Stream Control Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 18 - Connection Memory LSB Output Group Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 19 - Data Memory Stream Control Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 20 - Data Memory Stream Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 21 - Group Control Register Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 22 - Group Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 23 - Input Clock Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 24 - Output Clock Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 25 - Block and Power-up Initialization Status Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
12  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
1.0 Functional Description  
1.1 Overview  
The device has 128 ST-BUS/GCI-Bus inputs (STiA0 - 31, STiB0 - 31, STiC0 - 31, STiD0 - 31) and 128  
ST-BUS/GCI-Bus outputs (SToA0 - 31, SToB0 - 31, SToC0 - 31, SToD0 - 31). It is a non-blocking digital switch with  
32,768 64 kbps channels and is capable of operating at 8.192 Mbps, 16.384 Mbps, 32.768 Mbps or 65.536 Mbps.  
There are 32 input groups with each group consisting of four streams (‘A’, ‘B’, ‘C’ and ‘D’). If the data rate is set to  
16.384 Mbps or 8.192 Mbps, then STiA0 - 31, STiB0 - 31, STiC0 - 31 and STiB0 - 31 are used for the input traffic.  
When the data rate is set to 32.768 Mbps then STiA0-31and STiB0 - 31 are used for the input traffic and STiC0-31  
and STiD0-31 are not used. When the data rate is set to 65.536 Mbps then STiA0-31 are used for the input traffic  
and STiB0-31, STiC0-31, and STiD0-31 are not used. The outputs deliver serial data streams with data rates of  
8.192 Mbps, 16.384 Mbps, 32.768 Mbps or 65.536 Mbps. There are 32 output groups with each group consisting of  
4 streams (‘A’, ‘B’, ‘C’, and ‘D’). If the data rate is set to 16.384 Mbps or 8.192 Mbps, then SToA0-31, SToB0-31  
SToC0-31 and SToD0-31 are used are used for the output traffic. If the data rate is set to 32.768 Mbps, then  
SToA0-31 and SToB0-31 are used are used for the output traffic and STiC0-31and STiD0-31 are in high  
impedance. When the data rate is set to 65.536 Mbps then SToA0 - 31 are used for the output traffic and SToB0-31,  
SToC0-31, SToC0-31 are in high impedance.  
By using Zarlink’s message mode capability, the microprocessor can store data in the connection memory which  
can be broadcast to the output streams on a per-channel basis. This feature is useful for transferring control and  
status information for external circuits or other ST-BUS/GCI-Bus devices.  
The ZL50074 uses the ST-BUS/GCI-Bus master input frame pulse (FPi0) and the ST-BUS/GCI-Bus master input  
clock (CKi0) to define the input frame boundary and timing for sampling the ST-BUS/GCI-Bus input streams. The  
rate of the input clock is defined by setting the CK_SEL0-1 pins.  
A selectable Motorola or Intel compatible non-multiplexed microprocessor port allows users to program the device  
to operate in various modes under different switching configurations. Users can use the microprocessor port to  
perform internal register and memory read and write operations. The microprocessor port can be selectable to be  
either a 32 bit or 16 bit data bus and to have either a 19 bit or 17 bit address bus. This is selected by setting the  
D16B pin. There are seven control signals (CS, DS, R/W, DTA, WAIT, BERR and IM).  
The device supports the mandatory requirements for the IEEE 1149.1 (JTAG) standard via the test port.  
1.2 Switching Configuration  
The ZL50074 switches 64kbps and Nx64 kbps data channels from the TDM input streams, to timeslots in the TDM  
output streams. The device is non-blocking; all 32 K input channels can be switched through to the outputs. Any  
input channel can be switched to any available channel.  
The number of 64 kbps channel timeslots per stream is shown in Table 2.  
Number of Input  
TDM Data  
Number of Output  
TDM Data  
Number of  
64 kbpsChannels  
per Stream  
TDM Stream Data  
Rate  
Maximum Switch  
Capacity (channels)  
Streams  
Streams  
65 Mbps  
32 Mbps  
16 Mbps  
8 Mbps  
32  
64  
32  
64  
1024  
512  
256  
128  
32x1024 = 32,768  
64x512 = 32,768  
64x256 = 32,768  
64x128 = 8,192  
128  
128  
128  
128  
Table 2 - Data Rate and Maximum Switch Size  
13  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
1.3 Stream Provisioning  
The ZL50074 is a large switch with a comprehensive list of user configurable, ’per-group’ programmable features.  
In order to facilitate ease of use, the ZL50074 offers a simple programming model. Streams are grouped in sets of  
four, with each group sharing the same configured characteristics. In this way it is possible to reduce programming  
complexity, while still maintaining flexible ’per-stream’ configuration options:  
Input and output device rate selection, see Section 15.5  
Input stream clock source selection, see Section 2.0  
Output stream clock source selection, see Section 3.0  
Input stream sampling point selection, see Section 5.1  
Output stream fractional bit advance, see Section 5.2  
There are 32 input and 32 output groups. Depending on the data rate set for the device there will be either 1, 2 or 4  
streams activated. If the data rate is set for 65.536 Mbps, the ‘A’ stream will be activated and the ‘B’, ‘C’ and ‘D’  
streams will not be activated. If the data rate is set for 32.768 Mbps the ‘A’ and ‘B’ streams will be activated. If the  
data rate is set for 16.384 Mbps or 8.192 Mbps, the ‘A’, ‘B’, ‘C’ and ‘D’ streams will be activated. Input and Output  
Device Rate Selection.  
Table 2 shows the maximum number of streams available at different bit rates. The ZL50074 deactivates unused  
streams when operating at the higher bit rates as shown in Table 3.  
Input or Output Group n  
65 Mbps  
32 Mbps  
16 Mbps  
8 Mbps  
(n = 0 - 31)  
STiAn / SToAn  
STiBn / SToBn  
STiCn / SToCn  
STiDn / SToDn  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Not Active  
Not Active  
Not Active  
Not Active  
Not Active  
Table 3 - TDM Stream Bit Rates  
All TDM input and output data streams operate at the same rate, programmed by the Global Rate Control Register,  
see Section 15.5.  
14  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
2.0 Input Clock (CKi) and Input Frame Pulse (FPi) Timing  
The input timing for the ZL50074 can be set for one of four different input values. They can be set for ST-BUS or  
GCI-Bus with positive or negative input. The CKi0 and FPi0 input timing must be provided in order for the device to  
be used. CKi0 is used to generate the internal clock. This clock is used for all internal logic and can be used as one  
of the clocks that defines the timing for the input and output data. The input stream clock source is selected by the  
ISSRC1 - 0 (bits 1 - 0) in the Group Control Register. The output stream clock source is selected by the OSSRC1 -  
0 (bits 17 - 16) in the Group Control Register.  
The CKi0 and FPi0 input values are set via the CK_SEL1 - 0 pins as shown in Table 4. By default the CKi0 and FPi0  
pins accept ST-BUS, negative input timing. By setting the GCISEL0 (bit 2) in the Input Clock Control Register  
(ICCR) the input timing is set for GCI-Bus mode. The FPIPOL0 (bit 1) in the Input Clock Control Register (ICCR)  
sets the input frame pulse is positive. The CKIPSL0 (bit 0) in the Input Clock Control Register (ICCR) sets the input  
clock is positive.  
CK_SEL1  
CK_SEL0  
Input CKi0 and FPi0  
0
0
1
1
0
1
0
1
8.192MHz  
16.384MHz  
32.768MHz  
65.536MHz  
Table 4 - CKi0 and FPi0 Setting via CK_SEL1 - 0  
Two additional input clocks (CKi2 - 1) and frame pulse (FPi2 - 1) signals can be accepted. These signals can be  
8.192 MHz, 16.384 MHz, 32.768 MHz or 65.536 MHz and the rates are automatically detected by the ZL50073.  
These clocks must be phase aligned with the CKi0 within a 30 ns skew but can have different jitter values. The  
clocks do not have to have the same frequency. If these additional clocks are not used, the pins must be connected  
to ground. The additional signals can be used as the clock source for input streams, output stream and output clock  
and frame pulse signals. The Input Stream Clock Source (bits 1 - 0) in the Group Control Register (SCR) are used  
to set the clock source to either the internal clock or one of the three input clock signals. The Output Stream Clock  
Source (bits 17 - 16) in the Group Control Register (SCR) is used to set the clock source to either the internal clock  
or one of the three input clock signals. These are used to provide a direct interface to jittery peripherals.  
3.0 Output Clock (CKo) and Output Frame Pulse (FPo) Timing  
There are four output timing pairs, CKo3 - 0 and FPo3 - 0. By default these signals generate ST-BUS, negative  
timing. Each can be set individually to produce 8.192 MHz, 16.384 MHz, 32.768 MHz or 65.536 MHz timing through  
the programming of the CKO3RATE1 - 0 (bits 24 - 23), CKO2RATE1 - 0 (bits 17 - 16), CKO1RATE1 - 0 (bits 10 - 9),  
CKO0RATE1 - 0 (bits 3 - 2) in the Output Clock Control Register (OCCR). With the setting of the GCOSEL3 (bit 27),  
GCOSEL2 (bit 20), GCOSEL1 (bit 13) and GCOSEL0 (bit 6) in the Output Clock Control Register (OCCR) the  
output conforms the GCI-Bus standard. The signals can be adjusted to provide positive frame pulses with the  
setting of the FPOPOL3 (bit 26), FPOPOL2 (bit 19), FPOPOL1 (bit 12) and FPOPOL0 (bit 5) in the Output Clock  
Control Register (OCCR). The signals can be adjusted to provide positive clocks with the setting of the CKOPOL3  
(bit 25), CKOPOL2 (bit 18), CKOPOL1 (bit 11) and CKOPOL0 (bit 4) in the Output Clock Control Register (OCCR).  
The output clocks use the CKO3SRC1 - 0 (bits 22 - 21), CKO2SRC1 - 0 (bits 15 - 14), CKO1SRC1 - 0 (bits 8 - 7)  
and CKO0SRC1- 0 (bits 1 - 0) in the Output Clock Control Register (OCCR) to set their timing reference to either  
the internal clock or one of the three input clock signals. If the input clocks are selected as the reference source, the  
output clock can not be programmed to generate a higher clock frequency than the reference source. As each  
output timing pair has its own bit settings, they can be set to provide different output timing.  
15  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
4.0 Output Channel Control  
To be able to interface with external buffers, the output signals can be set to enter a high impedance or drive high  
state on a per-channel basis. The Per Channel Function (bits 31 - 29) in the Connection Memory Bits can be set to  
001 to drive the channel output high or to any one of the following, 000, 110 or 111, to set the channel into a high  
impedance state.  
5.0 Data Input Delay and Data Output Advancement  
The Group Control Register (SCR) is used to adjust the input delay and output advancement for each input and  
output data groups. Each group is independently programmed.  
5.1 Input Sampling Point Delay Programming  
The input sampling point delay programming feature provides users with the flexibility of handling different wire  
delays when incoming traffic is from different sources.  
By default, all input streams have zero delay, such that bit 7 is the first bit that appears after the input frame  
boundary (Assuming ST-BUS formatting). The nominal input sampling point with zero delay is at the 3/4 bit time.  
The input delay is enabled by the Input Sample Point Delay (bit 8 - 4) in the Group Control Register0 - 31 (SCR0 -  
31) as described in Section 15.0 on page 34. The input sampling point delay can range from 0 delay to 7 3/4 bit  
delay with a 1/4 bit resolution on a per group basis.  
Nominal Channel n Boundary  
Nominal Channel n+1 Boundary  
STi[n]  
0
7
6
5
4
3
2
1
0
7
6
00000 (Default)  
00001  
00010  
11111  
11110  
11101  
00011  
00100  
11100  
11011  
00101  
00110  
00111  
01000  
01001  
11010  
11001  
11000  
10111  
10110  
01010  
01011  
10101  
10100  
01100  
01101  
01110  
01111  
10011  
10010  
10001  
10000  
Example: With a setting of 01111 the sampling point will be 3 1/2 bits  
Figure 2 - Input Sampling Point Delay Programming  
There are limitations when the ZL50074 is programmed to use CKi0 as the input stream clock source as opposed  
to the internal clock:  
The granularity of the delay becomes 1/2 the selected reference clock period, or 1/4 bit, whichever is longer.  
If the selected reference clock frequency is the same as the stream bit rate, the granularity of the delay is 1/2 bit.  
In this case, the least significant bit of the ISPD register is not used; the remaining 4 bits select the total delay in  
1/2 bit increments, to a maximum of 7 1/2 bits. Also, the 0 bit delay reference point changes from the 3/4 bit  
position to the 1/2 bit position.  
16  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
5.2 Fractional Bit Advancement on Output  
See Section 15.0, Group Control Registers, for programming details.  
This feature is used to advance the output data of groups with respect to the output frame boundary. Each group  
has its own bit advancement value which can be programmed in the Group Control Register0 - 31 (SCR0 - 31).  
By default all output streams have zero bit advancement such that bit 7 is the first bit that appears after the output  
frame boundary (Assuming ST-BUS formatting). The output advancement is enabled by the Output Stream Bit  
Advancement (bits 21 - 20) of the Group Control Register0 - 31 (SCR0 - 31) as described in Section 15.0, Group  
Control Registers. The output delay can vary from 0 to 22.8 ns with a 7.6 ns increment. The exception to this is  
when the device is programmed at 65 Mbps, in which case the increment is 3.8 ns with a total advancement of  
11.4 ns.  
Nominal 8 MHz  
Clock  
Nominal 16 MHz  
Clock  
Nominal 32/65 MHz  
Clock  
Nominal Output  
Bit Timing  
OSBA = 00  
OSBA = 01  
7.6 ns (~3.8 ns at 65 Mbps)  
15.2 ns (~7.6 ns at 65 Mbps)  
Level 1  
Advance  
Level 2  
Advance  
OSBA = 10  
OSBA = 11  
22.8 ns (~11.4 ns at 65 Mbps)  
Level 3  
Advance  
Figure 3 - Output Bit Advance Timing  
This programming feature is provided to assist in designs where per stream routing delays are significant and  
different.  
The OSBA bits, in the Group Control Registers, are used to set the bit-advance for each of the corresponding serial  
output streams. Figure 3 illustrates the effect of the OSBA settings on the output timing.  
There are limitations when the ZL50074 are programmed to use CKi0 as the output stream clock source:  
If the selected reference clock frequency is 65 MHz or 32 MHz, the granularity of the advance is reduced to  
1/2 the clock period.  
17  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
If the selected reference clock frequency is 16 MHz or 8 MHz, bit advancement is not available and the  
output streams are driven at the nominal times.  
6.0 Message Mode  
In Message Mode (MSG), microprocessor data can be broadcast to the output data streams on a per-channel  
basis. This feature is useful for transferring control and status information to external circuits or other TDM devices.  
For a given output channel, when the corresponding Per Channel Function (bits 31 - 29) in the Connection Memory  
Bits are set to Message Mode (010), the ZL50074 writes the Connection Address (bits 7 - 0) of the Connection  
Memory, in the outgoing timeslot. Refer to Section 12.1, Connection Memory Bit Functions, for programming  
details.  
6.1 Data Memory Read  
All TDM input channels can be read via the microprocessor port. This feature is useful for receiving control and  
status information from external circuits or other TDM devices. Each 32 bit Data Memory access enables up to four  
consecutive input channels to be monitored. The Data Memory field is read only, any attempt to write to this  
address range will result in a bus error condition signalled back to the host processor. Refer to Section 14.0, Data  
Memory, for programming details.  
The latency of data reads is up to 3 frames, depending on when the input timeslots are sampled.  
6.2 Connection Memory Block Programming  
See Section 15.3, Block Init Register, and Section 15.4, Block Init Enable Register, for programming details.  
This feature allows for fast initialization of the connection memory after power up. When the block programming  
mode is enabled, the contents of Block Init Register are written to all Connection Memory Bits. This operation  
completes in one 125 µs frame. During Connection Memory initialization, all TDM output streams are set to high  
impedance.  
7.0 Data Delay Through the Switching Paths  
See Section 12.1, Connection Memory Bit Functions, for programming details.  
The switching of information from the input serial streams to the output serial streams results in a throughput delay.  
In wideband data application, constant delay maintains the frame integrity of the information through the switch.  
The delay though the switch is 2 frames - Input Channel + Output Channel. This can result in a minimum delay of 1  
frame + 1 channel if the last channel of a stream is switched to the first channel of a stream. The maximum delay is  
1 channel short of 3 frames delay. This occurs when the first channel of a stream is switched to the last channel of  
a stream.  
The data throughput delay is expressed as a function of ST-BUS/GCI-Bus frames, input channel number (n) and  
output channel number (m). The data throughput delay (T) is:  
T = 2 frames + (n - m)  
18  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2 CH3  
N-2 N-1 CH0 CH1 CH2CH3  
N = Last Channel  
N-2 N-1 CH0CH1 CH2CH3  
N-2 N-1 CH0 CH1CH2 CH3  
Figure 4 - Data Throughput Delay  
8.0 Microprocessor Port  
The ZL50074 has a generic microprocessor port that provides access to the internal Data Memory (read access  
only), Connection Memory and the Control Registers.  
The port size can be configured to be either 32 bit or 16 bit, controlled by the D16B pin.  
The port works with either Motorola or Intel type microprocessor buses, selected by the IM pin.  
8.1 Addressing  
The Data Memory, Connection Memory and Control Registers are assigned 32 bit fields in the ZL50074 memory  
space. The Address Bus, A18 - 0, controls access to each 32 bit location. Byte addressing is also provided to give  
the user programming flexibility, if access to less than 32 bits is required.  
Each 32 bit memory or register location spans four consecutive addresses. Example:  
The 32 bit Group Control Register for TDM Stream 0 is located at address range 40200 - 40203 Hex  
The Least Significant address identifies the Most Significant Byte (MSB) in the 32 bit field, see Table 5.  
Address (Hex)  
Memory/Register Bits  
40200  
40201  
40202  
40203  
Bits 31:24 (MSB)  
Bits 23:16  
Bits 15:8  
Bits 7:0 (LSB)  
Table 5 - Example of Address and Byte Significance  
19  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
8.2 32 bit Bus Operation  
In 32 bit mode (D16B = 0), all 32 bits of the Data Bus, D31 - 0, may be used for write and read transfers. D31 on the  
bus maps to Bit 31 of the internal memory or register, D30 maps to Bit 30, etc. The least significant address bits, A1  
- 0, and the Data Transfer Size inputs, SIZ0 - 1, identify which bytes are being accessed.  
In Motorola Bus mode (IM = 0), A1 - 0 identify the first byte in the 32 bit field to be transferred, see Table 6. The  
SIZ0 - 1 inputs, indicate the access transfer size, as shown in Table 7.  
A1  
A0  
Byte Addressed  
0
0
1
1
0
1
0
1
Bit 31:24  
Bit 23:16  
Bit 15:8  
Bit 7:0  
Table 6 - 32 bit Motorola Mode Byte Addressing  
For example, to transfer all 32 bits in a single access: A1 = 0. A0 = 0, SIZ1 = 0, SIZ0 = 0. To transfer D15 - 8 only:  
A1 = 1, A0 = 0, SIZ1 = 0, SIZ0 = 1.  
SIZ1  
SIZ0  
Access Transfer Size  
0
0
1
1
0
1
0
1
4 bytes  
1 Byte  
2 Bytes  
3 Bytes  
Table 7 - 32 bit Motorola Mode Access Transfer Size  
In Intel Bus Mode (IM = 1), A1 - 0, and SIZ1 - 0 form active low byte enable signals, consistent with BE3 - 0  
available on the Intel i960 processor, see Table 8.  
Equivalent  
i960 Signal  
Byte  
Pin  
Addressed  
A1  
A0  
BE3  
BE2  
BE1  
BE0  
Bit 31:24  
Bit 23:16  
Bit 15:8  
Bit 7:0  
SIZ1  
SIZ0  
Table 8 - 32 bit Intel Mode Bus Enable Signals  
Byte addressing applies only to write accesses. On read cycles, all 32 bits are output on every access.  
20  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
8.3 16 bit Bus Operation  
In 16 bit mode (D16B = 1). D15 - 0 are used for data transfers to/from the ZL50074. D31 - 16 are unused and must  
be connected to a defined logic level. D15 on the bus maps to Bit 31 and Bit 15 of the internal 32 bit memory or  
register, D14 maps to Bit 30 and Bit 14, etc.  
In 16 bit mode, the least significant address bit, A0, is not used, and must be connected to defined logic level. In this  
case, address bit A1 and the Data Transfer Size inputs, SIZ1 - 0, identify which bytes are being accessed.  
In Motorola Bus Mode (IM = 0), SIZ1 - 0 form active low data strobe signals, consistent with UDS and LDS available  
on the MC68000 and MC68302 processors, see Table 9  
In Intel Bus Mode (IM = 1), SIZ1 - 0 form active low byte enable signals, consistent with BE1 and BE0 available on  
the Intel i960 processor as shown in Table 9.  
Motorola Mode  
Intel Mode i960 Equivalent  
MC68000, MC68302  
Pin Name  
Function  
IM = 1  
Data Bus Bytes Enabled  
Equivalent Function  
IM = 0  
SIZ1  
SIZ0  
UDS  
LDS  
BE1  
BE0  
D15-8  
D7-0  
Table 9 - Byte Enable Signals  
In both Intel and Motorola modes, the A1 address input is used to identify the word alignment in internal memory.  
A1 = 0  
A1 = 1  
Bits 31:16  
Bits 15:0  
16-bit word alignment are shown in Table 10. An example of byte addressing is given in Table 11.  
Microprocessor  
16 bit Data Bus  
Internal 32-bit Memory  
SIZ1  
SIZ0  
A1  
or Register  
D15 - 8  
0
0
1
1
0
0
1
1
1
0
0
0
0
1
0
1
0
1
0
1
Bits 31:24  
Bits 15:8  
Bits 23:16  
Bits 7:0  
D7 - 0  
D15 - 0  
Bits 31:16  
Bits 15:0  
No access  
1
X
Table 10 - 16 bit Mode Word Alignment  
1. X - Don’t Care  
21  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
Address  
(Hex)  
Register  
Register  
Byte  
A18 - 0 (binary)  
SIZ1 SIZ0  
Comments  
Description  
40200 or  
Stream Control  
Register (Group 0)  
Bits 23:16  
Bits 15:8  
Bits 15:0  
Bits 31:16  
100 0000 0010 0000  
000X  
1
0
0
0
0
1
0
0
8 bit transfer  
40201  
40282 or  
40283  
Input Clock Control  
Register  
100 0000 0010 1000  
8 bit transfer  
16 bit transfer  
16 bit transfer  
001X  
40286 or  
40287  
Output Clock  
Control Register  
100 0000 0010 1000  
011X  
40284 or  
40285  
Output Clock  
Control Register  
100 0000 0010 1000  
010X  
Table 11 - 16 bit Mode Example Byte Address  
† Don’t Care. A0 is not used  
8.4 Bus Operation  
8.4.1 Read Cycle  
The operation of a read cycle is illustrated in Figure 5.  
The microprocessor asserts the R/W control signal high, to signal a read cycle. It also drives the address A,  
transfer size, SIZ1 - 0, and chip select logic drives the CS signal active low to select the ZL50074.  
The microprocessor then drives the DS signal active low, to signal the start of the bus cycle. The DS signal  
is held low for the duration of the bus cycle.  
WAIT is asserted active low  
The ZL50074 accesses the requested memory or register location(s), and places the requested data onto  
the data bus, D31 - 0 (D15 - 0 in 16 bit Mode). All data bus pins are driven, whether or not they are being  
used for the specific data transfer. Unused pins will present unknown data. If the address is to an unused  
area of the memory space, unknown data is presented on the data bus.  
The ZL50074 then de-asserts WAIT, and asserts either DTA or BERR, depending on the validity of the data  
transfer  
When the microprocessor observes the active low state of the DTA or the BERR signal, it terminates the bus  
cycle by driving the DS pin inactive high  
When the ZL50074 sees the DS signal go inactive high, it removes the assertions on the DTA or BERR  
signals by driving them inactive high  
When the ZL50074 sees the CS signal go inactive high, it tri-states the data bus, D31 - 0 (D15 - 0 in 16 bit  
Mode) and the DTA and BERR signals. However, if CS goes inactive high before DS goes inactive high, the  
DTA and BERR signals are driven inactive high before they are tri-stated.  
In Intel mode, DTA is always driven to signal the end of a bus cycle, regardless of BERR  
22  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
Address A,  
SIZ1 - 0  
CS  
R/W  
DS  
Hi-Z  
Data  
Hi-Z  
DTA  
BERR  
WAIT  
The cycle termination signals WAIT & DTA are provided for all bus configurations.  
Figure 5 - Read Cycle Operation  
23  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
8.4.2 Write Cycle  
The operation of the write cycle is illustrated in Figure 6.  
The microprocessor asserts the R/W control signal low, to signal a write cycle. It also drives the address A,  
data transfer size, SIZ1 - 0, and chip select logic drives the CS signal active low to select the ZL50074  
The microprocessor then drives the data bus, D31 - 0 (D15 - 0 in 16 bit Mode) with the data to be written,  
and then drives the DS signal active low, to signal the start of the bus cycle. The DS signal is held low for the  
duration of the bus cycle  
WAIT is asserted active low  
The ZL50074 transfers the data presented on the data bus pins into the indicated memory or register  
location(s). If the address is to an unused area of the memory space, or to the data memory, no data is  
transferred. The microprocessor port cannot write to the Data Memory.  
The ZL50074 then de-asserts WAIT, and asserts either DTA or BERR, depending on the validity of the data  
transfer  
When the microprocessor observes the active low state of the DTA or the BERR signal, it terminates the bus  
cycle by driving the DS pin inactive high  
When the ZL50074 sees the DS signal go inactive high, it removes the assertions on the DTA or BERR  
signals by driving them inactive high  
When the ZL50074 sees the CS signal go inactive high, it tri-states the DTA and BERR signals. However, if  
CS goes inactive high before DS goes inactive high, the DTA and BERR signals are driven inactive high  
before they are tri-stated.  
In Intel mode, DTA is always driven to signal the end of a bus cycle, regardless of BERR  
Address  
SIZ1 - 0  
CS  
R/W  
DS  
Data  
DTA  
Hi-Z  
BERR  
WAIT  
The cycle termination signals WAIT & DTA are provided for all bus configurations.  
Figure 6 - Write Cycle Operation  
24  
Zarlink Semiconductor Inc.  
ZL50074  
9.0 Power-up and Initialization of the ZL50074  
9.1 Device Reset and Initialization  
Data Sheet  
The PWR pin is used to reset the ZL50074. When this pin is low, the following functions are performed:  
Asynchronously puts the microprocessor port in a reset state  
Tristates all of the output streams (SToA0 - 31, SToB0 - 31, SToC0 - 31, SToD0 - 31)  
Preloads all of the registers with their default values (refer to the individual registers for default values)  
Clears all internal counters  
9.2 Power Supply Sequencing  
The ZL50074 has two separate power supplies: V  
(3.3V) and V  
(1.8V). The recommended power-up  
DD_IO  
DD_CORE  
sequence is for V  
to be applied first, followed by the V  
supply. V  
should not lead V  
DD_CORE DD_IO  
DD_IO  
DD_CORE  
supply by more than 0.3V. Both supplies may be powered-down simultaneously.  
9.3 Initialization  
Upon power up, the ZL50074 should be initialized as follows:  
Assert PWR to low immediately after power is applied  
Set the TRST pin low to disable the JTAG TAP controller  
Deassert the PWR pin.  
Apply the Master Clock Input (CKi0) and Master Frame Pulse Input (FPi0) to the values defined by the  
CK_SEL1 - 0 pins  
Note: After the PWR reset is removed, and on the application of a suitable master clock input, it takes  
approximately 1ms for the internal initialization to complete  
Automatic block initialization of the Connection Memory to all zeros occurs, without microprocessor  
intervention  
All Group Control Registers are preset to 000C000C , corresponding to no link inversions, no fractional  
H
output bit advancements, internal clock source, and no input sample point delays  
The Input Clock Control Register is preset to 0DB , corresponding to:  
H
-
-
-
All clock inputs set to negative logic sense  
All frame pulse inputs set to negative logic sense  
All input frame pulses set to ST-BUS timing  
The Output Clock Control Register is pre-set to 060D1C3C , corresponding to:  
H
-
-
-
-
-
All clock outputs set to negative logic sense  
All frame pulse outputs set to negative logic sense  
All output frame pulses set to ST-BUS timing  
All output clock source selections to internal  
Clock outputs, CKo0 - 3 are preset to rates of 65MHz, 32MHz, 16MHz and 8MHz, respectively  
Global Bit Rate Register is set to 00, corresponding to a bit rate of 8 Mbps  
Note: If the master clock input, CKi0, is not available, the microprocessor port will assert BERR on all accesses and  
read cycles.  
25  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
10.0 IEEE 1149.1 Test Access Port  
The JTAG test port is implemented to meet the mandatory requirements of the IEEE 1149.1 (JTAG) standard. The  
operation of the boundary-scan circuity is controlled by an external Test Access Port (TAP) Controller.  
The ZL50074 uses the public instructions defined in IEEE 1149.1, with the provision of a 16-bit Instruction Register,  
and three scannable Test Data Registers: Boundary Scan Register, Bypass Register and Device Identification  
Register.  
10.1 Test Access Port (TAP)  
The Test Access Port (TAP) accesses the ZL50074 test functions. The interface consists of four input and one  
output signal. as follows:  
Test Clock (TCK) - TCK provides the clock for the test logic. The TCK does not interfere with any on-chip  
clock and thus remains independent in the functional mode. The TCK permits shifting of test data into or out  
of the Boundary-Scan register cells concurrently with the operation of the device and without interfering with  
the on-chip logic.  
Test Mode Select (TMS) - The TAP Controller uses the logic signals received at the TMS input to control  
test operations. The TMS signals are sampled at the rising edge of the TCK pulse. This pin is internally  
pulled to V  
when it is not driven from an external source.  
DD_IO  
Test Data Input (TDi) - Serial input data applied to this port is fed either into the instruction register or into a  
test data register, depending on the sequence previously applied to the TMS input. Both registers are  
described in a subsequent section. The received input data is sampled at the rising edge of TCK pulses.  
This pin is internally pulled to V  
when it is not driven from an external source.  
DD_IO  
Test Data Output (TDo) - Depending on the sequence previously applied to the TMS input, the contents of  
either the instruction register or data register are serially shifted out towards the TDo. The data out of the  
TDo is clocked on the falling edge of the TCK pulses. When no data is shifted through the boundary scan  
cells, the TDo driver is set to a high impedance state.  
Test Reset (TRST) - Resets the JTAG scan structure. This pin is internally pulled to V  
when it is not  
DD_IO  
driven from an external source. When JTAG is not in use, this pin must be tied low for normal operation.  
The TAP signals are only applied when the ZL50074 is required to be in test mode. When in normal, non-test mode,  
TRST must be connected low to disable the test logic. The remaining test pins may be left unconnected.  
10.2 Instruction Register  
The ZL50074 uses the public instructions defined in the IEEE 1149.1 standard. The JTAG interface contains a  
sixteen bit instruction register. Instructions are serially loaded into the instruction register from the TDi when the  
TAP controller is in its shifted-OR state. These instructions are subsequently decoded to achieve two basic  
functions: to select the test data register that may operate while the instruction is current and to define the serial test  
data register path that is used to shift data between TDi and TDo during register scanning.  
26  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
10.3 Test Data Register  
As specified in the IEEE 1149.1 standard, the ZL50074 JTAG Interface contains three test data registers:  
The Boundary-Scan Register - The Boundary-Scan register consists of a series of Boundary-Scan cells  
arranged to form a scan path around the boundary of the ZL50074 core logic  
The Bypass Register - The Bypass register is a single stage shift register that provides a one-bit path from  
TDi to TDo  
The Device Identification Register - The JTAG device ID for the ZL50074 is C39A14B  
H
Version  
<31:28>  
<27:12>  
<11:1>  
<0>  
0000  
Part Number  
Manufacturer ID  
LSB  
1100 0011 1001 1010  
0001 0100 101  
1
10.4 Boundary Scan Description Language (BSDL)  
A Boundary Scan Description Language (BSDL) file is available from Zarlink Semiconductor to aid in the use of the  
IEEE 1149.1 test interface.  
11.0 Memory Map of ZL50074  
The memory map for the ZL50074 is given in Table 12.  
Address (Hex)  
Description  
00000 - 1FFFF  
20000 - 27FFF  
28000 - 2FFFF  
30000 - 401FF  
40200 - 4027F  
40280 - 40283  
40284 - 40287  
40288 - 4028B  
4028C - 4028F  
40290 - 40293  
40294 - 7FFFF  
Connection Memory  
Invalid Address. Access causes Bus error (BERR)  
Data Memory: Read only; Bus error on write (BERR)  
Invalid Address. Access causes Bus error (BERR)  
Group Control Registers  
Input Clock Control Register  
Output Clock Control Register  
Block Init Register  
Block Init Enable  
Global Rate Control Register  
Invalid Address. Access causes Bus error (BERR)  
Table 12 - Memory Map  
27  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
12.0 Connection Memory  
Address range 00000 - 1FFFF hex.  
On power-up, all Connection Memory locations are initialized automatically to 00000000 , using the Block  
H
Initialization feature, see Section 15.3 and Section 15.4.  
The 32 bit Connection Memory has 32,768 locations. Each 32 bit long-word is used to program the desired source  
data and any other per-channel characteristics of one output time-slot.  
The memory map for the Connection Memory is sub-divided into 32 blocks, each corresponding to one of the  
possible 32 output stream group numbers. The address ranges for these blocks are illustrated in Table 13.  
Start  
Address  
(Hex)  
Start  
Address  
(Hex)  
Output  
Group  
Address Range  
(Hex)  
Output  
Group  
Address Range  
(Hex)  
0
1
000000  
001000  
002000  
003000  
004000  
005000  
006000  
007000  
008000  
009000  
00A000  
00B000  
00C000  
00D000  
00E000  
00F000  
000000 - 000FFF  
001000 - 001FFF  
002000 - 002FFF  
003000 - 003FFF  
004000 - 004FFF  
005000 - 005FFF  
006000 - 006FFF  
007000 - 007FFF  
008000 - 008FFF  
009000 - 009FFF  
00A000 - 00AFFF  
00B000 - 00BFFF  
00C000 - 00CFFF  
00D000 - 00DFFF  
00E000 - 00EFFF  
00F000 - 00FFFF  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
010000  
011000  
012000  
013000  
014000  
015000  
016000  
017000  
018000  
019000  
01A000  
01B000  
01C000  
01D000  
01E000  
01F000  
010000 - 010FFF  
011000 - 011FFF  
012000 - 012FFF  
013000 - 013FFF  
014000 - 014FFF  
015000 - 015FFF  
016000 - 016FFF  
017000 - 017FFF  
018000 - 018FFF  
019000 - 019FFF  
01A000 - 01AFFF  
01B000 - 01BFFF  
01C000 - 01CFFF  
01D000 - 01DFFF  
01E000 - 01EFFF  
01F000 - 01FFFF  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Table 13 - Connection Memory Stream Control Mapping  
28  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
The control of each output stream group, SToAn, SToBn, SToCn and SToDn depends on the programmed Global  
Bit Rate Register. The address offset range for each group is illustrated in Table 14.  
Output Group Data Rate  
Timeslot Range  
Output Stream  
Stream Address Offset Range (Hex)  
65 Mbps  
0 - 1023  
SToAn  
SToBn, Cn, Dn  
SToAn  
00000 - 00FFF  
N/A  
32 Mbps  
16 Mbps  
0 - 511  
0 - 255  
00000 - 007FF  
00800 - 00FFF  
N/A  
SToBn  
SToCn, Dn  
SToAn  
00000 - 003FF  
00400 - 007FF  
00800 - 00BFF  
00C00 - 00FFF  
00000 - 001FF  
00200 - 003FF  
00400 - 005FF  
00600 - 007FF  
00800 - 00FFF  
SToBn  
SToCn  
SToDn  
8 Mbps  
0 - 127  
SToAn  
SToBn  
SToCn  
SToDn  
N/A  
BERR  
Table 14 - Output Control at Various Output Rates  
The address range for a particular stream is given by adding the group start address, as indicated in Table 14, to  
the appropriate stream offset range, as indicated in Table 15. For example, the Connection Memory address range  
for SToB12 operating at 32 Mbps, is 00C800-00CFFF.  
Control of each channel timeslot within each stream, offset timeslot number, timeslot address offset, range of 4  
addresses is shown in the table below.  
Timeslot  
Address  
Offset hex  
SToAn  
SToBn  
SToCn  
SToDn  
0
1
0
1
0
1
0
1
000  
004  
008  
-
2
2
2
2
-
-
-
-
126  
127  
128  
129  
-
126  
127  
128  
129  
-
126  
127  
128  
129  
-
126  
127  
128  
129  
-
1F8  
1FC  
200  
204  
-
254  
255  
256  
254  
255  
256  
254  
255  
254  
255  
3F8  
3FC  
400  
Table 15 - Stream Offset Range  
29  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
Timeslot  
Address  
Offset hex  
SToAn  
SToBn  
SToCn  
SToDn  
257  
-
257  
-
404  
-
-
-
510  
511  
512  
513  
-
510  
511  
7F8  
7FC  
800  
804  
-
1021  
1022  
1023  
FF4  
FF8  
FFC  
Table 15 - Stream Offset Range (continued)  
12.1 Connection Memory Bit Functions  
The bit functions of the connection memory are illustrated in Table 16.  
External Read/Write Address: 000000H  
Reset Value: 0000H  
31  
30  
29  
28  
V/D  
12  
27  
26  
25  
24  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
PCF  
2
PCF  
1
PCF  
0
ICL  
1
ICL  
0
OCL  
1
OCL  
0
15  
0
14  
13  
11  
10  
9
8
7
6
5
4
3
2
1
0
GR  
4
GR  
3
GR  
2
GR  
1
GR  
0
CH  
9
CH  
8
CH  
7
CH  
6
CH  
5
CH  
4
CH  
3
CH  
2
CH 1  
ST1  
CH 0  
ST0  
Bit  
Name  
PCF2 - 0  
Description  
31 - 29  
Per Channel Function  
PCF2 - 0  
Function  
Description  
000  
001  
010  
011  
100  
101  
110  
111  
OT  
FH  
Output is tri-stated  
Output drives high always  
Output is in message mode  
MSG  
VAR  
CD  
Connection is in variable delay mode  
Connection is in constant delay mode  
PRBS Generator  
PRBS  
OT  
Output is tri-stated  
OT  
Output is tri-stated  
28 - 15  
Unused  
Reserved. In normal functional mode, these bits MUST be set to zero.  
Table 16 - Connection Memory Bits (CMB)  
30  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
External Read/Write Address: 000000H  
Reset Value: 0000H  
31  
30  
29  
28  
V/D  
12  
27  
26  
25  
24  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
PCF  
2
PCF  
1
PCF  
0
ICL  
1
ICL  
0
OCL  
1
OCL  
0
15  
0
14  
13  
11  
10  
9
8
7
6
5
4
3
2
1
0
GR  
4
GR  
3
GR  
2
GR  
1
GR  
0
CH  
9
CH  
8
CH  
7
CH  
6
CH  
5
CH  
4
CH  
3
CH  
2
CH 1  
ST1  
CH 0  
ST0  
Bit  
Name  
Description  
14 - 10  
9 - 0  
GR4 - 0  
CH9 - 0  
Group Selection. These bits define the input/source serial stream number (31 - 0).  
Channel Selection. These bits define the input/source channel number, depending on  
the data rate. For 65.536 Mbps bits 9 - 0 are used to access the 1024 channels.  
For 32.768 Mbps bits 9 - 1 are used to access the 512 channels. Bit 0 is used to select  
stream ‘A’ (0) or stream ‘B’ (1)  
For 16.869 Mbps bits 9 - 2 are used to access the 256 channels. Bits 1 - 0 are used to  
select stream ‘A’ (00), ‘B’ (01), ‘C’ (10) or ‘D’ (11)  
For 8.192 Mbps bits 9 - 3 are used to access the 128 channels. Bit 2 MUST be set to 0.  
Bits 1 - 0 are used to select stream ‘A’ (00), ‘B’ (01), ‘C’ (10) or ‘D’ (11)  
Table 16 - Connection Memory Bits (CMB) (continued)  
13.0 Connection Memory LSB  
The Connection Memory Least Significant Byte field is provided to give a convenient alternative way to modify the  
output data for a stream in message mode. In this memory address range, all of the connection memory least  
significant bytes (bits 7 - 0) are available for read/write in consecutive address locations. This feature is provided for  
programming convenience. It can allow higher programming bandwidth on message mode streams. For example,  
one longword access to this memory space can read or set the message bytes in four consecutive connection  
memory locations. Access to this memory space is big-endian, with the most significant bytes on the data bus  
accessing the lower address of the connection memory. Addressing into each of the streams is illustrated in Table  
17.  
Start  
Address  
(Hex)  
Start  
Address  
(Hex)  
Output  
Group  
Address Range  
(Hex)  
Output  
Group  
Address Range  
(Hex)  
0
1
2
3
4
5
6
7
8
9
020000  
020400  
020800  
020C00  
021000  
021400  
021800  
021C00  
022000  
022400  
020000 - 0203FF  
020400 - 0207FF  
020800 - 020BFF  
020C00 - 020FFF  
021000 - 0213FF  
021400 - 0217FF  
021800 - 021BFF  
021C00 - 021FFF  
022000 - 0223FF  
022400 - 0227FF  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
024000  
024400  
024800  
024C00  
025000  
025400  
025800  
025C00  
026000  
026400  
024000 - 0243FF  
024400 - 0247FF  
024800 - 024BFF  
024C00 - 024FFF  
025000 - 0253FF  
025400 - 0257FF  
025800 - 025BFF  
025C00 - 025FFF  
026000 - 0263FF  
026400 - 0267FF  
Table 17 - Connection Memory LSB Stream Control Mapping  
31  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
Start  
Address  
(Hex)  
Start  
Address  
(Hex)  
Output  
Group  
Address Range  
Output  
Group  
Address Range  
(Hex)  
(Hex)  
10  
11  
12  
13  
14  
15  
022800  
022C00  
023000  
023400  
023800  
023C00  
022800 - 022BFF  
022C00 - 022FFF  
023000 - 0233FF  
023400 - 0237FF  
023800 - 023BFF  
023C00 - 023FFF  
26  
27  
28  
29  
30  
31  
026800  
026C00  
027000  
027400  
027800  
027C00  
026800 - 026BFF  
026C00 - 026FFF  
027000 - 0273FF  
027400 - 0277FF  
027800 - 027BFF  
027C00 - 027FFF  
Table 17 - Connection Memory LSB Stream Control Mapping  
Output Group Data Rate  
Timeslot Range  
Output Stream  
Stream Address Offset Range (Hex)  
65 Mbps  
0 - 1023  
SToAn  
SToBn, Cn, Dn  
SToAn  
00000 - 003FF  
N/A  
32 Mbps  
16 Mbps  
0 - 511  
0 - 255  
00000 - 001FF  
00200 - 003FF  
N/A  
SToBn  
SToCn, Dn  
SToAn  
00000 - 000FF  
00100 - 001FF  
00200 - 002FF  
00300 - 003FF  
00000 - 0007F  
00080 - 000FF  
00100 - 0017F  
00180 - 001FF  
00200 - 003FF  
SToBn  
SToCn  
SToDn  
8 Mbps  
0 - 127  
SToAn  
SToBn  
SToCn  
SToDn  
N/A  
BERR  
Table 18 - Connection Memory LSB Output Group Control  
Within each stream group, the control of each of the actual output groups depends on the output rate programmed  
into the Group Control Registers. The address offsets to these control areas for each of the four output groups are  
illustrated in Table 18.  
32  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
14.0 Data Memory  
The data memory field is a read only address range used to monitor the data being received by the input streams.  
Addressing into each of the streams is illustrated in Table 19.  
Start  
Address  
(Hex)  
Start  
Address  
(Hex)  
Input  
Address Range  
(Hex)  
Input  
Address Range  
(Hex)  
Group  
Group  
0
1
028000  
028400  
028800  
028C00  
029000  
029400  
029800  
029C00  
02A000  
02A400  
02A800  
02AC00  
02B000  
02B400  
02B800  
02BC00  
028000 - 0283FF  
028400 - 0287FF  
028800 - 028BFF  
028C00 - 028FFF  
029000 - 0293FF  
029400 - 0297FF  
029800 - 029BFF  
029C00 - 029FFF  
02A000 - 02A3FF  
02A400 - 02A7FF  
02A800 - 02ABFF  
02AC00 - 02AFFF  
02B000 - 02B3FF  
02B400 - 02B7FF  
02B800 - 02BBFF  
02BC00 - 02BFFF  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
02C000  
02C400  
02C800  
02CC00  
02D000  
02D400  
02D800  
02DC00  
02E000  
02E400  
02E800  
02EC00  
02F000  
02F400  
02F800  
02FC00  
02C000 - 02C3FF  
02C400 - 02C7FF  
02C800 - 02CBFF  
02CC00 - 02CFFF  
02D000 - 02D3FF  
02D400 - 02D7FF  
02D800 - 02DBFF  
02DC00 - 02DFFF  
02E000 - 02E3FF  
02E400 - 02E7FF  
02E800 - 02EBFF  
02EC00 - 02EFFF  
02F000 - 02F3FF  
02F400 - 02F7FF  
02F800 - 02FBFF  
02FC00 - 02FFFF  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Table 19 - Data Memory Stream Control Mapping  
Within each stream group, the mapping of each of the actual input groups, STiA, STiB, STiC and STiD, depends on  
the device data rate programmed into the Global Control Register. The address offsets to these data areas for each  
of the input groups is illustrated in Table 20.  
Input Group Data Rate Time-slot Range  
Output Streams  
Address Offset Range (Hex)  
65 Mbps  
0 - 1023  
SToAn  
SToBn  
SToCn  
SToDn  
SToAn  
SToBn  
SToCn  
SToDn  
00000 - 003FF  
N/A  
N/A  
N/A  
32 Mbps  
0 - 511  
00000 - 001FF  
00200 - 003FF  
N/A  
N/A  
Table 20 - Data Memory Stream Access  
33  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
Input Group Data Rate Time-slot Range  
Output Streams  
Address Offset Range (Hex)  
16 Mbps  
0 - 255  
0 - 127  
N/A  
SToAn  
SToBn  
SToCn  
SToDn  
SToAn  
SToBn  
SToCn  
SToDn  
BERR  
00000 - 000FF  
00100 - 001FF  
00200 - 002FF  
00300 - 003FF  
00000 - 0007F  
00080 - 000FF  
00100 - 0017F  
00180 - 001FF  
00200 - 003FF  
8 Mbps  
Table 20 - Data Memory Stream Access  
The address ranges for the data memory portion corresponding to each of the actual input groups, STiA, STiB,  
STiC and STiD for any particular input stream number is calculated by adding the Start Address for the particular  
stream, as indicated in Table 19, to the appropriate Address Offset Range, as indicated in Table 20. The time-slots  
map linearly into the appropriate address offset range. (i.e. timeslots 0, 1, 2, ... map into addresses 00000, 00001,  
00002, ...)  
The entire data memory is a read only structure. Any write attempts will result in a bus error. BERR is driven active  
low to terminate the bus cycle.  
15.0 Group Control Registers  
The ZL50074 addresses the issues of a simple programming model and automatic stream configuration, by  
defining a basic switching bit rate of 65.536 Mbps, and by grouping the I/O streams depending on the rate they are  
programmed.  
The Group Control Registers are provided for setting the operating characteristics of the TDM input and output  
streams. All of the Group Control Registers are mapped long-word aligned on 32 bit boundaries in the memory  
space. Each of the 32 registers is used to control one stream. The mapping of the Group Control Registers to the  
I/O stream numbers is illustrated in Table 21. The bit functions of each of the Group Control Registers are illustrated  
in Table 22.  
TDM Group  
Group Control Register Address (Hex)  
0
1
40200-40203  
40204-40207  
40208-4020B  
4020C-4020F  
:
2
3
:
:
:
29  
30  
31  
40274-40277  
40278-4027B  
4027C-4027F  
Table 21 - Group Control Register Addressing  
34  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
External Read/Write Address: 40200H - 4027FH  
Reset Value: 000C000CH  
31  
0
30  
0
29  
0
28  
0
27  
0
26  
0
25  
0
24  
0
23  
0
22  
OSI  
6
21  
20  
19  
18  
17  
16  
OSBA  
1
OSBA  
0
OSBR  
1
OSBR  
0
OSSCR  
1
OSSCR  
0
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
8
7
5
4
3
2
1
0
ISI  
ISPD  
4
ISPD  
3
ISPD  
2
ISPD1  
ISPD0  
ISBR  
1
ISBR  
0
ISSRC  
1
ISSRC  
0
Bit  
Name  
Description  
31 - 23  
22  
Unused  
OSI  
Reserved. In normal functional mode, these bits MUST be set to zero.  
Output Stream Invertion  
For normal operation, this bit is set low.  
To invert the output stream, set this bit high.  
21 - 20  
OSBA1 - 0  
Output Stream Bit Advancement  
OSBA1 - 0  
Non-65 Mbps  
65 Mbps  
00  
01  
10  
11  
0 ns  
0 ns  
3.8 ns  
7.6 ns  
11.4 ns  
7.6 ns  
15.2 ns  
22.8 ns  
19 - 18  
17 - 16  
Unused  
Reserved. In normal functional mode, these bits MUST be set to zero.  
OSSRC1 - 0 Output Stream Clock Source Select  
OSSRC1 - 0  
Output Timing Source  
00  
01  
10  
11  
Internal System Clock  
CKi0 and FPi0  
CKi1 and FPi1  
CKi2 and FPi2  
15 - 10  
9
Unused  
ISI  
Reserved. In normal functional mode, these bits MUST be set to zero.  
Input Stream Invertsion  
For normal operation, this bit is set low.  
To invert the input stream, set this bit high.  
8 - 4  
3 - 2  
ISPD4 - 0  
Unused  
Input Sampling Point Delay  
Default Sampling Point is 3/4. Adjust according to Figure 2 on page 16.  
Reserved. In normal functional mode, these bits MUST be set to zero.  
Table 22 - Group Control Register  
35  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
External Read/Write Address: 40200H - 4027FH  
Reset Value: 000C000CH  
31  
0
30  
0
29  
0
28  
0
27  
0
26  
0
25  
0
24  
0
23  
0
22  
OSI  
6
21  
20  
19  
18  
17  
16  
OSBA  
1
OSBA  
0
OSBR  
1
OSBR  
0
OSSCR  
1
OSSCR  
0
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
8
7
5
4
3
2
1
0
ISI  
ISPD  
4
ISPD  
3
ISPD  
2
ISPD1  
ISPD0  
ISBR  
1
ISBR  
0
ISSRC  
1
ISSRC  
0
Bit  
Name  
Description  
1 - 0  
ISSRC1 - 0  
Input Stream Clock Source Select  
ISSRC1 - 0  
Input Timing Source  
00  
01  
10  
11  
Internal System Clock  
CKi0 and FPi0  
CKi1 and FPi1  
CKi2 and FPi2  
Table 22 - Group Control Register (continued)  
The Group Control Register is a static control register. Changes to bit settings may disrupt data flow on the selected  
port for a maximum of 2 frames.  
15.1 Input Clock Control Register  
The Input Clock Control Register is used to select the logic sense of the input clock.  
External Read/Write Address: 40280H  
Reset Value: 0DBH  
31  
0
30  
0
29  
0
28  
0
27  
0
26  
0
25  
0
24  
0
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
7
6
5
4
3
2
1
0
GCIS  
EL2  
FPIPO  
L2  
CKIP  
OL2  
GCIS  
EL1  
FPIP  
OL1  
CKIP  
OL1  
GCIS  
EL0  
FPIP  
OL0  
CKIP  
OL0  
Bit  
Name  
Description  
31 - 9  
31 - 9  
8
Unused  
Unused  
Reserved. In normal functional mode, these bits MUST be set to zero.  
Reserved. In normal functional mode, these bits MUST be set to zero.  
GCISEL2 GCI-Bus Selection  
When this bit is low, FPi2 is set for ST-BUS mode.  
When this bit is high, FPi2 is set for GCI-Bus mode.  
Table 23 - Input Clock Control Register  
36  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
External Read/Write Address: 40280H  
Reset Value: 0DBH  
31  
0
30  
0
29  
0
28  
0
27  
0
26  
0
25  
0
24  
0
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
7
6
5
4
3
2
1
0
GCIS  
EL2  
FPIPO  
L2  
CKIP  
OL2  
GCIS  
EL1  
FPIP  
OL1  
CKIP  
OL1  
GCIS  
EL0  
FPIP  
OL0  
CKIP  
OL0  
Bit  
Name  
FPIPOL2 Frame Pulse Polarity Selection  
Description  
7
When this bit is low, FPi2 is set for positive.  
When this bit is high, FPi2 is set for negative.  
6
5
4
3
2
1
0
CKIPOL2 Clock Polarity Selection  
When this bit is low, CKi2 is set for the positive clock edge.  
When this bit is high, CKi2 is set for negative.  
GCISEL1 GCI-Bus Selection  
When this bit is low, FPi1 is set for ST-BUS mode.  
When this bit is high, FPi1 is set for GCI-Bus mode.  
FPIPOL1 Frame Pulse Polarity Selection  
When this bit is low, FPi1 is set for the positive clock edge.  
When this bit is high, FPi1 is set for negative.  
CKIPOL1 Clock Polarity Selection  
When this bit is low, CKi1 is set for the positive clock edge.  
When this bit is high, CKi1 is set for negative.  
GCISEL0 GCI-Bus Selection  
When this bit is low, FPi0 is set for ST-BUS mode.  
When this bit is high, FPi0 is set for GCI-Bus mode.  
FPIPOL2 Frame Pulse Polarity Selection  
When this bit is low, FPi0 is set for the positive clock edge.  
When this bit is high, FPi0 is set for negative.  
CKIPOL2 Clock Polarity Selection  
When this bit is low, CKi0 is set for the positive clock edge.  
When this bit is high, CKi0 is set for negative.  
Table 23 - Input Clock Control Register (continued)  
37  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
15.2 Output Clock Control Register  
The Output Clock Control Register is used to select the desired source, frequency, and logic sense of the output  
clocks. The bit functions of the Output Clock Control Register are illustrated in Table 24.  
External Read/Write Address: 40284H  
Reset Value: 060D1C3CH  
31  
0
30  
0
29  
0
28  
0
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
GCOSE FPOPOL CKOP CKO3RA  
CKO3  
RATE0  
CKO3S CKO3S GCOSE FPOPOL CKOPO CKO2 CKO2R  
L3  
11  
3
OL3  
9
TE1  
8
RC1  
6
RC0  
5
L2  
4
2
3
L2  
2
RATE1 ATE0  
15  
14  
13  
12  
10  
7
1
0
GCOS FPOPO CKOPO  
CKO2S CKO2S GCOSE FPO CKOPO CKO1RA CKO1 CKO1SR  
CKO1  
SRC0  
CKO0R CKO0R CKO0S CKO0S  
ATE1 ATE0 RC1 RC0  
EL0  
L0  
L0  
RC1  
RC0  
L1  
POL1  
L1  
TE1  
RATE0  
C1  
Bit  
Name  
Description  
Reserved. In normal functional mode, these bits MUST be set to zero.  
GCOSEL GCI-Bus Selection  
31 - 28  
27  
Unused  
3
When this bit is low, FPo3 is set for ST-BUS mode.  
When this bit is high, FPo3 is set for GCI-Bus mode.  
26  
25  
FPOPOL Frame Pulse Polarity Selection  
When this bit is low, FPo3 is set for the positive clock edge.  
When this bit is high, FPo3 is set for the negative clock edge.  
3
CKOPOL Clock Polarity Selection  
When this bit is low, CKo3 is set for the positive clock edge.  
When this bit is high, CKo3 is set for the negative clock edge.  
3
24 - 23  
CKO3RA Output Clock Rate for CKo3 and FPo3  
TE1 - 0  
The output clock rate can not exceed the selected input clock rate. All rates are available  
when the internal system clock is selected.  
CKO3RATE1 - 0  
CKo3  
FPo3  
00  
01  
10  
11  
8.192 MHz  
16.384 MHz  
32.768 MHz  
65.536 MHz  
120 ns  
60 ns  
30 ns  
15 ns  
Table 24 - Output Clock Control Register  
38  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
External Read/Write Address: 40284H  
Reset Value: 060D1C3CH  
31  
0
30  
0
29  
0
28  
0
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
GCOSE FPOPOL CKOP CKO3RA  
CKO3  
RATE0  
CKO3S CKO3S GCOSE FPOPOL CKOPO CKO2 CKO2R  
L3  
11  
3
OL3  
9
TE1  
8
RC1  
6
RC0  
5
L2  
4
2
3
L2  
2
RATE1 ATE0  
15  
14  
13  
12  
10  
7
1
0
GCOS FPOPO CKOPO  
CKO2S CKO2S GCOSE FPO CKOPO CKO1RA CKO1 CKO1SR  
CKO1  
SRC0  
CKO0R CKO0R CKO0S CKO0S  
ATE1 ATE0 RC1 RC0  
EL0  
L0  
L0  
RC1  
RC0  
L1  
POL1  
L1  
TE1  
RATE0  
C1  
Bit  
Name  
Description  
22 - 21  
CKO3SR Output Clock Source for CKo3 and FPo3  
C1 - 0  
CKO3SRC1 - 0  
Output Timing Source  
00  
01  
10  
11  
Internal System Clock  
CKi0 and FPi0  
CKi1 and FPi1  
CKi2 and FPi2  
20  
19  
GCOSEL GCI-Bus Selection  
2
When this bit is low, FPo2 is set for ST-BUS mode.  
When this bit is high, FPo2 is set for GCI-Bus mode.  
FPOPOL Frame Pulse Polarity Selection  
2
When this bit is low, FPo2 is set for the positive clock edge.  
When this bit is high, FPo2 is set for the negative clock edge.  
18  
CKOPOL Clock Polarity Selection  
When this bit is low, CKo2 is set for the positive clock edge.  
When this bit is high, CKo2 is set for the negative clock edge.  
2
17 - 16  
CKO2RA Output Clock Rate for CKo2 and FPo2  
TE1 - 0  
The output clock rate can not exceed the selected input clock rate. All rates are available  
when the internal system clock is selected.  
CKO2RATE1 - 0  
CKo2  
FPo2  
00  
01  
10  
11  
8.192 MHz  
16.384 MHz  
32.768 MHz  
65.536 MHz  
120 ns  
60 ns  
30 ns  
15 ns  
Table 24 - Output Clock Control Register (continued)  
39  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
External Read/Write Address: 40284H  
Reset Value: 060D1C3CH  
31  
0
30  
0
29  
0
28  
0
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
GCOSE FPOPOL CKOP CKO3RA  
CKO3  
RATE0  
CKO3S CKO3S GCOSE FPOPOL CKOPO CKO2 CKO2R  
L3  
11  
3
OL3  
9
TE1  
8
RC1  
6
RC0  
5
L2  
4
2
3
L2  
2
RATE1 ATE0  
15  
14  
13  
12  
10  
7
1
0
GCOS FPOPO CKOPO  
CKO2S CKO2S GCOSE FPO CKOPO CKO1RA CKO1 CKO1SR  
CKO1  
SRC0  
CKO0R CKO0R CKO0S CKO0S  
ATE1 ATE0 RC1 RC0  
EL0  
L0  
L0  
RC1  
RC0  
L1  
POL1  
L1  
TE1  
RATE0  
C1  
Bit  
Name  
Description  
15 - 14  
CKO2SR Output Clock Source for CKo2 and FPo2  
C1 - 0  
CKO2SRC1 - 0  
Output Timing Source  
00  
01  
10  
11  
Internal System Clock  
CKi0 and FPi0  
CKi1 and FPi1  
CKi2 and FPi2  
13  
12  
GCOSEL GCI-Bus Selection  
1
When this bit is low, FPo1 is set for ST-BUS mode.  
When this bit is high, FPo1 is set for GCI-Bus mode.  
FPOPOL Frame Pulse Polarity Selection  
1
When this bit is low, FPo1 is set for the positive clock edge.  
When this bit is high, FPo1 is set for the negative clock edge.  
11  
CKOPOL Clock Polarity Selection  
When this bit is low, CKo1 is set for the positive clock edge.  
When this bit is high, CKo1 is set for the negative clock edge.  
1
10 - 9  
CKO1RA Output Clock Rate for CKo1 and FPo1  
TE1 - 0  
The output clock rate can not exceed the selected input clock rate. All rates are available  
when the internal system clock is selected.  
CKO1RATE1 - 0  
CKo1  
FPo1  
00  
01  
10  
11  
8.192 MHz  
16.384 MHz  
32.768 MHz  
65.536 MHz  
120 ns  
60 ns  
30 ns  
15 ns  
Table 24 - Output Clock Control Register (continued)  
40  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
External Read/Write Address: 40284H  
Reset Value: 060D1C3CH  
31  
0
30  
0
29  
0
28  
0
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
GCOSE FPOPOL CKOP CKO3RA  
CKO3  
RATE0  
CKO3S CKO3S GCOSE FPOPOL CKOPO CKO2 CKO2R  
L3  
11  
3
OL3  
9
TE1  
8
RC1  
6
RC0  
5
L2  
4
2
3
L2  
2
RATE1 ATE0  
15  
14  
13  
12  
10  
7
1
0
GCOS FPOPO CKOPO  
CKO2S CKO2S GCOSE FPO CKOPO CKO1RA CKO1 CKO1SR  
CKO1  
SRC0  
CKO0R CKO0R CKO0S CKO0S  
ATE1 ATE0 RC1 RC0  
EL0  
L0  
L0  
RC1  
RC0  
L1  
POL1  
L1  
TE1  
RATE0  
C1  
Bit  
Name  
Description  
8 - 7  
CKO1SR Output Clock Source for CKo1 and FPo1  
C1 - 0  
CKO1SRC1 - 0  
Output Timing Source  
00  
01  
10  
11  
Internal System Clock  
CKi0 and FPi0  
CKi1 and FPi1  
CKi2 and FPi2  
6
5
GCOSEL GCI-Bus Selection  
0
When this bit is low, FPo0 is set for ST-BUS mode.  
When this bit is high, FPo0 is set for GCI-Bus mode.  
FPOPOL Frame Pulse Polarity Selection  
0
When this bit is low, FPo0 is set for the positive clock edge.  
When this bit is high, FPo0 is set for the negative clock edge.  
4
CKOPOL Clock Polarity Selection  
When this bit is low, CKo0 is set for the positive clock edge.  
When this bit is high, CKo0 is set for the negative clock edge.  
0
3 - 2  
CKO0RA Output Clock Rate for CKo0 and FPo0  
TE1 - 0  
CKO0RATE1 - 0  
CKo0  
FPo0  
00  
01  
10  
11  
8.192 MHz  
16.384 MHz  
32.768 MHz  
65.536 MHz  
120 ns  
60 ns  
30 ns  
15 ns  
Table 24 - Output Clock Control Register (continued)  
41  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
External Read/Write Address: 40284H  
Reset Value: 060D1C3CH  
31  
0
30  
0
29  
0
28  
0
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
GCOSE FPOPOL CKOP CKO3RA  
CKO3  
RATE0  
CKO3S CKO3S GCOSE FPOPOL CKOPO CKO2 CKO2R  
L3  
11  
3
OL3  
9
TE1  
8
RC1  
6
RC0  
5
L2  
4
2
3
L2  
2
RATE1 ATE0  
15  
14  
13  
12  
10  
7
1
0
GCOS FPOPO CKOPO  
CKO2S CKO2S GCOSE FPO CKOPO CKO1RA CKO1 CKO1SR  
CKO1  
SRC0  
CKO0R CKO0R CKO0S CKO0S  
ATE1 ATE0 RC1 RC0  
EL0  
L0  
L0  
RC1  
RC0  
L1  
POL1  
L1  
TE1  
RATE0  
C1  
Bit  
Name  
Description  
1 - 0  
CKO0SR Output Clock Source for CKo0 and FPo0  
C1 - 0  
CKO0SRC1 - 0  
Output Timing Source  
00  
01  
10  
11  
Internal System Clock  
CKi0 and FPi0  
CKi1 and FPi1  
CKi2 and FPi2  
Table 24 - Output Clock Control Register (continued)  
15.3 Block Init Register  
The Block Init Register is a 32 bit read/write register at address 040288 - 04028B .  
H
The Block Init Register is used during block initialization of the connection memory. A block initialization  
automatically occurs at power-up. However, it is possible to perform a block initialization at any time. During Block  
Initialization, the value of the Block Init Register is copied to all connection memory locations in an operation that  
runs in about 120 µs. If the Block Init Register is modified during a block initialization, the new value used is  
ignored.  
15.4 Block Init Enable Register  
The Block Init Enable Register is a 32 bit read/write register at address 04028C - 04028F .  
H
The Block Init Enable Register is used to initiate a block initialization of the connection memory. A block initialization  
automatically occurs at power-up. Since the Block Init Register is cleared at power-up this automatic block  
initialization will write all zeros to all Connection Memory Bits. However, it is possible to perform a block initialization  
at any time. To begin a block initialization, 31415926 must be written to the Block Init Enable Register. If a block  
H
initialization is signaled while one is in progress, the signal is ignored, and the currently active block initialization is  
allowed to complete.  
The value read back from the Block Init Enable Register is different than the value written. It represents both the  
block initialization status, and the power-up reset initialization status. The meaning of the initialization status bits is  
illustrated in Table 25. The bits 31 - 2 always read back 0.  
42  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
Bit  
Name  
Description  
0
Block Init Status  
0 if Block initialization is completed;  
1 if Block initialization is in progress.  
1
Reset Init Status  
0 if Reset initialization is completed;  
1 if Reset initialization is in progress.  
Table 25 - Block and Power-up Initialization Status Bits  
Any access to the connection memory or the data memory during a block initialization or a reset initialization will  
result in a bus error, BERR. All TDM outputs are tri-stated during any block initialization.  
15.5 Global Rate Control Register  
On power-up, the GBR bits are both set to 0, corresponding to a rate of 8.192 Mbps.  
External Read/Write Address: 040290 - 040293H  
Reset Value: 0000H  
31  
0
30  
0
29  
0
28  
0
27  
0
26  
0
25  
0
24  
0
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CH 1  
GR1  
CH 0  
GR0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit  
Name  
Description  
31 - 2  
1 - 0  
Unused  
GBR  
Reserved. In normal functional mode, these bits MUST be set to zero.  
Global Bit Rate Selection  
GBR 1 - 0  
Input and Output Data Rate  
00  
01  
10  
8 Mbps - Group A, B, C and D  
16 Mbps - Group A, B, C and D  
32 Mbps - Group A and B, groups C and D outputs  
are tristated  
11  
65 Mbps - Group A. group B outputs are tristated  
43  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
1
Absolute Maximum Ratings - Voltages are with respect to ground (VSS) unless otherwise stated.  
2
Characteristics  
Sym  
Min  
Typ  
Max  
Unit  
1
2
3
Chip I/O Supply Voltage  
V
-0.5  
-0.5  
-0.5  
5.0  
5.0  
V
V
V
DD_IO  
Chip Core Supply Voltage  
V
DD_CORE  
Input Voltage (non-5 V tolerant inputs)  
V
V
+
DD_IO  
I_3V  
0.5  
4
5
6
7
Input Voltage (5 V tolerant inputs)  
Continuous Current at digital outputs  
Package power dissipation  
Storage temperature  
V
-0.5  
7.0  
15  
V
mA  
W
I_5V  
I
o
P
2.1  
D
T
- 55  
+125  
°C  
S
Note 1: Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.  
Note 2: Typical figures are at 25°C, VDD_CORE at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not  
subject to production testing.  
Recommended Operating Conditions - Voltages are with respect to ground (VSS) unless otherwise stated.  
1
Characteristics  
Operating Temperature  
Sym  
Min  
Typ  
Max  
Unit  
1
2
3
4
5
T
-40  
1.71  
3.0  
0
25  
1.8  
3.3  
+85  
1.89  
3.6  
°C  
V
OP  
V
DD_CORE  
Positive Supply Core  
Positive Supply I/O  
V
V
DD_IO  
Input Voltage (non-5V tolerant inputs)  
Input Voltage (5V tolerant inputs)  
V
V
V
I_3V  
DD_IO  
V
0
5.5  
I_5V  
Note 1: Typical figures are at 25°C, VDD_CORE at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not  
subject to production testing.  
44  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
DC Electrical Characteristics - Voltages are with respect to ground (VSS) unless otherwise stated.  
1
Characteristics  
Sym  
Min  
Typ  
Max  
Unit  
Test Conditions  
2
1
2
Core Supply Current  
I
500  
62  
mA  
mA  
uA  
W
DD_CORE  
I/O Supply Current  
Leakage Current  
I
Outputs unloaded  
Outputs Unloaded  
DD_IO  
3
I
105  
DDQ  
4
Dynamic Power Dissipation  
Input High Voltage  
Input Low Voltage  
P
1.2  
DD  
5
V
2.0  
V
IH  
6
V
0.8  
5
V
IL  
IL  
3
7
Input Leakage (input pins)  
I
µA  
uA  
µA  
µA  
pF  
V
0<V V  
I
DD_IO  
DD_IO  
8
Input Leakage (bi-directional pins  
Weak Pull-up Current  
Weak Pull-down Current  
Input Pin Capacitance  
Output High Voltage  
I
5
0<V V  
I
BL  
9
I
I
-33  
33  
3
Input at 0V  
Input at V  
PU  
PD  
10  
11  
12  
13  
DD_IO  
C
I
V
2.4  
I
I
= 8mA  
OH  
OH  
Output Low Voltage  
V
0.4  
V
= 8mA  
OL  
OL  
1. Typical figures are at 25°C, VDD_CORE at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not subject to  
production testing.  
2. SToA = 65 Mbps with random patterns. CKo0 = 65 MHz, CKo1 = 32 MHz  
3. Maximum leakage on pins (output or I/O pins in high impedance state) is over an applied voltage (Vin).  
1
AC Electrical Characteristics - Timing Parameter Measurement Voltage Levels - Voltages are with respect to ground  
(VSS) unless otherwise stated.  
Characteristics  
CMOS Threshold  
Sym  
Level  
Unit  
Test Conditions  
1
2
3
V
0.5 V  
V
V
V
CT  
DD_IO  
DD_IO  
DD_IO  
Rise/Fall Threshold Voltage High  
Rise/Fall Threshold Voltage Low  
V
0.7 V  
0.3 V  
HM  
V
LM  
1. Characteristics are over recommended operating conditions unless otherwise stated.  
45  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
1
AC Electrical Characteristics - FPi and CKi Timing  
2
No.  
Characteristic (Figure 7)  
Sym  
Min  
Typ  
Max  
Units  
Notes  
1
2
3
FPi Input Frame Pulse Setup Time  
FPi Input Frame Pulse Hold Time  
t
3
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FPIS  
FPIH  
CKIP  
t
t
CKi Input Clock Period (average  
value, does not consider the  
effects of jitter)  
15  
30  
60  
120  
4
15.26  
30.5  
61  
15.5  
31  
65.536 MHz  
32.768 MHz  
16.384 MHz  
8.192 MHz  
62  
122  
124  
4
5
6
CKi Input Clock High Time  
CKi Input Clock Low Time  
CKi Input Clock Rise/Fall Time  
t
t
CKIH  
t
4
CKIL  
,
0
6
2
rCKI  
t
fCKI  
3
3
3
3
7
CKi Input Clock Cycle to Cycle  
Variation  
t
ns p-p Standard rating  
STi at 65 Mbps  
CVC  
4
ns p-p Standard rating  
STi at 32 Mbps  
10  
ns p-p Standard rating  
STi at 16 Mbps  
20  
ns p-p Standard rating  
STi at 8 Mbps  
20%of  
p-p  
Extended rating.  
With alternate  
t
CKIP  
4
clock source or  
5
high CKi0 rate  
1. Characteristics are over recommended operating conditions unless otherwise stated.  
2. Typical figures are at 25°C, VDD_CORE at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not subject to  
production testing.  
3. When using internal APLL clock source and the CKi0 frequency is less than or equal to the data rate.  
4. When using input clock source CKi2-0 instead of the internal APLL clock source.  
5. When using internal APLL clock source and the CKi0 frequency is higher than or equal to twice the data rate.  
FPi  
tFPIS  
tFPH  
tCKIP  
tCKIH  
tCKIL  
CKi  
trCKI  
tfCKI  
Input Frame Boundary  
Figure 7 - Frame Pulse Input and Clock Input  
46  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
1
AC Electrical Characteristics - FPi and CKi Skew  
2
No.  
Characteristic (Figure 8)  
Sym  
Min  
Typ  
Max  
Units  
Notes  
1
CKi0 to CKi1, 2 Skew  
t
-30  
+30  
ns  
C 50pF  
L
CKSK  
Assume no jitter on input  
clocks  
1. Characteristics are over recommended operating conditions unless otherwise stated.  
2. Typical figures are at 25°C, VDD_CORE at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not subject to  
production testing.  
FPo  
Note: FPo<k>/CKo<k> Clock Source = Internal  
CKi0  
Frame Boundary  
tCKSK  
tCKSK  
CKi1, 2  
Figure 8 - Frame Skew Timing Diagram  
47  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
1
2
AC Electrical Characteristics - Serial Data Timing to CKi  
3
4
No.  
Characteristic (Figure 9)  
Sym  
Min  
Typ  
Max  
Units  
Notes  
1
CKi to CKo Propagation Delay  
t
3
12  
ns  
CKo clock source =  
CKi  
CKD  
3
12  
ns  
CKo Clock source =  
Internal 131MHz  
APLL output  
2
3
4
5
6
STi to posedge CKi setup  
STi to posedge CKi hold  
t
0
7.5  
0
ns  
ns  
ns  
ns  
ns  
SIPS  
SIPH  
SINS  
SINH  
t
t
STi to negedge CKi setup  
STi to negedge CKi hold  
Posedge CKi to Output Data Valid  
t
7.5  
3
5
t
12.5  
SToA  
SIPV  
5
3
3
3
13  
14  
16  
14  
15  
14  
15  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SToB, C, D  
5
7
8
Negedge CKi to Output Data Valid  
t
SToA  
SINV  
5
SToB, C, D  
5
Posedge CKi to Output Data  
tri-state  
t
SToA  
SIPZ  
5
SToB, C, D  
5
9
Negedge CKi to Output Data  
tri-state  
t
SToA  
SINZ  
5
SToB, C, D  
10  
ODE to Output Data tri-state  
t
SToA  
SOZ  
5
C = 30pF, R = 1K  
L
L
11  
ns  
SToB, C, D  
5
C = 30pF, R = 1K  
L
L
5
11  
ODE to Output Data Enable  
t
4.5  
6
15  
20  
ns  
ns  
SToA  
SOE  
5
SToB, C, D  
1. Characteristics are over recommended operating conditions unless otherwise stated.  
2. Data Capture points vary with respect to CKi edge depending on clock rates & fractional delay settings.  
3. All of these specifications refer to ST-BUS inputs and outputs with clock source set to CKi.  
4. Loads on all serial outputs set to 30 pF  
5. Typical figures are at 25°C, VDD_CORE at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not subject to  
production testing.  
48  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
CKi  
tCKD  
CKo  
tSIPS  
tSIPH  
STin  
tSINS  
tSINH  
VALID DATA  
STin  
tSIPV  
STon  
STon  
tSIPZ  
tSINV  
STon  
tSINZ  
STon  
tSOE  
tSOZ  
ODE  
Figure 9 - Serial Data Timing to CKi  
49  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
1
2
AC Electrical Characteristics - Serial Data Timing to CKo  
3
No.  
Characteristic (Figure 10)  
STi to posedge CKo setup  
Sym  
Min  
Typ  
Max  
Units  
Notes  
1
2
3
4
5
tSOPS  
tSOPH  
tSONS  
tSONH  
tSOPV  
7.5  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STi to posedge CKo hold  
STi to negedge CKo setup  
STi to negedge CKo hold  
7.5  
0
Posedge CKo to Output Data Valid  
SToA4  
1
5
5
4
1
SToB, C, D  
4
6
7
8
Negedge CKo to Output Data Valid  
Posedge CKo to Output Data tri-state  
Negedge CKo to Output Data tri-state  
tSONV  
tSOPZ  
tSONZ  
1
5
SToA  
4
4
4
1
5
SToB, C, D  
4
9
SToA  
11  
9
SToB, C, D  
4
SToA  
11  
SToB, C, D  
1. Data Capture points vary with respect to CKo edge depending on clock rates & fractional delay settings.  
2. CKo output set to internal clock source.  
3. Typical figures are at 25°C, VDD_CORE at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not subject to  
production testing  
4. Loads on all serial outputs set to 30 pF  
CKo  
tSOPS  
tSOPH  
STin  
STin  
tSONS  
tSONH  
VALID DATA  
tSOPV  
STon  
STon  
tSOPZ  
tSONV  
STon  
tSONZ  
STon  
Figure 10 - Serial Data Timing to CKo  
50  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
AC Electrical Characteristics - Microprocessor Bus Interface  
1
No  
Characteristics (Figure 11, & Figure 12)  
Sym  
Min Typ  
Max Units  
Notes  
tDSRE  
tCSRE  
tCSS  
1
2
3
4
5
6
DS Recovery  
5
0
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
CS Recovery  
CS asserted setup to DS asserted  
Address, SIZ0-1, R/W setup to DS asserted  
CS hold from DS deasserted  
tADS  
tCSH  
tADH  
Address, SIZ0-1, R/W hold from DS  
deasserted  
tDSR  
7
8
Data valid to DTA asserted on read  
0
ns  
C = 50pF,  
L
2
R = 1k  
L
tDZ  
CS deasserted to Data tri-stated on read  
5
ns  
C = 50pF,  
L
2
R = 1k  
L
tWDS  
tDHW  
tWDD  
9
Data setup to DS asserted on write  
Data hold from DTA asserted on write  
DS asserted to WAIT Asserted  
0
0
ns  
ns  
ns  
10  
11  
9
10  
155  
75  
7
C = 50pF,  
L
2
R = 1k  
L
tAKS  
12  
13  
WAIT deasserted to DTA/BERR asserted  
skew  
ns  
ns  
ns  
ns  
ns  
ns  
C = 50pF,  
L
2
R = 1k  
L
tAKD  
DS asserted to DTA Asserted  
35  
50  
Connection  
Memory  
All other  
registers  
tAKH  
14  
15  
DS deasserted to DTA Deasserted  
CS deasserted to DTA tri-stated  
C = 30pF,  
L
2
R = 1K  
L
tDTHZ  
13  
20  
C = 30pF,  
L
2
R = 1K  
L
tDSK  
16  
17  
BE or UDS/LDS skew  
tBEDS  
BE or UDS/LDS to DS set-up  
0
1. Typical figures are at 25°C, VDD_CORE at 1.8 V and VDD_IO at 3.3 V and are for design aid only: not guaranteed and not subject  
to production testing  
2. High Impedance is measured by pulling to the appropriate rail with RL, with timing corrected to cancel time taken to discharge CL.  
51  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
tDSRE  
DS  
(SIZ0-1)  
tCSRE  
tCSS  
tCSH  
CS  
tADH  
tADS  
VALID  
A18-A1  
R/W,SIZ0-1  
tDZ  
D15-D0  
READ  
VALID READ DATA  
tWDS  
VALID WRITE DATA  
tDSR  
D15-D0  
WRITE  
tDTHZ  
Hi-Z  
tDHW  
Hi-Z  
DTA  
BERR  
tAKD  
tAKH  
tWDD  
tAKS  
WAIT  
Note: Motorola MC68000 and Intel i960 or similar processors are depicted in this diagram.  
Figure 11 - Microprocessor Bus Interface Timing  
tDSR  
DS  
tBEDS  
(BE1-0 or  
UDS, LDS)  
tDSK  
Figure 12 - Intel Mode Timing  
52  
Zarlink Semiconductor Inc.  
ZL50074  
Data Sheet  
1
AC Electrical Characteristics - JTAG Test Port and Reset Pin Timing  
No.  
Characteristic (Figure 13)  
TCK Clock Period  
Sym  
Min  
Typ  
Max  
Units  
Notes  
1
2
t
100  
ns  
MHz  
ns  
TCKP  
TCK Clock Frequency  
TCK Clock Pulse Width High  
TCK Clock Pulse Width Low  
TMS Set-up Time  
t
10  
TCKF  
TCKH  
3
t
20  
20  
10  
10  
20  
60  
4
t
ns  
TCKL  
5
t
ns  
TMSS  
TMSH  
6
TMS Hold Time  
t
ns  
7
TDi Input Set-up Time  
TDi Input Hold Time  
TDo Output Delay  
t
ns  
TDIS  
TDIH  
8
t
ns  
9
t
20  
ns  
CL = 30pF  
TDOD  
10  
11  
TRST pulse width  
t
20  
20  
ns  
TRSTW  
PWR pulse width  
t
ns  
TPWR  
1. Characteristics are over recommended operating conditions unless otherwise stated.  
tTCKL  
tTCKH  
tTCKP  
TCK  
TMS  
tTMSH  
tTMSS  
tTDIS  
tTDIH  
TDi  
tTDOD  
TDo  
tTRSTW  
TRST  
tTPWR  
PWR  
Figure 13 - JTAG Test Port & PWR Reset Timing  
53  
Zarlink Semiconductor Inc.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively  
“Zarlink”) is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the  
application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may  
result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under  
patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified  
that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property  
rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2004, Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

ZL50075

32 K Channel Digital Switch with High Jitter Tolerance, Rate Conversion per Group of 2 Streams (8, 16, 32 or 64 Mbps), and 64 Inputs and 64 Outputs
ZARLINK

ZL50075GAC

32 K Channel Digital Switch with High Jitter Tolerance, Rate Conversion per Group of 2 Streams (8, 16, 32 or 64 Mbps), and 64 Inputs and 64 Outputs
ZARLINK

ZL50075GAG2

32 K Channel Digital Switch with High Jitter Tolerance, Rate Conversion per Group of 2 Streams (8, 16, 32 or 64 Mbps), and 64 Inputs and 64 Outputs
ZARLINK

ZL50110

128, 256 and 1024 Channel CESoP Processors
ZARLINK

ZL50110GAG

Telecom Circuit, 1-Func, PBGA552, 35 X 35 MM, 1.27 MM PITCH, PLASTIC, MS-034BAR-2, BGA-552
MICROSEMI

ZL50110GAG

128, 256 and 1024 Channel CESoP Processors
ZARLINK

ZL50110GAG2

Telecom Circuit, 1-Func, PBGA552, 35 X 35 MM, 1.27 MM PITCH, LEAD FREE, PLASTIC, MS-034BAR-2, BGA-552
MICROSEMI

ZL50110GAG2

128, 256 and 1024 Channel CESoP Processors
ZARLINK

ZL50110_06

128, 256 and 1024 Channel CESoP Processors
ZARLINK

ZL50110_08

128, 256, 512 and 1024 Channel CESoP Processors
ZARLINK

ZL50111

128, 256 and 1024 Channel CESoP Processors
ZARLINK

ZL50111GAG

Telecom Circuit, 1-Func, PBGA552, 35 X 35 MM, 1.27 MM PITCH, PLASTIC, MS-034BAR-2, BGA-552
MICROSEMI