AS4LC1M16ECJ-8/883C [MICROSS]

EDO DRAM, 1MX16, 80ns, CMOS, CDSO44, 0.450 INCH, CERAMIC, SOJ-50/44;
AS4LC1M16ECJ-8/883C
型号: AS4LC1M16ECJ-8/883C
厂家: MICROSS COMPONENTS    MICROSS COMPONENTS
描述:

EDO DRAM, 1MX16, 80ns, CMOS, CDSO44, 0.450 INCH, CERAMIC, SOJ-50/44

动态存储器 CD 内存集成电路
文件: 总22页 (文件大小:195K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
DRAM  
1 MEG x 16PDRERLIMIANARMY  
3.3V, EDO PAGE MODE,  
OPTIONAL EXTENDED REFRESH  
AVAILABLE AS MILITARY  
SPECIFICATIONS  
PIN ASSIGNMENT (Top View)  
MIL-STD 883  
44/50-Pin SOJ/LCC/Gull Wing  
SMD Planned  
450mil  
FEATURES  
JEDEC- and industry-standard x16 timing, functions,  
pinouts and packages  
High-performance CMOS silicon-gate process  
Single +3.3V ±0.3V power supply  
All device pins are TTL-compatible  
Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR),  
HIDDEN  
Vcc  
DQ1  
DQ2  
DQ3  
DQ4  
Vcc  
DQ5  
DQ6  
DQ7  
DQ8  
NC  
1
2
3
4
5
6
7
8
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
Vss  
DQ16  
DQ15  
DQ14  
DQ13  
Vss  
DQ12  
DQ11  
DQ10  
DQ9  
9
10  
11  
BYTE WRITE access cycles  
NC  
1,024-cycle refresh (10 row-, 10 column-addresses)  
Low power, 0.3mW standby; 180mW active, typical  
Extended Data-Out (EDO) PAGE access cycle  
5V-tolerant I/ Os (5.5V maximum VIH level)  
NC  
NC  
WE  
RAS  
NC  
NC  
A0  
A1  
A2  
A3  
Vcc  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
NC  
CASL  
CASH  
OE  
A9  
A8  
A7  
A6  
A5  
OPTIONS  
MARKING  
Timing  
60ns access (Contact Factory)  
70ns access  
80ns access  
-6  
-7  
-8  
A4  
Vss  
Refresh Rate  
Standard 16ms period  
None  
Packages  
Ceramic SOJ  
Ceramic Gull Wing  
Ceramic LCC  
ECJ No. 506  
ECG No. 604  
EC No. 213  
an internal CAS.  
The AS4LC1M16 CAS function and timing are deter-  
mined by the first CAS (CASL or CASH) to transition LOW  
and the last CAS to transition back HIGH. Use of only one  
ofthetworesultsin a BYTEWRITEcycle.CASLtransitioning  
LOW selects an access cycle for the lower byte (DQ1-DQ8)  
and CASH transitioning LOW selects an access cycle for the  
upper byte (DQ9-DQ16).  
KEY TIMING PARAMETERS  
SPEED  
-6  
tRC  
tRAC  
60ns  
70ns  
80ns  
tPC  
tAA  
30ns  
35ns  
40ns  
tCAC  
15ns  
20ns  
20ns  
tCAS  
12ns  
12ns  
20ns  
105ns  
125ns  
150ns  
25ns  
30ns  
40ns  
-7  
-8  
GENERAL DESCRIPTION  
Each bit is uniquely addressed through the 20address bits  
during READ or WRITE cycles. These are entered 10 bits  
(A0-A9) at a time. RAS is used to latch the first 10 bits and  
CAS the latter 10 bits. The CAS function also determines  
whether the cycle will be a refresh cycle (RAS ONLY) or an  
active cycle (READ, WRITE or READ WRITE) once RAS  
goes LOW.  
The AS4LC1M16 is a randomly accessed solid-state  
memory containing 16,777,216 bits organized in a x16 con-  
figuration. The AS4LC1M16 has both BYTE WRITE and  
WORD WRITE access cycles via two CAS pins (CASL and  
CASH). These function in a similar manner to a single CAS  
of other DRAMs in that either CASL or CASH will generate  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-93  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
GENERAL DESCRIPTION (continued)  
The CASL and CASH inputs internally generate a CAS  
signal functioning in a similar manner to the single  
PAGE ACCESS  
PAGE operations allow faster data operations (READ,  
WRITE or READ-MODIFY-WRITE) within a row-address-  
defined page boundary.The PAGEcycle is always initiated  
with a row -address strobed-in by RAS followed by a col-  
umn-address strobed-in by CAS. CAS may be toggled-in  
by holding RAS LOW and strobing-in different column-  
addresses, thus executing faster memory cycles. Returning  
RAS HIGH terminates the PAGE MODE of operation.  
?C?A/S input of other DRAMs. The key difference is each  
CAS input ( CASL and CASH ) controls its corresponding  
8 DQ inputs during WRITE accesses. CASL controls DQ1  
through DQ8 and CASH controls DQ9 through DQ16. The  
two CAS controls give the MT4LC1M16E5(S) both BYTE  
READ and BYTE WRITE cycle capabilities.  
A logic HIGH on WE dictates READ mode while a logic  
LOW on WE dictates WRITE mode. During a WRITE cycle,  
data-in (D) is latched by the falling edge of WE or CAS  
(CASLor CASH),whichever occurs last.An EARLYWRITE  
occurs when WE is taken LOW prior to either CAS falling.  
A LATE WRITE or READ-MODIFY-WRITE occurs when  
WE falls after CAS (CASL or CASH) was taken LOW.  
During EARLY WRITE cycles, the data-outputs (Q) will  
remain High-Z regardless of the state of OE. During LATE  
WRITE or READ-MODIFY-WRITE cycles, OE must be  
taken HIGH to disable the data-outputs prior to applying  
input data. If a LATE WRITE or READ-MODIFY-WRITE is  
attempted while keeping OE LOW, no write will occur, and  
the data-outputs will drive read data from the accessed  
location.  
EDO PAGE MODE  
The AS4LC1M16 provides EDO PAGE MODE which is  
an accelerated FAST PAGE MODE cycle. The primary  
advantage of EDO is the availability of data-out even after  
CAS returns HIGH. EDO provides for CAS precharge time  
t
( CP) to occur without the output data going invalid. This  
elimination of CAS output control provides for pipeline  
READs.  
FAST-PAGE-MODE DRAMs have traditionally turned  
the output buffers off (High-Z) with the rising edge of  
CAS. EDO-PAGE-MODE DRAMs operate similar to  
FAST-PAGE-MODEDRAMs,except data willremain valid  
or become valid after CAS goes HIGH during READs,  
provided RAS and OE are held LOW. If OE is pulsed while  
RAS and CAS are LOW, data will toggle from valid data to  
High-Z and back to the same valid data. If OE is toggled or  
pulsed after CASgoes HIGH while RASremains LOW,data  
will transition to and remain High-Z (refer to Figure 1).  
The 16data inputs and 16data outputs are routed through  
16 pins using common I/ O. Pin direction is controlled by  
OE and WE.  
V
V
IH  
IL  
RAS  
CASL/CASH  
V
V
IH  
IL  
V
V
IH  
IL  
ADDR  
ROW  
COLUMN (A)  
COLUMN (B)  
COLUMN (C)  
COLUMN (D)  
V
V
IOH  
IOL  
DQ  
OPEN  
VALID DATA (A)  
VALID DATA (A)  
VALID DATA (B)  
VALID DATA (C)  
VALID DATA (D)  
t
t
OD  
t
OD  
OD  
t
OES  
t
OEHC  
V
V
IH  
IL  
OE  
t
OE  
t
OEP  
The DQs go back to  
Low-Z if OES is met.  
The DQs remain High-Z  
until the next CAS cycle  
if OEHC is met.  
The DQs remain High-Z  
until the next CAS cycle  
if OEP is met.  
t
t
t
DON’T CARE  
UNDEFINED  
Figure 1  
OUTPUT ENABLE AND DISABLE  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-94  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
EDO PAGE MODE (continued)  
WE can also perform the function of disabling the output  
drivers under certain conditions, as shown in Figure 2.  
During an application, if the DQ outputs are wire ORd,  
OE must be used to disable idle banks of DRAMs. Alterna-  
tively, pulsing WEto the idle banks during CASHIGH time  
will also High-Z the outputs. Independent of OE control,  
the outputs will disable after OFF, which is referenced  
t
from the rising edge of RAS or CAS, whichever occurs last.  
V
IH  
RAS  
CASL/CASH  
ADDR  
V
IL  
V
V
IH  
IL  
V
V
IH  
IL  
ROW  
COLUMN (A)  
COLUMN (B)  
COLUMN (C)  
COLUMN (D)  
V
V
IOH  
IOL  
DQ  
OPEN  
VALID DATA (A)  
VALID DATA (B)  
INPUT DATA (C)  
t
t
WHZ  
WHZ  
t
V
IH  
WE  
OE  
WPZ  
V
IL  
V
V
IH  
IL  
t
The DQs go to High-Z if WE falls, and if WPZ is met,  
will remain High-Z until CAS goes LOW with  
WE HIGH (i.e., until a READ cycle is initiated).  
WE may be used to disable the DQs to prepare  
for input data in an EARLY WRITE cycle. The DQs  
will remain High-Z until CAS goes LOW with  
WE HIGH (i.e., until a READ cycle is initiated).  
DON’T CARE  
UNDEFINED  
Figure 2  
WE CONTROL OF DQs  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-95  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
BYTE ACCESS CYCLE  
WRITE on one byte and a LATE WRITE on the other byte is  
not allowed during the same cycle. However, an EARLY  
WRITE on one byte and, after a CAS precharge has been  
satisfied, a LATE WRITE on the other byte is permissable.  
The BYTE WRITEs and BYTE READs are determined by  
the use of CASL and CASH. Enabling CASL will select a  
lower BYTE access (DQ1-DQ8). Enabling CASH will select  
an upper BYTE access (DQ9-DQ16). Enabling both CASL  
and CASH selects a WORD WRITE cycle.  
The AS4LC1M16 may be viewed as two 1 Meg x 8  
DRAMs that have common input controls, with the excep-  
tion ofthe CASinputs. Figure 3illustrates the BYTEWRITE  
and WORD WRITE cycles.  
Additionally, both bytes must always be of the same  
mode ofoperation ifboth bytes are active. A CASprecharge  
must be satisfied prior to changing modes of operation  
between the upper and lower bytes.For example,an EARLY  
REFRESH  
Preserve correct memory cell data by maintaining power  
and executing a RAS cycle (READ, WRITE) or RAS refresh  
cycle (RAS ONLY, CBR, or HIDDEN) so that all 1,024  
combinations of RAS addresses are executed at least every  
16ms, regardless ofsequence. The CBRREFRESH cycle will  
invoke the refresh counter for automatic RAS addressing.  
WORD WRITE  
LOWER BYTE WRITE  
RAS  
CASL  
CASH  
WE  
STORED  
INPUT  
INPUT  
DATA  
STORED STORED  
INPUT  
INPUT  
DATA  
STORED  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
1
1
0
1
1
1
1
1
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
LOWER BYTE  
(DQ1-DQ8)  
OF WORD  
X
X
X
X
X
X
X
X
1
0
1
0
1
1
1
1
1
0
1
0
1
1
1
1
1
0
1
0
1
1
1
1
X
X
X
X
X
X
X
X
1
0
1
0
1
1
1
1
0
1
0
1
0
0
0
0
UPPER BYTE  
(DQ9-DQ16)  
OF WORD  
ADDRESS 0  
X = NOT EFFECTIVE (DON'T CARE)  
ADDRESS 1  
Figure 3  
WORD AND BYTE WRITE EXAMPLE  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-96  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
FUNCTIONAL BLOCK DIAGRAM  
WE  
CASL  
CASH  
DATA-IN BUFFER  
CAS  
DQ1  
16  
NO. 2 CLOCK  
GENERATOR  
DQ16  
DATA-OUT  
BUFFER  
COLUMN-  
ADDRESS  
BUFFER  
OE  
COLUMN  
DECODER  
10  
10  
16  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
1024  
REFRESH  
CONTROLLER  
16  
SENSE AMPLIFIERS  
I/O GATING  
REFRESH  
COUNTER  
1024 x 16  
10  
ROW-  
ADDRESS  
BUFFERS (10)  
1024 x 1024 x 16  
MEMORY  
10  
10  
1024  
ARRAY  
NO. 1 CLOCK  
GENERATOR  
Vcc  
Vss  
RAS  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-97  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
TRUTH TABLE  
ADDRESSES  
t
t
FUNCTION  
RAS  
H
CASL CASH WE  
OE  
X
R
C
DQs  
NOTES  
Standby  
H>X H>X  
X
H
H
X
X
High-Z  
Data-Out  
READ: WORD  
READ: LOWER BYTE  
L
L
L
L
L
ROW COL  
ROW COL  
L
H
L
Lower Byte,  
Upper Byte, Data-Out  
READ: UPPER BYTE  
L
L
L
L
H
L
L
L
H
L
L
H
L
L
L
L
X
X
X
ROW COL Lower Byte, Data-Out  
Upper Byte  
WRITE: WORD  
(EARLY WRITE)  
ROW COL  
ROW COL  
ROW COL  
Data-In  
WRITE: LOWER  
BYTE (EARLY)  
L
Lower Byte, Data-In  
Upper Byte, High-Z  
WRITE: UPPER  
BYTE (EARLY)  
H
Lower Byte, High-Z  
Upper Byte, Data-In  
READ WRITE  
L
L
H>L L>H ROW COL  
Data-Out, Data-In  
Data-Out  
1, 2  
2
EDO-PAGE-MODE 1st Cycle  
L
H>L H>L  
H>L H>L  
L>H L>H  
H>L H>L  
H>L H>L  
H
H
H
L
L
L
ROW COL  
READ  
2nd Cycle  
Any Cycle  
L
n/a  
n/a  
COL  
n/a  
Data-Out  
2
L
L
Data-Out  
2
EDO-PAGE-MODE 1st Cycle  
WRITE 2nd Cycle  
EDO-PAGE-MODE 1st Cycle  
L
X
X
ROW COL  
n/a COL  
Data-In  
1
L
L
Data-In  
1
L
L
H>L H>L H>L L>H ROW COL  
H>L H>L H>L L>H n/a COL  
Data-Out, Data-In  
Data-Out, Data-In  
Data-Out  
1, 2  
1, 2  
2
READ-WRITE  
HIDDEN  
2nd Cycle  
READ  
L>H>L  
L>H>L  
L
L
L
L
L
H
L
L
X
X
X
ROW COL  
ROW COL  
REFRESH  
WRITE  
Data-In  
1, 3  
RAS-ONLY REFRESH  
CBR REFRESH  
H
L
H
L
X
H
ROW  
X
n/a  
X
High-Z  
H>L  
High-Z  
4
NOTE: 1. These WRITE cycles may also be BYTE WRITE cycles (either CASL or CASH active).  
2. These READ cycles may also be BYTE READ cycles (either CASL or CASH active).  
3. EARLY WRITE only.  
4. Only one CAS must be active (CASL or CASH).  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-98  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
*Stresses greater than those listed under “Absolute Maxi-  
mum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the  
device at these or any other conditions above those indi-  
cated in the operational sections of this specification is not  
implied. Exposure to absolute maximum rating conditions  
for extended periods may affect reliability.  
ABSOLUTE MAXIMUM RATINGS*  
Voltage on VCC pin Relative to VSS .............. -1.0V to +4.6V  
Voltage on NC, Inputs or I/ O pins  
Relative to Vss ................................................. -1.0V to +5.5V  
Operating Temperature, T (ambient) ..... T (MIN)=-55°C  
A
A
...................................................................... T (MAX)=125°C  
C
Storage Temperature ................................... -55°C to +150°C  
Power Dissipation ............................................................. 1W  
Short Circuit Output Current ..................................... 50mA  
ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS  
(Notes: 1, 2, 3) (VCC = +3.3V ±0.3V)  
PARAMETER/CONDITION  
SYMBOL MIN  
MAX UNITS NOTES  
Supply Voltage  
VCC  
VIH  
VIL  
3.0  
2.0  
3.6  
VCC+1  
0.8  
V
V
V
Input High (Logic 1) Voltage, all inputs (including NC pins)  
Input Low (Logic 0) Voltage, all inputs (including NC pins)  
INPUT LEAKAGE CURRENT  
-1.0  
Any input 0V VIN 5.5V  
VCC = 3.6V  
II  
-2  
2
µA  
4
(All other pins not under test = 0V)  
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V VOUT 5.5V) VCC=3.6V  
IOZ  
-10  
2.4  
10  
µA  
OUTPUT LEVELS  
VOH  
V
Output High Voltage (IOUT = -2.0mA)  
Output Low Voltage (IOUT = 2.0mA)  
VOL  
0.4  
V
MAX  
-7  
PARAMETER/CONDITION  
SYMBOL  
-6  
2
-8  
2
UNITS NOTES  
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)  
STANDBY CURRENT: (CMOS)  
ICC1  
ICC2  
2
1
mA  
mA  
1
1
(?R?A/S = CAS = other inputs = VCC -0.2V)  
OPERATING CURRENT: Random READ/WRITE  
Average power supply current  
(?R?A/S, CAS address cycling: RC = RC [MIN])  
ICC3  
ICC4  
ICC5  
ICC6  
170 155  
130 120  
160 145  
150 140  
140  
110  
130  
130  
mA  
mA  
mA  
mA  
5, 6  
5, 6  
5, 6  
5, 7  
t
t
OPERATING CURRENT: EDO PAGE MODE  
Average power supply current  
t
t
(?R?A/S = VIL, CAS, address cycling: PC = PC [MIN])  
REFRESH CURRENT: RAS ONLY  
Average power supply current  
t
t
(?R?A/S cycling, CAS=VIH: RC = RC [MIN])  
REFRESH CURRENT: CBR  
Average power supply current  
t
t
(R  
?
AS, CAS address cycling: RC = RC [MIN])  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-99  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
CAPACITANCE  
PARAMETER  
SYMBOL  
MAX UNITS NOTES  
Input Capacitance: Addresses  
Input Capacitance: RAS, CASL,CASH, WE, OE  
Input/Output Capacitance: DQ  
CI1  
CI2  
CIO  
7
7
8
pF  
pF  
pF  
8
8
8
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS  
(Notes: 2, 3, 6, 9, 10, 11, 12,) (VCC = +3.3V ±0.3V)  
AC CHARACTERISTICS  
-6  
-7  
-8  
PARAMETER  
SYM  
tAA  
tACH  
tAR  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX UNITS NOTES  
Access time from column-address  
Column-address set-up to CAS precharge  
Column-address hold time (referenced to RAS)  
Column-address setup time  
Row-address setup time  
30  
35  
40  
ns  
ns  
ns  
ns  
ns  
ns  
15  
45  
0
15  
50  
0
25  
60  
0
tASC  
tASR  
tAWD  
tCAC  
tCAH  
tCAS  
tCHR  
tCLCH  
tCLZ  
tCOH  
tCP  
25  
25  
13  
0
0
0
Column-address to WE delay time  
Access time from CAS  
55  
60  
65  
15  
20  
20  
ns 14, 26  
Column-address hold time  
10  
12  
10  
10  
0
12  
13  
12  
10  
0
15  
15  
15  
15  
0
ns  
10,000 ns  
25  
27  
C
A
/
10,000  
10,000  
C
A
/
ns 7, 28  
Last CAS going LOW to first CAS to return HIGH  
?C?A/S to output in Low-Z  
ns  
ns  
ns  
29  
26  
Data output hold after next CAS LOW  
CAS precharge time  
3
3
3
10  
10  
10  
ns 15, 30  
Access time from CAS precharge  
tCPA  
tCRP  
tCSH  
tCSR  
tCWD  
tCWL  
tDH  
tDHR  
tDS  
tOD  
35  
40  
40  
ns  
ns  
ns  
26  
28  
28  
C
A
/
5
50  
5
5
55  
5
5
C
A
/
60  
10  
45  
20  
15  
60  
0
C
A
/
ns 7, 25  
ns 13, 25  
C
A
/
35  
15  
10  
45  
0
40  
15  
12  
55  
0
Write command to CAS lead time  
Data-in hold time  
ns  
28  
ns 16, 26  
ns  
Data-in hold time (referenced to RAS)  
Data-in setup time  
ns 16, 26  
ns  
Output disable  
0
15  
15  
0
15  
20  
0
15  
20  
Output Enable  
tOE  
ns 17, 26  
OE hold time from WE during READ-MODIFY-WRITE cycle tOEH  
12  
10  
10  
12  
10  
10  
15  
10  
10  
ns  
ns  
ns  
18  
18  
O
/
tOEHC  
tOEP  
?O/  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-100  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS  
(Notes: 2, 3, 6, 9, 10, 11, 12, 20) (VCC = +3.3V ±0.3V)  
AC CHARACTERISTICS  
-6  
-7  
-8  
PARAMETER  
SYM  
tOES  
tOFF  
MIN  
5
MAX  
MIN  
5
MAX  
MIN  
10  
0
MAX UNITS  
NOTES  
OE LOW to CAS HIGH setup time  
Output buffer turn-off delay  
ns  
0
15  
0
15  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20, 26  
OE setup prior to RAS during HIDDEN REFRESH cycle tORD  
0
0
0
EDO-PAGE-MODE READ or WRITE cycle time  
EDO-PAGE-MODE READ-WRITE cycle time  
Access time from RAS  
tPC  
tPRWC  
tRAC  
tRAD  
tRAH  
tRAL  
tRAS  
tRASP  
tRC  
tRCD  
tRCH  
tRCS  
tREF  
tRP  
30  
75  
35  
85  
40  
90  
31  
31  
19  
21  
60  
30  
70  
35  
80  
40  
RAS to column-address delay time  
12  
10  
30  
60  
60  
110  
14  
0
12  
10  
35  
70  
70  
130  
14  
0
15  
10  
40  
80  
80  
150  
16  
0
Row-address hold time  
Column-address to RAS lead time  
RAS pulse width  
10,000  
10,000  
10,000  
RAS pulse width (EDO PAGE MODE)  
Random READ or WRITE cycle time  
RAS to CAS delay time  
100,000  
100,000  
100,000  
45  
50  
60  
22, 25  
23, 28  
25  
Read command hold time (referenced to CAS)  
Read command setup time  
0
0
0
Refresh period (1,024 cycles)  
16  
16  
16  
R
A
/
40  
5
50  
5
60  
5
R
A
/
tRPC  
tRRH  
tRSH  
tRWC  
tRWD  
tRWL  
tT  
Read command hold time (referenced to RAS)  
RAS hold time  
0
0
0
23  
32  
13  
150  
80  
15  
2
15  
180  
90  
18  
2
20  
200  
105  
20  
2
READ WRITE cycle time  
RAS to WE delay time  
13  
Write command to RAS lead time  
Transition time (rise or fall)  
50  
13  
50  
15  
50  
20  
Write command hold time  
tWCH  
tWCR  
tWCS  
tWHZ  
tWP  
10  
45  
0
12  
55  
0
15  
60  
0
32  
Write command hold time (referenced to RAS)  
WE command setup time  
13, 25  
Output disable delay from WE  
Write command pulse width  
0
0
0
10  
10  
10  
10  
12  
12  
10  
10  
15  
15  
10  
10  
W
/
tWPZ  
tWRH  
tWRP  
?W/  
?W/  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-101  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
NOTES  
1. All voltages referenced to VSS.  
17. If OE is tied permanently LOW, LATE WRITE or  
READ-MODIFY-WRITE operations are not permis-  
sible and should not be attempted. Additionally, WE  
must be pulsed during CAS HIGH time in order to  
place I/ O buffers in High-Z.  
2. The minimum specifications are used only to indicate  
cycle time at which proper operation over the full  
temperature range (0˚C TA 70˚C) is assured.  
3. An initial pause of 100µs is required after power-up  
followed by eight RAS refresh cycles (RAS ONLY or  
CBR with WE HIGH) before proper device operation  
is assured. The eight RAS cycle wake-ups should be  
18. LATE WRITE and READ-MODIFY-WRITE cycles  
t
t
must have both OD and OEH met (OE HIGH during  
WRITE cycle) in order to ensure that the output  
buffers will be open during the WRITE cycle. The  
DQs will provide the previously read data if CAS  
t
repeated any time the REF refresh requirement is  
exceeded.  
t
4. NC pins are assumed to be left floating and are not  
tested for leakage.  
5. ICC is dependent on output loading and cycle rates.  
Specified values are obtained with minimum cycle  
time and the outputs open.  
6. Column address changed once each cycle.  
7. Enables on-chip refresh and address counters.  
8. This parameter is sampled. VCC = +3.0V; f = 1 MHz.  
remains LOW and OE is taken back LOW after OEH  
is met. If CAS goes HIGH prior to OE going back  
LOW, the DQs will remain open.  
t
t
t
19. Assumes that RCD < RCD (MAX). If RCD is greater  
than the maximum recommended value shown in this  
t
t
table, RAC will increase by the amount that RCD  
exceeds the value shown.  
20. OFF (MAX) defines the time at which the output  
t
t
9. AC characteristics assume T = 2.5ns.  
achieves the open circuit condition, and is not  
referenced to VOH or VOL. It is referenced from the  
rising edge of RAS or CAS, whichever occurs last.  
10. VIH (MIN) and VIL (MAX) are reference levels for  
measuring timing of input signals. Transition times  
are measured between VIH and VIL (or between VIL  
and VIH).  
t
21. Operation within the RAD (MAX) limit ensures that  
t
t
t
RAC (MIN) and CAC (MIN) can be met. RAD  
t
11. In addition to meeting the transition rate specifica-  
tion, all input signals must transit between VIH and  
VIL (or between VIL and VIH) in a monotonic manner.  
12. Measured with a load equivalent to two TTL gates,  
100pF and VOL = 0.8V and VOH = 2.0V.  
(MAX) is specified as a reference point only; if RAD  
is greater than the specified RAD (MAX) limit, then  
t
t
access time is controlled exclusively by AA, provided  
t
RCD is not exceeded.  
t
22. Operation within the RCD (MAX) limit ensures that  
t
t
t
t
t
t
13. WCS, RWD, AWD and CWD are not restrictive  
RAC (MAX) can be met. RCD (MAX) is specified as  
t
t
operating parameters. WCS applies to EARLY  
WRITE cycles. RWD, AWD and CWD apply to  
READ-MODIFY-WRITE cycles. If WCS WCS  
(MIN), the cycle is an EARLY WRITE cycle and the  
data output will remain an open circuit throughout  
a reference point only; if RCD is greater than the  
specified RCD (MAX) limit, then access time is  
controlled exclusively by CAC, provided RAD is not  
exceeded.  
t
t
t
t
t
t
t
t
t
t
23. Either RCH or RRH must be satisfied for a READ  
cycle.  
t
t
t
the entire cycle. If WCS < WCS (MIN) and RWD ≥  
t
t
t
t
t
RWD (MIN), AWD AWD (MIN) and CWD ≥  
CWD (MIN), the cycle is a READ-MODIFY-WRITE  
24. The first CASx edge to transition LOW.  
25. Output parameter (DQx) is referenced to correspond-  
ing CAS input; DQ1-DQ8 by CASL and DQ9-DQ16  
by CASH.  
26. Each CASx must meet minimum pulse width.  
27. The last CASx edge to transition HIGH.  
28. Last falling CASx edge to first rising CASx edge.  
29. Last rising CASx edge to first falling CASx edge.  
30. Last rising CASx edge to next cycle’s last rising CASx  
edge.  
and the data output will contain data read from the  
selected cell. If neither of the above conditions is met,  
the state of data-out is indeterminate. OE held HIGH  
and WE taken LOW after CAS goes LOW results in a  
t
t
LATE WRITE (OE-controlled) cycle. WCS, RWD,  
t
t
CWD and AWD are not applicable in a LATE  
WRITE cycle.  
t
t
14. Assumes that RCD RCD (MAX).  
15. If CAS is LOW at the falling edge of RAS, Q will be  
maintained from the previous cycle. To initiate a new  
cycle and clear the data-out buffer, CAS must be  
31. Last CASx to go LOW.  
32. A HIDDEN REFRESH may also be performed after a  
WRITE cycle. In this case, WE = LOW and  
OE = HIGH.  
t
pulsed HIGH for CP.  
16. These parameters are referenced to CAS leading edge  
in EARLY WRITE cycles and WE leading edge in  
LATE WRITE or READ-MODIFY-WRITE cycles.  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-102  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
READ CYCLE  
t
RC  
t
t
RP  
RAS  
V
V
IH  
IL  
RAS  
t
CSH  
t
t
RRH  
RSH  
t
t
t
CLCH  
t
RCD  
CAS  
CRP  
V
V
IH  
IL  
CASL/CASH  
t
AR  
t
t
t
t
t
RAD  
RAH  
RAL  
CAH  
ACH  
t
t
ASC  
ASR  
V
V
IH  
IL  
ROW  
t
ROW  
ADDR  
COLUMN  
t
t
t
RCH  
WRP  
WRH  
RCS  
V
V
WE  
IH  
IL  
NOTE 1  
t
t
t
t
AA  
NOTE 2  
OFF  
RAC  
CAC  
CLZ  
t
V
V
OH  
OL  
DQ  
OE  
OPEN  
OPEN  
VALID DATA  
t
t
OD  
OE  
V
IH  
V
IL  
DON’T CARE  
UNDEFINED  
NOTE:  
1. Although WE is a “don’t care” at RAS time during an access cycle (READ or WRITE), the system designer should implement  
WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.  
2. OFF is referenced from rising edge of RAS or CAS, whichever occurs last.  
t
TIMING PARAMETERS  
-6  
-7  
-8  
-6  
-7  
-8  
SYM MIN  
tAA  
tACH  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
ns  
SYM MIN  
tRAC  
MAX  
60  
MIN  
MAX  
70  
MIN  
MAX  
80  
UNITS  
ns  
30  
35  
40  
15  
45  
0
15  
50  
0
20  
60  
0
ns  
tRAD  
tRAH  
tRAL  
tRAS  
tRC  
12  
10  
30  
30  
12  
10  
35  
35  
15  
10  
40  
40  
ns  
tAR  
ns  
ns  
tASC  
tASR  
tCAC  
tCAH  
tCAS  
ns  
ns  
0
0
0
ns  
60 10,000  
110  
70 10,000 80 10,000  
ns  
15  
20  
20  
ns  
130  
14  
0
150  
20  
0
ns  
10  
12  
15  
ns  
tRCD  
tRCH  
tRCS  
tRP  
tRRH  
tRSH  
tWRH  
tWRP  
14  
0
45  
50  
60  
ns  
12 10,000  
13 10,000 20 10,000  
ns  
ns  
tCLCH 10  
10  
0
10  
0
ns  
0
0
0
ns  
tCLZ  
tCRP  
tCSH  
tOD  
0
5
ns  
40  
0
50  
0
60  
0
ns  
5
5
ns  
ns  
50  
0
55  
0
60  
0
ns  
13  
10  
10  
15  
10  
10  
15  
10  
10  
ns  
15  
15  
15  
15  
20  
15  
20  
20  
20  
ns  
ns  
tOE  
ns  
ns  
tOFF  
0
0
0
ns  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-103  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
EARLY WRITE CYCLE  
t
RC  
t
t
RP  
RAS  
V
V
IH  
IL  
RAS  
t
CSH  
t
RSH  
t
t
t
t
CRP  
RCD  
CAS  
CLCH  
CASL/CASH  
V
V
IH  
IL  
t
AR  
t
t
t
t
RAD  
RAH  
RAL  
CAH  
t
t
ASC  
ASR  
t
ACH  
V
V
IH  
IL  
ADDR  
ROW  
COLUMN  
ROW  
t
CWL  
t
t
t
t
RWL  
WCR  
WCH  
WP  
t
WCS  
t
t
WRH  
WRP  
WE  
V
V
IH  
IL  
NOTE 1  
t
t
DHR  
DH  
t
DS  
V
IOH  
IOL  
DQ  
OE  
VALID DATA  
V
V
V
IH  
IL  
DON’T CARE  
UNDEFINED  
NOTE:  
1. Although WE is a “don’t care” at RAS time during an access cycle (READ or WRITE), the system designer should implement  
WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.  
TIMING PARAMETERS  
-6  
-7  
-8  
-6  
-7  
MIN MAX  
10  
-8  
MIN MAX  
10  
SYM  
tACH  
tAR  
tASC  
tASR  
tCAH  
tCAS  
MIN  
15  
45  
0
MAX  
MIN MAX  
MIN MAX  
UNITS  
ns  
SYM  
tRAH  
tRAL  
tRAS  
tRC  
MIN  
10  
MAX  
UNITS  
ns  
15  
20  
50  
60  
ns  
30  
35  
40  
ns  
0
0
ns  
60 10,000  
110  
70 10,000  
130  
80 10,000  
150  
ns  
0
0
0
ns  
ns  
10  
12  
15  
ns  
tRCD  
tRP  
14  
40  
13  
15  
10  
45  
0
45  
14  
50  
15  
15  
12  
55  
0
50  
20  
60  
0
60  
ns  
12 10,000  
13 10,000  
20 10,000  
ns  
ns  
tCLCH 10  
10  
5
10  
5
ns  
tRSH  
tRWL  
tWCH  
tWCR  
tWCS  
tWP  
ns  
tCRP  
tCSH  
tCWL  
tDH  
tDHR  
tDS  
5
ns  
20  
15  
60  
0
ns  
50  
15  
10  
45  
0
55  
15  
12  
55  
0
60  
20  
15  
55  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
10  
10  
12  
10  
10  
15  
10  
10  
ns  
ns  
tWRH  
tWRP  
ns  
tRAD  
12  
30  
12  
35  
15  
40  
ns  
ns  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-104  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
READ WRITE CYCLE  
(LATE WRITE and READ-MODIFY-WRITE cycles)  
t
RWC  
t
t
RP  
RAS  
V
V
IH  
IL  
RAS  
CASL/CASH  
ADDR  
t
CSH  
t
RSH  
t
t
t
t t  
CAS, CLCH  
CRP  
RCD  
V
V
IH  
IL  
t
AR  
t
t
RAL  
RAD  
t
t
t
t
ASC  
RCS  
CAH  
ASR  
RAH  
t
ACH  
V
V
IH  
IL  
ROW  
COLUMN  
ROW  
t
t
t
t
RWD  
CWL  
RWL  
WP  
t
CWD  
t
t
WRH  
t
WRP  
AWD  
V
V
IH  
IL  
WE  
NOTE 1  
t
AA  
t
RAC  
t
CAC  
t
t
DS  
DH  
t
CLZ  
V
IOH  
IOL  
VALID D  
VALID D  
DQ  
OE  
OPEN  
OPEN  
V
OUT  
IN  
t
t
t
OE  
OD  
OEH  
V
V
IH  
IL  
DON’T CARE  
UNDEFINED  
NOTE:  
1. Although WE is a “don’t care” at RAS time during an access cycle (READ or WRITE), the system designer should implement  
WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.  
TIMING PARAMETERS  
-6  
-7  
-8  
-6  
-7  
-8  
SYM MIN  
tAA  
tACH  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SYM MIN  
tOE  
tOEH  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
ns  
30  
35  
40  
15  
20  
20  
15  
45  
0
15  
50  
0
20  
60  
0
12  
12  
15  
ns  
tAR  
tRAC  
tRAD  
tRAH  
tRAL  
tRAS  
tRCD  
tRCS  
tRP  
60  
30  
70  
35  
80  
40  
ns  
tASC  
tASR  
tAWD  
tCAC  
tCAH  
tCAS  
12  
10  
30  
12  
10  
35  
15  
10  
40  
ns  
0
0
0
ns  
55  
60  
65  
ns  
15  
20  
20  
60 10,000  
70 10,000 80 10,000  
ns  
10  
12  
15  
14  
0
45  
14  
0
50  
20  
0
60  
ns  
12 10,000  
13 10,000 20 10,000  
ns  
tCLCH 10  
10  
0
10  
0
40  
13  
50  
15  
180  
90  
15  
12  
10  
10  
60  
15  
200  
105  
20  
15  
10  
10  
ns  
tCLZ  
tCRP  
tCSH  
tCWD  
tCWL  
tDH  
0
5
tRSH  
ns  
5
5
tRWC 150  
ns  
50  
35  
15  
10  
0
55  
40  
15  
12  
0
60  
45  
20  
15  
0
tRWD  
tRWL  
tWP  
tWRH  
tWRP  
80  
15  
10  
10  
10  
ns  
ns  
ns  
ns  
tDS  
ns  
tOD  
0
15  
0
15  
0
20  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-105  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
EDO-PAGE-MODE READ CYCLE  
t
t
RASP  
RP  
V
V
IH  
IL  
RAS  
t
t
t
t
RSH  
CSH  
PC  
CP  
t
t
t
t
t
t
t
t
t
t
CP  
CAS, CLCH  
CAS, CLCH  
CAS, CLCH  
CRP  
RCD  
CP  
V
V
CASL/CASH  
IH  
IL  
t
AR  
t
t
t
ACH  
ACH  
ACH  
t
t
t
RAD  
RAH  
RAL  
t
t
t
t
t
t
t
t
ASR  
ASC  
RCS  
CAH  
ASC  
CAH  
ASC  
CAH  
V
V
IH  
IL  
ADDR  
WE  
ROW  
COLUMN  
COLUMN  
COLUMN  
ROW  
t
t
WRH  
WRP  
t
RCH  
V
V
IH  
IL  
t
t
t
t
RRH  
AA  
NOTE 1  
t
t
t
t
AA  
AA  
CPA  
CAC  
t
RAC  
CPA  
CAC  
t
t
CAC  
CLZ  
t
OEHC  
t
OFF  
t
COH  
t
CLZ  
V
OH  
OL  
VALID  
DATA  
VALID  
DATA  
VALID  
DATA  
DQ  
OE  
OPEN  
OPEN  
V
t
t
t
OE  
OE  
t
OD  
OD  
t
OES  
t
V
V
OES  
IH  
IL  
t
OEP  
DON’T CARE  
UNDEFINED  
NOTE:  
1. Although WE is a “don’t care” at RAS time during an access cycle (READ or WRITE), the system designer should implement  
WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.  
TIMING PARAMETERS  
-6  
-7  
-8  
-6  
-7  
-8  
SYM MIN  
tAA  
tACH  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SYM MIN  
MAX  
MIN  
10  
5
MAX  
MIN  
10  
5
MAX  
UNITS  
ns  
ns  
30  
35  
40  
tOEP  
tOES  
tOFF  
tPC  
10  
5
15  
45  
0
15  
50  
0
20  
60  
0
tAR  
3
15  
3
15  
0
20  
ns  
tASC  
tASR  
tCAC  
tCAH  
tCAS  
30  
35  
40  
ns  
0
0
0
tRAC  
tRAD  
tRAH  
tRAL  
60  
30  
70  
35  
80  
40  
ns  
ns  
ns  
ns  
15  
20  
20  
12  
10  
30  
12  
10  
35  
15  
10  
40  
10  
12  
12  
15  
10,000 13 10,000 20 10,000  
tCLCH 10  
10  
0
10  
0
tRASP 60  
100,000 70 100,000 80 100,000  
ns  
tCLZ  
tCOH  
tCP  
0
3
tRCD  
tRCH  
tRCS  
tRP  
tRRH  
tRSH  
tWRH  
tWRP  
14  
0
45  
14  
0
50  
20  
0
60  
ns  
3
5
ns  
10  
10  
10  
0
0
0
ns  
tCPA  
tCRP  
tCSH  
tOD  
35  
40  
40  
40  
0
50  
0
60  
0
ns  
5
50  
0
5
55  
0
5
60  
0
ns  
13  
10  
10  
15  
10  
10  
15  
10  
10  
ns  
ns  
15  
15  
15  
20  
20  
20  
tOE  
tOEHC 10  
ns  
10  
10  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-106  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
EDO-PAGE-MODE EARLY-WRITE CYCLE  
t
t
RP  
RASP  
V
V
IH  
IL  
RAS  
t
t
t
t
CSH  
PC  
CP  
RSH  
t
t
t
t
t
t
t
t
t
t
CP  
CRP  
RCD  
CAS, CLCH  
CAS, CLCH  
CP  
CAS, CLCH  
V
V
IH  
IL  
CASL/CASH  
t
t
AR  
ACH  
t
t
t
t
t
RAD  
ACH  
RAL  
ACH  
ASC  
t
t
t
t
t
t
t
ASC  
ASR  
RAH  
CAH  
ASC  
CAH  
CAH  
V
V
IH  
IL  
ADDR  
ROW  
COLUMN  
COLUMN  
COLUMN  
ROW  
t
t
t
t
t
t
t
CWL  
CWL  
WCH  
WP  
CWL  
WCH  
WP  
t
t
t
t
t
WCS  
WCS  
WCH  
WP  
WCS  
t
t
WRH  
WRP  
V
V
IH  
IL  
WE  
NOTE 1  
t
t
t
t
WCR  
DHR  
DH  
RWL  
t
t
t
t
t
DS  
DS  
DH  
DS  
DH  
V
IOH  
IOL  
DQ  
OE  
VALID DATA  
VALID DATA  
VALID DATA  
V
V
V
IH  
IL  
DON’T CARE  
UNDEFINED  
NOTE:  
1. Although WE is a “don’t care” at RAS time during an access cycle (READ or WRITE), the system designer should implement  
WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.  
TIMING PARAMETERS  
-6  
-7  
-8  
-6  
-7  
-8  
SYM MIN  
MAX  
MIN  
15  
50  
0
MAX  
MIN  
20  
60  
0
MAX  
UNITS  
ns  
SYM MIN  
MAX  
MIN  
12  
MAX  
MIN  
15  
MAX  
UNITS  
ns  
tACH  
tAR  
tASC  
tASR  
tCAH  
tCAS  
15  
45  
0
tRAD  
tRAH  
tRAL  
12  
10  
30  
30  
35  
40  
ns  
10  
10  
ns  
ns  
35  
40  
ns  
0
0
0
ns  
tRASP 60 125,000 70 125,000 80 100,000  
ns  
10  
12  
15  
ns  
tRCD  
tRP  
14  
40  
13  
15  
10  
45  
0
45  
14  
50  
15  
15  
12  
55  
0
50  
20  
60  
15  
20  
15  
60  
0
60  
ns  
12 10,000  
13 10,000 20 10,000  
ns  
ns  
tCLCH 10  
10  
10  
5
10  
10  
5
ns  
tRSH  
tRWL  
tWCH  
tWCR  
tWCS  
tWP  
ns  
tCP  
10  
5
ns  
ns  
tCRP  
tCSH  
tCWL  
tDH  
tDHR  
tDS  
ns  
ns  
50  
15  
10  
45  
0
55  
15  
12  
55  
0
60  
20  
15  
55  
0
ns  
ns  
ns  
ns  
ns  
10  
10  
10  
12  
10  
10  
15  
10  
10  
ns  
ns  
tWRH  
tWRP  
ns  
ns  
ns  
tPC  
25  
30  
40  
ns  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-107  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
EDO-PAGE-MODE READ-WRITE CYCLE  
(LATE WRITE and READ-MODIFY-WRITE cycles)  
t
t
RP  
RASP  
V
V
IH  
IL  
RAS  
t
t
t
NOTE 1  
t
CSH  
PC  
PRWC  
t
RSH  
t
t
t
t
t
t
CP  
t
t
t
t
CRP  
RCD  
CP  
CP  
CAS, CLCH  
CAS, CLCH  
CAS, CLCH  
CASL/CASH  
V
V
IH  
IL  
t
AR  
t
t
t
RAD  
RAH  
RAL  
t
t
t
t
t
t
t
CAH  
ASR  
ASC  
CAH  
ASC  
CAH  
ASC  
V
V
IH  
IL  
ADDR  
ROW  
COLUMN  
COLUMN  
COLUMN  
ROW  
t
RWD  
t
RWL  
t
CWL  
t
RCS  
t
t
CWL  
CWL  
t
t
t
WP  
WP  
WP  
t
t
t
t
t
AWD  
AWD  
AWD  
CWD  
t
t
WRH  
t
WRP  
CWD  
CWD  
WE  
V
V
IH  
IL  
NOTE 2  
t
t
t
AA  
AA  
AA  
t
RAC  
t
t
t
DH  
DH  
DH  
t
t
CPA  
CPA  
t
t
t
DS  
DS  
DS  
t
t
t
t
t
t
CAC  
CLZ  
CAC  
CLZ  
CAC  
CLZ  
V
IOH  
IOL  
VALID VALID  
VALID VALID  
VALID VALID  
D D  
DQ  
OE  
OPEN  
OPEN  
V
D
D
D
D
OUT  
IN  
OUT  
IN  
OUT  
IN  
t
t
t
OD  
OD  
OD  
t
OEH  
t
t
t
OE  
OE  
OE  
V
V
IH  
IL  
DON’T CARE  
UNDEFINED  
t
NOTE:  
1. PC is for LATE WRITE cycles only.  
2. Although WE is a “don’t care” at RAS time during an access cycle (READ or WRITE), the system designer should implement  
WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.  
TIMING PARAMETERS  
-6  
-7  
-8  
-6  
-7  
-8  
SYM MIN  
tAA  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SYM MIN  
tOE  
tOEH  
tPC  
tPRWC 75  
tRAC  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
30  
35  
40  
15  
20  
20  
tAR  
45  
0
50  
0
60  
0
12  
25  
12  
30  
85  
15  
40  
90  
tASC  
tASR  
tAWD  
tCAC  
tCAH  
tCAS  
0
0
0
55  
60  
65  
60  
30  
70  
35  
80  
40  
15  
20  
20  
tRAD  
tRAH  
tRAL  
12  
10  
30  
12  
10  
35  
15  
10  
40  
10  
12  
15  
12 10,000  
13 10,000  
20 10,000  
tCLCH 10  
10  
0
10  
0
tRASP 60  
125,000  
45  
70 125,000  
80 100,000  
tCLZ  
tCP  
0
tRCD  
tRCS  
tRP  
tRSH  
tRWD  
tRWL  
tWP  
14  
0
14  
0
50  
20  
0
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
10  
40  
5
10  
40  
5
tCPA  
tCRP  
tCSH  
tCWD  
tCWL  
tDH  
35  
15  
40  
13  
80  
15  
10  
10  
10  
50  
15  
90  
15  
12  
10  
10  
60  
15  
105  
20  
15  
10  
10  
5
50  
35  
15  
10  
0
55  
40  
15  
12  
0
60  
45  
20  
15  
0
tWRH  
tWRP  
tDS  
tOD  
0
0
15  
0
20  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-108  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
EDO-PAGE-MODE READ-EARLY-WRITE CYCLE  
(Pseudo READ-MODIFY-WRITE)  
t
t
RP  
RASP  
V
V
IH  
IL  
RAS  
t
CSH  
t
t
t
PC  
RSH  
PC  
t
t
t
t
t
t
t
t
t
t
t
CP  
CRP  
RCD  
CAS, CLCH  
CP  
CAS, CLCH  
CP  
CAS, CLCH  
V
V
IH  
IL  
CASL/CASH  
t
t
t
RAL  
AR  
t
t
t
RAD  
ACH  
CAH  
t
ASR  
t
t
t
t
t
ASC  
RAH  
ASC  
CAH  
ASC  
CAH  
V
V
IH  
IL  
ADDR  
WE  
ROW  
t
COLUMN (A)  
COLUMN (B)  
ROW  
COLUMN (N)  
t
t
t
RCH  
t
t
WRP  
WRH  
t
RCS  
WCS  
WCH  
V
V
IH  
IL  
t
AA  
t
t
NOTE 1  
AA  
t
CPA  
RAC  
t
t
DH  
t
CAC  
DS  
CAC  
t
t
WHZ  
VALID  
COH  
V
V
IOH  
IOL  
DQ  
OE  
OPEN  
VALID DOUT  
VALID DIN  
DOUT  
t
OE  
V
IH  
V
IL  
DON’T CARE  
UNDEFINED  
NOTE:  
1. Although WE is a “don’t care” at RAS time during an access cycle (READ or WRITE), the system designer should implement  
WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.  
TIMING PARAMETERS  
-6  
-7  
-8  
-6  
-7  
-8  
SYM MIN  
tAA  
tACH  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
ns  
SYM MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
ns  
30  
35  
40  
tPC  
25  
30  
40  
15  
45  
0
15  
50  
0
20  
60  
0
ns  
tRAC  
tRAD  
tRAH  
tRAL  
60  
30  
70  
35  
80  
40  
ns  
tAR  
ns  
12  
10  
30  
12  
10  
35  
15  
10  
40  
ns  
tASC  
tASR  
tCAC  
tCAH  
tCAS  
ns  
ns  
0
0
0
ns  
ns  
15  
20  
20  
ns  
tRASP 60  
125,000  
45  
70 125,000  
80 100,000  
ns  
10  
12  
15  
ns  
tRCD  
tRCH  
tRCS  
tRP  
tRSH  
tWCH  
tWCS  
tWHZ  
tWRH  
tWRP  
14  
0
14  
0
50  
15  
20  
0
60  
20  
ns  
12 10,000  
13 10,000  
20 10,000  
ns  
ns  
tCLCH 10  
10  
3
10  
5
ns  
0
0
0
ns  
tCOH  
tCP  
3
ns  
40  
13  
10  
0
50  
15  
12  
0
60  
15  
15  
0
ns  
10  
10  
40  
5
10  
40  
5
ns  
ns  
tCPA  
tCRP  
tCSH  
tDH  
35  
15  
ns  
ns  
5
50  
10  
0
ns  
ns  
55  
12  
0
60  
15  
0
ns  
0
13  
0
0
ns  
ns  
10  
10  
10  
10  
10  
10  
ns  
tDS  
ns  
ns  
tOE  
20  
20  
ns  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-109  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
READ CYCLE  
(with WE-controlled disable)  
V
IH  
RAS  
CASL/CASH  
ADDR  
V
IL  
t
CSH  
t
t
t
t
t
t
RCD  
CAS, CLCH  
CRP  
CP  
V
V
IH  
IL  
t
AR  
t
t
RAD  
RAH  
t
t
t
ASR  
ASC  
CAH  
ASC  
V
V
IH  
IL  
ROW  
t
COLUMN  
COLUMN  
t
t
WRP  
WRH  
RCS  
t
t
t
RCH  
WPZ  
RCS  
V
V
WE  
IH  
IL  
NOTE 1  
t
t
t
t
AA  
RAC  
CAC  
CLZ  
t
t
WHZ  
CLZ  
V
V
OH  
OL  
DQ  
OE  
OPEN  
OPEN  
VALID DATA  
t
t
OD  
OE  
V
IH  
V
IL  
DON’T CARE  
UNDEFINED  
NOTE:  
1. Although WE is a “don’t care” at RAS time during an access cycle (READ or WRITE), the system designer should implement  
WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.  
TIMING PARAMETERS  
-6  
-7  
-8  
-6  
-7  
-8  
SYM MIN  
tAA  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
ns  
SYM MIN  
MAX  
15  
MIN  
MAX  
15  
MIN  
MAX  
15  
UNITS  
ns  
30  
35  
40  
tOD  
0
0
0
tAR  
45  
0
50  
0
60  
0
ns  
tOE  
15  
20  
20  
ns  
tASC  
tASR  
tCAC  
tCAH  
tCAS  
ns  
tRAC  
tRAD  
tRAH  
tRCD  
tRCH  
tRCS  
tWHZ  
tWPZ  
tWRH  
tWRP  
60  
70  
80  
ns  
0
0
0
ns  
12  
10  
14  
0
30  
12  
10  
14  
0
35  
15  
10  
20  
0
40  
ns  
15  
20  
20  
ns  
ns  
10  
12  
15  
ns  
45  
13  
50  
15  
60  
20  
ns  
12 10,000  
13 10,000  
20 10,000  
ns  
ns  
tCLCH 10  
10  
0
10  
0
ns  
0
0
0
ns  
tCLZ  
tCP  
tCRP  
tCSH  
0
10  
5
ns  
0
0
0
ns  
10  
5
10  
5
ns  
10  
10  
10  
12  
10  
10  
15  
10  
10  
ns  
ns  
ns  
50  
55  
60  
ns  
ns  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-110  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
RAS-ONLY REFRESH CYCLE  
t
RC  
t
t
RP  
RAS  
V
V
IH  
IL  
RAS  
t
t
RPC  
CRP  
V
V
IH  
IL  
CASL/CASH  
t
t
RAH  
ASR  
V
V
IH  
IL  
ADDR  
ROW  
ROW  
V
V
OH  
OL  
Q
OPEN  
t
t
t
t
WRH  
WRP  
WRH  
WRP  
V
V
IH  
IL  
WE  
NOTE 1  
CBR REFRESH CYCLE  
(Addresses and OE = DON’T CARE)  
t
t
t
t
RAS  
RP  
RAS  
RP  
V
V
IH  
IL  
RAS  
t
RPC  
t
t
t
t
t
t
CHR  
RPC  
CP  
CSR  
CHR  
CSR  
V
V
IH  
IL  
CASL and CASH  
DQ  
V
V
OH  
OL  
OPEN  
t
t
t
t
WRH  
WRP  
WRH  
WRP  
V
V
IH  
IL  
WE  
NOTE 2  
NOTE:  
1. Although WE is a “don’t care” at RAS time during an access cycle (READ or WRITE), the system designer should  
implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.  
t
2. WRP and tWRH are for system design reference only. The WE signal is actually a “don’t care” at RAS time during a CBR  
REFRESH. However, WE should be held HIGH at RAS time during a CBR REFRESH to ensure compatibility with other  
DRAMs that require WE HIGH at RAS time during a CBR REFRESH.  
TIMING PARAMETERS  
-6  
-7  
-8  
-6  
-7  
-8  
SYM MIN  
MAX  
MIN  
0
MAX  
MIN  
0
MAX  
UNITS  
ns  
SYM MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
ns  
tASR  
tCHR  
tCP  
tCRP  
tCSR  
tRAH  
0
10  
10  
5
tRAS  
tRC  
tRP  
tRPC  
tWRH  
tWRP  
60 10,000  
70 10,000 80 10,000  
12  
10  
5
15  
10  
5
ns  
105  
40  
5
125  
50  
5
150  
60  
5
ns  
ns  
ns  
ns  
ns  
5
5
10  
10  
ns  
10  
10  
10  
10  
10  
10  
ns  
10  
10  
ns  
ns  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-111  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
HIDDEN REFRESH CYCLE 32  
(WE = HIGH; OE = LOW)  
t
RC  
t
t
t
RAS  
RAS  
RP  
V
V
IH  
IL  
RAS  
t
t
t
t
CRP  
RCD  
RSH  
CHR  
V
V
IH  
IL  
CASL/CASH  
t
t
AR  
t
t
RAD  
RAL  
t
t
t
ASR  
RAH  
ASC  
CAH  
V
V
IH  
IL  
ADDR  
ROW  
COLUMN  
t
t
t
t
AA  
RAC  
CAC  
CLZ  
t
OFF  
V
IOH  
IOL  
DQx  
OE  
OPEN  
VALID DATA  
OPEN  
V
t
t
OD  
OE  
V
V
t
IH  
IL  
ORD  
DON’T CARE  
UNDEFINED  
TIMING PARAMETERS  
-6  
-7  
-8  
-6  
-7  
-8  
SYM MIN  
tAA  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
ns  
SYM MIN  
MAX  
MIN  
3
MAX  
MIN  
MAX  
UNITS  
ns  
30  
35  
40  
tOFF  
tORD  
tRAC  
tRAD  
tRAH  
tRAL  
tRAS  
tRC  
3
0
15  
15  
3
0
15  
tAR  
45  
0
50  
0
60  
0
ns  
0
ns  
tASC  
tASR  
tCAC  
tCAH  
tCHR  
tCLZ  
tCRP  
tOD  
ns  
60  
30  
70  
35  
80  
40  
ns  
0
0
0
ns  
12  
10  
30  
60  
105  
14  
40  
13  
12  
10  
35  
15  
10  
40  
ns  
15  
20  
20  
ns  
ns  
10  
10  
0
12  
12  
0
15  
15  
0
ns  
ns  
ns  
10,000 70 10,000 80  
10,000  
60  
ns  
ns  
125  
14  
145  
20  
ns  
5
5
5
ns  
tRCD  
tRP  
45  
50  
ns  
0
15  
15  
0
15  
20  
0
20  
20  
ns  
50  
60  
ns  
tOE  
ns  
tRSH  
15  
15  
ns  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-112  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
ELECTRICAL TEST REQUIREMENTS  
SUBGROUPS  
MIL-STD-883TESTREQUIREMENTS  
(perMethod5005, Table I)  
INTERIM ELECTRICAL (PRE-BURN-IN) TEST PARAMETERS  
(Method 5004)  
2, 8A, 10  
FINAL ELECTRICAL TEST PARAMETERS  
(Method 5004)  
1*, 2, 3, 7*, 8, 9, 10, 11  
1, 2, 3, 4**, 7, 8, 9, 10, 11  
1, 2, 3, 7, 8, 9, 10, 11  
GROUP A TEST REQUIREMENTS  
(Method 5005)  
GROUP C AND D END-POINT ELECTRICAL PARAMETERS  
(Method 5005)  
*
PDA applies to subgroups 1 and 7.  
** Subgroup 4 shall be measured only for initial qualification and after process or design changes, which may affect input  
or output capacitance.  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-113  
AS4LC1M16 883C  
1 MEG x 16 DRAM  
AUSTIN SEMICONDUCTOR, INC.  
PRELIMINARY  
AS4LC1M16  
REV. 3/97  
DS000020  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
2-114  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY