M37733 [MITSUBISHI]

16-BIT CMOS MICROCOMPUTER; 16位微机的CMOS
M37733
型号: M37733
厂家: Mitsubishi Group    Mitsubishi Group
描述:

16-BIT CMOS MICROCOMPUTER
16位微机的CMOS

计算机
文件: 总36页 (文件大小:927K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
DESCRIPTION  
Serial I/O (UART or clock synchronous)..................................... 3  
10-bit A-D converter .............................................. 8-channel inputs  
12-bit watchdog timer  
The M37733S4LHP is a microcomputer using the 7700 Family core.  
This microcomputer has a CPU and a bus interface unit. The CPU is  
a 16-bit parallel processor that can be an 8-bit parallel processor,  
and the bus interface unit enhances the memory access efficiency to  
execute instructions fast. This microcomputer also includes a 32 kHz  
oscillation circuit, in addition to the RAM, multiple-function timers,  
serial I/O, A-D converter, and so on.  
Programmable input/output  
(ports P4, P5, P6, P7, P8) ........................................................ 37  
Clock generating circuit ........................................ 2 circuits built-in  
Small package ..................... 80-pin plastic molded fine-pitch QFP  
(80P6D-A;0.5 mm lead pitch)  
Its strong points are the low power dissipation, the low supply voltage  
and the small package.  
APPLICATION  
Control devices for general commercial equipment such as office  
automation, office equipment, personal information equipment, and  
so on.  
FEATURES  
Number of basic instructions .................................................. 103  
Memory size  
RAM ................................................ 2048 bytes  
Control devices for general industrial equipment such as  
communication equipment, and so on.  
Instruction execution time  
The fastest instruction at 12 MHz frequency ...................... 333 ns  
Single power supply ...................................................... 2.7–5.5 V  
Low power dissipation (At 3 V supply voltage, 12 MHz frequency)  
............................................ 10.8 mW (Typ.)  
Interrupts ............................................................ 19 types, 7 levels  
Multiple-function 16-bit timer ................................................. 5 + 3  
PIN CONFIGURATION (TOP VIEW)  
61  
P8  
/CTS  
P8  
XD0  
5
/CLK  
/RTS  
/T  
/CLKS  
P8 /CLK  
/RTS /CLKS  
1
40  
39  
38  
37  
36  
35  
34  
33  
P2  
2
/A18/D  
2
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
P8  
P8  
/CTS  
4
1
1
P2  
P2  
P2  
P2  
P2  
P3  
P3  
P3  
P3  
VSS  
3
4
5
/A 19/D  
/A20/D  
/A21/D  
3
4
3
X
D
0
0
0
2
/R  
5
1
6
/A22/D  
6
7
/A23/D  
/R/W  
/BHE  
/ALE  
/HLDA  
7
P8  
0
0
0
1
VCC  
0
1
AVCC  
32  
31  
2
3
V
REF  
AVSS  
M37733S4LHP  
30  
29  
28  
VSS  
E
X
X
P7  
P7 /AN  
/AN /ADTRG/T  
P7 /AN /R  
P7 /CLK  
P7 /CTS  
7/AN  
7/XCIN  
OUT  
IN  
6
6
/XCOUT  
73  
74  
75  
76  
27  
26  
25  
24  
23  
22  
21  
P75  
5
X
D
2
2
2
RESET  
CNVSS  
BYTE  
HOLD  
RDY  
4
4
XD  
3
/AN  
3
2
77  
78  
2
/AN  
2
1
P7  
P7  
/TB2IN  
1
/AN  
79  
80  
0
/AN  
0
P42 / 1  
P6  
7
/
SUB  
Outline  
A
80P6D-  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
Data Bus(Even)  
Data Bus(Odd)  
Data Buffer DBH(8)  
Data Buffer DB  
L(8)  
Instruction Queue Buffer Q  
0(8)  
Instruction Queue Buffer Q  
1(8)  
Instruction Queue Buffer Q  
2(8)  
Address Bus  
Incrementer(24)  
Program Address Register PA(24)  
Data Address Register DA(24)  
Incrementer/Decrementer(24)  
Program Counter PC(16)  
Program Bank Register PG(8)  
Data Bank Register DT(8)  
Input Butter Register IB(16)  
Processor Status Register PS(11)  
Direct Page Register DPR(16)  
Stack Pointer S(16)  
Index Register Y(16)  
Index Register X(16)  
Accumulator B(16)  
Accumulator A(16)  
X
X
COUT  
CIN  
Arithmetic Logic  
Unit(16)  
2
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
FUNCTIONS OF M37733S4LHP  
Parameter  
Functions  
Number of basic instructions  
Instruction execution time  
103  
333 ns (the fastest instruction at external clock 12 MHz frequency)  
Memory size  
RAM  
2048 bytes  
P5 – P8  
P4  
8-bit 4  
5-bit 1  
Input/Output ports  
TA0, TA1, TA2, TA3, TA4  
TB0, TB1, TB2  
16-bit 5  
16-bit 3  
Multi-function timers  
Serial I/O  
A-D converter  
Watchdog timer  
(UART or clock synchronous serial I/O) 3  
10-bit 1 (8 channels)  
12-bit 1  
3 external types, 16 internal types  
Interrupts  
Each interrupt can be set to the priority level (0 – 7.)  
2 circuits built-in (externally connected to a ceramic resonator or a  
quartz-crystal oscillator)  
Clock generating circuit  
Supply voltage  
2.7 – 5.5 V  
10.8 mW (at 3 V supply voltage, external clock 12 MHz frequency)  
27 mW (at 5 V supply voltage, external clock 12 MHz frequency)  
Power dissipation  
Input/Output voltage  
Output current  
5 V  
5 mA  
Input/Output characteristic  
Memory expansion  
Operating temperature range  
Device structure  
Maximum 16 Mbytes  
–40 to 85 °C  
CMOS high-performance silicon gate process  
80-pin plastic molded fine-pitch QFP (80P6D-A;0.5 mm lead pitch)  
Package  
3
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
BASIC FUNCTION BLOCKS  
The 2048-byte area allocated to addresses from 8016 to 87F16 is the  
built-in RAM. In addition to storing data, the RAM is used as stack  
during a subroutine call or interrupts.  
The M37733S4LHP has the same functions as the  
M37733MHBXXXFP except for the following :  
(1) The memory map is different.  
Peripheral devices such as I/O ports, A-D converter, serial I/O, timer,  
and interrupt control registers are allocated to addresses from 016 to  
7F16.  
(2) The processor mode is different.  
(3) The reset circuit is different.  
(4) Pulse output port mode of timer A is available.  
(5) The function of ROM area modification is not available.  
A 256-byte direct page area can be allocated anywhere in bank 016  
by using the direct page register (DPR). In the direct page addressing  
mode, the memory in the direct page area can be accessed with two  
words. Hence program steps can be reduced.  
MEMORY  
The memory map is shown in Figure 1. The address space has a  
capacity of 16 Mbytes and is allocated to addresses from 016 to  
FFFFFF16. The address space is divided by 64-Kbyte unit called bank.  
The banks are numbered from 016 to FF16.  
Built-in RAM and control registers for internal peripheral devices are  
assigned to bank 016.  
Addresses FFD616 to FFFF16 are the RESET and interrupt vector  
addresses and contain the interrupt vectors. Use ROM for memory  
of this address.  
00000016  
00007F16  
00008016  
00000016  
00000016  
Internal peripheral  
devices  
Bank 016  
Bank 116  
control registers  
refer to Fig. 2 for  
detail information  
00FFFF16  
01000016  
Internal RAM  
00007F16  
2048 bytes  
Interrupt vector table  
00FFD616  
A-D/UART2 trans./rece.  
00087F16  
UART1 transmission  
UART1 receive  
01FFFF16  
UART0 transmission  
UART0 receive  
Timer B2  
Timer B1  
Timer B0  
Timer A4  
Timer A3  
Timer A2  
FE000016  
Timer A1  
Timer A0  
Bank FE16  
Bank FF16  
INT /Key input  
2
INT1  
INT0  
FEFFFF16  
FF000016  
Watchdog timer  
DBC  
BRK instruction  
00FFD616  
00FFFF16  
Zero divide  
RESET  
00FFFE16  
FFFFFF16  
: Internal  
: External  
Fig. 1 Memory map  
5
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
Address (Hexadecimal notation)  
Address (Hexadecimal notation)  
Count start flag  
One-shot start flag  
Up-down flag  
000000  
000001  
000002  
000003  
000004  
000040  
000041  
000042  
000043  
000044  
000045  
000046  
000047  
000048  
000049  
00004A  
00004B  
00004C  
00004D  
00004E  
00004F  
000050  
000051  
000052  
000053  
000054  
000055  
000056  
000057  
000058  
000059  
00005A  
00005B  
00005C  
00005D  
00005E  
00005F  
000060  
000061  
000062  
000063  
000064  
000065  
000066  
000067  
000068  
000069  
00006A  
00006B  
00006C  
00006D  
00006E  
00006F  
000070  
000071  
000072  
000073  
000074  
000075  
000076  
000077  
000078  
000079  
00007A  
00007B  
00007C  
00007D  
00007E  
Port P0 register  
Port P1 register  
Port P0 direction register  
000005 Port P1 direction register  
Port P2 register  
000006  
000007  
000008  
000009  
00000A  
00000B  
00000C  
00000D  
00000E  
00000F  
000010  
000011  
000012  
000013  
000014  
000015  
000016  
000017  
000018  
000019  
00001A  
00001B  
00001C  
00001D  
00001E  
00001F  
000020  
000021  
000022  
000023  
000024  
000025  
000026  
000027  
000028  
000029  
00002A  
00002B  
00002C  
00002D  
00002E  
00002F  
000030  
000031  
000032  
000033  
000034  
000035  
000036  
000037  
000038  
000039  
00003A  
00003B  
00003C  
00003D  
00003E  
00003F  
Timer A0 register  
Timer A1 register  
Timer A2 register  
Timer A3 register  
Timer A4 register  
Timer B0 register  
Timer B1 register  
Timer B2 register  
Port P3 register  
Port P2 direction register  
Port P3 direction register  
Port P4 register  
Port P5 register  
Port P4 direction register  
Port P5 direction register  
Port P6 register  
Port P7 register  
Port P6 direction register  
Port P7 direction register  
Port P8 register  
Port P8 direction register  
Timer A0 mode register  
Timer A1 mode register  
Timer A2 mode register  
Timer A3 mode register  
Timer A4 mode register  
Timer B0 mode register  
Timer B1 mode register  
Pulse output data register 1  
Pulse output data register 0  
A-D control register 0  
Timer B2 mode register  
Processor mode register 0  
Processor mode register 1  
Watchdog timer register  
Watchdog timer frequency selection flag  
Waveform output mode register  
Reserved area (Note)  
A-D control register 1  
A-D register 0  
A-D register 1  
A-D register 2  
A-D register 3  
A-D register 4  
A-D register 5  
A-D register 6  
A-D register 7  
UART2 transmit/receive mode register  
UART2 baud rate register (BRG2)  
UART2 transmission buffer register  
UART2 transmit/receive control register 0  
UART2 transmit/receive control register 1  
UART2 receive buffer register  
Oscillation circuit control register 0  
Port function control register  
Serial transmit control register  
Oscillation circuit control register 1  
A-D/UART2 trans./rece. interrupt control register  
UART 0 transmission interrupt control register  
UART 0 receive interrupt control register  
UART 1 transmission interrupt control register  
UART 1 receive interrupt control register  
Timer A0 interrupt control register  
Timer A1 interrupt control register  
Timer A2 interrupt control register  
Timer A3 interrupt control register  
Timer A4 interrupt control register  
Timer B0 interrupt control register  
Timer B1 interrupt control register  
Timer B2 interrupt control register  
UART 0 transmit/receive mode register  
UART 0 baud rate register (BRG0)  
UART 0 transmission buffer register  
UART 0 transmit/receive control register 0  
UART 0 transmit/receive control register 1  
UART 0 receive buffer register  
UART 1 transmit/receive mode register  
UART 1 baud rate register (BRG1)  
UART 1 transmission buffer register  
UART 1 transmit/receive control register 0  
UART 1 transmit/receive control register 1  
INT  
0
interrupt control register  
interrupt control register  
INT1  
UART 1 receive buffer register  
00007F INT  
2/Key input interrupt control register  
Note . Do not write to this address.  
Fig. 2 Location of internal peripheral devices and interrupt control registers  
6
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
shows the bit configuration of the pulse output data register. The  
contents of the pulse output data register 1 (low-order four bits of  
1C16 address) corresponding to RTP10, RTP11, RTP12, and RTP13  
is output to the ports each time the counter of timer A2 becomes  
000016. The contents of the pulse output data register 0 (low-order  
four bits of 1D16 address) corresponding to RTP00, RTP01, RTP02,  
and RTP03 is output to the ports each time the counter of timer A0  
becomes 000016.  
Pulse output port mode  
The pulse motor drive waveform can be output by using plural internal  
timer A.  
Figure 3 shows a block diagram for pulse output port mode. In the  
pulse output port mode, two pairs of four-bit pulse output ports are  
used. Whether using pulse output port or not can be selected by  
waveform output selection bit (bit 0, bit 1) of waveform output mode  
register (6216 address) shown in Figure 4. When bit 0 of waveform  
output selection bit is set to “1”, RTP10, RTP11, RTP12, and RTP13  
are used as pulse output ports, and when bit 1 of waveform output  
selection bit is set to “1”, RTP00, RTP01, RTP02, and RTP03 are  
used as pulse output ports. When bits 1 and 0 of waveform output  
selection bit are set to “1”, RTP10, RTP11, RTP12, and RTP13, and  
RTP00, RTP01, RTP02, and RTP03 are used as pulse output ports.  
The ports not used as pulse output ports can be used as normal  
parallel ports, timer input/output or key input interrupt input.  
In the pulse output port mode, set timers A0 and A2 to timer mode as  
timers A0 and A2 are used. Figure 5 shows the bit configuration of  
timer A0, A2 mode registers in pulse output port mode.  
Figure 7 shows example of waveforms in pulse output port mode.  
When “0” is written to a specified bit of the pulse output data register,  
“L” level is output to the corresponding pulse output port when the  
counter of corresponding timer becomes 000016, and when “1” is  
written, “H” level is output to the pulse output port.  
Pulse width modulation can be applied to each pulse output port.  
Since pulse width modulation involves the use of timers A1 and A3,  
activate these timers in pulse width modulation mode.  
Data can be set in each bit of the pulse output data register  
corresponding to four ports selected as pulse output ports. Figure 6  
4
5
Pulse width modulation selection bit  
(Bit 4, 5 of 6216 address)  
Pulse width modulation output  
by timer A3  
Pulse width modulation output  
by timer A1  
Timer A2  
Pulse output data  
register 1 (1C16 address)  
T
RTP13 (P57)  
RTP12 (P56)  
D3  
D
Q
D2  
D1  
D
D
Q
Q
RTP11 (P55)  
RTP10 (P54)  
D0  
D
Q
RTP03 (P53)  
D11  
D10  
D
D
Q
Q
RTP02 (P52)  
RTP01 (P51)  
D9  
D8  
D
D
Q
Q
RTP00 (P50)  
T
Pulse output data  
register 0 (1D16 address)  
Polarity selection bit  
(Bit 3 of 6216 address)  
Timer A0  
Fig. 3 Block diagram for pulse output port mode  
7
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
RTP10, RTP11, RTP12, and RTP13 are applied pulse width modulation  
by timer A3 by setting the pulse width modulation selection bit by  
timer A3 (bit 5) of the waveform output mode register to “1”.  
Address  
7
6
5
0
4
0
3
2
1
1
0
0
0
RTP00, RTP01, RTP02, and RTP03 are applied pulse width modulation  
by timer A1 by setting the pulse width modulation selection bit by  
timer A1 (bit 4) of the waveform output mode register to “1”.  
Timer A0 mode register 5616  
Timer A2 mode register 5816  
X
Always “100” in pulse output  
port mode  
The contents of the pulse output data register 0 can be reversed and  
output to pulse output ports RTP00, RTP01, RTP02, and RTP03 by  
the polarity selection bit (bit 3) of the waveform output mode register.  
When the polarity selection bit is “0”, the contents of the pulse output  
data register 0 is output unchangeably, and when “1”, the contents of  
the pulse output data register 0 is reversed and output. When pulse  
width modulation is applied, likewise the polarity reverse to pulse  
width modulation can be selected by the polarity selection bit.  
Not used in pulse output port mode  
Always “00” in pulse output port mode  
Clock source selection bit  
0 0 : Select f  
2
0 1 : Select f16  
1 0 : Select f64  
1 1 : Select f512  
Fig. 5 Timer A0, A2 mode register bit configuration in pulse output  
port mode  
7
0
6 5 4 3 2 1 0  
Address  
Weveform output mode register 6216  
Weveform output selection bit  
0 0 : Parallel port  
0 1 : RTP1 selected  
1 0 : RTP0 selected  
7
6 5 4 3 2 1 0  
Address  
1 1 : RTP1 and RTP0 selected  
Pulse output data register 0 1D16  
Polarity selection bit  
0 : Positive polarity  
1 : Negative polarity  
RTP0  
RTP0  
RTP0  
RTP0  
0
1
2
3
output data  
output data  
output data  
output data  
Pulse width modulation selection bit  
by timer A1  
0 : Not modulated  
1 : Modulated  
Pulse width modulation selection bit  
by timer A3  
0 : Not modulated  
1 : Modulated  
7
6 5 4 3 2 1 0  
Address  
Pulse output data register 1 1C16  
Always “0”  
RTP1  
RTP1  
RTP1  
RTP1  
0
1
2
3
output data  
output data  
output data  
output data  
Fig. 4 Waveform output mode register bit configuration  
Fig. 6 Pulse output data register bit configuration  
8
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
Example of pulse output port (RTP10 – RTP13)  
Output signal at each time  
when timer A2 becomes 000016  
RTP13 (P57)  
RTP12 (P56)  
RTP11 (P55)  
RTP10 (P54)  
Example of pulse output port (RTP10 – RTP13) when pulse width modulation is applied by timer A3.  
Output signal at each time  
when timer A2 becomes 000016  
RTP13 (P57)  
RTP12 (P56)  
RTP11 (P55)  
RTP10 (P54)  
Example of pulse output port (RTP00 – RTP03) when pulse width modulation is applied  
by timer A1 with polarity selection bit = “1”.  
Output signal at each time  
when timer A0 becomes 000016  
RTP03 (P53)  
RTP02 (P52)  
RTP01 (P51)  
RTP00 (P50)  
Fig. 7 Example of waveforms in pulse output port mode  
9
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
PROCESSOR MODE  
• BYTE pin  
The bits 0 of processor mode register 0 as shown in Figure 8 is used  
to select which mode of microprocessor mode, and evaluation chip  
mode.  
When accessing the external memory, the level of the BYTE pin is  
used to determine whether to use the data bus as 8-bit width or 16-  
bit width.  
Figure 9 shows functions of P00/A0 to P47 pins in each mode.  
The external memory area also changes when the mode changes.  
Figure 10 shows the memory map for each mode.  
The accessing of the external memory is affected by the BYTE pin,  
the bit 2 (wait bit) of processor mode register 0, and bit 0 (wait selection  
bit) of processor mode register 1.  
The data bus width is 8 bits when the level of the BYTE pin is “H”,  
and P20/A16/D0 to P27/A23/D7 pins become the data I/O pins.  
The data bus width is 16 bits when the level of the BYTE pin is “L”,  
and both P20/A16/D0 to P27/A23/D7 pins and P10/A8/D8 to P17/A15/  
D15 pins become the data I/O pins.  
When accessing the internal memory, the data bus width is always  
16 bits regardless of the BYTE pin level.  
7
6
0
5
4
3
2
1
0
7 6 5 4 3 2 1 0  
Address  
5E16  
Address  
5F16  
1
Processor mode register 0  
Processor mode register 1  
Wait selection bit  
0 : Wait 0  
1 : Wait 1  
Processor mode bit  
0 : Microprocessor mode  
1 : Evaluation chip mode  
This bit must be “1”  
(becomes “1” after reset release)  
Wait bit  
0 : Wait  
1 : No Wait  
Software reset bit  
Reset occurs when this bit is set to “1”  
Interrupt priority detection time selection bit  
0 0 : Internal clock 7  
0 1 : Internal clock 4  
1 0 : Internal clock 2  
This bit must be “0”  
Not used  
Fig. 8 Processor mode register bit configuration  
10  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
PM  
PM  
Mode  
1
1
0
1
1
0
Microprocessor mode  
Evaluation Chip mode  
Pin  
E
Same as left  
Same as left  
P00/A0 - P07/A7  
P0  
0
/A  
0
Address A0-A7  
P07  
/A  
7
E
A
8
to A15  
Address  
P10/A8/D8  
BYTE = “L”  
BYTE = “H”  
Data(odd)  
P1  
7/A15/D15  
P1  
0/A8/D8  
E
E
A
8
to A15  
Address  
P10/A  
8
/D  
8
P1  
0/A8/D8  
P17  
/A15/D15  
Data(odd)  
Address A8-A15  
P17/A15/D15  
P17/A15/D15  
Ports P4, P5 and their direction registers  
are treated as 16-bit wide bus.  
E
/A16/D  
A
16 to A23  
Address  
BYTE = “L”  
BYTE = “H”  
P2  
0
0
7
Same as left  
Data(even)  
P27  
/A23/D  
P20  
/A16/D  
0
E
E
/A16/D0  
A
16 to A23  
Address  
A
16 to A23  
Address  
P27  
/A23/D  
7
P20  
P2  
0
/A16/D  
0
Data(even, odd)  
Data(even, odd)  
P27  
/A23/D  
7
P27/A23/D7  
Ports P4, P5 and their direction registers  
are treated as 16-bit wide bus.  
E
P3  
0
/R/W  
/BHE  
/ALE  
R/W  
BHE  
ALE  
P30  
P31  
P32  
P33  
/R/W,  
/
BHE,  
Same as left  
P3  
1
2
/ALE,  
/
HLDA  
P3  
HLDA  
P33/HLDA  
E
E
HOLD,  
RDY,  
HOLD  
RDY  
HOLD  
RDY  
HOLD  
RDY  
P42  
/
1,  
Port P4  
3
to P47  
P4  
2/  
1
P42  
/
1
MX  
P4  
3
P4  
3
7
I/O Port  
QCL  
P4  
4
5
P4  
P4  
VDA  
VPA  
P4  
6
7
P4  
DBC  
Fig. 9 Relationship between pins P00 /A0 to P47 and processor modes  
Note. The signal output disable selection bit (bit 6 of the oscillation circuit control register 0) can stop the  
1 output  
_
in the microprocessor mode. In the microprocessor mode, signal E can also be fixed to “H” when the internal  
memory area is accessed.  
11  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
• Wait bit  
Internal clock  
Ai/Dj  
As shown in Figure 11, when the external memory area is accessed  
with the processor mode register 0 (address 5E16) bit 2 (wait bit)  
cleared to “0”, the access time can be extended compared with no  
wait (the wait bit is “1”).  
Address  
Address  
Data  
Data  
Wait bit “1”  
E
(No wait)  
The access time is extended in two ways and this is selected with bit  
0 (wait selection bit) of processor mode register 1 (address 5F16).  
When this bit is “1”, the access time is 1.5 times compared to that for  
no wait. When this bit is “0”, the access time is twice compared to  
that for no wait.  
ALE  
Access time  
Address  
Address  
Data  
Data  
Ai/Dj  
E
Wait bit “0”  
(Wait 1)  
At reset, the wait bit and the wait selection bit are “0”.  
The accessing of internal memory area is performed in no wait mode  
regardless of the wait bit.  
ALE  
The processor modes are described below.  
Access time  
Address  
Address  
Data  
Ai/Dj  
E
Wait bit “0”  
(Wait 0)  
Microprocessor  
mode  
Evaluation chip  
mode  
ALE  
216  
A16  
0016  
Access time  
SFR  
C16  
Fig. 11 Relationship between wait bit, wait selection bit, and access time  
SFR  
8016  
8016  
(1) Microprocessor mode [10]  
Microprocessor mode is entered by connecting the CNVss pin to Vcc  
and starting from reset.  
RAM  
RAM  
_
_
87F16  
87F16  
Signal E is output from pin E and is “L” during the data/instruction  
code read or data write term. When the internal memory area is read  
_
or written, E can be fixed to “H” by setting the signal output disable  
selection bit (bit 6 of oscillation circuit control register 0) to “1”.  
P00/A0 to P07/A7 pins become address output pins.  
P10/A8/D8 to P17/A15/D15 pins have two functions depending on the  
level of the BYTE pin.  
When the BYTE pin level is “L”, P10/A8/D8 to P17/A15/D15 pins function  
_
as an address output pin while E is “H” and as an odd address data  
_
I/O pin while E is “L”. However, if an internal memory is read, external  
_
data is ignored while E is “L”.  
When the BYTE pin level is “H”, P10/A8/D8 to P17/A15/D15 pins function  
as an address output pin.  
When the BYTE pin level is “L”, P20/A16/D0 to P27/A23/D7 pins function  
_
as an address output pin while E is “H” and as an even address data  
_
FFFFFF16  
FFFFFF16  
I/O pin while E is “L”. However, if an internal memory is read, external  
_
data is ignored while E is “L”.  
The shaded area is the external memory area.  
R/W is a read /write signal which indicates a read when it is “H” and a  
write when it is “L”.  
___  
Fig. 10 External memory area for each processor mode  
BHE is a byte high enable signal which indicates that an odd address  
is accessed when it is “L”.  
Therefore, two bytes at even and odd addresses are accessed  
___  
simultaneously if address A0 is “L” and BHE is “L”.  
ALE is an address latch enable signal used to latch the address signal  
from a multiplexed signal of address and data. The latch is transparent  
while ALE is “H” to let the address signal pass through and held  
while ALE is “L”.  
12  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
____  
HLDA is a hold acknowledge signal and is used to notify externally  
____  
addresses are accessed, the data bus width is treated as 16 bits  
regardless of the BYTE pin level, and the access cycle is treated as  
internal memory regardless of the wait bit.  
when the microcomputer receives HOLD input and enters hold state.  
____  
HOLD is a hold request signal. It is an input signal used to put the  
____  
____  
___  
microcomputer in hold state. HOLD input is accepted when the internal  
The functions of HOLD and RDY are the same as those in  
microprocessor mode. Clock 1 from P42/ 1 pin is always output  
clock  
falls from “H” level to “L” level while the bus is not used.  
P00/A0 to P07/A7 pins, P10/A8/D8 to P17/A15/D15 pins, P20/A16/D0 to  
regardless of signal output disable selection bit.  
___  
P27/A23/D7 pins, P30/R/W pin, and P31/BHE pin are floating while the  
Ports P43 to P46 become MX, QCL, VDA, and VPA output pins  
___  
microcomputer stays in hold state. These pins are floating after one  
____  
respectively. Port P47 becomes the DBC input pin.  
cycle of the internal clock  
later than HLDA signal changes to “L”  
The MX signal normally contents of flag m, but the contents of flag x  
is output if the CPU is using flag x.  
level. At the removing of hold state, these ports are removed from  
____  
later than HLDA signal  
floating state after one cycle of internal clock  
QCL is the queue buffer clear signal. It becomes “H” when the  
instruction queue buffer is cleared, for example, when a jump  
instruction is executed.  
changes to “H” level.  
___  
RDY is a ready signal. If this signal goes “L”, the internal clock  
___  
stops at “L”. RDY is used when slow external memory is attached.  
VDA is the valid data address signal. It becomes “H” while the CPU  
is reading data from data buffer or writing data to data buffer. It also  
becomes “H” when the first byte of the instruction (operation code) is  
read from the instruction queue buffer.  
P42/  
1 pin is an output pin for clock  
1. The  
1 output is  
___  
independent of RDY and does not stop even when internal clock  
___  
stops because of “L” input to the RDY pin. As shown in Table 2,  
1
output can also be stopped with the signal output disable selection  
bit “1”. In this case, write “1” to the port P42 direction register.  
VPA is the valid program address signal. It becomes “H” while the  
CPU is reading an instruction code from the instruction queue buffer.  
___  
DBC is the debug control signal and is used for debugging. Table 1  
shows the relationship between the CNVSS pin input levels and  
processor modes.  
(2) Evaluation chip mode [11]  
Evaluation chip mode is entered by applying voltage twice the VCC  
voltage to the CNVSS pin. This mode is normally used for evaluation  
tools.  
____  
_
___  
The functions of E, P00/A0 to P07/A7 pins, R/W, BHE, ALE, and HLDA  
are the same as those in microprocessor mode.  
Table 1. Relationship between CNVss pin input levels and processor  
modes  
P10/A8/D8 to P17/A15/D15 pins function as address output pins while  
_
_
E is “H” and as data I/O pin of odd addresses while E is “L” regardless  
CNVss  
Mode  
Description  
of the BYTE pin level. However, if an internal memory is read, external  
_
• Microprocessor  
(• Evaluation chip) starting after reset.  
Microprocessor mode upon  
Vss  
data is ignored while E is “L”. P20/A16/D0 to P27/A23/D7 pins function  
_
• Evaluation chip Evaluation chip mode only.  
2 • Vcc  
as address output pins while E is “H” and as data I/O pin of even  
_
addresses while E is “L” when the BYTE pin level is “L”. However, if  
_
an internal memory is read, external data is ignored while E is “L”.  
When the BYTE pin level is “H” or 2•VCC, port P2 functions as an  
_
address output pin while E is “H” and as data I/O pin of even and odd  
_
addresses while E is “L”. However, if an internal memory is read,  
_
external data is ignored while E is “L”.  
Port P4 and its data direction which are located at address 0A16 and  
0C16 are treated differently in evaluation chip mode. When these  
Table 2. Function of signal output disable selection bit CM6 (bit 6 of oscillation circuit control register 0)  
Function  
Processor mode  
Pin  
CM6 = “0”  
CM6 = “1”  
_
_
_
E
E is output when the internal/external memory E is output only when the external memory  
area is accessed.  
area is accessed.  
After WIT/STP instruction is executed,  
“H” is output.  
“L” is output after WIT/STP instruction is  
executed.  
Microprocessor mode  
Standby state selection bit (bit 0 of port  
function control register) must be set to “1”.  
1
Clock  
1 is output.  
“H”or “L” is output. (Output the content of  
P42 latch.)  
Port P42 direction register must be set to  
“1”.  
Note. Functions shown in Table 2 cannot be emulated in a debugger.  
13  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
RESET CIRCUIT  
is input from the external to the main-clock oscillation circuit, the reset  
input voltage must be 0.55 V or less when the power source voltage  
reaches 2.7 V. If a resonator/oscillator is connected to the main-clock  
oscillation circuit, change the reset input voltage from “L” to “H” after  
the main-clock oscillation is fully stabilized.  
_____  
The microcomputer is released from the reset state when the RESET  
pin is returned to “H” level after holding it at “L” level with the power  
source voltage at 2.7 – 5.5 V. Program execution starts at the address  
formed by setting address A23 – A16 to 0016, A15 – A8 to the contents  
of address FFFF16, and A7 – A0 to the contents of address FFFE16.  
Figure 12 shows the status of the internal registers during reset.  
Figure 13 shows an example of a reset circuit. If the stabilized clock  
Address  
Address  
Port P0 direction register  
Port P1 direction register  
0016  
0016  
0016  
Watchdog timer frequency selection flag  
Waveform output mode register  
(6116  
)
•••  
0
(0416  
(0516  
(0816  
(0916  
)
)
)
)
•••  
•••  
•••  
(6216  
(6416  
(6816  
(6916  
)
•••  
•••  
•••  
•••  
0
0
0 0  
0
0 0  
UART2 transmit/receive mode register  
UART2 transmit/receive control register 0  
)
)
)
0 0 0 0 0 0 0  
1 0 0 0  
Port P2 direction register  
Port P3 direction register  
Port P4 direction register  
Port P5 direction register  
Port P6 direction register  
Port P7 direction register  
0 0 0 0  
•••  
(0C16  
)
•••  
0016  
0016  
UART2 transmit/receive control register 1  
Oscillation circuit control register 0  
0 0 0 0 0 1 0  
(0D16  
)
•••  
(6C16  
)
•••  
0 0 0 0 0  
0016  
1
(1016  
(1116  
(1416  
)
•••  
•••  
•••  
(6D16  
)
•••  
0016  
0016  
Port function control register  
Serial transmit control register  
)
)
0 0  
(6E16  
)
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
0016  
(6F16  
)
0
0 0 0 0 0  
0 0 0 0  
Oscillation circuit control register 1  
Port P8 direction register  
A-D control register 0  
0 0 0 0 0 ? ? ?  
)•••  
A-D/UART2 trans./rece. interrupt control register  
(7016  
(7116  
(7216  
)
(1E16  
(1F16  
)
•••  
0 0 0  
0016  
1 1  
UART 0 transmission interrupt control register  
UART 0 receive interruupt control register  
0 0 0 0  
)
)
)
)
)
)
)
)
)
A-D control register 1  
UART 0 transmit/receive mode register  
(3016  
(3816  
(3416  
)
•••  
0 0 0 0  
)
)
•••  
UART 1 transmit/receive mode register  
0016  
0 0 0 0  
UART 1 transmission interrupt control register (7316  
•••  
0 0 0 0 1 0 0  
0 0 0 0 1 0 0  
0
0
UART 0 transmit/receive  
control register 0  
UART 1 transmit/receive  
control register 0  
UART 0 transmit/receive  
control register 1  
UART 1 transmit/receive  
control register 1  
Count start flag  
One- shot start flag  
Up-down flag  
0 0 0 0  
(7416  
(7516  
(7616  
(7716  
(7816  
(7916  
UART 1 receive interruupt control register  
Timer A0 interrupt control register  
(3C16  
)
•••  
0 0 0 0  
0 0 0 0 0 0 1 0  
0 0 0 0 0 0 1 0  
0016  
(3516  
(3D16  
)
•••  
Timer A1 interrupt control register  
Timer A2 interrupt control register  
Timer A3 interrupt control register  
0 0 0 0  
)
•••  
0 0 0 0  
(4016  
(4216  
(4416  
(5616  
(5716  
(5816  
(5916  
)
•••  
0 0 0 0  
)
)
)
)
)
)
•••  
0 0 0 0  
0
0 0 0 0  
Timer A4 interrupt control register  
Timer B0 interrupt control register  
0016  
•••  
0 0 0 0  
(7A16  
)
•••  
0016  
•••  
•••  
0 0 0 0  
Timer A0 mode register  
Timer A1 mode register  
Timer A2 mode register  
Timer A3 mode register  
Timer A4 mode register  
Timer B0 mode register  
(7B16  
)
•••  
Timer B1 interrupt control register  
Timer B2 interrupt control register  
0016  
0016  
0 0 0 0  
(7C16  
)
•••  
•••  
•••  
INT  
0
1
interrupt control register  
interrupt control register  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
(7D16  
)
•••  
0016  
INT  
(7E16  
)
•••  
(5A16  
(5B16  
)
•••  
0016  
(7F16  
)
•••  
INT2/Key input interrupt control register  
)
•••  
0 0 1 0 0 0 0  
0
0
0
0 0 0 ? ? 0 0 0 1 ? ?  
Processor status register (PS)  
Program bank register (PG)  
(5C16  
)
••• 0 0 1  
0 0 0  
0 0 0  
0016  
Content of FFFF16  
Content of FFFE16  
000016  
Timer B1 mode register  
Timer B2 mode register  
Processor mode register 0  
Processor mode register 1  
(5D16  
)
••• 0 0 1  
Program counter (PC  
H)  
(5E16  
)
•••  
0016  
Program counter (PC  
L)  
(5F16  
)
•••  
0
Direct page register (DPR)  
Data bank register (DT)  
FFF16  
(6016)•••  
0016  
Watchdog timer register  
Contents of other registers and RAM are undefined during reset. Initialize them by software.  
Fig. 12 Microcomputer internal status during reset  
14  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
Power on  
2.7V  
VCC  
RESET  
VCC  
0V  
RESET  
0.55V  
0V  
Note. In this case, stabilized clock is input from the  
external to the main-clock oscillation circuit.  
Perform careful evalvation at the system design  
level before using.  
Fig. 13 Example of a reset circuit  
ADDRESSING MODES  
The M37733S4LHP has 28 powerful addressing modes. Refer to the  
MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLE - CHIP  
16-BIT MICROCOMPUTERS for the details of each addressing mode.  
MACHINE INSTRUCTION LIST  
The M37733S4LHP has 103 machine instructions. Refer to the  
MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLE - CHIP  
16-BIT MICROCOMPUTERS for details.  
15  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Vcc  
AVcc  
VI  
Parameter  
Power source voltage  
Conditions  
Ratings  
Unit  
V
V
–0.3 to +7  
–0.3 to +7  
–0.3 to +12  
Analog power source voltage  
____  
Input voltage RESET, CNVss, BYTE  
Input voltage P10/A8/D8 – P17/A15/D15,  
V
P20/A16/D0 – P27/A23/D7, P43 – P47,  
–0.3 to Vcc + 0.3  
V
V
VI  
P50 – P57, P60 – P67, P70 – P77,  
P80 – P87, VREF, XIN, _HO_L_D,_R_DY_  
Output voltage P00/A0 – P07/A7, P10/A8/D8 – P17/A15/D15,  
__  
P20/A16/D0 – P27/A23/D7_, P_3_0/R/W,  
P31/BHE, P32/ALE, P33/HLDA , P42/  
–0.3 to Vcc + 0.3  
VO  
1,  
P43 – P47, P50 – P57, P60 – P67,  
_
P70 – P77, P80 – P87, XOUT, E  
Pd  
Topr  
Tstg  
Power dissipation  
Operating temperature  
Storage temperature  
Ta = 25 °C  
200  
–40 to +85  
–65 to +150  
mW  
°C  
°C  
RECOMMENDED OPERATING CONDITIONS (Vcc = 2.7 – 5.5 V, Ta = –40 to +85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
V
Min.  
2.7  
2.7  
Max.  
5.5  
5.5  
f(XIN) : Operating  
f(XIN) : Stopped, f(XCIN) = 32.768 kHz  
Vcc  
Power source voltage  
AVcc  
Vss  
AVss  
Analog power source voltage  
Power source voltage  
Vcc  
0
0
V
V
V
Analog power source voltage  
___ ___  
High-level input voltage HOLD, RDY, P43 – P47, P50 – P57, P60 – P67, P70 – P77,  
P80 – P87, XIN, _RE_S_E_T, CNVss, BYTE, XCIN (Note 3)  
Vcc  
Vcc  
0.8 Vcc  
0.5 Vcc  
V
V
VIH  
VIH  
High-level input voltage P10/A8/D8 – P17/A15/D15, P20/A16/D0 – P27/A23/D7  
___ ___  
Low-level input voltage HOLD, RDY, P43 – P47, P50 – P57, P60 – P67, P70 – P77,  
P80 – P87, XIN, _RE_S_E_T, CNVss, BYTE, XCIN (Note 3)  
VIL  
VIL  
0.2Vcc  
0
0
V
V
Low-level input voltage P10/A8/D8 – P17/A15/D15, P20/A16/D0 – P27/A23/D7  
High-level peak output current P00/A0 – P07/A7, P10/A8/D8 – P17/A15/D15,  
0.16Vcc  
_
___  
P20/A16/D0 – P27/A23/D7, P30/R/W, P31/BHE,  
P32/ALE, P33/HLDA, P42/ 1, P43 – P47,  
P50 – P57, P60 – P67, P70 – P77, P80 – P87  
___  
IOH(peak)  
mA  
mA  
mA  
–10  
–5  
High-level average output current P00/A0 – P07/A7, P10/A8/D8 – P17/A15/D15,  
___  
P20/A16/D0 – P27/A23/D7, P30/R/W, P31/BHE,  
____  
IOH(avg)  
P32/ALE, P33/HLDA, P42/ 1, P43 – P47,  
P50 – P57, P60 – P67, P70 – P77, P80 – P87  
Low-level peak output current P00/A0 – P07/A7, P10/A8/D8 – P17/A15/D15,  
___  
P20/A16/D0 – P27/A23/D7, P30/R/W, P31/BHE,  
____  
IOL(peak)  
IOL(peak)  
IOL(avg)  
10  
P32/ALE, P33/HLDA, P42/ 1, P43, P54 – P57,  
P60 – P67, P70 – P77, P80 – P87  
Low-level peak output current P44 – P47, P50 – P53  
mA  
mA  
16  
5
Low-level average output current P00/A0 – P07/A7, P10/A8/D8 – P17/A15/D15,  
___  
P20/A16/D0 – P27/A23/D7, P30/R/W, P31/BHE,  
____  
P32/ALE, P33/HLDA, P42/ 1, P43, P54 – P57,  
P60 – P67, P70 – P77, P80 – P87  
IOL(avg)  
f(XIN)  
Low-level average output current P44 – P47, P50 – P53  
Main-clock oscillation frequency (Note 4)  
12  
12  
50  
mA  
MHz  
kHz  
f(XCIN)  
Sub-clock oscillation frequency  
32.768  
Notes 1. Average output current is the average value of a 100 ms interval.  
___  
2. The sum of IOL(peak) for ports P00/A0 – P07/A7, P10/A8/D8 – P17/A15/D15, P20/A16/D0 – P27/A23/D7, P30/R/W, P31/BHE, P32/ALE, P33/  
____  
HLDA and P8 must be 80 mA or less, the sum of IOH(peak) for ports P00/A0 – P07/A7, P10/A8/D8 – P17/A15/D15, P20/A16/D0 – P27/A23/  
___  
____  
D7, P30/R/W, P31/BHE, P32/ALE, P33/HLDA and P8 must be 80 mA or less, the sum of IOL(peak) for ports P4, P5, P6, and P7 must be  
100 mA or less, and the sum of IOH(peak) for ports P4, P5, P6, and P7 must be 80 mA or less.  
3. Limits VIH and VIL for XCIN are applied when the sub clock external input selection bit = “1”.  
4. The maximum value of f(XIN) = 6 MHz when the main clock division selection bit = “1”.  
16  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Max.  
High-level output voltage P00/A0 – P07/A7, P10/A8/D8 – P17/A15/D15,  
P20/A16/D0 – P27/A23/D7, P33/_HL_D_A, P42/  
3
VCC = 5 V, IOH = –10 mA  
VCC = 3 V, IOH = –1 mA  
VCC = 5 V, IOH = –400  
1,  
1
VOH  
V
P43 – P47, P50 – P57, P60 – P67, P70 – P77,  
P80 – P87  
2.5  
4.7  
High-level output voltage P00/A0 – P07/A7, P10/A8/D8 – P17/A15/D15,  
P20/A16/D0 – P27/A23/D7, P33/_HL_D_A, P42/  
VOH  
VOH  
A
V
V
3.1  
4.8  
2.6  
3.4  
4.8  
2.6  
VCC = 5 V, IOH = –10 mA  
VCC = 5 V, IOH = –400  
___  
High-level output voltage P30/R/W, P31/BHE, P32/ALE  
A
VCC = 3 V, IOH = –1 mA  
VCC = 5 V, IOH = –10 mA  
_
High-level output voltage E  
VOH  
VOL  
VCC = 5 V, IOH = –400  
A
V
V
VCC = 3 V, IOH = –1 mA  
Low-level output voltage P00/A0 – P07/A7, P10/A8/D8 – P17/A15/D15,  
P20/A16/D0 – P27/A23/D7, P33/_HL_D_A, P42/  
VCC = 5 V, IOL = 10 mA  
2
1,  
P43, P54 – P57, P60 – P67, P70 – P77,  
P80 – P87  
VCC = 3 V, IOL = 1 mA  
0.5  
1.8  
1.5  
VCC = 5 V, IOL = 16 mA  
VCC = 3 V, IOL = 10 mA  
VOL  
VOL  
Low-level output voltage P44 – P47, P50 – P53  
V
V
Low-level output voltage P00/A0 – P07/A7, P10/A8/D8 – P17/A15/D15,  
P20/A16/D0 – P27/A23/D7, P33/_HL_D_A, P42/  
VCC = 5 V, IOL = 2 mA  
0.45  
1
VCC = 5 V, IOL = 10 mA  
VCC = 5 V, IOL = 2 mA  
VCC = 3 V, IOL = 1 mA  
VCC = 5 V, IOL = 10 mA  
VCC = 5 V, IOL = 2 mA  
VCC = 3 V, IOL = 1 mA  
1.9  
0.43  
0.4  
1.6  
0.4  
___  
VOL  
VOL  
Low-level output voltage P30/R/W, P31/BHE, P32/ALE  
V
V
V
_
Low-level output voltage E  
0.4  
____ ___  
Hysteresis HOLD, RDY, TA0IN – TA4IN, TB0IN – TB2IN,  
___ ___ ____ ____________  
INT0 INT2, A_D_TRG, CTS0, CTS1, CTS2, CLK0,  
VCC = 5 V  
VCC = 3 V  
1
0.4  
0.1  
VT+ – VT–  
__  
0.7  
CLK1, CLK2, KI0 KI3  
_____  
0.2  
0.1  
0.1  
0.06  
0.1  
0.06  
VCC = 5 V  
VCC = 3 V  
VCC = 5 V  
VCC = 3 V  
VCC = 5 V  
VCC = 3 V  
0.5  
0.4  
0.4  
0.26  
0.4  
0.26  
VT+ – VT–  
VT+ – VT–  
VT+ – VT–  
Hysteresis RESET  
V
V
V
Hysteresis XIN  
Hysteresis XCIN (When external clock is input)  
High-level input current P10/A8/D8 – P17/A15/D15,  
P20/A16/D0 – P27/A23/D7, P43 – P47,  
VCC = 5 V, VI = 5 V  
VCC = 3 V, VI = 3 V  
VCC = 5 V, VI = 0 V  
VCC = 3 V, VI = 0 V  
5
4
IIH  
IIL  
IIL  
A
P50 – P57, P60 – P67, P70 – P77, P80 – P87,  
____  
XIN, RESET, CNVss, BYTE  
Low-level input current P10/A8/D8 – P17/A15/D15,  
P20/A16/D0 – P27/A23/D7, P43 – P47,  
–5  
A
A
P50 – P53, P60, P61, P65 – P67, P70 – P77,  
P80 – P87, XIN, _RE_S_E_T, CNVss, BYTE  
–4  
–5  
VI = 0 V,  
VCC = 5 V  
without a pull-up  
transistor  
Low-level input current P54 – P57, P62 – P64  
VCC = 3 V  
VCC = 5 V  
–4  
VI = 0 V,  
–0.25  
–0.08  
2
–0.5  
–0.18  
–1.0  
mA  
V
with a pull-up  
VCC = 3 V  
transistor  
–0.35  
When clock is stopped  
RAM hold voltage  
VRAM  
17  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –40 to +85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
mA  
Max.  
10.8  
Min.  
VCC = 5 V,  
f(XIN) = 12 MHz (square waveform),  
(f(f2) = 6 MHz),  
f(XCIN) = 32.768 kHz,  
in operating (Note 1)  
5.4  
3.6  
0.5  
VCC = 3 V,  
f(XIN) = 12 MHz (square waveform),  
(f(f2) = 6 MHz),  
f(XCIN) = 32.768 kHz,  
in operating (Note 1)  
7.2  
1.0  
mA  
mA  
VCC = 3 V,  
f(XIN) = 12 MHz (square waveform),  
(f(f2) = 0.75 MHz),  
f(XCIN) = Stopped,  
in operating  
When external bus  
is in use, output  
pins are open, and  
other pins are VSS.  
Power source  
current  
ICC  
VCC = 3 V,  
f(XIN) = 12 MHz (square waveform),  
f(XCIN) = 32.768 kHz,  
when a WIT instruction is executed (Note 2)  
A
A
A
6
12  
80  
VCC = 3 V,  
f(XIN) = Stopped,  
f(XCIN) = 32.768 kHz,  
in operating (Note 3)  
40  
VCC = 3 V,  
f(XIN) = Stopped,  
f(XCIN) = 32.768 kHz,  
when a WIT instruction is executed (Note 4)  
3
6
Ta = 25 °C,  
when clock is stopped  
1
A
A
Ta = 85 °C,  
when clock is stopped  
20  
Notes 1. This applies when the main clock external input selection bit = “1”, the main clock division selection bit = “0”, and the signal output stop  
bit = “1”.  
2. This applies when the main clock external input selection bit = “1” and the system clock stop bit at wait state = “1”.  
3. This applies when CPU and the clock timer are operating with the sub clock (32.768 kHz) selected as the system clock.  
4. This applies when the XCOUT drivability selection bit = “0” and the system clock stop bit at wait state = “1”.  
A–D CONVERTER CHARACTERISTICS  
(VCC = AVCC = 5 V, VSS = AVSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note))  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Max.  
10  
± 3  
25  
RLADDER  
tCONV  
VREF  
VIA  
Resolution  
VREF = VCC  
VREF = VCC  
VREF = VCC  
Bits  
LSB  
kΩ  
s
V
V
Absolute accuracy  
Ladder resistance  
Conversion time  
Reference voltage  
Analog input voltage  
10  
19.6  
2.7  
0
VCC  
VREF  
Note. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz.  
18  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS (VCC = 2.7 – 5.5 V , VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note 1))  
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHZ.  
2. Input signal’s rise/fall time must be 100 ns or less, unless otherwise noted.  
External clock input  
Limits  
Symbol  
Parameter  
Unit  
Min.  
83  
33  
Max.  
tc  
External clock input cycle time (Note 1)  
ns  
ns  
ns  
ns  
ns  
tw(H)  
tw(L)  
tr  
External clock input high-level pulse width (Note 2)  
External clock input low-level pulse width (Note 2)  
External clock rise time  
33  
15  
15  
tf  
External clock fall time  
Notes 1. When the main clock division selection bit = “1”, the minimum value of tc = 166 ns.  
2. When the main clock division selection bit = “1”, values of tw(H) / tc and tw(L) / tc must be set to values from 0.45 through 0.55.  
Microprocessor mode  
Limits  
Symbol  
Parameter  
Unit  
Min.  
200  
200  
200  
200  
200  
0
0
0
0
0
80  
80  
80  
0
0
0
Max.  
tsu(P4D–E)  
tsu(P5D–E)  
tsu(P6D–E)  
tsu(P7D–E)  
tsu(P8D–E)  
th(E–P4D)  
th(E–P5D)  
th(E–P6D)  
th(E–P7D)  
th(E–P8D)  
tsu(D–E)  
Port P4 input setup time  
Port P5 input setup time  
Port P6 input setup time  
Port P7 input setup time  
Port P8 input setup time  
Port P4 input hold time  
Port P5 input hold time  
Port P6 input hold time  
Port P7 input hold time  
Port P8 input hold time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data input setup time  
___  
tsu(RDY– 1) RDY input setup time  
tsu(HOLD– 1) HOLD input setup time  
th(E–D)  
th( 1–RDY)  
th( 1–HOLD) HOLD input hold time  
____  
Data input hold time  
___  
RDY input hold time  
____  
19  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
Timer A input (Count input in event counter mode)  
Symbol parameter  
Limits  
Unit  
Min.  
250  
125  
125  
Max.  
Max.  
tc(TA)  
TAiIN input cycle time  
ns  
ns  
ns  
tw(TAH)  
tw(TAL)  
TAiIN input high-level pulse width  
TAiIN input low-level pulse width  
Timer A input (Gating input in timer mode)  
Limits  
Symbol  
parameter  
Unit  
Min.  
666  
333  
333  
tc(TA)  
TAiIN input cycle time (Note)  
ns  
ns  
ns  
tw(TAH)  
tw(TAL)  
TAiIN input high-level pulse width (Note)  
TAiIN input low-level pulse width (Note)  
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS.”  
Timer A input (External trigger input in one-shot pulse mode)  
Limits  
Symbol  
parameter  
Unit  
Min.  
666  
166  
166  
Max.  
tc(TA)  
tw(TAH)  
tw(TAL)  
TAiIN input cycle time (Note)  
TAiIN input high-level pulse width  
TAiIN input low-level pulse width  
ns  
ns  
ns  
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS.”  
Timer A input (External trigger input in pulse width modulation mode)  
Limits  
Limits  
Symbol  
parameter  
Unit  
Min.  
166  
166  
Max.  
Max.  
tw(TAH)  
tw(TAL)  
TAiIN input high-level pulse width  
TAiIN input low-level pulse width  
ns  
ns  
Timer A input (Up-down input in event counter mode)  
Symbol parameter  
Unit  
Min.  
3333  
1666  
1666  
666  
tc(UP)  
tw(UPH)  
tw(UPL)  
TAiOUT input cycle time  
ns  
ns  
ns  
ns  
ns  
TAiOUT input high-level pulse width  
TAiOUT input low-level pulse width  
TAiOUT input setup time  
tsu(UP–TIN)  
th(TIN–UP)  
TAiOUT input hold time  
666  
Timer A input (Two-phase pulse input in event counter mode)  
Symbol parameter  
Limits  
Unit  
Min.  
2000  
500  
Max.  
tc(TA)  
TAjIN input cycle time  
ns  
ns  
ns  
tsu(TAjIN–TAjOUT) TAjIN input setup time  
tsu(TAjOUT–TAjIN) TAjOUT input setup time  
500  
20  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
Timer B input (Count input in event counter mode)  
Symbol Parameter  
Limits  
Unit  
Min.  
250  
125  
125  
500  
250  
250  
Max.  
tc(TB)  
TBiIN input cycle time (one edge count)  
ns  
ns  
ns  
ns  
ns  
ns  
tw(TBH)  
tw(TBL)  
tc(TB)  
TBiIN input high-level pulse width (one edge count)  
TBiIN input low-level pulse width (one edge count)  
TBiIN input cycle time (both edges count)  
tw(TBH)  
tw(TBL)  
TBiIN input high-level pulse width (both edges count)  
TBiIN input low-level pulse width (both edges count)  
Timer B input (Pulse period measurement mode)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
666  
333  
333  
Max.  
tc(TB)  
tw(TBH)  
tw(TBL)  
TBiIN input cycle time (Note)  
TBiIN input high-level pulse width (Note)  
TBiIN input low-level pulse width (Note)  
ns  
ns  
ns  
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS.”  
Timer B input (Pulse width measurement mode)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
666  
333  
333  
Max.  
tc(TB)  
TBiIN input cycle time (Note)  
ns  
ns  
ns  
tw(TBH)  
tw(TBL)  
TBiIN input high-level pulse width (Note)  
TBiIN input low-level pulse width (Note)  
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS.”  
A-D trigger input  
Limits  
Limits  
Symbol  
Parameter  
Unit  
Min.  
1333  
166  
Max.  
____  
ADTRG input cycle time (minimum allowable trigger)  
tc(AD)  
tw(ADL)  
ns  
ns  
____  
ADTRG input low-level pulse width  
Serial I/O  
Symbol  
Parameter  
Unit  
Min.  
333  
166  
166  
Max.  
100  
tc(CK)  
CLKi input cycle time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw(CKH)  
tw(CKL)  
td(C–Q)  
th(C–Q)  
tsu(D–C)  
th(C–D)  
CLKi input high-level pulse width  
CLKi input low-level pulse width  
TXDi output delay time  
TXDi hold time  
RXDi input setup time  
RXDi input hold time  
0
65  
75  
____  
___  
External interrupt INTi input, key input interrupt KIi input  
Limits  
Symbol  
Parameter  
Unit  
Min.  
250  
250  
250  
Max.  
___  
INTi input high-level pulse width  
tw(INH)  
tw(INL)  
tw(KIL)  
ns  
ns  
ns  
___  
INTi input low-level pulse width  
__  
KIi input low-level pulse width  
21  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
DATA FORMULAS  
Timer A input (Gating input in timer mode)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
Max.  
8 109  
2 • f(f2)  
4 109  
2 • f(f2)  
4 109  
2 • f(f2)  
tc(TA)  
TAiIN input cycle time  
ns  
ns  
ns  
tw(TAH)  
tw(TAL)  
TAiIN input high-level pulse width  
TAiIN input low-level pulse width  
Timer A input (External trigger input in one-shot pulse mode)  
Symbol Parameter  
Limits  
Unit  
ns  
Min.  
Max.  
8 109  
2 • f(f2)  
tc(TA)  
TAiIN input cycle time  
Timer B input (In pulse period measurement mode or pulse width measurement mode)  
Symbol Parameter  
Limits  
Unit  
ns  
Min.  
Max.  
8 109  
2 • f(f2)  
4 109  
2 • f(f2)  
4 109  
2 • f(f2)  
tc(TB)  
TBiIN input cycle time  
tw(TBH)  
tw(TBL)  
TBiIN input high-level pulse width  
TBiIN input low-level pulse width  
ns  
ns  
Note. f(f2) expresses the clock f2 frequency.  
For the relation to the main clock and sub clock, refer to Table 9 in data sheet “M37733MHBXXXFP”.  
22  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
SWITCHING CHARACTERISTICS  
(VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85°C, f(XIN) = 12 MHz, unless otherwise noted (Note))  
Microprocessor mode  
Limits  
Unit  
Symbol  
Parameter  
Test conditions  
Fig. 14  
Min.  
Max.  
300  
300  
300  
300  
300  
td(E–P4Q)  
td(E–P5Q)  
td(E–P6Q)  
td(E–P7Q)  
td(E–P8Q)  
Port P4 data output delay time  
Port P5 data output delay time  
Port P6 data output delay time  
Port P7 data output delay time  
Port P8 data output delay time  
ns  
ns  
ns  
ns  
ns  
Note. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz.  
A
0
– A  
– A 23/D  
R/  
7
7
A 8/D 8  
W
BHE  
ALE  
HLDA  
P 4  
P 5  
P 6  
P 7  
P 8  
1
50 pF  
E
Fig. 14 Measuring circuit for each pin  
23  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
Microprocessor mode  
(VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note 1))  
Limits  
Test  
conditions  
(Note2)  
Symbol  
Parameter  
Unit  
Wait mode  
No wait  
Wait 1  
Min.  
Max.  
20  
ns  
ns  
td(An–E)  
Address output delay time  
182  
Wait 0  
No wait  
Wait 1  
Wait 0  
20  
162  
40  
ns  
ns  
ns  
td(A–E)  
Address output delay time  
Address hold time  
th(E–An)  
tw(ALE)  
No wait  
Wait 1  
Wait 0  
No wait  
Wait 1  
Wait 0  
No wait  
Wait 1  
Wait 0  
No wait  
Wait 1  
Wait 0  
40  
ns  
ns  
ALE pulse width  
123  
10  
93  
ns  
tsu(A–ALE)  
th(ALE–A)  
td(ALE–E)  
Address output setup time  
Address hold time  
ns  
ns  
9
40  
4
ns  
ns  
Fig. 14  
ALE output delay time  
40  
ns  
ns  
ns  
ns  
td(E–DQ)  
th(E–DQ)  
Data output delay time  
Data hold time  
90  
10  
40  
131  
No wait  
Wait 1  
Wait 0  
_
E pulse width  
tw(EL)  
298  
ns  
tpxz(E–DZ)  
tpzx(E–DZ)  
ns  
ns  
Floating start delay time  
Floating release delay time  
53  
20  
No wait  
Wait 1  
Wait 0  
No wait  
Wait 1  
Wait 0  
___  
BHE output delay time  
ns  
ns  
td(BHE–E)  
td(R/W–E)  
182  
20  
182  
33  
ns  
ns  
ns  
R/W output delay time  
___  
BHE hold time  
th(E–BHE)  
th(E–R/W)  
33  
0
ns  
ns  
ns  
R/W hold time  
td(E–  
td(  
1)  
30  
1 output delay time  
____  
HLDA output delay time  
1–HLDA)  
120  
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz.  
2. No wait : Wait bit = “1”.  
Wait 1 : The external memory area is accessed with wait bit = “0” and wait selection bit = “1”.  
Wait 0 : The external memory area is accessed with wait bit = “0” and wait selection bit = “0”.  
24  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
Bus timing data formulas  
(VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz (Max.), unless otherwise noted (Note 1))  
Limits  
Symbol  
Parameter  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Wait mode  
No wait  
Wait 1  
Min.  
1 109  
Max.  
– 63  
– 68  
– 63  
– 88  
– 43  
– 43  
– 43  
– 73  
– 73  
2 • f(f2)  
3 109  
2 • f(f2)  
1 109  
2 • f(f2)  
3 109  
2 • f(f2)  
1 109  
2 • f(f2)  
1 109  
2 • f(f2)  
2 109  
2 • f(f2)  
1 109  
2 • f(f2)  
2 109  
2 • f(f2)  
td(An–E)  
Address output delay time  
Wait 0  
No wait  
Wait 1  
td(A–E)  
Address output delay time  
Address hold time  
Wait 0  
th(E–An)  
tw(ALE)  
No wait  
Wait 1  
ALE pulse width  
Wait 0  
No wait  
Wait 1  
tsu(A–ALE)  
th(ALE–A)  
td(ALE–E)  
Address output setup time  
Address hold time  
Wait 0  
No wait  
Wait 1  
9
1 109  
2 • f(f2)  
– 43  
– 43  
Wait 0  
No wait  
Wait 1  
4
ALE output delay time  
1 109  
2 • f(f2)  
Wait 0  
td(E–DQ)  
th(E–DQ)  
90  
10  
ns  
ns  
Data output delay time  
Data hold time  
1 109  
2 • f(f2)  
2 109  
2 • f(f2)  
4 109  
2 • f(f2)  
– 43  
– 35  
– 35  
ns  
No wait  
_
E pulse width  
tw(EL)  
Wait 1  
Wait 0  
ns  
ns  
ns  
tpxz(E–DZ)  
tpzx(E–DZ)  
Floating start delay time  
1 109  
2 • f(f2)  
1 109  
2 • f(f2)  
3 109  
2 • f(f2)  
1 109  
2 • f(f2)  
3 109  
2 • f(f2)  
1 109  
2 • f(f2)  
1 109  
2 • f(f2)  
– 30  
– 63  
– 68  
– 63  
– 68  
– 50  
– 50  
Floating release delay time  
No wait  
Wait 1  
ns  
ns  
ns  
ns  
___  
BHE output delay time  
td(BHE–E)  
td(R/W–E)  
Wait 0  
No wait  
Wait 1  
R/W output delay time  
Wait 0  
___  
BHE hold time  
th(E–BHE)  
th(E–R/W)  
ns  
ns  
ns  
R/W hold time  
td(E–  
1)  
1 output delay time  
0
30  
Notes 1. This applies when the main-clock division selection bit = “0”.  
2. f(f2) expresses the clock f2 frequency.  
For the relation to the main clock and sub clock, refer to Table 9 in data sheet “M37733MHBXXXFP”.  
25  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
t
c(TA)  
tw(TAH)  
TAiIN input  
t
w(TAL)  
tc(UP)  
t
w(UPH)  
TAiOUT input  
t
w(UPL)  
In event count mode  
TAiOUT input  
(Up-down input)  
TAiIN input  
(when count by falling)  
TAiIN input  
(when count by rising)  
t
h(TIN–UP)  
t
su(UP–TIN)  
In event counter mode  
(When two-phase pulse input is selected)  
t
c(TA)  
TAjIN input  
t
su(TAjIN–TAjOUT)  
t
su(TAjIN–TAjOUT)  
t
su(TAjOUT–TAjIN)  
TAjOUT input  
t
su(TAjOUT–TAjIN)  
t
c(TB)  
tw(TBH)  
TBiIN input  
tw(TBL)  
27  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
t
t
c(AD)  
t
w(ADL)  
ADTRG input  
c(CK)  
t
w(CKH)  
CLK  
i
t
w(CKL)  
th(C–Q)  
TxD  
i
t
d(C–Q)  
tsu(D–C)  
th(C–D)  
RxD  
i
t
w(INL)  
INTi input  
Kli input  
tw(INH)  
tw(KNL)  
28  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
Microprocessor mode  
(When wait bit = “1”)  
1
E
RDY input  
t
su(RDY–  
1
)
t
h(  
1–RDY)  
(When wait bit = “0”)  
1
E
RDY input  
t
su(RDY–  
1)  
t
h(  
1–RDY)  
(When wait bit = “1” or “0” in common)  
1
tsu(HOLD–  
1
)
th(  
1–HOLD)  
HOLD input  
t
d(  
1
–HLDA)  
t
d(  
1–HLDA)  
HLDA output  
Test conditions  
• VCC = 2.7 – 5.5 V  
• Input timing voltage : VIL = 0.2VCC, VIH = 0.8VCC  
• Output timing voltage : VOL = 0.8 V, VOH = 2.0 V  
29  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
Microprocessor mode  
(No wait : When wait bit = “1”)  
t
w(L)  
t
w(H)  
t
f
tr  
tc  
X
IN  
1
t
d(E–  
1)  
td(E–  
1)  
t
w(EL)  
E
t
h(E–An)  
t
d(An–E)  
An  
ALE  
Address  
Address  
Address  
t
w(ALE)  
td(ALE–E)  
th(ALE–A)  
t
h(E–DQ)  
tpxz(E–DZ)  
tpzx(E–DZ)  
t
su(A–ALE)  
Am/Dm  
Address  
Data  
Address  
Address  
td(E–DQ)  
t
d(A–E)  
t
h(E–D)  
t
su(D–E)  
DmIN  
BHE  
Data  
t
h(E–BHE)  
t
d(BHE–E)  
t
h(E–R/W)  
t
d(R/W–E)  
R/W  
Test conditions  
• Vcc = 2.7 – 5.5 V  
• Output timing voltage : VOL = 0.8 V, VOH = 2.0 V  
• Data input DmIN : VIL = 0.16VCC, VIH = 0.5VCC  
30  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
Microprocessor mode  
(Wait 0 : The external memory area is accessed when wait bit = “0” and wait selection bit = “0”.)  
t
w(L)  
t
w(H)  
t
f
tr  
tc  
XIN  
1
t
d(E–  
1)  
td(E–  
1)  
t
w(EL)  
E
t
d(An–E)  
th(E–An)  
Address  
Address  
Address  
An  
t
d(ALE–E)  
t
w(ALE)  
ALE  
t
h(ALE–A)  
t
su(A–ALE)  
tpzx(E–DZ)  
t
pxz(E–DZ)  
t
h(E–DQ)  
Am/Dm  
Address  
Data  
Address  
Address  
t
d(E–DQ)  
td(A–E)  
tsu(D–E)  
t
h(E–D)  
Data  
DmIN  
BHE  
th(E–BHE)  
t
d(BHE–E)  
th(E–R/W)  
t
d(R/W–E)  
R/W  
Test conditions  
• Vcc = 2.7 – 5.5 V  
• Output timing voltage : VOL = 0.8 V, VOH = 2.0 V  
• Data input DmIN : VIL = 0.16VCC, VIH = 0.5VCC  
32  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
PACKAGE OUTLINE  
33  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
MEMO  
34  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
MEMO  
35  
MITSUBISHI MICROCOMPUTERS  
M37733S4LHP  
16-BIT CMOS MICROCOMPUTER  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with  
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of  
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any  
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples  
contained in these materials.  
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi  
Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor  
product distributor for the latest product information before purchasing a product listed herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact  
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for  
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the  
approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.  
© 1996 MITSUBISHI ELECTRIC CORP.  
H-LF434-A KI-9607 Printed in Japan (ROD)  
New publication, effective Jul. 1996.  
Specifications subject to change without notice.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY