M38221MAMXXXFP [MITSUBISHI]

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER; 单片8位CMOS微机
M38221MAMXXXFP
型号: M38221MAMXXXFP
厂家: Mitsubishi Group    Mitsubishi Group
描述:

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
单片8位CMOS微机

计算机
文件: 总78页 (文件大小:980K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
2 clock generating circuits  
DESCRIPTION  
(connect to external ceramic resonator or quartz-crystal oscillator)  
Power source voltage  
The 3822 group is the 8-bit microcomputer based on the 740 fam-  
ily core technology.  
In high-speed mode .................................................. 4.0 to 5.5 V  
In middle-speed mode ............................................... 2.5 to 5.5 V  
(Extended operating temperature version:  
2.0 to 5.5 V, Ta= – 20 to 85°C  
The 3822 group has the LCD drive control circuit, an 8-channel  
A-D converter, and a serial I/O as additional functions.  
The various microcomputers in the 3822 group include variations  
of internal memory size and packaging. For details, refer to the  
section on part numbering.  
3.0 to 5.5 V, Ta= – 40 to – 20°C)  
(One time PROM version: 2.5 to 5.5 V)  
For details on availability of microcomputers in the 3822 group, re-  
fer to the section on group expansion.  
(M version: 2.2 to 5.5 V)  
(H version: 2.0 to 5.5 V)  
In low-speed mode .................................................... 2.5 to 5.5 V  
(Extended operating temperature version:  
2.0 to 5.5 V, Ta= – 20 to 85°C  
FEATURES  
Basic machine-language instructions ...................................... 71  
The minimum instruction execution time ........................... 0.5 µs  
(at 8 MHz oscillation frequency)  
3.0 to 5.5 V, Ta= – 40 to – 20°C)  
(One time PROM version: 2.5 to 5.5 V)  
Memory size  
(M version: 2.2 to 5.5 V)  
ROM ................................................................. 4 K to 48 K bytes  
RAM ................................................................. 192 to 1024 bytes  
Programmable input/output ports ............................................ 49  
(H version: 2.0 to 5.5 V)  
Power dissipation  
In high-speed mode ..........................................................32 mW  
(at 8 MHz oscillation frequency, at 5 V power source voltage)  
In low-speed mode ............................................................ 45 µW  
(at 32 kHz oscillation frequency, at 3 V power source voltage)  
Operating temperature range................................... – 20 to 85°C  
(Extended operating temperature version: – 40 to 85 °C)  
Software pull-up/pull-down resistors (Ports P0-P7 except port P40)  
Interrupts ................................................. 17 sources, 16 vectors  
(includes key input interrupt)  
Timers ........................................................... 8-bit 3, 16-bit 2  
Serial I/O ...................... 8-bit 1 (UART or Clock-synchronized)  
A-D converter ................................................. 8-bit 8 channels  
LCD drive control circuit  
APPLICATIONS  
Camera, household appliances, consumer electronics, etc.  
Bias ................................................................................... 1/2, 1/3  
Duty ...........................................................................1/2, 1/3, 1/4  
Common output .......................................................................... 4  
Segment output ........................................................................ 32  
PIN CONFIGURATION (TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41  
SEG7  
65  
66  
67  
68  
69  
70  
71  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
VSS  
XOUT  
XIN  
SEG6  
SEG5  
SEG4  
SEG3  
SEG2  
SEG1  
SEG0  
VCC  
VREF  
AVSS  
COM3  
COM2  
COM1  
COM0  
VL3  
72  
73  
74  
75  
76  
77  
78  
79  
80  
M38224M6HXXXFP  
P70/XCOUT  
P71/XCIN  
RESET  
P40  
P41/φ  
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
Package type : 80P6N-A (80-pin plastic-molded QFP)  
Fig. 1 M38224M6HXXXFP pin configuration  
(The pin configuration of 80D0 is same as this.)  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN CONFIGURATION (TOP VIEW)  
40  
61  
P1  
P1  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
6
7
0
1
2
3
4
5
6
7
/SEG30  
/SEG31  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
9
8
7
6
5
4
3
2
1
0
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
M38223M4MXXXGP  
M38224M6HXXXHP  
V
CC  
REF  
AVSS  
V
X
X
SS  
V
OUT  
IN  
COM  
COM  
COM  
COM  
3
2
1
0
P7  
P7  
0
/XCOUT  
1
/XCIN  
RESET  
P4  
P4  
0
1/φ  
V
V
V
L3  
L2  
L1  
P4  
P4  
2
/INT  
/INT  
0
1
3
Package type : 80P6S-A/80P6Q-A  
(80-pin plastic-molded QFP)  
Fig. 2 M38223M4MXXXGP/M38224M6HXXXHP pin configuration  
2
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
p u e k a w n o y e K  
n o i t c n u f t r o p e m i t l a e R  
φ
1 T N I , 0 T N I  
3 T N I , 2 T N I  
T D A  
Fig. 3 Functional block diagram  
3
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN DESCRIPTION  
Table 1 Pin description (1)  
Pin  
Name  
Function  
Function except a port function  
VCC, VSS  
Power source  
Apply voltage of power source to VCC, and 0 V to VSS. (For the limits of VCC, refer to Recom-  
mended operating conditions).  
VREF  
AVSS  
Analog refer-  
ence voltage  
Reference voltage input pin for A-D converter.  
Analog power  
source  
GND input pin for A-D converter.  
Connect to VSS.  
Reset input  
Clock input  
Reset input pin for active L.  
RESET  
XIN  
Input and output pins for the main clock generating circuit.  
Feedback resistor is built in between XIN pin and XOUT pin.  
Connect a ceramic resonator or a quartz-crystal oscillator between the XIN and XOUT pins to set  
the oscillation frequency.  
XOUT  
Clock output  
If an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open.  
This clock is used as the oscillating source of system clock.  
Input 0 VL1 VL2 VL3 VCC voltage.  
LCD power  
source  
VL1VL3  
Input 0 VL3 voltage to LCD.  
Common output  
LCD common output pins.  
COM0COM3  
COM2 and COM3 are not used at 1/2 duty ratio.  
COM3 is not used at 1/3 duty ratio.  
SEG0SEG11  
Segment output  
I/O port P0  
LCD segment output pins.  
P00/SEG16–  
P07/SEG23  
8-bit output port.  
LCD segment output pins  
CMOS compatible input level.  
CMOS 3-state output structure.  
I/O direction register allows each port to be individually  
programmed as either input or output.  
P10/SEG24–  
P17/SEG31  
I/O port P1  
I/O port P2  
Pull-down control is enabled.  
Key input (key-on wake-up) interrupt  
8-bit I/O port.  
P20 P27  
input pins  
CMOS compatible input level.  
CMOS 3-state output structure.  
I/O direction register allows each pin to be individually  
programmed as either input or output.  
Pull-up control is enabled.  
4-bit input port.  
LCD segment output pins  
P3  
P3  
4
/SEG12  
/SEG15  
Input port P3  
7
CMOS compatible input level.  
Pull-down control is enabled.  
4
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Function except a port function  
Table 2 Pin description (2)  
Pin  
Name  
Function  
Input port P4  
P40  
1-bit Input port.  
CMOS compatible input level.  
7-bit I/O port.  
φ clock output pin  
Interrupt input pins  
P41/φ  
I/O port P4  
CMOS compatible input level.  
CMOS 3-state output structure.  
P42/INT0,  
P43/INT1  
P44/RXD,  
P45/TXD,  
P46/SCLK,  
P47/SRDY  
Serial I/O function pins  
I/O direction register allows each pin to be individually  
programmed as either input or output.  
Pull-up control is enabled.  
8-bit I/O port.  
I/O port P5  
Interrupt input pins  
P50/INT2,  
P51/INT3  
CMOS compatible input level.  
CMOS 3-state output structure.  
Real time port function pins  
Timer X, Y function pins  
P52/RTP0,  
P53/RTP1  
I/O direction register allows each pin to be individually  
programmed as either input or output.  
P54/CNTR0,  
P55/CNTR1  
Pull-up control is enabled.  
P56/TOUT  
P57/ADT  
Timer 2 output pins  
A-D trigger input pins  
P60/AN0–  
P67/AN7  
I/O port P6  
8-bit I/O port.  
A-D conversion input pins  
CMOS compatible input level.  
CMOS 3-state output structure.  
I/O direction register allows each pin to be individually  
programmed as either input or output.  
Pull-up control is enabled.  
2-bit I/O port.  
P70/XCOUT,  
P71/XCIN  
I/O port P7  
Sub-clock generating circuit I/O pins.  
CMOS compatible input level.  
CMOS 3-state output structure.  
(Connect a resonator. External clock  
cannot be used.)  
I/O direction register allows each pin to be individually  
programmed as either input or output.  
Pull-up control is enabled.  
5
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PART NUMBERING  
Product  
M38224  
M
6
H
XXX  
FP  
Package type  
FP : 80P6N-A package  
GP : 80P6S-A package  
HP : 80P6Q-A package  
FS : 80D0 package  
ROM number  
Omitted in One Time PROM version shipped in blank and EPROM version.  
Normally, using hyphen.  
When electrical characteristic, or division of identification code using  
alaphanumeric character  
:Standard  
D :Extended operating temperature version  
M :M version  
H :H version  
ROM/PROM size  
1 : 4096 bytes  
2 : 8192 bytes  
3 : 12288 bytes  
4 : 16384 bytes  
5 : 20480 bytes  
6 : 24576 bytes  
7 : 28672 bytes  
8 : 32768 bytes  
9 : 36864 bytes  
A : 40960 bytes  
B : 45056 bytes  
C : 49152 bytes  
The first 128 bites and the last 2 bytes of ROM are  
reserved areas ; they cannot be used.  
Memory type  
M : Mask ROM version  
E : EPROM or One Time PROM version  
RAM size  
0 : 192 bytes  
1 : 256 bytes  
2 : 384 bytes  
3 : 512 bytes  
4 : 640 bytes  
5 : 768 bytes  
6 : 896 bytes  
7 : 1024 bytes  
Fig. 4 Part numbering  
6
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
GROUP EXPANSION (STANDARD, ONE TIME  
PROM VERSION, EPROM VERSION)  
Mitsubishi plans to expand the 3822 group (Standard, One Time  
PROM version, EPROM version) as follows:  
Memory Size  
ROM size ............................................................. 8 K to 48 K bytes  
RAM size ............................................................ 384 to 1024 bytes  
Package  
Memory Type  
Support for Mask ROM, One Time PROM, and EPROM versions  
80P6N-A .................................... 0.8 mm-pitch plastic molded QFP  
80P6S-A .................................. 0.65 mm-pitch plastic molded QFP  
80P6Q-A .................................... 0.5 mm-pitch plastic molded QFP  
80D0 ....................... 0.8 mm-pitch ceramic LCC (EPROM version)  
Memory Expansion Plan  
ROM size (bytes)  
48K  
Under development  
M38227EC  
32K  
28K  
24K  
20K  
Mass product  
M38223M4/E4  
16K  
12K  
8K  
Mass product  
M38222M2  
4K  
1024  
192 256  
384  
512  
RAM size (bytes)  
640  
768  
896  
Note: Products under development or planning: the development schedule and specifications  
may be revised without notice.  
Fig. 5 Memory expansion plan  
Currently products are listed below.  
Table 3 List of products  
As of August 2000  
ROM size (bytes)  
Product  
RAM size (bytes)  
384  
Package  
Remarks  
ROM size for User in (  
)
M38222M2-XXXFP  
M38222M2-XXXGP  
M38222M2-XXXHP  
M38223M4-XXXFP  
M38223E4FP  
80P6N-A  
80P6S-A  
80P6Q-A  
Mask ROM version  
Mask ROM version  
Mask ROM version  
Mask ROM version  
8192  
(8062)  
80P6N-A  
80P6S-A  
One Time PROM version (blank)  
Mask ROM version  
16384  
(16254)  
M38223M4-XXXGP  
M38223E4GP  
512  
One Time PROM version (blank)  
Mask ROM version  
M38223M4-XXXHP  
M38223E4HP  
80P6Q-A  
One Time PROM version (blank)  
EPROM version  
80D0  
80P6N-A  
80P6Q-A  
80D0  
M38223E4FS  
M38227ECFP  
One Time PROM version (blank)  
One Time PROM version (blank)  
EPROM version  
49152  
(49022)  
1024  
M38227ECHP  
M38227ECFS  
7
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
GROUP EXPANSION  
Package  
(EXTENDED OPERATING TEMPERATURE  
VERSION)  
80P6N-A .................................... 0.8 mm-pitch plastic molded QFP  
Mitsubishi plans to expand the 3822 group (extended operating  
temperature version) as follows:  
Memory Type  
Support for Mask ROM version.  
Memory Size  
ROM size ........................................................................ 48 K bytes  
RAM size ....................................................................... 1024 bytes  
Memory Expansion Plan  
ROM size (bytes)  
48K  
Mass product  
M38227MCD  
32K  
28K  
24K  
20K  
16K  
12K  
8K  
4K  
1024  
192 256  
384  
512  
640  
768  
896  
RAM size (bytes)  
Fig. 6 Memory expansion plan for extended operating temperature version  
Currently products are listed below.  
Table 4 List of products for extended operating temperature version  
As of August 2000  
ROM size (bytes)  
ROM size for User in (  
RAM size (bytes)  
1024  
Package  
80P6N-A  
Remarks  
Product  
)
M38227MCDXXXFP  
49152(49022)  
Mask ROM version  
8
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
GROUP EXPANSION (M VERSION)  
Package  
Mitsubishi plans to expand the 3822 group (M version) as follows:  
80P6N-A .................................... 0.8 mm-pitch plastic molded QFP  
80P6S-A .................................. 0.65 mm-pitch plastic molded QFP  
80P6Q-A .................................... 0.5 mm-pitch plastic molded QFP  
Memory Type  
Support for Mask ROM version.  
Memory Size  
ROM size ........................................................... 16 K to 24 K bytes  
RAM size .............................................................. 512 to 640 bytes  
Memory Expansion Plan  
ROM size (bytes)  
48K  
32K  
28K  
24K  
Mass product  
M38224M6M  
20K  
Mass product  
M38223M4M  
16K  
12K  
8K  
4K  
1024  
192 256  
384  
512  
RAM size (bytes)  
640  
768  
896  
Fig. 7 Memory expansion plan for M version  
Currently products are listed below.  
Table 5 List of products for M version  
As of August 2000  
ROM size (bytes)  
Product  
RAM size (bytes)  
Package  
Remarks  
ROM size for User in (  
)
M38223M4MXXXFP  
M38223M4MXXXGP  
M38223M4MXXXHP  
M38224M6MXXXFP  
M38224M6MXXXHP  
80P6N-A  
80P6S-A  
80P6Q-A  
80P6N-A  
80P6Q-A  
Mask ROM version  
Mask ROM version  
Mask ROM version  
Mask ROM version  
Mask ROM version  
16384  
(16254)  
512  
640  
24576  
(24446)  
9
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
GROUP EXPANSION (H VERSION)  
Mitsubishi plans to expand the 3822 group (H version) as follows:  
Package  
80P6N-A .................................... 0.8 mm-pitch plastic molded QFP  
80P6Q-A .................................... 0.5 mm-pitch plastic molded QFP  
Memory Type  
Support for Mask ROM version.  
Memory Size  
ROM size ........................................................... 16 K to 48 K bytes  
RAM size ............................................................ 512 to 1024 bytes  
Memory Expansion Plan  
ROM size (bytes)  
48K  
Mass product  
M38227MCH  
Mass product  
M38227M8H  
32K  
28K  
24K  
Mass product  
M38224M6H  
20K  
Mass product  
M38223M4H  
16K  
12K  
8K  
4K  
1024  
192 256  
384  
512  
RAM size (bytes)  
640  
768  
896  
Fig. 8 Memory expansion plan for H version  
Currently products are listed below.  
Table 6 List of products for H version  
As of August 2000  
ROM size (bytes) ROM  
Product  
RAM size (bytes)  
512  
Package  
Remarks  
size for User in (  
)
M38223M4HXXXFP  
M38223M4HXXXHP  
M38224M6HXXXFP  
M38224M6HXXXHP  
M38227M8HXXXFP  
M38227M8HXXXHP  
M38227MCHXXXFP  
M38227MCHXXXHP  
80P6N-A  
80P6Q-A  
80P6N-A  
80P6Q-A  
80P6N-A  
80P6Q-A  
80P6N-A  
80P6Q-A  
Mask ROM version  
Mask ROM version  
Mask ROM version  
Mask ROM version  
Mask ROM version  
Mask ROM version  
Mask ROM version  
Mask ROM version  
16384  
(16254)  
24576  
(24446)  
640  
32768  
(32638)  
1024  
49152  
(49022)  
10  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
FUNCTIONAL DESCRIPTION  
[Stack Pointer (S)]  
CENTRAL PROCESSING UNIT (CPU)  
The 3822 group uses the standard 740 family instruction set. Re-  
fer to the table of 740 family addressing modes and machine  
instructions or the 740 Family Software Manual for details on the  
instruction set.  
The stack pointer is an 8-bit register used during subroutine calls  
and interrupts. This register indicates start address of stored area  
(stack) for storing registers during subroutine calls and interrupts.  
The low-order 8 bits of the stack address are determined by the  
contents of the stack pointer. The high-order 8 bits of the stack ad-  
dress are determined by the stack page selection bit. If the stack  
page selection bit is 0, the high-order 8 bits becomes 0016. If  
the stack page selection bit is 1, the high-order 8 bits becomes  
0116.  
Machine-resident 740 family instructions are as follows:  
The FST and SLW instruction cannot be used.  
The STP, WIT, MUL, and DIV instruction can be used.  
[Accumulator (A)]  
The operations of pushing register contents onto the stack and  
popping them from the stack are shown in Figure 10.  
Store registers other than those described in Figure 10 with pro-  
gram when the user needs them during interrupts or subroutine  
calls.  
The accumulator is an 8-bit register. Data operations such as data  
transfer, etc., are executed mainly through the accumulator.  
[Index Register X (X)]  
The index register X is an 8-bit register. In the index addressing  
modes, the value of the OPERAND is added to the contents of  
register X and specifies the real address.  
[Program Counter (PC)]  
The program counter is a 16-bit counter consisting of two 8-bit  
registers PCH and PCL. It is used to indicate the address of the  
next instruction to be executed.  
[Index Register Y (Y)]  
The index register Y is an 8-bit register. In partial instruction, the  
value of the OPERAND is added to the contents of register Y and  
specifies the real address.  
b0  
b7  
A
Accumulator  
b0  
b7  
X
Index register X  
b7  
b0  
Y
Index register Y  
b7  
b0  
S
Stack pointer  
b15  
b7  
b7  
b0  
PCH  
PCL  
Program counter  
b0  
N V T B D I Z C  
Processor status register (PS)  
Carry flag  
Zero flag  
Interrupt disable flag  
Decimal mode flag  
Break flag  
Index X mode flag  
Overflow flag  
Negative flag  
Fig.9 740 Family CPU register structure  
11  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
On-going Routine  
Execute JSR  
Interrupt request  
(Note)  
M (S) (PC  
(S) (S) 1  
M (S) (PC  
H
)
Push return address  
on stack  
M (S) (PC  
(S) (S) 1  
M (S) (PC  
H)  
L
)
(S) (S) 1  
M (S) (PS)  
(S) (S) 1  
Push return address  
on stack  
Push contents of processor  
status register on stack  
L
)
(S) (S)1  
Subroutine  
Interrupt  
Service Routine  
I Flag is set from 0to 1”  
Execute RTS  
(S) (S) + 1  
Fetch the jump vector  
Execute RTI  
(S) (S) + 1  
POP return  
address from stack  
POP contents of  
processor status  
register from stack  
(PC  
(S) (S) + 1  
(PC M (S)  
L)  
M (S)  
(PS)  
(S) (S) + 1  
(PC M (S)  
(S) (S) + 1  
(PC M (S)  
M (S)  
H)  
L)  
POP return  
address  
from stack  
H)  
Note: Condition for acceptance of an interrupt  
Interrupt enable flag is 1”  
Interrupt disable flag is 0”  
Fig. 10 Register push and pop at interrupt generation and subroutine call  
Table 7 Push and pop instructions of accumulator or processor status register  
Push instruction to stack  
Pop instruction from stack  
Accumulator  
PHA  
PHP  
PLA  
PLP  
Processor status register  
12  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
•Bit 4: Break flag (B)  
[Processor status register (PS)]  
The B flag is used to indicate that the current interrupt was  
generated by the BRK instruction. The BRK flag in the processor  
status register is always “0”. When the BRK instruction is used to  
generate an interrupt, the processor status register is pushed  
onto the stack with the break flag set to “1”.  
The processor status register is an 8-bit register consisting of 5  
flags which indicate the status of the processor after an arithmetic  
operation and 3 flags which decide MCU operation. Branch opera-  
tions can be performed by testing the Carry (C) flag , Zero (Z) flag,  
Overflow (V) flag, or the Negative (N) flag. In decimal mode, the Z,  
V, N flags are not valid.  
•Bit 5: Index X mode flag (T)  
When the T flag is “0”, arithmetic operations are performed  
between accumulator and memory. When the T flag is “1”, direct  
arithmetic operations and direct data transfers are enabled  
between memory locations.  
•Bit 0: Carry flag (C)  
The C flag contains a carry or borrow generated by the arithmetic  
logic unit (ALU) immediately after an arithmetic operation. It can  
also be changed by a shift or rotate instruction.  
•Bit 1: Zero flag (Z)  
•Bit 6: Overflow flag (V)  
The V flag is used during the addition or subtraction of one byte  
of signed data. It is set if the result exceeds +127 to -128. When  
the BIT instruction is executed, bit 6 of the memory location  
operated on by the BIT instruction is stored in the overflow flag.  
•Bit 7: Negative flag (N)  
The Z flag is set if the result of an immediate arithmetic operation  
or a data transfer is “0”, and cleared if the result is anything other  
than “0”.  
•Bit 2: Interrupt disable flag (I)  
The I flag disables all interrupts except for the interrupt  
generated by the BRK instruction.  
The N flag is set if the result of an arithmetic operation or data  
transfer is negative. When the BIT instruction is executed, bit 7 of  
the memory location operated on by the BIT instruction is stored  
in the negative flag.  
Interrupts are disabled when the I flag is “1”.  
•Bit 3: Decimal mode flag (D)  
The D flag determines whether additions and subtractions are  
executed in binary or decimal. Binary arithmetic is executed when  
this flag is “0”; decimal arithmetic is executed when it is “1”.  
Decimal correction is automatic in decimal mode. Only the ADC  
and SBC instructions can be used for decimal arithmetic.  
Table 8 Set and clear instructions of each bit of processor status register  
N flag  
C flag  
SEC  
CLC  
Z flag  
I flag  
SEI  
D flag  
SED  
CLD  
B flag  
V flag  
T flag  
SET  
CLT  
Set instruction  
CLI  
CLV  
Clear instruction  
13  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
[CPU Mode Register (CPUM)] 003B16  
The CPU mode register contains the stack page selection bit and  
the internal system clock selection bit.  
The CPU mode register is allocated at address 003B16.  
b7  
b0  
CPU mode register  
(CPUM (CM) : address 003B16)  
Processor mode bits  
b1 b0  
0
0
1
1
0 : Single-chip mode  
1 :  
0 :  
Not available  
1 :  
Stack page selection bit  
0 : 0 page  
1 : 1 page  
Not used (returns 1when read)  
(Do not write 0to this bit)  
Port XC switch bit  
0 : I/O port function (stop oscillating)  
1 : XCINXCOUT oscillating function  
Main clock (XINXOUT) stop bit  
0 : Oscillating  
1 : Stopped  
Main clock division ratio selection bit  
0 : f(XIN)/2 (high-speed mode)  
1 : f(XIN)/8 (middle-speed mode)  
Internal system clock selection bit  
0 : XINXOUT selected (middle-/high-speed mode)  
1 : XCINXCOUT selected (low-speed mode)  
Fig. 11 Structure of CPU mode register  
14  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
MEMORY  
Zero Page  
Special Function Register (SFR) Area  
The Special Function Register area in the zero page contains con-  
trol registers such as I/O ports and timers.  
The 256 bytes from addresses 000016 to 00FF16 are called the  
zero page area. The internal RAM and the special function regis-  
ter (SFR) are allocated to this area.  
The zero page addressing mode can be used to specify memory  
and register addresses in the zero page area. Access to this area  
with only 2 bytes is possible in the zero page addressing mode.  
RAM  
RAM is used for data storage and for stack area of subroutine  
calls and interrupts.  
Special Page  
The 256 bytes from addresses FF0016 to FFFF16 are called the  
special page area. The special page addressing mode can be  
used to specify memory addresses in the special page area.  
Access to this area with only 2 bytes is possible in the special  
page addressing mode.  
ROM  
The first 128 bytes and the last 2 bytes of ROM are reserved for  
device testing and the rest is user area for storing programs.  
Interrupt Vector Area  
The interrupt vector area contains reset and interrupt vectors.  
RAM area  
000016  
RAM size  
(bytes)  
Address  
XXXX16  
SFR area  
Zero page  
004016  
005016  
192  
256  
384  
512  
640  
768  
896  
1024  
00FF16  
013F16  
01BF16  
023F16  
02BF16  
033F16  
03BF16  
043F16  
LCD display RAM area  
010016  
RAM  
XXXX16  
084016  
Reserved area  
Not used  
ROM area  
Address  
YYYY16  
Address  
ZZZZ16  
ROM size  
(bytes)  
YYYY16  
ZZZZ16  
Reserved ROM area  
(128 bytes)  
F00016  
E00016  
D00016  
C00016  
B00016  
A00016  
900016  
800016  
700016  
600016  
500016  
400016  
F08016  
E08016  
D08016  
C08016  
B08016  
A08016  
908016  
808016  
708016  
608016  
508016  
408016  
4096  
8192  
12288  
16384  
20480  
24576  
28672  
32768  
36864  
40960  
45056  
49152  
ROM  
FF0016  
FFDC16  
Special page  
Interrupt vector area  
Reserved ROM area  
FFFE16  
FFFF16  
Fig. 12 Memory map diagram  
15  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Port P0 (P0)  
000016  
002016  
002116  
002216  
002316  
002416  
Timer X (low) (TXL)  
Timer X (high) (TXH)  
Timer Y (low) (TYL)  
Timer Y (high) (TYH)  
Timer 1 (T1)  
000116 Port P0 direction register (P0D)  
Port P1 (P1)  
000216  
000316  
000416  
000516  
000616  
000716  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
001016  
001116  
001216  
001316  
001416  
001516  
Port P1 output control register (P1D)  
Port P2 (P2)  
Port P2 direction register (P2D)  
Port P3 (P3)  
002516 Timer 2 (T2)  
Timer 3 (T3)  
002616  
002716  
002816  
002916  
002A16  
002B16  
002C16  
002D16  
002E16  
002F16  
003016  
003116  
003216  
003316  
003416  
003516  
003616  
003716  
003816  
003916  
003A16  
003B16  
003C16  
003D16  
003E16  
003F16  
Timer X mode register (TXM)  
Timer Y mode register (TYM)  
Timer 123 mode register (T123M)  
φ output control register (CKOUT)  
Port P4 (P4)  
Port P4 direction register (P4D)  
Port P5 (P5)  
Port P5 direction register (P5D)  
Port P6 (P6)  
Port P6 direction register (P6D)  
Port P7 (P7)  
Port P7 direction register (P7D)  
A-D control register (ADCON)  
A-D conversion register (AD)  
001616 PULL register A (PULLA)  
PULL register B (PULLB)  
001716  
001816  
001916  
001A16  
001B16  
001C16  
001D16  
001E16  
001F16  
Transmit/Receive buffer register  
Segment output enable register (SEG)  
LCD mode register (LM)  
(TB/RB)  
Serial I/O status register (SIOSTS)  
Serial I/O control register (SIO1CON)  
UART control register (UARTCON)  
Baud rate generator (BRG)  
Interrupt edge selection register (INTEDGE)  
CPU mode register (CPUM)  
Interrupt request register 1(IREQ1)  
Interrupt request register 2(IREQ2)  
Interrupt control register 1(ICON1)  
Interrupt control register 2(ICON2)  
Fig. 13 Memory map of special function register (SFR)  
16  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
I/O PORTS  
b7  
b0  
Direction Registers (ports P2, P41-P47, and  
P5-P7)  
PULL register A  
(PULLA: address 001616)  
The 3822 group has 49 programmable I/O pins arranged in seven  
I/O ports (ports P0P2, P41P47 and P5-P7). The I/O ports P2,  
P41P47 and P5-P7 have direction registers which determine the  
input/output direction of each individual pin. Each bit in a direction  
register corresponds to one pin, and each pin can be set to be in-  
put port or output port.  
P00P07 pull-down  
P10P17 pull-down  
P20P27 pull-up  
P34P37 pull-down  
P70, P71 pull-up  
Not used (return 0when read)  
When 0is written to the bit corresponding to a pin, that pin be-  
comes an input pin. When 1is written to that bit, that pin be-  
comes an output pin.  
b7  
b0  
PULL register B  
If data is read from a pin set to output, the value of the port output  
latch is read, not the value of the pin itself. Pins set to input are  
floating. If a pin set to input is written to, only the port output latch  
is written to and the pin remains floating.  
(PULLB : address 001716)  
P41P43 pull-up  
P44P47 pull-up  
P50P53 pull-up  
P54P57 pull-up  
P60P63 pull-up  
P64P67 pull-up  
Not used (return 0when read)  
Direction Registers (ports P0 and P1)  
Ports P0 and P1 have direction registers which determine the in-  
put/output direction of each individual port.  
0: Disable  
1: Enable  
Each port in a direction register corresponds to one port, each port  
can be set to be input or output. When 0is written to the bit 0 of  
a direction register, that port becomes an input port. When 1is  
written to that port, that port becomes an output port. Bits 1 to 7 of  
ports P0 and P1 direction registers are not used.  
Note: The contents of PULL register A and PULL register B  
do not affect ports programmed as the output port.  
Fig. 14 Structure of PULL register A and PULL register B  
Ports P3 and P40  
These ports are only for input.  
Pull-up/Pull-down Control  
By setting the PULL register A (address 001616) or the PULL reg-  
ister B (address 001716), ports except for port P40 can control  
either pull-down or pull-up (pins that are shared with the segment  
output pins for LCD are pull-down; all other pins are pull-up) with  
a program.  
However, the contents of PULL register A and PULL register B do  
not affect ports programmed as the output ports.  
17  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 9 List of I/O port function  
Name  
Input/Output  
Input/output,  
Non-Port Function  
Pin  
I/O Format  
Related SFRs  
Diagram No.  
P00/SEG16–  
Port P0  
CMOS compatible  
LCD segment output  
PULL register A  
(1)  
P07/SEG23  
individual ports input level  
Segment output enable  
register  
CMOS 3-state output  
P10/SEG24–  
P17/SEG31  
Port P1  
Port P2  
Input/output,  
individual bits  
CMOS compatible  
input level  
(2)  
(3)  
(4)  
P20P27  
PULL register A  
Key input (key-on  
wake-up) interrupt  
input  
Interrupt control register 2  
CMOS 3-state output  
Input  
Input  
CMOS compatible  
input level  
PULL register A  
P34/SEG12–  
P37/SEG15  
LCD segment output  
Port P3  
Port P4  
Segment output enable  
register  
CMOS compatible  
input level  
P40  
P41/φ  
(5)  
(2)  
φ clock output  
CMOS compatible  
input level  
PULL register B  
Input/output,  
individual bits  
φ
output control register  
CMOS 3-state output  
P42/INT0,  
P43/INT1  
PULL register B  
External interrupt input  
Interrupt edge selection  
register  
(6)  
(7)  
(8)  
(9)  
(2)  
Serial I/O function I/O  
External interrupt input  
PULL register B  
P44/RXD  
Serial I/O control register  
Serial I/O status register  
UART control register  
P45/TXD  
P46/SCLK  
P47/SRDY  
CMOS compatible  
input level  
P50/INT2,  
P51/INT3  
PULL register B  
Input/output,  
individual bits  
Port P5  
Interrupt edge selection  
register  
CMOS 3-state output  
Real time port  
function output  
PULL register B  
P52/RTP0,  
P53/RTP1  
(10)  
(11)  
Timer X mode register  
PULL register B  
Timer X function I/O  
P54/CNTR0  
P55/CNTR1  
P56/TOUT  
Timer X mode register  
Timer Y function input  
Timer 2 function output  
PULL register B  
(12)  
(13)  
Timer Y mode register  
PULL register B  
Timer 123 mode register  
A-D trigger input  
(12)  
(14)  
PULL register B  
P57/ADT  
A-D control register  
P60/AN0–  
P67/AN7  
Input/output,  
individual bits  
Port P6  
Port P7  
CMOS compatible  
input level  
A-D conversion input  
CMOS 3-state output  
(15)  
(16)  
CMOS compatible  
input level  
P70/XCOUT  
P71/XCIN  
Input/output,  
individual bits  
PULL register A  
Sub-clock  
CPU mode register  
generating circuit I/O  
CMOS 3-state output  
LCD common output  
LCD segment output  
COM0COM3  
SEG0SEG11  
Output  
Output  
LCD mode register  
(17)  
(18)  
Common  
Segment  
Notes1: How to use double-function ports as function I/O ports, refer to the applicable sections.  
2: Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction. When an input level is at an intermediate po-  
tential, a current will flow VCC to VSS through the input-stage gate.  
18  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(1) Ports P0, P1  
(2) Ports P2, P42, P43, P50, P51  
V
L2/VL3  
Pull-up control  
V
L1/VSS  
Segment output enable bit  
(Note)  
Direction register  
Direction register  
Data bus  
Port latch  
Data bus  
Port latch  
Key input (Key-on wake-up) interrupt input  
INT INT interrupt input  
0
3
Pull-down control  
Segment output enable bit  
Note: Bit 0 of direction register.  
(3) Ports P34P37  
(4) Port P4  
0
VL2/VL3  
Data bus  
V
L1/VSS  
Data bus  
Pull-down control  
Segment output enable bit  
(6) Port P4  
4
(5) Port P4  
1
Pull-up control  
Pull-up control  
Serial I/O enable bit  
Receive enable bit  
Direction register  
Direction register  
Port latch  
Data bus  
Data bus  
Port latch  
φ output control bit  
φ
Serial I/O input  
Fig. 15 Port block diagram (1)  
19  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(8) Port P4  
6
(7) Port P4  
5
Serial I/O clock-  
synchronized selection bit  
Serial I/O enable bit  
Pull-up control  
Pull-up control  
P4  
5
/T  
x
D P-channel output disable bit  
Serial I/O enable bit  
Transmit enable bit  
Serial I/O mode selection bit  
Serial I/O enable bit  
Direction register  
Direction register  
Data bus  
Port latch  
Data bus  
Port latch  
Serial I/O output  
Serial I/O clock output  
Serial I/O clock input  
(9) Port P4  
7
(10) Ports P52, P53  
Pull-up control  
Pull-up control  
Serial I/O mode selection bit  
Serial I/O enable bit  
S
RDY output enable bit  
Direction register  
Direction register  
Data bus  
Port latch  
Data bus  
Port latch  
Real time port control bit  
Data for real time port  
Serial I/O ready output  
(11) Port P5  
4
(12) Ports P55, P5  
7
Pull-up control  
Pull-up control  
Direction register  
Direction register  
Data bus  
Port latch  
Data bus  
Port latch  
Timer X operating mode bit  
(Pulse output mode selection)  
Timer output  
CNTR1 interrupt input  
A-D trigger interrupt input  
CNTR0 interrupt input  
Fig. 16 Port block diagram (2)  
20  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(14) Port P6  
(13) Port P5  
6
Pul-up control  
Pull-up control  
Direction register  
Direction register  
Data bus  
Port latch  
Data bus  
Port latch  
T
OUT output control bit  
Timer output  
A-D conversion input  
Analog input pin selection bit  
(15) Port P7  
0
(16) Port P7  
1
Port X  
C
switch bit + Pull-up control  
Port XC switch bit + Pull-up control  
Port X  
C
switch bit  
Port X  
C
switch bit  
Direction register  
Direction register  
Data bus  
Port latch  
Data bus  
Port latch  
Oscillation circuit  
Port P7  
Sub-clock generating circuit input  
1
Port XC switch bit  
(17) COM  
0
–COM  
3
(18) SEG –SEG11  
0
V
L2/VL3  
VL3  
The voltage applied to the sources of  
V
L1/VSS  
P-channel and N-channel transistors  
is the controlled voltage by the bias  
value.  
V
V
L2  
L1  
The gate input signal of each transistor is  
controlled by the LCD duty ratio and the  
bias value.  
Fig. 17 Port block diagram (3)  
21  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
INTERRUPTS  
Interrupts occur by seventeen sources: eight external, eight inter-  
2. The interrupt disable flag is set and the corresponding  
interrupt request bit is cleared.  
nal, and one software.  
3. The interrupt jump destination address is read from the vec-  
tor table into the program counter.  
Interrupt Control  
Each interrupt is controlled by an interrupt request bit, an interrupt  
enable bit, and the interrupt disable flag except for the software  
interrupt set by the BRK instruction. An interrupt occurs if the cor-  
responding interrupt request and enable bits are “1” and the  
interrupt disable flag is “0”.  
Notes on interrupts  
When setting the followings, the interrupt request bit may be set to  
“1”.  
•When setting external interrupt active edge  
Related register: Interrupt edge selection register (address 3A16)  
Timer X mode register (address 2716)  
Interrupt enable bits can be set or cleared by software.  
Interrupt request bits can be cleared by software, but cannot be  
set by software.  
Timer Y mode register (address 2816)  
•When switching interrupt sources of an interrupt vector address  
where two or more interrupt sources are allocated  
Related register: A-D control regsiter (address 3416)  
When not requiring for the interrupt occurrence synchronized with  
these setting, take the following sequence.  
Set the corresponding interrupt enable bit to “0” (disabled).  
Set the interrupt edge select bit or the interrupt source select bit  
to “1”.  
The BRK instruction cannot be disabled with any flag or bit. The I  
flag disables all interrupts except the BRK instruction interrupt.  
When several interrupts occur at the same time, the interrupts are  
received according to priority.  
Interrupt Operation  
Upon acceptance of an interrupt the following operations are auto-  
matically performed:  
Set the corresponding interrupt request bit to “0” after 1 or more  
instructions have been executed.  
1. The contents of the program counter and processor status  
register are automatically pushed onto the stack.  
Set the corresponding interrupt enable bit to “1” (enabled).  
Table 10 Interrupt vector addresses and priority  
Interrupt Request  
Remarks  
Vector Addresses (Note 1)  
Interrupt Source  
Priority  
High  
Low  
Generating Conditions  
Reset (Note 2)  
At reset  
1
2
FFFD16  
FFFB16  
FFFC16  
FFFA16  
Non-maskable  
INT0  
At detection of either rising or External interrupt  
falling edge of INT0 input  
(active edge selectable)  
INT1  
FFF916  
FFF716  
FFF516  
FFF816  
FFF616  
FFF416  
At detection of either rising or External interrupt  
3
4
5
falling edge of INT1 input  
(active edge selectable)  
Serial I/O  
reception  
At completion of serial I/O data  
reception  
Valid when serial I/O is selected  
At completion of serial I/O trans-  
mit shift or when transmission  
buffer is empty  
Serial I/O  
transmission  
Valid when serial I/O is selected  
Timer X  
Timer Y  
Timer 2  
Timer 3  
CNTR0  
At timer X underflow  
At timer Y underflow  
At timer 2 underflow  
At timer 3 underflow  
6
7
FFF316  
FFF116  
FFEF16  
FFED16  
FFEB16  
FFF216  
FFF016  
FFEE16  
FFEC16  
FFEA16  
8
9
At detection of either rising or  
falling edge of CNTR0 input  
10  
External interrupt  
(active edge selectable)  
CNTR1  
11  
FFE916  
FFE816  
At detection of either rising or External interrupt  
falling edge of CNTR1 input  
(active edge selectable)  
Timer 1  
INT2  
12  
13  
FFE716  
FFE516  
FFE616  
FFE416  
At timer 1 underflow  
At detection of either rising or External interrupt  
falling edge of INT2 input  
(active edge selectable)  
INT3  
At detection of either rising or  
falling edge of INT3 input  
14  
15  
16  
FFE316  
FFE116  
FFDF16  
FFE216  
FFE016  
FFDE16  
External interrupt  
(active edge selectable)  
Key input  
(Key-on wake-up)  
At falling of conjunction of input External interrupt  
level for port P2 (at input mode)  
(Valid at falling)  
ADT  
At falling of ADT input  
Valid when ADT interrupt is se-  
lected, External interrupt  
(Valid at falling)  
At completion of A-D conversion  
At BRK instruction execution  
A-D conversion  
BRK instruction  
Valid when A-D interrupt is se-  
lected  
17  
FFDD16  
FFDC16  
Non-maskable software interrupt  
Notes1: Vector addresses contain interrupt jump destination addresses.  
2: Reset function in the same way as an interrupt with the highest priority.  
22  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Interrupt request bit  
Interrupt enable bit  
Interrupt disable flag (I)  
Interrupt request  
BRK instruction  
Reset  
Fig. 18 Interrupt control  
b7  
b0  
Interrupt edge selection register  
(INTEDGE : address 003A16  
)
INT  
INT  
INT  
INT  
0
1
2
3
interrupt edge selection bit  
interrupt edge selection bit  
interrupt edge selection bit  
interrupt edge selection bit  
0 : Falling edge active  
1 : Rising edge active  
Not used (return 0when read)  
b7  
b0  
b7  
b0  
Interrupt request register 2  
Interrupt request register 1  
(IREQ2 : address 003D16  
)
(IREQ1 : address 003C16  
)
INT  
INT  
0
1
interrupt request bit  
interrupt request bit  
CNTR  
CNTR  
0
1
interrupt request bit  
interrupt request bit  
Serial I/O receive interrupt request bit  
Serial I/O transmit interrupt request bit  
Timer X interrupt request bit  
Timer 1 interrupt request bit  
INT  
INT  
2
interrupt request bit  
interrupt request bit  
3
Timer Y interrupt request bit  
Key input interrupt request bit  
Timer 2 interrupt request bit  
Timer 3 interrupt request bit  
ADT/AD conversion interrupt request bit  
Not used (returns 0when read)  
0 : No interrupt request issued  
1 : Interrupt request issued  
b7  
b0  
b7  
b0  
Interrupt control register 1  
Interrupt control register 2  
(ICON1 : address 003E16  
)
(ICON2 : address 003F16  
)
INT  
INT  
0
1
interrupt enable bit  
interrupt enable bit  
CNTR  
CNTR  
0
1
interrupt enable bit  
interrupt enable bit  
Serial I/O receive interrupt enable bit  
Serial I/O transmit interrupt enable bit  
Timer X interrupt enable bit  
Timer 1 interrupt enable bit  
INT  
INT  
2
interrupt enable bit  
interrupt enable bit  
3
Timer Y interrupt enable bit  
Key input interrupt enable bit  
Timer 2 interrupt enable bit  
Timer 3 interrupt enable bit  
ADT/AD conversion interrupt enable bit  
Not used (returns 0when read)  
(Do not write 1to this bit.)  
0 : Interrupts disabled  
1 : Interrupts enabled  
Fig. 19 Structure of interrupt-related registers  
23  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
1to 0. An example of using a key input interrupt is shown in  
Figure 20, where an interrupt request is generated by pressing  
one of the keys consisted as an active-low key matrix which inputs  
to ports P20P23.  
Key Input Interrupt (Key-on wake-up)  
A Key-on wake-up interrupt request is generated by applying a  
falling edge to any pin of port P2 that have been set to input mode.  
In other words, it is generated when AND of input level goes from  
Port PX  
X
Llevel output  
PULL register A bit 2 = 1”  
Port P2  
direction register = 1”  
7
Key input interrupt request  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
Port P2  
latch  
7
P2  
7
output  
output  
Port P2  
6
direction register = 1”  
Port P2  
latch  
6
P2  
6
Port P2  
5
direction register = 1”  
Port P2  
latch  
5
P2  
5
output  
output  
Port P2  
4
direction register = 1”  
Port P2  
latch  
4
P2  
4
Port P2  
direction register = 0”  
3
Port P2  
ꢀꢀ  
ꢀꢀ  
Input reading circuit  
Port P2  
latch  
3
P2  
P2  
3
input  
Port P2  
direction register = 0”  
2
Port P2  
latch  
2
2
input  
input  
Port P2  
direction register = 0”  
1
ꢀꢀ  
Port P2  
latch  
1
P2  
1
Port P2  
0
direction register = 0”  
Port P2  
latch  
0
P2  
0
input  
P-channel transistor for pull-up  
ꢀꢀ CMOS output buffer  
Fig. 20 Connection example when using key input interrupt and port P2 block diagram  
24  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
responding to that timer is set to “1”.  
TIMERS  
Read and write operation on 16-bit timer must be performed for  
both high and low-order bytes. When reading a 16-bit timer, read  
the high-order byte first. When writing to a 16-bit timer, write the  
low-order byte first. The 16-bit timer cannot perform the correct  
operation when reading during the write operation, or when writing  
during the read operation.  
The 3822 group has five timers: timer X, timer Y, timer 1, timer 2,  
and timer 3. Timer X and timer Y are 16-bit timers, and timer 1,  
timer 2, and timer 3 are 8-bit timers.  
All timers are down count timers. When the timer reaches “0016”,  
an underflow occurs at the next count pulse and the correspond-  
ing timer latch is reloaded into the timer and the count is  
continued. When a timer underflows, the interrupt request bit cor-  
Real time port  
control bit 1”  
Q D  
Data bus  
P52 data for real time port  
P52  
Latch  
0”  
P52 latch  
Real time port  
control bit 1”  
P52 direction register  
Q D  
P53 data for real time port  
Real time port  
P53  
Latch  
0”  
P53 direction register  
control bit 0”  
Timer X mode register  
write signal  
P53 latch  
1”  
f(XIN)/16  
(f(XIN)/16 in low-speed mode)  
Timer X stop  
control bit  
Timer X write  
control bit  
Timer X operat-  
ing mode bits  
00,01,11”  
CNTR0 active  
edge switch bit  
Timer X (low) latch (8)  
Timer X (low) (8)  
Timer X (high) latch (8)  
Timer X (high) (8)  
Timer X  
interrupt  
request  
0”  
P54/CNTR0  
10”  
1”  
Pulse width  
CNTR0  
interrupt  
request  
measurement  
mode  
CNTR0 active  
edge switch bit  
Pulse output mode  
0”  
1”  
S
Q
Q
Timer Y operating mode bits  
T
00,01,10”  
CNTR1  
interrupt  
request  
P54 direction register  
Pulse width HL continuously measurement mode  
Rising edge detection  
P54 latch  
Pulse output mode  
f(XIN)/16  
11”  
Period  
measurement mode  
Falling edge detection  
(f(XCIN)516 in low-speed mode )  
Timer Y stop  
control bit  
CNTR1 active  
edge switch bit  
Timer Y (low) latch (8)  
Timer Y (high) latch (8)  
Timer Y (high) (8)  
00,01,11”  
Timer Y  
interrupt  
request  
0”  
P55/CNTR1  
Timer Y (low) (8)  
10Timer Y operating  
1”  
mode bits  
f(XIN)/16  
Timer 1  
interrupt  
request  
(f(XCIN)/16 in low-speed mode])  
Timer 1 count source  
selection bit  
0”  
Timer 2 write  
control bit  
Timer 2 count source  
selection bit  
Timer 2 latch (8)  
Timer 1 latch (8)  
Timer 1 (8)  
0”  
Timer 2  
interrupt  
request  
XCIN  
Timer 2 (8)  
1”  
1”  
f(XIN)/16  
(f(XCIN)/16 in low-speed mode )  
TOUT output  
TOUT output  
control bit  
active edge  
TOUT output  
control bit  
switch bit  
0”  
S
Q
Q
P56/TOUT  
T
1”  
P56 latch  
P56 direction register  
Timer 3 latch (8)  
Timer 3 (8)  
0”  
Timer 3  
interrupt  
request  
f(XIN)/16(f(XCIN)/16 in low-speed mode)  
1”  
Timer 3 count  
source selection bit  
Internal clock φ =XCIN /2  
Fig. 21 Timer block diagram  
25  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timer X  
Real time port control  
Timer X is a 16-bit timer that can be selected in one of four modes  
and can be controlled the timer X write and the real time port by  
setting the timer X mode register.  
While the real time port function is valid, data for the real time port  
are output from ports P52 and P53 each time the timer X  
underflows. (However, after rewriting a data for real time port, if  
the real time port control bit is changed from 0to 1, data are  
output independent of the timer X operation.) If the data for the  
real time port is changed while the real time port function is valid,  
the changed data are output at the next underflow of timer X.  
Before using this function, set the corresponding port direction  
registers to output mode.  
(1) Timer Mode  
The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode).  
(2) Pulse Output Mode  
Each time the timer underflows, a signal output from the CNTR0  
pin is inverted. Except for this, the operation in pulse output mode  
is the same as in timer mode. When using a timer in this mode,  
set the corresponding port P54 direction register to output mode.  
Note on CNTR0 interrupt active edge  
selection  
CNTR0 interrupt active edge depends on the CNTR0 active edge  
(3) Event Counter Mode  
switch bit.  
The timer counts signals input through the CNTR0 pin.  
Except for this, the operation in event counter mode is the same  
as in timer mode. When using a timer in this mode, set the corre-  
sponding port P54 direction register to input mode.  
b7  
b0  
Timer X mode register  
(TXM : address 002716  
)
(4) Pulse Width Measurement Mode  
The count source is f(XIN)/16 (or f(XCIN)/16 in low-speed mode). If  
CNTR0 active edge switch bit is 0, the timer counts while the in-  
put signal of CNTR0 pin is at H. If it is 1, the timer counts while  
the input signal of CNTR0 pin is at L. When using a timer in this  
mode, set the corresponding port P54 direction register to input  
mode.  
Timer X write control bit  
0 : Write value in latch and counter  
1 : Write value in latch only  
Real time port control bit  
0 : Real time port function invalid  
1 : Real time port function valid  
P5  
2
data for real time port  
data for real time port  
P53  
Timer X operating mode bits  
b5 b4  
0
0
1
1
0 : Timer mode  
1 : Pulse output mode  
0 : Event counter mode  
1 : Pulse width measurement mode  
Timer X write control  
If the timer X write control bit is 0, when the value is written in the  
address of timer X, the value is loaded in the timer X and the latch  
at the same time.  
CNTR0 active edge switch bit  
0 : Count at rising edge in event counter mode  
Start from Houtput in pulse output mode  
Measure Hpulse width in pulse width  
measurement mode  
If the timer X write control bit is 1, when the value is written in the  
address of timer X, the value is loaded only in the latch. The value  
in the latch is loaded in timer X after timer X underflows.  
If the value is written in latch only, when writing in the timer latch at  
the timer underflow, the value is set in the timer and the latch at  
one time. Additionally, unexpected value may be set in the high-or-  
der counter when the writing in high-order latch and the underflow  
of timer X are performed at the same timing.  
Falling edge active for CNTR0 interrupt  
1 : Count at falling edge in event counter mode  
Start from Loutput in pulse output mode  
Measure Lpulse width in pulse width  
measurement mode  
Rising edge active for CNTR  
Timer X stop control bit  
0 : Count start  
0 interrupt  
1 : Count stop  
Fig. 22 Structure of timer X mode register  
26  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timer Y  
Timer Y is a 16-bit timer that can be selected in one of four modes.  
b7  
b0  
Timer Y mode register  
(TYM : address 002816  
(1) Timer Mode  
The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode).  
)
Not used (return 0when read)  
Timer Y operating mode bits  
b5 b4  
(2) Period Measurement Mode  
0
0
1
0 : Timer mode  
CNTR1 interrupt request is generated at rising/falling edge of  
CNTR1 pin input signal. Simultaneously, the value in timer Y latch  
is reloaded in timer Y and timer Y continues counting down. Ex-  
cept for the above-mentioned, the operation in period  
measurement mode is the same as in timer mode.  
1 : Period measurement mode  
0 : Event counter mode  
1 : Pulse width HL continuously measurement  
mode  
1
CNTR1 active edge switch bit  
0 : Count at rising edge in event counter mode  
Measure the falling edge to falling edge  
period in period measurement mode  
The timer value just before the reloading at rising/falling of CNTR1  
pin input signal is retained until the timer Y is read once after the  
reload.  
Falling edge active for CNTR1 interrupt  
1 : Count at falling edge in event counter mode  
Measure the rising edge period in period  
measurement mode  
Rising edge active for CNTR  
Timer Y stop control bit  
0 : Count start  
1 interrupt  
The rising/falling timing of CNTR1 pin input signal is found by  
CNTR1 interrupt. When using a timer in this mode, set the corre-  
sponding port P55 direction register to input mode.  
1 : Count stop  
(3) Event Counter Mode  
The timer counts signals input through the CNTR1 pin.  
Except for this, the operation in event counter mode is the same  
as in timer mode. When using a timer in this mode, set the corre-  
sponding port P55 direction register to input mode.  
Fig. 23 Structure of timer Y mode register  
(4) Pulse Width HL Continuously Measurement  
Mode  
CNTR1 interrupt request is generated at both rising and falling  
edges of CNTR1 pin input signal. Except for this, the operation in  
pulse width HL continuously measurement mode is the same as in  
period measurement mode. When using a timer in this mode, set  
the corresponding port P55 direction register to input mode.  
Note on CNTR1 interrupt active edge selection  
CNTR1 interrupt active edge depends on the CNTR1 active edge  
switch bit. However, in pulse width HL continuously measurement  
mode, CNTR1 interrupt request is generated at both rising and  
falling edges of CNTR1 pin input signal regardless of the setting of  
CNTR1 active edge switch bit.  
27  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timer 1, Timer 2, Timer 3  
Timer 1, timer 2, and timer 3 are 8-bit timers. The count source for  
each timer can be selected by timer 123 mode register. The timer  
latch value is not affected by a change of the count source. How-  
ever, because changing the count source may cause an  
inadvertent count down of the timer, rewrite the value of timer  
whenever the count source is changed.  
b7  
b0  
Timer 123 mode register  
(T123M :address 002916)  
TOUT output active edge switch bit  
0 : Start at Houtput  
1 : Start at Loutput  
TOUT output control bit  
0 : TOUT output disabled  
1 : TOUT output enabled  
Timer 2 write control bit  
0 : Write data in latch and counter  
1 : Write data in latch only  
Timer 2 count source selection bit  
0 : Timer 1 output  
Timer 2 write control  
If the timer 2 write control bit is 0, when the value is written in the  
address of timer 2, the value is loaded in the timer 2 and the latch  
at the same time.  
If the timer 2 write control bit is 1, when the value is written in the  
address of timer 2, the value is loaded only in the latch. The value  
in the latch is loaded in timer 2 after timer 2 underflows.  
1 : f(XIN)/16  
(or f(XCIN)/16 in low-speed mode)  
Timer 3 count source selection bit  
0 : Timer 1 output  
1 : f(XIN)/16  
Timer 2 output control  
(or f(XCIN)/16 in low-speed mode)  
Timer 1 count source selection bit  
0 : f(XIN)/16  
(or f(XCIN)/16 in low-speed mode)  
1 : f(XCIN)  
When the timer 2 (TOUT) is output enabled, an inversion signal  
from the TOUT pin is output each time timer 2 underflows.  
In this case, set the port shared with the TOUT pin to the output  
mode.  
Not used (return 0when read)  
Note: Internal clock φ is f(XCIN)/2 in the low-speed mode.  
Notes on timer 1 to timer 3  
When the count source of timer 1 to 3 is changed, the timer count-  
ing value may be changed large because a thin pulse is generated  
in count input of timer . If timer 1 output is selected as the count  
source of timer 2 or timer 3, when timer 1 is written, the counting  
value of timer 2 or timer 3 may be changed large because a thin  
pulse is generated in timer 1 output.  
Fig. 24 Structure of timer 123 mode register  
Therefore, set the value of timer in the order of timer 1, timer 2  
and timer 3 after the count source selection of timer 1 to 3.  
28  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(1) Clock Synchronous Serial I/O Mode  
Clock synchronous serial I/O can be selected by setting the mode  
selection bit of the serial I/O control register to 1.  
SERIAL I/O  
Serial I/O can be used as either clock synchronous or asynchro-  
nous (UART) serial I/O. A dedicated timer (baud rate generator) is  
also provided for baud rate generation.  
For clock synchronous serial I/O, the transmitter and the receiver  
must use the same clock. If an internal clock is used, transfer is  
started by a write signal to the transmit/receive buffer register.  
Data bus  
Address 001A16  
Receive buffer full flag (RBF)  
Serial I/O control register  
Address 001816  
Receive buffer register  
Receive shift register  
Receive interrupt request (RI)  
P44/RXD  
Shift clock  
Clock control circuit  
P46/SCLK  
Serial I/O  
clock selection bit  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
f(XIN  
)
Baud rate generator  
Address 001C16  
1/4  
(f(XCIN) in low-speed mode)  
1/4  
P47/SRDY1  
Clock control circuit  
Falling-edge detector  
F/F  
Shift clock  
Transmit shift register shift completion flag (TSC)  
Transmit interrupt source selection bit  
P45/TXD  
Transmit shift register  
Transmit buffer register  
Transmit interrupt request (TI)  
Transmit buffer empty flag (TBE)  
Address 001916  
Serial I/O status register  
Address 001816  
Data bus  
Fig. 25 Block diagram of clock synchronous serial I/O  
Transfer shift clock  
(1/2 to 1/2048 of the internal  
clock, or an external clock)  
D
0
0
D
1
1
D
2
D
3
3
D
4
4
D
5
5
D
6
6
D
7
7
Serial output T  
XD  
Serial input R  
X
D
D
D
D
D
D
D
D
D
2
Receive enable signal SRDY  
Write signal to receive/transmit  
buffer register (address 001816  
)
RBF = 1  
TSC = 1  
Overrun error (OE)  
detection  
TBE = 0  
TBE = 1  
TSC = 0  
1 : The transmit interrupt (TI) can be generated either when the transmit buffer register has emptied (TBE=1) or after the transmit  
shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O control register.  
2 : If data is written to the transmit buffer register when TSC=0, the transmit clock is generated continuously and serial data is  
Notes  
output continuously from the T  
XD pin.  
3 : The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes 1.  
Fig. 26 Operation of clock synchronous serial I/O function  
29  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ter, but the two buffers have the same address in memory. Since  
the shift register cannot be written to or read from directly, transmit  
data is written to the transmit buffer, and receive data is read from  
the receive buffer.  
(2) Asynchronous Serial I/O (UART) Mode  
Clock asynchronous serial I/O mode (UART) can be selected by  
clearing the serial I/O mode selection bit of the serial I/O control  
register to 0.  
The transmit buffer can also hold the next data to be transmitted,  
and the receive buffer register can hold a character while the next  
character is being received.  
Eight serial data transfer formats can be selected, and the transfer  
formats used by a transmitter and receiver must be identical.  
The transmit and receive shift registers each have a buffer regis-  
Data bus  
Address 001816  
Address 001A16  
Receive buffer full flag (RBF)  
Serial I/O control register  
OE  
Receive buffer register  
Receive interrupt request (RI)  
Character length selection bit  
7 bits  
P44/RXD  
STdetector  
Receive shift register  
1/16  
8 bits  
PE FE  
UART control register  
SP detector  
Address 001B16  
Clock control circuit  
Serial I/O synchronous clock selection bit  
P46/SCLK  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
1/4  
f(XIN  
)
Baud rate generator  
Address 001C16  
(f(XCIN) in low-speed mode)  
ST/SP/PA generator  
Transmit shift register shift completion flag (TSC)  
1/16  
Transmit interrupt source selection bit  
P45  
/T  
X
D
Transmit shift register  
Transmit interrupt request (TI)  
Character length selection bit  
Transmit buffer empty flag (TBE)  
Transmit buffer register  
Address 001916  
Serial I/O status register  
Address 001816  
Data bus  
Fig. 27 Block diagram of UART serial I/O  
Transmit or receive clock  
Transmit buffer write signal  
TBE=0  
TSC=0  
TBE=0  
TSC=1ꢀ  
SP  
TBE=1  
TBE=1  
ST  
D
0
D1  
ST  
D
0
D1  
SP  
Serial output TXD  
1 start bit  
Generated at 2nd bit in 2-stop-bit mode  
7 or 8 data bits  
1 or 0 parity bit  
1 or 2 stop bit (s)  
Receive buffer read signal  
RBF=0  
RBF=1  
SP  
RBF=1  
SP  
ST  
D
0
D
1
ST  
D
0
D1  
Serial input RXD  
Notes  
1 : Error flag detection occurs at the same time that the RBF flag becomes 1(at 1st stop bit, during reception).  
2 : The transmit interrupt (TI) can be selected to occur when either the TBE or TSC flag becomes 1by the setting of the transmit interrupt source  
selection bit (TIC) of the serial I/O control register.  
3 : The receive interrupt (RI) is set when the RBF flag becomes 1.  
4 : After data is written to the transmit buffer register when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0.  
Fig. 28 Operation of UART serial I/O function  
30  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
[Transmit Buffer/Receive Buffer Register  
(TB/RB)] 001816  
The transmit buffer register and the receive buffer register are lo-  
cated at the same address. The transmit buffer register is  
write-only and the receive buffer register is read-only. If a charac-  
ter bit length is 7 bits, the MSB of data stored in the receive buffer  
register is “0”.  
[Serial I/O Status Register (SIOSTS)] 001916  
The read-only serial I/O status register consists of seven flags  
(bits 0 to 6) which indicate the operating status of the serial I/O  
function and various errors.  
Three of the flags (bits 4 to 6) are valid only in UART mode.  
The receive buffer full flag (bit 1) is cleared to “0” when the receive  
buffer is read.  
If there is an error, it is detected at the same time that data is  
transferred from the receive shift register to the receive buffer reg-  
ister, and the receive buffer full flag is set. A write to the serial I/O  
status register clears all the error flags OE, PE, FE, and SE. Writ-  
ing “0” to the serial I/O enable bit (SIOE) also clears all the status  
flags, including the error flags.  
All bits of the serial I/O status register are initialized to “0” at reset,  
but if the transmit enable bit (bit 4) of the serial I/O control register  
has been set to “1”, the transmit shift register shift completion flag  
(bit 2) and the transmit buffer empty flag (bit 0) become “1”.  
[Serial I/O Control Register (SIOCON)] 001A16  
The serial I/O control register contains eight control bits for the se-  
rial I/O function.  
[UART Control Register (UARTCON) ]001B16  
The UART control register consists of four control bits (bits 0 to 3)  
which are valid when asynchronous serial I/O is selected and set  
the data format of an data transfer. One bit in this register (bit 4) is  
always valid and sets the output structure of the P45/TXD pin.  
[Baud Rate Generator (BRG)] 001C16  
The baud rate generator determines the baud rate for serial trans-  
fer.  
The baud rate generator divides the frequency of the count source  
by 1/(n + 1), where n is the value written to the baud rate genera-  
tor.  
Notes on serial I/O  
When setting the transmit enable bit to “1”, the serial I/O transmit  
interrupt request bit is automatically set to “1”. When not requiring  
the interrupt occurrence synchronized with the transmission  
enalbed, take the following sequence.  
Set the serial I/O transmit interrupt enable bit to “0” (disabled).  
Set the transmit enable bit to “1”.  
Set the serial I/O transmit interrupt request bit to “0” after 1 or  
more instructions have been executed.  
Set the serial I/O transmit interrupt enable bit to “1” (enabled).  
31  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
b7  
b0  
Serial I/O status register  
(SIOSTS : address 001916  
Serial I/O control register  
(SIOCON : address 001A16  
)
)
BRG count source selection bit (CSS)  
0: f(XIN) (f(XCIN) in low-speed mode)  
1: f(XIN)/4 (f(XCIN)/4 in low-speed mode)  
Transmit buffer empty flag (TBE)  
0: Buffer full  
1: Buffer empty  
Serial I/O synchronization clock selection bit (SCS)  
0: BRG output divided by 4 when clock synchronized serial  
I/O is selected.  
BRG output divided by 16 when UART is selected.  
1: External clock input when clock synchronized serial I/O is  
selected.  
Receive buffer full flag (RBF)  
0: Buffer empty  
1: Buffer full  
Transmit shift register shift completion flag (TSC)  
0: Transmit shift in progress  
1: Transmit shift completed  
External clock input divided by 16 when UART is selected.  
S
0: P4  
1: P4  
RDY output enable bit (SRDY)  
Overrun error flag (OE)  
0: No error  
1: Overrun error  
7
pin operates as ordinary I/O pin  
pin operates as SRDY output pin  
7
Transmit interrupt source selection bit (TIC)  
0: Interrupt when transmit buffer has emptied  
1: Interrupt when transmit shift operation is completed  
Parity error flag (PE)  
0: No error  
1: Parity error  
Transmit enable bit (TE)  
0: Transmit disabled  
1: Transmit enabled  
Framing error flag (FE)  
0: No error  
1: Framing error  
Receive enable bit (RE)  
0: Receive disabled  
1: Receive enabled  
Summing error flag (SE)  
0: (OE) U (PE) U (FE) =0  
1: (OE) U (PE) U (FE) =1  
Serial I/O mode selection bit (SIOM)  
0: Asynchronous serial I/O (UART)  
1: Clock synchronous serial I/O  
Not used (returns 1when read)  
Serial I/O enable bit (SIOE)  
0: Serial I/O disabled  
b7  
b0  
UART control register  
(UARTCON : address 001B16  
(pins P4  
1: Serial I/O enabled  
(pins P4 P4 operate as serial I/O pins)  
4P47 operate as ordinary I/O pins)  
)
Character length selection bit (CHAS)  
0: 8 bits  
1: 7 bits  
4
7
Parity enable bit (PARE)  
0: Parity checking disabled  
1: Parity checking enabled  
Parity selection bit (PARS)  
0: Even parity  
1: Odd parity  
Stop bit length selection bit (STPS)  
0: 1 stop bit  
1: 2 stop bits  
P45/TXD P-channel output disable bit (POFF)  
0: CMOS output (in output mode)  
1: N-channel open-drain output (in output mode)  
Not used (return 1when read)  
Fig. 29 Structure of serial I/O control registers  
32  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
A-D CONVERTER  
[A-D Conversion Register (AD)] 003516  
The A-D conversion register is a read-only register that contains  
the result of an A-D conversion. When reading this register during  
an A-D conversion, the previous conversion result is read.  
b7  
b0  
A-D control register  
(ADCON : address 003416)  
Analog input pin selection bits  
0 0 0 : P60/AN0  
0 0 1 : P61/AN1  
0 1 0 : P62/AN2  
[A-D Control Register (ADCON)] 003416  
The A-D control register controls the A-D conversion process. Bits  
0 to 2 of this register select specific analog input pins. Bit 3 signals  
the completion of an A-D conversion. The value of this bit remains  
at 0during an A-D conversion, then changes to 1when the A-  
D conversion is completed. Writing 0to this bit starts the A-D  
conversion. Bit 4 controls the transistor which breaks the through  
current of the resistor ladder. When bit 5, which is the AD external  
trigger valid bit, is set to 1, this bit enables A-D conversion even  
by a falling edge of an ADT input. Set ports which share with ADT  
pins to input when using an A-D external trigger.  
0 1 1 : P63/AN3  
1 0 0 : P64/AN4  
1 0 1 : P65/AN5  
1 1 0 : P66/AN6  
1 1 1 : P67/AN7  
AD conversion completion bit  
0 : Conversion in progress  
1 : Conversion completed  
VREF input switch bit  
0 : OFF  
1 : ON  
AD external trigger valid bit  
0 : A-D external trigger invalid  
1 : A-D external trigger valid  
Interrupt source selection bit  
0 : Interrupt request at A-D  
conversion completed  
[Comparison Voltage Generator]  
The comparison voltage generator divides the voltage between  
AVSS and VREF by 256, and outputs the divided voltages.  
1 : Interrupt request at ADT  
input falling  
Not used (returns 0when read)  
[Channel Selector]  
The channel selector selects one of the input ports P67/AN7P60/  
AN0, and inputs it to the comparator.  
Fig. 30 Structure of A-D control register  
[Comparator and Control Circuit]  
The comparator and control circuit compares an analog input volt-  
age with the comparison voltage and stores the result in the A-D  
conversion register. When an A-D conversion is completed, the  
control circuit sets the AD conversion completion bit and the AD  
interrupt request bit to 1.  
Note that the comparator is constructed linked to a capacitor, so  
set f(XIN) to at least 500 kHz during A-D conversion.  
Use the clock divided from the main clock XIN as the internal clock  
φ.  
Data bus  
b7  
b0  
A-D control register  
P57/ADT  
3
ADT/A-D interrupt request  
A-D control circuit  
P60/AN0  
P61/AN1  
P62/AN2  
P63/AN3  
P64/AN4  
P65/AN5  
P66/AN6  
P67/AN7  
A-D conversion  
register  
Comparator  
8
Resistor ladder  
AVSS  
VREF  
Fig. 31 A-D converter block diagram  
33  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
enable bit is set to 1after data is set in the LCD mode register,  
the segment output enable register and the LCD display RAM, the  
LCD drive control circuit starts reading the display data automati-  
cally, performs the bias control and the duty ratio control, and  
displays the data on the LCD panel.  
LCD DRIVE CONTROL CIRCUIT  
The 3822 group has the built-in Liquid Crystal Display (LCD) drive  
control circuit consisting of the following.  
LCD display RAM  
Segment output enable register  
LCD mode register  
Selector  
Table 11 Maximum number of display pixels at each duty ratio  
Timing controller  
Duty ratio  
2
Maximum number of display pixel  
64 dots  
Common driver  
Segment driver  
or 8 segment LCD 8 digits  
96 dots  
Bias control circuit  
A maximum of 32 segment output pins and 4 common output pins  
can be used.  
3
4
or 8 segment LCD 12 digits  
128 dots  
Up to 128 pixels can be controlled for LCD display. When the LCD  
or 8 segment LCD 16 digits  
b7  
b0  
Segment output enable register  
(SEG : address 003816  
)
Segment output enable bit 0  
0 : Input port P3 P3  
4
7
1 : Segment output SEG12SEG15  
Segment output enable bit 1  
0 : I/O port P00,P01  
1 : Segment output SEG16, SEG17  
Segment output enable bit 2  
0 : I/O port P02P07  
1 : Segment output SEG18SEG23  
Segment output enable bit 3  
0 : I/O port P10,P11  
1 : Segment output SEG24, SEG25  
Segment output enable bit 4  
0 : I/O port P1  
2
1 : Segment output SEG26  
Segment output enable bit 5  
0 : I/O port P13P17  
1 : Segment output SEG27SEG31  
Not used (returns 0when read)  
(Do not write 1to this bit.)  
b7  
b0  
LCD mode register  
(LM : address 003916  
)
Duty ratio selection bits  
0 0 : Not used  
0 1 : 2 (use COM  
1 0 : 3 (use COM  
1 1 : 4 (use COM  
Bias control bit  
0 : 1/3 bias  
0
0
0
, COM  
COM  
COM  
1
2
3
)
)
)
1 : 1/2 bias  
LCD enable bit  
0 : LCD OFF  
1 : LCD ON  
Not used (returns 0when read)  
(Do not write 1to this bit)  
LCD circuit divider division ratio selection bits  
0 0 : Clock input  
0 1 : 2 division of clock input  
1 0 : 4 division of clock input  
1 1 : 8 division of clock input  
LCDCK count source selection bit (Note)  
0 : f(XCIN)/32  
1 : f(XIN)/8192 (or f(XCIN)/8192 in low-speed  
mode)  
Note: LCDCK is a clock for a LCD timing controller.  
Fig. 32 Structure of segment output enable register and LCD mode register  
34  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Fig. 33 Block diagram of LCD controller/driver  
35  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 12 Bias control and applied voltage to VL1–VL3  
Bias Control and Applied Voltage to LCD  
Power Input Pins  
Bias value  
Voltage value  
To the LCD power input pins (VL1VL3), apply the voltage shown  
VL3=VLCD  
in Table 12 according to the bias value.  
1/3 bias  
VL2=2/3 VLCD  
VL1=1/3 VLCD  
Select a bias value by the bias control bit (bit 2 of the LCD mode  
register).  
VL3=VLCD  
1/2 bias  
VL2=VL1=1/2 VLCD  
Common Pin and Duty Ratio Control  
The common pins (COM0COM3) to be used are determined by  
duty ratio.  
Note 1: VLCD is the maximum value of supplied voltage for the  
LCD panel.  
Select duty ratio by the duty ratio selection bits (bits 0 and 1 of the  
LCD mode register).  
Table 13 Duty ratio control and common pins used  
Duty ratio selection bit  
Duty  
Common pins used  
ratio  
Bit 1  
Bit 0  
2
3
4
0
1
1
1
0
1
COM0, COM1 (Note 1)  
COM0COM2 (Note 2)  
COM0COM3  
Notes1: COM2 and COM3 are open.  
2: COM3 is open.  
Contrast control  
Contrast control  
V
L3  
V
L3  
R1  
R4  
V
L2  
V
L2  
R2  
R3  
V
L1  
V
L1  
R5  
R4 = R5  
R1 = R2 = R3  
1/3 bias  
1/2 bias  
Fig. 34 Example of circuit at each bias  
36  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
LCD Display RAM  
LCD Drive Timing  
Address 004016 to 004F16 is the designated RAM for the LCD dis-  
play. When 1are written to these addresses, the corresponding  
segments of the LCD display panel are turned on.  
The LCDCK timing frequency (LCD drive timing) is generated in-  
ternally and the frame frequency can be determined with the  
following equation;  
(frequency of count source for LCDCK)  
f(LCDCK) =  
(divider division ratio for LCD)  
f(LCDCK)  
Frame frequency =  
(duty ratio)  
Bit  
7
6
5
4
3
1
0
2
Address  
SEG0  
004016  
004116  
004216  
004316  
004416  
004516  
004616  
004716  
004816  
004916  
004A16  
004B16  
004C16  
004D16  
004E16  
004F16  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG12  
SEG14  
SEG16  
SEG18  
SEG20  
SEG22  
SEG24  
SEG26  
SEG28  
SEG30  
SEG11  
SEG13  
SEG15  
SEG17  
SEG19  
SEG21  
SEG23  
SEG25  
SEG27  
SEG29  
SEG31  
COM0  
COM3  
COM2 COM1  
COM2 COM1 COM0  
COM3  
Fig. 35 LCD display RAM map  
37  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Internal logic  
LCDCK timing  
1/4 duty  
Voltage level  
V
V
V
L3  
L2=VL1  
SS  
COM  
COM  
COM  
COM  
0
1
2
3
V
L3  
SEG  
0
VSS  
OFF  
ON  
OFF  
ON  
COM  
3
COM3  
COM  
2
COM  
1
COM  
0
COM  
2
COM  
1
COM0  
1/3 duty  
V
V
V
L3  
L2=VL1  
SS  
COM  
COM  
COM  
0
1
2
V
L3  
SEG  
0
VSS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM  
0
COM  
0
COM  
2
COM  
1
COM  
2
COM  
1
COM  
0
COM2  
1/2 duty  
V
V
V
L3  
L2=VL1  
SS  
COM  
0
COM  
1
V
L3  
SEG  
0
VSS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM  
0
COM  
1
COM  
0
COM  
1
COM  
1
COM  
0
COM  
1
COM0  
Fig. 36 LCD drive waveform (1/2 bias)  
38  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Internal logic  
LCDCK timing  
1/4 duty  
Voltage level  
VL3  
V
VL2  
VSL1S  
COM  
0
COM  
COM  
COM  
1
2
3
VL3  
SEG  
0
VSS  
OFF  
ON  
OFF  
ON  
COM  
3
COM3  
COM  
2
COM  
1
COM  
0
COM  
2
COM  
1
COM0  
1/3 duty  
VL3  
VL2  
VSL1S  
V
COM  
COM  
COM  
0
1
2
VL3  
SEG  
0
VSS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM  
0
COM  
2
COM  
1
COM  
0
COM2  
COM  
2
COM  
1
COM0  
1/2 duty  
VL3  
VL2  
VSL1S  
V
COM  
COM  
0
1
VL3  
SEG  
0
VSS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM  
1
COM  
0
COM  
1
COM  
0
COM  
1
COM0  
COM  
1
COM0  
Fig. 37 LCD drive waveform (1/3 bias)  
39  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
φ CLOCK SYSTEM OUTPUT FUNCTION  
The internal system clock φ can be output from port P41 by setting  
the φ output control register. Set bit 1 of the port P4 direction reg-  
ister to 1when outputting φ clock.  
b7  
b0  
φ output control register  
(CKOUT : address 002A16  
)
φ output control bit  
0 : port function  
1 : φ clock output  
Not used (return 0when read)  
Fig. 38 Structure of φ output control register  
40  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
RESET CIRCUIT  
Power on  
To reset the microcomputer, RESET pin should be held at an L”  
level for 2 µs or more. Then the RESET pin is returned to an H”  
level (the power source voltage should be between VCC(min.) and  
5.5 V, and the quartz-crystal oscillator should be stable), reset is  
released. After the reset is completed, the program starts from the  
address contained in address FFFD16 (high-order byte) and ad-  
dress FFFC16 (low-order byte). Make sure that the reset input  
voltage meets VIL spec. when a power source voltage passes  
VCC(min.).  
Power  
source  
voltage  
RESET  
VCC  
0V  
Reset input  
voltage  
V
IL spec.  
0V  
RESET  
VCC  
Power source voltage  
detection circuit  
Fig. 39 Reset Circuit Example  
XIN  
φ
RESET  
Internal  
reset  
Reset address from  
vector table  
Address  
?
?
?
?
FFFC  
FFFD  
ADH, ADL  
Data  
ADL  
ADH  
SYNC  
XIN : about 8000 cycles  
Notes 1: The frequency relation of f(XIN) and f(φ) is f(XIN) =8f(φ)  
2: The question marks (?) indicate an undefined state that depends on the previous state.  
Fig. 40 Reset Sequence  
41  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Register Contents  
0016  
Address  
000116  
(1)  
Port P0 direction register  
Port P1 direction register  
Port P2 direction register  
Port P4 direction register  
Port P5 direction register  
Port P6 direction register  
Port P7 direction register  
PULL register A  
0016  
0016  
0016  
0016  
0016  
0016  
000316  
000516  
000916  
000B16  
000D16  
000F16  
001616  
001716  
001916  
001A16  
001B16  
002016  
002116  
002216  
002316  
002416  
002516  
002616  
002716  
002816  
002916  
002A16  
003416  
003816  
003916  
003A16  
003B16  
003C16  
003D16  
003E16  
003F16  
(PS)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
0
1
1
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
0
1
0
0
(8)  
0016  
0
(9)  
PULL register B  
(10)  
(11)  
(12)  
(13)  
(14)  
(15)  
(16)  
(17)  
(18)  
(19)  
(20)  
(21)  
(22)  
(23)  
(24)  
(25)  
(26)  
(27)  
(28)  
(29)  
(30)  
(31)  
(32)  
(33)  
(34)  
Sirial I/O status register  
Sirial I/O control register  
UART control register  
Timer X(Low)  
0016  
0
FF16  
FF16  
FF16  
FF16  
FF16  
0116  
FF16  
0016  
0016  
0016  
0016  
1
Timer X(High)  
Timer Y(Low)  
Timer Y(High)  
Timer 1  
Timer 2  
Timer 3  
Timer X mode register  
Timer Y mode register  
Timer 123 mode register  
φ output control register  
A-D control register  
Segment output enable register  
LCD mode register  
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0016  
0016  
0016  
Interrupt edge selection register  
CPU mode register  
Interrupt request register 1  
Interrupt request register 2  
Interrupt control register 1  
Interrupt control register 2  
Processor status register  
Program counter  
1
0016  
0016  
0016  
0016  
1
Contents of address FFFD16  
Contents of address FFFC16  
(PCH)  
(PCL)  
Note: The contents of all other registers and RAM are undefined after reset, so they must be  
initialized by software.  
: undefined  
Fig. 41 Initial status of microcomputer after reset  
42  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
CLOCK GENERATING CIRCUIT  
Oscillation Control  
The 3822 group has two built-in oscillation circuits. An oscillation  
circuit can be formed by connecting a resonator between XIN and  
XOUT (XCIN and XCOUT). Use the circuit constants in accordance  
with the resonator manufacturer's recommended values. No exter-  
nal resistor is needed between XIN and XOUT since a feed-back  
resistor exists on-chip. However, an external feed-back resistor is  
needed between XCIN and XCOUT.  
(1) Stop Mode  
If the STP instruction is executed, the internal clock φ stops at an  
Hlevel, and XIN and XCIN oscillators stop. Timer 1 is set to  
FF16and timer 2 is set to 0116.  
Either XIN or XCIN divided by 16 is input to timer 1 as count  
source, and the output of timer 1 is connected to timer 2. The bits  
of the timer 123 mode register except bit 4 are cleared to 0. Set  
the timer 1 and timer 2 interrupt enable bits to disabled (0) be-  
fore executing the STP instruction. Oscillator restarts at reset or  
when an external interrupt is received, but the internal clock φ is  
not supplied to the CPU until timer 2 underflows. This allows timer  
for the clock circuit oscillation to stabilize.  
To supply a clock signal externally, input it to the XIN pin and make  
the XOUT pin open. The sub-clock XCIN-XCOUT oscillation circuit  
cannot directly input clocks that are externally generated. Accord-  
ingly, be sure to cause an external resonator to oscillate.  
Immediately after poweron, only the XIN oscillation circuit starts  
oscillating, and XCIN and XCOUT pins function as I/O ports.  
(2) Wait Mode  
Frequency Control  
If the WIT instruction is executed, the internal clock φ stops at an  
Hlevel. The states of XIN and XCIN are the same as the state be-  
fore the executing the WIT instruction. The internal clock restarts  
at reset or when an interrupt is received. Since the oscillator does  
not stop, normal operation can be started immediately after the  
clock is restarted.  
(1) Middle-speed Mode  
The internal clock φ is the frequency of XIN divided by 8.  
After reset, this mode is selected.  
(2) High-speed Mode  
The internal clock φ is half the frequency of XIN.  
(3) Low-speed Mode  
The internal clock φ is half the frequency of XCIN.  
A low-power consumption operation can be realized by stopping  
the main clock XIN in this mode. To stop the main clock, set bit 5  
of the CPU mode register to 1.  
X
CIN  
X
COUT  
X
IN  
XOUT  
When the main clock XIN is restarted, set enough time for oscil-  
lation to stabilize by programming.  
Rf  
Rd  
Note: If you switch the mode between middle/high-speed and low-  
speed, stabilize both XIN and XCIN oscillations. The  
sufficient time is required for the sub-clock to stabilize, es-  
pecially immediately after poweron and at returning from  
stop mode. When switching the mode between middle/high-  
speed and low-speed, set the frequency on condition that  
f(XIN) > 3f(XCIN).  
C
OUT  
C
CIN  
C
COUT  
CIN  
Fig. 42 Ceramic resonator circuit  
XCOUT  
XCIN  
XIN  
XOUT  
Rf  
Open  
Rd  
External oscillation circuit  
CCIN  
CCOUT  
VCC  
VSS  
Fig. 43 External clock input circuit  
43  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
XCOUT  
XCIN  
“1”  
“0”  
Port XC switch bit  
Timer 1 count  
source selection  
bit  
Timer 2 count  
source selection  
bit  
Internal system clock selection bit  
(Note)  
XIN  
XOUT  
Low-speed mode  
“1”  
“1”  
“0”  
Timer 1  
Timer 2  
1/2  
1/2  
1/4  
“0”  
Middle-/High-speed mode  
“0”  
“1”  
Main clock division ratio selection bit  
Middle-speed mode  
“1”  
“0”  
Timing φ  
(Internal system clock)  
High-speed mode  
or Low-speed mode  
Main clock stop bit  
Q
Q
S
R
S
R
S
R
Q
WIT  
instruction  
STP instruction  
STP instruction  
Reset  
Interrupt disable flag I  
Interrupt request  
Note : When using the low-speed mode, set the port XC switch bit to “1” .  
Fig.44 Clock generating circuit block diagram  
44  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Reset  
CM6  
Middle-speed mode (f(φ) = 1 MHz)  
High-speed mode (f(φ) = 4 MHz)  
1”  
0”  
CM7 = 0 (8 MHz selected)  
CM6 = 1 (Middle-speed)  
CM5 = 0 (8 MHz oscillating)  
CM4 = 0 (32 kHz stopped)  
CM7 = 0 (8 MHz selected)  
CM6 = 0 (High-speed)  
CM5 = 0 (8 MHz oscillating)  
CM4 = 0 (32 kHz stopped)  
CM6  
Middle-speed mode (f(φ) = 1 MHz)  
High-speed mode (f(φ) = 4 MHz)  
1”  
0”  
CM7 = 0 (8 MHz selected)  
CM6 = 1 (Middle-speed)  
CM5 = 0 (8 MHz oscillating)  
CM4 = 1 (32 kHz oscillating)  
CM7 = 0 (8 MHz selected)  
CM6 = 0 (High-speed)  
CM5 = 0 (8 MHz oscillating)  
CM4 = 1 (32 kHz oscillating)  
CM6  
Low-speed mode (f(φ) =16 kHz)  
Low-speed mode (f(φ) = 16 kHz)  
1”  
0”  
CM7 = 1 (32 kHz selected)  
CM6 = 0 (High-speed)  
CM5 = 0 (8 MHz oscillating)  
CM4 = 1 (32 kHz oscillating)  
CM7 = 1 (32 kHz selected)  
CM6 = 1 (Middle-speed)  
CM5 = 0 (8 MHz oscillating)  
CM4 = 1 (32 kHz oscillating)  
b7  
b4  
CPU mode register  
(CPUM : address 003B16)  
CM4 : Port Xc switch bit  
0: I/O port  
1: XCIN, XCOUT  
CM5 : Main clock (XINXOUT) stop bit  
0: Oscillating  
1: Stopped  
CM6 : Main clock division ratio selection bit  
0: f(XIN)/2 (high-speed mode)  
1: f(XIN)/8 (middle-speed mode)  
CM7 : Internal system clock selection bit  
0: XINXOUT selected  
CM6  
Low-speed mode (f(φ) =16 kHz)  
Low-speed mode (f(φ) = 16 kHz)  
CM7 = 1 (32 kHz selected)  
CM6 = 1 (Middle-speed)  
CM5 = 1 (8 MHz stopped)  
CM4 = 1 (32 kHz oscillating)  
1”  
0”  
CM7=1(32 kHz selected)  
CM6=0(High-speed)  
CM5=1(8 MHz stopped)  
CM4=1(32 kHz oscillating)  
(middle-/high-speed mode)  
1: XCINXCOUT selected  
(low-speed mode)  
Notes  
1 : Switch the mode by the allows shown between the mode blocks. (Do not switch between the mode directly without an allow.)  
2 : The all modes can be switched to the stop mode or the wait mode and returned to the source mode when the stop mode or the wait mode is  
ended.  
3 : Timer and LCD operate in the wait mode.  
4 : When the stop mode is ended, a delay of approximately 1 ms occurs automatically by timer 1 and timer 2 in middle-/high-speed mode.  
5 : When the stop mode is ended, a delay of approximately 0.25 s occurs automatically by timer 1 and timer 2 in low-speed mode.  
6 : Wait until oscillation stabilizes after oscillating the main clock XIN before the switching from the low-speed mode to middle-/high-speed mode.  
7 : The example assumes that 8 MHz is being applied to the XIN pin and 32 kHz to the XCIN pin. φ indicates the internal clock.  
Fig. 45 State transitions of system clock  
45  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
NOTES ON PROGRAMMING  
A-D Converter  
Processor Status Register  
The comparator uses internal capacitors whose charge will be lost  
The contents of the processor status register (PS) after a reset are  
undefined, except for the interrupt disable flag (I) which is 1. Af-  
ter a reset, initialize flags which affect program execution.  
In particular, it is essential to initialize the index X mode (T) and  
the decimal mode (D) flags because of their effect on calculations.  
if the clock frequency is too low.  
Make sure that f(XIN) is at least 500 kHz during an A-D conver-  
sion.  
Do not execute the STP or WIT instruction during an A-D conver-  
sion.  
Interrupt  
Instruction Execution Time  
The contents of the interrupt request bits do not change immedi-  
ately after they have been written. After writing to an interrupt  
request register, execute at least one instruction before perform-  
ing a BBC or BBS instruction.  
The instruction execution time is obtained by multiplying the fre-  
quency of the internal clock φ by the number of cycles needed to  
execute an instruction.  
The number of cycles required to execute an instruction is shown  
in the list of machine instructions.  
Decimal Calculations  
The frequency of the internal clock φ is half of the XIN frequency.  
To calculate in decimal notation, set the decimal mode flag (D)  
to 1, then execute an ADC or SBC instruction. After executing  
an ADC or SBC instruction, execute at least one instruction be-  
fore executing a SEC, CLC, or CLD instruction.  
In decimal mode, the values of the negative (N), overflow (V),  
and zero (Z) flags are invalid.  
Timers  
If a value n (between 0 and 255) is written to a timer latch, the fre-  
quency division ratio is 1/(n + 1).  
Multiplication and Division Instructions  
The index mode (T) and the decimal mode (D) flags do not affect  
the MUL and DIV instruction.  
The execution of these instructions does not change the contents  
of the processor status register.  
Ports  
The contents of the port direction registers cannot be read.  
The following cannot be used:  
The data transfer instruction (LDA, etc.)  
The operation instruction when the index X mode flag (T) is 1”  
The addressing mode which uses the value of a direction regis-  
ter as an index  
The bit-test instruction (BBC or BBS, etc.) to a direction register  
The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a  
direction register  
Use instructions such as LDM and STA, etc., to set the port direc-  
tion registers.  
Serial I/O  
In clock synchronous serial I/O, if the receive side is using an ex-  
ternal clock and it is to output the SRDY signal, set the transmit  
enable bit, the receive enable bit, and the SRDY output enable bit  
to 1.  
Serial I/O continues to output the final bit from the TXD pin after  
transmission is completed.  
46  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
DATA REQUIRED FOR MASK ORDERS  
The following are necessary when ordering a mask ROM produc-  
tion:  
ROM PROGRAMMING METHOD  
The built-in PROM of the blank One Time PROM version and built-  
in EPROM version can be read or programmed with a general-  
purpose PROM programmer using a special programming  
adapter. Set the address of PROM programmer in the user ROM  
area.  
1.Mask ROM Order Confirmation Form  
2.Mark Specification Form  
3.Data to be written to ROM, in EPROM form (three identical cop-  
ies) or one floppy disk  
Table 14 Programming adapter  
For the mask ROM confirmation and the mark specifications, re-  
fer to the “Mitsubishi MCU Technical Information” Homepage  
(http://www.infomicom.mesc.co.jp/).  
Package  
80P6N-A  
80P6S-A  
80P6Q-A  
80D0  
Name of Programming Adapter  
PCA4738F-80A  
PCA4738G-80A  
PCA4738H-80A  
PCA4738L-80A  
The PROM of the blank One Time PROM version is not tested or  
screened in the assembly process and following processes. To en-  
sure proper operation after programming, the procedure shown in  
Figure 46 is recommended to verify programming.  
Programming with PROM  
programmer  
Screening (Caution)  
(150°C for 40 hours)  
Verification with  
PROM programmer  
Functional check in  
target device  
The screening temperature is far higher  
than the storage temperature. Never  
expose to 150 °C exceeding 100 hours.  
Caution :  
Fig. 46 Programming and testing of One Time PROM version  
47  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 15 Absolute maximum ratings (Standard, One Time PROM version)  
Symbol  
Parameter  
Power source voltage  
Conditions  
Ratings  
Unit  
V
VCC  
0.3 to 7.0  
All voltages are based on VSS.  
Output transistors are cut off.  
VI  
Input voltage P00P07, P10P17, P20P27,  
P34P37, P40P47, P50P57  
P60P67, P70, P71  
0.3 to VCC +0.3  
V
V
V
V
V
V
V
V
Input voltage VL1  
0.3 to VL2  
VL1 to VL3  
VI  
VI  
VI  
VI  
VO  
Input voltage VL2  
Input voltage VL3  
VL2 to VCC +0.3  
0.3 to VCC +0.3  
0.3 to VCC +0.3  
0.3 to VL3+0.3  
0.3 to VL3+0.3  
Input voltage RESET, XIN  
Output voltage P00P07, P10P17  
At output port  
At segment output  
At segment output  
VO  
VO  
Output voltage P34P37  
Output voltage P20P27, P41P47,P50P57,  
P60P67, P70, P71  
0.3 to VCC +0.3  
V
Output voltage SEG0SEG11  
Output voltage XOUT  
Power dissipation  
VO  
0.3 to VL3+0.3  
0.3 to VCC +0.3  
300  
V
V
VO  
Pd  
mW  
°C  
°C  
Ta = 25°C  
Operating temperature  
Storage temperature  
Topr  
Tstg  
20 to 85  
40 to 125  
Table 16 Recommended operating conditions (Standard, One Time PROM version)  
(VCC = 2.5 to 5.5 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
V
Min.  
Typ.  
5.0  
5.0  
5.0  
0
Max.  
High-speed mode f(XIN) = 8 MHz  
Middle-speed mode f(XIN) = 8 MHz  
Low-speed mode  
4.0  
2.5  
2.5  
5.5  
5.5  
5.5  
VCC  
Power source voltage  
Power source voltage  
VSS  
VREF  
AVSS  
VIA  
V
V
V
V
V
A-D conversion reference voltage  
Analog power source voltage  
Analog input voltage AN0AN7  
2.0  
VCC  
0
AVSS  
VCC  
VCC  
Hinput voltage  
P00P07, P10P17,P34P37, P40, P41, P45, P47, P52, P53,  
P56,P60P67,P70,P71 (CM4= 0)  
VIH  
0.7VCC  
Hinput voltage  
Hinput voltage  
Hinput voltage  
Linput voltage  
P20P27, P42P44,P46,P50, P51, P54, P55, P57  
VIH  
VIH  
VIH  
VIL  
0.8VCC  
0.8VCC  
0.8VCC  
0
VCC  
VCC  
V
V
V
V
RESET  
XIN  
VCC  
P00P07, P10P17,P34P37, P40, P41, P45, P47, P52, P53,  
P56,P60P67,P70,P71 (CM4= 0)  
0.3 VCC  
Linput voltage  
Linput voltage  
Linput voltage  
P20P27, P42P44,P46,P50, P51, P54, P55, P57  
VIL  
VIL  
VIL  
0
0
0
0.2 VCC  
0.2 VCC  
0.2 VCC  
V
V
V
RESET  
XIN  
48  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 17 Recommended operating conditions (Standard, One Time PROM version)  
(VCC = 2.5 to 5.5 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
Max.  
40  
40  
40  
Htotal peak output current  
Htotal peak output current  
Ltotal peak output current  
Ltotal peak output current  
Htotal average output current  
Htotal average output current  
Ltotal average output current  
Ltotal average output current  
Hpeak output current  
ΣIOH(peak)  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
IOH(peak)  
IOH(peak)  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
P00P07, P10P17, P20P27 (Note 1)  
P41P47, P50P57, P60P67, P70, P71 (Note 1)  
P00P07, P10P17, P20P27 (Note 1)  
P41P47, P50P57, P60P67, P70, P71 (Note 1)  
P00P07, P10P17, P20P27 (Note 1)  
P41P47, P50P57, P60P67, P70, P71 (Note 1)  
P00P07, P10P17, P20P27 (Note 1)  
P41P47, P50P57, P60P67, P70, P71 (Note 1)  
P00P07, P10P17 (Note 2)  
40  
20  
20  
20  
20  
2  
Hpeak output current  
5  
P20P27, P41P47, P50P57, P60P67, P70, P71  
(Note 2)  
IOL(peak)  
IOL(peak)  
5
Lpeak output current  
Lpeak output current  
mA  
mA  
P00P07, P10P17 (Note 2)  
10  
P20P27, P41P47, P50P57, P60P67, P70, P71  
(Note 2)  
1.0  
2.5  
IOH(avg)  
IOH(avg)  
Haverage output current  
Haverage output current  
mA  
mA  
P00P07, P10P17 (Note 3)  
P20P27, P41P47, P50P57, P60P67, P70, P71  
(Note 3)  
mA  
mA  
Laverage output current  
Laverage output current  
2.5  
5.0  
IOL(avg)  
IOL(avg)  
P00P07, P10P17 (Note 3)  
P20P27, P41P47, P50P57, P60P67, P70, P71  
(Note 3)  
(4.0 V VCC 5.5 V)  
(2.5 V VCC 4.0 V)  
4.0  
MHz  
f(CNTR0)  
f(CNTR1)  
Input frequency for timers X and Y  
(duty cycle 50%)  
(2VCC)-4 MHz  
8.0 MHz  
(4VCC)-8 MHz  
High-speed mode  
(4.0 V VCC 5.5 V)  
Main clock input oscillation frequency  
(Note 4)  
f(XIN)  
High-speed mode  
(2.5 V VCC 4.0 V)  
Middle-speed mode  
8.0  
50  
MHz  
kHz  
f(XCIN)  
Sub-clock input oscillation frequency (Notes 4, 5)  
32.768  
Notes 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value mea-  
sured over 100 ms. The total peak current is the peak value of all the currents.  
2: The peak output current is the peak current flowing in each port.  
3: The average output current is an average value measured over 100 ms.  
4: When the oscillation frequency has a duty cycle of 50 %.  
5: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency on condition that f(XCIN) < f(XIN)/3.  
49  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 18 Electrical characteristics (Standard, One Time PROM version)  
(VCC =4.0 to 5.5 V, Ta = 20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Max.  
IOH = 2.5 mA  
VCC2.0  
V
V
Houtput voltage  
P00P07, P10P17  
VOH  
IOH = 0.6 mA  
VCC = 2.5 V  
VCC1.0  
VCC2.0  
VCC0.5  
V
V
IOH = 5 mA  
Houtput voltage  
P20P27, P41P47, P50P57, P60P67,  
P70, P71 (Note)  
IOH = 1.25 mA  
VOH  
VOL  
IOH = 1.25 mA  
VCC = 2.5 V  
VCC1.0  
V
IOL = 5 mA  
2.0  
0.5  
V
V
Loutput voltage  
P00P07, P10P17  
IOL = 1.25 mA  
IOL = 1.25 mA  
VCC = 2.5 V  
1.0  
V
IOL = 10 mA  
IOL = 2.5 mA  
2.0  
0.5  
V
V
Loutput voltage  
P20P27, P41P47, P50P57, P60P67,  
P70, P71 (Note)  
VOL  
IOL = 2.5 mA  
VCC = 2.5 V  
1.0  
V
V
VT+ VT–  
Hysteresis  
0.5  
INT0INT3, ADT, CNTR0, CNTR1, P20P27  
VT+ VT–  
VT+ VT–  
Hysteresis  
Hysteresis  
SCLK, RXD  
RESET  
0.5  
0.5  
V
V
RESET : VCC = 2.5 V to 5.5 V  
IIH  
IIH  
Hinput current  
VI = VCC  
Pull-downs off”  
5.0  
140  
45  
µA  
µA  
µA  
P00P07, P10P17, P34P37  
VCC = 5 V, VI = VCC  
Pull-downs on”  
30  
70  
25  
VCC = 3 V, VI = VCC  
Pull-downs on”  
6.0  
Hinput current  
VI = VCC  
P20P27, P40P47, P50P57, P60P67,  
P70, P71 (Note)  
5.0  
5.0  
µA  
IIH  
IIH  
IIL  
Hinput current RESET  
Hinput current XIN  
VI = VCC  
VI = VCC  
VI = VSS  
µA  
µA  
4.0  
Linput current  
P00P07, P10P17, P34P37,P40  
5.0  
5.0  
µA  
µA  
IIL  
Linput current  
VI = VSS  
Pull-ups off”  
P20P27, P41P47, P50P57, P60P67,  
P70, P71 (Note)  
VCC = 5 V, VI = VSS  
Pull-ups on”  
30  
70  
25  
140  
µA  
µA  
VCC = 3 V, VI = VSS  
Pull-ups on”  
6.0  
45  
IIL  
IIL  
Linput current RESET  
Linput current XIN  
VI = VSS  
VI = VSS  
5.0  
µA  
µA  
4.0  
Note: When 1is set to port XC switch bit (bit 4 at address 003B16) of the CPU mode register, the drive ability of port P70 is different from the value above  
mentioned.  
50  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 19 Electrical characteristics (Standard, One Time PROM version)  
(VCC = 2.5 to 5.5 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Test conditions  
Min.  
2.0  
Typ.  
Max.  
5.5  
VRAM  
V
RAM retention voltage  
At clock stop mode  
High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz  
6.4  
13  
mA  
f(XCIN) = 32.768 kHz  
Output transistors off”  
A-D converter in operating  
High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz (in WIT state)  
f(XCIN) = 32.768 kHz  
1.6  
3.2  
mA  
Output transistors off”  
A-D converter stopped  
Low-speed mode, VCC = 5 V, Ta 55°C  
f(XIN) = stopped  
25  
7.0  
15  
36  
14  
22  
9.0  
µA  
µA  
µA  
f(XCIN) = 32.768 kHz  
Output transistors off”  
ICC  
Power source current  
Low-speed mode, VCC = 5 V, Ta = 25°C  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors off”  
Low-speed mode, VCC = 3 V, Ta 55°C  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz  
Output transistors off”  
Low-speed mode, VCC = 3 V, Ta = 25°C  
f(XIN) = stopped  
4.5  
0.1  
µA  
µA  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors off”  
All oscillation stopped  
(in STP state)  
Output transistors off”  
Ta = 25 °C  
Ta = 85 °C  
1.0  
10  
Table 20 A-D converter characteristics (Standard, One Time PROM version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85 °C, 4 MHz f(XIN) 8 MHz, middle-/high-speed mode, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
8
Bits  
Resolution  
VCC = VREF = 5V  
±2  
LSB  
Absolute accuracy  
(excluding quantization error)  
12.5  
(Note)  
f(XIN) = 8 MHz  
VREF = 5 V  
tCONV  
Conversion time  
µs  
RLADDER  
IVREF  
IIA  
Ladder resistor  
kΩ  
µA  
µA  
35  
12  
50  
100  
200  
5.0  
Reference power source input current  
Analog port input current  
150  
Note: When an internal trigger is used in middle-speed mode, it is 14 µs.  
51  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 21 Timing requirements 1 (Standard, One Time PROM version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
2
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input Lpulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input Hpulse width  
Main clock input Lpulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input Hpulse width  
CNTR0, CNTR1 input Lpulse width  
INT0 to INT3 input Hpulse width  
INT0 to INT3 input Lpulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
tc(SCLK)  
250  
105  
105  
80  
80  
Serial I/O clock input cycle time (Note)  
Serial I/O clock input Hpulse width (Note)  
Serial I/O clock input Lpulse width (Note)  
Serial I/O input set up time  
800  
370  
370  
220  
100  
twH(SCLK)  
twL(SCLK)  
t
su(RXDSCLK)  
th(SCLKRXD) Serial I/O input hold time  
Note: When bit 6 of address 001A16 is 1(clock synchronous).  
Divide this value by four when bit 6 of address 001A16 is 0(UART).  
Table 22 Timing requirements 2 (Standard, One Time PROM version)  
(VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
2
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input Lpulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input Hpulse width  
Main clock input Lpulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input Hpulse width  
CNTR0, CNTR1 input Lpulse width  
INT0 to INT3 input Hpulse width  
INT0 to INT3 input Lpulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
tc(SCLK)  
500/(VCC-2)  
250/(VCC-2)-20  
250/(VCC-2)-20  
230  
230  
2000  
950  
950  
400  
200  
Serial I/O clock input cycle time (Note)  
Serial I/O clock input Hpulse width (Note)  
Serial I/O clock input Lpulse width (Note)  
Serial I/O input set up time  
twH(SCLK)  
twL(SCLK)  
t
su(RXDSCLK)  
th(SCLKRXD) Serial I/O input hold time  
Note: When bit 6 of address 001A16 is 1(clock synchronous).  
Divide this value by four when bit 6 of address 001A16 is 0(UART).  
52  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 23 Switching characteristics 1 (Standard, One Time PROM version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
140  
tC (SCLK)/230  
tC (SCLK)/230  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twH(SCLK)  
twL(SCLK)  
Serial I/O clock output Hpulse width  
Serial I/O clock output Lpulse width  
td(SCLKTXD) Serial I/O output delay time (Note 1)  
30  
tv(SCLKTXD)  
tr(SCLK)  
Serial I/O output valid time (Note 1)  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
30  
30  
30  
30  
tf(SCLK)  
tr(CMOS)  
tf(CMOS)  
10  
10  
Notes 1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is 0.  
2: XOUT and XCOUT pins are excluded.  
Table 24 Switching characteristics 2 (Standard, One Time PROM version)  
(VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Serial I/O clock output Hpulse width  
Unit  
Min.  
Typ.  
Max.  
350  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tC (SCLK)/250  
tC (SCLK)/250  
twH(SCLK)  
twL(SCLK)  
td(SCLKTXD)  
tv(SCLKTXD)  
tr(SCLK)  
Serial I/O clock output Lpulse width  
Serial I/O output delay time (Note 1)  
Serial I/O output valid time (Note 1)  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
30  
50  
50  
50  
50  
tf(SCLK)  
tr(CMOS)  
tf(CMOS)  
20  
20  
Notes 1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is 0.  
2: XOUT and XCOUT pins are excluded.  
53  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 25 Absolute maximum ratings (Extended operating temperature version)  
Symbol  
Parameter  
Power source voltage  
Conditions  
Ratings  
Unit  
V
VCC  
0.3 to 6.5  
All voltages are based on VSS.  
Output transistors are cut off.  
VI  
Input voltage P00P07, P10P17, P20P27,  
P34P37, P40P47, P50P57  
P60P67, P70, P71  
0.3 to VCC +0.3  
V
0.3 to VL2  
VL1 to VL3  
V
V
V
V
V
V
V
VI  
VI  
VI  
VI  
VO  
Input voltage VL1  
Input voltage VL2  
VL2 to VCC +0.3  
0.3 to VCC +0.3  
0.3 to VCC +0.3  
0.3 to VL3  
Input voltage VL3  
Input voltage RESET, XIN  
Output voltage P00P07, P10P17  
At output port  
At segment output  
At segment output  
VO  
VO  
0.3 to VL3  
Output voltage P34P37  
Output voltage P20P27, P41P47,P50P57,  
P60P67, P70, P71  
0.3 to VCC +0.3  
V
VO  
Output voltage SEG0SEG11  
Output voltage XOUT  
Power dissipation  
0.3 to VL3  
0.3 to VCC +0.3  
300  
V
V
VO  
Pd  
Ta = 25°C  
mW  
°C  
°C  
Operating temperature  
Storage temperature  
Topr  
Tstg  
40 to 85  
65 to 150  
Table 26 Recommended operating conditions (Extended operating temperature version)  
(VCC = 2.0 to 5.5 V, Ta = 20 to 85 °C, and VCC = 3.0 to 5.5 V, Ta = 40 to 20°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
V
Min.  
Typ.  
5.0  
5.0  
5.0  
5.0  
5.0  
0
Max.  
High-speed mode f(XIN) = 8 MHz  
4.0  
2.0  
3.0  
2.0  
3.0  
5.5  
5.5  
5.5  
5.5  
5.5  
Ta = 20 to 85°C  
– –  
Ta = 40 to 20°C  
Ta = 20 to 85°C  
Middle-speed mode  
f(XIN) = 8 MHz  
VCC  
Power source voltage  
Low-speed mode  
Ta = 40 to 20°C  
Power source voltage  
VSS  
VREF  
AVSS  
VIA  
V
V
V
V
V
A-D conversion reference voltage  
Analog power source voltage  
Analog input voltage AN0AN7  
2.0  
VCC  
0
AVSS  
VCC  
VCC  
Hinput voltage  
P00P07, P10P17,P34P37, P40, P41, P45, P47, P52, P53,  
P56,P60P67,P70,P71 (CM4 = 0)  
VIH  
0.7VCC  
Hinput voltage  
Hinput voltage  
Hinput voltage  
Linput voltage  
P20P27, P42P44,P46,P50, P51, P54, P55, P57  
VIH  
VIH  
VIH  
VIL  
0.8VCC  
0.8VCC  
0.8VCC  
0
VCC  
VCC  
V
V
V
V
RESET  
XIN  
VCC  
P00P07, P10P17,P34P37, P40, P41, P45, P47, P52, P53,  
P56,P60P67,P70,P71 (CM4 = 0)  
0.3 VCC  
Linput voltage  
Linput voltage  
Linput voltage  
P20P27, P42P44,P46,P50, P51, P54, P55, P57  
VIL  
VIL  
VIL  
0
0
0
0.2 VCC  
0.2 VCC  
0.2 VCC  
V
V
V
RESET  
XIN  
54  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 27 Recommended operating conditions (Extended operating temperature version)  
(VCC = 2.0 to 5.5 V, Ta = 20 to 85 °C, and VCC = 3.0 to 5.5 V, Ta = 40 to 20° C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
Max.  
40  
40  
40  
Htotal peak output current  
Htotal peak output current  
Ltotal peak output current  
Ltotal peak output current  
Htotal average output current  
Htotal average output current  
Ltotal average output current  
Ltotal average output current  
Hpeak output current  
ΣIOH(peak)  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
IOH(peak)  
IOH(peak)  
P00P07, P10P17, P20P27 (Note 1)  
P41P47, P50P57, P60P67, P70, P71 (Note 1)  
P00P07, P10P17, P20P27 (Note 1)  
P41P47, P50P57, P60P67, P70, P71 (Note 1)  
P00P07, P10P17, P20P27 (Note 1)  
P41P47, P50P57, P60P67, P70, P71 (Note 1)  
P00P07, P10P17, P20P27 (Note 1)  
P41P47, P50P57, P60P67, P70, P71 (Note 1)  
P00P07, P10P17 (Note 2)  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
40  
20  
20  
20  
20  
2  
Hpeak output current  
5  
P20P27, P41P47, P50P57, P60P67, P70, P71  
(Note 2)  
IOL(peak)  
IOL(peak)  
Lpeak output current  
Lpeak output current  
P00P07, P10P17 (Note 2)  
5
mA  
mA  
P20P27, P41P47, P50P57, P60P67, P70, P71  
10  
(Note 2)  
1.0  
2.5  
mA  
mA  
IOH(avg)  
IOH(avg)  
Haverage output current  
Haverage output current  
P00P07, P10P17 (Note 3)  
P20P27, P41P47, P50P57, P60P67, P70, P71  
(Note 3)  
2.5  
5.0  
mA  
mA  
Laverage output current  
Laverage output current  
IOL(avg)  
IOL(avg)  
P00P07, P10P17 (Note 3)  
P20P27, P41P47, P50P57, P60P67, P70, P71  
(Note 3)  
(4.0 V VCC 5.5 V)  
(2.0 V VCC 4.0 V)  
4.0  
MHz  
MHz  
f(CNTR0)  
f(CNTR1)  
Input frequency for timers X and Y  
(duty cycle 50%)  
VCC  
High-speed mode  
(4.0 V VCC 5.5 V)  
8.0  
MHz  
Main clock input oscillation frequency  
(Note 4)  
f(XIN)  
High-speed mode  
(2.0 V VCC 4.0 V)  
2VCC MHz  
Middle-speed mode  
8.0  
50  
MHz  
kHz  
f(XCIN)  
Sub-clock input oscillation frequency (Notes 4, 5)  
32.768  
Notes 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value mesured  
over 100 ms. The total peak current is the peak value of all the currents.  
2: The peak output current is the peak current flowing in each port.  
3: The average output current is an average value measured over 100 ms.  
4: When the oscillation frequency has a duty cycle of 50 %.  
5: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency on condition that f(XCIN) < f(XIN)/3.  
55  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 28 Electrical characteristics (Extended operating temperature version)  
(VCC =2.0 to 5.5 V, Ta = 20 to 85 °C, and VCC = 3.0 to 5.5 V, Ta = 40 to 20 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
IOH = 2.5 mA  
Unit  
Min.  
Max.  
VCC2.0  
V
V
Houtput voltage  
P00P07, P10P17  
VOH  
IOH = 0.6 mA  
VCC = 3.0 V  
VCC0.9  
IOH = 5 mA  
VCC2.0  
VCC0.5  
V
V
Houtput voltage  
P20P27, P41P47, P50P57, P60P67,  
P70, P71 (Note)  
IOH = 1.25 mA  
VOH  
VOL  
IOH = 1.25 mA  
VCC = 3.0 V  
VCC0.9  
V
2.0  
0.5  
V
V
IOL = 5 mA  
Loutput voltage  
P00P07, P10P17  
IOL = 1.25 mA  
IOL = 1.25 mA  
VCC = 3.0 V  
1.1  
V
2.0  
0.5  
V
V
IOL = 10 mA  
IOL = 2.5 mA  
Loutput voltage  
P20P27, P41P47, P50P57, P60P67,  
P70, P71 (Note)  
VOL  
IOL = 2.5 mA  
VCC = 3.0 V  
1.1  
V
V
VT+ VT–  
Hysteresis  
0.5  
INT0INT3, ADT, CNTR0, CNTR1, P20P27  
VT+ VT–  
VT+ VT–  
Hysteresis  
Hysteresis  
SCLK, RXD  
RESET  
0.5  
0.5  
V
V
RESET : VCC = 2.0 V to 5.5 V  
IIH  
IIH  
Hinput current  
VI = VCC  
Pull-downs off”  
5.0  
170  
55  
µA  
µA  
µA  
P00P07, P10P17, P34P37  
VCC = 5 V, VI = VCC  
Pull-downs on”  
30  
70  
25  
VCC = 3 V, VI = VCC  
Pull-downs on”  
6.0  
Hinput current  
VI = VCC  
P20P27, P40P47, P50P57, P60P67,  
P70, P71 (Note)  
5.0  
5.0  
µA  
IIH  
IIH  
IIL  
Hinput current RESET  
Hinput current XIN  
VI = VCC  
VI = VCC  
VI = VSS  
µA  
µA  
4.0  
Linput current  
P00P07, P10P17, P34P37,P40  
5.0  
5.0  
µA  
µA  
IIL  
Linput current  
VI = VSS  
Pull-ups off”  
P20P27, P41P47, P50P57, P60P67,  
P70, P71 (Note)  
VCC = 5 V, VI = VSS  
Pull-ups on”  
30  
70  
25  
140  
µA  
µA  
VCC = 3 V, VI = VSS  
Pull-ups on”  
6.0  
45  
IIL  
IIL  
Linput current RESET  
Linput current XIN  
VI = VSS  
VI = VSS  
5.0  
µA  
µA  
4.0  
Note: When 1is set to port XC switch bit (bit 4 at address 003B16) of CPU mode register, the drive ability of port P70 is different from the value above men-  
tioned.  
56  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 29 Electrical characteristics (Extended operating temperature version)  
(VCC =2.0 to 5.5 V, Ta = 20 to 85 °C, and VCC = 3.0 to 5.5 V, Ta = 40 to 20 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
V
Min.  
2.0  
Max.  
5.5  
VRAM  
RAM retention voltage  
At clock stop mode  
High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz  
6.4  
1.6  
13  
mA  
mA  
f(XCIN) = 32.768 kHz  
Output transistors off”  
A-D converter in operating  
High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz (in WIT state)  
f(XCIN) = 32.768 kHz  
3.2  
Output transistors off”  
A-D converter stopped  
Low-speed mode, VCC = 5 V, Ta 55°C  
f(XIN) = stopped  
25  
7.0  
15  
36  
14  
22  
9.0  
µA  
µA  
µA  
f(XCIN) = 32.768 kHz  
Output transistors off”  
ICC  
Power source current  
Low-speed mode, VCC = 5 V, Ta = 25°C  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors off”  
Low-speed mode, VCC = 3 V, Ta 55°C  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz  
Output transistors off”  
Low-speed mode, VCC = 3 V, Ta = 25°C  
f(XIN) = stopped  
4.5  
0.1  
µA  
µA  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors off”  
All oscillation stopped  
(in STP state)  
Output transistors off”  
Ta = 25 °C  
Ta = 85 °C  
1.0  
10  
Table 30 A-D converter characteristics (Extended operating temperature version)  
(VCC = 3.0 to 5.5 V, VSS =AVSS = 0 V, Ta = 40 to 85 °C, 4 MHz f(XIN) 8 MHz, in middle/high-speed mode unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
8
Bits  
Resolution  
±2  
LSB  
Absolute accuracy  
(excluding quantization error)  
VCC = VREF = 4.0V to 5.5V  
f(XIN) = 8 MHz  
VCC = VREF = 3.0 V to 4.0V  
f(XIN) = 2 VCC MHz  
12.5  
(Note)  
tCONV  
Conversion time  
µs  
f(XIN) = 8 MHz  
VREF = 5 V  
RLADDER  
IVREF  
IIA  
Ladder resistor  
35  
kΩ  
µA  
µA  
100  
200  
5.0  
12  
50  
Reference power source input current  
Analog port input current  
150  
Note: When an internal trigger is used in middle-speed mode, it is 14 µs.  
57  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 31 Timing requirements 1 (Extended operating temperature version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 40 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
2
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input Lpulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input Hpulse width  
125  
45  
twH(XIN)  
twL(XIN)  
Main clock input Lpulse width  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
tc(SCLK)  
CNTR0, CNTR1 input cycle time  
250  
105  
105  
80  
CNTR0, CNTR1 input Hpulse width  
CNTR0, CNTR1 input Lpulse width  
INT0 to INT3 input Hpulse width  
INT0 to INT3 input Lpulse width  
Serial I/O clock input cycle time (Note)  
Serial I/O clock input Hpulse width (Note)  
Serial I/O clock input Lpulse width (Note)  
Serial I/O input set up time  
80  
800  
370  
370  
220  
100  
twH(SCLK)  
twL(SCLK)  
t
su(RXDSCLK)  
th(SCLKRXD) Serial I/O input hold time  
Note: When bit 6 of address 001A16 is 1(clock synchronous).  
Divide this value by four when bit 6 of address 001A16 is 0(UART).  
Table 32 Timing requirements 2 (Extended operating temperature version)  
(VCC = 2.0 to 4.0 V, VSS = 0 V, Ta = 20 to 85 °C, and VCC = 3.0 to 4.0 V, Ta = 40 to 20 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input Lpulse width  
2
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input Hpulse width  
125  
twH(XIN)  
twL(XIN)  
45  
Main clock input Lpulse width  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
tc(SCLK)  
CNTR0, CNTR1 input cycle time  
900/(VCC0.4)  
CNTR0, CNTR1 input Hpulse width  
CNTR0, CNTR1 input Lpulse width  
INT0 to INT3 input Hpulse width  
INT0 to INT3 input Lpulse width  
Serial I/O clock input cycle time (Note)  
Serial I/O clock input Hpulse width (Note)  
Serial I/O clock input Lpulse width (Note)  
Serial I/O input set up time  
450/(VCC0.4)20  
450/(VCC0.4)20  
230  
230  
2000  
950  
950  
400  
200  
twH(SCLK)  
twL(SCLK)  
tsu(RXDSCLK)  
th(SCLKRXD) Serial I/O input hold time  
Note: When bit 6 of address 001A16 is 1(clock synchronous).  
Divide this value by four when bit 6 of address 001A16 is 0(UART).  
58  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 33 Switching characteristics 1 (Extended operating temperature version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 40 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
140  
tC (SCLK)/230  
tC (SCLK)/230  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twH(SCLK)  
twL(SCLK)  
Serial I/O clock output Hpulse width  
Serial I/O clock output Lpulse width  
td(SCLKTXD) Serial I/O output delay time (Note 1)  
30  
tv(SCLKTXD)  
tr(SCLK)  
Serial I/O output valid time (Note 1)  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
30  
30  
30  
30  
tf(SCLK)  
tr(CMOS)  
tf(CMOS)  
10  
10  
Notes 1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is 0.  
2: XOUT and XCOUT pins are excluded.  
Table 34 Switching characteristics 2 (Extended operating temperature version)  
(VCC = 2.0 to 4.0 V, VSS = 0 V, Ta = 20 to 85 °C, and VCC = 3.0 to 4.0 V, VSS = 0 V, Ta = 40 to 20 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Serial I/O clock output Hpulse width  
Unit  
Min.  
Typ.  
Max.  
350  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tC (SCLK)/250  
tC (SCLK)/250  
twH(SCLK)  
twL(SCLK)  
td(SCLKTXD)  
tv(SCLKTXD)  
tr(SCLK)  
Serial I/O clock output Lpulse width  
Serial I/O output delay time (Note 1)  
Serial I/O output valid time (Note 1)  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
30  
50  
50  
50  
50  
tf(SCLK)  
20  
20  
tr(CMOS)  
tf(CMOS)  
Notes 1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is 0.  
2: XOUT and XCOUT pins are excluded.  
59  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 35 Absolute maximum ratings (M version)  
Symbol Parameter  
Power source voltage  
Conditions  
Ratings  
Unit  
V
VCC  
0.3 to 7.0  
All voltages are based on VSS.  
Output transistors are cut off.  
VI  
Input voltage P00P07, P10P17, P20P27,  
P34P37, P40P47, P50P57  
P60P67, P70, P71  
0.3 to VCC +0.3  
V
V
V
V
V
V
V
V
Input voltage VL1  
0.3 to VL2  
VL1 to VL3  
VI  
VI  
VI  
VI  
VO  
Input voltage VL2  
Input voltage VL3  
VL2 to VCC +0.3  
0.3 to VCC +0.3  
0.3 to VCC +0.3  
0.3 to VL3 +0.3  
0.3 to VL3 +0.3  
Input voltage RESET, XIN  
Output voltage P00P07, P10P17  
At output port  
At segment output  
At segment output  
VO  
VO  
Output voltage P34P37  
Output voltage P20P27, P41P47,P50P57,  
P60P67, P70, P71  
0.3 to VCC +0.3  
V
Output voltage SEG0SEG11  
Output voltage XOUT  
Power dissipation  
VO  
0.3 to VL3 +0.3  
0.3 to VCC +0.3  
300  
V
V
VO  
Pd  
mW  
°C  
°C  
Ta = 25°C  
Operating temperature  
Storage temperature  
Topr  
Tstg  
20 to 85  
40 to 150  
Table 36 Recommended operating conditions (M version)  
(VCC = 2.2 to 5.5 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
V
Min.  
Typ.  
5.0  
5.0  
5.0  
0
Max.  
High-speed mode f(XIN) = 8 MHz  
Middle-speed mode f(XIN) = 8 MHz  
Low-speed mode  
4.0  
2.2  
2.2  
5.5  
5.5  
5.5  
VCC  
Power source voltage  
Power source voltage  
VSS  
V
V
V
V
A-D conversion reference voltage  
Analog power source voltage  
Analog input voltage AN0AN7  
VREF  
AVSS  
VIA  
2.0  
VCC  
VCC  
0
AVSS  
60  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 37 Recommended operating conditions (M version)  
(VCC = 2.5 to 5.5 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
VCC  
Hinput voltage  
P00P07, P10P17,P34P37, P40, P41, P45, P47,  
P52, P53,P56,P60P67,P70,P71 (CM4= 0)  
VIH  
0.7VCC  
V
Hinput voltage  
Hinput voltage  
Hinput voltage  
Linput voltage  
P20P27, P42P44,P46,P50, P51, P54, P55, P57  
VIH  
VIH  
VIH  
VIL  
0.8VCC  
0.8VCC  
0.8VCC  
0
VCC  
VCC  
V
V
V
V
RESET  
XIN  
VCC  
P00P07, P10P17,P34P37, P40, P41, P45, P47, P52, P53,  
P56,P60P67,P70,P71 (CM4= 0)  
0.3 VCC  
Linput voltage  
Linput voltage  
Linput voltage  
P20P27, P42P44,P46,P50, P51, P54, P55, P57  
VIL  
VIL  
VIL  
0
0
0
0.2 VCC  
0.2 VCC  
0.2 VCC  
V
V
V
RESET  
XIN  
Table 38 Recommended operating conditions (M version)  
(VCC = 2.2 to 5.5 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
V
Min.  
Max.  
VCC  
Hinput voltage  
P00P07, P10P17,P34P37, P40, P41, P45, P47,  
P52, P53,P56,P60P67,P70,P71 (CM4= 0)  
0.8VCC  
VIH  
Hinput voltage  
Hinput voltage  
Hinput voltage  
Linput voltage  
P20P27, P42P44,P46,P50, P51, P54, P55, P57  
0.95VCC  
0.95VCC  
0.95VCC  
0
VIH  
VIH  
VIH  
VIL  
VCC  
VCC  
V
V
V
V
RESET  
XIN  
VCC  
P00P07, P10P17,P34P37, P40, P41, P45, P47, P52, P53,  
P56,P60P67,P70,P71 (CM4= 0)  
0.2 VCC  
Linput voltage  
Linput voltage  
Linput voltage  
P20P27, P42P44,P46,P50, P51, P54, P55, P57  
0
0
0
VIL  
VIL  
VIL  
0.05 VCC  
0.05 VCC  
0.05 VCC  
V
V
V
RESET  
XIN  
61  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 39 Recommended operating conditions (M version)  
(VCC = 2.2 to 5.5 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
40  
40  
40  
Htotal peak output current  
Htotal peak output current  
Ltotal peak output current  
Ltotal peak output current  
Htotal average output current  
Htotal average output current  
Ltotal average output current  
Ltotal average output current  
Hpeak output current  
ΣIOH(peak)  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
IOH(peak)  
IOH(peak)  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
P00P07, P10P17, P20P27 (Note 1)  
P41P47, P50P57, P60P67, P70, P71 (Note 1)  
P00P07, P10P17, P20P27 (Note 1)  
P41P47, P50P57, P60P67, P70, P71 (Note 1)  
P00P07, P10P17, P20P27 (Note 1)  
P41P47, P50P57, P60P67, P70, P71 (Note 1)  
P00P07, P10P17, P20P27 (Note 1)  
P41P47, P50P57, P60P67, P70, P71 (Note 1)  
P00P07, P10P17 (Note 2)  
40  
20  
20  
20  
20  
2  
Hpeak output current  
P20P27, P41P47, P50P57, P60P67, P70, P71  
5  
(Note 2)  
IOL(peak)  
IOL(peak)  
Lpeak output current  
Lpeak output current  
mA  
mA  
P00P07, P10P17 (Note 2)  
5
10  
P20P27, P41P47, P50P57, P60P67, P70, P71  
(Note 2)  
1.0  
2.5  
IOH(avg)  
IOH(avg)  
Haverage output current  
Haverage output current  
mA  
mA  
P00P07, P10P17 (Note 3)  
P20P27, P41P47, P50P57, P60P67, P70, P71  
(Note 3)  
mA  
mA  
Laverage output current  
Laverage output current  
2.5  
5.0  
IOL(avg)  
IOL(avg)  
P00P07, P10P17 (Note 3)  
P20P27, P41P47, P50P57, P60P67, P70, P71  
(Note 3)  
(4.0 V VCC 5.5 V)  
(2.2 V VCC 4.0 V)  
4.0  
MHz  
f(CNTR0)  
f(CNTR1)  
Input frequency for timers X and Y  
(duty cycle 50%)  
(10VCC-4)/9 MHz  
8.0 MHz  
(20VCC-8)/9 MHz  
High-speed mode  
(4.0 V VCC 5.5 V)  
Main clock input oscillation frequency  
(Note 4)  
f(XIN)  
High-speed mode  
(2.2 V VCC 4.0 V)  
Middle-speed mode  
8.0  
50  
MHz  
kHz  
f(XCIN)  
Sub-clock input oscillation frequency (Notes 4, 5)  
32.768  
Notes 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value  
measured over 100 ms. The total peak current is the peak value of all the currents.  
2: The peak output current is the peak current flowing in each port.  
3: The average output current is an average value measured over 100 ms.  
4: When the oscillation frequency has a duty cycle of 50%.  
5: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency on condition that f(XCIN) < f(XIN)/3.  
62  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 40 Electrical characteristics (M version)  
(VCC = 4.0 to 5.5 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Max.  
IOH = 2.5 mA  
VCC2.0  
V
V
Houtput voltage  
P00P07, P10P17  
VOH  
IOH = 0.6 mA  
VCC = 2.5 V  
VCC1.0  
VCC2.0  
VCC0.5  
V
V
IOH = 5 mA  
Houtput voltage  
P20P27, P41P47, P50P57, P60P67,  
P70, P71 (Note)  
IOH = 1.25 mA  
VOH  
VOL  
IOH = 1.25 mA  
VCC = 2.5 V  
VCC1.0  
V
IOL = 5 mA  
2.0  
0.5  
V
V
Loutput voltage  
P00P07, P10P7  
IOL = 1.25 mA  
IOL = 1.25 mA  
VCC = 2.5 V  
1.0  
V
IOL = 10 mA  
IOL = 2.5 mA  
2.0  
0.5  
V
V
Loutput voltage  
P20P27, P41P47, P50P57, P60P67,  
P70, P71 (Note)  
VOL  
IOL = 2.5 mA  
VCC = 2.5 V  
1.0  
V
V
VT+ VT–  
Hysteresis  
0.5  
INT0INT3, ADT, CNTR0, CNTR1, P20P27  
VT+ VT–  
VT+ VT–  
Hysteresis  
Hysteresis  
SCLK, RXD  
RESET  
0.5  
0.5  
V
V
RESET : VCC = 2.2 V to 5.5 V  
IIH  
IIH  
Hinput current  
VI = VCC  
Pull-downs off”  
5.0  
140  
45  
µA  
µA  
µA  
P00P07, P10P17, P34P37  
VCC = 5 V, VI = VCC  
Pull-downs on”  
30  
70  
25  
VCC = 3 V, VI = VCC  
Pull-downs on”  
6.0  
Hinput current  
VI = VCC  
P20P27, P40P47, P50P57, P60P67,  
P70, P71 (Note)  
5.0  
5.0  
µA  
IIH  
IIH  
IIL  
Hinput current RESET  
Hinput current XIN  
VI = VCC  
VI = VCC  
VI = VSS  
µA  
µA  
4.0  
Linput current  
P00P07, P10P17, P34P37,P40  
5.0  
5.0  
µA  
µA  
IIL  
Linput current  
VI = VSS  
Pull-ups off”  
P20P27, P41P47, P50P57, P60P67,  
P70, P71 (Note)  
VCC = 5 V, VI = VSS  
Pull-ups on”  
30  
70  
25  
140  
µA  
µA  
VCC = 3 V, VI = VSS  
Pull-ups on”  
6.0  
45  
IIL  
IIL  
Linput current RESET  
Linput current XIN  
VI = VSS  
VI = VSS  
5.0  
µA  
µA  
4.0  
Note: When 1is set to the port XC switch bit (bit 4 at address 003B16) of CPU mode register, the drive ability of port P70 is different from the value above  
mentioned.  
63  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 41 Electrical characteristics (M version)  
(VCC = 2.2 to 5.5 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Test conditions  
Min.  
2.0  
Typ.  
Max.  
5.5  
VRAM  
V
RAM retention voltage  
At clock stop mode  
High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz  
6.4  
13  
mA  
f(XCIN) = 32.768 kHz  
Output transistors off”  
A-D converter in operating  
High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz (in WIT state)  
f(XCIN) = 32.768 kHz  
1.6  
3.2  
mA  
Output transistors off”  
A-D converter stopped  
Low-speed mode, VCC = 5 V, Ta 55°C  
f(XIN) = stopped  
25  
7.0  
15  
36  
14  
22  
9.0  
µA  
µA  
µA  
f(XCIN) = 32.768 kHz  
Output transistors off”  
ICC  
Power source current  
Low-speed mode, VCC = 5 V, Ta = 25°C  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors off”  
Low-speed mode, VCC = 3 V, Ta 55°C  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz  
Output transistors off”  
Low-speed mode, VCC = 3 V, Ta = 25°C  
f(XIN) = stopped  
4.5  
0.1  
µA  
µA  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors off”  
All oscillation stopped  
(in STP state)  
Output transistors off”  
Ta = 25 °C  
Ta = 85 °C  
1.0  
10  
Table 42 A-D converter characteristics (M version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85 °C, 4 MHz f(XIN) 8 MHz, in middle/high-speed mode, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
8
Bits  
Resolution  
VCC = VREF = 5V  
±2  
LSB  
Absolute accuracy  
(excluding quantization error)  
12.5  
(Note)  
f(XIN) = 8 MHz  
VREF = 5 V  
tCONV  
Conversion time  
µs  
RLADDER  
IVREF  
IIA  
Ladder resistor  
kΩ  
µA  
µA  
12  
50  
35  
100  
200  
5.0  
Reference power source input current  
Analog port input current  
150  
Note: When an internal trigger is used in middle-speed mode, it is 14 µs.  
64  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 43 Timing requirements 1 (M version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
2
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input Lpulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input Hpulse width  
Main clock input Lpulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input Hpulse width  
CNTR0, CNTR1 input Lpulse width  
INT0 to INT3 input Hpulse width  
INT0 to INT3 input Lpulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
tc(SCLK)  
250  
105  
105  
80  
80  
Serial I/O clock input cycle time (Note)  
Serial I/O clock input Hpulse width (Note)  
Serial I/O clock input Lpulse width (Note)  
Serial I/O input set up time  
800  
370  
370  
220  
100  
twH(SCLK)  
twL(SCLK)  
t
su(RXDSCLK)  
th(SCLKRXD) Serial I/O input hold time  
Note: When bit 6 of address 001A16 is 1(clock synchronous).  
Divide this value by four when bit 6 of address 001A16 is 0(UART).  
Table 44 Timing requirements 2 (M version)  
(VCC = 2.2 to 4.0 V, VSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
2
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input Lpulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input Hpulse width  
Main clock input Lpulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input Hpulse width  
CNTR0, CNTR1 input Lpulse width  
INT0 to INT3 input Hpulse width  
INT0 to INT3 input Lpulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
tc(SCLK)  
900/(VCC0.4)  
450/(VCC0.4)20  
450/(VCC0.4)20  
230  
230  
2000  
950  
950  
400  
200  
Serial I/O clock input cycle time (Note)  
Serial I/O clock input Hpulse width (Note)  
Serial I/O clock input Lpulse width (Note)  
Serial I/O input set up time  
twH(SCLK)  
twL(SCLK)  
t
su(R  
XDSCLK)  
th(SCLKRXD)  
Serial I/O input hold time  
Note: When bit 6 of address 001A16 is 1(clock synchronous).  
Divide this value by four when bit 6 of address 001A16 is 0(UART).  
65  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 45 Switching characteristics 1 (M version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
140  
tC (SCLK)/230  
tC (SCLK)/230  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twH(SCLK)  
twL(SCLK)  
Serial I/O clock output Hpulse width  
Serial I/O clock output Lpulse width  
td(SCLKTXD) Serial I/O output delay time (Note 1)  
30  
tv(SCLKTXD)  
tr(SCLK)  
Serial I/O output valid time (Note 1)  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
30  
30  
30  
30  
tf(SCLK)  
tr(CMOS)  
tf(CMOS)  
10  
10  
Notes 1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is 0.  
2: XOUT and XCOUT pins are excluded.  
Table 46 Switching characteristics 2 (M version)  
(VCC = 2.2 to 4.0 V, VSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Serial I/O clock output Hpulse width  
Unit  
Min.  
Typ.  
Max.  
350  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tC (SCLK)/250  
tC (SCLK)/250  
twH(SCLK)  
twL(SCLK)  
td(SCLKTXD)  
tv(SCLKTXD)  
tr(SCLK)  
Serial I/O clock output Lpulse width  
Serial I/O output delay time (Note 1)  
Serial I/O output valid time (Note 1)  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
30  
50  
50  
50  
50  
tf(SCLK)  
tr(CMOS)  
tf(CMOS)  
20  
20  
Notes 1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is 0.  
2: XOUT and XCOUT pins are excluded.  
66  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 47 Absolute maximum ratings (H version)  
Symbol Parameter  
Power source voltage  
Conditions  
Ratings  
Unit  
V
VCC  
0.3 to 6.5  
All voltages are based on VSS.  
Output transistors are cut off.  
VI  
Input voltage P00P07, P10P17, P20P27,  
P34P37, P40P47, P50P57  
P60P67, P70, P71  
0.3 to VCC +0.3  
V
0.3 to VL2  
VL1 to VL3  
V
V
V
V
V
V
V
Input voltage VL1  
VI  
VI  
VI  
VI  
VO  
Input voltage VL2  
VL2 to VCC +0.3  
0.3 to VCC +0.3  
0.3 to VCC +0.3  
0.3 to VL3  
Input voltage VL3  
Input voltage RESET, XIN  
Output voltage P00P07, P10P17  
At output port  
At segment output  
At segment output  
VO  
VO  
0.3 to VL3  
Output voltage P34P37  
Output voltage P20P27, P41P47,P50P57,  
P60P67, P70, P71  
0.3 to VCC +0.3  
V
VO  
Output voltage SEG0SEG11  
Output voltage XOUT  
Power dissipation  
0.3 to VL3  
0.3 to VCC +0.3  
300  
V
V
VO  
Pd  
mW  
°C  
°C  
Ta = 25°C  
Operating temperature  
Storage temperature  
Topr  
Tstg  
20 to 85  
40 to 150  
Table 48 Recommended operating conditions (H version)  
(VCC = 2.0 to 5.5 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
V
Min.  
Typ.  
5.0  
5.0  
5.0  
0
Max.  
High-speed mode f(XIN) = 8 MHz  
Middle-speed mode f(XIN) = 8 MHz  
Low-speed mode  
4.0  
2.0  
2.0  
5.5  
5.5  
5.5  
VCC  
Power source voltage  
Power source voltage  
VSS  
VREF  
AVSS  
VIA  
V
V
V
V
V
A-D conversion reference voltage  
Analog power source voltage  
Analog input voltage AN0AN7  
2.0  
VCC  
0
AVSS  
VCC  
VCC  
Hinput voltage  
P00P07, P10P17,P34P37, P40, P41, P45, P47, P52, P53,  
P56,P60P67,P70,P71 (CM4= 0)  
VIH  
0.7VCC  
Hinput voltage  
Hinput voltage  
Hinput voltage  
Linput voltage  
P20P27, P42P44,P46,P50, P51, P54, P55, P57  
VIH  
VIH  
VIH  
VIL  
0.8VCC  
0.8VCC  
0.8VCC  
0
VCC  
VCC  
V
V
V
V
RESET  
XIN  
VCC  
P00P07, P10P17,P34P37, P40, P41, P45, P47, P52, P53,  
P56,P60P67,P70,P71 (CM4= 0)  
0.3 VCC  
Linput voltage  
Linput voltage  
Linput voltage  
P20P27, P42P44,P46,P50, P51, P54, P55, P57  
VIL  
VIL  
VIL  
0
0
0
0.2 VCC  
0.2 VCC  
0.2 VCC  
V
V
V
RESET  
XIN  
67  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 49 Recommended operating conditions (H version)  
(VCC = 2.0 to 5.5 V, Ta = 20 to 85°C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
40  
40  
40  
Htotal peak output current  
Htotal peak output current  
Ltotal peak output current  
Ltotal peak output current  
Htotal average output current  
Htotal average output current  
Ltotal average output current  
Ltotal average output current  
Hpeak output current  
ΣIOH(peak)  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
IOH(peak)  
IOH(peak)  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
P00P07, P10P17, P20P27 (Note 1)  
P41P47, P50P57, P60P67, P70, P71 (Note 1)  
P00P07, P10P17, P20P27 (Note 1)  
P41P47, P50P57, P60P67, P70, P71 (Note 1)  
P00P07, P10P17, P20P27 (Note 1)  
P41P47, P50P57, P60P67, P70, P71 (Note 1)  
P00P07, P10P17, P20P27 (Note 1)  
P41P47, P50P57, P60P67, P70, P71 (Note 1)  
P00P07, P10P17 (Note 2)  
40  
20  
20  
20  
20  
2  
Hpeak output current  
5  
P20P27, P41P47, P50P57, P60P67, P70, P71  
(Note 2)  
IOL(peak)  
IOL(peak)  
Lpeak output current  
Lpeak output current  
5
mA  
mA  
P00P07, P10P17 (Note 2)  
10  
P20P27, P41P47, P50P57, P60P67, P70, P71  
(Note 2)  
IOH(avg)  
IOH(avg)  
Haverage output current  
Haverage output current  
1.0  
2.5  
mA  
mA  
P00P07, P10P17 (Note 3)  
P20P27, P41P47, P50P57, P60P67, P70, P71  
(Note 3)  
2.5  
5.0  
mA  
mA  
Laverage output current  
Laverage output current  
IOL(avg)  
IOL(avg)  
P00P07, P10P17 (Note 3)  
P20P27, P41P47, P50P57, P60P67, P70, P71  
(Note 3)  
(4.0 V VCC 5.5 V)  
(2.0 V VCC 4.0 V)  
4.0  
MHz  
MHz  
f(CNTR0)  
f(CNTR1)  
Input frequency for timers X and Y  
(duty cycle 50%)  
VCC  
High-speed mode  
(4.0 V VCC 5.5 V)  
8.0  
MHz  
MHz  
Main clock input oscillation frequency  
(Note 4)  
f(XIN)  
High-speed mode  
(2.0 V VCC 4.0 V)  
2VCC  
Middle-speed mode  
8.0  
50  
MHz  
kHz  
f(XCIN)  
Sub-clock input oscillation frequency (Notes 4, 5)  
32.768  
Notes 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value  
measured over 100 ms. The total peak current is the peak value of all the currents.  
2: The peak output current is the peak current flowing in each port.  
3: The average output current is an average value measured over 100 ms.  
4: When the oscillation frequency has a duty cycle of 50 %.  
5: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency on condition that f(XCIN) < f(XIN)/3.  
68  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 50 Electrical characteristics (H version)  
(VCC = 4.0 to 5.5 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Max.  
IOH = 2.5 mA  
VCC2.0  
V
V
Houtput voltage  
P00P07, P10P17  
VOH  
IOH = 0.6 mA  
VCC = 2.5 V  
VCC1.0  
IOH = 5 mA  
VCC2.0  
VCC0.5  
V
V
Houtput voltage  
P20P27, P41P47, P50P57, P60P67,  
P70, P71 (Note)  
IOH = 1.25 mA  
VOH  
VOL  
IOH = 1.25 mA  
VCC = 2.5 V  
VCC1.0  
V
IOL = 5 mA  
2.0  
0.5  
V
V
Loutput voltage  
P00P07, P10P7  
IOL = 1.25 mA  
IOL = 1.25 mA  
VCC = 2.5 V  
1.0  
V
2.0  
0.5  
V
V
IOL = 10 mA  
IOL = 2.5 mA  
Loutput voltage  
P20P27, P41P47, P50P57, P60P67,  
P70, P71 (Note)  
VOL  
IOL = 2.5 mA  
VCC = 2.5 V  
1.0  
V
V
VT+ VT–  
Hysteresis  
0.5  
INT0INT3, ADT, CNTR0, CNTR1, P20P27  
VT+ VT–  
VT+ VT–  
Hysteresis  
Hysteresis  
SCLK, RXD  
RESET  
0.5  
0.5  
V
V
RESET : VCC = 2.0 V to 5.5 V  
IIH  
IIH  
Hinput current  
VI = VCC  
Pull-downs off”  
5.0  
140  
45  
µA  
µA  
µA  
P00P07, P10P17, P34P37  
VCC = 5 V, VI = VCC  
Pull-downs on”  
30  
70  
25  
VCC = 3 V, VI = VCC  
Pull-downs on”  
6.0  
Hinput current  
VI = VCC  
P20P27, P40P47, P50P57, P60P67,  
P70, P71 (Note)  
5.0  
5.0  
µA  
IIH  
IIH  
IIL  
Hinput current RESET  
Hinput current XIN  
VI = VCC  
VI = VCC  
VI = VSS  
µA  
µA  
4.0  
Linput current  
P00P07, P10P17, P34P37,P40  
5.0  
5.0  
µA  
µA  
IIL  
Linput current  
VI = VSS  
Pull-ups off”  
P20P27, P41P47, P50P57, P60P67,  
P70, P71 (Note)  
VCC = 5 V, VI = VSS  
Pull-ups on”  
30  
70  
25  
140  
µA  
µA  
VCC = 3 V, VI = VSS  
Pull-ups on”  
6.0  
45  
IIL  
IIL  
Linput current RESET  
Linput current XIN  
VI = VSS  
VI = VSS  
5.0  
µA  
µA  
4.0  
Note: When 1is set to the port XC switch bit (bit 4 at address 003B16) of CPU mode register, the drive ability of port P70 is different from the value above  
mentioned.  
69  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 51 Electrical characteristics (H version)  
(VCC =2.0 to 5.5 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Test conditions  
Min.  
2.0  
Typ.  
Max.  
5.5  
VRAM  
V
RAM retention voltage  
At clock stop mode  
High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz  
6.4  
13  
mA  
f(XCIN) = 32.768 kHz  
Output transistors off”  
A-D converter in operating  
High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz (in WIT state)  
f(XCIN) = 32.768 kHz  
1.6  
3.2  
mA  
Output transistors off”  
A-D converter stopped  
Low-speed mode, VCC = 5 V, Ta 55°C  
f(XIN) = stopped  
25  
7.0  
15  
36  
14  
22  
9.0  
µA  
µA  
µA  
f(XCIN) = 32.768 kHz  
Output transistors off”  
ICC  
Power source current  
Low-speed mode, VCC = 5 V, Ta = 25°C  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors off”  
Low-speed mode, VCC = 3 V, Ta 55°C  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz  
Output transistors off”  
Low-speed mode, VCC = 3 V, Ta = 25°C  
f(XIN) = stopped  
4.5  
0.1  
µA  
µA  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors off”  
All oscillation stopped  
(in STP state)  
Output transistors off”  
Ta = 25 °C  
Ta = 85 °C  
1.0  
10  
Table 52 A-D converter characteristics (H version)  
(VCC = 2.2 to 5.5 V, VSS = AVSS = 0 V, Ta = 20 to 85 °C, 4 MHz f(XIN) 8 MHz, in middle/high-speed mode unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
8
Resolution  
Bits  
Absolute accuracy  
(excluding quantization error)  
VCC = VREF = 4.0 V to 5.5 V  
f(XIN) = 8 MHz  
±2  
LSB  
VCC = VREF = 2.2 V to 4.0V  
f(XIN) = 2 VCC MHz  
12.5  
(Note)  
tCONV  
Conversion time  
µs  
f(XIN) = 8 MHz  
VREF = 5 V  
RLADDER  
IVREF  
IIA  
Ladder resistor  
kΩ  
µA  
µA  
35  
100  
200  
5.0  
12  
50  
Reference power source input current  
Analog port input current  
150  
Note: When an internal trigger is used in middle-speed mode, it is 14 µs.  
70  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 53 Timing requirements 1 (H version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
2
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input Lpulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input Hpulse width  
Main clock input Lpulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input Hpulse width  
CNTR0, CNTR1 input Lpulse width  
INT0 to INT3 input Hpulse width  
INT0 to INT3 input Lpulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
tc(SCLK)  
250  
105  
105  
80  
80  
Serial I/O clock input cycle time (Note)  
Serial I/O clock input Hpulse width (Note)  
Serial I/O clock input Lpulse width (Note)  
Serial I/O input set up time  
800  
370  
370  
220  
100  
twH(SCLK)  
twL(SCLK)  
t
su(RXDSCLK)  
th(SCLKRXD) Serial I/O input hold time  
Note: When bit 6 of address 001A16 is 1(clock synchronous).  
Divide this value by four when bit 6 of address 001A16 is 0(UART).  
Table 54 Timing requirements 2 (H version)  
(VCC = 2.0 to 4.0 V, VSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
2
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input Lpulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input Hpulse width  
Main clock input Lpulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input Hpulse width  
CNTR0, CNTR1 input Lpulse width  
INT0 to INT3 input Hpulse width  
INT0 to INT3 input Lpulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
tc(SCLK)  
900/(VCC0.4)  
450/(VCC0.4)20  
450/(VCC0.4)20  
230  
230  
2000  
950  
950  
400  
200  
Serial I/O clock input cycle time (Note)  
Serial I/O clock input Hpulse width (Note)  
Serial I/O clock input Lpulse width (Note)  
Serial I/O input set up time  
twH(SCLK)  
twL(SCLK)  
t
su(RXDSCLK)  
th(SCLKRXD) Serial I/O input hold time  
Note: When bit 6 of address 001A16 is 1(clock synchronous).  
Divide this value by four when bit 6 of address 001A16 is 0(UART).  
71  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 55 Switching characteristics 1 (H version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
140  
tC (SCLK)/230  
tC (SCLK)/230  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twH(SCLK)  
twL(SCLK)  
Serial I/O clock output Hpulse width  
Serial I/O clock output Lpulse width  
td(SCLKTXD) Serial I/O output delay time (Note 1)  
30  
tv(SCLKTXD)  
tr(SCLK)  
Serial I/O output valid time (Note 1)  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
30  
30  
30  
30  
tf(SCLK)  
tr(CMOS)  
tf(CMOS)  
10  
10  
Notes1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is 0.  
2: XOUT and XCOUT pins are excluded.  
Table 56 Switching characteristics 2 (H version)  
(VCC = 2.0 to 4.0 V, VSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Serial I/O clock output Hpulse width  
Unit  
Min.  
Typ.  
Max.  
350  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tC (SCLK)/250  
tC (SCLK)/250  
twH(SCLK)  
twL(SCLK)  
td(SCLKTXD)  
tv(SCLKTXD)  
tr(SCLK)  
Serial I/O clock output Lpulse width  
Serial I/O output delay time (Note 1)  
Serial I/O output valid time (Note 1)  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
30  
50  
50  
50  
50  
tf(SCLK)  
tr(CMOS)  
tf(CMOS)  
20  
20  
Notes1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is 0.  
2: XOUT and XCOUT pins are excluded.  
Measurement output pin  
1 kΩ  
100 pF  
Measurement output pin  
100 pF  
CMOS output  
N-channel open-drain output (Note)  
Note: When bit 4 of the UART control register  
(address 001B16) is 1. (N-channel open-  
drain output mode)  
Fig. 47 Circuit for measuring output switching characteristics  
72  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
tC(CNTR)  
tWH(CNTR)  
0.8VCC  
tWL(CNTR)  
CNTR0, CNTR1  
0.2VCC  
tWH(INT)  
0.8VCC  
tWL(INT)  
INT0INT3  
0.2VCC  
tW(RESET)  
0.8VCC  
RESET  
0.2VCC  
tC(XIN)  
tWL(XIN)  
tWH(XIN)  
0.8VCC  
XIN  
0.2VCC  
tC(SCLK)  
tf  
tr  
tWH(SCLK)  
tWL(SCLK)  
0.2VCC  
SCLK  
0.8VCC  
tsu(RXD-SCLK)  
th(SCLK-RXD)  
RXD  
TXD  
0.8VCC  
0.2VCC  
td(SCLK-TXD)  
tv(SCLK-TXD)  
Fig. 48 Timing diagram  
73  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PACKAGE OUTLINE  
MMP  
80P6N-A  
Plastic 80pin 1420mm body QFP  
EIAJ Package Code  
JEDEC Code  
Weight(g)  
1.58  
Lead Material  
Alloy 42  
MD  
QFP80-P-1420-0.80  
HD  
D
80  
65  
1
64  
I
2
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
Min  
0
0.3  
0.13  
13.8  
19.8  
16.5  
22.5  
0.4  
0°  
1.3  
Nom  
Max  
3.05  
0.2  
0.45  
0.2  
14.2  
20.2  
17.1  
23.1  
0.8  
0.2  
0.1  
10°  
A
A
A
1
2
0.1  
2.8  
0.35  
0.15  
14.0  
20.0  
0.8  
16.8  
22.8  
0.6  
1.4  
0.5  
14.6  
20.6  
b
c
D
E
e
24  
41  
25  
40  
A
HD  
L1  
HE  
L
L1  
x
y
F
e
b
L
b2  
x
M
Detail F  
I
2
y
M
M
D
E
MMP  
80P6S-A  
Plastic 80pin 1414mm body QFP  
EIAJ Package Code  
QFP80-P-1414-0.65  
JEDEC Code  
Weight(g)  
1.11  
Lead Material  
Alloy 42  
MD  
HD  
D
80  
61  
1
60  
I
2
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
Min  
0
0.25  
0.13  
13.8  
13.8  
16.5  
16.5  
0.4  
0°  
1.3  
Nom  
Max  
3.05  
0.2  
0.4  
0.2  
14.2  
14.2  
17.1  
17.1  
0.8  
0.13  
0.1  
10°  
A
A
A
1
2
0.1  
2.8  
0.3  
0.15  
14.0  
14.0  
0.65  
16.8  
16.8  
0.6  
1.4  
b
c
D
E
e
20  
41  
A
21  
40  
HD  
L1  
HE  
L
L1  
x
y
F
M
b
e
x
b2  
0.35  
14.6  
14.6  
y
L
I
2
Detail F  
M
M
D
E
74  
MITSUBISHI MICROCOMPUTERS  
3822 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
MMP  
80P6Q-A  
Plastic 80pin 1212mm body LQFP  
EIAJ Package Code  
LQFP80-P-1212-0.5  
JEDEC Code  
Weight(g)  
0.47  
Lead Material  
Cu Alloy  
M
D
HD  
D
80  
61  
l
2
1
60  
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
A
Min  
Nom  
Max  
1.7  
0.2  
A
A
1
0
0.1  
2
1.4  
b
0.13  
0.105  
11.9  
11.9  
0.18  
0.125  
12.0  
12.0  
0.5  
0.28  
0.175  
12.1  
12.1  
c
D
E
e
20  
41  
21  
40  
H
H
L
D
13.8  
13.8  
0.3  
0.45  
0°  
14.0  
14.0  
0.5  
1.0  
0.6  
0.25  
14.2  
14.2  
0.7  
0.75  
0.08  
0.1  
10°  
A
E
L
1
F
L1  
e
Lp  
A3  
x
y
b
y
x
M
L
b2  
0.225  
12.4  
12.4  
I
2
0.9  
Lp  
Detail F  
M
M
D
E
75  
HEAD OFFICE: 2-2-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to  
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable  
material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property  
rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples  
contained in these materials.  
All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by  
Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product  
distributor for the latest product information before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.  
Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).  
When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision  
on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric  
Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical,  
aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved  
destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.  
© 2001 MITSUBISHI ELECTRIC CORP.  
Specifications subject to change without notice.  
REVISION HISTORY  
3822 GROUP DATA SHEET  
Rev.  
Date  
Description  
Page  
Summary  
1.0  
2.0  
01/20/98  
10/23/00  
First Edition  
1
1
1
1
1
1
1
2
3
4
5
6
7
Memory size” of “FEATURES” is partly revised.  
Serial I/O” of “FEATURES” is partly revised.  
A-D converter” of “FEATURES” is added.  
2 clock generating circuits” of “FEATURES” is partly revised.  
Power source voltage” of “FEATURES” is partly revised.  
Power dissipation” of “FEATURES” is partly added.  
Product name into Figure 1 is revised.  
Product name into Figure 2 is revised.  
Figure 3 is partly revised.  
“Function” of “Vcc, Vss” into Table 1 is partly revised.  
“Function except a port function” into Table 2 is partly revised.  
Figure 4 is partly revised.  
Explanations of “GROUP EXPANSION (STANDARD, ONE TIME PROM VER-  
SION, EPROM VERSION)” are partly revised.  
Figure 5 is partly revised.  
7
7
8
Table 3 is partly revised.  
Explanations of “GROUP EXPANSION (EXTENDED OPERATING TEMPERA-  
TURE VERSION)” are partly revised.  
Figure 6 is partly revised.  
8
8
Table 4 is partly revised.  
9
9
“GROUP EXPANSION (M VERSION)” is added.  
Figure 7 is added.  
9
Table 5 is added.  
10  
10  
10  
11–13  
11  
12  
12  
13  
15  
17  
18  
21  
22  
22  
22  
22  
24  
25  
26  
26  
29  
30  
32  
33  
33  
34  
“GROUP EXPANSION (H VERSION)” is added.  
Figure 8 is added.  
Table 6 is added.  
Explanations of “CENTRAL PROCESSING UNIT (CPU)” are added.  
Figure 9 is added.  
Figure 10 is added.  
Table 7 is added.  
Table 8 is added.  
Figure 12 is partly revised.  
Figure 14 is partly revised.  
Table 9 is partly revised.  
Figure 17 is partly revised.  
Explanations of “Interrupt Control” is partly added.  
Explanations of “Interrupt Operation” is partly revised.  
Explanations of “Notes” are partly revised.  
Table 9 is partly revised.  
Explanations of “Key Input Interrupt (Key-on wake up)” are partly revised.  
Figure 21 is partly revised.  
Explanations of “Timer X write control” are partly revised.  
Explanations of “Real time port control” are partly revised.  
Figure 25 is partly revised.  
Figure 27 is partly revised.  
Figure 29 is partly revised.  
Explanations of “[Channel Selector]” are partly added.  
Explanations of “[Comparator and Control Circuit]” are partly added.  
Figure 32 is partly revised.  
(1/2)  
REVISION HISTORY  
3822 GROUP DATA SHEET  
Rev.  
2.0  
Date  
Description  
Summary  
Page  
35  
40  
41  
41  
Figure 33 is partly revised.  
10/23/00  
Explanations of “φ CLOCK SYSTEM OUTPUT FUNCTION” are partly revised.  
Explanations of “RESET CIRCUIT” are partly revised.  
Figure 39 is partly revised.  
43  
46  
47  
47  
Explanations of “CLOCK GENERATING CIRCUIT” are partly eliminated.  
Explanations of “Decimal Calculations” are partly eliminated.  
Explanations of “DATA REQUIRED FOR MASK ORDERS” are partly added.  
Table 14 is partly revised.  
50  
52  
Test conditions of IIL of P00–P07, P10–P17, P34–P37, P40 is added.  
Limit of tC(CNTR) into Table 21 is revised.  
52  
Limit of tWH(CNTR) into Table 21 is revised.  
52  
Limit of tWL(CNTR) into Table 21 is revised.  
52  
Limit of tC(CNTR) into Table 22 is revised.  
52  
Limit of tWH(CNTR) into Table 22 is revised.  
52  
Limit of tWL(CNTR) into Table 22 is revised.  
54–72  
74, 75  
Tables 25 to 56 are added.  
“PACKAGE OUTLINE” is added.  
Explanations of “•Bit 3: Decimal mode flag (D)” are partly added.  
Figure 17 is partly revised.  
Explanations of “Notes on interrupts” are revised.  
Figure 21 is partly revised.  
Notes on serial I/O” is added.  
Figure 44 is partly revised.  
13  
21  
22  
25  
31  
44  
47  
2.1  
01/31/01  
Explanations of “DATA REQUIRED FOR MASK ORDERS” are partly revised.  
(2/2)  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY