M38274M5MXXXGP [MITSUBISHI]

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER; 单片8位CMOS微机
M38274M5MXXXGP
型号: M38274M5MXXXGP
厂家: Mitsubishi Group    Mitsubishi Group
描述:

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
单片8位CMOS微机

计算机
文件: 总70页 (文件大小:1104K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Serial I/O1 ....................8-bit 1 (UART or Clock-synchronized)  
Serial I/O2 ...................................8-bit 1 (Clock-synchronized)  
PWM output.................................................................... 8-bit 1  
A-D converter ............................................... 10-bit 8 channels  
D-A converter ................................................. 8-bit 2 channels  
LCD drive control circuit  
DESCRIPTION  
The 3827 group is the 8-bit microcomputer based on the 740 fam-  
ily core technology.  
The 3827 group has the LCD drive control circuit, the A-D/D-A  
converter, the UART, and the PWM as additional functions.  
The various microcomputers in the 3827 group include variations  
of internal memory size and packaging. For details, refer to the  
section on part numbering.  
Bias ................................................................................... 1/2, 1/3  
Duty ...........................................................................1/2, 1/3, 1/4  
Common output .......................................................................... 4  
Segment output ........................................................................ 40  
2 Clock generating circuits  
For details on availability of microcomputers in the 3827 group, re-  
fer to the section on group expansion.  
(connect to external ceramic resonator or quartz-crystal oscillator)  
Watchdog timer ............................................................ 14-bit 1  
Power source voltage ................................................ 2.2 to 5.5 V  
Power dissipation  
FEATURES  
Basic machine-language instructions ...................................... 71  
The minimum instruction execution time ........................... 0.5 µs  
(at 8MHz oscillation frequency)  
In high-speed mode ..........................................................40 mW  
(at 8 MHz oscillation frequency, at 5 V power source voltage)  
In low-speed mode ............................................................ 60 µW  
(at 32 kHz oscillation frequency, at 3 V power source voltage)  
Operating temperature range................................... – 20 to 85°C  
Memory size  
ROM ................................................................. 4 K to 60 K bytes  
RAM ................................................................. 192 to 2048 bytes  
Programmable input/output ports ............................................ 55  
Output port ................................................................................. 8  
Input port .................................................................................... 1  
Interrupts ................................................. 17 sources, 16 vectors  
(includes key input interrupt)  
APPLICATIONS  
Camera, wireless phone, etc.  
Timers ........................................................... 8-bit 3, 16-bit 2  
PIN CONFIGURATION (TOP VIEW)  
SEG9  
SEG8  
SEG7  
SEG6  
SEG5  
SEG4  
SEG3  
SEG2  
SEG1  
SEG0  
VCC  
VREF  
AVSS  
COM3  
COM2  
COM1  
COM0  
VL3  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
P16  
P17  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
VSS  
XOUT  
XIN  
M38277M8MXXXFP  
XCOUT  
XCIN  
RESET  
P70/INT0  
P71  
P72  
P73  
VL2  
C2  
Package type : 100P6S-A (100-pin plastic-molded QFP)  
Fig. 1 M38277M8MXXXFP pin configuration  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN CONFIGURATION (TOP VIEW)  
76  
50  
SEG12  
P14/SEG38  
P15/SEG39  
P16  
P17  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
VSS  
XOUT  
XIN  
77  
SEG11  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
78  
SEG10  
SEG9  
SEG8  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
SEG7  
SEG6  
SEG5  
SEG4  
SEG3  
SEG2  
SEG1  
SEG0  
VCC  
VREF  
AVSS  
COM3  
COM2  
COM1  
COM0  
VL3  
M38277M8MXXXGP  
M38277M8MXXXHP  
XCOUT  
XCIN  
RESET  
P70/INT0  
P71  
P72  
VL2  
C2  
C1  
P73  
98  
99  
P74  
P75  
P76  
100  
VL1  
Package type : GP........ 100P6Q-A (100-pin plastic-molded LQFP)  
Package type : HP........ 100PFB-A (100-pin plastic-molded TQFP)  
Fig. 2 M38277M8MXXXGP/M38277M8MXXXHP pin configuration  
2
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
K e y i n p u t / k e y - o n w a k  
R e a l t i m e p o r t f u n c t i o n  
2
I N 1 T , I N T  
0
I N T  
Fig. 3 Functional block diagram  
3
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN DESCRIPTION  
Table 1 Pin description (1)  
Pin  
Name  
Function  
Function except a port function  
VCC, VSS  
VREF  
Power source  
•Apply voltage of 2.2 V to 5.5 V to VCC, and 0 V to VSS.  
Analog refer-  
ence voltage  
•Reference voltage input pin for A-D converter and D-A converter.  
AVSS  
Analog power  
source  
•GND input pin for A-D converter and D-A converter.  
•Connect to VSS.  
Reset input  
Clock input  
•Reset input pin for active “L.  
RESET  
XIN  
•Input and output pins for the main clock generating circuit.  
•Connect a ceramic resonator or a quartz-crystal oscillator between the XIN and XOUT pins to set  
the oscillation frequency.  
XOUT  
Clock output  
•If an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open.  
LCD power  
source  
•Input 0 VL1 VL2 VL3 VCC voltage.  
VL1–VL3  
C1, C2  
•Input 0 – VL3 voltage to LCD.  
Charge-pump  
capacitor pin  
•External capacitor pins for a voltage multiplier (3 times) of LCD contorl.  
Common output  
•LCD common output pins.  
COM0–COM3  
•COM2 and COM3 are not used at 1/2 duty ratio.  
•COM3 is not used at 1/3 duty ratio.  
•LCD segment output pins.  
SEG0–SEG17 Segment output  
P00/SEG26–  
P07/SEG33  
I/O port P0  
•8-bit output port.  
•LCD segment output pins  
•CMOS compatible input level.  
•CMOS 3-state output structure.  
•Pull-up control is enabled.  
•I/O direction register allows each port to be individually  
programmed as either input or output.  
P10/SEG34– I/O port P1  
P15/SEG39  
•6-bit output port with same function as port P0.  
•CMOS compatible input level.  
•CMOS 3-state output structure.  
•Pull-up control is enabled.  
•I/O direction register allows each 6-bit pin to be pro-  
grammed as either input or output.  
P16, P17  
•2-bit I/O port.  
•CMOS compatible input level.  
•CMOS 3-state output structure.  
•I/O direction register allows each pin to be individually programmed as either input or output.  
•Pull-up control is enabled.  
P20 – P27  
•8-bit I/O port with same function as port P0.  
•CMOS compatible input level.  
•Key input (key-on wake-up) interrupt  
input pins  
I/O port P2  
•CMOS 3-state output structure.  
•Pull-up control is enabled.  
•LCD segment output pins  
P3  
P3  
0
/SEG18  
/SEG25  
Output port P3  
•8-bit output port with same function as port P0.  
•CMOS 3-state output structure.  
•Port output control is enabled.  
7
4
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 2 Pin description (2)  
Pin  
Name  
Function  
Function except a port function  
P40/ADT  
I/O port P4  
•1-bit I/O port with same function as P16 and P17.  
•CMOS compatible input level.  
•A-D trigger input pin  
•Interrupt input pin  
•CMOS 3-state output structure.  
P41/INT1,  
P42/INT2  
•7-bit I/O port with same function as P16 and P17.  
•CMOS compatible input level.  
•Interrupt input pins  
•CMOS 3-state output structure.  
P43/φ/TOUT  
φ clock output pin  
•Pull-up control is enabled.  
•Timer 2 output pin  
P44/RXD,  
P45/TXD,  
•Serial I/O1 I/O pins  
P46/SCLK1,  
P47/SRDY1  
P50/PWM0,  
P51/PWM1  
I/O port P5  
•8-bit I/O port with same function as P16 and P17.  
•CMOS compatible input level.  
•PWM function pins  
•CMOS 3-state output structure.  
•Pull-up control is enabled.  
P52/RTP0,  
P53/RTP1  
•Real time port function pins  
•Timer X, Y function pins  
•D-A conversion output pins  
P54/CNTR0,  
P55/CNTR1  
P56/DA1,  
P57/DA2  
P6  
P6  
P6  
P6  
0
/AN  
/AN  
/AN  
/AN  
0
1
2
3
/SIN2,  
I/O port P6  
•8-bit I/O port with same function as P16 and P17.  
•CMOS compatible input level.  
•A-D conversion input pins  
•Serial I/O2 I/O pins  
1
/SOUT2,  
/SCLK21,  
/SCLK22  
2
•CMOS 3-state output structure.  
•Pull-up control is enabled.  
3
P64/AN4–  
P67/AN7  
•A-D conversion input pins  
•Interrupt input pin  
P70/INT0  
Input port P7  
I/O port P7  
•1-bit I/O port.  
•CMOS compatible input level.  
•7-bit I/O port with same function as P16 and P17.  
•CMOS compatible input level.  
P71–P77  
•N-channel open-drain output structure.  
XCOUT  
XCIN  
Sub-clock output •Sub-clock generating circuit I/O pins.  
(Connect a resonator. External clock cannot be used.)  
Sub-clock input  
5
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PART NUMBERING  
Product  
M3827  
7
M
8
M
XXX HP  
Package type  
: 100P6S-A package  
FP  
HP : 100PFB-A package  
GP : 100P6Q-A package  
: 100D0 package  
FS  
ROM number  
Omitted in some types.  
Normally, using hyphen  
When electrical characteristic, or division of quality  
identification code using alphanumeric character.  
: Standard  
M
: Low power source version  
ROM/PROM size  
1 : 4096 bytes  
2
3
: 8192 bytes  
: 12288 bytes  
4 : 16384 bytes  
5
6
: 20480 bytes  
: 24576 bytes  
7 : 28672 bytes  
8
9
: 32768 bytes  
: 36864 bytes  
A : 40960 bytes  
B
C
: 45056 bytes  
: 49152 bytes  
D : 53248 bytes  
E
F
: 57344 bytes  
: 61440 bytes  
The first 128 bytes and the last 2 bytes of ROM  
are reserved areas ; they cannot be used.  
Memory type  
: Mask ROM version  
: EPROM or One Time PROM version  
M
E
RAM size  
0
1
2
3
4
5
6
7
8
9
: 192 bytes  
: 256 bytes  
: 384 bytes  
: 512 bytes  
: 640 bytes  
: 768 bytes  
: 896 bytes  
: 1024 bytes  
: 1536 bytes  
: 2048 bytes  
Fig. 4 Part numbering  
6
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
GROUP EXPANSION  
Package  
Mitsubishi plans to expand the 3827 group as follows:  
100PFB-A ................................0.4 mm-pitch plastic molded TQFP  
100P6Q-A ................................ 0.5 mm-pitch plastic molded LQFP  
100P6S-A ................................ 0.65 mm-pitch plastic molded QFP  
100D0 ..................... Window type ceramic LCC (EPROM version)  
Memory Type  
Support for Mask ROM, One Time PROM, and EPROM versions  
Memory Size  
ROM/PROM size ................................................. 4 K to 60 K bytes  
RAM size ............................................................ 192 to 2048 bytes  
Memory Expansion Plan  
ROM size (bytes)  
60K  
Under development  
M38279EF  
56K  
52K  
48K  
44K  
40K  
Planning  
M38278MCM  
36K  
Under development  
M38277M8M  
32K  
28K  
24K  
20K  
16K  
12K  
8K  
4K  
1408  
192 256  
384  
512  
640  
768  
896  
1024  
1152  
1280  
1536  
1664  
1792  
1920  
2048  
RAM size (bytes)  
Note: Products under development or planning: the development schedule and specifications  
may be revised without notice.  
Fig. 5 Memory expansion plan  
Currently supported products are listed below.  
Table 3 List of supported products  
As of May 1998  
(P) ROM size (bytes)  
Product  
RAM size (bytes)  
1024  
Package  
Remarks  
ROM size for User in (  
)
M38277M8MXXXFP  
M38277M8MXXXHP  
M38277M8MXXXGP  
M38279EF-XXXFP  
M38279EFFP  
100P6S-A  
100PFB-A  
100P6Q-A  
100P6S-A  
100P6S-A  
100PFB-A  
100PFB-A  
100P6Q-A  
100P6Q-A  
100D0  
Mask ROM version  
Mask ROM version  
Mask ROM version  
32768  
(32638)  
One Time PROM version  
One Time PROM version (blank)  
One Time PROM version  
One Time PROM version (blank)  
One Time PROM version  
One Time PROM version (blank)  
EPROM version  
M38279EF-XXXHP  
M38279EFHP  
61440  
(61310)  
2048  
M38279EF-XXXGP  
M38279EFGP  
M38279EFFS  
7
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
[CPU Mode Register (CPUM)] 003B16  
The CPU mode register contains the stack page selection bit and  
the internal system clock selection bit.  
FUNCTIONAL DESCRIPTION  
Central Processing Unit (CPU)  
The 3827 group uses the standard 740 family instruction set. Re-  
fer to the table of 740 family addressing modes and machine  
instructions or the 740 Family Software Manual for details on the  
instruction set.  
The CPU mode register is allocated at address 003B16.  
Machine-resident 740 family instructions are as follows:  
The FST and SLW instruction cannot be used.  
The STP, WIT, MUL, and DIV instruction can be used.  
b7  
b0  
CPU mode register  
(CPUM (CM) : address 003B16  
)
Processor mode bits  
b1 b0  
0
0
1
1
0 : Single-chip mode  
1 :  
0 :  
1 :  
Not available  
Stack page selection bit  
0 : 0 page  
1 : 1 page  
Not used (returns “1” when read)  
(Do not write “0” to this bit.)  
Port XC switch bit  
0 : Stop oscillating  
1 : XCIN, XCOUT  
Main clock ( XIN-XOUT) stop bit  
0 : Oscillating  
1 : Stopped  
Main clock division ratio selection bit  
0 : XIN/2 (high-speed mode)  
1 : XIN/8 (middle-speed mode)  
Internal system clock selection bit  
0 : XIN-XOUT selected (middle-/high-speed mode)  
1 : XCIN-XCOUT selected (low-speed mode)  
Fig. 6 Structure of CPU mode register  
8
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
MEMORY  
Zero Page  
Special Function Register (SFR) Area  
The Special Function Register area in the zero page contains con-  
trol registers such as I/O ports and timers.  
Access to this area with only 2 bytes is possible in the zero page  
addressing mode.  
Special Page  
RAM  
Access to this area with only 2 bytes is possible in the special  
RAM is used for data storage and for stack area of subroutine  
page addressing mode.  
calls and interrupts.  
ROM  
The first 128 bytes and the last 2 bytes of ROM are reserved for  
device testing and the rest is user area for storing programs.  
Interrupt Vector Area  
The interrupt vector area contains reset and interrupt vectors.  
RAM area  
000016  
RAM size  
(bytes)  
Address  
XXXX16  
SFR area  
Zero page  
004016  
005416  
192  
256  
00FF16  
013F16  
01BF16  
023F16  
02BF16  
033F16  
03BF16  
043F16  
063F16  
083F16  
LCD display RAM area  
384  
010016  
XXXX16  
084016  
RAM  
512  
640  
768  
896  
1024  
1536  
2048  
Reserved area  
Not used  
ROM area  
ROM size  
(bytes)  
Address  
YYYY16  
Address  
ZZZZ16  
YYYY16  
ZZZZ16  
Reserved ROM area  
(128 bytes)  
4096  
8192  
F00016  
E00016  
D00016  
C00016  
B00016  
A00016  
900016  
800016  
700016  
600016  
500016  
400016  
300016  
200016  
100016  
F08016  
E08016  
D08016  
C08016  
B08016  
A08016  
908016  
808016  
708016  
608016  
508016  
408016  
308016  
208016  
108016  
12288  
16384  
20480  
24576  
28672  
32768  
36864  
40960  
45056  
49152  
53248  
57344  
61440  
ROM  
FF0016  
FFDC16  
Special page  
Interrupt vector area  
Reserved ROM area  
FFFE16  
FFFF16  
Fig. 7 Memory map diagram  
9
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Port P0 (P0)  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
002016  
002116  
002216  
002316  
002416  
Timer X (low) (TXL)  
Port P0 direction register (P0D)  
Port P1 (P1)  
Timer X (high) (TXH)  
Timer Y (low) (TYL)  
Timer Y (high) (TYH)  
Timer 1 (T1)  
Port P1 output control register (P1D)  
Port P2 (P2)  
Port P2 direction register (P2D)  
Port P3 (P3)  
002516 Timer 2 (T2)  
Timer 3 (T3)  
002616  
002716  
002816  
002916  
002A16  
Timer X mode register (TXM)  
Timer Y mode register (TYM)  
Timer 123 mode register (T123M)  
TOUT/φ output control register (CKCON)  
000716 Port P3 output control register (P3C)  
Port P4 (P4)  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
001016  
001116  
001216  
001316  
001416  
Port P4 direction register (P4D)  
Port P5 (P5)  
Port P5 direction register (P5D)  
Port P6 (P6)  
002B16 PWM control register (PWMCON)  
002C16 PWM prescaler (PREPWM)  
Port P6 direction register (P6D)  
Port P7 (P7)  
002D16 PWM register (PWM)  
002E16  
002F16  
003016  
Port P7 direction register (P7D)  
A-D control register (ADCON)  
003116  
003216 A-D control register (low-order) (ADL)  
A-D control register (high-order) (ADH)  
D-A1 conversion register (DA1)  
D-A2 conversion register (DA2)  
003316  
003416  
003516  
001516 Key input control register (KIC)  
001616 PULL register A (PULLA)  
003616 D-A control register (DACON)  
PULL register B (PULLB)  
Watchdog timer control register (WDTCON)  
Segment output enable register (SEG)  
LCD mode register (LM)  
001716  
001816  
001916  
001A16  
001B16  
001C16  
001D16  
001E16  
001F16  
003716  
003816  
003916  
003A16  
003B16  
003C16  
003D16  
003E16  
003F16  
Transmit/Receive buffer register(TB/RB)  
Serial I/O1 status register (SIO1STS)  
Serial I/O1 control register (SIO1CON)  
UART control register (UARTCON)  
Baud rate generator (BRG)  
Interrupt edge selection register (INTEDGE)  
CPU mode register (CPUM)  
Interrupt request register 1(IREQ1)  
Interrupt request register 2(IREQ2)  
Interrupt control register 1(ICON1)  
Interrupt control register 2(ICON2)  
Serial I/O2 control register (SIO2CON)  
Reserved area  
Serial I/O2 register (SIO2)  
Fig. 8 Memory map of special function register (SFR)  
10  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
I/O PORTS  
Direction Registers  
b7  
b0  
PULL register A  
(PULLA : address 001616)  
The I/O ports have direction registers which determine the input/  
output direction of each individual pin. (P00–P07 and P10–P15 use  
bit 0 of port P0, P1 direction registers respectively.)  
When “1” is written to that bit, that pin becomes an output pin.  
When “0” is written to the bit corresponding to a pin, that pin be-  
comes an input pin.  
P00, P01 pull-up  
P02,P03 pull-up  
P04–P07 pull-up  
P10–P13 pull-up  
P14,P15 pull-up  
P16,P17 pull-up  
P20–P23 pull-up  
P24–P27 pull-up  
If data is read from a pin set to output, the value of the port output  
latch is read, not the value of the pin itself. Pins set to input are  
floating and the value of that pin can be read. If a pin set to input  
is written to, only the port output latch is written to and the pin re-  
mains floating.  
b7  
b0  
PULL register B  
(PULLB : address 001716)  
P41–P43 pull-up  
P44–P47 pull-up  
P50–P53 pull-up  
P54–P57 pull-up  
P60–P63 pull-up  
Port P3 Output Control Register  
Bit 0 of the port P3 output control register (address 000716) en-  
ables control of the output of ports P30 to P37.  
When the bit is set to “1”, the port output function is valid.  
When resetting, bit 0 of the port P3 output control register is set to  
“0” (the port output function is invalid.) and ports P30 to P37 are  
pulled up.  
P64–P67 pull-up  
Not used (return “0” when read)  
0 : No pull-up  
1 : Pull-up  
Note : The contents of PULL register A and PULL register B  
do not affect ports programmed as the output port.  
Pull-up Control  
By setting the PULL register A (address 001616) or the PULL reg-  
ister B (address 001716), ports P0 to P6 can control pull-up with a  
program.  
Fig. 9 Structure of PULL register A and PULL register B  
However, the contents of PULL register A and PULL register B do  
not affect ports programmed as the output ports.  
The PULL register A setting is invalid for pins set to segment out-  
put on the segment output enable register.  
11  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 4 List of I/O port function (1)  
Name  
Input/Output  
Non-Port Function  
Pin  
I/O Format  
Related SFRs  
Diagram No.  
(1)  
P00/SEG26–  
P07/SEG33  
Port P0  
Input/output,  
byte unit  
CMOS compatible  
input level  
LCD segment output  
PULL register A  
Segment output enable  
register  
(2)  
CMOS 3-state output  
P10/SEG34–  
P15/SEG39  
Port P1  
Input/output,  
6-bit unit  
CMOS compatible  
input level  
LCD segment output  
PULL register A  
(1)  
(2)  
Segment output enable  
register  
CMOS 3-state output  
Input/output,  
individual bits  
CMOS compatible  
input level  
PULL register A  
P16 , P17  
P20–P27  
(4)  
(4)  
(3)  
CMOS 3-state output  
Port P2  
Port P3  
Input/output,  
individual bits  
CMOS compatible  
input level  
Key input (key-on  
wake-up) interrupt  
input  
PULL register A  
Interrupt control register2  
Key input control register  
PULL register A  
CMOS 3-state output  
P30/SEG18–  
P37/SEG25  
Output  
CMOS 3-state output  
LCD segment output  
Segment output enable  
register  
P3 output enable register  
A-D control register  
CMOS compatible  
input level  
(13)  
P40/ADT  
Port P4  
Input/output,  
individual bits  
A-D trigger input  
External interrupt input  
Interrupt edge selection  
register  
N-channel open-drain  
output  
CMOS compatible  
input level  
External interrupt input  
PULL register B  
(4)  
P41/INT1,  
P42/INT2  
Interrupt edge selection  
register  
CMOS 3-state output  
P43/φ/TOUT  
Timer output φ output  
(12)  
PULL register B  
Timer 123 mode register  
TOUT/φ output control  
register  
P44/RXD,  
P45/TXD,  
P46/SCLK1,  
P47/SRDY1  
Serial I/O1 function I/O  
(5)  
(6)  
PULL register B  
Serial I/O1 control register  
Serial I/O1 status register  
UART control register  
PULL register B  
(7)  
(8)  
P50/PWM0,  
P51/PWM1  
Port P5  
Input/output,  
individual bits  
CMOS compatible  
input level  
PWM output  
(10)  
PWM control register  
CMOS 3-state output  
P52/RTP0,  
P53/RTP1  
Real time port  
function output  
PULL register B  
(9)  
Timer X mode register  
P54/CNTR0  
P55/CNTR1  
P56/DA1  
PULL register B  
(11)  
(14)  
(15)  
Timer X function I/O  
TimerY function input  
Timer X mode register  
PULL register B  
TimerY mode register  
DA1 output  
PULL register B  
A-D VREF input  
D-A control register  
A-D control register  
PULL register B  
P57/DA2  
DA2 output  
(15)  
D-A control register  
12  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 5 List of I/O port function (2)  
Pin  
Name  
Input/Output  
I/O Format  
Non-Port Function  
Related SFRS  
Diagram No.  
P60/SIN2/AN0  
Port P6  
Input/  
A-D conversion input  
Serial I/O2 function I/O  
A-D control register  
Serial I/O2 control  
register  
(17)  
CMOS compatible input  
level  
CMOS 3-state output  
output,  
individnal  
bits  
P61/SOUT2/  
AN1  
(18)  
(19)  
P62/SCLK21/  
AN2  
P63/SCLK22 /  
AN3  
(20)  
(16)  
A-D conversion input  
A-D control register  
P64/AN4–  
P67/AN7  
P70/INT0  
Port P7  
Input  
CMOS compatible input  
level  
External interrupt input  
Interrupt edge  
selection register  
(23)  
(13)  
P71–P77  
Input/  
CMOS compatible input  
level  
output,  
individnal  
bits  
N-channel open-drain  
output  
COM0–COM3  
SEG0–SEG17  
Common  
Segment  
Output  
Output  
LCD common output  
LCD segment output  
LCD mode register  
(21)  
(22)  
Notes1: How to use double-function ports as function I/O ports, refer to the applicable sections.  
2: Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction. When an input level is at an intermediate po-  
tential, a current will flow VCC to VSS through the input-stage gate.  
13  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(1) Ports P01–P07, P11–P15  
Pull-up  
VL2/VL3/VCC  
Segment/Port  
LCD drive timing  
Segment data  
Interface logic level  
shift circuit  
Segment  
Data bus  
Port latch  
Port direction register  
VL1/VSS  
Port  
Port/Segment  
Port direction register  
(2) Ports P00, P10  
Pull-up  
VL2/VL3/VCC  
LCD drive timing  
Segment/Port  
Direction register  
Segment data  
Port latch  
Interface logic level  
shift circuit  
Segment  
Data bus  
VL1/VSS  
Port  
Port/Segment  
Port direction register  
(3) Port P3  
Pull-up  
VL2/VL3/VCC  
Segment/Port  
LCD drive timing  
Segment data  
Interface logic level  
shift circuit  
Segment  
Data bus  
Port latch  
VL1/VSS  
Port  
Port/Segment  
Output control  
(4) Ports P16, P17, P2, P41, P42  
(5) Port P44  
Pull-up control  
Pull-up control  
Serial I/O1 enable bit  
Reception enable bit  
Direction register  
Direction register  
Data bus  
Port latch  
Port latch  
Data bus  
Key input interrupt input  
INT1, INT2 interrupt input  
Serial I/O1 input  
Except P16, P17  
Fig. 10 Port block diagram (1)  
14  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(6) Port P45  
(7) Port P46  
Serial I/O1 clock  
selection bit  
Serial I/O1 enable bit  
Pull-up control  
Pull-up control  
P45/TxD P-channel output disable bit  
Serial I/O1 mode selection bit  
Serial I/O1 enable bit  
Direction register  
Serial I/O1 enable bit  
Transmission enable bit  
Direction register  
Port latch  
Data bus  
Data bus  
Port latch  
Serial I/O1 output  
Serial I/O1 clock outupt  
Serial I/O1 clock input  
(8) Port P47  
(9) Ports P52, P53  
Pull-up control  
Pull-up control  
Serial I/O1 mode selection bit  
Serial I/O1 enable bit  
SRDY1 output enable bit  
Direction register  
Direction register  
Port latch  
Data bus  
Data bus  
Port latch  
Real time control bit  
Real time port data  
Serial I/O1 ready output  
Pull-up control  
(11) Port P54  
(10) Ports P50,P51  
Pull-up control  
Direction register  
Direction register  
Port latch  
Data bus  
Data bus  
Port latch  
Pulse output mode  
Timer output  
PWM function enable bit  
PWM output  
CNTR0 interrupt input  
Fig. 11 Port block diagram (2)  
15  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(13) Ports P40, P71–P77  
(12) Port P43  
Pull-up control  
Direction register  
Direction register  
Data bus  
Port latch  
Data bus  
Port latch  
TOUT/φ output control  
Timer output  
TOUT/φ selection bit  
A-D trigger input  
Except P71 to P77  
φ output  
(15) Ports P56, P57  
(14) Port P55  
Pull-up control  
Pull-up control  
Direction register  
Direction register  
Data bus  
Port latch  
Data bus  
Port latch  
D-A conversion output  
D-A1, D-A2 output enable bit  
VREF input switch  
VREF input selection bit  
CNTR1 interrupt input  
Except P57  
(17) Port P60  
(16) Ports P64–P67  
Pull-up control  
Pull-up control  
Direction register  
Direction register  
Port latch  
Data bus  
Data bus  
Port latch  
Serial I/O2 input  
A-D conversion input  
Analog input pin selection bit  
A-D conversion input  
Analog input pin selection bit  
Fig. 12 Port block diagram (3)  
16  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(18) Port P61  
(19) Port P62  
Pull-up control  
Pull-up control  
Synchronous clock selection bit  
P61/SOUT2 P-channel output disable bit  
Serial I/O2 transmit completion signal  
Synchronous clock selection bit  
Serial I/O2 port selection bit  
Synchronous clock output pin  
selection bit  
Serial I/O2 port selection bit  
Direction register  
Direction register  
Data bus  
Port latch  
Data bus  
Port latch  
Serial I/O2 output  
Serial I/O2 clock output  
A-D conversion input  
Serial I/O2 clock input  
Analog input pin selection bit  
A-D conversion input  
Analog input pin selection bit  
(20) Port P63  
Pull-up control  
(21) COM0–COM3  
Synchronous clock selection bit  
Serial I/O2 port selection bit  
Synchronous clock output pin selection bit  
VL3  
Direction register  
VL2  
VL1  
Data bus  
Port latch  
The gate input signal of each  
transistor is controlled by the  
LCD duty ratio and the bias  
value.  
Serial I/O2 clock output  
VSS  
A-D conversion input  
Analog input pin selection bit  
(23) Port P70  
(22) SEG0–SEG17  
Direction register  
VL2/VL3  
The voltage applied to the sources of  
P-channel and N-channel transistors  
is the controlled voltage by the bias  
value.  
Port latch  
Data bus  
VL1/VSS  
INT0 input  
Fig. 13 Port block diagram (4)  
17  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
INTERRUPTS  
Interrupts occur by seventeen sources: seven external, nine inter-  
Interrupt Operation  
Upon acceptance of an interrupt the following operations are auto-  
nal, and one software.  
matically performed:  
1. The contents of the program counter and processor status  
register are automatically pushed onto the stack.  
2. The interrupt disable flag is set and the corresponding  
interrupt request bit is cleared.  
Interrupt Control  
Each interrupt except the BRK instruction interrupt have both an  
interrupt request bit and an interrupt enable bit, and is controlled  
by the interrupt disable flag. An interrupt occurs if the correspond-  
ing interrupt request and enable bits are “1” and the interrupt  
disable flag is “0.Interrupt enable bits can be set or cleared by  
software. Interrupt request bits can be cleared by software, but  
cannot be set by software. The BRK instruction interrupt and reset  
cannot be disabled with any flag or bit. The I flag disables all inter-  
rupts except the BRK instruction interrupt and reset. If several  
interrupts requests occurs at the same time the interrupt with high-  
est priority is accepted first.  
3. The interrupt jump destination address is read from the vec-  
tor table into the program counter.  
Notes  
When the active edge of an external interrupt (INT0–INT2, CNTR0,  
CNTR1) is set or when switching interrupt sources of ADT/A-D  
conversion interrupt, the corresponding interrupt request bit may  
also be set. Therefore, take following sequence:  
(1) Disable the external interrupt which is selected.  
(2) Change the active edge in interrupt edge selection register  
(timer XY mode register when using CNTR0, CNTR1)  
(3) Clear the set interrupt request bit to “0.”  
(4) Enable the external interrupt which is selected.  
Table 6 Interrupt vector addresses and priority  
Interrupt Request  
Remarks  
Vector Addresses (Note 1)  
Interrupt Source  
Priority  
High  
Low  
Generating Conditions  
Reset (Note 2)  
At reset  
1
2
FFFD16  
FFFB16  
FFFC16  
FFFA16  
Non-maskable  
INT0  
At detection of either rising or  
falling edge of INT0 input  
External interrupt  
(active edge selectable)  
At detection of either rising or  
falling edge of INT1 input  
INT1  
3
4
FFF916  
FFF716  
FFF816  
FFF616  
External interrupt  
(active edge selectable)  
Serial I/O1  
reception  
At completion of serial I/O1 data Valid when serial I/O1 is selected  
reception  
At completion of serial I/O1  
transmit shift or when transmis-  
sion buffer is empty  
Serial I/O1  
transmission  
5
FFF516  
FFF416  
Valid when serial I/O1 is selected  
Timer X  
6
7
FFF316  
FFF116  
FFEF16  
FFED16  
FFEB16  
FFF216  
FFF016  
FFEE16  
FFEC16  
FFEA16  
At timer X underflow  
At timer Y underflow  
At timer 2 underflow  
At timer 3 underflow  
Timer Y  
Timer 2  
Timer 3  
8
9
CNTR0  
At detection of either rising or  
falling edge of CNTR0 input  
10  
External interrupt  
(active edge selectable)  
At detection of either rising or  
falling edge of CNTR1 input  
CNTR1  
11  
FFE916  
FFE816  
External interrupt  
(active edge selectable)  
FFE616  
FFE416  
At timer 1 underflow  
Timer 1  
INT2  
12  
13  
FFE716  
FFE516  
At detection of either rising or External interrupt  
falling edge of INT2 input  
(active edge selectable)  
Serial I/O2  
At completion of serial I/O2 data  
transmission or reception  
14  
15  
16  
FFE316  
FFE116  
FFDF16  
FFE216  
FFE016  
FFDE16  
Valid when serial I/O2 is selected  
Key input  
(Key-on wake-up)  
At falling of conjunction of input External interrupt  
level for port P2 (at input mode)  
(valid when an “Llevel is applied)  
Valid when ADT interrupt is se-  
lected External interrupt  
(Valid at falling)  
ADT  
At falling of ADT input  
A-D conversion  
BRK instruction  
At completion of A-D conversion  
At BRK instruction execution  
Valid when A-D interrupt is se-  
lected  
17  
FFDD16  
FFDC16  
Non-maskable software interrupt  
Notes1: Vector addresses contain interrupt jump destination addresses.  
2: Reset function in the same way as an interrupt with the highest priority.  
18  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Interrupt request bit  
Interrupt enable bit  
Interrupt disable flag (I)  
Interrupt request  
BRK instruction  
Reset  
Fig. 14 Interrupt control  
b7  
b0  
Interrupt edge selection register  
(INTEDGE : address 003A16  
)
INT  
INT  
INT  
INT  
0
1
2
3
interrupt edge selection bit  
interrupt edge selection bit  
interrupt edge selection bit  
interrupt edge selection bit  
0 : Falling edge active  
1 : Rising edge active  
Not used (return “0” when read)  
b7  
b0  
b7  
b0  
Interrupt request register 2  
Interrupt request register 1  
(IREQ2 : address 003D16  
)
(IREQ1 : address 003C16  
)
INT  
INT  
0
1
interrupt request bit  
interrupt request bit  
CNTR  
CNTR  
0
1
interrupt request bit  
interrupt request bit  
Serial I/O1 receive interrupt request bit  
Timer 1 interrupt request bit  
INT interrupt request bit  
Serial I/O2 interrupt request bit  
Key input interrupt request bit  
ADT/AD conversion interrupt request bit  
Not used (returns “0” when read)  
Serial I/O1 transmit interrupt request bit  
Timer X interrupt request bit  
Timer Y interrupt request bit  
Timer 2 interrupt request bit  
Timer 3 interrupt request bit  
2
0 : No interrupt request issued  
1 : Interrupt request issued  
b7  
b0  
b7  
b0  
Interrupt control register 1  
Interrupt control register 2  
(ICON1 : address 003E16  
)
(ICON2 : address 003F16  
)
INT  
INT  
0
1
interrupt enable bit  
interrupt enable bit  
CNTR  
CNTR  
0
1
interrupt enable bit  
interrupt enable bit  
Serial I/O receive interrupt enable bit  
Serial I/O transmit interrupt enable bit  
Timer X interrupt enable bit  
Timer Y interrupt enable bit  
Timer 2 interrupt enable bit  
Timer 1 interrupt enable bit  
INT interrupt enable bit  
2
Serial I/O2 interrupt enable bit  
Key input interrupt enable bit  
ADT/AD conversion interrupt enable bit  
Not used (returns “0” when read)  
(Do not write “1” to this bit.)  
Timer 3 interrupt enable bit  
0 : Interrupts disabled  
1 : Interrupts enabled  
Fig. 15 Structure of interrupt-related registers  
19  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
to “0”. An example of using a key input interrupt is shown in Figure  
16, where an interrupt request is generated by pressing one of the  
keys consisted as an active-low key matrix which inputs to ports  
P20–P23.  
Key Input Interrupt (Key-on wake-up)  
A Key-on wake up interrupt request is generated by applying “L”  
level to any pin of port P2 that have been set to input mode. In  
other words, it is generated when AND of input level goes from “1”  
Port PXx  
“L” level output  
PULLA register  
Bit 2 = “1”  
Key input control register = “1”  
Port P27  
direction register = “1”  
Key input interrupt request  
✽✽  
Port P27  
latch  
Port P27 output  
Key input control register = “1”  
Port P26  
direction register = “1”  
✽✽  
Port P26  
latch  
Port P26 output  
Key input control register = “1”  
Port P25  
direction register = “1”  
✽✽  
Port P25  
latch  
Port P25 output  
Key input control register = “1”  
Port P24  
direction register = “1”  
✽✽  
Port P24  
latch  
Port P24 output  
Key input control register = “1”  
Port P23  
direction register = “0”  
Port P2 input  
reading circuit  
✽✽  
Port P23  
latch  
Port P23  
input  
Key input control register = “1”  
direction register = “0”  
Port P22  
✽✽  
Port P22  
latch  
Port P22  
input  
Key input control register = “1”  
Port P21  
direction register = “0”  
✽✽  
Port P21  
latch  
Port P21  
input  
Key input control register = “1”  
Port P20  
direction register = “0”  
✽✽  
Port P20  
latch  
Port P20  
input  
P-channel transistor for pull-up  
✽✽ CMOS output buffer  
Fig. 16 Connection example when using key input interrupt and port P2 block diagram  
20  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
responding to that timer is set to “1”.  
TIMERS  
Read and write operation on 16-bit timer must be performed for  
both high and low-order bytes. When reading a 16-bit timer, read  
the high-order byte first. When writing to a 16-bit timer, write the  
low-order byte first. The 16-bit timer cannot perform the correct op-  
eration when reading during the write operation, or when writing  
during the read operation.  
The 3827 group has five timers: timer X, timer Y, timer 1, timer 2,  
and timer 3. Timer X and timer Y are 16-bit timers, and timer 1,  
timer 2, and timer 3 are 8-bit timers.  
All timers are down count timers. When the timer reaches “0016”,  
an underflow occurs at the next count pulse and the correspond-  
ing timer latch is reloaded into the timer and the count is  
continued. When a timer underflows, the interrupt request bit cor-  
Real time port  
control bit “1”  
Data bus  
Q D  
P52 data for real time port  
P52  
Latch  
“0”  
P52 direction register  
P52 latch  
Real time port  
control bit “1”  
Q D  
P53 data for real time port  
P53  
Real time port  
control bit “0”  
“0”  
Latch  
P53 direction register  
Timer X mode register  
write signal  
P53 latch  
“1”  
f(XIN)/16  
(f(XIN)/16 in low-speed mode)  
Timer X stop  
control bit  
Timer X write  
control bit  
Timer X operat-  
CNTR0 active  
ing mode bits  
edge switch bit  
Timer X (low) latch (8)  
Timer X (high) latch (8)  
“00”,“01”,“11”  
Timer X  
interrupt  
request  
“0”  
P54/CNTR0  
Timer X (low) (8)  
Timer X (high) (8)  
“10”  
“1”  
Pulse width  
measurement  
CNTR0  
interrupt  
request  
mode  
CNTR0 active  
edge switch bit  
Pulse output mode  
“0”  
“1”  
S
Q
Q
Timer Y operating mode bit  
“00”,“01”,“10”  
T
CNTR1  
interrupt  
request  
P54 direction register  
Pulse width HL continuously measurement mode  
P54 latch  
Pulse output mode  
f(XIN)/16  
Rising edge detection  
“11”  
Period  
measurement mode  
Falling edge detection  
(f(XCIN)16 in φ = XCIN divided by 2)  
Timer Y stop  
control bit  
Timer Y (low) latch (8)  
CNTR1 active  
edge switch bit  
“0”  
Timer Y (high) latch (8)  
Timer Y (high) (8)  
“00”,“01”,“11”  
Timer Y  
interrupt  
request  
P55/CNTR1  
Timer Y (low) (8)  
“10” Timer Y operating  
mode bit  
“1”  
f(XIN)/16  
Timer 1  
interrupt  
request  
(f(XCIN)/16 in φ = XCIN divided by 2)  
Timer 1 count source  
selection bit  
Timer 2 write  
control bit  
Timer 2 count source  
selection bit  
“0”  
Timer 1 latch (8)  
Timer 2 latch (8)  
“0”  
Timer 2  
interrupt  
request  
Timer 1 (8)  
XCIN  
Timer 2 (8)  
“1”  
“1”  
f(XIN)/16  
(f(XCIN)16 in φ=XCIN divided by 2)  
TOUT output  
TOUT output  
control bit  
active edge  
switch bit  
“0”  
TOUT output  
control bit  
S
Q
P43/φ/TOUT  
T
“1”  
P43 latch  
Q
P43 direction register  
Timer 3 latch (8)  
Timer 3 (8)  
“0”  
“1”  
Timer 3  
interrupt  
request  
f(XIN)/16(f(XCIN)/16 in low-speed mode)  
Timer 3 count  
source selection bit  
Fig. 17 Timer block diagram  
21  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timer X  
Note on CNTR0 interrupt active edge  
Timer X is a 16-bit timer that can be selected in one of four modes  
and can be controlled the timer X write and the real time port by  
setting the timer X mode register.  
selection  
CNTR0 interrupt active edge depends on the CNTR0 active edge  
switch bit.  
(1) Timer Mode  
Real time port control  
The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode).  
While the real time port function is valid, data for the real time port  
are output from ports P52 and P53 each time the timer X  
underflows. (However, if the real time port control bit is changed  
from “0” to “1”, data are output without the timer X.) When the data  
for the real time port is changed while the real time port function is  
valid, the changed data are output at the next underflow of timer X.  
Before using this function, set the corresponding port direction  
registers to output mode.  
(2) Pulse Output Mode  
Each time the timer underflows, a signal output from the CNTR0  
pin is inverted. Except for this, the operation in pulse output mode  
is the same as in timer mode. When using a timer in this mode, set  
the port shared with the CNTR0 pin to input.  
(3) Event Counter Mode  
The timer counts signals input through the CNTR0 pin.  
Except for this, the operation in event counter mode is the same  
as in timer mode. When using a timer in this mode, set the port  
shared with the CNTR0 pin to input.  
b7  
b0  
Timer X mode register  
(TXM : address 002716  
)
Timer X write control bit  
0 : Write value in latch and counter  
1 : Write value in latch only  
Real time port control bit  
0 : Real time port function invalid  
1 : Real time port function valid  
(4) Pulse Width Measurement Mode  
The count source is f(XIN)/16 (or f(XCIN)/16 in low-speed mode). If  
CNTR0 active edge switch bit is “0”, the timer counts while the in-  
put signal of CNTR0 pin is at “H”. If it is “1”, the timer counts while  
the input signal of CNTR0 pin is at “L. When using a timer in this  
mode, set the port shared with tha CNTR0 pin to input.  
P5  
P5  
2
data for real time port  
data for real time port  
3
Timer X operating mode bits  
b5 b4  
0
0
1
1
0 : Timer mode  
Timer X write control  
1 : Pulse output mode  
0 : Event counter mode  
1 : Pulse width measurement mode  
If the timer X write control bit is “0”, when the value is written in the  
address of timer X, the value is loaded in the timer X and the latch  
at the same time.  
CNTR0 active edge switch bit  
0 : Count at rising edge in event counter mode  
Start from “H” output in pulse output mode  
Measure “H” pulse width in pulse width  
measurement mode  
If the timer X write control bit is “1”, when the value is written in the  
address of timer X, the value is loaded only in the latch. The value  
in the latch is loaded in timer X after timer X underflows.  
If the value is written in latch only, unexpected value may be set in  
the high-order counter when the writing in high-order latch and the  
underflow of timer X are performed at the same timing.  
Falling edge active for CNTR0 interrupt  
1 : Count at falling edge in event counter mode  
Start from “L” output in pulse output mode  
Measure “L” pulse width in pulse width  
measurement mode  
Rising edge active for CNTR  
Timer X stop control bit  
0 : Count start  
0 interrupt  
1 : Count stop  
Fig. 18 Structure of timer X mode register  
22  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timer Y  
Timer Y is a 16-bit timer that can be selected in one of four modes.  
b7  
b0  
Timer Y mode register  
(TYM : address 002816)  
(1) Timer Mode  
The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode).  
Not used (return “0” when read)  
Timer Y operating mode bits  
b5 b4  
(2) Period Measurement Mode  
0
0
1
1
0 : Timer mode  
CNTR1 interrupt request is generated at rising/falling edge of  
CNTR1 pin input signal. Simultaneously, the value in timer Y latch  
is reloaded in timer Y and timer Y continues counting down. Except  
for the above-mentioned, the operation in period measurement  
mode is the same as in timer mode.  
1 : Period measurement mode  
0 : Event counter mode  
1 : Pulse width HL continuously  
measurement mode  
CNTR1 active edge switch bit  
0 : Count at rising edge in event counter mode  
Measure the falling edge to falling edge  
period in period measurement mode  
Falling edge active for CNTR1 interrupt  
1 : Count at falling edge in event counter mode  
Measure the rising edge period in period  
measurement mode  
Rising edge active for CNTR1 interrupt  
Timer Y stop control bit  
0 : Count start  
The timer value just before the reloading at rising/falling of CNTR1  
pin input signal is retained until the timer Y is read once after the  
reload.  
The rising/falling timing of CNTR1 pin input signal is found by  
CNTR1 interrupt. When using a timer in this mode, set the port  
shared with the CNTR1 pin to input.  
1 : Count stop  
(3) Event Counter Mode  
The timer counts signals input through the CNTR1 pin.  
Except for this, the operation in event counter mode is the same  
as in timer mode. When using a timer in this mode, set the port  
shared with the CNTR1 pin to input.  
Fig. 19 Structure of timer Y mode register  
(4) Pulse Width HL Continuously Measurement  
Mode  
CNTR1 interrupt request is generated at both rising and falling  
edges of CNTR1 pin input signal. Except for this, the operation in  
pulse width HL continuously measurement mode is the same as in  
period measurement mode. When using a timer in this mode, set  
the port shared with the CNTR1 pin to input.  
Note on CNTR1 interrupt active edge selection  
CNTR1 interrupt active edge depends on the CNTR1 active edge  
switch bit. However, in pulse width HL continuously measurement  
mode, CNTR1 interrupt request is generated at both rising and  
falling edges of CNTR1 pin input signal regardless of the setting of  
CNTR1 active edge switch bit.  
23  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timer 1,Timer 2,Timer 3  
Timer 1, timer 2, and timer 3 are 8-bit timers. The count source for  
each timer can be selected by timer 123 mode register. The timer  
latch value is not affected by a change of the count source. How-  
ever, because changing the count source may cause an  
inadvertent count down of the timer. Therefore, rewrite the value of  
timer whenever the count source is changed.  
b7  
b0  
Timer 123 mode register  
(T123M :address 002916)  
TOUT output active edge switch bit  
0 : Start at “H” output  
1 : Start at “L” output  
TOUT/φ output control bit  
0 : TOUT/φ output disabled  
1 : TOUT/φ output enabled  
Timer 2 write control bit  
0 : Write data in latch and counter  
1 : Write data in latch only  
Timer 2 count source selection bit  
0 : Timer 1 output  
Timer 2 write control  
If the timer 2 write control bit is “0”, when the value is written in the  
address of timer 2, the value is loaded in the timer 2 and the latch  
at the same time.  
If the timer 2 write control bit is “1”, when the value is written in the  
address of timer 2, the value is loaded only in the latch. The value  
in the latch is loaded in timer 2 after timer 2 underflows.  
1 : f(XIN)/16  
(or f(XCIN)/16 in low-speed mode)  
Timer 3 count source selection bit  
0 : Timer 1 output  
Timer 2 output control  
1 : f(XIN)/16  
(or f(XCIN)/16 in low-speed mode)  
Timer 1 count source selection bit  
0 : f(XIN)/16  
(or f(XCIN)/16 in low-speed mode)  
1 : f(XCIN)  
When the timer 2 (TOUT) is output enabled, an inversion signal  
from the TOUT pin is output each time timer 2 underflows.  
In this case, set the port shared with the TOUT pin to the output.  
Not used (return “0” when read)  
Notes on timer 1 to timer 3  
When the count source of timer 1 to 3 is changed, the timer count-  
ing value may be changed large because a thin pulse is generated  
in count input of timer . If timer 1 output is selected as the count  
source of timer 2 or timer 3, when timer 1 is written, the counting  
value of timer 2 or timer 3 may be changed large because a thin  
pulse is generated in timer 1 output.  
Note : Internal clock φ is XCIN/2 in the low-speed mode.  
Fig. 20 Structure of timer 123 mode register  
Therefore, set the value of timer in the order of timer 1, timer 2 and  
timer 3 after the count source selection of timer 1 to 3.  
24  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(1) Clock Synchronous Serial I/O Mode  
SERIAL I/O  
Clock synchronous serial I/O1 can be selected by setting the  
mode selection bit of the serial I/O1 control register to “1”.  
For clock synchronous serial I/O1, the transmitter and the receiver  
must use the same clock. If an internal clock is used, transfer is  
started by a write signal to the transmit/receive buffer registers.  
Serial I/O1  
Serial I/O1 can be used as either clock synchronous or asynchro-  
nous (UART) serial I/O. A dedicated timer (baud rate generator) is  
also provided for baud rate generation.  
Data bus  
Serial I/O1 control register  
Address 001A16  
Address 001816  
Receive buffer register  
Receive buffer full flag (RBF)  
Receive shift register  
Receive interrupt request (RI)  
P44/RXD  
Shift clock  
Clock control circuit  
P46/SCLK  
Serial I/O1  
clock selection bit  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
f(XIN  
)
Baud rate generator  
Address 001C16  
1/4  
(f(XCIN) in low-speed mode)  
1/4  
Clock control circuit  
Falling-edge detector  
P47/SRDY1  
F/F  
Transmit shift register shift completion flag (TSC)  
Shift clock  
Transmit shift register  
Transmit buffer register  
Transmit interrupt source selection bit  
P45/TXD  
Transmit interrupt request (TI)  
Transmit buffer empty flag (TBE)  
Serial I/O1 status register  
Address 001916  
Address 001816  
Data bus  
Fig. 21 Block diagram of clock synchronous serial I/O1  
Transfer shift clock  
(1/2 to 1/2048 of the internal  
clock, or an external clock)  
D0  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
Serial output TXD  
Serial input RXD  
Receive enable signal SRDY1  
Write signal to receive/transmit  
buffer register (address 001816)  
RBF = 1  
TSC = 1  
TBE = 0  
TBE = 1  
TSC = 0  
Overrun error (OE)  
detection  
Notes  
1 : The transmit interrupt (TI) can be selected to occur either when the transmit buffer register has emptied (TBE=1)  
or after the transmit shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the  
serial I/O1 control register.  
2 : If data is written to the transmit buffer register when TSC=0, the transmit clock is generated continuously and serial data is  
output continuously from the TXD pin.  
3 : The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1” .  
Fig. 22 Operation of clock synchronous serial I/O1 function  
25  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ter, but the two buffers have the same address in memory. Since  
the shift register cannot be written to or read from directly, transmit  
data is written to the transmit buffer, and receive data is read from  
the receive buffer.  
(2) Asynchronous Serial I/O (UART) Mode  
Clock asynchronous serial I/O mode (UART) can be selected by  
clearing the serial I/O mode selection bit of the serial I/O1 control  
register to “0”.  
The transmit buffer can also hold the next data to be transmitted,  
and the receive buffer register can hold a character while the next  
character is being received.  
Eight serial data transfer formats can be selected, and the transfer  
formats used by a transmitter and receiver must be identical.  
The transmit and receive shift registers each have a buffer regis-  
Data bus  
Address 001816  
Serial I/O1 control register  
Address 001A16  
Receive buffer register  
OE  
Receive buffer full flag (RBF)  
Receive interrupt request (RI)  
Character length selection bit  
7 bits  
P44/RXD  
STdetector  
Receive shift register  
1/16  
8 bits  
UART control register  
SP detector  
PE FE  
Address 001B16  
Clock control circuit  
Serial I/O synchronous clock selection bit  
P46/SCLK  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
1/4  
f(XIN  
)
Baud rate generator  
Address 001C16  
(f(XCIN) in low-speed mode)  
ST/SP/PA generator  
Transmit shift register shift completion flag (TSC)  
1/16  
Transmit shift register  
Transmit buffer register  
Transmit interrupt source selection bit  
P45/TXD  
Transmit interrupt request (TI)  
Character length selection bit  
Transmit buffer empty flag (TBE)  
Serial I/O status register Address 001916  
Address 001816  
Data bus  
Fig. 23 Block diagram of UART serial I/O1  
Transmit or receive clock  
Transmit buffer write signal  
TBE=0  
TSC=0  
TBE=1  
TBE=0  
TBE=1  
ST  
TSC=1✽  
SP  
Serial output TXD  
ST  
D
0
D
1
D
0
D1  
SP  
1 start bit  
Generated at 2nd bit in 2-stop-bit mode  
7 or 8 data bits  
1 or 0 parity bit  
1 or 2 stop bit (s)  
Receive buffer read signal  
RBF=0  
RBF=1  
SP  
RBF=1  
SP  
ST  
Serial input RXD  
D
0
D
1
ST  
D
0
D1  
Notes 1 : Error flag detection occurs at the same time that the RBF flag becomes “1” (at 1st stop bit, during reception).  
2 : The transmit interrupt (TI) can be selected to occur when either the TBE or TSC flag becomes “1” by the setting of the transmit interrupt source  
selection bit (TIC) of the serial I/O1 control register.  
3 : The receive interrupt (RI) is set when the RBF flag becomes “1”.  
4 : After data is written to the transmit buffer register when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0.  
Fig. 24 Operation of UART serial I/O1 function  
26  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
[Transmit Buffer/Receive Buffer Register  
(TB/RB)] 001816  
The transmit buffer register and the receive buffer register are lo-  
cated at the same address. The transmit buffer register is  
write-only and the receive buffer register is read-only. If a charac-  
ter bit length is 7 bits, the MSB of data stored in the receive buffer  
register is “0”.  
[Serial I/O1 Status Register (SIO1STS)]  
001916  
The read-only serial I/O1 status register consists of seven flags  
(bits 0 to 6) which indicate the operating status of the serial I/O  
function and various errors.  
Three of the flags (bits 4 to 6) are valid only in UART mode.  
The receive buffer full flag (bit 1) is cleared to “0” when the receive  
buffer is read.  
If there is an error, it is detected at the same time that data is  
transferred from the receive shift register to the receive buffer reg-  
ister, and the receive buffer full flag is set. A write to the serial I/O1  
status register clears all the error flags OE, PE, FE, and SE. Writ-  
ing “0” to the serial I/O1 enable bit (SIOE) also clears all the status  
flags, including the error flags.  
All bits of the serial I/O1 status register are initialized to “0” at re-  
set, but if the transmit enable bit (bit 4) of the serial I/O1 control  
register has been set to “1”, the transmit shift register shift comple-  
tion flag (bit 2) and the transmit buffer empty flag (bit 0) become  
“1”.  
[Serial I/O1 Control Register (SIO1CON)]  
001A16  
The serial I/O1 control register contains eight control bits for the  
serial I/O1 function.  
[UART Control Register (UARTCON) ]001B16  
This is a 5 bit register containing four control bits, which are valid  
when UART is selected and set the data format of an data re-  
ceiver/transfer, and one control bit, which is always valid and sets  
the output structure of the P45/TXD pin.  
[Baud Rate Generator(BRG)] 001616  
The baud rate generator determines the baud rate for serial trans-  
fer.  
The baud rate generator divides the frequency of the count source  
by 1/(n + 1), where n is the value written to the baud rate genera-  
tor.  
27  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
b7  
b0  
Serial I/O1 status register  
(SIO1STS : address 001916  
Serial I/O1 control register  
(SIO1CON : address 001A16  
)
)
BRG count source selection bit (CSS)  
0: f(XIN) (f(XCIN) in low-speed mode)  
1: f(XIN)/4 (f(XCIN)/4 in low-speed mode)  
Transmit buffer empty flag (TBE)  
0: Buffer full  
1: Buffer empty  
Serial I/O1 synchronous clock selection bit (SCS)  
0: BRG output divided by 4 when clock synchronous serial  
I/O is selected.  
BRG output divided by 16 when UART is selected.  
1: External clock input when clock synchronous serial I/O is  
selected.  
Receive buffer full flag (RBF)  
0: Buffer empty  
1: Buffer full  
Transmit shift register shift completion flag (TSC)  
0: Transmit shift in progress  
1: Transmit shift completed  
External clock input divided by 16 when UART is selected.  
S
0: P4  
1: P4  
RDY1 output enable bit (SRDY)  
Overrun error flag (OE)  
0: No error  
1: Overrun error  
7
pin operates as ordinary I/O pin.  
7
pin operates as SRDY1 output pin.  
Transmit interrupt source selection bit (TIC)  
0: Interrupt when transmit buffer has emptied  
1: Interrupt when transmit shift operation is completed  
Parity error flag (PE)  
0: No error  
1: Parity error  
Transmit enable bit (TE)  
0: Transmit disabled  
1: Transmit enabled  
Framing error flag (FE)  
0: No error  
1: Framing error  
Receive enable bit (RE)  
0: Receive disabled  
1: Receive enabled  
Summing error flag (SE)  
0: OE U PE U FE =0  
1: OE U PE U FE =1  
Serial I/O1 mode selection bit (SIOM)  
0: Asynchronous serial I/O (UART)  
1: Clock synchronous serial I/O  
Not used (returns “1” when read)  
Serial I/O1 enable bit (SIOE)  
0: Serial I/O1 disabled  
b7  
b0  
UART control register  
(UARTCON : address 001B16  
(pins P4  
1: Serial I/O1 enabled  
(pins P4 –P4 operate as serial I/O pins)  
4–P47 operate as ordinary I/O pins)  
)
Character length selection bit (CHAS)  
4
7
0: 8 bits  
1: 7 bits  
Parity enable bit (PARE)  
0: Parity checking disabled  
1: Parity checking enabled  
Parity selection bit (PARS)  
0: Even parity  
1: Odd parity  
Stop bit length selection bit (STPS)  
0: 1 stop bit  
1: 2 stop bits  
P45/TXD P-channel output disable bit (POFF)  
0: CMOS output (in output mode)  
1: N-channel open-drain output (in output mode)  
Not used (return “1” when read)  
Fig. 25 Structure of serial I/O1 control registers  
28  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Serial I/O2  
b7  
b0  
Serial I/O2 control register  
The serial I/O2 function can be used only for clock synchronous  
(SIO2CON : address 001D16)  
serial I/O.  
Internal synchronous clock select bits  
b2 b1 b0  
0 0 0: f(XIN)/8 (f(XCIN)/8 in low-speed mode)  
For clock synchronous serial I/O2 the transmitter and the receiver  
must use the same clock. When the internal clock is used, transfer  
is started by a write signal to the serial I/O2 register.  
When an internal clock is selected as the synchronous clock of the  
serial I/O2, either P62 or P63 can be selected as an output pin of  
the synchronous clock. In this case, the pin that is not selected as  
an output pin of the synchronous clock functions as a port.  
0 0 1: f(XIN)/16 (f(XCIN)/16 in low-speed mode)  
0 1 0: f(XIN)/32 (f(XCIN)/32 in low-speed mode)  
0 1 1: f(XIN)/64 (f(XCIN)/64 in low-speed mode)  
1 0 0:  
Do not set  
1 0 1:  
1 1 0: f(XIN)/128 (f(XCIN)/128 in low-speed mode)  
1 1 1: f(XIN)/256 (f(XCIN)/256 in low-speed mode)  
Serial I/O2 port selection bit  
0: I/O port  
1: SOUT2,SCLK21/SCLK22 signal output  
[Serial I/O2 Control Register (SIO2CON)]  
001D16  
P61/SOUT2 P-channel output disable bit  
0: CMOS output (in output mode)  
1: N-channel open-drain output  
(in output mode)  
The serial I/O2 control register contains 8 bits which control vari-  
ous serial I/O2 functions.  
Transfer direction selection bit  
0: LSB first  
1: MSB first  
Synchronous clock selection bit  
0: External clock  
1: Internal clock  
Synchronous clock output pin selection bit  
0: SCLK21  
1: SCLK22  
Fig. 26 Structure of serial I/O2 control register  
Internal synchronous  
clock select bits  
1/8  
1/16  
Data bus  
1/32  
f(XIN  
)
1/64  
(f(XCIN) in low-speed mode)  
1/128  
1/256  
P63 latch  
Synchronous clock  
selection bit  
(Note)  
“1”  
P6  
3
/SCLK22  
Synchronous circuit  
“0”  
External clock  
P62 latch  
“0”  
P6  
P6  
2
1
/SCLK21  
/SOUT2  
Serial I/O2  
interrupt request  
Serial I/O counter 2 (3)  
(Note)  
“1”  
P61  
latch  
“0”  
“1”  
Serial I/O2 port selection bit  
Serial I/O shift register 2 (8)  
P60/SIN2  
Note: It is selected by the synchronous clock selection bit, the synchronous  
clock output pin selection bit, and the serial I/O port selection bit.  
Fig. 27 Block diagram of serial I/O2 function  
29  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Transfer clock (Note 1)  
Serial I/O2 register  
write signal  
(Note 2)  
Serial I/O2 output SOUT2  
Serial I/O2 input SIN2  
D2  
D0  
D1  
D3  
D4  
D5  
D6  
D7  
Serial I/O2 interrupt request bit set  
Notes 1: When the internal clock is selected as the transfer clock, the divide ratio can be selected by setting bits 0 to 2 of the serial  
I/O2 control register.  
2: When the internal clock is selected as the transfer clock, the SOUT2 pin goes to high impedance after transfer completion.  
When the external clock is selected as the transfer clock, a content of the serial I/O shift register is continued to shift  
during inputting a transfer clock. The SOUT2 pin does not go to high impedance after transfer completion.  
Fig. 28 Timing of serial I/O2 function  
30  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PULSE WIDTH MODULATION (PWM)  
The 3827 group has a PWM function with an 8-bit resolution,  
based on a signal that is the clock input XIN or that clock input di-  
vided by 2.  
PWM Operation  
When at least either bit 1 (PWM0 output enable bit) or bit 2 (PWM1  
output enable bit) of the PWM control register is set to “1”, opera-  
tion starts by initializing the PWM output circuit, and pulses are  
output starting at an “H”. When one PWM output is enabled and  
that the other PWM output is enabled, PWM output which is en-  
abled to output later starts pulse output from halfway.  
Data Setting  
The PWM output pin also functions as ports P50 and P51. Set the  
PWM period by the PWM prescaler, and set the period during  
which the output pulse is an “H” by the PWM register.  
If PWM count source is f(XIN) and the value in the PWM prescaler  
is n and the value in the PWM register is m (where n = 0 to 255  
and m = 0 to 255) :  
When the PWM register or PWM prescaler is updated during  
PWM output, the pulses will change in the cycle after the one in  
which the change was made.  
PWM period = 255 (n+1)/f(XIN)  
= 51 (n+1) µs (when XIN = 5 MHz)  
51 m (n+1)  
µs  
Output pulse “H” period = PWM period m/255  
= 0.2 (n+1) m µs  
255  
(when XIN = 5 MHz)  
PWM output  
T = [51 (n+1)] µs  
m: Contents of PWM register  
n : Contents of PWM prescaler  
T : PWM cycle (when f(XIN) = 5 MHz)  
Fig. 29 Timing of PWM cycle  
Data bus  
PWM  
register pre-latch  
PWM  
prescaler pre-latch  
PWM1 enable bit  
Transfer control circuit  
PWM  
prescaler latch  
PWM  
register latch  
Count source  
selection bit  
Port P5  
6
“0”  
PWM circuit  
XIN  
PWM prescaler  
“1”  
1/2  
PWM0 enable bit  
Fig. 30 Block diagram of PWM function  
31  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b0  
b7  
PWM control register  
(PWMCON : address 002B16  
)
Count source selection bit  
0: f(XIN  
)
1: f(XIN)/2  
PWM  
0: PWM  
1: PWM  
0
function enable bit  
0
disabled  
enabled  
0
PWM1 function enable bit  
0: PWM  
1: PWM  
1
disabled  
enabled  
1
Not used (return “0” when read)  
Fig. 31 Structure of PWM control register  
C
T2  
B
T
=
C
A
B
PWM  
(internal)  
stop  
Port  
stop  
T
T2  
T
Port  
PWM  
PWM  
0
1
output  
output  
Port  
Port  
PWM register  
write signal  
(Changes from “A” to “B” during “H” period)  
PWM prescaler  
write signal  
(Changes from “T” to “T2” during PWM period)  
PWM  
0 function  
enable bit  
PWM  
1 function  
enable bit  
When the contents of the PWM register or PWM prescaler have changed, the PWM  
output will change from the next period after the change.  
Fig. 32 PWM output timing when PWM register or PWM prescaler is changed  
32  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
A-D CONVERTER  
b7  
b0  
A-D control register  
(ADCON : address 003116)  
[A-D Conversion Register (AD)] 003516  
The A-D conversion register is a read-only register that contains  
the result of an A-D conversion. During A-D conversion, do not  
read this register.  
Analog input pin selection bits  
0 0 0 : P60/SIN2/AN0  
0 0 1 : P61/SOUT2/AN1  
0 1 0 : P62/SCLK21/AN2  
0 1 1 : P63/SCLK22/AN3  
1 0 0 : P64/AN4  
[A-D Control Register (ADCON)] 003416  
The A-D control register controls the A-D conversion process. Bits  
0 to 2 are analog input pin selection bits. Bit 3 is an A-D conver-  
sion completion bit and “0” during A-D conversion, then changes  
to “1” when the A-D conversion is completed. Writing “0” to this bit  
starts the A-D conversion. Bit 4 controls the transistor which  
breaks the through current of the resistor ladder. When bit 5, which  
is the AD external trigger valid bit, is set to “1”, A-D conversion is  
started even by a rising edge or falling edge of an ADT input. Set  
ports which share with ADT pins to input when using an A-D exter-  
nal trigger.  
1 0 1 : P65/AN5  
1 1 0 : P66/AN6  
1 1 1 : P67/AN7  
AD conversion completion bit  
0 : Conversion in progress  
1 : Conversion completed  
VREF input switch bit  
0 : OFF  
1 : ON  
AD external trigger valid bit  
0 : A-D external trigger invalid  
1 : A-D external trigger valid  
Interrupt source selection bit  
0 : Interrupt request at A-D  
conversion completed  
1 : Interrupt request at ADT  
input rising or falling  
Reference voltage input selection bit  
0 : VREF  
[Comparison Voltage Generator]  
The comparison voltage generator divides the voltage between  
1 : P56/DA1  
AVSS and VREF, and outputs the divided voltages.  
8-bit read (Read only address 003216.)  
b7  
[Channel Selector]  
The channel selector selects one of the input ports P67/AN7–P60/  
b0  
(Address 003216)  
b9 b8 b7 b6 b5 b4 b3 b2  
AN0, and inputs it to the comparator.  
10-bit read (Read address 003316 first.)  
b7  
b0  
[Comparator and Control Circuit]  
(Address 003316)  
b9 b8  
The comparator and control circuit compares an analog input volt-  
age with the comparison voltage and stores the result in the A-D  
conversion register. When an A-D conversion is completed, the  
control circuit sets the AD conversion completion bit and the AD  
interrupt request bit to “1”.  
b7  
b0  
(Address 003216)  
b7 b6 b5 b4 b3 b2 b1 b0  
Note: High-order 6 bits of address 003316 becomes “0” at reading.  
Note that the comparator is constructed linked to a capacitor, so  
set f(XIN) to at least 500 kHz during A-D conversion.  
Fig. 33 Structure of A-D control register  
Use a clock divided the main clock XIN as the internal clock φ.  
Data bus  
b0  
b7  
A-D control register  
P40/ADT  
3
A-D control register  
ADT/A-D interrupt request  
P60/SIN2/AN0  
P61/SOUT2/AN1  
(L)  
(H)  
P62/SCLK21/AN2  
Comparater  
A-D conversion register A-D conversion register  
P63/SCLK22/AN3  
10  
P64/AN4  
Resistor ladder  
AVSS  
P65/AN5  
P66/AN6  
P67/AN7  
VREF  
P56/DA1  
Fig. 34 A-D converter block diagram  
33  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
D-A CONVERTER  
The 3827 group has an on-chip D-A converter with 8-bit resolution  
and 2 channels (DAi (i=1, 2)). The D-A converter is performed by  
setting the value in the D-A conversion register. The result of D-A  
converter is output from DAi pin. When using the D-A converter,  
the corresponding port direction register bit (P56/DA1, P57/DA2)  
should be set to “0” (input status).  
b7  
b0  
D-A control register  
(DACON : address 003616)  
DA1 output enable bit/DA1 VREF  
ON/OFF switch  
DA2 output enable bit/DA2 VREF  
ON/OFF switch  
The output analog voltage V is determined by the value n (base  
10) in the D-A conversion register as follows:  
Not used (return “0” when read)  
0 : Output disabled/OFF  
1 : Output enabled/ON  
V=VREF n/256 (n=0 to 255)  
Where VREF is the reference voltage.  
At reset, the D-A conversion registers are cleared to “0016”, the  
DAi output enable bits are cleared to “0”, and DAi pin goes to  
high impedance state. The DA output is not buffered, so connect  
an external buffer when driving a low-impedance load.  
Fig. 35 Structure of D-A control register  
Data bus  
D-A1 conversion register (0034 16  
D-A2 conversion register (0035 16  
)
)
D-A i conversion register (8)  
DA i output enable bit  
R-2R resistor ladder  
P5  
P5  
6
/DA  
/DA  
1
2
7
Fig. 36 Block diagram of D-A converter  
Internal: D-A output  
External: VREF  
Reference voltage input select switch  
V
REF  
A-D conversion register  
Resistor ladder  
(10 bits)  
V
REF input  
ON/OFF switch  
D-A1 output enable switch  
D-A1 VREF ON/OFF switch  
D-A1 output  
(P5  
6
)
D-A1 conversion register (8 bits)  
R-2R resistor ladder  
D-A2 output enable switch  
D-A2 VREF ON/OFF switch  
D-A2 output  
(P5  
R-2R resistor ladder  
D-A2 conversion register (8 bits)  
7)  
Fig. 37 A-D converter, D-A converter block diagram  
34  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Up to 160 pixels can be controlled for LCD display. When the LCD  
enable bit is set to “1” after data is set in the LCD mode register,  
the segment output enable register and the LCD display RAM, the  
LCD drive control circuit starts reading the display data automati-  
cally, performs the bias control and the duty ratio control, and  
displays the data on the LCD panel.  
LCD DRIVE CONTROL CIRCUIT  
The 3827 group has the built-in Liquid Crystal Display (LCD) drive  
control circuit consisting of the following.  
LCD display RAM  
Segment output enable register  
LCD mode register  
Voltage multiplier  
Table 7 Maximum number of display pixels at each duty ratio  
Selector  
Duty ratio  
2
Maximum number of display pixel  
80 dots  
Timing controller  
Common driver  
or 8 segment LCD 10 digits  
120 dots  
Segment driver  
Bias control circuit  
3
4
or 8 segment LCD 15 digits  
160 dots  
A maximum of 40 segment output pins and 4 common output pins  
can be used.  
or 8 segment LCD 20 digits  
b7  
b0  
Segment output enable register  
(SEG : address 003816)  
Segment output enable bit 0  
0 : Output ports P30–P35  
1 : Segment output SEG18–SEG23  
Segment output enable bit 1  
0 : Output ports P36, P37  
1 : Segment output SEG24,SEG25  
Segment output enable bit 2  
0 : I/O ports P00–P05  
1 : Segment output SEG26–SEG31  
Segment output enable bit 3  
0 : I/O ports P06,P07  
1 : Segment output SEG32,SEG33  
Segment output enable bit 4  
0 : I/O port P10  
1 : Segment output SEG34  
Segment output enable bit 5  
0 : I/O ports P11–P15  
1 : Segment output SEG35–SEG39  
LCD output enable bit  
0 : Disable  
1 : Enable  
Not used (return “0” when read)  
(Do not write “1” to this bit)  
b7  
b0  
LCD mode register  
(LM : address 003916)  
Duty ratio selection bits  
0 0 : Not used  
0 1 : 2 duty (use COM0, COM1)  
1 0 : 3 duty (use COM0–COM2)  
1 1 : 4 duty (use COM0–COM3)  
Bias control bit  
0 : 1/3 bias  
1 : 1/2 bias  
LCD enable bit  
0 : LCD OFF  
1 : LCD ON  
Voltage multiplier control bit  
0 : Voltage multiplier disabled  
1 : Voltage multiplier enabled  
LCD circuit divider division ratio selection bits  
0 0 : 1 division of clock input  
0 1 : 2 division of clock input  
1 0 : 4 division of clock input  
1 1 : 8 division of clock input  
LCDCK count source selection bit (Note)  
0 : f(XCIN)/32  
1 : f(XIN)/8192 (f(XCIN)/8192 in low-speed mode)  
Note : LCDCK is a clock for a LCD timing controller.  
Fig. 38 Structure of LCD mode register  
35  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Fig. 39 Block diagram of LCD controller/driver  
36  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
VOLTAGE MULTIPLIER (3TIMES)  
The voltage multiplier performs threefold boosting. This circuit in-  
puts a reference voltage for boosting from LCD power input pin  
VL1. (However, when using a 1/2 bias, connect VL1 and VL2 and  
apply voltage by external resistor division.)  
Bias Control and Applied Voltage to LCD  
Power Input Pins  
To the LCD power input pins (VL1–VL3), apply the voltage shown in  
Table 8 according to the bias value.  
Select a bias value by the bias control bit (bit 2 of the LCD mode  
register).  
Set each bit of the segment output enable register and the LCD  
mode register in the following order for operating the voltage mul-  
tiplier.  
Table 8 Bias control and applied voltage to VL1–VL3  
1. Set the segment output enable bits (bits 0 to 5) of the seg-  
ment output enable register to “0” or “1.”  
Bias value  
Voltage value  
VL3=VLCD  
2. Set the duty ratio selection bits (bits 0 and 1), the bias con-  
trol bit (bit 2), the LCD circuit divider division ratio selection  
bits (bits 5 and 6), and the LCDCK count source selection  
bit (bit 7) of the LCD mode register to “0” or “1.”  
3. Set the LCD output enable bit (bit 6) of the segment output  
enable register to “1.”  
1/3 bias  
VL2=2/3 VLCD  
VL1=1/3 VLCD  
VL3=VLCD  
1/2 bias  
VL2=VL1=1/2 VLCD  
Note 1: VLCD is the maximum value of supplied voltage for the  
LCD panel.  
4. Set the voltage multiplier control bit (bit 4) of the LCD mode  
register to “1.”  
When voltage is input to the VL1 pin during operating the voltage  
multiplier, voltage that is twice as large as VL1 occurs at the VL2  
pin, and voltage that is three times as large as VL1 occurs at the  
VL3 pin.  
When using the voltage multiplier, apply 1.3 V Voltage 2.3 V to  
the VL1 pin.  
When not using the voltage multiplier,apply proper voltage to the  
LCD power input pins (VL1–VL3). Then set the LCD output enable  
bit to “1.”  
When the LCD output enable bit is set to “0,” the VCC voltage is  
applied to the VL3 pin inside of this microcomputer.  
The voltage multiplier control bit (bit 4 of the LCD mode register)  
controls the voltage multiplier.  
Contrast control  
Contrast control  
VCC  
VCC  
V
L3  
L2  
V
L3  
L2  
V
L3  
R1  
R2  
R4  
V
V
V
L2  
2
C
C
2
1
C
C
2
1
Open  
Open  
C
Open  
Open  
C
V
1
VL1  
VL1  
L1  
R3  
R5  
PX  
X
R1=R2=R3  
R4=R5  
1/3 bias  
1/3 bias  
when not using the voltage multiplier  
1/2 bias  
when using the voltage multiplier  
Fig. 40 Example of circuit at each bias  
37  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ment/output port pins are pulled up to the VCC (=VL3) voltage in  
the high impedance condition. The segment/I/O port pins are set  
to input ports, and VCC (=VL3) is applied to them by pull-up resis-  
tor.  
Common Pin and Duty Ratio Control  
The common pins (COM0–COM3) to be used are determined by  
duty ratio.  
Select duty ratio by the duty ratio selection bits (bits 0 and 1 of the  
LCD mode register).  
LCD Display RAM  
When releasing from reset, the VCC (VL3) voltage is output from  
the common pins.  
Address 004016 to 005316 is the designated RAM for the LCD dis-  
play. When “1” are written to these addresses, the corresponding  
segments of the LCD display panel are turned on.  
Table 9 Duty ratio control and common pins used  
Duty ratio selection bit  
Duty  
LCD Drive Timing  
Common pins used  
ratio  
Bit 1  
Bit 0  
The LCDCK timing frequency (LCD drive timing) is generated in-  
ternally and the frame frequency can be determined with the  
following equation;  
2
3
4
0
1
1
1
0
1
COM0, COM1 (Note 1)  
COM0–COM2 (Note 2)  
COM0–COM3  
(frequency of count source for LCDCK)  
f(LCDCK) =  
Notes1: COM2 and COM3 are open.  
2: COM3 is open.  
(divider division ratio for LCD)  
f(LCDCK)  
Frame frequency =  
(duty ratio)  
Segment Signal Output Pin  
Segment signal output pins are classified into the segment-only  
pins (SEG0–SEG17), the segment/output port pins (SEG18–  
SEG25), and the segment/I/O port pins (SEG26–SEG39).  
Segment signals are output according to the bit data of the LCD  
RAM corresponding to the duty ratio. After reset release, a VCC  
(=VL3) voltage is output to the segment-only pins and the seg-  
Bit  
7
6
5
4
3
2
1
0
address  
004016  
004116  
004216  
004316  
004416  
004516  
004616  
SEG  
SEG  
SEG  
SEG  
SEG  
0
2
4
6
8
SEG  
1
3
5
7
9
SEG  
SEG  
SEG  
SEG  
SEG10  
SEG11  
SEG13  
SEG15  
SEG17  
SEG19  
SEG12  
SEG14  
SEG16  
SEG18  
SEG20  
SEG22  
SEG24  
SEG26  
SEG28  
004716  
004816  
004916  
004A16  
004B16  
004C16  
004D16  
004E16  
004F16  
005016  
005116  
005216  
005316  
SEG21  
SEG23  
SEG25  
SEG27  
SEG29  
SEG31  
SEG33  
SEG35  
SEG37  
SEG39  
SEG30  
SEG32  
SEG34  
SEG36  
SEG38  
COM  
3
COM  
2
COM  
1
COM  
0
COM  
3
COM  
2
COM  
1
COM0  
Fig. 41 LCD display RAM map  
38  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Internal signal  
LCDCK timing  
1/4 duty  
Voltage level  
V
V
V
L3  
L2=VL1  
SS  
COM  
COM  
COM  
COM  
0
1
2
3
V
V
L3  
SEG  
0
SS  
OFF  
ON  
OFF  
ON  
COM  
3
COM3  
COM  
2
COM  
1
COM  
0
COM  
2
COM  
1
COM0  
1/3 duty  
V
V
V
L3  
L2=VL1  
SS  
COM  
COM  
COM  
0
1
2
V
V
L3  
SEG  
0
SS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM  
0
COM  
0
COM  
2
COM  
1
COM  
2
COM  
1
COM  
0
COM2  
1/2 duty  
V
V
V
L3  
L2=VL1  
SS  
COM  
COM  
0
1
V
V
L3  
SEG  
0
SS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM  
0
COM  
1
COM  
1
COM  
0
COM  
1
COM  
0
COM  
1
COM0  
Fig. 42 LCD drive waveform (1/2 bias)  
39  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Internal signal  
LCDCK timing  
1/4 duty  
Voltage level  
VL3  
V
VL2  
VSL1S  
COM  
0
COM  
COM  
COM  
1
2
3
VL3  
SEG  
0
VSS  
OFF  
ON  
OFF  
ON  
COM  
3
COM3  
COM  
2
COM  
1
COM  
0
COM  
2
COM  
1
COM0  
1/3 duty  
VL3  
VL2  
VSL1S  
V
COM  
COM  
COM  
0
1
2
VL3  
SEG  
0
VSS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM  
0
COM  
2
COM  
1
COM  
0
COM2  
COM  
2
COM  
1
COM0  
1/2 duty  
VL3  
VL2  
VSL1S  
V
COM  
COM  
0
1
VL3  
SEG  
0
VSS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM  
1
COM  
0
COM  
1
COM  
0
COM  
1
COM0  
COM  
1
COM0  
Fig. 43 LCD drive waveform (1/3 bias)  
40  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
value of high-order 6-bit counter  
WATCHDOG TIMER  
value of STP instruction disable bit  
value of count source selection bit.  
The watchdog timer gives a mean of returning to the reset status  
when a program cannot run on a normal loop (for example, be-  
cause of a software runaway).  
When bit 6 of the watchdog timer control register (address 003716)  
is set to “0,the STP instruction is valid. The STP instruction is dis-  
abled by rewriting this bit to “1.” At this time, if the STP instruction  
is executed, it is processed as an undefined instruction, so that a  
reset occurs inside.  
The watchdog timer consists of an 8-bit watchdog timer L and a 6-  
bit watchdog timer H. At reset or writing to the watchdog timer  
control register (address 003716), the watchdog timer is set to  
“3FFF16.” When any data is not written to the watchdog timer con-  
trol register (address 003716) after reset, the watchdog timer is in  
stop state. The watchdog timer starts to count down from “3FFF16”  
by writing an optional value into the watchdog timer control regis-  
ter (address 003716) and an internal reset occurs at an underflow.  
Accordingly, programming is usually performed so that writing to  
the watchdog timer control register (address 003716) may be  
started before an underflow. The watchdog timer does not function  
when an optional value have not written to the watchdog timer  
control register (address 003716). When address 003716 is read,  
the following values are read:  
This bit cannot be rewritten to “0” by programming. This bit is “0”  
immediately after reset.  
The count source of the watchdog timer becomes the system  
clock φ divided by 8. The detection time in this case is set to 8.19 s  
at XCIN = 32 kHz and 65.536 ms at XIN = 4 MHz.  
However, count source of high-order 6-bit timer can be connected  
to a signal divided system clock by 8 directly by writing the bit 7 of  
the watchdog timer control register (address 003716) to “1.The  
detection time in this case is set to 32 ms at XCIN = 32 kHz and  
256 µs at XIN = 4 MHz. There is no difference in the detection time  
between the middle-speed mode and the high-speed mode.  
“FF16” is set when  
watchdog timer is  
Data bus  
XCIN  
Watchdog timer count  
source selection bit  
“0”  
written to.  
Watchdog timer  
“1”  
“0”  
Internal  
system clock  
selection bit  
L (8)  
Watchdog timer  
1/16  
“1”  
H (6)  
“3F16” is set when  
watchdog timer is  
written to.  
XIN  
Undefined instruction  
Reset  
STP instruction disable bit  
STP instruction  
Internal reset  
Reset circuit  
RESETIN  
Reset release time wait  
Fig. 44 Block diagram of watchdog timer  
b7  
b0  
Watchdog timer register (address 003716  
)
WDTCON  
Watchdog timer H (for read-out of high-or
“3FFF16” is set to the watchdog timer by dress.  
STP instruction disable bit  
0
STP instruction enabled  
1 : STP instruction disabled  
Fig. 45 Structure of watchdog timer control register  
f(XIN)  
Internal  
reset signal  
2ms (f(XIN) = 4MHZ)  
Watchdog timer detection  
Fig. 46 Timing of reset output  
41  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TOUT/φ CLOCK OUTPUT FUNCTION  
The internal system clock φ or timer 2 divided by 2 (TOUT output)  
can be output from port P43 by setting the TOUT/φ output control  
bit (bit 1) of the timer 123 mode register and the TOUT/φ output  
control register. Set bit 3 of the port P4 direction register to “1”  
when outputting the clock.  
b7  
b0  
TOUT/φ output control register  
(CKOUT : address 002A16)  
TOUT/φ output control bit  
0 : φ clock output  
1 : TOUT output  
Not used (return “0” when read)  
b7  
b0  
Timer 123 mode register  
(T123M : address 002916)  
TOUT output active edge switch bit  
0 : Start on “H” output  
1 : Start on “L” output  
TOUT/φ output control bit  
0 : TOUT/φ output disable  
1 : TOUT/φ output enable  
Timer 2 write control bit  
0 : Write data in latch and timer  
1 : Write data in latch only  
Timer 2 count source selection bit  
0 : Timer 1 output  
1 : f(XIN)/16  
(or f(XCIN)/16 in low-speed mode)  
Timer 3 count source selection bit  
0 : Timer 1 output  
1 : f(XIN)/16  
(or f(XCIN)/16 in low-speed mode)  
Timer 1 count source selection bit  
0 : f(XIN)/16  
(or f(XCIN)/16 in low-speed mode)  
1 : f(XCIN)  
Not used (return “0” when read)  
: Internal clock φ is f(XCIN)/2 in low-speed mode.  
Fig. 47 Structure of TOUT/φ output-related register  
42  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
RESET CIRCUIT  
Poweron  
To reset the microcomputer, RESET pin should be held at an “L”  
level for 2 µs or more. Then the RESET pin is returned to an “H”  
level (the power source voltage should be between VCC(min.) and  
5.5 V, and the oscillation should be stable), reset is released. After  
the reset is completed, the program starts from the address con-  
tained in address FFFD16 (high-order byte) and address FFFC16  
(low-order byte). Make sure that the reset input voltage is less  
than 0.2 VCC for VCC of VCC (min.).  
(Note)  
Power source  
voltage  
RESET  
VCC  
0V  
Reset input  
voltage  
0V  
0.2VCC  
Note : Reset release voltage ; VCC=VCC(min.)  
RESET  
VCC  
Power source  
voltage detection  
circuit  
Fig. 48 Reset Circuit Example  
XIN  
φ
RESET  
Internal  
reset  
Reset address from  
vector table  
Address  
Data  
?
?
?
?
FFFC  
FFFD  
ADH, ADL  
ADL  
ADH  
SYNC  
XIN : about 8200 cycles  
Notes 1: The frequency relation of f(XIN) and f(φ) is f(XIN) = 8 • f(φ).  
2: The question marks (?) indicate an undefined state that  
depends on the previous state.  
Fig. 49 Reset Sequence  
43  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Address Register contents  
Address Register contents  
(1) Port P0 direction register  
(2) Port P1 direction register  
(3) Port P2 direction register  
(4) Port P3 output control register  
(5) Port P4 direction register  
(6) Port P5 direction register  
(7) Port P6 direction register  
(8) Port P7 direction register  
(9) Key input control register  
(10) PULL register A  
000116  
000316  
000516  
000716  
000916  
000B16  
000D16  
000F16  
001516  
001616  
001716  
001916  
001A16  
001B16  
001D16  
002016  
002116  
002216  
002316  
002416  
002516  
002616  
002716  
002816  
002916  
002A16  
002B16  
0016  
003116  
003216  
003316  
003416  
003516  
003616  
003716  
003816  
003916  
003A16  
003B16  
003C16  
003D16  
003E16  
003F16  
(28) A-D control register  
0816  
0016  
(29) A-D conversion register  
(low-order)  
(30) A-D conversion register  
(high-order)  
(31) D-A1 conversion register  
(32) D-A2 conversion register  
(33) D-A control register  
XX16  
0016  
XX16  
0016  
0016  
0016  
0016  
0016  
0016  
0 0 1 1 1 1 1 1  
0016  
(34) Watchdog timer control register  
(35) Segment output enable register  
(36) LCD mode register  
0016  
0016  
0016  
0016  
3F16  
(37) Interrupt edge selection register  
(38) CPU mode register  
0016  
0 1 0 0 1 0 0 0  
(11) PULL register B  
0016  
1 0 0 0 0 0 0 0  
(12) Serial I/O1 status register  
(13) Serial I/O1 control register  
(14) UART control register  
(15) Serial I/O2 control register  
(16) Timer X (low-order)  
(17) Timer X (high-order)  
(18) Timer Y (low-order)  
(19) Timer Y (high-order)  
(20) Timer 1  
(39) Interrupt request register 1  
(40) Interrupt request register 2  
(41) Interrupt control register 1  
(42) Interrupt control register 2  
(43) Processor status register  
(44) Program counter  
0016  
0016  
0016  
0016  
0016  
1 1 1 0 0 0 0 0  
0016  
FF16  
FF16  
FF16  
FF16  
FF16  
0116  
FF16  
0016  
0016  
0016  
0016  
0016  
1
(PS) ✕ ✕ ✕ ✕ ✕  
✕ ✕  
Contents of address FFFD16  
Contents of address FFFC16  
(PCH)  
(PCL)  
(45) Watchdog timer (high-order)  
(46) Watchdog timer (low-order)  
3F16  
FF16  
(21) Timer 2  
(22) Timer 3  
(23) Timer X mode register  
(24) Timer Y mode register  
(25) Timer 123 mode register  
(26) TOUT/φ output control register  
(27) PWM control register  
Note: The contents of all other register and RAM are undefined after reset, so they must be initialized by software.  
: Undefined  
Fig. 50 Initial status at reset  
44  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
CLOCK GENERATING CIRCUIT  
Oscillation Control  
The 3827 group has two built-in oscillation circuits. An oscillation  
circuit can be formed by connecting a resonator between XIN and  
XOUT (XCIN and XCOUT). Use the circuit constants in accordance  
with the resonator manufacturer's recommended values. No exter-  
nal resistor is needed between XIN and XOUT since a feed-back  
resistor exists on-chip. However, an external feed-back resistor is  
needed between XCIN and XCOUT.  
(1) Stop Mode  
If the STP instruction is executed, the internal clock φ stops at an  
“H” level, and XIN and XCIN oscillators stop. The value set to the  
timer latch 1 and the timer latch 2 is loaded automatically to the  
timer 1 and the timer 2. Thus, a value generated time for stabiliz-  
ing oscillation should be set to the timer 1 latch and the timer 2  
latch (low-order 8 bits for the timer 1, high-order 8 bits for the timer  
2) before executing the STP instruction.  
To supply a clock signal externally, input it to the XIN pin and make  
the XOUT pin open. The sub-clock XCIN-XCOUT oscillation circuit  
cannot directly input clocks that are externally generated. Accord-  
ingly, be sure to cause an external resonator to oscillate.  
Immediately after poweron, only the XIN oscillation circuit starts  
oscillating, and XCIN and XCOUT pins go to high impedance state.  
Either XIN or XCIN divided by 16 is input to timer 1 as count  
source, and the output of timer 1 is connected to timer 2. The bits  
of the timer 123 mode register except bit 4 are cleared to “0,” Set  
the timer 1 and timer 2 interrupt enable bits to disabled (“0”) before  
executing the STP instruction. Oscillator restarts at reset or when  
an external interrupt is received, but the internal clock φ is not sup-  
plied to the CPU until timer 2 underflows..This allows timer for the  
clock circuit oscillation to stabilize.  
Frequency Control  
(1) Middle-speed Mode  
The internal clock φ is the frequency of XIN divided by 8.  
After reset, this mode is selected.  
(2) Wait Mode  
If the WIT instruction is executed, the internal clock φ stops at an  
“H” level. The states of XIN and XCIN are the same as the state be-  
fore the executing the WIT instruction. The internal clock restarts  
at reset or when an interrupt is received. Since the oscillator does  
not stop, normal operation can be started immediately after the  
clock is restarted.  
(2) High-speed Mode  
The internal clock φ is half the frequency of XIN.  
(3) Low-speed Mode  
The internal clock φ is half the frequency of XCIN.  
A low-power consumption operation can be realized by stopping  
the main clock XIN in this mode. To stop the main clock, set bit 5  
of the CPU mode register to “1”.  
When the main clock XIN is restarted, set enough time for oscil-  
lation to stabilize by programming.  
Note: If you switch the mode between middle/high-speed and low-  
speed, stabilize both XIN and XCIN oscillations. The  
sufficient time is required for the sub-clock to stabilize, es-  
pecially immediately after poweron and at returning from  
stop mode. When switching the mode between middle/high-  
speed and low-speed, set the frequency on condition that  
f(XIN)>3f(XCIN).  
X
CIN  
X
COUT  
XIN  
XOUT  
Rf  
Rd  
CCOUT  
C
IN  
COUT  
C
CIN  
Fig. 51 Ceramic resonator circuit  
X
CIN  
XCOUT  
XIN  
XOUT  
Rf  
Open  
Rd  
External oscillation  
circuit  
CCOUT  
CCIN  
VCC  
VSS  
Fig. 52 External clock input circuit  
45  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
XCOUT  
XCIN  
Timer 1 count  
source selection  
bit  
Timer 2 count  
source selection  
bit  
Internal system clock selection bit  
XIN  
XOUT  
(Note)  
Low-speed mode  
“0”  
“1”  
“0”  
Timer 1  
Timer 2  
1/2  
1/2  
1/4  
“1”  
Middle-/High-speed mode  
“0”  
“1”  
Main clock division ratio selection bit  
Middle-speed mode  
“1”  
Timing φ  
(Internal clock)  
“0”  
High-speed mode  
or Low-speed mode  
Main clock stop bit  
Q
S
R
S
R
Q
Q
S
R
WIT  
instruction  
STP instruction  
STP instruction  
Reset  
Interrupt disable flag I  
Interrupt request  
Note: When selecting the XC oscillation, set the port XC switch bit to “1” .  
Fig. 53 Clock generating circuit block diagram  
46  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Reset  
CM  
“1”  
6
Middle-speed mode (f(φ) =1 MHz)  
High-speed mode (f(φ) =4 MHz)  
“0”  
CM  
CM  
CM  
CM  
7
6
5
4
=0(8 MHz selected)  
=1(Middle-speed)  
=0(8 MHz oscillating)  
=0(32 kHz stopped)  
CM7=0(8 MHz selected)  
CM6=0(High-speed)  
CM5=0(8 MHz oscillating)  
CM4=0(32 kHz stopped)  
“0”  
4
CM  
“1”  
“0”  
6
CM  
“1”  
CM  
“1”  
6
Middle-speed mode (f(φ) =1 MHz)  
High-speed mode (f(φ) =4 MHz)  
“0”  
CM7=0(8 MHz selected)  
CM6=1(Middle-speed)  
CM7=0(8 MHz selected)  
CM6=0(High-speed)  
CM5=0(8 MHz oscillating)  
CM4=1(32 kHz oscillating)  
CM5=0(8 MHz oscillating)  
CM4=1(32 kHz oscillating)  
CM  
“1”  
6
Low-speed mode (f(φ) =16 kHz)  
Low-speed mode (f(φ) =16 kHz)  
“0”  
CM7=1(32 kHz selected)  
CM6=1(Middle-speed)  
CM7=1(32 kHz selected)  
CM6=0(High-speed)  
b7  
b4  
CM5=0(8 MHz oscillating)  
CM4=1(32 kHz oscillating)  
CM5=0(8 MHz oscillating)  
CM4=1(32 kHz oscillating)  
CPU mode register  
(CPUM : address 003B16  
)
CM  
CM  
CM  
CM  
4
: Port Xc switch bit  
0: I/O port function  
1: XCIN–XCOUT oscillating function  
: Main clock (XIN–XOUT) stop bit  
“0”  
5
CM  
“0”  
6
“1”  
5
CM  
“1”  
0: Oscillating  
1: Stopped  
6
: Main clock division ratio selection bit  
Low-power dissipation  
mode (f(φ) =16 kHz)  
Low-power dissipation  
mode (f(φ) =16 kHz)  
CM  
“1”  
6
0: f(XIN)/2 (high-speed mode)  
1: f(XIN)/8 (middle-speed mode)  
“0”  
CM7=1(32 kHz selected)  
CM6=1(Middle-speed)  
CM5=1(8 MHz stopped)  
CM4=1(32 kHz oscillating)  
CM  
CM  
CM  
CM  
7
=1(32 kHz selected)  
7
: Internal system clock selection bit  
6=0(High-speed)  
5=1(8 MHz stopped)  
0: XIN–XOUT selected  
(middle-/high-speed mode)  
1: XCIN–XCOUT selected  
(low-speed mode)  
4=1(32 kHz oscillating)  
1 : Switch the mode by the allows shown between the mode blocks. (Do not switch between the mode directly without an allow.)  
2 : The all modes can be switched to the stop mode or the wait mode and returned to the source mode when the stop mode or the wait mode is ended.  
3 : Timer and LCD operate in the wait mode.  
Notes  
4 : When the stop mode is ended, wait time can be set by connecting timer 1 and timer 2 in middle-/high-speed mode.  
5 : When the stop mode is ended, wait time can be set by connecting timer 1 and timer 2 in low-speed mode.  
6 : Wait until oscillation stabilizes after oscillating the main clock X IN before the switching from the low-speed mode to middle-/high-speed mode.  
7 : The example assumes that 8 MHz is being applied to the XIN pin and 32 kHz to the XCIN pin. φ indicates the internal clock.  
Fig. 54 State transitions of system clock  
47  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
NOTES ON PROGRAMMING  
Serial I/O  
Processor Status Register  
In clock synchronous serial I/O, if the receive side is using an ex-  
ternal clock and it is to output the SRDY signal, set the transmit  
enable bit, the receive enable bit, and the SRDY output enable bit  
to “1”.  
The contents of the processor status register (PS) after a reset are  
undefined, except for the interrupt disable flag (I) which is “1”. Af-  
ter a reset, initialize flags which affect program execution.  
In particular, it is essential to initialize the index X mode (T) and  
the decimal mode (D) flags because of their effect on calculations.  
Serial I/O1 continues to output the final bit from the TXD pin after  
transmission is completed.  
In serial I/O2, the SOUT2 pin goes to high impedance state after  
transmission is completed.  
Interrupt  
The contents of the interrupt request bits do not change immedi-  
ately after they have been written. After writing to an interrupt  
request register, execute at least one instruction before performing  
a BBC or BBS instruction.  
A-D Converter  
The comparator uses internal capacitors whose charge will be lost  
if the clock frequency is too low.  
Make sure that f(XIN) is at least 500 kHz during an A-D conver-  
Decimal Calculations  
sion.  
To calculate in decimal notation, set the decimal mode flag (D)  
to “1”, then execute an ADC or SBC instruction. After executing  
an ADC or SBC instruction, execute at least one instruction be-  
fore executing a SEC, CLC, or CLD instruction.  
Do not execute the STP or WIT instruction during an A-D conver-  
sion.  
Instruction Execution Time  
The instruction execution time is obtained by multiplying the fre-  
quency of the internal clock φ by the number of cycles needed to  
execute an instruction.  
• In decimal mode, the values of the negative (N), overflow (V),  
and zero (Z) flags are invalid.  
The number of cycles required to execute an instruction is shown  
in the list of machine instructions.  
Timers  
If a value n (between 0 and 255) is written to a timer latch, the fre-  
The frequency of the internal clock φ is half of the XIN frequency.  
quency division ratio is 1/(n + 1).  
Multiplication and Division Instructions  
The index mode (T) and the decimal mode (D) flags do not affect  
the MUL and DIV instruction.  
The execution of these instructions does not change the contents  
of the processor status register.  
Ports  
The contents of the port direction registers cannot be read.  
The following cannot be used:  
• The data transfer instruction (LDA, etc.)  
• The operation instruction when the index X mode flag (T) is “1”  
• The addressing mode which uses the value of a direction regis-  
ter as an index  
• The bit-test instruction (BBC or BBS, etc.) to a direction register  
• The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a  
direction register  
Use instructions such as LDM and STA, etc., to set the port direc-  
tion registers.  
48  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
DATA REQUIRED FOR MASK ORDERS  
The following are necessary when ordering a mask ROM produc-  
tion:  
ROM PROGRAMMING METHOD  
The built-in PROM of the blank One Time PROM version and built-  
in EPROM version can be read or programmed with a  
general-purpose PROM programmer using a special programming  
adapter. Set the address of PROM programmer in the user ROM  
area.  
(1) Mask ROM Order Confirmation Form  
(2) Mark Specification Form  
(3) Data to be written to ROM, in EPROM form (three identical  
copies)  
Table 10 Special programming adapter  
DATA REQUIRED FOR ROM WRITING OR-  
DERS  
The following are necessary when ordering a ROM writing:  
(1) ROM Writing Confirmation Form  
(2) Mark Specification Form  
Package  
100PFB-A  
100P6Q-A  
100P6S-A  
100D0  
Name of Programming Adapter  
Under development (PCA4738H-100A)  
PCA4738G-100A  
PCA4738F-100A  
PCA4738L-100A  
(3) Data to be written to ROM, in EPROM form (three identical  
copies)  
The PROM of the blank One Time PROM version is not tested or  
screened in the assembly process and following processes. To en-  
sure proper operation after programming, the procedure shown in  
Figure 55 is recommended to verify programming.  
Programming with PROM  
programmer  
Screening (Caution)  
(150°C for 40 hours)  
Verification with  
PROM programmer  
Functional check in  
target device  
The screening temperature is far higher  
than the storage temperature. Never  
expose to 150 °C exceeding 100 hours.  
Caution :  
Fig. 55 Programming and testing of One Time PROM version  
49  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS  
ABSOLUTE MAXIMUM RATINGS  
Table 11 Absolute maximum ratings  
Symbol  
Parameter  
Power source voltage  
Conditions  
Ratings  
Unit  
V
VCC  
–0.3 to 7.0  
VI  
Input voltage P00–P07, P10–P17, P20–P27,  
P41–P47, P50–P57, P60–P67  
–0.3 to VCC +0.3  
V
VI  
VI  
VI  
VI  
VI  
VI  
VI  
VO  
Input voltage P40, P71–P77  
Input voltage P70  
–0.3 to 7.0  
–0.3 to VCC +0.3  
–0.3 to VL2  
V
V
V
V
V
V
V
V
V
V
Input voltage VL1  
All voltages are based on VSS.  
Output transistors are cut off.  
Input voltage VL2  
VL1 to VL3  
Input voltage VL3  
VL2 to 7.0  
Input voltage C1, C2  
Input voltage RESET, XIN  
Output voltage C1, C2  
–0.3 to 7.0  
–0.3 to VCC +0.3  
–0.3 to 7.0  
–0.3 to VCC  
–0.3 to VL3  
At output port  
VO  
Output voltage P00–P07, P10–P15, P30–P37  
At segment output  
Output voltage P16, P17, P20–P27, P41–P47,  
P50–P57, P60–P67, P80, P81  
–0.3 to VCC +0.3  
V
VO  
VO  
–0.3 to 7.0  
–0.3 to 7.0  
–0.3 to VL3  
–0.3 to VCC +0.3  
300  
V
V
Output voltage P40, P71–P77  
Output voltage VL3  
VO  
VO  
V
Output voltage VL2, SEG0–SEG17  
Output voltage XOUT  
VO  
V
Pd  
Ta = 25°C  
mW  
°C  
°C  
Power dissipation  
Operating temperature  
–20 to 85  
Topr  
Tstg  
–40 to 125  
Storage temperature  
RECOMMENDED OPERATING CONDITIONS  
Table 12 Recommended operating conditions (VCC = 2.5 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
5.0  
5.0  
5.0  
0
Symbol  
Parameter  
Unit  
V
Min.  
4.0  
2.2  
2.2  
Max.  
5.5  
High-speed mode f(XIN) = 8 MHz  
Middle-speed mode f(XIN) = 8 MHz  
Low-speed mode  
VCC  
Power source voltage  
Power source voltage  
5.5  
5.5  
VSS  
V
V
V
V
VREF  
AVSS  
VIA  
A-D, D-A conversion reference voltage  
Analog power source voltage  
2.7  
VCC+0.3  
0
Analog input voltage AN0–AN7  
AVSS  
VCC  
VCC  
“H” input voltage  
P00–P07, P10–P17, P40, P43, P45, P47, P50–P53,  
P56, P61, P64–P67, P71–P77  
VIH  
VIH  
0.7 VCC  
V
V
“H” input voltage  
P20–P27, P41, P42, P44, P46, P54, P55, P57, P60,  
P62, P63, P70  
0.8 VCC  
VCC  
VIH  
VIH  
“H” input voltage  
“H” input voltage  
Linput voltage  
RESET  
XIN  
0.8 VCC  
0.8 VCC  
VCC  
VCC  
V
V
P00–P07, P10–P17, P40, P43, P45, P47, P50–P53,  
P56, P61, P64–P67, P71–P77  
VIL  
VIL  
V
V
0
0
0.3 VCC  
0.2 VCC  
Linput voltage  
P20–P27, P41, P42, P44, P46, P54, P55, P57, P60,  
P62, P63, P70  
VIL  
VIL  
Linput voltage  
Linput voltage  
0
0
0.2 VCC  
0.2 VCC  
V
V
RESET  
XIN  
50  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 13 Recommended operating conditions (VCC = 2.2 to 5.5 V, Ta = 20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
Max.  
–20  
–20  
20  
ΣIOH(peak)  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
IOH(peak)  
“H” total peak output current  
“H” total peak output current  
Ltotal peak output current  
Ltotal peak output current  
Ltotal peak output current  
“H” total average output current  
“H” total average output current  
Ltotal average output current  
Ltotal average output current  
Ltotal average output current  
“H” peak output current  
P00–P07, P10–P17, P20–P27, P30–P37 (Note 1)  
P41–P47, P50–P57, P60–P67 (Note 1)  
P00–P07, P10–P17, P20–P27, P30–P37 (Note 1)  
P41–P47, P50–P57, P60–P67 (Note 1)  
P40, P71–P77 (Note 1)  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
20  
80  
–10  
–10  
10  
P00–P07, P10–P17, P20–P27, P30–P37 (Note 1)  
P41–P47, P50–P57, P60–P67 (Note 1)  
P00–P07, P10–P17, P20–P27, P30–P37 (Note 1)  
P41–P47, P50–P57, P60–P67 (Note 1)  
P40, P71–P77 (Note 1)  
10  
40  
–1.0  
P00–P07, P10–P15, P30–P37 (Note 2)  
“H” peak output current  
P16, P17, P20–P27, P41–P47, P50–P57, P60–P67  
(Note 2)  
IOH(peak)  
IOL(peak)  
IOL(peak)  
–5.0  
5.0  
mA  
mA  
Lpeak output current  
Lpeak output current  
P00–P07, P10–P15, P30–P37 (Note 2)  
P16, P17, P20–P27, P41–P47, P50–P57, P60–P67  
(Note 2)  
10  
mA  
IOL(peak)  
IOH(avg)  
IOH(avg)  
IOL(avg)  
Lpeak output current  
20  
mA  
mA  
mA  
mA  
P40, P71–P77 (Note 2)  
“H” average output current  
“H” average output current  
L” average output current  
Laverage output current  
–0.5  
–2.5  
2.5  
P00–P07, P10–P15, P30–P37 (Note 3)  
P16, P17, P20–P27, P41–P47, P50–P57, P60–P67  
P00–P07, P10–P15, P30–P37 (Note 3)  
P16, P17, P20–P27, P41–P47, P50–P57, P60–P67  
(Note 3)  
IOL(avg)  
IOL(avg)  
5.0  
10  
mA  
mA  
Laverage output current  
P40, P71–P77 (Note 3)  
Notes1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured  
over 100 ms. The total peak current is the peak value of all the currents.  
2: The peak output current is the peak current flowing in each port.  
3: The average output current is an average value measured over 100 ms.  
51  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 14 Recommended operating conditions (Mask ROM version) (VCC = 2.2 to 5.5 V, Ta = 20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
(4.0 V VCC 5.5 V)  
Unit  
MHz  
MHz  
Min.  
Typ.  
Max.  
4.0  
f(CNTR0)  
f(CNTR1)  
Input frequency for timers X and Y  
(duty cycle 50%)  
(10VCC  
(2.2 V VCC 4.0 V)  
–4)/9  
High-speed mode  
(4.0 V VCC 5.5 V)  
8.0  
MHz  
Main clock input oscillation frequency  
(Note 1)  
f(XIN)  
High-speed mode  
(2.2 V VCC 4.0 V)  
(20VCC  
MHz  
–8)/9  
Middle-speed mode  
8.0  
50  
MHz  
kHz  
f(XCIN)  
Sub-clock input oscillation frequency (Notes 1, 2)  
32.768  
Notes1: When the oscillation frequency has a duty cycle of 50%.  
2: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency on condition that f(XCIN) < f(XIN)/3.  
Table 15 Recommended operating conditions (PROM version) (VCC = 2.5 to 5.5 V, Ta = 20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
(4.0 V VCC 5.5 V)  
Unit  
MHz  
MHz  
Min.  
Typ.  
Max.  
4.0  
f(CNTR0)  
f(CNTR1)  
Input frequency for timers X and Y  
(duty cycle 50%)  
(2VCC)  
(2.5 V VCC 4.0 V)  
–4  
High-speed mode  
(4.0 V VCC 5.5 V)  
8.0  
MHz  
Main clock input oscillation frequency  
(Note 1)  
f(XIN)  
High-speed mode  
(2.5 V VCC 4.0 V)  
(4VCC)  
MHz  
–8  
Middle-speed mode  
8.0  
50  
MHz  
kHz  
f(XCIN)  
Sub-clock input oscillation frequency (Notes 1, 2)  
32.768  
Notes1: When the oscillation frequency has a duty cycle of 50%.  
2: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency on condition that f(XCIN) < f(XIN)/3.  
52  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 16 Electrical characteristics (VCC =4.0 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Symbol Parameter Test conditions  
IOH = –1 mA  
Limits  
Typ.  
Unit  
Max.  
Min.  
VCC–2.0  
V
V
“H” output voltage  
VOH  
IOH = –0.25 mA  
VCC = 2.2 V  
P00–P07, P10–P15, P30–P37  
VCC–0.8  
IOH = –5 mA  
VCC–2.0  
VCC–0.5  
V
V
“H” output voltage  
P16, P17, P20–P27, P41–P47, P50–P57,  
P60–P67 (Note 1)  
IOH = –1.5 mA  
VOH  
VOL  
VOL  
IOH = –1.25 mA  
VCC = 2.2 V  
VCC–0.8  
V
IOL = 5 mA  
2.0  
0.5  
V
V
Loutput voltage  
P00–P07, P10–P15, P30–P37  
IOL = 1.5 mA  
IOL = 1.25 mA  
VCC = 2.2 V  
0.8  
V
2.0  
0.5  
V
V
IOL = 10 mA  
IOL = 3.0 mA  
Loutput voltage  
P16, P17, P20–P27, P41–P47, P50–P57,  
P60–P67  
IOL = 2.5 mA  
VCC = 2.2 V  
V
0.8  
0.5  
0.3  
IOL = 10 mA  
V
V
Loutput voltage  
P40, P71–P77  
VOL  
IOL = 5 mA  
VCC = 2.2 V  
Hysteresis  
VT+ – VT–  
0.5  
V
INT0–INT2, ADT, CNTR0, CNTR1, P20–P27  
Hysteresis  
SCLK, RXD  
RESET  
0.5  
0.5  
VT+ – VT–  
VT+ – VT–  
V
V
Hysteresis  
“H” input current  
P00–P07, P10–P17, P20–P27, P40–P47,  
P50–P57, P60–P67, P70–P77  
IIH  
5.0  
5.0  
µA  
VI = VCC  
µA  
µA  
IIH  
IIH  
“H” input current RESET  
“H” input current XIN  
VI = VCC  
VI = VCC  
4.0  
VI = VSS  
Pull-ups “off”  
–5.0  
–240.0  
–40.0  
µA  
µA  
µA  
Linput current  
VCC = 5 V, VI = VSS  
Pull-ups “on”  
P00–P07, P10–P17, P20–P27,P40–P47,  
P50–P57, P60–P67, P70–P77  
IIL  
–60.0  
–5.0  
–120.0  
–20.0  
VCC = 2.2 V, VI = VSS  
Pull-ups “on”  
µA  
µA  
µA  
Linput current  
Linput current RESET  
Linput current  
P70  
–5.0  
–5.0  
IIL  
IIL  
IIL  
VI = VSS  
VI = VSS  
XIN  
–4.0  
VCC = 5.0 V, VO = VCC, Pull-ups “on”  
Output transistors “off”  
–60.0  
–5.0  
–120.0  
–240.0  
–40.0  
5.0  
µA  
µA  
µA  
µA  
Output load current  
P30–P37  
ILOAD  
ILEAK  
VCC = 2.2 V, VO = VCC, Pull-ups “on”  
Output transistors “off”  
–20.0  
VO = VCC, Pull-ups “off”  
Output transistors “off”  
Output leak current  
P30–P37  
VO = VSS, Pull-ups “off”  
Output transistors “off”  
–5.0  
53  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 17 Electrical characteristics (VCC =2.2 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
V
Min.  
2.0  
Max.  
5.5  
VRAM  
RAM retention voltage  
At clock stop mode  
• High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz  
6.4  
1.6  
13  
mA  
mA  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
A-D converter in operating  
• High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz (in WIT state)  
f(XCIN) = 32.768 kHz  
3.2  
Output transistors “off”  
A-D converter in operating  
• Low-speed mode, VCC = 5 V, Ta 55°C  
f(XIN) = stopped  
35  
20  
70  
40  
µA  
µA  
µA  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
ICC  
Power source current  
• Low-speed mode, VCC = 5 V, Ta = 25°C  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors “off”  
• Low-speed mode, VCC = 3 V, Ta 55°C  
f(XIN) = stopped  
15.0  
22.0  
9.0  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
• Low-speed mode, VCC = 3 V, Ta 25°C  
f(XIN) = stopped  
4.5  
0.1  
µA  
µA  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors “off”  
All oscillation stopped  
(in STP state)  
Output transistors “off”  
Ta = 25 °C  
Ta = 85 °C  
1.0  
10.0  
Power source voltage  
1.8  
3.0  
VL1  
IL1  
When using voltage multiplier  
VL1 = 1.8 V  
2.3  
6.0  
V
1.3  
Power source current (VL1)  
(Note)  
µA  
10.0  
VL1 < 1.3 V  
50.0  
Note: When the voltage multiplier control bit of the LCD mode register (bit 4 at address 003916) is “1”.  
54  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 18 A-D converter characteristics  
(VCC = 2.2 to 5.5 V, VSS = 0 V, Ta = 20 to 85°C, 4 MHz f(XIN) 8 MHz, in middle/high-speed mode unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
10  
Resolution  
Bits  
LSB  
LSB  
Absolute accuracy  
(excluding quantization error)  
VCC VREF = 4 V  
±2.5  
±4.0  
VCC VREF = 2.7 V  
31  
(Note)  
tCONV  
Conversion time  
f(XIN) = 4 MHz  
30.5  
50  
µs  
RLADDER  
IVREF  
IIA  
Ladder resistor  
35  
150  
0.5  
kΩ  
µA  
µA  
200  
5.0  
Reference power source input current  
Analog port input current  
VREF = 5 V  
Note: When an internal trigger is used in middle-speed mode, it is 34 µs.  
Table 19 D-A converter characteristics  
(VCC = 2.2 to 5.5 V, VCC = VREF, VSS = AVSS = 0 V, Ta = 20 to 85°C, in middle/high-speed mode unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
8
Bits  
%
Resolution  
1.0  
2.0  
VCC = VREF = 5 V  
Absolute accuracy  
VCC = VREF = 2.7 V  
%
Setting time  
µs  
tsu  
3
Output resistor  
1
4
kΩ  
mA  
RO  
2.5  
(Note)  
IVREF  
Reference power source input current  
6.0  
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding currents flowing through  
the A-D resistance ladder.  
55  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 20 Timing requirements 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
2
Max.  
tw(RESET)  
tc(XIN)  
Reset input “Lpulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input “H” pulse width  
Main clock input “Lpulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
CNTR0, CNTR1 input “Lpulse width  
INT0 to INT2 input “H” pulse width  
INT0 to INT2 input “Lpulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
250  
105  
105  
80  
80  
tc(SCLK1)  
twH(SCLK1)  
twL(SCLK1)  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “Lpulse width (Note)  
Serial I/O1 input set up time  
800  
370  
370  
220  
100  
1000  
400  
400  
200  
200  
t
su(RXD–SCLK1)  
th(SCLK1–RXD) Serial I/O1 input hold time  
tc(SCLK2)  
Serial I/O2 clock input cycle time (Note)  
twH(SCLK2)  
twL(SCLK2)  
Serial I/O2 clock input “H” pulse width (Note)  
Serial I/O2 clock input “Lpulse width (Note)  
Serial I/O2 input set up time  
t
su(SIN2–SCLK2)  
th(SCLK2–SIN2) Serial I/O2 input hold time  
Note: When bit 6 of address 001A16 is “1”.  
Divide this value by four when bit 6 of address 001A16 is “0”.  
Table 21 Timing requirements 2 (VCC = 2.2 to 4.0 V, VSS = 0 V, Ta = 20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
2
Reset input “Lpulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
125  
Main clock input cycle time (XIN input)  
Main clock input “H” pulse width  
Main clock input “Lpulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
CNTR0, CNTR1 input “Lpulse width  
INT0 to INT2 input “H” pulse width  
INT0 to INT2 input “Lpulse width  
twH(XIN)  
twL(XIN)  
45  
40  
900/(VCC–0.4)  
tc(CNTR)/2–20  
tc(CNTR)/2–20  
230  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
tc(SCLK1)  
230  
2000  
Serial I/O1 clock input cycle time (Note)  
twH(SCLK1)  
twL(SCLK1)  
950  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “Lpulse width (Note)  
ns  
ns  
950  
t
su(R  
X
D–SCLK1  
)
Serial I/O1 input set up time  
400  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
th(SCLK1–RXD) Serial I/O1 input hold time  
200  
tc(SCLK2)  
Serial I/O2 clock input cycle time (Note)  
2000  
twH(SCLK2)  
twL(SCLK2)  
Serial I/O2 clock input “H” pulse width (Note)  
Serial I/O2 clock input “Lpulse width (Note)  
Serial I/O2 input set up time  
950  
950  
t
su(SIN2–SCLK2  
)
400  
th(SCLK2–SIN2) Serial I/O2 input hold time  
300  
Note: When bit 6 of address 001A16 is “1”.  
Divide this value by four when bit 6 of address 001A16 is “0”.  
56  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 22 Switching characteristics 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
Max.  
140  
tC (SCLK1)/2–30  
tC (SCLK1)/2–30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twH(SCLK1)  
twL(SCLK1)  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “Lpulse width  
td(SCLK1–TXD) Serial I/O1 output delay time (Note 1)  
tv(SCLK1–TXD) Serial I/O1 output valid time (Note 1)  
–30  
tr(SCLK1)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “Lpulse width  
Serial I/O2 output delay time  
30  
30  
tf(SCLK1)  
twH(SCLK2)  
twL(SCLK2)  
t
C
(SCLK2)/2–160  
t
C (SCLK2)/2–160  
t
t
d(SCLK2–SOUT2  
v(SCLK2–SOUT2  
)
0.2 t  
C
(SCLK2  
)
)
Serial I/O2 output valid time  
0
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
40  
30  
30  
10  
10  
Notes1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: XOUT and XCOUT pins are excluded.  
Table 23 Switching characteristics 2 (VCC = 2.2 to 4.0 V, VSS = 0 V, Ta = 20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
350  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “Lpulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O1 output valid time (Note 1)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “Lpulse width  
Serial I/O2 output delay time  
tC (SCLK1)/2–50  
tC (SCLK1)/2–50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twH(SCLK1)  
twL(SCLK1)  
td(SCLK1–TXD)  
tv(SCLK1–TXD)  
tr(SCLK1)  
–30  
50  
50  
tf(SCLK1)  
twH(SCLK2)  
twL(SCLK2)  
t
C
(SCLK2)/2–240  
t
C (SCLK2)/2–240  
t
t
d(SCLK2–SOUT2  
v(SCLK2–SOUT2  
)
0.2 t  
C
(SCLK2  
)
Serial I/O2 output valid time  
)
0
Serial I/O2 clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
50  
50  
50  
20  
20  
Notes1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: XOUT and XCOUT pins are excluded.  
57  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Measurement output pin  
1 kΩ  
100 pF  
Measurement output pin  
100 pF  
CMOS output  
N-channel open-drain output (Note)  
Note : When bit 4 of the UART  
control register (address 001B16) is “1”.  
(N-channel open-drain output mode)  
Fig. 56 Circuit for measuring output switching characteristics  
58  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
tC (CNTR)  
tWL (CNTR)  
tWH (CNTR)  
CNTR0, CNTR1  
0.8VCC  
0.2VCC  
tWL (INT)  
tWH (INT)  
INT0–INT3  
0.8VCC  
0.2VCC  
tW (RESET)  
0.8VCC  
RESET  
0.2VCC  
tC (XIN)  
tWL (XIN)  
tWH (XIN)  
0.8VCC  
X
IN  
0.2VCC  
tC  
(SCLK  
)
tr  
tf  
tWL (SCLK  
)
tWH (SCLK)  
0.8VCC  
S
CLK  
0.2VCC  
tsu (R  
X
D-SCLK  
)
th (SCLK-RXD)  
0.8VCC  
0.2VCC  
RXD  
t
d
(SCLK-T  
X
D)  
tv (SCLK-TXD)  
TXD  
Fig. 57 Timing diagram  
59  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Mask ROM number  
MASK ROM ORDER CONFIRMATION FORM  
GZZ-SH52-92B<85A0>  
740 FAMILY MASK ROM CONFIRMATION FORM  
Date:  
Section head Supervisor  
SINGLE-CHIP MICROCOMPUTER M38277M8MXXXFP/GP/HP  
MITSUBISHI ELECTRIC  
signature  
signature  
Note : Please fill in all items marked .  
Submitted by  
Supervisor  
TEL  
(
Company  
name  
)
Customer  
Date  
issued  
Date:  
1. Confirmation  
Specify the name of the product being ordered and the type of EPROMs submitted.  
Three EPROMs are required for each pattern.  
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We  
shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data.  
Thus, extreme care must be taken to verify the data in the submitted EPROMs.  
Product name:  
M38277M8MXXXFP  
M38277M8MXXXGP  
M38277M8MXXXHP  
Checksum code for entire EPROM  
(hexadecimal notation)  
EPROM type (indicate the type used)  
27512  
In the address space of the microcomputer,  
the internal ROM area is from address 808016  
to FFFD16. The reset vector is stored in  
addresses FFFC16 and FFFD16.  
EPROM address  
000016  
Product name  
ASCII code :  
‘M38277M8M’  
000F16  
001016  
807F16  
808016  
Data  
ROM 32K-130 bytes  
FFFD16  
FFFE16  
FFFF16  
(1) Set the data in the unused area (the shaded area of the  
diagram) to “FF16”.  
Address  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
Address  
‘M’ = 4D16  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
‘ M ’ =4D16  
FF16  
(2) The ASCII codes of the product name “M38277M8M” must  
be entered in addresses 000016 to 000816. And set data  
“FF16” in addresses 000916 to 000F16. The ASCII codes  
and addresses are listed to the right in hesadecimal  
notation.  
‘3’ = 3316  
‘8’ = 3816  
‘2’ = 3216  
‘7’ = 3716  
‘7’ = 3716  
‘M’ = 4D16  
‘8’ = 3816  
FF16  
FF16  
FF16  
FF16  
FF16  
FF16  
(1/2)  
60  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Mask ROM number  
GZZ-SH52-92B<85A0>  
740 FAMILY MASK ROM CONFIRMATION FORM  
SINGLE-CHIP MICROCOMPUTER M38277M8MXXXFP/GP/HP  
MITSUBISHI ELECTRIC  
We recommend the use of the following pseudo-command to set the start address of the assembier source program because  
ASCII codes of the product name are written to addresses 000016 to 000816 of EPROM.  
EPROM type  
27512  
*=$0000  
.BYTE‘M38277M8M’  
The pseudo-command  
Note: If the name of the product written to the EPROMs does not match the name of the mask ROM confirmation form, the ROM  
will not be processed.  
2. Mark specification  
Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate mark  
specification form (100P6S for M38277M8MXXXFP, 100P6Q for M38277M8MXXXGP, 100PFB for M38277M8MXXXHP)  
and attach it to the mask ROM confirmation form.  
3. Usage conditions  
Please answer the following questions about usage for use in our product inspection :  
(1) How will you use the XIN-XOUT oscillator?  
Ceramic resonator  
External clock input  
Quartz crystal  
Other (  
)
At what frequency?  
f(XIN) =  
MHz  
MHz  
(2) How will you use the XCIN-XCOUT oscillator?  
Ceramic resonator  
Quartz crystal  
Other (  
)
f(XCIN) =  
At what frequency?  
4. Comments  
(2/2)  
61  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ROM number  
ROM PROGRAMMING CONFIRMATION FORM  
GZZ-SH51-93B<85A0>  
740 FAMILY ROM PROGRAMMING CONFIRMATION FORM  
SINGLE-CHIP MICROCOMPUTER M38279EF-XXXFP/GP/HP  
MITSUBISHI ELECTRIC  
Date:  
Section head Supervisor  
signature  
signature  
Note : Please fill in all items marked .  
Submitted by Supervisor  
TEL  
(
Company  
name  
)
Customer  
Date  
issued  
Date:  
1. Confirmation  
Specify the name of the product being ordered and the type of EPROMs submitted.  
Three EPROMs are required for each pattern.  
If at least two of the three sets of EPROMs submitted contain identical data, we will produce ROM programming based on  
this data. We shall assume the responsibility for errors only if the programming data on the products we produce differs  
from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.  
Product name:  
M38279EF-XXXFP  
M38279EF-XXXGP  
M38279EF-XXXHP  
Checksum code for entire EPROM  
(hexadecimal notation)  
EPROM type (indicate the type used)  
27512  
In the address space of the microcomputer,  
the internal ROM area is from address 108016  
to FFFD16. The reset vector is stored in  
addresses FFFC16 and FFFD16.  
EPROM address  
000016  
Product name  
ASCII code :  
‘M38279EF-’  
000F16  
001016  
107F16  
108016  
Data  
ROM 60K-130 bytes  
FFFD16  
FFFE16  
FFFF16  
(1) Set the data in the unused area (the shaded area of the  
diagram) to “FF16”.  
Address  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
Address  
‘M’ = 4D16  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
‘ – ’ =2D16  
FF16  
(2) The ASCII codes of the product name “M38279EF-” must  
be entered in addresses 000016 to 000816. And set data  
“FF16” in addresses 000916 to 000F16. The ASCII codes  
and addresses are listed to the right in hesadecimal  
notation.  
‘3’ = 3316  
‘8’ = 3816  
‘2’ = 3216  
‘7’ = 3716  
‘9’ = 3916  
‘E’ = 4516  
‘F’ = 4616  
FF16  
FF16  
FF16  
FF16  
FF16  
FF16  
(1/2)  
62  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ROM number  
GZZ-SH51-93B<85A0>  
740 FAMILY ROM PROGRAMMING CONFIRMATION FORM  
SINGLE-CHIP MICROCOMPUTER M38279EF-XXXFP/GP/HP  
MITSUBISHI ELECTRIC  
We recommend the use of the following pseudo-command to set the start address of the assembier source program because  
ASCII codes of the product name are written to addresses 000016 to 000816 of EPROM.  
EPROM type  
27512  
*=$0000  
.BYTE‘M38279EF-’  
The pseudo-command  
Note: If the name of the product written to the EPROMs does not match the name of the ROM programming confirmation form,  
the ROM will not be processed.  
2. Mark specification  
Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate mark  
specification form (100P6S for M38279EF-XXXFP, 100P6Q for M38279EF-XXXGP, 100PFB for M38279EF-XXXHP) and  
attach it to the ROM programming confirmation form.  
3. Usage conditions  
Please answer the following questions about usage for use in our product inspection :  
(1) How will you use the XIN-XOUT oscillator?  
Ceramic resonator  
External clock input  
Quartz crystal  
Other (  
)
At what frequency?  
f(XIN) =  
MHz  
MHz  
(2) How will you use the XCIN-XCOUT oscillator?  
Ceramic resonator  
Quartz crystal  
Other (  
)
At what frequency?  
f(XCIN) =  
4. Comments  
(2/2)  
63  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
100P6S-A  
Plastic 100pin 1420mm body QFP  
EIAJ Package Code  
QFP100-P-1420-0.65  
JEDEC Code  
Weight(g)  
1.58  
Lead Material  
Alloy 42  
M
D
HD  
D
100  
81  
1
80  
I2  
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
Min  
0
Nom  
0.1  
Max  
3.05  
0.2  
A
A
A
1
2
2.8  
b
0.25  
0.13  
13.8  
19.8  
16.5  
22.5  
0.4  
0.3  
0.4  
0.2  
14.2  
20.2  
17.1  
23.1  
0.8  
0.15  
14.0  
20.0  
0.65  
16.8  
22.8  
0.6  
c
D
E
e
30  
51  
31  
50  
A
L1  
HD  
HE  
L
1.4  
L1  
y
0°  
1.3  
0.1  
10°  
F
b2  
0.35  
14.6  
20.6  
e
b
L
I2  
Detail F  
y
M
M
D
E
100P6Q-A  
Plastic 100pin 1414mm body LQFP  
EIAJ Package Code  
JEDEC Code  
Weight(g)  
Lead Material  
Cu Alloy  
M
D
LQFP100-P-1414-0.50  
HD  
D
100  
76  
I2  
1
75  
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
A
Min  
Nom  
Max  
1.7  
0.2  
A1  
0
0.1  
A
2
1.4  
b
0.13  
0.105  
13.9  
13.9  
0.18  
0.125  
14.0  
14.0  
0.5  
0.28  
0.175  
14.1  
14.1  
25  
51  
c
D
E
e
26  
50  
A
H
H
L
D
E
15.8  
15.8  
0.3  
0°  
1.0  
16.0  
16.0  
0.5  
1.0  
16.2  
16.2  
0.7  
0.1  
10°  
L1  
F
e
L1  
y
b
y
b2  
0.225  
14.4  
14.4  
L
I
2
Detail F  
M
M
D
E
64  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
100PFB-A  
Plastic 100pin 1212mm body TQFP  
EIAJ Package Code  
TQFP100-P-1212-0.40  
JEDEC Code  
Weight(g)  
Lead Material  
Cu Alloy  
MD  
H
D
Under Development  
D
100  
76  
1
75  
l2  
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
A
Min  
Nom  
Max  
1.2  
0.15  
A1  
0.05  
0.1  
1.0  
A2  
b
0.13  
0.105  
11.9  
11.9  
0.18  
0.125  
12.0  
12.0  
0.4  
0.23  
0.175  
12.1  
12.1  
25  
51  
c
D
E
e
26  
50  
A
H
H
L
D
E
13.8  
13.8  
0.4  
14.0  
14.0  
0.5  
1.0  
14.2  
14.2  
0.6  
L1  
e
F
L1  
c
y
0.08  
0°  
8°  
b
2
1.0  
0.225  
12.4  
12.4  
L
y
b
I
2
Detail F  
M
M
D
E
100D0  
Glass seal 100pin QFN  
EIAJ Package Code  
JEDEC Code  
Weight(g)  
5.0MAX  
3.5TYP  
18.85±0.15  
0.45TYP  
0.65TYP  
21.0±0.13  
51  
50  
80  
81  
31  
100  
1
30 1.075TYP  
INDEX  
65  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
100P6S (100-PIN QFP) MARK SPECIFICATION FORM  
Mitsubishi IC catalog name  
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi catalog name and the special mark (if needed).  
A. Standard Mitsubishi Mark  
80  
51  
81  
50  
Mitsubishi IC catalog name  
Mitsubishi lot number  
(6-digit or 7-digit)  
100  
31  
1
30  
B. Customer’s Parts Number + Mitsubishi catalog name  
80  
51  
81  
50  
Customer’s Parts Number  
Note : The fonts and size of characters are standard Mitsubishi type.  
Mitsubishi IC catalog name  
Note1 : The mark field should be written right aligned.  
2 : The fonts and size of characters are standard Mitsubishi type.  
3 : Customer’s Parts Number can be up to 14 characters : Only 0 ~  
,
100  
31  
9, A ~ Z, +, –, /, (, ), &,  
4 : If the Mitsubishi logo  
, (periods), (commas) are usable.  
.
1
30  
is not required, check the box below.  
Mitsubishi logo is not required  
C. Special Mark Required  
Note1 : If the Special Mark is to be Printed, indicate the desired  
layout of the mark in the left figure. The layout will be  
duplicated as close as possible.  
80  
51  
81  
50  
Mitsubishi lot number (6-digit or 7-digit) and Mask ROM  
number (3-digit) are always marked.  
2 : If the customers trade mark logo must be used in the  
Special Mark, check the box below.  
Please submit a clean original of the logo.  
For the new special character fonts a clean font original  
(ideally logo drawing) must be submitted.  
100  
31  
1
30  
Special logo required  
66  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
100P6Q (100-PIN LQFP) MARK SPECIFICATION FORM  
Mitsubishi IC catalog name  
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi catalog name and the special mark (if needed).  
A. Standard Mitsubishi Mark  
75  
51  
76  
50  
Mitsubishi IC catalog name  
Mitsubishi IC catalog name  
Mitsubishi lot number  
(6-digit or 7-digit)  
100  
26  
1
25  
B. Customer’s Parts Number + Mitsubishi catalog name  
75  
51  
76  
50  
Customer’s Parts Number  
Note : The fonts and size of characters are standard Mitsubishi type.  
Mitsubishi IC catalog name  
Note1 : The mark field should be written right aligned.  
2 : The fonts and size of characters are standard Mitsubishi type.  
3 : Customer’s Parts Number can be up to 12 characters : Only 0 ~  
Mitsubishi lot number  
(6-digit or 7-digit)  
,
9, A ~ Z, +, –, /, (, ), &, , (periods), (commas) are usable.  
.
100  
26  
4 : If the Mitsubishi logo  
is not required, check the box below.  
Mitsubishi logo is not required  
1
25  
C. Special Mark Required  
Note1 : If the Special Mark is to be Printed, indicate the desired  
layout of the mark in the left figure. The layout will be  
duplicated as close as possible.  
75  
51  
76  
50  
Mitsubishi lot number (6-digit or 7-digit) and Mask ROM  
number (3-digit) are always marked.  
2 : If the customers trade mark logo must be used in the  
Special Mark, check the box below.  
Please submit a clean original of the logo.  
For the new special character fonts a clean font original  
(ideally logo drawing) must be submitted.  
100  
26  
Special logo required  
1
25  
67  
MITSUBISHI MICROCOMPUTERS  
3827 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
100PFB (100-PIN TQFP) MARK SPECIFICATION FORM  
Mitsubishi IC catalog name  
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi catalog name and the special mark (if needed).  
A. Standard Mitsubishi Mark  
75  
51  
50  
76  
Mitsubishi IC catalog name  
Mitsubishi IC catalog name  
Mitsubishi lot number  
(6-digit or 7-digit)  
100  
26  
1
25  
B. Customer’s Parts Number + Mitsubishi catalog name  
75  
51  
50  
76  
Customer’s Parts Number  
Note : The fonts and size of characters are standard Mitsubishi type.  
Mitsubishi IC catalog name  
Note1 : The mark field should be written right aligned.  
2 : The fonts and size of characters are standard Mitsubishi type.  
3 : Customer’s Parts Number can be up to 10 characters : Only 0 ~  
,
Mitsubishi lot number  
(6-digit or 7-digit)  
9, A ~ Z, +, –, /, (, ), &,  
4 : If the Mitsubishi logo  
, (periods), (commas) are usable.  
.
100  
26  
is not required, check the box below.  
Mitsubishi logo is not required  
1
25  
5 : The allocation of Mitsubishi IC catalog name and Mitsubishi  
Product number depend on the Mitsubishi IC catalog name’s  
characters, and requiring Mitsubishi logo  
or not.  
C. Special Mark Required  
Note1 : If the Special Mark is to be Printed, indicate the desired  
layout of the mark in the left figure. The layout will be  
duplicated as close as possible.  
75  
51  
50  
76  
Mitsubishi lot number (6-digit or 7-digit) and Mask ROM  
number (3-digit) are always marked.  
2 : If the customers trade mark logo must be used in the  
Special Mark, check the box below.  
Please submit a clean original of the logo.  
For the new special character fonts a clean font original  
(ideally logo drawing) must be submitted.  
100  
26  
Special logo required  
1
25  
68  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with  
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of  
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any  
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples  
contained in these materials.  
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi  
Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor  
product distributor for the latest product information before purchasing a product listed herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact  
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for  
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the  
approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.  
© 1998 MITSUBISHI ELECTRIC CORP.  
New publication, effective Jun. 1998.  
Specifications subject to change without notice.  
REVISION DESCRIPTION LIST  
3827 GROUP DATA SHEET  
Rev.  
Rev.  
date  
Revision Description  
No.  
1.0 First Edition  
980602  
(1/1)  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY