PUMA84SV32000-015 [MOSAIC]

SRAM Module, 1MX32, 15ns, CMOS, PQCC84, PLASTIC, LCC-84;
PUMA84SV32000-015
型号: PUMA84SV32000-015
厂家: MOSAIC    MOSAIC
描述:

SRAM Module, 1MX32, 15ns, CMOS, PQCC84, PLASTIC, LCC-84

静态存储器
文件: 总11页 (文件大小:334K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1x32SaticRAM  
PUMA 84SV32000 - 012/015/020  
Issue 5.0 February 2000  
Description  
Block Diagram  
The PUMA 84 range of devices provide a high  
density, surface mount memory solution with  
density up to twice that of standard monolithic  
devices.  
A0 ~A18  
/WE  
/OE  
512K x 8  
SRAM  
512K x 8  
SRAM  
D0 ~ 7  
/CS1  
D0 ~ 7  
/CS5  
The PUMA 84 may accomodate various memory  
technologies including SRAM, FLASH and  
EEPROM. The devices are designed to offer a  
definedupgradepathandmaybeuserconfiguredas  
8, 16 or 32 bits wide using eight Chip Selects  
(/CS1~8).  
512K x 8  
SRAM  
512K x 8  
SRAM  
D8 ~ 15  
/CS2  
D8 ~ 15  
/CS6  
The PUMA84SV32000 is a 1Mx32 SRAM module  
housed in a JEDEC 84 pin surface mount J-leaded  
PLCC.Accesstimesof12,15or20nsareavailable.  
The 3.3V low voltage device is available to  
commercialandindustrialtemperaturegrade.  
512K x 8  
SRAM  
512K x 8  
SRAM  
D16 ~ 23  
/CS3  
D16 ~ 23  
/CS7  
512K x 8  
SRAM  
512K x 8  
SRAM  
D24 ~ 31  
/CS4  
D24 ~ 31  
/CS8  
The-Lversionhasdataretentioncapabilityandcan  
be used in battery backup applications.  
Features  
Pin Definition  
• Access times of 12/15/20 ns.  
See page 2.  
• 3.3V + 10%.  
• ComercialandIndustrialtemperaturegrades  
• JEDEC 84 ‘J’ Leaded surface mount package.  
• Industrystandardpinout.  
• May be organised as 1M x 32, 2M x 16 and 4M X 8  
Pin Functions  
• OperatingPower  
(32 Bit) 3.53W (max)  
• Lowpowerstandby. (CMOS) 360mW (max)  
• Lowvoltagedataretentionmode.  
• Completely Static Operation.  
Description  
Signal  
Address Input  
Data Input/Output  
Chip Select  
Write Enable  
Output Enable  
No Connect  
Power  
A0~A18  
D0~D31  
/CS1~8  
/WE  
Package Details  
/OE  
NC  
PUMA 84 - Plastic 84 ‘J’ Leaded Package.  
Max. Dimensions - 30.35 x 30.35 x 8.50 (max)  
All Dimensions in mm.  
VCC  
Ground  
GND  
11403 West Bernardo Court, Suite 100, San Diego, CA92127.  
TEL (001) 858 674 2233, Fax No. (001) 858 674 2230 E-mail: sales@mosaicsemi.com  
Pin Definition - PUMA84SV32000  
Pin  
1
Signal  
Pin  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
Signal  
VCC  
A13  
A12  
A11  
A10  
A9  
VCC  
NC  
2
3
/CS1  
/CS2  
/CS3  
/CS4  
A17  
A18  
D16  
NC  
4
5
6
7
A8  
8
A7  
9
D0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
D17  
D18  
D19  
VSS  
D1  
D2  
D3  
VSS  
D20  
D21  
D22  
D23  
VCC  
D24  
D25  
D26  
D27  
VSS  
D4  
D5  
D6  
D7  
VCC  
D8  
D9  
D10  
D11  
VSS  
D28  
D29  
D30  
NC  
D12  
D13  
D14  
NC  
NC  
NC  
NC  
D15  
A14  
A15  
A16  
/WE  
/OE  
/CS5  
/CS6  
/CS7  
/CS8  
NC  
D31  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Issue 5.0 February 2000  
PAGE 2  
Absolute Maximum Ratings(1)  
DOperagCdtions  
Parameter  
Symbol  
Min  
-0.5  
Max  
+4.6  
Unit  
V
(2)  
Voltage on any pin relative to VSS  
Power Dissipation  
VT  
to  
4.0  
to  
PT  
W
Storage Temperature  
TSTG  
-55  
+125  
OC  
Notes : (1) Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
reliability  
(2) VT can be -2.0V pulse of less than 8ns  
Recommended Operating Conditions  
Parameter  
Symbol  
VCC  
VIH  
Min  
3.0  
2.0  
-0.3  
0
Typ  
Max  
3.6  
Unit  
V
Supply Voltage  
3.3  
Input High Voltage  
Input Low Voltage  
Operating Temperature  
-
-
-
-
VCC+0.3  
0.8  
V
VIL  
V
TA  
70  
OC  
OC  
TAI  
-40  
85  
(I Suffix)  
Notes : (1) Pulse Width : -2.0V for less than 10ns.  
DC Electrical Characteristics  
(VCC=3.3V+10%, TA=-40OC to +85OC)  
Parameter  
Symbol Test Condition  
Min Typ Max Unit  
µ
Address, /OE, /WE  
Input Leakage Current  
ILI  
0V < VIN < VCC  
-20  
-20  
-
-
20  
20  
A
/CS=VIH,VI/O = GND to  
VCC  
µ
A
Output Leakage Current  
ILO  
Min Cycle /CS(2)=VIL,  
f=fmax, IOUT=0mA  
Average Supply Current(1)  
Standby Supply Current  
32 Bit ICC32  
-
-
980  
mA  
16 Bit ICC16 As Above.  
-
-
-
-
-
-
690  
545  
400  
mA  
mA  
mA  
8 Bit  
TTL  
ICC8  
ISB  
As Above.  
/CS=VIH , f=fmax  
/CS>VCC-0.2V, 0.2  
<VIN<VCC-0.2V, f=0  
CMOS ISB1  
-
-
100  
mA  
Output Voltage Low  
Output Voltage High  
VOL  
VOH  
IOL=8.0mA  
IOH=-4.0mA  
-
-
-
0.4  
-
V
V
2.4  
Notes (1) Typical values are at VCC=3.3V, TA=25OC and specified loading.  
(2) /CS above refers to /CS1~4 for 16 Bit mode and /CS5~8 for 32 bit mode.  
(3) At f=fMAX address and data inputs are cycling at max frequency.  
Issue 5.0 February 2000  
PAGE 3  
Capacitance  
(VCC = 3.3V + 10%, TA = 25OC)  
Parameter  
Symbol Test Condition Min Typ Max Unit  
Address, /OE, /WE  
Input Capacitance  
Input Capacitance  
Output Capacitance  
CIN1  
CIN2  
CI/O  
VIN=0V  
VIN=0V  
VI/O=0V  
-
-
-
-
-
-
70  
12  
70  
pF  
pF  
pF  
(Other)  
8 bit mode (worst case)  
Note : These Parameters are calculated not measured.  
Test Conditions  
Output Load  
166Ω  
I/O Pin  
• Input pulse levels : 0V to 3.0V  
• Input rise and fall times : 3ns  
• Input and Output timing reference levels : 1.5V  
• Output Load : See Load Diagram.  
• VCC = 3.3V+10%  
1.76V  
30pF  
Operation Truth Table  
/CS  
H
L
/OE  
X
/WE  
X
Data Pins  
Supply Current  
Mode  
Standby  
Read  
High Impedance  
Data Out  
ISB,ISB1  
L
H
ICC32,ICC16,ICC8  
ICC32,ICC16,ICC8  
ICC32,ICC16,ICC8  
ISB,ISB1  
L
H
L
Data In  
Write  
L
L
L
Data In  
Write  
L
H
H
High Impedance  
High Z  
Notes : H = VIH : L = VIL : X = VIH or VIL  
The above table reflects the operation of each of the RAMS on the module. Care should be taken to avoid  
bus contention on data lines using chip select signals.  
Issue 5.0 February 2000  
PAGE 4  
AOperagCdtions  
Read Cycle  
012  
015  
020  
Parameter  
Symbol Min Max Min Max Min Max Units  
Read Cycle Time  
tRC  
12  
-
-
12  
12  
6
15  
-
-
15  
15  
7
20  
-
-
20  
20  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Access Time  
tAA  
Chip Select Access Time  
tACS  
tOE  
-
-
-
Output Enable to Output Valid  
Output Hold From Address Change  
Chip Selection to Output in Low Z  
Output Enable to Output in Low Z  
Chip Deselection to Output in High Z  
Output Disable to Output in High Z  
-
-
-
tOH  
3
3
0
0
0
-
3
3
0
0
0
-
3
3
0
0
0
-
tCLZ  
tOLZ  
tCHZ  
tOHZ  
-
-
-
-
-
-
6
7
9
6
7
9
Write Cycle  
012  
015  
020  
Parameter  
Symbol Min Max Min Max Min Max Units  
Write Cycle Time  
tWC  
tCW  
tAW  
tAS  
12  
10  
10  
0
-
-
-
-
-
-
-
6
-
-
-
15  
12  
12  
0
-
-
-
-
-
-
-
7
-
-
-
20  
15  
15  
0
-
-
-
-
-
-
-
9
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Selection to End of Write  
Address Valid to End of Write  
Address Setup Time  
Write Pulse Width  
tWP  
tWP  
tWR  
tWHZ  
tDW  
tDH  
10  
12  
0
12  
15  
0
12  
20  
0
Write Pulse Width (/OE Low)  
Write Recovery Time  
Write to Output in High Z  
Data to Write Time Overlap  
Data Hold time from Write Time  
Output Active from End of Write  
0
0
0
6
7
9
0
0
0
tOW  
3
3
3
Issue 5.0 February 2000  
PAGE 5  
Read Cycle 1  
TingWaveforms  
(Address Controlled, /CS=/OE=VIL, /WE=VIH)  
tRC  
Address  
tAA  
tOH  
Previous Data Valid  
Data Valid  
Data Out  
Read Cycle 2  
(/WE = VIH)  
tRC  
Address  
/CS  
tAA  
tCO  
tHZ(3,4,5)  
tOHZ  
tOE  
/OE  
tOLZ  
tOH  
tLZ(4,5)  
Valid Data  
Data Out  
tPU  
tPD  
50%  
ICC  
ISB  
VCC  
50%  
Current  
(READ CYCLE)  
NOTES  
1. /WE is high for read cycle.  
2. All read cycle timing is referenced from the last valid address to the first transition address.  
3. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit condition and are not referenced to VOH or  
OL levels.  
V
4. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to  
device.  
5. Transition is measured 200mV from steady state voltage with Load(B). This parameter is sampled and not 100% tested.  
±
6. Device is continuously selected with /CS=VIL.  
7. Address valid prior to coincident with /CS transition low.  
8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.  
Issue 5.0 February 2000  
PAGE 6  
Write Cycle 1  
(/OE = Clock)  
tWC  
Address  
tAW  
tWR(5)  
/OE  
/CS  
tCW(3)  
tAS(4)  
tWP(2)  
/WE  
Data In  
tDW  
tDH  
High Z  
Valid Data  
tOHZ(6)  
High Z(8)  
Data Out  
(WRITE CYCLE)  
NOTES  
1. All write cycle timing is referenced from the last valid address to the first transition address.  
2. A write occurs during the overlap of a low /CS and /WE. A write begins at the latest transition /CS going low and /WE going low ;  
A write ends at the earliest transition /CS going high or /WE going high. tWP is measured from the beginning of write to the end of  
write.  
3. tCW is measured from the later of /CS going low to end of write.  
4. tAS is measured from the address valid to the beginning of write.  
5. tWR is measured from the end of write to the address change. tWR applied in case a write ends as /CS or /WE going high.  
6. If /OE, /CS and /WE are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase  
of the output must not be applied because bus contention can occur.  
7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.  
8. If /CS goes low simultaneously with /WE going or after /WE going low, the outputs remain high impedance state.  
9. Dout is the read data of the new address.  
10.When /CS is low : I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be  
applied.  
Issue 5.0 February 2000  
PAGE 7  
Write Cycle 2  
(/OE = Low Fixed)  
tWC  
Address  
tAW  
tWR(5)  
tCW(3)  
/CS  
/WE  
tAS(4)  
tWP(2)  
tDW  
tDH  
High Z  
Data In  
Data Out  
Valid Data  
tOW  
tWHZ(6)  
(10)  
(9)  
High Z(8)  
(WRITE CYCLE)  
NOTES  
1. All write cycle timing is referenced from the last valid address to the first transition address.  
2. A write occurs during the overlap of a low /CS and /WE. A write begins at the latest transition /CS going low and /WE going low ;  
A write ends at the earliest transition /CS going high or /WE going high. tWP is measured from the beginning of write to the end of  
write.  
3. tCW is measured from the later of /CS going low to end of write.  
4. tAS is measured from the address valid to the beginning of write.  
5. tWR is measured from the end of write to the address change. tWR applied in case a write ends as /CS or /WE going high.  
6. If /OE, /CS and /WE are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase  
of the output must not be applied because bus contention can occur.  
7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.  
8. If /CS goes low simultaneously with /WE going or after /WE going low, the outputs remain high impedance state.  
9. Dout is the read data of the new address.  
10.When /CS is low : I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be  
applied.  
Issue 5.0 February 2000  
PAGE 8  
Write Cycle 3  
(/CS = Controlled)  
tWC  
Address  
/CS  
tAW  
tWR(5)  
tCW(3)  
tAS(4)  
tWP(2)  
/WE  
Data In  
tDW  
tDH  
High Z  
High Z  
High Z  
Valid Data  
tLZ  
tWHZ(6)  
High Z(8)  
Data Out  
(WRITE CYCLE)  
NOTES  
1. All write cycle timing is referenced from the last valid address to the first transition address.  
2. A write occurs during the overlap of a low /CS and /WE. A write begins at the latest transition /CS going low and /WE going low ;  
A write ends at the earliest transition /CS going high or /WE going high. tWP is measured from the beginning of write to the end of  
write.  
3. tCW is measured from the later of /CS going low to end of write.  
4. tAS is measured from the address valid to the beginning of write.  
5. tWR is measured from the end of write to the address change. tWR applied in case a write ends as /CS or /WE going high.  
6. If /OE, /CS and /WE are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase  
of the output must not be applied because bus contention can occur.  
7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.  
8. If /CS goes low simultaneously with /WE going or after /WE going low, the outputs remain high impedance state.  
9. Dout is the read data of the new address.  
10.When /CS is low : I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be  
applied.  
Data Retention  
tSDR  
tRDR  
Data Retention Mode  
/CS Controlled  
VCC  
3.0V  
2.2V  
VDR  
/CS>VCC - 0.2V  
/CS  
GND  
Note: /CS = /CS1~4  
Issue 5.0 February 2000  
PAGE 9  
PckgDetails  
PUMA 84 - Plastic 84 ‘J’ Leaded Package.  
30.20 (1.189)  
29.95 (1.179)  
8.90  
(0.350)  
max  
0.89  
(0.035)  
typ.  
1.27  
0.46  
(0.050) typ  
(0.018) typ  
29.20 (1.150)  
28.20 (1.110)  
PAGE 10  
Issue 5.0 February 2000  
Ordering Information  
OdegIfrmation  
PUMA 84SV32000LI-012  
Speed  
012 = 12ns  
015 = 15ns  
020 = 20ns  
Temp.Range/Screening Blank = Commercial  
I = Industrial  
PowerConsumption  
Blank = Standard  
L = LowPower  
MemoryOrganisation  
32000 = 1M x 32 configurable  
as 2M x 16 and 4M x 8  
Technology  
Package  
SV = SRAM 3.3V+10% VCC  
PUMA 84 = Plastic 84 ‘J’ Leaded  
Package.  
Note :  
Although this data is believed to be accurate the information contained herein is not intended to and does not create  
any warranty of merchantibility or fitness for a particular purpose.  
Our products are subject to a constant process of development. Data may be changed without notice.  
Products are not authorised for use as critical components in life support devices without the express written  
approval of a company director.  
PAGE 11  
http://www.mosaicsemi.com/  
Issue 5.0 February 2000  

相关型号:

PUMA84SV32000-10

x32 SRAM Module
ETC

PUMA84SV32000-70

x32 SRAM Module
ETC

PUMA84SV32000-85

x32 SRAM Module
ETC

PUMA84SV32000A-10

SRAM Module, 1MX32, 100ns, CMOS, PQCC84, PLASTIC, LCC-84
MOSAIC

PUMA84SV32000A-70

SRAM Module, 1MX32, 70ns, CMOS, PQCC84, PLASTIC, LCC-84
MOSAIC

PUMA84SV32000A-85

SRAM Module, 1MX32, 85ns, CMOS, PQMA84, PLASTIC, LCC-84
MOSAIC

PUMA84SV32000AI-10

SRAM Module, 1MX32, 100ns, CMOS, PQCC84, PLASTIC, LCC-84
MOSAIC

PUMA84SV32000AI-70

SRAM Module, 1MX32, 70ns, CMOS, PQMA84, PLASTIC, LCC-84
MOSAIC

PUMA84SV32000AI-85

SRAM Module, 1MX32, 85ns, CMOS, PQCC84, PLASTIC, LCC-84
MOSAIC

PUMA84SV32000AL-70

SRAM Module, 1MX32, 70ns, CMOS, PQMA84, PLASTIC, LCC-84
MOSAIC

PUMA84SV32000ALI-85

SRAM Module, 1MX32, 85ns, CMOS, PQMA84, PLASTIC, LCC-84
MOSAIC

PUMA84SV32000I-012

SRAM Module, 1MX32, 12ns, CMOS, PQCC84, PLASTIC, LCC-84
MOSAIC