1N6300ARL4 [MOTOROLA]

1500W, UNIDIRECTIONAL, SILICON, TVS DIODE, PLASTIC, CASE 41A-02, 2 PIN;
1N6300ARL4
型号: 1N6300ARL4
厂家: MOTOROLA    MOTOROLA
描述:

1500W, UNIDIRECTIONAL, SILICON, TVS DIODE, PLASTIC, CASE 41A-02, 2 PIN

局域网 二极管 电视
文件: 总6页 (文件大小:62K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MOTOROLA  
SEMICONDUCTOR  
TECHNICAL DATA  
1N6267A  
SERIES  
1500 WATT  
1500 Watt MOSORB  
GENERAL DATA APPLICABLE TO ALL SERIES IN  
THIS GROUP  
PEAK POWER  
Zener Transient Voltage Suppressors  
Unidirectional and Bidirectional  
MOSORB  
ZENER OVERVOLTAGE  
TRANSIENT  
SUPPRESSORS  
6.2–250 VOLTS  
1500 WATT PEAK POWER  
5 WATTS STEADY STATE  
Mosorb devices are designed to protect voltage sensitive components from high volt-  
age, high energy transients. They have excellent clamping capability, high surge capabili-  
ty, low zener impedance and fast response time. These devices are Motorola’s exclusive,  
cost-effective, highly reliable Surmetic axial leaded package and are ideally-suited for use  
in communication systems, numerical controls, process controls, medical equipment,  
business machines, power supplies and many other industrial/consumer applications, to  
protect CMOS, MOS and Bipolar integrated circuits.  
Specification Features:  
Standard Voltage Range — 6.2 to 250 V  
Peak Power — 1500 Watts @ 1 ms  
Maximum Clamp Voltage @ Peak Pulse Current  
Low Leakage < 5 µA Above 10 V  
UL Recognition  
Response Time is Typically < 1 ns  
CASE 41A  
PLASTIC  
Mechanical Characteristics:  
CASE: Void-free, transfer-molded, thermosetting plastic  
FINISH: All external surfaces are corrosion resistant and leads are readily solderable  
POLARITY: Cathode indicated by polarity band. When operated in zener mode, will be  
positive with respect to anode  
MOUNTING POSITION: Any  
WAFER FAB LOCATION: Phoenix, Arizona  
ASSEMBLY/TEST LOCATION: Guadalajara, Mexico  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
Peak Power Dissipation (1)  
P
PK  
1500  
Watts  
@ T 25°C  
L
Steady State Power Dissipation  
P
D
5
Watts  
@ T 75°C, Lead Length = 3/8″  
L
Derated above T = 75°C  
50  
mW/°C  
L
Forward Surge Current (2)  
I
200  
Amps  
FSM  
@ T = 25°C  
A
Operating and Storage Temperature Range  
T , T  
J stg  
– 65 to +175  
°C  
Lead temperature not less than 1/16from the case for 10 seconds: 230°C  
NOTES: 1. Nonrepetitive current pulse per Figure 5 and derated above T = 25°C per Figure 2.  
A
NOTES: 2. 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.  
Devices listed in bold, italic are Motorola preferred devices.  
Motorola TVS/Zener Device Data  
500 Watt Peak Power Data Sheet  
4-1  
*ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) V # = 3.5 V Max, I ** = 100 A  
A
F
F
Maximum  
Reverse  
Voltage  
Working  
Peak  
Reverse  
Voltage  
Maximum  
Reverse  
Surge  
Breakdown Voltage  
Maximum  
Reverse  
Leakage  
@ I  
Maximum  
RSM  
(Clamping Temperature  
V
Volts  
BR  
Current  
Voltage)  
Coefficient  
JEDEC  
Device  
@ I  
T
(mA)  
V
***  
I
@ V  
V
of V  
(%/°C)  
RWM  
RSM  
RWM  
RSM  
BR  
(Volts)  
(Amps)  
Device  
Min  
Nom  
Max  
I
(µA)  
(Volts)  
R
1N6267A  
1N6268A  
1N6269A  
1N6270A  
1.5KE6.8A  
1.5KE7.5A  
1.5KE8.2A  
1.5KE9.1A  
6.45  
7.13  
7.79  
8.65  
6.8  
7.5  
8.2  
9.1  
7.14  
7.88  
8.61  
9.55  
10  
10  
10  
1
5.8  
6.4  
7.02  
7.78  
1000  
143  
132  
124  
112  
10.5  
11.3  
12.1  
13.4  
0.057  
0.061  
0.065  
0.068  
500  
200  
50  
1N6271A  
1N6272A  
1N6273A  
1N6274A  
1.5KE10A  
1.5KE11A  
1.5KE12A  
1.5KE13A  
9.5  
10  
11  
12  
13  
10.5  
11.6  
12.6  
13.7  
1
1
1
1
8.55  
9.4  
10.2  
11.1  
10  
5
5
103  
96  
90  
14.5  
15.6  
16.7  
18.2  
0.073  
0.075  
0.078  
0.081  
10.5  
11.4  
12.4  
5
82  
1N6275A  
1N6276A  
1N6277A  
1N6278A  
1.5KE15A  
1.5KE16A  
1.5KE18A  
1.5KE20A  
14.3  
15.2  
17.1  
19  
15  
16  
18  
20  
15.8  
16.8  
18.9  
21  
1
1
1
1
12.8  
13.6  
15.3  
17.1  
5
5
5
5
71  
67  
59.5  
54  
21.2  
22.5  
25.2  
27.7  
0.084  
0.086  
0.088  
0.09  
1N6279A  
1N6280A  
1N6281A  
1N6282A  
1.5KE22A  
1.5KE24A  
1.5KE27A  
1.5KE30A  
20.9  
22.8  
25.7  
28.5  
22  
24  
27  
30  
23.1  
25.2  
28.4  
31.5  
1
1
1
1
18.8  
20.5  
23.1  
25.6  
5
5
5
5
49  
45  
40  
36  
30.6  
33.2  
37.5  
41.4  
0.092  
0.094  
0.096  
0.097  
1N6283A  
1N6284A  
1N6285A  
1N6286A  
1.5KE33A  
1.5KE36A  
1.5KE39A  
1.5KE43A  
31.4  
34.2  
37.1  
40.9  
33  
36  
39  
43  
34.7  
37.8  
41  
1
1
1
1
28.2  
30.8  
33.3  
36.8  
5
5
5
5
33  
30  
28  
45.7  
49.9  
53.9  
59.3  
0.098  
0.099  
0.1  
45.2  
25.3  
0.101  
1N6287A  
1N6288A  
1N6289  
1.5KE47A  
1.5KE51A  
1.5KE56A  
1.5KE62A  
44.7  
48.5  
53.2  
58.9  
47  
51  
56  
62  
49.4  
53.6  
58.8  
65.1  
1
1
1
1
40.2  
43.6  
47.8  
53  
5
5
5
5
23.2  
21.4  
19.5  
17.7  
64.8  
70.1  
77  
0.101  
0.102  
0.103  
0.104  
1N6290A  
85  
1N6291A  
1N6292A  
1N6293A  
1N6294A  
1.5KE68A  
1.5KE75A  
1.5KE82A  
1.5KE91A  
64.6  
71.3  
77.9  
86.5  
68  
75  
82  
91  
71.4  
78.8  
86.1  
95.5  
1
1
1
1
58.1  
64.1  
70.1  
77.8  
5
5
5
5
16.3  
14.6  
13.3  
12  
92  
0.104  
0.105  
0.105  
0.106  
103  
113  
125  
1N6295A  
1N6296A  
1N6297A  
1N6298A  
1.5KE100A  
1.5KE110A  
1.5KE120A  
1.5KE130A  
95  
100  
110  
120  
130  
105  
116  
126  
137  
1
1
1
1
85.5  
94  
102  
111  
5
5
5
5
11  
137  
152  
165  
179  
0.106  
0.107  
0.107  
0.107  
105  
114  
124  
9.9  
9.1  
8.4  
1N6299A  
1N6300A  
1N6301A  
1N6302A  
1.5KE150A  
1.5KE160A  
1.5KE170A  
1.5KE180A  
143  
152  
162  
171  
150  
160  
170  
180  
158  
168  
179  
189  
1
1
1
1
128  
136  
145  
154  
5
5
5
5
7.2  
6.8  
6.4  
6.1  
207  
219  
234  
246  
0.108  
0.108  
0.108  
0.108  
1N6303A  
1.5KE200A  
1.5KE220A  
1.5KE250A  
190  
209  
237  
200  
220  
250  
210  
231  
263  
1
1
1
171  
185  
214  
5
5
5
5.5  
4.6  
5
274  
328  
344  
0.108  
0.109  
0.109  
*** Indicates JEDEC registered data.  
*** 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.  
*** A transient suppressor is normally selected according to the maximum reverse stand-off voltage (V  
), which should be equal to or greater than the dc or continuous peak operating  
RWM  
*** voltage level.  
Surge current waveform per Figure 5 and derate per Figure 2 of the General Data — 1500 W at the beginning of this group.  
measured at pulse test current I at an ambient temperature of 25°C.  
V
BR  
T
# V applies to Non-CA suffix devices only.  
F
FOR BIDIRECTIONAL APPLICATIONS  
— USE CA SUFFIX ON 1.5KE SERIES for 1.5KE6.8CA  
through 1.5KE250CA.  
Preferred Bidirectional Devices —  
1.5KE10CA  
1.5KE18CA  
1.5KE12CA  
1.5KE36CA  
Electrical characteristics apply in both directions.  
Motorola TVS/Zener Device Data  
500 Watt Peak Power Data Sheet  
4-2  
100  
NONREPETITIVE  
PULSE WAVEFORM  
SHOWN IN FIGURE 5  
100  
80  
60  
10  
40  
20  
0
1
0.1  
µs  
1
µs  
10  
µ
s
100  
µs  
1 ms  
10 ms  
0
25  
50  
75  
100  
125  
150  
175  
200  
C)  
T , AMBIENT TEMPERATURE (  
°
A
t , PULSE WIDTH  
P
Figure 1. Pulse Rating Curve  
Figure 2. Pulse Derating Curve  
1N6373, ICTE-5, MPTE-5,  
through  
1N6267A/1.5KE6.8A  
through  
1N6389, ICTE-45, C, MPTE-45, C  
1N6303A/1.5KE200A  
10,000  
1000  
10,000  
MEASURED @  
ZERO BIAS  
MEASURED @  
ZERO BIAS  
1000  
100  
10  
MEASURED @  
STAND-OFF  
MEASURED @  
STAND-OFF  
VOLTAGE (V  
)
R
VOLTAGE (V  
)
R
100  
10  
1
10  
100  
1000  
1
10  
100  
1000  
BV, BREAKDOWN VOLTAGE (VOLTS)  
BV, BREAKDOWN VOLTAGE (VOLTS)  
Figure 3. Capacitance versus Breakdown Voltage  
PULSE WIDTH (t ) IS DEFINED  
P
AS THAT POINT WHERE THE  
t
r
3/8″  
PEAK CURRENT DECAYS TO 50%  
OF I  
.
PEAK VALUE — I  
RSM  
10 µs  
RSM  
100  
50  
0
t
3/8  
r
5
4
3
I
RSM  
2
HALF VALUE –  
2
t
P
1
0
0
1
2
t, TIME (ms)  
3
4
0
25  
50  
75  
100  
125  
150  
175  
C)  
200  
T , LEAD TEMPERATURE (  
°
L
Figure 4. Steady State Power Derating  
Figure 5. Pulse Waveform  
Devices listed in bold, italic are Motorola preferred devices.  
Motorola TVS/Zener Device Data  
500 Watt Peak Power Data Sheet  
4-3  
1N6373, ICTE-5, MPTE-5,  
through  
1N6267A/1.5KE6.8A  
through  
1N6389, ICTE-45, C, MPTE-45, C  
1N6303A/1.5KE200A  
1000  
500  
1000  
500  
V
(NOM) = 6.8 to 13 V  
20 V  
V
(NOM) = 6.8 to 13 V  
20 V  
Z
Z
T
P
= 25  
°
C
T
P
= 25  
°C  
L
L
t
= 10  
µ
s
t
= 10  
µs  
43 V  
75 V  
43 V  
24 V  
24 V  
200  
100  
50  
200  
100  
50  
20  
20  
180 V  
120 V  
10  
5
10  
5
2
1
2
1
0.3  
0.5 0.7  
1
2
3
5
7
10  
20 30  
0.3  
0.5 0.7  
V , INSTANTANEOUS INCREASE IN V ABOVE V (NOM) (VOLTS)  
Z
1
2
3
5
7
10  
20 30  
V
, INSTANTANEOUS INCREASE IN V ABOVE V (NOM) (VOLTS)  
Z
Z
Z
Z
Z
Figure 6. Dynamic Impedance  
1
0.7  
0.5  
0.3  
0.2  
PULSE WIDTH  
10 ms  
0.1  
0.07  
0.05  
1 ms  
0.03  
0.02  
100 µs  
10  
µs  
0.01  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
100  
D, DUTY CYCLE (%)  
Figure 7. Typical Derating Factor for Duty Cycle  
APPLICATION NOTES  
RESPONSE TIME  
and placing the suppressor device as close as possible to the  
equipment or components to be protected will minimize this  
overshoot.  
In most applications, the transient suppressor device is  
placed in parallel with the equipment or component to be pro-  
tected. In this situation, there is a time delay associated with  
the capacitance of the device and an overshoot condition as-  
sociated with the inductance of the device and the inductance  
of the connection method. The capacitance effect is of minor  
importance in the parallel protection scheme because it only  
produces a time delay in the transition from the operating volt-  
age to the clamp voltage as shown in Figure A.  
The inductive effects in the device are due to actual turn-on  
time (time required for the device to go from zero current to full  
current) and lead inductance. This inductive effect produces  
an overshoot in the voltage across the equipment or  
component being protected as shown in Figure B. Minimizing  
this overshoot is very important in the application, since the  
main purpose for adding a transient suppressor is to clamp  
voltage spikes. These devices have excellent response time,  
typically in the picosecond range and negligible inductance.  
However, external inductive effects could produce unaccept-  
able overshoot. Proper circuit layout, minimum lead lengths  
Some input impedance represented by Z is essential to  
in  
prevent overstress of the protection device. This impedance  
shouldbeashighaspossible, withoutrestrictingthecircuitop-  
eration.  
DUTY CYCLE DERATING  
The data of Figure 1 applies for non-repetitive conditions  
and at a lead temperature of 25°C. If the duty cycle increases,  
the peak power must be reduced as indicated by the curves of  
Figure 7. Average power must be derated as the lead or  
ambient temperature rises above 25°C. The average power  
derating curve normally given on data sheets may be  
normalized and used for this purpose.  
At first glance the derating curves of Figure 7 appear to be in  
error as the 10 ms pulse has a higher derating factor than the  
10 µs pulse. However, when the derating factor for a given  
pulse of Figure 7 is multiplied by the peak power value of  
Figure 1 for the same pulse, the results follow the expected  
trend.  
Motorola TVS/Zener Device Data  
500 Watt Peak Power Data Sheet  
4-4  
TYPICAL PROTECTION CIRCUIT  
Z
in  
LOAD  
V
V
L
in  
V
(TRANSIENT)  
L
in  
OVERSHOOT DUE TO  
INDUCTIVE EFFECTS  
V
V
V
(TRANSIENT)  
L
in  
V
V
V
in  
t
d
t
= TIME DELAY DUE TO CAPACITIVE EFFECT  
D
t
t
Figure 8.  
Figure 9.  
UL RECOGNITION*  
The entire series has Underwriters Laboratory Recognition  
for the classification of protectors (QVGV2) under the UL  
standard for safety 497B and File #116110. Many competitors  
only have one or two devices recognized or have recognition  
in a non-protective category. Some competitors have no  
recognition at all. With the UL497B recognition, our parts  
successfully passed several tests including Strike Voltage  
Breakdown test, Endurance Conditioning, Temperature test,  
Dielectric Voltage-Withstand test, Discharge test and several  
more.  
Whereas, some competitors have only passed a flammabil-  
ity test for the package material, we have been recognized for  
much more to be included in their Protector category.  
*Applies to 1.5KE6.8A, CA thru 1.5KE250A, CA  
CLIPPER BIDIRECTIONAL DEVICES  
1. Clipper-bidirectionaldevices are available in the 1.5KEXXA  
series and are designated with a “CA” suffix; for example,  
1.5KE18CA. Contact your nearest Motorolarepresentative.  
2. Clipper-bidirectional part numbers are tested in both direc-  
tionstoelectricalparametersinpreceedingtable(exceptfor  
3. The 1N6267A through 1N6303A series are JEDEC regis-  
tered devices and the registration does not include a “CA”  
suffix. To order clipper-bidirectional devices one must add  
CA to the 1.5KE device title.  
V
which does not apply).  
F
Devices listed in bold, italic are Motorola preferred devices.  
Motorola TVS/Zener Device Data  
500 Watt Peak Power Data Sheet  
4-5  
Transient Voltage Suppressors — Axial Leaded  
1500 Watt Peak Power  
B
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
D
2. CONTROLLING DIMENSION: INCH.  
3. LEAD FINISH AND DIAMETER UNCONTROLLED  
IN DIM P.  
K
P
INCHES  
MILLIMETERS  
DIM  
A
B
D
K
MIN  
MAX  
0.375  
0.205  
0.042  
MIN  
9.14  
4.83  
0.97  
25.40  
MAX  
9.52  
5.21  
1.07  
P
0.360  
0.190  
0.038  
1.000  
A
P
0.050  
1.27  
K
CASE 41A-02  
PLASTIC  
(Refer to Section 10 for Surface Mount, Thermal Data and Footprint Information.)  
MULTIPLE PACKAGE QUANTITY (MPQ)  
REQUIREMENTS  
Package Option  
Type No. Suffix  
MPQ (Units)  
Tape and Reel  
RL4  
1.5K  
(Refer to Section 10 for more information on Packaging Specifications.)  
Motorola TVS/Zener Device Data  
500 Watt Peak Power Data Sheet  
4-6  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY