1N755CRL2 [MOTOROLA]

Zener Diode, 7.5V V(Z), 2%, 0.5W, Silicon, Unidirectional, DO-204AH, HERMETIC SEALED, GLASS, DO-35, 2 PIN;
1N755CRL2
型号: 1N755CRL2
厂家: MOTOROLA    MOTOROLA
描述:

Zener Diode, 7.5V V(Z), 2%, 0.5W, Silicon, Unidirectional, DO-204AH, HERMETIC SEALED, GLASS, DO-35, 2 PIN

文件: 总8页 (文件大小:69K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MOTOROLA  
SEMICONDUCTOR  
TECHNICAL DATA  
1N746A  
SERIES  
500 mW  
500 mW DO-35 Glass  
Zener Voltage Regulator Diodes  
GENERAL DATA APPLICABLE TO ALL SERIES IN  
THIS GROUP  
DO-35 GLASS  
500 Milliwatt  
Hermetically Sealed  
Glass Silicon Zener Diodes  
GLASS ZENER DIODES  
500 MILLIWATTS  
1.8–200 VOLTS  
Specification Features:  
Complete Voltage Range — 1.8 to 200 Volts  
DO-204AH Package — Smaller than Conventional DO-204AA Package  
Double Slug Type Construction  
Metallurgically Bonded Construction  
Mechanical Characteristics:  
CASE 299  
DO-204AH  
GLASS  
CASE: Double slug type, hermetically sealed glass  
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16from  
case for 10 seconds  
FINISH: All external surfaces are corrosion resistant with readily solderable leads  
POLARITY: Cathode indicated by color band. When operated in zener mode, cathode  
will be positive with respect to anode  
MOUNTING POSITION: Any  
WAFER FAB LOCATION: Phoenix, Arizona  
ASSEMBLY/TEST LOCATION: Seoul, Korea  
MAXIMUM RATINGS (Motorola Devices)*  
Rating  
Symbol  
Value  
Unit  
DC Power Dissipation and T 75°C  
Lead Length = 3/8″  
P
D
L
500  
4
mW  
mW/°C  
Derate above T = 75°C  
L
Operating and Storage Temperature Range  
T , T  
J stg  
– 65 to +200  
°C  
* Some part number series have lower JEDEC registered ratings.  
0.7  
0.6  
HEAT  
SINKS  
0.5  
0.4  
0.3  
0.2  
3/8”  
3/8”  
0.1  
0
0
20  
40  
60  
80  
100  
120  
140  
C)  
160  
180 200  
T , LEAD TEMPERATURE (  
°
L
Figure 1. Steady State Power Derating  
Motorola TVS/Zener Device Data  
500 mW DO-35 Glass Data Sheet  
6-1  
GENERAL DATA — 500 mW DO-35 GLASS  
ELECTRICAL CHARACTERISTICS (T = 25°C, V = 1.5 V Max at 200 mA for all types)  
A
F
Nominal  
Zener Voltage  
Maximum  
DC Zener Current  
Maximum Reverse Leakage Current  
= 25°C = 150°C  
Test  
Current  
Maximum Zener Impedance  
Type  
Number  
(Note 1)  
T
A
T
A
Z @ I  
ZT ZT  
V
@ I  
I
Z
ZT  
ZM  
I
R
@ V = 1 V  
I @ V = 1 V  
R R  
I
(Note 3)  
Ohms  
(Note 2)  
Volts  
(Note 4)  
mA  
R
ZT  
µA  
µA  
mA  
1N746A  
1N747A  
1N748A  
3.3  
3.6  
3.9  
20  
20  
20  
28  
24  
23  
110  
100  
95  
10  
10  
10  
30  
30  
30  
1N749A  
1N750A  
1N751A  
1N752A  
1N753A  
1N754A  
4.3  
4.7  
5.1  
5.6  
6.2  
6.8  
20  
20  
20  
20  
20  
20  
22  
19  
17  
11  
7
85  
75  
70  
65  
60  
55  
2
2
1
1
0.1  
0.1  
30  
30  
20  
20  
20  
20  
5
1N755A  
1N756A  
1N757A  
1N758A  
1N759A  
7.5  
8.2  
9.1  
10  
20  
20  
20  
20  
20  
6
8
10  
17  
30  
50  
45  
40  
35  
30  
0.1  
0.1  
0.1  
0.1  
0.1  
20  
20  
20  
20  
20  
12  
NOTE 1. TOLERANCE AND VOLTAGE DESIGNATION  
Tolerance Designation  
The type numbers shown have tolerance designations as follows:  
1N4370A series: ±5% units, C for ±2%, D for ±1%.  
1N746A series: ±5% units, C for ±2%, D for ±1%.  
1N957B series: ±5% units, C for ±2%, D for ±1%.  
NOTE 3. ZENER IMPEDANCE (Z ) DERIVATION  
Z
Z
andZ aremeasuredbydividingtheacvoltagedropacrossthedevicebytheaccurrent  
ZK  
ZT  
applied. The specified limits are for I (ac) = 0.1 I (dc) with the ac frequency = 60 Hz.  
Z
Z
NOTE 4. MAXIMUM ZENER CURRENT RATINGS (I  
)
ZM  
Values shown are based on the JEDEC rating of 400 mW. Where the actual zener voltage  
(V ) is known at the operating point, the maximum zener current may be increased and is  
Z
limited by the derating curve.  
NOTE 2. ZENER VOLTAGE (V ) MEASUREMENT  
Z
Nominal zener voltage is measured with the device junction in thermal equilibrium at the lead  
temperature of 30°C ±1°C and 3/8lead length.  
Motorola TVS/Zener Device Data  
500 mW DO-35 Glass Data Sheet  
6-2  
GENERAL DATA — 500 mW DO-35 GLASS  
APPLICATION NOTE — ZENER VOLTAGE  
500  
400  
300  
200  
100  
0
Since the actual voltage available from a given zener diode  
is temperature dependent, it is necessary to determine junc-  
tiontemperatureunderanysetofoperatingconditionsinorder  
to calculate its value. The following procedure is recom-  
mended:  
L
L
Lead Temperature, T , should be determined from:  
L
T = θ  
L
P
LA D  
+ T .  
A
2.4–60 V  
θ
isthelead-to-ambientthermalresistance(°C/W)andP is  
LA  
D
the power dissipation. The value forθ willvaryanddepends  
onthedevicemountingmethod.θ isgenerally30to40°C/W  
for the various clips and tie points in common use and for  
printed circuit board wiring.  
LA  
62–200 V  
0.6  
LA  
0
0.2  
0.4  
0.8  
1
The temperature of the lead can also be measured using a  
thermocoupleplacedontheleadascloseaspossibletothetie  
point. The thermal mass connected to the tie point is normally  
large enough so that it will not significantly respond to heat  
surges generated in the diode as a result of pulsed operation  
once steady-state conditions are achieved. Using the mea-  
L, LEAD LENGTH TO HEAT SINK (INCH)  
Figure 2. Typical Thermal Resistance  
1000  
7000  
5000  
sured value of T , the junction temperature may be deter-  
L
TYPICAL LEAKAGE CURRENT  
AT 80% OF NOMINAL  
BREAKDOWN VOLTAGE  
mined by:  
T = T + T .  
JL  
2000  
1000  
J
L
T is the increase in junction temperature above the lead  
JL  
700  
temperature and may be found from Figure 2 for dc power:  
500  
T = θ P .  
JL JL D  
200  
For worst-case design, using expected limits of I , limits of  
Z
100  
70  
P andtheextremesofT (T )maybeestimated.Changesin  
D
J
J
50  
voltage, V , can then be found from:  
Z
V = θ T .  
VZ J  
20  
θ
, the zener voltage temperature coefficient, is found from  
VZ  
10  
7
Figures 4 and 5.  
5
Under high power-pulse operation, the zener voltage will  
vary with time and may also be affected significantly by the  
zenerresistance. Forbestregulation, keepcurrentexcursions  
as low as possible.  
Surge limitations are given in Figure 7. They are lower than  
would be expected by considering only junction temperature,  
as current crowding effects cause temperatures to be ex-  
tremely high in small spots, resulting in device degradation  
should the limits of Figure 7 be exceeded.  
2
1
0.7  
0.5  
+125°C  
0.2  
0.1  
0.07  
0.05  
0.02  
0.01  
0.007  
0.005  
+25°C  
0.002  
0.001  
3
4
5
6
7
8
9
10  
11  
12 13 14 15  
V , NOMINAL ZENER VOLTAGE (VOLTS)  
Z
Figure 3. Typical Leakage Current  
Motorola TVS/Zener Device Data  
500 mW DO-35 Glass Data Sheet  
6-3  
GENERAL DATA — 500 mW DO-35 GLASS  
TEMPERATURE COEFFICIENTS  
(–55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)  
100  
70  
50  
+12  
+10  
+8  
30  
20  
+6  
V
@ I (NOTE 2)  
Z
Z
RANGE  
10  
+4  
+2  
0
7
5
RANGE  
V
@ I  
ZT  
Z
3
2
(NOTE 2)  
–2  
–4  
1
10  
2
3
4
5
6
7
8
9
10  
11  
12  
20  
30  
50  
70  
100  
V , ZENER VOLTAGE (VOLTS)  
V , ZENER VOLTAGE (VOLTS)  
Z
Z
Figure 4a. Range for Units to 12 Volts  
Figure 4b. Range for Units 12 to 100 Volts  
200  
180  
160  
140  
+6  
+4  
V
A
@ I  
Z
Z
T
= 25°C  
+2  
0
20 mA  
0.01 mA  
1 mA  
V
@ I  
ZT  
Z
120  
100  
–2  
–4  
(NOTE 2)  
NOTE: BELOW 3 VOLTS AND ABOVE 8 VOLTS  
NOTE: CHANGES IN ZENER CURRENT DO NOT  
NOTE: AFFECT TEMPERATURE COEFFICIENTS  
120  
130  
140  
150  
160  
170  
180  
190  
200  
3
4
5
6
7
8
V , ZENER VOLTAGE (VOLTS)  
V , ZENER VOLTAGE (VOLTS)  
Z
Z
Figure 4c. Range for Units 120 to 200 Volts  
Figure 5. Effect of Zener Current  
1000  
500  
100  
70  
T
= 25°C  
A
T
= 25°C  
A
50  
0 V BIAS  
0 BIAS  
200  
100  
50  
30  
20  
1 V BIAS  
1 VOLT BIAS  
10  
20  
10  
5
7
5
50% OF V BIAS  
Z
50% OF  
V
BIAS  
Z
3
2
2
1
1
1
2
5
10  
20  
50  
100  
120  
140  
160  
180  
190  
200  
220  
V , ZENER VOLTAGE (VOLTS)  
V , ZENER VOLTAGE (VOLTS)  
Z
Z
Figure 6a. Typical Capacitance 2.4–100 Volts  
Figure 6b. Typical Capacitance 120–200 Volts  
Motorola TVS/Zener Device Data  
500 mW DO-35 Glass Data Sheet  
6-4  
GENERAL DATA — 500 mW DO-35 GLASS  
100  
70  
50  
RECTANGULAR  
WAVEFORM  
11 V–91 V NONREPETITIVE  
T
= 25°C PRIOR TO  
J
30  
20  
5% DUTY CYCLE  
INITIAL PULSE  
1.8 V–10 V NONREPETITIVE  
10  
7
5
10% DUTY CYCLE  
20% DUTY CYCLE  
3
2
1
0.01  
0.02  
0.05  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
100  
200  
500  
1000  
PW, PULSE WIDTH (ms)  
Figure 7a. Maximum Surge Power 1.8–91 Volts  
1000  
500  
1000  
T
= 25°C  
700  
500  
J
V
= 2.7 V  
Z
i (rms) = 0.1 I (dc)  
Z
Z
RECTANGULAR  
f = 60 Hz  
300  
200  
WAVEFORM, T = 25  
°C  
J
200  
100  
47 V  
27 V  
100  
70  
50  
30  
20  
50  
20  
100–200 VOLTS NONREPETITIVE  
6.2 V  
10  
7
5
10  
5
3
2
1
2
1
0.01  
0.1  
1
10  
100  
1000  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50 100  
PW, PULSE WIDTH (ms)  
I , ZENER CURRENT (mA)  
Z
Figure 7b. Maximum Surge Power DO-204AH  
100–200 Volts  
Figure 8. Effect of Zener Current on  
Zener Impedance  
1000  
1000  
500  
T
= 25°C  
J
700  
500  
MAXIMUM  
MINIMUM  
i (rms) = 0.1 I (dc)  
Z
Z
f = 60 Hz  
I
= 1 mA  
5 mA  
Z
200  
200  
100  
70  
50  
100  
50  
20 mA  
20  
20  
10  
5
75°C  
10  
7
25°C  
5
150°C  
0°C  
2
1
2
1
1
2
3
5
7
10  
20  
30  
50 70 100  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.1  
V , ZENER VOLTAGE (VOLTS)  
V , FORWARD VOLTAGE (VOLTS)  
Z
F
Figure 9. Effect of Zener Voltage on Zener Impedance  
Figure 10. Typical Forward Characteristics  
Motorola TVS/Zener Device Data  
500 mW DO-35 Glass Data Sheet  
6-5  
GENERAL DATA — 500 mW DO-35 GLASS  
20  
10  
T
= 25°  
A
1
0.1  
0.01  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
V , ZENER VOLTAGE (VOLTS)  
Z
Figure 11. Zener Voltage versus Zener Current — V = 1 thru 16 Volts  
Z
10  
T
= 25°  
A
1
0.1  
0.01  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V , ZENER VOLTAGE (VOLTS)  
Z
Figure 12. Zener Voltage versus Zener Current — V = 15 thru 30 Volts  
Z
Motorola TVS/Zener Device Data  
500 mW DO-35 Glass Data Sheet  
6-6  
GENERAL DATA — 500 mW DO-35 GLASS  
10  
T
= 25°  
A
1
0.1  
0.01  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
V , ZENER VOLTAGE (VOLTS)  
Z
Figure 13. Zener Voltage versus Zener Current — V = 30 thru 105 Volts  
Z
10  
1
0.1  
0.01  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
210  
220  
230  
240  
250  
260  
V , ZENER VOLTAGE (VOLTS)  
Z
Figure 14. Zener Voltage versus Zener Current — V = 110 thru 220 Volts  
Z
Motorola TVS/Zener Device Data  
500 mW DO-35 Glass Data Sheet  
6-7  
GENERAL DATA — 500 mW DO-35 GLASS  
Zener Voltage Regulator Diodes — Axial Leaded  
500 mW DO-35 Glass  
NOTES:  
1. PACKAGE CONTOUR OPTIONAL WITHIN A AND B  
HEAT SLUGS, IF ANY, SHALL BE INCLUDED  
WITHIN THIS CYLINDER, BUT NOT SUBJECT TO  
THE MINIMUM LIMIT OF B.  
B
2. LEAD DIAMETER NOT CONTROLLED IN ZONE F  
TO ALLOW FOR FLASH, LEAD FINISH BUILDUP  
AND MINOR IRREGULARITIES OTHER THAN  
HEAT SLUGS.  
D
K
F
3. POLARITY DENOTED BY CATHODE BAND.  
4. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
MILLIMETERS  
INCHES  
DIM  
A
B
D
F
MIN  
3.05  
1.52  
0.46  
MAX  
5.08  
2.29  
0.56  
1.27  
38.10  
MIN  
MAX  
0.200  
0.090  
0.022  
0.050  
1.500  
0.120  
0.060  
0.018  
F
K
K
25.40  
1.000  
All JEDEC dimensions and notes apply.  
CASE 299-02  
DO-204AH  
GLASS  
(Refer to Section 10 for Surface Mount, Thermal Data and Footprint Information.)  
MULTIPLE PACKAGE QUANTITY (MPQ)  
REQUIREMENTS  
Package Option  
Tape and Reel  
Type No. Suffix  
(1)  
MPQ (Units)  
RL, RL2  
(1)  
TA, TA2  
5K  
5K  
Tape and Ammo  
NOTES: 1. The “2” suffix refers to 26 mm tape spacing.  
NOTES: 2. Radial Tape and Reel may be available. Please contact your Motorola  
NOTES: 2. representative.  
Refer to Section 10 for more information on Packaging Specifications.  
Motorola TVS/Zener Device Data  
500 mW DO-35 Glass Data Sheet  
6-8  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY