BUT34 [MOTOROLA]

50 AMPERES NPN SILICON POWER DARLINGTON TRANSISTOR 850 VOLTS 250 WATTS; 50安培NPN硅功率达林顿晶体管850伏250瓦
BUT34
型号: BUT34
厂家: MOTOROLA    MOTOROLA
描述:

50 AMPERES NPN SILICON POWER DARLINGTON TRANSISTOR 850 VOLTS 250 WATTS
50安培NPN硅功率达林顿晶体管850伏250瓦

晶体 晶体管 功率双极晶体管 达林顿晶体管 开关 局域网
文件: 总8页 (文件大小:290K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by BUT34/D  
SEMICONDUCTOR TECHNICAL DATA  
50 AMPERES  
NPN SILICON  
POWER DARLINGTON  
TRANSISTOR  
850 VOLTS  
250 WATTS  
The BUT34 Darlington transistor is designed for high–voltage, high–speed, power  
switching in inductive circuits where fall time is critical. They are particularly suited for  
line–operated SWITCHMODE applications such as:  
AC and DC Motor Controls  
Switching Regulators  
Inverters  
Solenoid and Relay Drivers  
Fast Turn–Off Times  
CASE 197A–05  
TO–204AE  
(TO–3)  
0.7 µs Inductive Fall Time at 25 C (Typ)  
1.8 µs Inductive Storage Time at 25 C (Typ)  
Operating Temperature Range 65 to 200 C  
50  
8  
MAXIMUM RATINGS  
Rating  
Symbol  
BUT34  
Unit  
Vdc  
Vdc  
Vdc  
Adc  
Collector–Emitter Voltage  
Collector–Emitter Voltage  
Emitter–Base Voltage  
V
500  
850  
10  
CEO(sus)  
V
CEV  
V
EB  
Collector Current — Continuous  
Collector Current — Peak (1)  
I
C
50  
75  
I
I
I
CM  
Base Current — Continuous  
Base Current — Peak (1)  
I
B
10  
15  
Adc  
Adc  
BM  
Free Wheel Diode Forward Current — Continuous  
Free Wheel Diode Forward Current — Peak  
I
F
50  
75  
FM  
Total Power Dissipation @ T = 25 C  
P
250  
140  
Watts  
C
D
@ T = 100 C  
C
Derate above 25 C  
W/ C  
C
Operating and Storage Junction Temperature Range  
T , T  
J
65 to +200  
stg  
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Max  
0.7  
Unit  
C/W  
C
Thermal Resistance, Junction to Case  
R
θJC  
Maximum Lead Temperature for Soldering Purpose:  
1/8from Case for 5 Seconds  
T
L
275  
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.  
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.  
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit  
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.  
REV 7  
Motorola, Inc. 1995
ELECTRICAL CHARACTERISTICS (T = 25 C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector–Emitter Sustaining Voltage (Table 1)  
V
500  
Vdc  
CEO(sus)  
(I = 100 mA, I = 0)  
C
B
Collector Cutoff Current  
I
mAdc  
CEV  
(V  
CEV  
(V  
CEV  
= Rated Value, V  
= Rated Value, V  
= 1.5 Vdc)  
= 1.5 Vdc, T = 100 C)  
0.2  
4.0  
BE(off)  
BE(off)  
C
Emitter Cutoff Current  
(V = 2.0 V, I = 0)  
I
350  
mAdc  
EBO  
EB  
C
SECOND BREAKDOWN  
Second Breakdown Collector Current with base forward biased  
Clamped Inductive SOA with Base Reverse Biased  
I
See Figure 16  
See Figure 17  
S/b  
RBSOA  
ON CHARACTERISTICS (1)  
DC Current Gain  
h
FE  
(I = 16 A, V  
= 5 V)  
= 5 V)  
30  
15  
C
CE  
CE  
(I = 32 A, V  
C
Collector–Emitter Saturation Voltage  
(I = 16 A, I = 0.8 A)  
V
Vdc  
CE(sat)  
2.0  
3.0  
3.5  
5.0  
C
B
(I = 32 A, I = 3.2 A)  
C
C
B
B
B
(I = 40 A, I = 4 A)  
(I = 50 A, I = 10 A)  
C
Base–Emitter Saturation Voltage  
(I = 16 A, I = 0.8 A)  
V
Vdc  
Vdc  
BE(sat)  
2.5  
2.9  
3.3  
C
B
(I = 32 A, I = 3.2 A)  
C
C
B
B
(I = 40 A, I = 4 A)  
Diode Forward Voltage  
(I = 40 A)  
F
V
f
4.0  
SWITCHING CHARACTERISTICS  
Inductive Load, Clamped (Table 1)  
Storage Time  
Fall Time  
T
= 25 C  
See Table 1  
t
t
1.8  
0.7  
2.2  
0.8  
3.0  
1.5  
µs  
µs  
µs  
µs  
C
C
s
I
= 32 A  
= 3.2 A  
t
f
C
Storage Time  
Fall Time  
T
= 100 C  
I
B1  
s
V
= 5 V  
t
BE(off)  
f
(1) Pulse Test: PW = 300 µs, Duty Cycle  
2%.  
2
Motorola Bipolar Power Transistor Device Data  
TYPICAL CHARACTERISTICS  
400  
200  
100  
50  
4
3
2
30  
20  
I
= 40 A  
C
10  
I
= 20 A  
C
5
1
0
T
= 25°C  
3
2
C
T
V
= 25°C  
C
= 5.0 V  
CE  
1
1
2
3
4
7
10  
20  
30 40  
60  
0.1  
0.2 0.3  
0.5  
I , BASE CURRENT (AMPS)  
B
1
2
3
5
7
10  
I
, COLLECTOR CURRENT (AMPS)  
C
Figure 1. DC Current Gain  
Figure 2. Collector Saturation Region  
T
I
= 25°C  
T
= 25°C  
/I = 10  
C
C
2.5  
2.2  
1.9  
1.6  
1.3  
1.0  
0.7  
0.4  
3.2  
2.8  
2.5  
2.2  
1.9  
1.6  
1.3  
1.0  
/I = 10  
I
C B  
C B  
40°C  
25°C  
25  
°
C
100  
°
C
100  
°C  
1
2
3
5
7
10  
20  
30  
50  
1
2
3
5
7
10  
20  
30  
50  
I
, COLLECTOR CURRENT (AMPS)  
I
, COLLECTOR CURRENT (AMPS)  
C
C
Figure 3. Collector–Emitter Saturation Voltage  
Figure 4. Base–Emitter Voltage  
1
0.7  
0.5  
D = 0.5  
0.3  
0.2  
0.2  
0.1  
P
(pk)  
R
R
(t) = r(t) R  
θ
θ
θ
JC  
JC  
JC  
0.1  
= 1.17  
°
C/W MAX  
0.05  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
0.07  
0.05  
0.02  
t
1
READ TIME AT t  
1
t
2
0.01  
0.03  
0.02  
T
– T = P  
R
(t)  
J(pk)  
C
(pk)  
θ
JC  
DUTY CYCLE, D = t /t  
1 2  
SINGLE PULSE  
0.01  
0.01  
0.02 0.03 0.05  
0.1  
0.2  
0.5  
1
2
3
5
10  
20  
30  
50  
100  
200 300  
500  
100  
0.3  
0
t, TIME (ms)  
Figure 5. Thermal Response  
3
Motorola Bipolar Power Transistor Device Data  
Table 1. Test Conditions for Dynamic Performance  
V
RBSOA AND INDUCTIVE SWITCHING  
TEST CIRCUIT  
for  
CEO(sus)  
FREE–WHEEL  
DIODE  
+10 V  
20  
22 µF  
33  
2 W  
D1  
1
2
2N6438  
160  
D3  
5 V  
MR854  
+
220  
100  
100  
0
MM3735  
22  
680 pF  
I
ADJUST  
b1  
D1 D2 D3 D4 1N4934  
680 pF  
V
I
DRIVER  
1
µ
F
I
ADJUST  
dT ADJUST  
D
b2  
b
PULSES  
= 3%  
22  
D4  
PW Varied to Attain  
= 100 mA  
δ
2N3763  
dT  
I
C
680 pF  
MR854  
D
160  
33  
2N6339  
D3  
2 W  
22 µF  
L
R
V
= 10 mH, V  
= 0.7 Ω  
= V  
= 10 V  
L
R
V
= 180 µH  
= 0.05 Ω  
= 10 V  
coil  
coil  
clamp  
CC  
coil  
coil  
CC  
V
CC  
CEO(sus)  
AV  
up to  
50 V  
INDUCTIVE TEST CIRCUIT  
OUTPUT WAVEFORMS  
t
Adjusted to  
1
Obtain I  
I
C
C
TUT  
I
t
Clamped  
t
CM  
f
R
L
(I  
)
)
coil  
coil CM  
1
CRONETICS  
PG130  
up to  
t
1
V
I
1N4937  
V
CC  
D
510  
t
t
f
1
L
OR  
INPUT  
coil  
EQUIVALENT  
L
(I  
coil CM  
SEE ABOVE FOR  
50 V  
5
µs  
1%  
t
2
V
V
CE  
V
DETAILED CONDITIONS  
V
V
clamp  
clamp  
V
D
CC  
CEM  
TIME  
clamp  
Test Equipment  
Scope — Tektronix  
475 or Equivalent  
t
RS =  
2
t
2
0.1  
15  
10  
5
4
3
σ
σ
t
t
= 200 ns  
= 400 ns  
F
S
T
= 25°C  
/I = 5  
C
I
= 16 A  
C
t
S
I
C B  
V
= 5 V  
BE(off)  
5
2
3
2
10 V  
1
1
0.5  
V
= 5 V  
10 V  
BE(off)  
0.5  
0.3  
0.2  
I
= 50 A  
I
= 25 A  
C
C
0.3  
0.2  
I
/I = 10  
C B  
T
= 25°C  
/I = 20  
C
t
F
I
C B  
0.1  
0.1  
1
2
3
4
5
Ib2/Ib1  
6
7
8
9
10  
1
2
3
5
7
10  
20  
30  
50  
I
, COLLECTOR CURRENT (AMPS)  
C
Figure 6. Fall Time versus IB2/IB1  
Figure 7. Turn–Off Time versus I  
C
10  
8
10  
8
6
5
4
6
5
4
I
= 25 A  
C
I
= 25 A  
C
3
2
3
2
I
= 50 A  
C
I
= 50 A  
C
T
I
= 25°C  
T
V
= 25°C  
C
C
/I = 5  
= 5 V  
C B  
BE(off)  
1
1
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
β
, FORCED GAIN  
Ib2/Ib1  
f
Figure 8. Storage Time versus Forced Gain  
Figure 9. Storage Time versus Ib2/Ib1  
4
Motorola Bipolar Power Transistor Device Data  
FREE–WHEEL DIODE CHARACTERISTICS  
50  
σ
+
σ
I
di/dt = 25 A/  
µs  
IFM  
IRM  
40  
30  
20  
10  
0
25 IRM  
I
t
d
t
rr  
1
0
V
DYN  
D
10 (VDYN VFM)  
VFM  
T
= 25°C  
C
TFR  
0
1
2
3
4
5
V
, EMITTER COLLECTOR VOLTAGE (VOLTS)  
EC  
Figure 10. Free Wheel Diode Measurements  
Figure 11. Forward Voltage  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
T
= 25°C  
C
40  
°
C
T = 25°C  
C
0
0
10  
20  
30  
40  
50  
0
10  
20  
I , EMITTER CURREMT (AMPS)  
E
30  
40  
50  
I
, EMITTER CURRENT (AMPS)  
E
Figure 12. Forward Modulation Voltage  
Figure 13. Peak Reverse Recovery Current  
15  
10  
7
T
= 25°C  
C
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
T = 25°C  
C
5
3
2
0.1  
0.7  
0.5  
0.3  
0
10  
20  
30  
40  
50  
0
10  
20  
I , EMITTER CURRENT (AMPS)  
E
30  
40  
50  
I
, EMITTER CURRENT (AMPS)  
E
Figure 14. Forward Recovery Time  
Figure 15. Reverse Recovery Time  
5
Motorola Bipolar Power Transistor Device Data  
The Safe Operating Area figures shown in Figures 16 and 17 are  
specifed for these devices under the test conditions shown.  
SAFE OPERATING AREA INFORMATION  
FORWARD BIAS  
There are two limitations on the power handling ability of a  
transistor: average junction temperature and second break-  
60  
10 µs  
DC  
30  
100 µs  
down. Safe operating area curves indicate I – V  
limits of  
1 ms  
C
CE  
the transistor that must be observed for reliable operation,  
i.e., the transistor must not be subject to greater dissipation  
than the curves indicate.  
10  
The data of Figure 16 is based on T = 25 C; T  
variable depending on power level. Second breakdown pulse  
limits are valid for duty cycles to 10% but must be derated  
is  
J(pk)  
3.0  
1.0  
C
when T  
25 C. Second breakdown limitations do not der-  
C
0.5  
0.3  
ate the same as thermal limitations. Allowable current at the  
voltages shown on Figure 16 may be found at any case tem-  
perature by using the appropriate curve on Figure 18.  
T
= 25°C  
C
T
may be calculated from the data in Figure 5. At high  
0.1  
J(pk)  
1
5
10  
30  
100  
300  
1000  
case temperatures, thermal limitations will reduce the power  
that can be handled to values less than the limitations im-  
posed by second breakdown.  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
Figure 16. Safe Operating Area  
REVERSE BIAS  
For inductive loads, high voltage and high current must be  
sustained simultaneously during turn–off, in most cases, with  
the base to emitter junction reverse biased. Under these  
conditions the collector voltage must be held to a safe level  
at or below a specific value of collector current. This can be  
accomplished by several means such as active clamping,  
RC snubbing, load line shaping, etc. The safe level for these  
devices is specified as Reverse Bias Safe Operating Area  
and represents the voltage–current condition allowable dur-  
ing reverse biased turnoff. This rating is verified under  
clamped conditions so that the device is never subjected to  
an avalanche mode. Figure 17 gives the RBSOA character-  
istics.  
60  
40  
20  
0
T
= 25°C  
/I = 10  
C
I
C B  
V
= 5 V  
BE(off)  
0
200  
400  
600  
850  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
Figure 17. Reverse Bias Safe Operating Area  
100  
80  
SECOND BREAKDOWN  
DERATING  
60  
THERMAL  
DERATING  
40  
20  
0
0
40  
80  
120  
160  
200  
I
, CASE TEMPERATURE (°C)  
C
Figure 18. Power Derating  
6
Motorola Bipolar Power Transistor Device Data  
PACKAGE DIMENSIONS  
A
N
C
NOTES:  
SEATING  
PLANE  
–T–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
E
2. CONTROLLING DIMENSION: INCH.  
K
D 2 PL  
0.30 (0.012)  
INCHES  
MIN MAX  
1.530 REF  
MILLIMETERS  
MIN  
38.86 REF  
25.15  
6.35  
1.45  
1.53  
M
M
M
T
Q
Y
DIM  
A
B
C
D
E
MAX  
U
0.990  
1.050  
0.335  
0.063  
0.070  
26.67  
8.51  
1.60  
1.77  
–Y–  
L
V
H
0.250  
0.057  
0.060  
2
1
G
H
K
L
0.430 BSC  
0.215 BSC  
0.440 0.480  
0.665 BSC  
10.92 BSC  
5.46 BSC  
11.18 12.19  
16.89 BSC  
B
G
N
Q
U
V
0.760  
0.830  
0.165  
19.31  
21.08  
4.19  
–Q–  
0.151  
0.131  
3.84  
3.33  
M
M
0.25 (0.010)  
T Y  
1.187 BSC  
30.15 BSC  
0.188  
4.77  
STYLE 1:  
PIN 1. BASE  
2. EMITTER  
CASE: COLLECTOR  
CASE 197A–05  
TO–204AE (TO–3)  
ISSUE J  
7
Motorola Bipolar Power Transistor Device Data  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
BUT34/D  

相关型号:

BUT35

TRANSISTOR | BJT | DARLINGTON | NPN | 700V V(BR)CEO | 40A I(C) | TO-204AE
ETC

BUT46

POWER TRANSISTORS
ANALOGICTECH

BUT46

Silicon NPN Power Transistor
ISC

BUT46A

POWER TRANSISTORS
ANALOGICTECH

BUT46A

Silicon NPN Power Transistor
ISC

BUT47C16

Power Bipolar Transistor, 8A I(C), 550V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUT47C16A

Power Bipolar Transistor, 8A I(C), 550V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUT47CA

Power Bipolar Transistor, 8A I(C), 550V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUT47CAF

8A, 550V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUT47CAJ

8A, 550V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUT47CC

Power Bipolar Transistor, 8A I(C), 550V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUT47CD1

8A, 550V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA