BZX85B43RL [MOTOROLA]

43V, 1W, SILICON, UNIDIRECTIONAL VOLTAGE REGULATOR DIODE, DO-41, HERMETIC SEALED, GLASS, CASE 59-03, 2 PIN;
BZX85B43RL
型号: BZX85B43RL
厂家: MOTOROLA    MOTOROLA
描述:

43V, 1W, SILICON, UNIDIRECTIONAL VOLTAGE REGULATOR DIODE, DO-41, HERMETIC SEALED, GLASS, CASE 59-03, 2 PIN

文件: 总6页 (文件大小:55K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MOTOROLA  
SEMICONDUCTOR  
TECHNICAL DATA  
BZX85C3V3RL  
SERIES  
1–1.3 Watt DO-41 Glass  
Zener Voltage Regulator Diodes  
GENERAL DATA APPLICABLE TO ALL SERIES IN  
THIS GROUP  
1–1.3 WATT  
DO-41 GLASS  
One Watt Hermetically Sealed Glass  
Silicon Zener Diodes  
1 WATT  
ZENER REGULATOR  
DIODES  
3.3–100 VOLTS  
Specification Features:  
Complete Voltage Range — 3.3 to 100 Volts  
DO-41 Package  
Double Slug Type Construction  
Metallurgically Bonded Construction  
Oxide Passivated Die  
Mechanical Characteristics:  
CASE: Double slug type, hermetically sealed glass  
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16from  
case for 10 seconds  
FINISH: All external surfaces are corrosion resistant with readily solderable leads  
POLARITY: Cathode indicated by color band. When operated in zener mode, cathode  
will be positive with respect to anode  
CASE 59-03  
DO-41  
GLASS  
MOUNTING POSITION: Any  
WAFER FAB LOCATION: Phoenix, Arizona  
ASSEMBLY/TEST LOCATION: Seoul, Korea  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
DC Power Dissipation @ T = 50°C  
Derate above 50°C  
P
D
1
6.67  
Watt  
mW/°C  
A
Operating and Storage Junction Temperature Range  
T , T  
– 65 to +200  
°C  
J
stg  
1.25  
1
L = LEAD LENGTH  
TO HEAT SINK  
L = 1  
L = 1/8  
L = 3/8  
0.75  
0.5  
0.25  
0
20  
40  
60  
80  
100  
120  
140  
C)  
160 180  
200  
T , LEAD TEMPERATURE (  
°
L
Figure 1. Power Temperature Derating Curve  
Motorola TVS/Zener Device Data  
500 mW DO-35 Glass Data Sheet  
6-1  
GENERAL DATA — 500 mW DO-35 GLASS  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted.) (V = 1.2 V Max, I = 200 mA for all types.)  
A
F
F
Zener Voltage  
(V)  
Zener Impedance  
Leakage  
Current  
(µA)  
V
Z (ohms)  
Surge  
Current  
ZT  
(Notes 2 and 3)  
Z
(Note 4)  
Test  
Current  
T
= 25°C  
i (mA)  
A
r
Max at I  
Z
Type  
(Note 1)  
V
Min  
V
Max  
Max  
at I  
I
R
Max  
I
Z
Z
ZT  
(mA)  
(mA)  
V (V)  
R
(Note 5)  
ZT  
BZX85C3V3RL  
BZX85C3V6RL  
BZX85C3V9RL  
BZX85C4V3RL  
BZX85C4V7RL  
3.1  
3.4  
3.7  
4
3.5  
3.8  
4.1  
4.6  
5
80  
60  
60  
50  
45  
20  
15  
15  
13  
13  
400  
500  
500  
500  
600  
1
1
1
1
1
1
1
1
1
1.5  
60  
30  
5
3
3
1380  
1260  
1190  
1070  
970  
4.4  
BZX85C5V1RL  
BZX85C5V6RL  
BZX85C6V2RL  
BZX85C6V8RL  
BZX85C7V5RL  
4.8  
5.2  
5.8  
6.4  
7
5.4  
6
6.6  
7.2  
7.9  
45  
45  
35  
35  
35  
10  
7
4
3.5  
3
500  
400  
300  
300  
200  
1
1
1
1
0.5  
2
2
3
4
4.5  
1
1
1
1
1
890  
810  
730  
660  
605  
BZX85C8V2RL  
BZX85C9V1RL  
BZX85C10RL  
BZX85C12RL  
7.7  
8.5  
9.4  
8.7  
9.6  
10.6  
12.7  
25  
25  
25  
20  
5
5
7
9
200  
200  
200  
350  
0.5  
0.5  
0.5  
0.5  
5
6.5  
7
1
1
0.5  
0.5  
550  
500  
454  
380  
11.4  
8.4  
BZX85C13RL  
BZX85C15RL  
BZX85C16RL  
BZX85C18RL  
12.4  
13.8  
15.3  
16.8  
14.1  
15.6  
17.1  
19.1  
20  
15  
15  
15  
10  
15  
15  
20  
400  
500  
500  
500  
0.5  
0.5  
0.5  
0.5  
9.1  
10.5  
11  
0.5  
0.5  
0.5  
0.5  
344  
304  
285  
250  
12.5  
BZX85C22RL  
BZX85C24RL  
BZX85C27RL  
BZX85C30RL  
BZX85C33RL  
20.8  
22.8  
25.1  
28  
23.3  
25.6  
28.9  
32  
10  
10  
8
8
8
25  
25  
30  
30  
35  
600  
600  
750  
1000  
1000  
0.5  
0.5  
0.25  
0.25  
0.25  
15.5  
17  
19  
21  
23  
0.5  
0.5  
0.5  
0.5  
0.5  
205  
190  
170  
150  
135  
31  
35  
BZX85C36RL  
BZX85C43RL  
BZX85C47RL  
34  
40  
44  
38  
46  
50  
8
6
4
40  
50  
90  
1000  
1000  
1500  
0.25  
0.25  
0.25  
25  
30  
33  
0.5  
0.5  
0.5  
125  
110  
95  
BZX85C56RL  
BZX85C62RL  
BZX85C75RL  
BZX85C82RL  
BZX85C100RL  
52  
58  
70  
77  
96  
60  
66  
80  
4
4
4
2.7  
2.7  
120  
125  
150  
200  
350  
2000  
2000  
2000  
3000  
3000  
0.25  
0.25  
0.25  
0.25  
0.25  
39  
43  
51  
56  
68  
0.5  
0.5  
0.5  
0.5  
0.5  
80  
70  
60  
55  
45  
87  
106  
NOTE 1. TOLERANCE AND TYPE NUMBER DESIGNATION  
NOTE 4. ZENER IMPEDANCE (Z ) DERIVATION  
Z
The type numbers listed have zener voltage min/max limits as shown. Device tolerance of  
±2% are indicated by a “B” instead of “C.”  
The zener impedance is derived from the 1 kHz cycle ac voltage, which results when an ac  
current having an rms value equal to 10% of the dc zener current (I ) or (I ) is superim-  
ZT  
ZK  
posed on I  
or I .  
ZK  
ZT  
NOTE 2. SPECIALS AVAILABLE INCLUDE:  
Nominal zener voltages between the voltages shown and tighter voltage tolerances.  
For detailed information on price, availability, and delivery, contactyournearestMotorolarep-  
resentative.  
NOTE 5. SURGE CURRENT (i ) NON-REPETITIVE  
r
The rating listed in the electrical characteristics table is maximum peak, non-repetitive, re-  
verse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 second dura-  
NOTE 3. ZENER VOLTAGE (V ) MEASUREMENT  
Z
V
is measured after the test current has been applied to 40 ± 10 msec., while maintaining  
tion superimposed on the test current I . However, actual device capability is as described  
Z
ZT  
the lead temperature (T ) at 30°C ± 1°C, 3/8from the diode body.  
in Figure 5 of General Data DO-41 glass.  
L
Motorola TVS/Zener Device Data  
500 mW DO-35 Glass Data Sheet  
6-2  
GENERAL DATA — 500 mW DO-35 GLASS  
a. Range for Units to 12 Volts  
b. Range for Units to 12 to 100 Volts  
100  
70  
50  
+12  
+10  
+8  
30  
20  
+6  
+4  
+2  
0
RANGE  
V @ I  
Z
10  
7
5
ZT  
V
@ I  
10  
RANGE  
Z
ZT  
3
2
–2  
–4  
1
10  
2
3
4
5
6
7
8
9
11  
12  
20  
30  
50  
70 100  
V , ZENER VOLTAGE (VOLTS)  
V , ZENER VOLTAGE (VOLTS)  
Z
Z
Figure 2. Temperature Coefficients  
(–55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)  
+6  
175  
150  
125  
100  
75  
V
A
@ I  
Z
Z
+4  
+2  
T
= 25°C  
20 mA  
0
0.01 mA  
50  
1 mA  
–2  
–4  
NOTE: BELOW 3 VOLTS AND ABOVE 8 VOLTS  
NOTE: CHANGES IN ZENER CURRENT DO NOT  
NOTE: EFFECT TEMPERATURE COEFFICIENTS  
25  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
3
4
5
6
7
8
L, LEAD LENGTH TO HEAT SINK (INCHES)  
V , ZENER VOLTAGE (VOLTS)  
Z
Figure 3. Typical Thermal Resistance  
versus Lead Length  
Figure 4. Effect of Zener Current  
100  
70  
50  
RECTANGULAR  
WAVEFORM  
11 V–100 V NONREPETITIVE  
3.3 V–10 V NONREPETITIVE  
T
= 25°C PRIOR TO  
J
30  
20  
5% DUTY CYCLE  
INITIAL PULSE  
10  
7
10% DUTY CYCLE  
5
20% DUTY CYCLE  
3
2
1
0.01  
0.02  
0.05  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
100  
200  
500  
1000  
PW, PULSE WIDTH (ms)  
This graph represents 90 percentile data points.  
For worst case design characteristics, multiply surge power by 2/3.  
Figure 5. Maximum Surge Power  
Motorola TVS/Zener Device Data  
500 mW DO-35 Glass Data Sheet  
6-3  
GENERAL DATA — 500 mW DO-35 GLASS  
1000  
500  
1000  
T
= 25°C  
T
= 25°C  
J
700  
500  
J
i (rms) = 0.1 I (dc)  
V
= 2.7 V  
i (rms) = 0.1 I (dc)  
Z
Z
Z
Z
Z
f = 60 Hz  
f = 60 Hz  
I
= 1 mA  
Z
200  
200  
100  
47 V  
27 V  
100  
50  
5 mA  
70  
50  
20 mA  
20  
10  
20  
10  
7
5
6.2 V  
5
2
1
2
1
0.1  
0.2  
0.5  
1
2
5
10  
20  
50 100  
1
2
3
5
7
10  
20  
30  
50 70 100  
I , ZENER CURRENT (mA)  
V , ZENER CURRENT (mA)  
Z
Z
Figure 6. Effect of Zener Current  
on Zener Impedance  
Figure 7. Effect of Zener Voltage  
on Zener Impedance  
10000  
7000  
5000  
400  
300  
200  
100  
50  
TYPICAL LEAKAGE CURRENT  
AT 80% OF NOMINAL  
BREAKDOWN VOLTAGE  
2000  
1000  
0 V BIAS  
1 V BIAS  
700  
500  
200  
20  
100  
70  
50  
10  
8
50% OF BREAKDOWN BIAS  
20  
4
10  
7
1
2
5
10  
20  
50  
100  
V , NOMINAL V (VOLTS)  
5
Z
Z
Figure 9. Typical Capacitance versus V  
Z
2
1
0.7  
0.5  
1000  
MINIMUM  
MAXIMUM  
500  
200  
100  
50  
+125°C  
0.2  
0.1  
0.07  
0.05  
0.02  
20  
10  
5
75°C  
0.01  
0.007  
0.005  
+25°C  
25°C  
150°C  
0°C  
0.002  
0.001  
2
1
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.1  
3
4
5
6
7
8
9
10  
11  
12  
13  
14 15  
V , NOMINAL ZENER VOLTAGE (VOLTS)  
V , FORWARD VOLTAGE (VOLTS)  
Z
F
Figure 8. Typical Leakage Current  
Figure 10. Typical Forward Characteristics  
Motorola TVS/Zener Device Data  
500 mW DO-35 Glass Data Sheet  
6-4  
GENERAL DATA — 500 mW DO-35 GLASS  
APPLICATION NOTE  
Since the actual voltage available from a given zener diode  
temperature and may be found as follows:  
is temperature dependent, it is necessary to determine junc-  
tiontemperatureunderanysetofoperatingconditionsinorder  
to calculate its value. The following procedure is recom-  
mended:  
T = θ P .  
JL JL D  
θ
may be determined from Figure 3 for dc power condi-  
JL  
tions. For worst-case design, using expected limits of I , limits  
Z
ofP andtheextremesofT (T )maybeestimated.Changes  
D
J
J
Lead Temperature, T , should be determined from:  
L
in voltage, V , can then be found from:  
Z
T = θ  
L
P
LA D  
+ T .  
A
V = θ  
T .  
J
VZ  
, the zener voltage temperature coefficient, is found from  
θ
isthelead-to-ambientthermalresistance(°C/W)andP is  
LA  
D
θ
VZ  
Figure 2.  
Under high power-pulse operation, the zener voltage will  
the power dissipation. The value forθ willvaryanddepends  
onthedevicemountingmethod.θ isgenerally30to40°C/W  
for the various clips and tie points in common use and for  
printed circuit board wiring.  
LA  
LA  
vary with time and may also be affected significantly by the  
zenerresistance. Forbestregulation, keepcurrentexcursions  
as low as possible.  
Surge limitations are given in Figure 5. They are lower than  
would be expected by considering only junction temperature,  
as current crowding effects cause temperatures to be ex-  
tremely high in small spots, resulting in device degradation  
should the limits of Figure 5 be exceeded.  
The temperature of the lead can also be measured using a  
thermocoupleplacedontheleadascloseaspossibletothetie  
point. The thermal mass connected to the tie point is normally  
large enough so that it will not significantly respond to heat  
surges generated in the diode as a result of pulsed operation  
once steady-state conditions are achieved. Using the mea-  
sured value of T , the junction temperature may be deter-  
L
mined by:  
T = T + T .  
JL  
J
L
T is the increase in junction temperature above the lead  
JL  
Motorola TVS/Zener Device Data  
500 mW DO-35 Glass Data Sheet  
6-5  
GENERAL DATA — 500 mW DO-35 GLASS  
Zener Voltage Regulator Diodes — Axial Leaded  
1–1.3 Watt DO-41 Glass  
B
NOTES:  
1. ALL RULES AND NOTES ASSOCIATED WITH  
JEDEC DO-41 OUTLINE SHALL APPLY.  
2. POLARITY DENOTED BY CATHODE BAND.  
3. LEAD DIAMETER NOT CONTROLLED WITHIN F  
D
K
DIMENSION.  
F
MILLIMETERS  
INCHES  
DIM  
A
B
D
F
MIN  
4.07  
2.04  
0.71  
MAX  
5.20  
2.71  
0.86  
1.27  
MIN  
MAX  
0.205  
0.107  
0.034  
0.050  
A
K
0.160  
0.080  
0.028  
F
K
27.94  
1.100  
CASE 59-03  
DO-41  
GLASS  
(Refer to Section 10 for Surface Mount, Thermal Data and Footprint Information.)  
MULTIPLE PACKAGE QUANTITY (MPQ)  
REQUIREMENTS  
Package Option  
Type No. Suffix  
MPQ (Units)  
Tape and Reel  
RL, RL2  
TA, TA2  
6K  
4K  
Tape and Ammo  
NOTE: 1. The “2” suffix refers to 26 mm tape spacing.  
(Refer to Section 10 for more information on Packaging Specifications.)  
Motorola TVS/Zener Device Data  
500 mW DO-35 Glass Data Sheet  
6-6  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY