KMC705JJ7CDW [MOTOROLA]

8-BIT, OTPROM, 2.1MHz, MICROCONTROLLER, PDSO20, SOIC-20;
KMC705JJ7CDW
型号: KMC705JJ7CDW
厂家: MOTOROLA    MOTOROLA
描述:

8-BIT, OTPROM, 2.1MHz, MICROCONTROLLER, PDSO20, SOIC-20

可编程只读存储器 时钟 光电二极管 外围集成电路
文件: 总264页 (文件大小:2975K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC705JJ7/D  
REV 4  
MC68HC705JJ7  
MC68HC705JP7  
MC68HC705SJ7  
MC68HC705SP7  
MC68HRC705JJ7  
MC68HRC705JP7  
Advance Information  
HCMOS  
Microcontroller Unit  
blank  
MC68HC705JJ7  
MC68HC705SJ7  
MC68HRC705SJ7  
MC68HC705JP7  
MC68HRC705JJ7 MC68HC705SP7  
Advance Information  
Motorola reserves the right to make changes without further notice to any products  
herein. Motorola makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Motorola assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. "Typical" parameters which may be provided in Motorola data sheets and/or  
specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including "Typicals" must be validated for  
each customer application by customer's technical experts. Motorola does not convey  
any license under its patent rights nor the rights of others. Motorola products are not  
designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Motorola product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use  
Motorola products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal  
injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
Motorola and  
are registered trademarks of Motorola, Inc.  
DigitalDNA is a trademark of Motorola, Inc.  
© Motorola, Inc., 2001  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
3
Advance Information  
To provide the most up-to-date information, the revision of our  
documents on the World Wide Web will be the most current. Your printed  
copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://www.motorola.com/mcu/  
The following revision history table summarizes changes contained in  
this document. For your convenience, the page number designators  
have been linked to the appropriate location.  
Revision History  
Revision  
Level  
Page  
Date  
Description  
Number(s)  
General reformat to bring document up to current publication  
standards  
All  
References to MC68HRC705SJ7 and MC68HRC705SP7 removed  
throughout  
All  
Figure 7-9. PB4/AN4/TCMP/CMP1 Pin I/O Circuit — Change label  
of register $1FF0 from mask option register to COP register  
94  
Table 7-2. Port B Pin Functions — PB0–PB4 — Change heading  
under Comparator 1 from OPT in MOR to OPT in COPR  
96  
12.4 PEPROM Programming — Contact information updated  
179  
188  
Figure 13-3. EPROM Security in COP and Security Register  
(COPR) — Figure title change  
August, 2001  
4
13.4 EPROM Programming — Contact information updated and  
corrected reference to COP register from COP to COPR  
189  
225  
226  
15.15 SIOP Timing (VDD = 5.0 Vdc) — Value change for clock  
(SCK) low time  
15.16 SIOP Timing (VDD = 3.0 Vdc) — Value change for clock  
(SCK) low time  
213, 214,  
219, 223,  
and 227  
Section 15. Electrical Specifications — Added Figure 15-1  
through Figure 15-10 and Figure 15-12  
Advance Information  
4
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information MC68HC705JJ7/MC68HC705JP7  
List of Sections  
Section 1. General Description . . . . . . . . . . . . . . . . . . . .23  
Section 2. Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Section 3. Central Processor Unit (CPU) . . . . . . . . . . . .45  
Section 4. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Section 5. Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Section 6. Operating Modes. . . . . . . . . . . . . . . . . . . . . . .75  
Section 7. Parallel Input/Output. . . . . . . . . . . . . . . . . . . .83  
Section 8. Analog Subsystem . . . . . . . . . . . . . . . . . . . .107  
Section 9. Simple Synchronous Serial Interface . . . . .141  
Section 10. Core Timer . . . . . . . . . . . . . . . . . . . . . . . . . .151  
Section 11. Programmable Timer . . . . . . . . . . . . . . . . .159  
Section 12. Personality EPROM (PEPROM) . . . . . . . . .175  
Section 13. EPROM/OTPROM . . . . . . . . . . . . . . . . . . . .183  
Section 14. Instruction Set. . . . . . . . . . . . . . . . . . . . . . .191  
Section 15. Electrical Specifications. . . . . . . . . . . . . . .209  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
5
List of Sections  
List of Sections  
Section 16. Mechanical Specifications . . . . . . . . . . . . .231  
Section 17. Ordering Information . . . . . . . . . . . . . . . . .237  
Advance Information  
6
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
List of Sections  
MOTOROLA  
Advance Information MC68HC705JJ7/MC68HC705JP7  
Table of Contents  
Section 1. General Description  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Device Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Functional Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
VDD and VSS Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
1.7  
OSC1 and OSC2 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Ceramic Resonator Oscillator . . . . . . . . . . . . . . . . . . . . . . .30  
RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
External Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Internal Low-Power Oscillator . . . . . . . . . . . . . . . . . . . . . . .31  
1.7.1  
1.7.2  
1.7.3  
1.7.4  
1.7.5  
1.8  
1.9  
RESET Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
IRQ/VPP Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
1.10 PA0PA5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
1.11 PB0PB7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
1.12 PC0PC7 (MC68HC705JP7) . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Section 2. Memory  
2.1  
2.2  
2.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
7
Table of Contents  
Table of Contents  
2.4  
2.5  
2.6  
2.7  
2.8  
Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
User and Interrupt Vector Mapping. . . . . . . . . . . . . . . . . . . . . .42  
Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . .42  
Erasable Programmable Read-Only Memory (EPROM) . . . . .43  
COP Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Section 3. Central Processor Unit (CPU)  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Index Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Condition Code Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Section 4. Interrupts  
4.1  
4.2  
4.3  
4.4  
4.5  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Interrupt Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Software Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
4.6  
External Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
IRQ/VPP Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
PA0PA3 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
IRQ Status and Control Register (ISCR) . . . . . . . . . . . . . . .58  
4.6.1  
4.6.2  
4.6.3  
Advance Information  
8
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Table of Contents  
MOTOROLA  
Table of Contents  
4.7  
4.7.1  
4.7.2  
Core Timer Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Core Timer Overflow Interrupt . . . . . . . . . . . . . . . . . . . . . . .60  
Real-Time Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
4.8  
Programmable Timer Interrupts . . . . . . . . . . . . . . . . . . . . . . . .61  
Input Capture Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Output Compare Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Timer Overflow Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
4.8.1  
4.8.2  
4.8.3  
4.9  
Serial Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
4.10 Analog Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
4.10.1 Comparator Input Match Interrupt . . . . . . . . . . . . . . . . . . . .63  
4.10.2 Input Capture Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Section 5. Resets  
5.1  
5.2  
5.3  
5.4  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
External Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
5.5  
Internal Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Computer Operating Properly (COP) Reset. . . . . . . . . . . . .68  
Low-Voltage Reset (LVR). . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
5.5.1  
5.5.2  
5.5.3  
5.5.4  
5.6  
Reset States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Core Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
COP Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
16-Bit Programmable Timer . . . . . . . . . . . . . . . . . . . . . . . . .72  
Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Analog Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
External Oscillator and Internal Low-Power Oscillator . . . . .73  
5.6.1  
5.6.2  
5.6.3  
5.6.4  
5.6.5  
5.6.6  
5.6.7  
5.6.8  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
Table of Contents  
9
Table of Contents  
Section 6. Operating Modes  
6.1  
6.2  
6.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Oscillator Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
6.4  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Halt Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Data-Retention Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
Section 7. Parallel Input/Output  
7.1  
7.2  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
7.3  
Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Pulldown Register A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Port A External Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Port A Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.4  
Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Pulldown Register B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Port B Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
PB0, PBI, PB2, and PB3 Logic. . . . . . . . . . . . . . . . . . . . . . .93  
PB4/AN4/TCMP/CMP1 Logic. . . . . . . . . . . . . . . . . . . . . . . .94  
PB5/SDO Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
PB6/SDI Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
PB7/SCK Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.4.5  
7.4.6  
7.4.7  
7.4.8  
7.4.9  
Advance Information  
10  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Table of Contents  
MOTOROLA  
Table of Contents  
7.5  
Port C (28-Pin Versions Only) . . . . . . . . . . . . . . . . . . . . . . . .101  
Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Data Direction Register C. . . . . . . . . . . . . . . . . . . . . . . . . .102  
Port C Pulldown Devices . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Port C Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.6  
Port Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Section 8. Analog Subsystem  
8.2  
8.3  
8.4  
8.5  
8.6  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
Analog Multiplex Register. . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
Analog Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Analog Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
A/D Conversion Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
8.7  
8.7.1  
Voltage Measurement Methods . . . . . . . . . . . . . . . . . . . . . . .132  
Absolute Voltage Readings . . . . . . . . . . . . . . . . . . . . . . . .133  
Internal Absolute Reference . . . . . . . . . . . . . . . . . . . . .133  
External Absolute Reference . . . . . . . . . . . . . . . . . . . . .134  
Ratiometric Voltage Readings . . . . . . . . . . . . . . . . . . . . . .134  
Internal Ratiometric Reference . . . . . . . . . . . . . . . . . . .135  
External Ratiometric Reference. . . . . . . . . . . . . . . . . . .136  
8.7.1.1  
8.7.1.2  
8.7.2  
8.7.2.1  
8.7.2.2  
8.8  
8.8.1  
8.8.2  
Voltage Comparator Features . . . . . . . . . . . . . . . . . . . . . . . .136  
Voltage Comparator 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
Voltage Comparator 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
8.9  
Current Source Features . . . . . . . . . . . . . . . . . . . . . . . . . . . .138  
8.10 Internal Temperature Sensing Diode Features. . . . . . . . . . . .138  
8.11 Sample and Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138  
8.12 Port B Interaction with Analog Inputs . . . . . . . . . . . . . . . . . . .139  
8.13 Port B Pins as Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
8.14 Port B Pulldowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
8.15 Noise Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
11  
Table of Contents  
Table of Contents  
Section 9. Simple Serial Interface  
9.1  
9.2  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
9.3  
SIOP Signal Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
Serial Clock (SCK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
Serial Data Input (SDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . .144  
Serial Data Output (SDO). . . . . . . . . . . . . . . . . . . . . . . . . .144  
9.3.1  
9.3.2  
9.3.3  
9.4  
SIOP Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
SIOP Control Register (SCR). . . . . . . . . . . . . . . . . . . . . . .145  
SIOP Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
SIOP Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
9.4.1  
9.4.2  
9.4.3  
Section 10. Core Timer  
10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
10.3 Core Timer Status and Control Register. . . . . . . . . . . . . . . . .153  
10.4 Core Timer Counter Register . . . . . . . . . . . . . . . . . . . . . . . . .155  
10.5 COP Watchdog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
Section 11. Programmable Timer  
11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
11.3 Timer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162  
11.4 Alternate Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . .163  
11.5 Input Capture Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
11.6 Output Compare Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .167  
11.7 Timer Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
11.8 Timer Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
11.9 Timer Operation during Wait Mode. . . . . . . . . . . . . . . . . . . . .173  
Advance Information  
12  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Table of Contents  
MOTOROLA  
Table of Contents  
11.10 Timer Operation during Stop Mode . . . . . . . . . . . . . . . . . . . .173  
11.11 Timer Operation during Halt Mode . . . . . . . . . . . . . . . . . . . . .173  
Section 12. Personality EPROM (PEPROM)  
12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175  
12.3 PEPROM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
12.3.1 PEPROM Bit Select Register . . . . . . . . . . . . . . . . . . . . . . .177  
12.3.2 PEPROM Status and Control Register. . . . . . . . . . . . . . . .178  
12.4 PEPROM Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
12.5 PEPROM Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
12.6 PEPROM Erasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
Section 13. EPROM/OTPROM  
13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
13.3 EPROM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
13.3.1 EPROM Programming Register . . . . . . . . . . . . . . . . . . . . .184  
13.3.2 Mask Option Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
13.3.3 EPROM Security Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
13.4 EPROM Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
13.4.1 MOR Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
13.4.2 EPMSEC Programming . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
13.5 EPROM Erasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
Section 14. Instruction Set  
14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
13  
Table of Contents  
Table of Contents  
14.3 Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
14.3.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
14.3.2 Immediate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
14.3.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
14.3.4 Extended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
14.3.5 Indexed, No Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
14.3.6 Indexed, 8-Bit Offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
14.3.7 Indexed, 16-Bit Offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
14.3.8 Relative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
14.4 Instruction Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
14.4.1 Register/Memory Instructions. . . . . . . . . . . . . . . . . . . . . . .195  
14.4.2 Read-Modify-Write Instructions . . . . . . . . . . . . . . . . . . . . .196  
14.4.3 Jump/Branch Instructions. . . . . . . . . . . . . . . . . . . . . . . . . .197  
14.4.4 Bit Manipulation Instructions . . . . . . . . . . . . . . . . . . . . . . .199  
14.4.5 Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
14.5 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .201  
14.6 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
Section 15. Electrical Specifications  
15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210  
15.3 Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210  
15.4 Operating Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .211  
15.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
15.6 Supply Current Characteristics  
(VDD = 4.5 to 5.5 Vdc) . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
15.7 Supply Current Characteristics  
(VDD = 2.7 to 3.3 Vdc) . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
15.8 DC Electrical Characteristics (5.0 Vdc). . . . . . . . . . . . . . . . . .215  
15.9 DC Electrical Characteristics (3.0 Vdc). . . . . . . . . . . . . . . . . .216  
15.10 Analog Subsystem Characteristics (5.0 Vdc) . . . . . . . . . . . . .217  
Advance Information  
14  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Table of Contents  
MOTOROLA  
Table of Contents  
15.11 Analog Subsystem Characteristics (3.0 Vdc) . . . . . . . . . . . . .218  
15.12 Control Timing (5.0 Vdc). . . . . . . . . . . . . . . . . . . . . . . . . . . . .220  
15.13 Control Timing (3.0 Vdc). . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
15.14 PEPROM and EPROM Programming  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224  
15.15 SIOP Timing (VDD = 5.0 Vdc). . . . . . . . . . . . . . . . . . . . . . . . .225  
15.16 SIOP Timing (VDD = 3.0 Vdc). . . . . . . . . . . . . . . . . . . . . . . . .226  
15.17 Reset Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
Section 16. Mechanical Specifications  
16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231  
16.3 20-Pin Plastic Dual In-Line Package (Case 738) . . . . . . . . . .232  
16.4 20-Pin Small Outline Integrated Circuit (Case 751D) . . . . . . .233  
16.5 28-Pin Plastic Dual In-Line Package (Case 710) . . . . . . . . . .233  
16.6 28-Pin Small Outline Integrated Circuit (Case 751F) . . . . . . .234  
16.7 20-Pin Windowed Ceramic Integrated Circuit  
(Case 732). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234  
16.8 28-Pin Windowed Ceramic Integrated Circuit  
(Case 733A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
Section 17. Ordering Information  
17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237  
17.3 MC68HC705JJ7 Order Numbers . . . . . . . . . . . . . . . . . . . . . .238  
17.4 MC68HC705JP7 Order Numbers. . . . . . . . . . . . . . . . . . . . . .239  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
15  
Table of Contents  
Table of Contents  
Advance Information  
16  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Table of Contents  
Advance Information MC68HC705JJ7/MC68HC705JP7  
List of Figures  
Figure  
Title  
Page  
1-1  
1-2  
1-3  
User Mode Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
User Mode Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
EPO Oscillator Connections . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
2-1  
2-2  
2-3  
2-4  
2-5  
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Vector Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
COP and Security Register (COPR). . . . . . . . . . . . . . . . . . . . .43  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
68HC05 Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Index Register (X). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . .48  
4-1  
4-2  
4-3  
4-4  
Interrupt Stacking Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Interrupt Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
External Interrupt Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
IRQ Status and Control Register (ISCR) . . . . . . . . . . . . . . . . .58  
5-1  
5-2  
Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
COP and Security Register (COPR). . . . . . . . . . . . . . . . . . . . .69  
6-1  
6-2  
IRQ Status and Control Register (ISCR) . . . . . . . . . . . . . . . . .76  
Stop/Wait/Halt Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
17  
List of Figures  
List of Figures  
Figure  
Title  
Page  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
7-9  
Port A Data Register (PORTA). . . . . . . . . . . . . . . . . . . . . . . . .85  
Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . .86  
Pulldown Register A (PDRA) . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Port B Data Register (PORTB). . . . . . . . . . . . . . . . . . . . . . . . .90  
Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . .91  
Pulldown Register B (PDRB) . . . . . . . . . . . . . . . . . . . . . . . . . .92  
PB0PB3 Pin I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
PB4/AN4/TCMP/CMP1 Pin I/O Circuit . . . . . . . . . . . . . . . . . . .94  
7-10 PB5/SDO Pin I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
7-11 PB6/SDI Pin I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
7-12 PB7/SCK Pin I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
7-13 Port C Data Register (PORTC). . . . . . . . . . . . . . . . . . . . . . . .102  
7-14 Data Direction Register C (DDRC) . . . . . . . . . . . . . . . . . . . . .103  
7-15 Port C I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
8-1  
8-2  
8-3  
8-4  
8-5  
8-6  
8-7  
8-8  
8-9  
Analog Subsystem Block Diagram . . . . . . . . . . . . . . . . . . . . .109  
Analog Multiplex Register (AMUX) . . . . . . . . . . . . . . . . . . . . .110  
Comparator 2 Input Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
INV Bit Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Analog Control Register (ACR). . . . . . . . . . . . . . . . . . . . . . . .115  
Analog Status Register (ASR) . . . . . . . . . . . . . . . . . . . . . . . .119  
Single-Slope A/D Conversion Method . . . . . . . . . . . . . . . . . .122  
A/D Conversion Full Manual Control (Mode 0) . . . . . . . . .128  
A/D Conversion Manual/Auto Discharge  
Control (Mode 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
8-10 A/D Conversion TOF/ICF Control (Mode 2). . . . . . . . . . . .130  
8-11 A/D Conversion OCF/ICF Control (Mode 3). . . . . . . . . . . .131  
8-12 COP and Security Register (COPR). . . . . . . . . . . . . . . . . . . .137  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
SIOP Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142  
SIOP Timing Diagram (CPHA = 0) . . . . . . . . . . . . . . . . . . . . .143  
SIOP Timing Diagram (CPHA = 1) . . . . . . . . . . . . . . . . . . . . .144  
SIOP Control Register (SCR) . . . . . . . . . . . . . . . . . . . . . . . . .145  
SIOP Status Register (SSR). . . . . . . . . . . . . . . . . . . . . . . . . .148  
SIOP Data Register (SDR) . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
Advance Information  
18  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
List of Figures  
MOTOROLA  
List of Figures  
Figure  
Title  
Page  
10-1 Core Timer Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
10-2 Core Timer Status and Control Register (CTSCR). . . . . . . . .153  
10-3 Core Timer Counter Register (CTCR) . . . . . . . . . . . . . . . . . .155  
10-4 COP and Security Register (COPR). . . . . . . . . . . . . . . . . . . .156  
11-1 Programmable Timer Overall Block Diagram . . . . . . . . . . . . .161  
11-2 Programmable Timer Block Diagram . . . . . . . . . . . . . . . . . . .162  
11-3 Programmable Timer Registers (TMRH and TMRL) . . . . . . .163  
11-4 Alternate Counter Block Diagram . . . . . . . . . . . . . . . . . . . . . .164  
11-5 Alternate Counter Registers (ACRH and ACRL) . . . . . . . . . .165  
11-6 Timer Input Capture Block Diagram . . . . . . . . . . . . . . . . . . . .166  
11-7 Input Capture Registers (ICRH and ICRL) . . . . . . . . . . . . . . .166  
11-8 Timer Output Compare Block Diagram. . . . . . . . . . . . . . . . . .168  
11-9 Output Compare Registers (OCRH and OCRL). . . . . . . . . . .168  
11-10 Timer Control Register (TCR). . . . . . . . . . . . . . . . . . . . . . . . .170  
11-11 Timer Status Register (TSR) . . . . . . . . . . . . . . . . . . . . . . . . .172  
12-1 Personality EPROM Block Diagram . . . . . . . . . . . . . . . . . . . .176  
12-2 PEPROM Bit Select Register (PEBSR) . . . . . . . . . . . . . . . . .177  
12-3 PEPROM Status and Control Register (PESCR) . . . . . . . . . .178  
13-1 EPROM Programming Register (EPROG) . . . . . . . . . . . . . . .184  
13-2 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . .186  
13-3 EPROM Security in COP and Security Register (COPR). . . .188  
15-1 Typical Run IDD versus Internal  
Clock Frequency at 25° C . . . . . . . . . . . . . . . . . . . . . . . . .213  
15-2 Typical Wait IDD versus Internal  
Clock Frequency at 25° C . . . . . . . . . . . . . . . . . . . . . . . . .213  
15-3 Typical Run IDD with External Oscillator. . . . . . . . . . . . . . . . .214  
15-4 Typical Wait IDD with External Oscillator . . . . . . . . . . . . . . . .214  
15-5 Typical Stop IDD with Analog and LVR Disabled . . . . . . . . . .214  
15-6 Typical Temperature Diode Performance. . . . . . . . . . . . . . . .219  
15-7 Typical 500 kHz External Low-Power  
Oscillator Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
19  
List of Figures  
List of Figures  
Figure  
Title  
Page  
15-8 Typical 100 kHz External Low-Power  
Oscillator Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
15-9 Typical RC Oscillator Internal Operating  
Frequency Range versus Resistance for High VDD  
Operating Range at T = 25° C . . . . . . . . . . . . . . . . . . . . . .223  
15-10 Typical RC Oscillator Internal Operating  
Frequency Range versus Resistance for Low VDD  
Operating Range at T = 25° C . . . . . . . . . . . . . . . . . . . . . .223  
15-11 SIOP Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
15-12 Typical Falling Low Voltage Reset . . . . . . . . . . . . . . . . . . . . .227  
15-13 Stop Recovery Timing Diagram . . . . . . . . . . . . . . . . . . . . . . .228  
15-14 Internal Reset Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . .228  
15-15 Low-Voltage Reset Timing Diagram. . . . . . . . . . . . . . . . . . . .229  
Advance Information  
20  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
List of Figures  
MOTOROLA  
Advance Information MC68HC705JJ7/MC68HC705JP7  
List of Tables  
Table  
Title  
Page  
1-1  
Device Options by Part Number . . . . . . . . . . . . . . . . . . . . . . . .26  
4-1  
4-2  
Reset/Interrupt Vector Addresses. . . . . . . . . . . . . . . . . . . . . . .52  
Oscillator Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
6-1  
Oscillator Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
7-1  
7-2  
7-3  
7-4  
Port A Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Port B Pin Functions PB0PB4 . . . . . . . . . . . . . . . . . . . . . .96  
Port B Pin Functions PB5PB7 . . . . . . . . . . . . . . . . . . . . .101  
Port C Pin Functions (28-Pin Versions Only) . . . . . . . . . . . . .104  
8-1  
8-2  
8-3  
8-4  
8-5  
8-6  
8-7  
8-8  
Comparator 2 Input Sources. . . . . . . . . . . . . . . . . . . . . . . . . .111  
Channel Select Bus Combinations . . . . . . . . . . . . . . . . . . . . .114  
A/D Conversion Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
A/D Conversion Parameters. . . . . . . . . . . . . . . . . . . . . . . . . .126  
Sample Conversion Timing (VDD = 5.0 Vdc) . . . . . . . . . . . . .127  
Absolute Voltage Reading Errors . . . . . . . . . . . . . . . . . . . . . .134  
Ratiometric Voltage Reading Errors . . . . . . . . . . . . . . . . . . . .135  
Voltage Comparator Setup Conditions . . . . . . . . . . . . . . . . . .136  
9-1  
SIOP Clock Rate Selection. . . . . . . . . . . . . . . . . . . . . . . . . . .147  
10-1 Core Timer Interrupt Rates and COP Timeout Selection . . . .155  
10-2 COP Watchdog Recommendations . . . . . . . . . . . . . . . . . . . .157  
11-1 Output Compare Initialization Example . . . . . . . . . . . . . . . . .169  
12-1 PEPROM Bit Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
21  
List of Tables  
List of Tables  
Table  
Title  
Page  
14-1 Register/Memory Instructions. . . . . . . . . . . . . . . . . . . . . . . . .195  
14-2 Read-Modify-Write Instructions . . . . . . . . . . . . . . . . . . . . . . .196  
14-3 Jump and Branch Instructions . . . . . . . . . . . . . . . . . . . . . . . .198  
14-4 Bit Manipulation Instructions. . . . . . . . . . . . . . . . . . . . . . . . . .199  
14-5 Control Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
14-6 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .201  
14-7 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208  
Advance Information  
22  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
List of Tables  
MOTOROLA  
Advance Information MC68HC705JJ7/MC68HC705JP7  
Section 1. General Description  
1.1 Contents  
1.2  
1.3  
1.4  
1.5  
1.6  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Device Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Functional Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
VDD and VSS Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
1.7  
OSC1 and OSC2 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Ceramic Resonator Oscillator . . . . . . . . . . . . . . . . . . . . . . .30  
RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
External Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Internal Low-Power Oscillator . . . . . . . . . . . . . . . . . . . . . . .31  
1.7.1  
1.7.2  
1.7.3  
1.7.4  
1.7.5  
1.8  
1.9  
RESET Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
IRQ/VPP Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
1.10 PA0PA5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
1.11 PB0PB7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
1.12 PC0PC7 (MC68HC705JP7) . . . . . . . . . . . . . . . . . . . . . . . . . .33  
1.2 Introduction  
The Motorola MC68HC705JJ7 and MC68HC705JP7 are erasable  
programmable read-only memory (EPROM) versions of the  
MC68HC05JJ/JP Family of microcontrollers (MCU).  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
23  
General Description  
General Description  
1.3 Features  
Features of the two parts include:  
Low-cost, M68HC05 core MCU in 20-pin package  
(MC68HC705JJ7) or 28-pin package (MC68HC705JP7)  
6160 bytes of user EPROM, including 16 bytes of user vectors  
224 bytes of low-power user random-access memory (RAM)  
64 bits of personality EPROM (serial access)  
16-bit programmable timer with input capture and output compare  
15-stage core timer, including 8-bit free-running counter  
and 4-stage selectable real-time interrupt generator  
Simple serial input/output port (SIOP) with interrupt capability  
Two voltage comparators, one of which can be combined with the  
16-bit programmable timer to create a 4-channel, single-slope  
analog-to-digital (A/D) converter  
Output of voltage comparator can drive port pin PB4 directly under  
software control  
14 input/output (I/O) lines (MC68HC705JJ7) or 22 I/O lines  
(MC68HC705JP7), including high-source/sink current capability  
on 6 I/O pins (MC68HC705JJ7) or 14 I/O pins (MC68HC705JP7)  
Programmable 8-bit mask option register (MOR) to select mask  
options found in read-only memory (ROM) based versions  
MOR selectable software programmable pulldowns on all I/O pins  
and keyboard scan interrupt on four I/O pins  
Software mask and request bit for IRQ interrupt with MOR  
selectable sensitivity on IRQ interrupt (edge- and level-sensitive or  
edge-only)  
On-chip oscillator with device option of crystal/ceramic resonator  
or resistor-capacitor (RC) operation and MOR selectable shunt  
resistor, 2 Mby design  
Advance Information  
24  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
General Description  
MOTOROLA  
General Description  
Device Options  
Internal oscillator for lower-power operation, approximately  
100 kHz (500 kHz selected as device option)  
EPROM security bit(1) to aid in locking out access to  
programmable EPROM array  
MOR selectable computer operating properly (COP) watchdog  
system  
Power-saving stop and wait mode instructions (MOR selectable  
STOP conversion to halt and option for fast 16-cycle restart  
and power-on reset)  
On-chip temperature measurement diode  
MOR selectable reset module to reset central processor unit  
(CPU) in low-voltage conditions  
Illegal address reset  
Internal steering diode and pullup device on RESET pin to VDD  
1.4 Device Options  
These MC68HC705JJ7/MC68HC705JP7 device options are available:  
On-chip oscillator type: crystal/ceramic resonator connections or  
resistor-capacitor (RC) connections  
Nominal frequency of internal low-power oscillator: 100 or  
500 kHz  
NOTE: A line over a signal name indicates an active low signal. For example,  
RESET is active high and RESET is active low.  
Any reference to voltage, current, or frequency specified in the following  
sections will refer to the nominal values. The exact values and their  
tolerance or limits are specified in Section 15. Electrical  
Specifications.  
1. No security feature is absolutely secure. However, Motorolas strategy is to make reading or  
copying the EPROM/OTPROM difficult for unauthorized users.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
25  
General Description  
General Description  
Combinations of the various device options are specified by part  
number. Refer to Table 1-1 and to Section 17. Ordering Information  
for specific ordering information.  
Table 1-1. Device Options by Part Number  
Part  
Number  
Pin  
Count  
Oscillator  
Type  
Internal LPO Nominal  
Frequency (kHz)  
MC68HC705JJ7  
MC68HC705JP7  
20  
28  
Crystal/resonator  
Crystal/resonator  
100  
100  
MC68HC705SJ7  
MC68HC705SP7  
20  
28  
Crystal/resonator  
Crystal/resonator  
500  
500  
MC68HRC705JJ7  
MC68HRC705JP7  
20  
28  
Resistor-capacitor  
Resistor-capacitor  
100  
100  
Advance Information  
26  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
General Description  
General Description  
Device Options  
OSC1  
OSC2  
EXTERNAL  
OSCILLATOR  
+
COMP1  
V
DD  
INTERNAL  
OSCILLATOR  
+
CURRENT  
SOURCE  
COMP2  
÷2  
16-BIT TIMER  
(1) INPUT CAPTURE  
(1) OUTPUT COMPARE  
TCAP  
TCMP  
INT  
V
COMPARATOR  
CONTROL &  
MULTIPLEXER  
LVR  
DD  
TEMPERATURE  
DIODE  
ICF  
15-STAGE  
CORE TIMER  
SYSTEM  
OCF  
TOF  
V
SS  
WATCHDOG &  
ILLEGAL ADDR  
DETECT  
V
SS  
PB0/AN0  
PB1/AN1  
PB2/AN2  
V
SS  
CPU CONTROL  
CPU REGISTERS  
ALU  
INT  
PB3/AN3/TCAP  
PB4/AN4/TCMP/CMP1*  
PB5/SDO  
RESET  
IRQ/V  
68HC05 CPU  
PP  
ACCUM  
PB6/SDI  
INDEX REG  
PB7/SCK  
STK PTR  
0 0 0 0 0 0 0 0 1 1  
INT  
SIMPLE SERIAL  
INTERFACE  
(SIOP)  
PROGRAM COUNTER  
COND CODE REG 1 1 1 H I N Z C  
PA5*  
PA4*  
PA3*†  
PA2*†  
PA1*†  
PA0*†  
BOOT ROM — 240 BYTES  
STATIC RAM (4T) — 224 BYTES  
PC7*  
PC6*  
USER EPROM — 6160 BYTES  
PERSONALITY EPROM — 64 BITS  
PC5*  
PORT C  
PC4*  
PC3*  
PC2*  
PC1*  
PC0*  
ONLY ON  
28-PIN  
VERSIONS  
* High sink current capability  
* High source current capability  
IRQ interrupt capability  
Figure 1-1. User Mode Block Diagram  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
27  
General Description  
General Description  
1.5 Functional Pin Description  
Refer to Figure 1-2 for the pinouts of the MC68HC705JJ7 and  
MC68HC705JP7 in the user mode.  
The following paragraphs give a description of the general function of  
each pin.  
MC68HC705JJ7  
PB1/AN1  
PB2/AN2  
PB0/AN0  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
DD  
PB3/AN3/TCAP  
*PB4/AN4/TCMP/CMP1  
PB5/SDO  
V
SS  
OSC1  
OSC2  
RESET  
PB6/SDI  
PB7/SCK  
IRQ/V  
PP  
*PA5  
PA0*†  
PA1*†  
PA2*†  
* PA4  
* PA3  
MC68HC705JP7  
PB1/AN1  
PB2/AN2  
PB3/AN3/TCAP  
*PB4/AN4/TCMP/CMP1  
PB5/SDO  
* PC4  
PB0/AN0  
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
23  
22  
21  
20  
V
DD  
V
SS  
OSC1  
OSC2  
PC3*  
PC2*  
PC1*  
PC0*  
RESET  
*PC5  
* PC6  
*PC7  
PB6/SDI  
10  
11  
12  
13  
14  
19  
18  
17  
16  
15  
PB7/SCK  
*PA5  
IRQ/V  
PP  
PA0*†  
PA1*†  
PA2*†  
* PA4  
* PA3  
* Denotes 10 mA sink /5 mA source capability  
Denotes IRQ interrupt capability  
Figure 1-2. User Mode Pinouts  
Advance Information  
28  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
General Description  
General Description  
VDD and VSS Pins  
1.6 V and V Pins  
DD  
SS  
Power is supplied to the MCU through VDD and VSS. VDD is the positive  
supply, and VSS is ground. The MCU operates from a single power  
supply.  
Very fast signal transitions occur on the MCU pins. The short rise and fall  
times place very high short-duration current demands on the power  
supply. To prevent noise problems, special care should be taken to  
provide good power supply bypassing at the MCU by using bypass  
capacitors with good high-frequency characteristics that are positioned  
as close to the MCU as possible.  
1.7 OSC1 and OSC2 Pins  
The OSC1 and OSC2 pins are the connections for the external pin  
oscillator (EPO). The OSC1 and OSC2 pins can accept these sets of  
components:  
A crystal as shown in Figure 1-3 (a)  
A ceramic resonator as shown in Figure 1-3 (a)  
An external resistor as shown in Figure 1-3 (b)  
An external clock signal as shown in Figure 1-3 (c)  
The selection of the crystal/ceramic resonator or RC oscillator  
configuration is done by product part number selection as described in  
Section 17. Ordering Information.  
The frequency, fOSC, of the EPO or external clock source is divided by  
two to produce the internal operating frequency, fOP  
.
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
29  
General Description  
General Description  
MCU  
MCU  
R
MCU  
2 MΩ  
OSC1  
OSC2  
OSC1  
OSC2  
OSC1  
OSC2  
UNCONNECTED  
EXTERNAL CLOCK  
(a) Crystal or  
Ceramic Resonator  
Connections  
(c) External Clock  
Source Connection  
(b) RC Oscillator  
Connections  
Figure 1-3. EPO Oscillator Connections  
1.7.1 Crystal Oscillator  
The circuit in Figure 1-3 (a) shows a typical oscillator circuit for an  
AT-cut, parallel resonant crystal. The crystal manufacturers  
recommendations should be followed, as the crystal parameters  
determine the external component values required to provide maximum  
stability and reliable startup. The load capacitance values used in the  
oscillator circuit design should include all stray capacitances. The crystal  
and components should be mounted as close as possible to the pins for  
startup stabilization and to minimize output distortion. An internal startup  
resistor of approximately 2 Mcan be provided between OSC1 and  
OSC2 for the crystal type oscillator by use of the OSCRES bit in the  
MOR.  
1.7.2 Ceramic Resonator Oscillator  
In cost-sensitive applications, a ceramic resonator can be used in place  
of the crystal. The circuit in Figure 1-3 (a) can be used for a ceramic  
resonator. The resonator manufacturers recommendations should be  
followed, as the resonator parameters determine the external  
component values required for maximum stability and reliable starting.  
The load capacitance values used in the oscillator circuit design should  
include all stray capacitances. The ceramic resonator and components  
should be mounted as close as possible to the pins for startup  
stabilization and to minimize output distortion. An internal startup resistor  
Advance Information  
30  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
General Description  
MOTOROLA  
General Description  
OSC1 and OSC2 Pins  
of approximately 2 Mcan be provided between OSC1 and OSC2 for  
the ceramic resonator type oscillator by use of the OSCRES bit in the  
MOR.  
1.7.3 RC Oscillator  
The lowest cost oscillator is the RC oscillator configuration where a  
resistor is connected between the two oscillator pins as shown  
in Figure 1-3 (b).  
The selection of the RC oscillator configuration is done by product part  
number selection as described in Section 17. Ordering Information.  
NOTE: Do not use the internal startup resistor between OSC1 and OSC2 for the  
RC-type oscillator.  
1.7.4 External Clock  
An external clock from another CMOS-compatible device can be  
connected to the OSC1 input, with the OSC2 input not connected, as  
shown in Figure 1-3 (c). This oscillator can be selected via software.  
This configuration is possible regardless of whether the crystal/ceramic  
resonator or RC oscillator configuration is used.  
NOTE: Do not use the internal startup resistor between OSC1 and OSC2 for the  
external clock.  
1.7.5 Internal Low-Power Oscillator  
An internal low-power oscillator (LPO) is provided which is the default  
oscillator out of reset. When operating from this internal LPO, the other  
oscillator can be powered down by software to further conserve power.  
The selection of the LPO configuration is done by product part number  
selection as described in Section 17. Ordering Information.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
31  
General Description  
General Description  
1.8 RESET Pin  
The RESET pin can be used as an input to reset the MCU to a known  
startup state by pulling it to the low state. It also functions as an output  
to indicate that an internal COP watchdog, illegal address, or low-voltage  
reset has occurred. The RESET pin contains a pullup device to allow the  
pin to be left disconnected without an external pullup resistor. The  
RESET pin also contains a steering diode that, when the power is  
removed, will discharge to VDD any charge left on an external capacitor  
connected between the RESET pin and VSS. The RESET pin also  
contains an internal Schmitt trigger to improve its noise immunity as an  
input.  
1.9 IRQ/V Pin  
PP  
The IRQ/VPP input pin drives the asynchronous IRQ interrupt function of  
the CPU. The IRQ interrupt function uses the LEVEL bit in the MOR to  
provide either negative edge-sensitive triggering or both negative  
edge-sensitive and low level-sensitive triggering. If the LEVEL bit is set  
to enable level-sensitive triggering, the IRQ/VPP pin requires an external  
resistor to VDD for wired-ORoperation. If the IRQ/VPP pin is not used,  
it must be tied to the VDD supply. The IRQ/VPP pin contains an internal  
Schmitt trigger as part of its input to improve noise immunity.  
The voltage on this pin may affect operation if the voltage on the  
IRQ/VPP pin is above VDD when the device is released from a reset  
condition. The IRQ/VPP pin should only be taken above VDD to program  
an EPROM memory location or personality EPROM bit. For more  
information, refer to 15.14 PEPROM and EPROM Programming  
Characteristics.  
NOTE: Each of the PA0–PA3 I/O pins may be connected as an OR function with  
the IRQ interrupt function by the PIRQ bit in the MOR. This capability  
allows keyboard scan applications where the transitions or levels on the  
I/O pins will behave the same as the IRQ/VPP pin, except that active  
transitions and levels are inverted. The edge or level sensitivity selected  
by the LEVEL bit in the MOR for the IRQ/VPP pin also applies to the I/O  
Advance Information  
32  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
General Description  
General Description  
PA0–PA5  
pins that are ORed to create the IRQ signal. For more information, refer  
to 4.6 External Interrupts.  
1.10 PA0PA5  
These six I/O lines comprise port A, a general-purpose bidirectional I/O  
port. This port also has four pins which have keyboard interrupt  
capability. All six of these pins have high current source and sink  
capability.  
All of these pins have software programmable pulldowns which can be  
disabled by the SWPDI bit in the MOR.  
1.11 PB0PB7  
These eight I/O lines comprise port B, a general-purpose bidirectional  
I/O port. This port is also shared with the 16-bit programmable timer  
input capture and output compare functions, with the two voltage  
comparators in the analog subsystem, and with the simple serial  
interface (SIOP).  
The outputs of voltage comparator 1 can directly drive the PB4 pin; and  
the PB4 pin has high current source and sink capability.  
All of these pins have software programmable pulldowns which can be  
disabled by the SWPDI bit in the MOR.  
1.12 PC0PC7 (MC68HC705JP7)  
These eight I/O lines comprise port C, a general-purpose bidirectional  
I/O port. This port is only available on the 28-pin MC68HC705JP7. All  
eight of these pins have high current source and sink capability.  
All of these pins have software programmable pulldowns which can be  
disabled by the SWPDI bit in the MOR.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
33  
General Description  
General Description  
Advance Information  
34  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
General Description  
Advance Information MC68HC705JJ7/MC68HC705JP7  
Section 2. Memory  
2.1 Contents  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
User and Interrupt Vector Mapping. . . . . . . . . . . . . . . . . . . . . .42  
Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . .42  
Erasable Programmable Read-Only Memory (EPROM) . . . . .43  
COP Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
2.2 Introduction  
This section describes the organization of the memory on the  
MC68HC705JJ7/MC68HC705JP7.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
35  
Memory  
Memory  
2.3 Memory Map  
The central processor unit (CPU) can address 8 kilobytes of memory  
space as shown in Figure 2-1. The memory map includes:  
The erasable programmable read-only memory (EPROM) portion  
of memory holds the program instructions, fixed data,  
user-defined vectors, and interrupt service routines.  
The random-access memory (RAM) portion of memory holds  
variable data.  
Input/output (I/O) registers are memory mapped so that the CPU  
can access their locations in the same way that it accesses all  
other memory locations.  
$1EFF  
Figure 2-1. Memory Map  
2.4 Input/Output Registers  
Figure 2-2 and Figure 2-3 summarize:  
The first 32 addresses of the memory space, $0000$001F,  
containing the I/O registers section  
One I/O register located outside the 32-byte I/O section, which is  
the computer operating properly register (COPR) mapped at  
$1FF0  
Advance Information  
36  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Memory  
MOTOROLA  
Memory  
Input/Output Registers  
Address  
$0000  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
$0008  
$0009  
$000A  
$000B  
$000C  
$000D  
$000E  
$000F  
$0010  
$0011  
$0012  
$0013  
$0014  
$0015  
$0016  
$0017  
$0018  
$0019  
$001A  
$001B  
$001C  
$001D  
$001E  
$001F  
Register Name  
Port A Data Register  
Port B Data Register  
Port C Data Register *  
Analog MUX Register  
Port A Data Direction Register  
Port B Data Direction Register  
Port C Data Direction Register *  
Unused  
Core Timer Status & Control Register  
Core Timer Counter  
Serial Control Register  
Serial Status Register  
Serial Data Register  
IRQ Status & Control Register  
Personality EPROM Bit Select Register  
Personality EPROM Status & Control Register  
Port A and Port C Pulldown Register *  
Port B Pulldown Register  
Timer Control Register  
Timer Status Register  
Input Capture Register (MSB)  
Input Capture Register (LSB)  
Output Compare Register (MSB)  
Output Compare Register (LSB)  
Timer Counter Register (MSB)  
Timer Counter Register (LSB)  
Alternate Counter Register (MSB)  
Alternate Counter Register (LSB)  
EPROM Programming Register  
Analog Control Register  
Analog Status Register  
Reserved  
* Features related to port C are only available on the 28-pin  
MC68HC705JP7 devices.  
Figure 2-2. I/O Registers  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
37  
Memory  
Memory  
Addr.  
Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
0
Port A Data Register  
$0000  
PA5  
PA4  
PA3  
PA2  
PA1  
PA0  
(PORTA) Write:  
See page 85.  
Reset:  
Read:  
Unaffected by reset  
PB4 PB3  
Unaffected by reset  
PC4 PC3  
Unaffected by reset  
Port B Data Register  
$0001  
$0002  
$0003  
$0004  
$0005  
PB7  
PC7  
PB6  
PC6  
PB5  
PC5  
PB2  
PC2  
PB1  
PC1  
PB0  
PC0  
(PORTB) Write:  
See page 90.  
Reset:  
Read:  
Port C(1) Data Register  
(PORTC) Write:  
See page 102.  
Reset:  
Read:  
Analog Multiplex Register  
HOLD DHOLD  
INV  
0
VREF  
0
MUX4  
0
MUX3  
0
MUX2  
0
MUX1  
0
(AMUX) Write:  
See page 110.  
Reset:  
Read:  
1
0
0
0
Data Direction Register A  
DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0  
(DDRA) Write:  
See page 86.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Data Direction Register B  
DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0  
(DDRB) Write:  
See page 91.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Data Direction Register C  
$0006  
$0007  
$0008  
DDRC7 DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0  
(DDRC) Write:  
See page 103.  
Reset:  
0
0
0
0
0
0
0
0
Unimplemented  
Core Timer Status and Control Read: CTOF  
RTIF  
0
0
CTOFE  
RTIE  
RT1  
RT0  
Register (CTSCR)  
Write:  
CTOFR RTIFR  
See page 153.  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
1
1
1
Read: Bit 7  
Bit 0  
Core Timer Counter Register  
(CTCR) Write:  
See page 155.  
$0009  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
1. Features related to port C are only available on the 28-pin MC68HC705JP7 devices.  
R
= Reserved  
U = Unaffected  
Figure 2-3. Register Summary (Sheet 1 of 4)  
Advance Information  
38  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Memory  
Memory  
Input/Output Registers  
Addr.  
Register  
Bit 7  
SPIE  
0
6
5
4
3
0
2
1
Bit 0  
Read:  
SIOP Control Register  
$000A  
SPE  
LSBF  
MSTR  
CPHA  
SPR1  
SPR0  
(SCR) Write:  
See page 145.  
SPIR  
0
Reset:  
0
0
0
0
0
0
0
0
0
0
0
Read: SPIF  
DCOL  
0
SIOP Status Register  
(SSR) Write:  
$000B  
$000C  
$000D  
$000E  
$000F  
$0010  
$0011  
$0012  
See page 148.  
Reset:  
Read:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
SIOP Data Register  
Bit 7  
Bit 0  
(SDR) Write:  
See page 149.  
Reset:  
Read:  
0
R
0
IRQF  
0
0
IRQR  
U
0
IRQ Status and Control Register  
IRQE  
1
OM2  
1
OM1  
(ISCR) Write:  
See page 58.  
Reset:  
Read:  
0
PEB5  
0
0
0
0
PEPROM Bit Select Register  
PEB7  
0
PEB6  
PEB4  
PEB3  
PEB2  
PEB1  
PEB0  
(PEBSR) Write:  
See page 177.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
Read: PEDATA  
PEPRZF  
PEPROM Status and Control  
Register (PESCR) Write:  
PEPGM  
0
R
0
R
0
R
0
See page 178.  
Reset:  
U
0
0
1
Read:  
Pulldown Register Port A and  
Port C(1) (PDRA) Write: PDICH PDICL PDIA5  
See page 87.  
PDIA4  
0
PDIA3  
0
PDIA2  
0
PDIA1  
0
PDIA0  
0
Reset:  
Read:  
0
0
0
Pulldown Register B  
(PDRB) Write: PDIB7  
PDIB6  
0
PDIB5  
0
PDIB4  
PDIB3  
PDIB2  
PDIB1  
0
PDIB0  
0
See page 92.  
Reset:  
Read:  
0
ICIE  
0
0
0
0
0
0
0
Timer Control Register  
OCIE  
0
TOIE  
0
IEDG  
U
OLVL  
0
(TCR) Write:  
See page 170.  
Reset:  
0
0
0
= Unimplemented  
1. Features related to port C are only available on the 28-pin MC68HC705JP7 devices.  
R
= Reserved  
U = Unaffected  
Figure 2-3. Register Summary (Sheet 2 of 4)  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
39  
Memory  
Memory  
Addr.  
Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
ICF  
OCF  
TOF  
0
0
0
0
0
Timer Status Register  
$0013  
(TSR) Write:  
See page 172.  
Reset:  
U
U
U
0
0
0
0
9
0
Read: Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Input Capture Register High  
$0014  
$0015  
(ICRH) Write:  
See page 166.  
Reset:  
Unaffected by reset  
Read: Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Input Capture Register Low  
(ICRL) Write:  
See page 166.  
Reset:  
Unaffected by reset  
12 11  
Unaffected by reset  
Read:  
Bit 15  
(OCRH) Write:  
Output Compare Register High  
$0016  
$0017  
$0018  
$0019  
$001A  
$001B  
14  
13  
10  
See page 168.  
Reset:  
Read:  
Bit 7  
(OCRL) Write:  
Output Compare Register Low  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
See page 168.  
Reset:  
Unaffected by reset  
Read: Bit 15  
14  
13  
12  
11  
10  
Programmable Timer Register  
High (TMRH) Write:  
See page 163.  
Reset:  
1
1
6
1
5
1
4
1
3
1
2
1
1
1
Read: Bit 7  
Bit 0  
Programmable Timer Register  
Low (TMRL) Write:  
See page 163.  
Reset:  
1
1
1
1
1
1
0
9
0
Read: Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Alternate Counter Register High  
(ACRH) Write:  
See page 165.  
Reset:  
1
1
1
1
1
1
1
9
1
Read: Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Alternate Counter Register Low  
(ACRL) Write:  
See page 165.  
Reset:  
1
1
1
1
1
1
0
0
= Unimplemented  
1. Features related to port C are only available on the 28-pin MC68HC705JP7 devices.  
R
= Reserved  
U = Unaffected  
Figure 2-3. Register Summary (Sheet 3 of 4)  
Advance Information  
40  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Memory  
Memory  
Input/Output Registers  
Addr.  
Register  
Bit 7  
6
0
5
0
4
0
3
0
2
ELAT  
0
1
Bit 0  
Read:  
0
EPROM Programming Register  
$001C  
MPGM EPGM  
(EPROG) Write:  
R
0
R
0
R
0
R
0
See page 184.  
Reset:  
Read:  
0
CHG  
0
0
0
Analog Counter Register  
$001D  
$001E  
ATD2  
ATD1  
ICEN  
CPIE  
0
CP2EN CP1EN  
ISEN  
(ACR) Write:  
See page 115.  
Reset:  
0
0
0
0
0
0
0
0
CMP1  
R
Read: CPF2  
CPF1  
CMP2  
Analog Status Register  
(ASR) Write:  
COE1  
VOFF  
CPFR2 CPFR1  
See page 115.  
Reset:  
0
0
0
0
0
0
0
0
$001F  
Reserved  
R
R
R
R
R
R
R
R
$1FEF  
Reserved  
R
R
R
R
R
R
R
R
Read:  
COP and Security Register  
$1FF0  
OPT  
(COPR) Write: EPMSEC  
See pages 43, 137, 156, and 188.  
COPC  
Reset:  
Unaffected by reset  
= Reserved  
= Unimplemented  
1. Features related to port C are only available on the 28-pin MC68HC705JP7 devices.  
R
U = Unaffected  
Figure 2-3. Register Summary (Sheet 4 of 4)  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
41  
Memory  
Memory  
2.5 User and Interrupt Vector Mapping  
The interrupt vectors are contained in the upper memory addresses  
above $1FF0 as shown in Figure 2-4.  
Address  
$1FF0  
$1FF1  
$1FF2  
$1FF3  
$1FF4  
$1FF5  
$1FF6  
$1FF7  
$1FF8  
$1FF9  
$1FFA  
$1FFB  
$1FFC  
$1FFD  
$1FFE  
$1FFF  
Register Name  
COP Register and EPROM Security  
Mask Option Register  
Analog Interrupt Vector (MSB)  
Analog Interrupt Vector (LSB)  
Serial Interrupt Vector (MSB)  
Serial Interrupt Vector ((LSB)  
Timer Interrupt Vector (MSB)  
Timer Interrupt Vector (LSB)  
Core Timer Interrupt Vector (MSB)  
Core Timer Interrupt Vector (LSB)  
External IRQ Vector (MSB)  
External IRQ Vector (LSB)  
SWI Vector (MSB)  
SWI Vector (LSB)  
Reset Vector (MSB)  
Reset Vector (LSB)  
Figure 2-4. Vector Mapping  
2.6 Random-Access Memory (RAM)  
The 224 addresses from $0020 to $00FF serve as both the user RAM  
and the stack RAM. The central processor unit (CPU) uses five RAM  
bytes to save all CPU register contents before processing an interrupt.  
During a subroutine call, the CPU uses two bytes to store the return  
address. The stack pointer decrements during pushes and increments  
during pulls.  
NOTE: Be careful when using nested subroutines or multiple interrupt levels.  
The CPU may overwrite data in the RAM during a subroutine or during  
the interrupt stacking operation.  
Advance Information  
42  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Memory  
Memory  
Erasable Programmable Read-Only Memory (EPROM)  
2.7 Erasable Programmable Read-Only Memory (EPROM)  
The EPROM is located in three areas of the memory map:  
Addresses $0700$1EFF contain 6144 bytes of user EPROM.  
Addresses $1FF0$1FF1 contain 2 bytes of EPROM reserved for  
user vectors and COP and security register (COPR), and the mask  
option register. Only bit 7 of $1FF0 is a programmable bit.  
Addresses $1FF2$1FFF contain 14 bytes of interrupt vectors.  
2.8 COP Register  
As shown in Figure 2-5, a register location is provided at $1FF0 to set  
the EPROM security(1), select the optional features, and reset the COP  
watchdog timer. The OPT bit controls the function of the PB4 port pin  
and the availability to add an offset to any measured analog voltages.  
See 8.5 Analog Status Register for more information  
Address: $1FF0  
$1FF0  
Read:  
Bit 7  
6
5
4
3
2
1
Bit 0  
OPT  
Write: EPMSEC  
Reset:  
COPC  
Unaffected by reset  
= Unimplemented  
Figure 2-5. COP and Security Register (COPR)  
1. No security feature is absolutely secure. However, Motorolas strategy is to make reading or  
copying the EPROM/OTPROM difficult for unauthorized users.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
43  
Memory  
Memory  
Advance Information  
44  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Memory  
Advance Information MC68HC705JJ7/MC68HC705JP7  
Section 3. Central Processor Unit (CPU)  
3.1 Contents  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Index Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Condition Code Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
3.2 Introduction  
This section describes the central processor unit (CPU) registers.  
Figure 3-1 shows the five CPU registers. CPU registers are not part of  
the memory map.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA Central Processor Unit (CPU)  
Advance Information  
45  
Central Processor Unit (CPU)  
7
7
0
0
0
0
A
X
ACCUMULATOR (A)  
INDEX REGISTER (X)  
15  
6
1
5
0
0
1
0
1
0
0
0
0
0
8
1
7
SP  
STACK POINTER (SP)  
15  
1
10  
PCH  
PCL  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
1
5
1
4
0
1
H
I
N
Z
C
HALF-CARRY FLAG  
INTERRUPT MASK  
NEGATIVE FLAG  
ZERO FLAG  
CARRY/BORROW FLAG  
Figure 3-1. M68HC05 Programming Model  
3.3 Accumulator  
The accumulator is a general-purpose 8-bit register as shown in  
Figure 3-2. The CPU uses the accumulator to hold operands and results  
of arithmetic and non-arithmetic operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 3-2. Accumulator (A)  
Advance Information  
46  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Central Processor Unit (CPU) MOTOROLA  
Central Processor Unit (CPU)  
Index Register  
3.4 Index Register  
The index register is a general-purpose 8-bit register as shown in  
Figure 3-3. In the indexed addressing modes, the CPU uses the byte in  
the index register to determine the conditional address of the operand.  
The 8-bit index register can also serve as a temporary data storage  
location.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 3-3. Index Register (X)  
3.5 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next  
location on the stack as shown in Figure 3-4. During a reset or after the  
reset stack pointer (RSP) instruction, the stack pointer initializes to  
$00FF. The address in the stack pointer decrements as data is pushed  
onto the stack and increments as data is pulled from the stack.  
Bit  
Bit  
0
15 14 13 12 11 10  
9
0
0
8
0
0
7
1
1
6
1
1
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
Figure 3-4. Stack Pointer (SP)  
The 10 most significant bits of the stack pointer are permanently fixed at  
0000000011, so the stack pointer produces addresses from $00C0 to  
$00FF. If subroutines and interrupts use more than 64 stack locations,  
the stack pointer wraps around to address $00FF and begins writing  
over the previously stored data. A subroutine uses two stack locations;  
an interrupt uses five locations.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA Central Processor Unit (CPU)  
AdvanceInformation  
47  
Central Processor Unit (CPU)  
3.6 Program Counter  
The program counter is a 16-bit register that contains the address of the  
next instruction or operand to be fetched as shown in Figure 3-5. The  
three most significant bits of the program counter are ignored internally  
and appear as 111 during stacking and subroutine calls.  
Normally, the address in the program counter automatically increments  
to the next sequential memory location every time an instruction or  
operand is fetched. Jump, branch, and interrupt operations load the  
program counter with an address other than that of the next sequential  
location.  
Bit  
Bit  
0
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
1
0
1
0
1
0
Loaded with vector from $1FFE and $1FFF  
Figure 3-5. Program Counter (PC)  
3.7 Condition Code Register  
The condition code register is an 8-bit register whose three most  
significant bits are permanently fixed at 111 as shown in Figure 3-6. The  
condition code register contains the interrupt mask and four flags that  
indicate the results of the instruction just executed. The following  
paragraphs describe the functions of the condition code register.  
Bit 7  
1
6
1
1
5
1
1
4
3
I
2
1
Bit 0  
Z
Read:  
Write:  
Reset:  
H
U
N
U
C
U
1
1
U
U = Unaffected  
Figure 3-6. Condition Code Register (CCR)  
Advance Information  
48  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Central Processor Unit (CPU) MOTOROLA  
Central Processor Unit (CPU)  
Condition Code Register  
Half-Carry Flag (H)  
The CPU sets the half-carry flag when a carry occurs between bits 3  
and 4 of the accumulator during an ADD or ADC operation. The  
half-carry flag is required for binary coded decimal (BCD) arithmetic  
operations. Reset has no effect on the half-carry flag.  
Interrupt Mask (I)  
Setting the interrupt mask disables interrupts. If an interrupt request  
occurs while the interrupt mask is a logic 0, the CPU saves the CPU  
registers on the stack, sets the interrupt mask, and then fetches the  
interrupt vector. If an interrupt request occurs while the interrupt mask  
is set, the interrupt request is latched. The CPU processes the latched  
interrupt as soon as the interrupt mask is cleared again.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from  
the stack, restoring the interrupt mask to its cleared state. After a  
reset, the interrupt mask is set and can be cleared only by a CLI  
instruction.  
Negative Flag (N)  
The CPU sets the negative flag when an arithmetic operation, logical  
operation, or data manipulation produces a negative result. Reset has  
no affect on the negative flag.  
Zero Flag (Z)  
The CPU sets the zero flag when an arithmetic operation, logical  
operation, or data manipulation produces a result of $00. Reset has  
no affect on the zero flag.  
Carry/Borrow Flag (C)  
The CPU sets the carry/borrow flag when an addition operation  
produces a carry out of bit 7 of the accumulator or when a subtraction  
operation requires a borrow. Some logical operations and data  
manipulation instructions also clear or set the carry/borrow flag. Reset  
has no effect on the carry/borrow flag.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA Central Processor Unit (CPU)  
AdvanceInformation  
49  
Central Processor Unit (CPU)  
3.8 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logical operations defined by the  
instruction set. The binary arithmetic circuits decode instructions and set  
up the ALU for the selected operation. Most binary arithmetic is based  
on the addition algorithm, carrying out subtraction as negative addition.  
Multiplication is not performed as a discrete operation but as a chain of  
addition and shift operations within the ALU. The multiply instruction  
(MUL) requires 11 internal clock cycles to complete this chain of  
operations.  
Advance Information  
50  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Central Processor Unit (CPU)  
MOTOROLA  
Advance Information MC68HC705JJ7/MC68HC705JP7  
Section 4. Interrupts  
4.1 Contents  
4.2  
4.3  
4.4  
4.5  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Interrupt Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Software Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
4.6  
External Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
IRQ/VPP Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
PA0PA3 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
IRQ Status and Control Register (ISCR) . . . . . . . . . . . . . . .58  
4.6.1  
4.6.2  
4.6.3  
4.7  
4.7.1  
4.7.2  
Core Timer Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Core Timer Overflow Interrupt . . . . . . . . . . . . . . . . . . . . . . .60  
Real-Time Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
4.8  
Programmable Timer Interrupts . . . . . . . . . . . . . . . . . . . . . . . .61  
Input Capture Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Output Compare Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Timer Overflow Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
4.8.1  
4.8.2  
4.8.3  
4.9  
Serial Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
4.10 Analog Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
4.10.1 Comparator Input Match Interrupt . . . . . . . . . . . . . . . . . . . .63  
4.10.2 Input Capture Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
4.2 Introduction  
An interrupt temporarily stops normal program execution to process a  
particular event. An interrupt does not stop the execution of the  
instruction in progress, but takes effect when the current instruction  
completes its execution. Interrupt processing automatically saves the  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
51  
Interrupts  
Interrupts  
central processor unit (CPU) registers on the stack and loads the  
program counter with a user-defined vector address.  
4.3 Interrupt Vectors  
Table 4-1 summarizes the reset and interrupt sources and vector  
assignments.  
NOTE: If more than one interrupt request is pending, the CPU fetches the vector  
of the higher priority interrupt first. A higher priority interrupt does not  
actually interrupt a lower priority interrupt service routine unless the  
lower priority interrupt service routine clears the I bit.  
Table 4-1. Reset/Interrupt Vector Addresses  
MOR  
Control  
Bit  
Global  
Hardware Software  
Local  
Priority  
(1 = Highest)  
Vector  
Address  
Function  
Source  
Mask  
Mask  
Power-on logic  
RESET pin  
Low-voltage reset  
Illegal address reset  
Reset  
1
$1FFE$1FFF  
$1FFC$1FFD  
$1FFA$1FFB  
COPEN(1)  
COP watchdog  
User code  
Software  
interrupt (SWI)  
Same priority  
as instruction  
IRQ/VPP pin  
PA3 pin  
PA2 pin  
PA1 pin  
PA0 pin  
External  
interrupt (IRQ)  
I bit  
IRQE bit  
2
PIRQ(2)  
Core timer  
interrupts  
TOF bit  
RTIF bit  
TOFE bit  
RTIE bit  
I bit  
I bit  
3
4
$1FF8$1FF9  
$1FF6$1FF7  
ICF bit  
OCF bit  
TOF bit  
ICIE bit  
OCIE bit  
TOIE bit  
Programmable  
timer interrupts  
Serial interrupt  
Analog interrupt  
SPIF bit  
I bit  
I bit  
SPIE bit  
CPIE bit  
5
6
$1FF4$1FF5  
$1FF2$1FF3  
CPF1 bit  
CPF2 bit  
1. COPEN enables the COP watchdog timer.  
2. PIRQ enables port A external interrupts on PA0PA3.  
Advance Information  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
52  
Interrupts  
Interrupts  
Interrupt Processing  
4.4 Interrupt Processing  
To begin servicing an interrupt, the CPU does these actions:  
Stores the CPU registers on the stack in the order shown in  
Figure 4-1  
Sets the I bit in the condition code register to prevent further  
interrupts  
Loads the program counter with the contents of the appropriate  
interrupt vector locations as shown in Table 4-1  
The return-from-interrupt (RTI) instruction causes the CPU to recover its  
register contents from the stack as shown in Figure 4-1. The sequence  
of events caused by an interrupt is shown in the flowchart in Figure 4-2.  
$0020  
$0021  
Bottom of RAM  
$00BE  
$00BF  
$00C0  
$00C1  
$00C2  
Bottom of Stack  
Unstacking  
Order  
n
n+1  
n+2  
n+3  
n+4  
Condition Code Register  
Accumulator  
5
4
3
2
1
1
2
3
4
5
Index Register  
Program Counter (High Byte)  
Program Counter (Low Byte)  
Stacking  
Order  
$00FD  
$00FE  
$00FF  
Top of Stack (RAM)  
Figure 4-1. Interrupt Stacking Order  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
53  
Interrupts  
Interrupts  
FROM  
RESET  
YES  
I BIT SET?  
NO  
YES  
YES  
YES  
YES  
YES  
EXTERNAL  
CLEAR IRQ LATCH  
INTERRUPT?  
NO  
CORE TIMER  
INTERRUPT?  
NO  
TIMER  
INTERRUPT?  
NO  
SERIAL  
INTERRUPT?  
NO  
ANALOG  
INTERRUPT?  
STACK PCL, PCH, X, A, CCR  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
NO  
FETCH NEXT  
INSTRUCTION  
SWI  
YES  
YES  
INSTRUCTION?  
NO  
RTI  
UNSTACK CCR, A, X, PCH, PCL  
EXECUTE INSTRUCTION  
INSTRUCTION?  
NO  
Figure 4-2. Interrupt Flowchart  
Advance Information  
54  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Interrupts  
Interrupts  
Software Interrupt  
4.5 Software Interrupt  
The software interrupt (SWI) instruction causes a non-maskable  
interrupt.  
4.6 External Interrupts  
These sources can generate external interrupts:  
IRQ/VPP pin  
PA3PA0 pins  
Setting the I bit in the condition code register or clearing the IRQE bit in  
the interrupt status and control register disables these external  
interrupts.  
4.6.1 IRQ/VPP Pin  
An interrupt signal on the IRQ/VPP pin latches an external interrupt  
request. To help clean up slow edges, the input from the IRQ/VPP pin is  
processed by a Schmitt trigger gate. When the CPU completes its  
current instruction, it tests the IRQ latch. If the IRQ latch is set, the CPU  
then tests the I bit in the condition code register and the IRQE bit in the  
IRQ status and control register (ISCR). If the I bit is clear and the IRQE  
bit is set, then the CPU begins the interrupt sequence. The CPU clears  
the IRQ latch while it fetches the interrupt vector, so that another external  
interrupt request can be latched during the interrupt service routine. As  
soon as the I bit is cleared during the return from interrupt, the CPU can  
recognize the new interrupt request. Figure 4-3 shows the logic for  
external interrupts.  
NOTE: If the IRQ/VPP pin is not in use, it should be connected to the VDD pin.  
The IRQ/VPP pin can be negative edge-triggered only or negative edge-  
and low level-triggered. External interrupt sensitivity is programmed with  
the LEVEL bit in the mask option register (MOR).  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
55  
Interrupts  
Interrupts  
V
TO  
PP  
USER EPROM  
AND PEPROM  
TO BIH & BIL  
INSTRUCTION  
PROCESSING  
IRQ/V  
PP  
PA3  
PA2  
PA1  
PA0  
V
DD  
IRQ  
LATCH  
EXTERNAL  
INTERRUPT  
REQUEST  
R
RST  
IRQ VECTOR FETCH  
IRQ STATUS/CONTROL REGISTER ($000D)  
MASK OPTION REGISTER ($1FF1)  
INTERNAL DATA BUS  
Figure 4-3. External Interrupt Logic  
With the edge- and level-sensitive trigger MOR option, a falling edge or  
a low level on the IRQ/VPP pin latches an external interrupt request. The  
edge- and level-sensitive trigger MOR option allows connection to the  
IRQ/VPP pin of multiple wired-OR interrupt sources. As long as any  
source is holding the IRQ low, an external interrupt request is present,  
and the CPU continues to execute the interrupt service routine.  
With the edge-sensitive-only trigger option, a falling edge on the  
IRQ/VPP pin latches an external interrupt request. A subsequent  
interrupt request can be latched only after the voltage level on the  
IRQ/VPP pin returns to a logic 1 and then falls again to logic 0.  
Advance Information  
56  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Interrupts  
MOTOROLA  
Interrupts  
External Interrupts  
NOTE: The response of the IRQ/VPP pin can be affected if the external interrupt  
capability of the PA0 through PA3 pins is enabled. If the port A pins are  
enabled as external interrupts, then any high level on a PA0PA3 pin will  
cause the IRQ changes and state to be ignored until all of the PA0PA3  
pins have returned to a low level.  
4.6.2 PA0PA3 Pins  
Programming the PIRQ bit in the MOR to a logic 1 enables the PA0PA3  
pins (PA0:3) to serve as additional external interrupt sources. A rising  
edge on a PA0:3 pin latches an external interrupt request. After  
completing the current instruction, the CPU tests the IRQ latch. If the  
IRQ latch is set, the CPU then tests the I bit in the condition code register  
and the IRQE bit in the ISCR. If the I bit is clear and the IRQE bit is set,  
the CPU then begins the interrupt sequence. The CPU clears the IRQ  
latch while it fetches the interrupt vector, so that another external  
interrupt request can be latched during the interrupt service routine. As  
soon as the I bit is cleared during the return from interrupt, the CPU can  
recognize the new interrupt request.  
The PA0:3 pins can be edge-triggered or edge- and level-triggered.  
External interrupt triggering sensitivity is selected by the LEVEL bit in the  
MOR.  
With the edge- and level-sensitive trigger MOR option, a rising edge or  
a high level on a PA0:3 pin latches an external interrupt request. The  
edge- and level-sensitive trigger MOR option allows connection to a  
PA0:3 pin of multiple wired-OR interrupt sources. As long as any source  
is holding the pin high, an external interrupt request is present, and the  
CPU continues to execute the interrupt service routine.  
With the edge-sensitive only trigger MOR option, a rising edge on a  
PA0:3 pin latches an external interrupt request. A subsequent external  
interrupt request can be latched only after the voltage level of the  
previous interrupt signal returns to a logic 0 and then rises again to a  
logic 1.  
NOTE: If the port A pins are enabled as external interrupts, then a high level on  
any PA0:3 pin will drive the state of the IRQ function such that the  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
57  
Interrupts  
Interrupts  
IRQ/VPP pin and other PA0:3 pins are to be ignored until ALL of the  
PA0:3 pins have returned to a low level. Similarly, if the IRQ/VPP pin is  
at a low level, the PA0:3 pins will be ignored until the IRQ/VPP pin returns  
to a high state.  
4.6.3 IRQ Status and Control Register (ISCR)  
The IRQ status and control register (ISCR), shown in Figure 4-4,  
contains an external interrupt mask (IRQE), an external interrupt flag  
(IRQF), and a flag reset bit (IRQR). Unused bits will read as logic 0s. The  
ISCR also contains two control bits for the oscillators, external pin  
oscillator, and internal low-power oscillator. Reset sets the IRQE and  
OM2 bits and clears all the other bits.  
Address: $000D  
Bit 7  
IRQE  
1
6
OM2  
1
5
OM1  
0
4
0
3
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IRQF  
R
0
IRQR  
U
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 4-4. IRQ Status and Control Register (ISCR)  
IRQE External Interrupt Request Enable Bit  
This read/write bit enables external interrupts. Reset sets the IRQE  
bit.  
1 = External interrupt processing enabled  
0 = External interrupt processing disabled  
OM1 and OM2 Oscillator Select Bits  
These bits control the selection and enabling of the oscillator source  
for the MCU. One choice is the internal low-power oscillator (LPO).  
The other choice is the external pin oscillator (EPO) which is common  
to most M68HC05 MCU devices. The EPO uses external components  
Advance Information  
58  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Interrupts  
MOTOROLA  
Interrupts  
External Interrupts  
like filter capacitors and a crystal or ceramic resonator and consumes  
more power. The selection and enable conditions for these two  
oscillators are shown in Table 4-2.  
Table 4-2. Oscillator Selection  
Internal  
Low-Power  
Oscillator  
(LPO)  
External  
Pin  
Oscillator  
(EPO)  
Oscillator  
Selected  
by CPU  
Power  
Consumption  
OM2 OM1  
0
0
1
1
0
1
0
1
Internal  
External  
Internal  
Internal  
Enabled  
Disabled  
Enabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
Lowest  
Normal  
Lowest  
Normal  
Therefore, the lowest power is consumed when OM1 is cleared. The  
state with both OM1 and OM2 set is provided so that the EPO can be  
started and allowed to stabilize while the LPO still clocks the MCU.  
The reset state is for OM1 to be cleared and OM2 to be set, which  
selects the LPO and disables the EPO.  
IRQF External Interrupt Request Flag  
The IRQ flag is a clearable, read-only bit that is set when an external  
interrupt request is pending. Writing to the IRQF bit has no effect.  
Reset clears the IRQF bit.  
1 = Interrupt request pending  
0 = No interrupt request pending  
The following conditions set the IRQ flag:  
An external interrupt signal on the IRQ/VPP pin  
An external interrupt signal on pin PA0, PA1, PA2, or PA3  
when the PA0PA3 pins are enabled by the PIRQ bit in the MOR  
to serve as external interrupt sources.  
The following conditions clear the IRQ flag:  
When the CPU fetches the interrupt vector  
When a logic 1 is written to the IRQR bit  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
59  
Interrupts  
Interrupts  
IRQR Interrupt Request Reset Bit  
This write-only bit clears the IRQF flag bit and prevents redundant  
execution of interrupt routines. Writing a logic 1 to IRQR clears the  
IRQF. Writing a logic 0 to IRQR has no effect. IRQR always reads as  
a logic 0. Reset has no effect on IRQR.  
1 = Clear IRQF flag bit  
0 = No effect  
4.7 Core Timer Interrupts  
The core timer can generate the following interrupts:  
Timer overflow interrupt  
Real-time interrupt  
Setting the I bit in the condition code register disables core timer  
interrupts. The controls and flags for these interrupts are in the core timer  
status and control register (CTSCR) located at $0008.  
4.7.1 Core Timer Overflow Interrupt  
An overflow interrupt request occurs if the core timer overflow flag (TOF)  
becomes set while the core timer overflow interrupt enable bit (TOFE) is  
also set. The TOF flag bit can be reset by writing a logic 1 to the CTOFR  
bit in the CTSCR or by a reset of the device.  
4.7.2 Real-Time Interrupt  
A real-time interrupt request occurs if the real-time interrupt flag (RTIF)  
in the CTSCR becomes set while the real-time interrupt enable bit  
(RTIE) is also set. The RTIF flag bit can be reset by writing a logical 1 to  
the RTIFR bit in the CTSCR or by a reset of the device.  
Advance Information  
60  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Interrupts  
MOTOROLA  
Interrupts  
Programmable Timer Interrupts  
4.8 Programmable Timer Interrupts  
The 16-bit programmable timer can generate an interrupt whenever the  
following events occur:  
Input capture  
Output compare  
Timer counter overflow  
Setting the I bit in the condition code register disables timer interrupts.  
The controls for these interrupts are in the timer control register (TCR)  
located at $0012 and in the status bits in the timer status register (TSR)  
located at $0013.  
4.8.1 Input Capture Interrupt  
An input capture interrupt occurs if the input capture flag (ICF) becomes  
set while the input capture interrupt enable bit (ICIE) is also set. The ICF  
flag bit is in the TSR, and the ICIE enable bit is located in the TCR. The  
ICF flag bit is cleared by a read of the TSR with the ICF flag bit set, and  
then followed by a read of the LSB of the input capture register (ICRL)  
or by reset. The ICIE enable bit is unaffected by reset.  
4.8.2 Output Compare Interrupt  
An output compare interrupt occurs if the output compare flag (OCF)  
becomes set while the output compare interrupt enable bit (OCIE) is also  
set. The OCF flag bit is in the TSR and the OCIE enable bit is in the TCR.  
The OCF flag bit is cleared by a read of the TSR with the OCF flag bit  
set, and then followed by an access to the LSB of the output compare  
register (OCRL) or by reset. The OCIE enable bit is unaffected by reset.  
4.8.3 Timer Overflow Interrupt  
A timer overflow interrupt occurs if the timer overflow flag (TOF)  
becomes set while the timer overflow interrupt enable bit (TOIE) is also  
set. The TOF flag bit is in the TSR and the TOIE enable bit is in the TCR.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
61  
Interrupts  
Interrupts  
The TOF flag bit is cleared by a read of the TSR with the TOF flag bit set,  
and then followed by an access to the LSB of the timer registers (TMRL)  
or by reset. The TOIE enable bit is unaffected by reset.  
4.9 Serial Interrupts  
The simple serial interface can generate the following interrupts:  
Receive sequence complete  
Transmit sequence complete  
Setting the I bit in the condition code register disables serial interrupts.  
The controls for these interrupts are in the serial control register (SCR)  
located at $000A and in the status bits in the serial status register (SSR)  
located at $000B.  
A transfer complete interrupt occurs if the serial interrupt flag (SPIF)  
becomes set while the serial interrupt enable bit (SPIE) is also set. The  
SPIF flag bit is in the serial status register (SSR) located at $000B, and  
the SPIE enable bit is located in the serial control register (SCR) located  
at $000A. The SPIF flag bit is cleared by a read of the SSR with the SPIF  
flag bit set, and then followed by a read or write to the serial data register  
(SDR) located at $000C. The SPIF flag bit can also be reset by writing a  
one to the SPIR bit in the SCR.  
4.10 Analog Interrupts  
The analog subsystem can generate the following interrupts:  
Voltage on positive input of comparator 1 is greater than the  
voltage on the negative input of comparator 1.  
Voltage on positive input of comparator 2 is greater than the  
voltage on the negative input of comparator 2.  
Trigger of the input capture interrupt from the programmable timer  
as described in 4.8.1 Input Capture Interrupt  
Advance Information  
62  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Interrupts  
MOTOROLA  
Interrupts  
Analog Interrupts  
Setting the I bit in the condition code register disables analog subsystem  
interrupts. The controls for these interrupts are in the analog subsystem  
control register (ACR) located at $001D, and the status bits are in the  
analog subsystem status register (ASR) located at $001E.  
4.10.1 Comparator Input Match Interrupt  
A comparator input match interrupt occurs if either compare flag bit  
(CPF1 or CPF2) in the ASR becomes set while the comparator interrupt  
enable bit (CPIE) in the ACR is also set. The CPF1 and CPF2 flag bits  
can be reset by writing a one to the corresponding CPFR1 or CPFR2 bits  
in the ASR. Reset clears these bits.  
4.10.2 Input Capture Interrupt  
The analog subsystem can also generate an input capture interrupt  
through the 16-bit programmable timer. The input capture can be  
triggered when there is a match in the input conditions for the voltage  
comparator 2. If comparator 2 sets the CP2F flag bit in the ASR and the  
input capture enable (ICEN) in the ACR is set, then an input capture will  
be performed by the programmable timer. If the ICIE enable bit in the  
TCR is also set, then an input compare interrupt will occur. Reset clears  
these bits.  
NOTE: For the analog subsystem to generate an interrupt using the input  
capture function of the programmable timer, the ICEN enable bit in the  
ACR, and the ICIE and IEDG bits in the TCR must all be set.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
63  
Interrupts  
Interrupts  
Advance Information  
64  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Interrupts  
Advance Information MC68HC705JJ7/MC68HC705JP7  
Section 5. Resets  
5.1 Contents  
5.2  
5.3  
5.4  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
External Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
5.5  
Internal Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Computer Operating Properly (COP) Reset. . . . . . . . . . . . .68  
Low-Voltage Reset (LVR). . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
5.5.1  
5.5.2  
5.5.3  
5.5.4  
5.6  
Reset States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Core Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
COP Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
16-Bit Programmable Timer . . . . . . . . . . . . . . . . . . . . . . . . .72  
Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Analog Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
External Oscillator and Internal  
5.6.1  
5.6.2  
5.6.3  
5.6.4  
5.6.5  
5.6.6  
5.6.7  
5.6.8  
Low-Power Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
65  
Resets  
Resets  
5.2 Introduction  
This section describes the five reset sources and how they initialize the  
microcontroller unit (MCU). A reset immediately stops the operation of  
the instruction being executed, initializes certain control bits, and loads  
the program counter with a user-defined reset vector address. These  
conditions produce a reset:  
Initial power-up of device (power-on reset)  
A logic 0 applied to the RESET pin (external reset)  
Timeout of the computer operating properly (COP) watchdog  
(COP reset)  
Low voltage applied to the device (LVR reset)  
Fetch of an opcode from an address not in the memory map  
(illegal address reset)  
Figure 5-1 shows a block diagram of the reset sources and their  
interaction.  
MASK OPTION REGISTER ($1FF1)  
INTERNAL DATA BUS  
COP WATCHDOG  
LOW-VOLTAGE RESET  
POWER-ON RESET  
V
DD  
ILLEGAL ADDRESS RESET  
INTERNAL  
ADDRESS BUS  
S
TO CPU  
RST  
RESET  
D
AND  
RESET  
LATCH  
SUBSYSTEMS  
R
3-CYCLE  
CLOCKED  
1-SHOT  
INTERNAL  
CLOCK  
Figure 5-1. Reset Sources  
Advance Information  
66  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Resets  
Resets  
Power-On Reset  
5.3 Power-On Reset  
A positive transition on the VDD pin generates a power-on reset. The  
power-on reset is strictly for conditions during powering up and cannot  
be used to detect drops in power supply voltage.  
A delay of 16 or 4064 internal bus cycles (tcyc) after the oscillator  
becomes active allows the clock generator to stabilize. If the RESET pin  
is at logic 0 at the end of this multiple tcyc time, the MCU remains in the  
reset condition until the signal on the RESET pin goes to a logic 1.  
5.4 External Reset  
A logic 0 applied to the RESET pin for a minimum of one and one half  
t
cyc generates an external reset. This pin is connected to a Schmitt  
trigger input gate to provide an upper and lower threshold voltage  
separated by a minimum amount of hysteresis. The external reset  
occurs whenever the RESET pin is pulled below the lower threshold and  
remains in reset until the RESET pin rises above the upper threshold.  
This active low input will generate the internal RST signal that resets the  
CPU and peripherals.  
The RESET pin can also be pulled to a low state by an internal pulldown  
device that is activated by three internal reset sources. This reset  
pulldown device will only be asserted for three to four cycles of the  
internal bus or as long as the internal reset source is asserted.  
NOTE: Do not connect the RESET pin directly to VDD, as this may overload  
some power supply designs if the internal pulldown on the RESET pin  
should activate. If an external reset function is not required, the RESET  
pin should be left unconnected.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
67  
Resets  
Resets  
5.5 Internal Resets  
The four internally generated resets are:  
Initial power-on reset (POR) function  
COP watchdog timer reset  
Low-voltage reset (LVR)  
Illegal address detector  
Only the COP watchdog timer reset, low-voltage reset, and illegal  
address detector will also assert the pulldown device on the RESET pin  
for the duration of the reset function or for three to four internal bus  
cycles, whichever is longer.  
5.5.1 Power-On Reset (POR)  
The internal POR is generated on power-up to allow the clock oscillator  
to stabilize. The POR is strictly for power turn-on conditions and is not  
able to detect a drop in the power supply voltage (brown-out); that  
function can be performed by the LVR. Depending on the DELAY bit in  
the mask option register (MOR), there is an oscillator stabilization delay  
of 16 or 4064 internal bus cycles after the LPO becomes active.  
The POR will generate the RST signal which will reset the CPU. If any  
other reset function is active at the end of the 16- or 4064-cycle delay,  
the RST signal will remain in the reset condition until the other reset  
condition(s) end.  
POR will not activate the pulldown device on the RESET pin. VDD must  
drop below VPOR for the internal POR circuit to detect the next rise of  
VDD  
5.5.2 Computer Operating Properly (COP) Reset  
A timeout of the COP watchdog generates a COP reset. The COP  
.
watchdog is part of a software error detection system and must be  
cleared periodically to start a new timeout period. To clear the COP  
watchdog and prevent a COP reset, write a logic 0 to the COPC bit of the  
COPR register at location $1FF0. The COPC bit, shown in  
Figure 5-2, is a write-only bit.  
Advance Information  
68  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Resets  
MOTOROLA  
Resets  
Internal Resets  
Address: $1FF0  
Bit 7  
6
OPT  
U
5
4
3
2
1
Bit 0  
Read:  
EPMSEC  
Write:  
COPC  
U
Reset:  
U
U
U
U
U
U
= Unimplemented  
U = Unaffected  
Figure 5-2. COP and Security Register (COPR)  
EPMSEC EPROM Security(1) Bit  
The EPMSEC bit is an EPROM, write-only security bit to protect the  
contents of the user EPROM code stored in locations $0700$1FFF.  
OPT Optional Features Bit  
The OPT bit enables two additional features: direct drive by  
comparator 1 output to PB4 and voltage offset capability to sample  
capacitor in analog subsystem.  
1 = Optional features enabled  
0 = Optional features disabled  
NOTE: See 8.8.1 Voltage Comparator 1 and 8.11 Sample and Hold for further  
descriptions of the OPT bit.  
COPC COP Clear Bit  
COPC is a write-only bit. Periodically writing a logic 0 to COPC  
prevents the COP watchdog from resetting the MCU. Reset clears the  
COPC bit.  
1 = No effect on COP watchdog timer  
0 = Reset COP watchdog timer  
The COP watchdog reset will assert the pulldown device to pull the  
RESET pin low for three to four cycles of the internal bus.  
The COP watchdog reset function can be enabled or disabled by  
programming the COPEN bit in the MOR.  
1. No security feature is absolutely secure. However, Motorolas strategy is to make reading or  
copying the EPROM/OTPROM difficult for unauthorized users.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
69  
Resets  
Resets  
5.5.3 Low-Voltage Reset (LVR)  
The LVR activates the RST reset signal to reset the device when the  
voltage on the VDD pin falls below the LVR trip voltage. The LVR will  
assert the pulldown device to pull the RESET pin low for three to four  
cycles of the internal bus.  
The LVR reset function can be enabled or disabled by programming the  
LVREN bit in the MOR.  
NOTE: The LVR is intended for applications where the VDD supply voltage  
normally operates above 4.5 volts.  
5.5.4 Illegal Address Reset  
An opcode fetch (execution of an instruction) at an address that is not in  
the EPROM (locations $0700$1FFF) or the RAM (locations  
$0020$00FF) generates an illegal address reset. The illegal address  
reset will assert the pulldown device to pull the RESET pin low for three  
to four cycles of the internal bus.  
5.6 Reset States  
This subsection describe how the various resets initialize the MCU.  
A reset has these effects on the CPU:  
5.6.1 CPU  
Loads the stack pointer with $FF  
Sets the I bit in the condition code register, inhibiting interrupts  
Loads the program counter with the user-defined reset vector from  
locations $1FFE and $1FFF  
Clears the stop latch, enabling the CPU clock  
Clears the wait latch, bringing the CPU out of the wait mode  
Advance Information  
70  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Resets  
MOTOROLA  
Resets  
Reset States  
5.6.2 I/O Registers  
A reset has these effects on input/output (I/O) registers:  
Clears bits in data direction registers configuring pins as inputs:  
DDRA5DDRA0 in DDRA for port A  
DDRB7DDRB0 in DDRB for port B  
DDRC7DDRC0 in DDRC for port C(1)  
Clears bits in pulldown inhibit registers to enable pulldown  
devices:  
PDIA5PDIA0 in PDRA for port A  
PDIB7PDIB0 in PDRB for port B  
PDICH and PDICL in PDRA for port C(1)  
Has no effect on port A, B, or C(1) data registers  
Sets the IRQE bit in the interrupt status and control register (ISCR)  
5.6.3 Core Timer  
A reset has these effects on the core timer:  
Clears the core timer counter register (CTCR)  
Clears the core timer interrupt flag and enable bits in the core timer  
status and control register (CTSCR)  
Sets the real-time interrupt (RTI) rate selection bits (RT0 and RT1)  
such that the device will start with the longest real-time interrupt  
and longest COP timeout delays  
5.6.4 COP Watchdog  
A reset clears the COP watchdog timeout counter.  
1. Features related to port C are only available on the 28-pin MC68HC705JP7 devices  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
71  
Resets  
Resets  
5.6.5 16-Bit Programmable Timer  
A reset has these effects on the 16-bit programmable timer:  
Initializes the timer counter registers (TMRH and TMRL) to a value  
of $FFFC  
Initializes the alternate timer counter registers (ACRH and ACRL)  
to a value of $FFFC  
Clears all the interrupt enables and the output level bit (OLVL) in  
the timer control register (TCR)  
Does not affect the input capture edge bit (IEDG) in the TCR  
Does not affect the interrupt flags in the timer status register (TSR)  
Does not affect the input capture registers (ICRH and ICRL)  
Does not affect the output compare registers (OCRH and OCRL)  
5.6.6 Serial Interface  
A reset has these effects on the serial interface:  
Clears all bits in the SIOP control register (SCR)  
Clears all bits in the SIOP status register (SSR)  
Does not affect the contents of the SIOP data register (SDR)  
A reset, therefore, disables the SIOP and leaves the shared port B pins  
as general I/O. Any pending interrupt flag is cleared and the SIOP  
interrupt is disabled. Also the baud rate defaults to the slowest rate.  
5.6.7 Analog Subsystem  
A reset has these effects on the analog subsystem:  
Clears all the bits in the multiplex register (AMUX) bits except the  
hold switch bit (HOLD) which is set  
Clears all the bits in the analog control register (ACR)  
Clears all the bits in the analog status register (ASR)  
Advance Information  
72  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Resets  
MOTOROLA  
Resets  
Reset States  
A reset, therefore, connects the negative input of comparator 2 to the  
channel selection bus, which is switched to VSS. Both comparators are  
set up as non-inverting (a higher positive voltage on the positive input  
results in a positive output) and both are powered down. The current  
source and discharge device on the PB0/AN0 pin is disabled and  
powered down. Any analog subsystem interrupt flags are cleared and  
the analog interrupt is disabled. Direct drive by comparator 1 to the PB4  
pin and the voltage offset to the sample capacitor are disabled (if both  
are enabled by the OPT bit being set in the COPR).  
5.6.8 External Oscillator and Internal Low-Power Oscillator  
A reset presets the oscillator select bits (OM1 and OM2) in the interrupt  
status and control register (ISCR) such that the device runs from the  
internal oscillator (OM1 = 0, OM2 = 1) which has these effects on the  
oscillators:  
The internal low-power oscillator is enabled and selected.  
The external oscillator is disabled.  
The CPU bus clock is driven from the internal low-power oscillator.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
73  
Resets  
Resets  
Advance Information  
74  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Resets  
Advance Information MC68HC705JJ7/MC68HC705JP7  
Section 6. Operating Modes  
6.1 Contents  
6.2  
6.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Oscillator Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
6.4  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Halt Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Data-Retention Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.2 Introduction  
This section describes the operation of the device with respect to the  
oscillator source and the low-power modes:  
Stop mode  
Wait mode  
Halt mode  
Data-retention mode  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
75  
Operating Modes  
Operating Modes  
6.3 Oscillator Source  
The microcontroller unit (MCU) can be clocked by either an internal  
low-power oscillator (LPO) without external components or by an  
external pin oscillator (EPO) which uses external components. The  
enable and selection of the clock source is determined by the state of the  
oscillator select bits (OM1 and OM2) in the interrupt status and control  
register (ISCR) as shown in Figure 6-1.  
Address: $000D  
Bit 7  
IRQE  
1
6
OM2  
1
5
OM1  
0
4
0
3
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IRQF  
R
0
IRQR  
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 6-1. IRQ Status and Control Register (ISCR)  
IRQE External Interrupt Request Enable Bit  
This read/write bit enables external interrupts. Refer to Section 4.  
Interrupts for more details.  
OM1 and OM2 Oscillator Select Bits  
These bits control the selection and enabling of the oscillator source  
for the MCU. One choice is the internal LPO and the other oscillator  
is the EPO which is common to most M68HC05 MCU devices. The  
EPO uses external components like filter capacitors and a crystal or  
ceramic resonator and consumes more power than the LPO. The  
selection and enable conditions for these two oscillators are shown in  
Table 6-1. Reset clears OM1 and sets OM2, which selects the LPO  
and disables the EPO.  
Therefore, the lowest power is consumed when OM1 is cleared. The  
state with both OM1 and OM2 set is provided so that the EPO can be  
started up and allowed to stabilize while the LPO still clocks the MCU.  
Advance Information  
76  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Operating Modes  
MOTOROLA  
Operating Modes  
Low-Power Modes  
.
Table 6-1. Oscillator Selection  
Internal  
External Pin  
Oscillator  
(EPO)  
Oscillator  
Selected  
Low-Power  
Oscillator  
(LPO)  
Power  
Consumption  
OM2 OM1  
0
0
1
1
0
1
0
1
Internal  
External  
Internal  
Internal  
Enabled  
Disabled  
Enabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
Lowest  
Normal  
Lowest  
Normal  
NOTE: When switching from LPO to EPO, the user must be careful to ensure  
that the EPO has been enabled and powered up long enough to stabilize  
before shifting clock sources.  
IRQF External Interrupt Request Flag  
The IRQF flag is a clearable, read-only bit that is set when an external  
interrupt request is pending. Refer to Section 4. Interrupts for more  
details.  
IRQR Interrupt Request Reset Bit  
This write-only bit clears the IRQF flag bit and prevents redundant  
execution of interrupt routines. Refer to Section 4. Interrupts for  
more details.  
6.4 Low-Power Modes  
Four modes of operation reduce power consumption:  
Stop mode  
Wait mode  
Halt mode  
Data-retention mode  
Figure 6-2 shows the sequence of events in stop, wait, and halt modes.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
77  
Operating Modes  
Operating Modes  
STOP  
HALT  
WAIT  
YES  
SWAIT BIT  
CLEAR I BIT IN CCR.  
SET IRQE BIT IN ISCR.  
TURN OFF CPU CLOCK.  
KEEP OTHER MODULE  
CLOCKS ACTIVE.  
CLEAR I BIT IN CCR.  
SET IRQE BIT IN ISCR.  
TURN OFF CPU CLOCK.  
KEEP OTHER MODULE  
CLOCKS ACTIVE.  
IN MOR SET?  
NO  
CLEAR I BIT IN CCR.  
SET IRQE BIT IN ISCR.  
CLEAR CTOF, RTIF, CTOFE, AND RTIE BITS IN TSCR.  
CLEAR ICF, OCF, AND TOF BITS IN TSR.  
CLEAR ICIE, OCIE, AND TOIE BITS IN TCR.  
DISABLE EXTERNAL PIN OSCILLATOR.  
YES  
YES  
EXTERNAL  
RESET?  
EXTERNAL  
RESET?  
TURN OFF INTERNAL LOW-POWER OSCILLATOR.  
NO  
NO  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
EXTERNAL  
EXTERNAL  
EXTERNAL  
INTERRUPT?  
INTERRUPT?  
RESET?  
NO  
NO  
NO  
CORE  
TIMER  
INTERRUPT?  
CORE  
TIMER  
INTERRUPT?  
YES  
EXTERNAL  
INTERRUPT?  
NO  
NO  
NO  
PROG.  
TIMER  
INTERRUPT?  
PROG.  
TIMER  
INTERRUPT?  
TURN ON SELECTED OSCILLATOR.  
RESET STABILIZATION DELAY TIMER.  
NO  
NO  
SIOP  
INTERRUPT?  
SIOP  
INTERRUPT?  
NO  
NO  
YES  
END OF  
STABILIZATION  
DELAY?  
ANALOG  
INTERRUPT?  
ANALOG  
INTERRUPT?  
NO  
NO  
NO  
COP  
RESET?  
COP  
RESET?  
TURN ON CPU CLOCK.  
NO  
NO  
1. LOAD PC WITH RESET VECTOR  
OR  
2. SERVICE INTERRUPT.  
a. SAVE CPU REGISTERS ON STACK.  
b. SET I BIT IN CCR.  
c. LOAD PC WITH INTERRUPT VECTOR.  
Figure 6-2. Stop/Wait/Halt Flowchart  
Advance Information  
78  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Operating Modes  
Operating Modes  
Low-Power Modes  
6.4.1 Stop Mode  
The STOP instruction puts the MCU in a mode with the lowest power  
consumption and affects the MCU as follows:  
Turns off the central processor unit (CPU) clock and all internal  
clocks by stopping both the external pin oscillator and the internal  
low-power oscillator. The selection of the oscillator by the OM1  
and OM2 bits in the ISCR is not affected. The stopped clocks turn  
off the COP watchdog, the core timer, the programmable timer,  
the analog subsystem, and the SIOP.  
Removes any pending core timer interrupts by clearing the core  
timer interrupt flags (CTOF and RTIF) in the core timer status and  
control register (CTSCR)  
Disables any further core timer interrupts by clearing the core  
timer interrupt enable bits (CTOFE and RTIE) in the CTSCR  
Removes any pending programmable timer interrupts by clearing  
the timer interrupt flags (ICF, OCF, and TOF) in the timer status  
register (TSR)  
Disables any further programmable timer interrupts by clearing the  
timer interrupt enable bits (ICIE, OCIE, and TOIE) in the timer  
control register (TCR)  
Enables external interrupts via the IRQ/VPP pin by setting the  
IRQE bit in the IRQ status and control register (ISCR). External  
interrupts are also enabled via the PA0 through PA3 pins, if the  
port A interrupts are enabled by the PIRQ bit in the mask option  
register (MOR).  
Enables interrupts in general by clearing the I bit in the condition  
code register  
The STOP instruction does not affect any other bits, registers, or I/O  
lines.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
79  
Operating Modes  
Operating Modes  
The following conditions bring the MCU out of stop mode:  
An external interrupt signal on the IRQ/VPP pin A high-to-low  
transition on the IRQ/VPP pin loads the program counter with the  
contents of locations $1FFA and $1FFB.  
An external interrupt signal on a port A external interrupt pin If  
selected by the PIRQ bit in the MOR, a low-to-high transition on a  
PA3PA0 pin loads the program counter with the contents of  
locations $1FFA and $1FFB.  
External reset A logic 0 on the RESET pin resets the MCU and  
loads the program counter with the contents of locations $1FFE  
and $1FFF.  
When the MCU exits stop mode, processing resumes after a  
stabilization delay of 16 or 4064 internal bus cycles, depending on the  
state of the DELAY bit in the MOR.  
NOTE: Execution of the STOP instruction without setting the SWAIT bit in the  
MOR will cause the oscillators to stop, and, therefore, disable the COP  
watchdog timer. If the COP watchdog timer is to be used, stop mode  
should be changed to halt mode as described in 6.4.3 Halt Mode.  
6.4.2 Wait Mode  
The WAIT instruction puts the MCU in a low-power wait mode which  
consumes more power than the stop mode and affects the MCU as  
follows:  
Enables interrupts by clearing the I bit in the condition code  
register  
Enables external interrupts by setting the IRQE bit in the IRQ  
status and control register  
Stops the CPU clock which drives the address and data buses, but  
allows the selected oscillator to continue to clock the core timer,  
programmable timer, analog subsystem, and SIOP  
The WAIT instruction does not affect any other bits, registers, or I/O  
lines.  
Advance Information  
80  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Operating Modes  
MOTOROLA  
Operating Modes  
Low-Power Modes  
These conditions restart the CPU bus clock and bring the MCU out of  
wait mode:  
An external interrupt signal on the IRQ/VPP pin A high-to-low  
transition on the IRQ/VPP pin loads the program counter with the  
contents of locations $1FFA and $1FFB.  
An external interrupt signal on a port A external interrupt pin If  
selected by PIRQ bit in the MOR, a low-to-high transition on a  
PA3PA0 pin loads the program counter with the contents of  
locations $1FFA and $1FFB.  
A core timer interrupt A core timer overflow or a real-time  
interrupt loads the program counter with the contents of locations  
$1FF8 and $1FF9.  
A programmable timer interrupt A programmable timer interrupt  
driven by an input capture, output compare, or timer overflow  
loads the program counter with the contents of locations $1FF6  
and $1FF7.  
An SIOP interrupt An SIOP interrupt driven by the completion  
of transmitted or received 8-bit data loads the program counter  
with the contents of locations $1FF4 and $1FF5.  
An analog subsystem interrupt An analog subsystem interrupt  
driven by a voltage comparison loads the program counter with  
the contents of locations $1FF2 and $1FF3.  
A COP watchdog reset A timeout of the COP watchdog resets  
the MCU and loads the program counter with the contents of  
locations $1FFE and $1FFF. Software can enable real-time  
interrupts so that the MCU can periodically exit the wait mode to  
reset the COP watchdog.  
An external reset A logic 0 on the RESET pin resets the MCU  
and loads the program counter with the contents of locations  
$1FFE and $1FFF.  
When the MCU exits the wait mode, there is no delay before code  
executes like occurs when exiting the stop or halt modes.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
81  
Operating Modes  
Operating Modes  
6.4.3 Halt Mode  
The STOP instruction puts the MCU in halt mode if selected by the  
SWAIT bit in the MOR. Halt mode is identical to wait mode, except that  
a variable recovery delay occurs when the MCU exits halt mode. A  
recovery time of from 1 to 16 or from 1 to 4064 internal bus cycles can  
be selected by the DELAY bit in the MOR.  
If the SWAIT bit is set in the MOR to put the MCU in halt mode, the COP  
watchdog cannot be turned off inadvertently by a STOP instruction.  
6.4.4 Data-Retention Mode  
In the data-retention mode, the MCU retains random-access memory  
(RAM) contents and CPU register contents at VDD voltages as low as 2.0  
Vdc. The data retention feature allows the MCU to remain in a low-power  
consumption state during which it retains data, but the CPU cannot  
execute instructions. Current consumption in this mode is not tested.  
To put the MCU in the data retention mode:  
1. Drive the RESET pin to a logic 0.  
2. Lower the VDD voltage. The RESET pin must remain low  
continuously during data retention mode.  
To take the MCU out of the data retention mode:  
1. Return VDD to normal operating voltage.  
2. Return the RESET pin to a logic 1.  
Advance Information  
82  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Operating Modes  
MOTOROLA  
Advance Information MC68HC705JJ7/MC68HC705JP7  
Section 7. Parallel Input/Output  
7.1 Contents  
7.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
7.3  
Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Pulldown Register A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Port A External Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Port A Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.4  
Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Pulldown Register B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Port B Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
PB0, PBI, PB2, and PB3 Logic. . . . . . . . . . . . . . . . . . . . . . .93  
PB4/AN4/TCMP/CMP1 Logic. . . . . . . . . . . . . . . . . . . . . . . .94  
PB5/SDO Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
PB6/SDI Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
PB7/SCK Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.4.5  
7.4.6  
7.4.7  
7.4.8  
7.4.9  
7.5  
Port C (28-Pin Versions Only) . . . . . . . . . . . . . . . . . . . . . . . .101  
Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Data Direction Register C. . . . . . . . . . . . . . . . . . . . . . . . . .102  
Port C Pulldown Devices . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Port C Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.6  
Port Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
83  
Parallel Input/Output  
Parallel Input/Output  
7.2 Introduction  
The MC68HC705JJ7 has 14 bidirectional input/output (I/O) pins which  
form two parallel I/O ports, A and B. The MC68HC705JP7 has  
22 bidirectional I/O pins which form three parallel I/O ports, A, B and C.  
Each I/O pin is programmable as an input or an output. The contents of  
the data direction registers determine the data direction of each of the  
I/O pins. All I/O pins have software programmable pulldown devices  
which can be enabled or disabled globally by the SWPDI bit in the mask  
option register (MOR).  
7.3 Port A  
Port A is a 6-bit, general-purpose, bidirectional I/O port with these  
features:  
Individual programmable pulldown devices  
High current sinking capability on all port A pins, with a maximum  
total for port A  
High current sourcing capability on all port A pins, with a maximum  
total for port A  
External interrupt capability (pins PA3PA0)  
Advance Information  
84  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Parallel Input/Output  
MOTOROLA  
Parallel Input/Output  
Port A  
7.3.1 Port A Data Register  
The port A data register (PORTA) contains a bit for each of the port A  
pins. When a port A pin is programmed to be an output, the state of its  
data register bit determines the state of the output pin. When a port A pin  
is programmed to be an input, reading the port A data register returns  
the logic state of the pin. The upper two bits of the port A data register  
will always read as logic 0s.  
Address: $0000  
Bit 7  
0
6
0
5
4
3
2
1
Bit 0  
PA0  
Read:  
Write:  
PA5  
PA4  
PA3  
PA2  
PA1  
Reset:  
Unaffected by reset  
KYBD3 KYBD2 KYBD1 KYBD0  
Alternate:  
= Unimplemented  
Figure 7-1. Port A Data Register (PORTA)  
PA5PA0 Port A Data Bits  
These read/write bits are software programmable. Data direction of  
each bit is under the control of the corresponding bit in the port A data  
direction register (DDRA). Reset has no effect on port A data.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
85  
Parallel Input/Output  
Parallel Input/Output  
7.3.2 Data Direction Register A  
The contents of the port A data direction register (DDRA) determine  
whether each port A pin is an input or an output. Writing a logic 1 to a  
DDRA bit enables the output buffer for the associated port A pin. A  
DDRA bit set to a logic 1 also disables the pulldown device for that pin.  
Writing a logic 0 to a DDRA bit disables the output buffer for the  
associated port A pin. The upper two bits always read as logic 0s. A reset  
initializes all DDRA bits to logic 0s, configuring all port A pins as inputs  
and disabling the voltage comparators from driving PA4 or PA5.  
Address: $0004  
Bit 7  
0
6
0
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 7-2. Data Direction Register A (DDRA)  
DDRA5DDRA0 Port A Data Direction Bits  
These read/write bits control port A data direction. Reset clears the  
DDRA5DDRA0 bits.  
1 = Corresponding port A pin configured as output and pulldown  
device disabled  
0 = Corresponding port A pin configured as input  
Advance Information  
86  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Parallel Input/Output  
MOTOROLA  
Parallel Input/Output  
Port A  
7.3.3 Pulldown Register A  
All port A pins can have software programmable pulldown devices  
enabled or disabled globally by SWPDI bit in the MOR. These pulldown  
devices are controlled by the write-only pulldown register A (PDRA)  
shown in Figure 7-3. Clearing the PDIA5PDIA0 bits in the PDRA turns  
on the pulldown devices if the port A pin is an input. Reading the PDRA  
returns undefined results since it is a write-only register; therefore, do  
not change the value in PDRA with read/modify/write instructions. On  
the MC68HC705JP7 the PDRA contains two pulldown control bits  
(PDICH and PDICL) for port C. Reset clears the PDIA5PDIA0, PDICH,  
and PDICL bits, which turns on all the port A and port C pulldown  
devices.  
Address: $0010  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write: PDICH  
Reset:  
PDICL  
0
PDIA5  
0
PDIA4  
0
PDIA3  
0
PDIA2  
0
PDIA1  
0
PDIA0  
0
0
= Unimplemented  
Figure 7-3. Pulldown Register A (PDRA)  
PDICH Upper Port C Pulldown Inhibit Bits (MC68HC705JP7)  
Writing to this write-only bit controls the port C pulldown devices on  
the upper four bits (PC4PC7). Reading these pulldown register A  
bits returns undefined data. Reset clears bit PDICH.  
1 = Upper four port C pins pulldown devices turned off  
0 = Upper four port C pins pulldown devices turned on if pin has  
been programmed by the DDRC to be an input  
PDICL Lower Port C Pulldown Inhibit Bits (MC68HC705JP7)  
Writing to this write-only bit controls the port C pulldown devices on  
the lower four bits (PC0PC3). Reading these pulldown register A bits  
returns undefined data. Reset clears bit PDICL.  
1 = Lower four port C pins pulldown devices turned off  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
87  
Parallel Input/Output  
Parallel Input/Output  
0 = Lower four port C pins pulldown devices turned on if pin has  
been programmed by the DDRC to be an input  
PDIA5PDIA0 Port A Pulldown Inhibit Bits  
Writing to these write-only bits controls the port A pulldown devices.  
Reading these pulldown register A bits returns undefined data. Reset  
clears bits PDIA5PDIA0.  
1 = Corresponding port A pin pulldown device turned off  
0 = Corresponding port A pin pulldown device turned on if pin has  
been programmed by the DDRA to be an input  
7.3.4 Port A External Interrupts  
The PIRQ bit in the MOR enables the PA3PA0 pins to serve as external  
interrupt pins in addition to the IRQ/VPP pin. The active interrupt state for  
the PA3PA0 pins is a logic 1 or a rising edge. A state of the PIRQ bit in  
the MOR determines whether external interrupt inputs are  
edge-sensitive only or both edge- and level-sensitive. Port A interrupts  
are also interactive with each other and the IRQ/VPP pin as described in  
4.6 External Interrupts.  
NOTE: When testing for external interrupts, the BIH and BIL instructions test the  
voltage on the IRQ/VPP pin, not the state of the internal IRQ signal.  
Therefore, BIH and BIL cannot test the port A external interrupt pins.  
Advance Information  
88  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Parallel Input/Output  
Parallel Input/Output  
Port A  
7.3.5 Port A Logic  
When a PA0:PA5 pin is programmed as an output, reading the port bit  
actually reads the value of the data latch and not the voltage on the pin  
itself. When a PA0:PA5 pin is programmed as an input, reading the port  
bit reads the voltage level on the pin. The data latch can always be  
written, regardless of the state of its DDR bit. Figure 7-4 shows the I/O  
logic of PA0PA5 pins of port A.  
The data latch can always be written, regardless of the state of its DDR  
bits. Table 7-1 summarizes the operations of the port A pins.  
EXTERNAL  
INTERRUPT  
REQUEST  
READ $0004  
WRITE $0004  
(PA0:3)  
DATA DIRECTION  
REGISTER A  
BIT DDRAx  
R
PORT A DATA  
REGISTER  
BIT PAx  
WRITE $0000  
PAx  
HIGH SINK/SOURCE  
CURRENT  
CAPABILITY  
READ $0000  
WRITE $0010  
PULLDOWN  
REGISTER A  
BIT PDIAx  
PULLDOWN  
DEVICE  
R
RESET  
MASK OPTION REG. ($1FF1)  
Figure 7-4. Port A I/O Circuit  
Table 7-1. Port A Pin Functions  
PORTA Access  
Port A  
Result on  
Port A Pins  
Port A  
Pin(s)  
SWPDI  
(in MOR)  
(Pin or Data Register)  
DDRAx(1)  
PDIAx  
Read  
Pin  
Write  
Data  
Data  
Data  
Data  
Pulldown  
Pin  
0
0
0
1
0
On  
Off  
Off  
Off  
PAx in  
PAx in  
PAx in  
PAx out  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
0
0
1
Pin  
1
X
Pin  
X(2)  
X(2)  
Data  
1. DDRA can always be read or written.  
2. Dont care  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
89  
Parallel Input/Output  
Parallel Input/Output  
7.4 Port B  
Port B is an 8-bit, general-purpose, bidirectional I/O port with these  
features:  
Programmable pulldown devices  
PB0PB4 are shared with the analog subsystem.  
PB3 and PB4 are shared with the 16-bit programmable timer.  
PB4 can be driven directly by the output of comparator 1.  
PB5PB7 are shared with the simple serial interface (SIOP).  
High current sinking capability on the PB4 pin  
High current sourcing capability on the PB4 pin  
7.4.1 Port B Data Register  
The port B data register (PORTB) contains a bit for each of the port B  
pins. When a port B pin is programmed to be an output, the state of its  
data register bit determines the state of the output pin. When a port B pin  
is programmed to be an input, reading the port B data register returns  
the logic state of the pin. Reset has no effect on port B data.  
Address: $0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
PB0  
Read:  
Write:  
PB7  
PB6  
PB5  
PB4  
PB3  
PB2  
PB1  
Reset:  
Unaffected by reset  
Alternate:  
Alternate:  
Alternate:  
SCK  
SCK  
SCK  
SDI  
SDI  
SDI  
SDO  
SDO  
SDO  
AN4  
TCMP  
CMP1  
AN3  
TCAP  
TCAP  
AN2  
AN2  
AN2  
AN1  
AN1  
AN1  
AN0  
AN0  
AN0  
Figure 7-5. Port B Data Register (PORTB)  
PB0-PB7 Port B Data Bits  
These read/write bits are software programmable. Data direction of  
each bit is under the control of the corresponding bit in data direction  
register B. Reset has no effect on port B data.  
Advance Information  
90  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Parallel Input/Output  
MOTOROLA  
Parallel Input/Output  
Port B  
7.4.2 Data Direction Register B  
The contents of the port B data direction register (DDRB) determine  
whether each port B pin is an input or an output. Writing a logic 1 to a  
DDRB bit enables the output buffer for the associated port B pin. A  
DDRB bit set to a logic 1 also disables the pulldown device for that pin.  
Writing a logic 0 to a DDRB bit disables the output buffer for the  
associated port B pin. A reset initializes all DDRB bits to logic 0s,  
configuring all port B pins as inputs.  
Address: $0005  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0  
0
0
0
0
0
0
0
0
Figure 7-6. Data Direction Register B (DDRB)  
DDRB7DDRB0 Port B Data Direction Bits  
These read/write bits control port B data direction. Reset clears the  
bits DDRB7DDRB0.  
1 = Corresponding port B pin configured as output and pulldown  
device disabled  
0 = Corresponding port B pin configured as input  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
91  
Parallel Input/Output  
Parallel Input/Output  
7.4.3 Pulldown Register B  
All port B pins can have software programmable pulldown devices  
enabled or disabled globally by the SWPDI bit in the MOR. These  
pulldown devices are individually controlled by the write-only pulldown  
register B (PDRB) shown in Figure 7-7. Clearing the PDIB7PDIB0 bits  
in the PDRB turns on the pulldown devices if the port B pin is an input.  
Reading the PDRB returns undefined results since it is a write-only  
register. Reset clears the PDIB7PDIB0 bits, which turns on all the port  
B pulldown devices.  
Address: $0011  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PDIB7  
0
PDIB6  
0
PDIB5  
0
PDIB4  
0
PDIB3  
0
PDIB2  
0
PDIB1  
0
DIB0  
0
= Unimplemented  
Figure 7-7. Pulldown Register B (PDRB)  
PDIB7PDIB0 Port B Pulldown Inhibit Bits  
Writing to these write-only bits controls the port B pulldown devices.  
Reading these pulldown register B bits returns undefined data. Reset  
clears bits PDIB7PDIB0.  
1 = Corresponding port B pin pulldown device turned off  
0 = Corresponding port B pin pulldown device turned on if pin has  
been programmed by the DDRB to be an input  
7.4.4 Port B Logic  
All port B pins have the general I/O port logic similar to port A; but they  
also share this function with inputs or outputs from other modules, which  
are also attached to the pin itself or override the general I/O function.  
PB0, PB1, PB2, and PB3 simply share their inputs with another module.  
PB4, PB5, PB6, and PB7 will have their operation altered by outputs or  
controls from other modules.  
Advance Information  
92  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Parallel Input/Output  
MOTOROLA  
Parallel Input/Output  
Port B  
7.4.5 PB0, PBI, PB2, and PB3 Logic  
The typical I/O logic shown in Figure 7-8 is used for PB0, PB1, PB2, and  
PB3 pins of port B. When these port B pins are programmed as an  
output, reading the port bit actually reads the value of the data latch and  
not the voltage on the pin itself. When these port B pins are programmed  
as an input, reading the port bit reads the voltage level on the pin. The  
data latch can always be written, regardless of the state of its DDRB bit.  
The operations of the PB0PB3 pins are summarized in Table 7-2.  
READ $0005  
WRITE $0005  
ANALOG SUBSYSTEM,  
AND PROGRAMMABLE  
TIMER INPUT CAPTURE  
(PINS PB0, PB1, PB2, PB3)  
DATA DIRECTION  
REGISTER B  
BIT DDRBx  
R
PORT BDATA  
REGISTER  
BIT PBx  
WRITE $0001  
PBx  
READ $0001  
WRITE $0011  
PULLDOWN  
REGISTER B  
BIT PDIBx  
PULLDOWN  
DEVICE  
R
RESET  
MASK OPTION REG. ($1FF1)  
Figure 7-8. PB0PB3 Pin I/O Circuit  
The PB0PB3 pins share their inputs with another module. When using  
the other attached module, these conditions must be observed:  
1. If the DDRB configures the pin as an output, then the port data  
register can provide an output which may conflict with any external  
input source to the other module. The pulldown device will be  
disabled in this case.  
2. If the DDRB configures the pin as an input, then reading the port  
data register will return the state of the input in terms of the digital  
threshold for that pin (analog inputs will default to logic states).  
3. If DDRB configures the pin as an input and the pulldown device is  
activated for a pin, it will also load the input to the other module.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
93  
Parallel Input/Output  
Parallel Input/Output  
4. If interaction between the port logic and the other module is not  
desired, the pin should be configured as an input by clearing the  
appropriate DDRB bit. The input pulldown device is disabled by  
clearing the appropriate PDRB bit (or by disabling programmable  
pulldowns with the SWPDI bit in the MOR).  
7.4.6 PB4/AN4/TCMP/CMP1 Logic  
The PB4/AN4/TCMP/CMP1 pin can be used as a simple I/O port pin, be  
controlled by the OLVL bit from the output compare function of the 16-bit  
programmable timer, or be controlled directly by the output of  
comparator 1 as shown in Figure 7-9. The PB4 data, the programmable  
timer OLVL bit, and the output of comparator 1 are all logically ORed  
together to drive the pin. Also, the analog subsystem input channel 4  
multiplexer is connected directly to this pin. The operations of PB4 pin  
are summarized in Table 7-2.  
ANALOG SUBSYSTEM  
INPUT AN4 AND  
TIMER OUTPUT COMPARE  
READ $0005  
WRITE $0005  
DATA DIRECTION  
REGISTER B  
BIT DDRB4  
R
PORT BDATA  
REGISTER  
BIT PB4  
WRITE $0001  
PB4  
AN4  
TCMP  
OLVL  
HIGH SINK/  
SOURCE CURRENT  
CAPABILITY  
(TIMER OUTPUT COMPARE)  
CMP1  
(COMPARATOR 1 OUT)  
READ $0001  
WRITE $0011  
PULLDOWN  
REGISTER B  
BIT PDIB4  
PULLDOWN  
DEVICE  
R
RESET  
MASK OPTION REG. ($1FF1)  
COP REGISTER ($1FF0)  
Figure 7-9. PB4/AN4/TCMP/CMP1 Pin I/O Circuit  
Advance Information  
94  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Parallel Input/Output  
Parallel Input/Output  
Port B  
When using the PB4/AN4/TCMP/CMP1 pin, these interactions must be  
noted:  
1. If the OLVL timer output compare function is the required output  
function, then the DDRB4 bit must be set, the PB4 data bit must  
be cleared, and the OPT bit in the COPR must be cleared. The  
PB4/AN4/TCMP/CMP1 pin becomes an output which follows the  
state of the OLVL bit. The pulldown device will be disabled in this  
case. The analog subsystem would not normally use this pin as an  
analog input in this case.  
2. If the PB4 data bit is the required output function, then the DDRB4  
bit must be set, the OLVL bit in the TCR must be cleared, and the  
OPT bit in the COPR must be cleared. The pulldown device will be  
disabled in this case. The analog subsystem would not normally  
use this pin as an analog input in this case.  
3. If the comparator 1 output is the desired output function, then the  
PB4 data bit must be cleared, the DDRB4 bit must be set, the  
OLVL bit in the TCR must be cleared, and the OPT bit in the  
COPR must be set. The PB4/AN4/TCMP/CMP1 pin becomes an  
output which follows the state of the OLVL bit. The pulldown  
device will be disabled in this case. The analog subsystem would  
not normally use this pin as an analog input in this case.  
4. If the PB4 pin is to be an input to the analog subsystem or a digital  
input, then the DDRB4 bit must be cleared. In this case, the PB4  
pin can still be read, but the voltage present will be returned as a  
binary value. Depending on the external application, the PB4  
pulldown may also be disabled by setting the PDIB4 pulldown  
inhibit bit. In this case, both the digital and analog functions  
connected to this pin can be utilized.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
95  
Parallel Input/Output  
Parallel Input/Output  
.
Table 7-2. Port B Pin Functions PB0PB4  
Control Bits  
Timer  
PORTB Access  
(Pin or Data  
Register)  
Result on  
Port B Pins  
Port B  
Pin  
Comparator 1  
Port B  
SWPDI  
in MOR  
DDRBx(1)  
CMP1 COE1 OPT in COPR OLVL  
PDIBx  
Read Write Pulldown  
Pin  
0
0
1
0
1
0
0
0
Pin  
Pin  
Pin  
Data  
Data  
Data  
On  
Off  
Off  
PBx in  
PBx in  
PBx in  
PB0  
PB1  
PB2  
PB3  
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
0
X(2)  
0
1
0
0
0
Data  
Pin  
Data  
Data  
Data  
Data  
Off  
On  
Off  
Off  
PBx out  
PB4 in  
PB4 in  
PB4 in  
X(2)  
X(2)  
X(2)  
X(2)  
0
1
Pin  
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
1
Pin  
X(2)  
X(2)  
0
X(2)  
0
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
0
1
1
0
0
1
1
1
1
1
Data  
Data  
Data  
1
Data  
Data  
Data  
Data  
Data  
Off  
Off  
Off  
Off  
Off  
PB4 out  
PB4 out  
PB4 out  
1
PB4  
1
0
X(2)  
1
X(2)  
1
X(2)  
1
1
X(2)  
1
1
1. DDRB can always be read or written.  
2. Dont care  
7.4.7 PB5/SDO Logic  
The PB5/SDO pin can be used as a simple I/O port pin or be controlled  
by the SIOP serial interface as shown in Figure 7-10. The operations of  
the PB5 pin are summarized in Table 7-3.  
When using the PB5/SDO pin, these interactions must be noted:  
1. If the SIOP function is required, then the SPE bit in the SCR must  
be set. This causes the PB5/SDO pin buffer to be enabled and to  
be driven by the serial data output (SDO) from the SIOP. The  
pulldown device will be disabled in this case.  
2. If the SIOP function is in control of the PB5/SDO pin, the DDRB5  
and PB5 data register bits are still accessible to the CPU and can  
be altered or read without affecting the SIOP functionality.  
However, if the DDRB5 bit is cleared, reading the PB5 data  
register will return the current state of the PB5/SDO pin.  
Advance Information  
96  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Parallel Input/Output  
MOTOROLA  
Parallel Input/Output  
Port B  
SERIAL DATA OUT (SDO)  
SERIAL ENABLE (SPE)  
V
DD  
READ $0005  
WRITE $0005  
DATA DIRECTION  
REGISTER B  
BIT DDRB5  
R
PORT B DATA  
REGISTER  
BIT PB5  
WRITE $0001  
PB5  
SDO  
READ $0001  
WRITE $0011  
PULLDOWN  
REGISTER B  
BIT PDIB5  
R
PULLDOWN  
DEVICE  
RESET  
MASK OPTION REG. ($1FF1)  
Figure 7-10. PB5/SDO Pin I/O Circuit  
3. If the SIOP function is terminated by clearing the SPE bit in the  
SCR, then the last conditions stored in the DDRB5, PDIB5, and  
PB5 register bits will then control the PB5/SDO pin.  
4. If the PB5/SDO pin is to be a digital input, then both the SPE bit in  
the SCR and the DDRB5 bit must be cleared. Depending on the  
external application, the pulldown device may also be disabled by  
setting the PDIB5 pulldown inhibit bit.  
5. If the PB5/SDO pin is to be a digital output, then the SPE bit in the  
SCR must be cleared and the PDIB5 bit must be set. The pulldown  
device will be disabled in this case.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
97  
Parallel Input/Output  
Parallel Input/Output  
7.4.8 PB6/SDI Logic  
The PB6/SDI pin can be used as a simple I/O port pin or be controlled  
by the SIOP serial interface as shown in Figure 7-11. The operations of  
PB6/SDI pin are summarized in Table 7-3.  
SERIAL DATA IN (SDI)  
SERIAL ENABLE (SPE)  
READ $0005  
WRITE $0005  
DATA DIRECTION  
REGISTER B  
BIT DDRB6  
R
PORT B DATA  
WRITE $0001  
PB6  
SDI  
REGISTER  
BIT PB6  
READ $0001  
WRITE $0011  
PULLDOWN  
PULLDOWN  
REGISTER B  
DEVICE  
BIT PDIB6  
R
RESET  
MASK OPTION REG. ($1FF1)  
Figure 7-11. PB6/SDI Pin I/O Circuit  
When using the PB6/SDI pin, these interactions must be noted:  
1. If the SIOP function is required, then the SPE bit in the SCR must  
be set. This causes the PB6/SDI pin buffer to be disabled to allow  
the PB6/SDI pin to act as an input that feeds the serial data input  
(SDI) of the SIOP. The pulldown device is disabled in this case.  
2. If the SIOP function is in control of the PB6/SDI pin, the DDRB6  
and PB6 data register bits are still accessible to the CPU and can  
be altered or read without affecting the SIOP functionality.  
However, if the DDRB6 bit is cleared, reading the PB6 data  
register will return the current state of the PB6/SDI pin.  
Advance Information  
98  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Parallel Input/Output  
MOTOROLA  
Parallel Input/Output  
Port B  
3. If the SIOP function is terminated by clearing the SPE bit in the  
SCR, then the last conditions stored in the DDRB6, PDIB6, and  
PB6 register bits will then control the PB6/SDI pin.  
4. If the PB6/SDI pin is to be a digital input, then both the SPE bit in  
the SCR and the DDRB6 bit must be cleared. Depending on the  
external application, the pulldown device may also be disabled by  
setting the PDIB6 pulldown inhibit bit.  
5. If the PB6/SDI pin is to be a digital output, then the SPE bit in the  
SCR must be cleared and the DDRB6 bit must be set. The  
pulldown device will be disabled in this case.  
7.4.9 PB7/SCK Logic  
The PB7/SCK pin can be used as a simple I/O port pin or be controlled  
by the SIOP serial interface as shown in Figure 7-12. The operations of  
the PB7/SCK pin are summarized in Table 7-3.  
SERIAL DATA CLOCK (SCK)  
CLOCK SOURCE (MSTR)  
SERIAL ENABLE (SPE)  
READ $0005  
WRITE $0005  
DATA DIRECTION  
REGISTER B  
BIT DDRB7  
R
PORT B DATA  
WRITE $0001  
PB7  
SCK  
REGISTER  
BIT PB7  
READ $0001  
WRITE $0011  
PULLDOWN  
PULLDOWN  
REGISTER B  
DEVICE  
BIT PDIB7  
R
RESET  
MASK OPTION REG. ($1FF1)  
Figure 7-12. PB7/SCK Pin I/O Circuit  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
99  
Parallel Input/Output  
Parallel Input/Output  
When using the PB7/SCK pin, these interactions must be noted:  
1. If the SIOP function is required, then the SPE bit in the SCR must  
be set. This causes the PB7/SCK pin buffer to be controlled by the  
MSTR control bit in the SCR. The pulldown device is disabled in  
these cases.  
a. If the MSTR bit is set, then the PB7/SCK pin buffer will be  
enabled and driven by the serial data clock (SCK) from the  
SIOP.  
b. If the MSTR bit is clear, then the PB7/SCK pin buffer will be  
disabled, allowing the PB7/SCK pin to drive the serial data  
clock (SCK) into the SIOP.  
2. If the SIOP function is in control of the PB7/SCK pin, the DDRB7  
and PB7 data register bits are still accessible to the CPU and can  
be altered or read without affecting the SIOP functionality.  
However, if the DDRB7 bit is cleared, reading the PB7 data  
register will return the current state of the PB7/SCK pin.  
3. If the SIOP function is terminated by clearing the SPE bit in the  
SCR, then the last conditions stored in the DDRB7, PDIB7, and  
PB7 register bits will then control the PB7/SCK pin.  
4. If the PB7/SCK pin is to be a digital input, then both the SPE bit in  
the SCR and the DDRB7 bit must be cleared. Depending on the  
external application, the pulldown device may also be disabled by  
setting the PDIB7 pulldown inhibit bit.  
5. If the PB7/SCK pin is to be a digital output, then the SPE bit in the  
SCR must be cleared and the DDRB7 bit must be set. The  
pulldown device will be disabled when the pin is set as an output.  
Advance Information  
100  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Parallel Input/Output  
MOTOROLA  
Parallel Input/Output  
Port C (28-Pin Versions Only)  
Table 7-3. Port B Pin Functions PB5PB7  
Control Bits  
PORTB Access  
(Pin or Data  
Register)  
Result on  
Port B Pins  
Port B  
Pin  
SIOP  
Port B  
SWPDI  
in MOR  
DDRBx(1)  
SPE MSTR  
PDIBx  
Read  
Pin  
Write  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Pulldown  
On  
Pin  
0
0
1
0
1
X
0
0
0
1
0
1
0
0
0
PB5 in  
PB5 in  
PB5 in  
PB5 out  
SDO out  
SDO out  
PB6 in  
PB6 in  
PB6 in  
Pin  
Off  
X(2)  
0
Pin  
Off  
PB5  
PB6  
X(2)  
X(2)  
Data  
SDO  
Data  
Pin  
Off  
Off  
X(2)  
X(2)  
X(2)  
1
Off  
0
0
1
0
1
On  
Pin  
Off  
X(2)  
0
X(2)  
X(2)  
Pin  
Off  
X(2)  
1
0
1
0
0
0
Data  
SDI  
Data  
Pin  
Data  
Data  
Data  
Data  
Data  
Data  
Off  
Off  
Off  
On  
Off  
Off  
PB6 out  
SDI in  
SDI in  
PB7 in  
PB7 in  
PB7 in  
X(2)  
X(2))  
X(2)  
1
0
0
1
0
1
Pin  
X(2)  
0
X(2)  
X(2)  
Pin  
X(2)  
1
0
1
0
1
Data  
SCK  
Data  
SCK  
Data  
Data  
Data  
Data  
Data  
Data  
Off  
Off  
Off  
Off  
Off  
PB7 out  
SCK in  
PB7  
X(2)  
X(2)  
X(2)  
0
SCK in  
1
SCK out  
SCK out  
X(2)  
1
1. DDRB can always be read or written.  
2. Dont care  
7.5 Port C (28-Pin Versions Only)  
Port C is an 8-bit, general-purpose, bidirectional I/O port with these  
features:  
Individual programmable pulldown devices  
High current sinking capability on all port C pins, with a maximum  
total for port C  
High current sourcing capability on all port C pins, with a maximum  
total for port C  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
101  
Parallel Input/Output  
Parallel Input/Output  
7.5.1 Port C Data Register  
The port C data register (PORTC) contains a bit for each of the port C  
pins. When a port C pin is programmed to be an output, the state of its  
data register bit determines the state of the output pin. When a port C pin  
is programmed to be an input, reading the port C data register returns  
the logic state of the pin.  
Address: $0002  
Bit 7  
6
5
4
3
2
1
Bit 0  
PC0  
Read:  
Write:  
Reset:  
PC7  
PC6  
PC5  
PC4  
PC3  
PC2  
PC1  
Unaffected by reset  
Figure 7-13. Port C Data Register (PORTC)  
PC7PC0 Port C Data Bits  
These read/write bits are software programmable. Data direction of  
each bit is under the control of the corresponding bit in the port C data  
direction register (DDRC). Reset has no effect on port C data.  
7.5.2 Data Direction Register C  
The contents of the port C data direction register (DDRC) determine  
whether each port C pin is an input or an output. Writing a logic 1 to a  
DDRC bit enables the output buffer for the associated port C pin. A  
DDRC bit set to a logic 1 also disables the pulldown device for that pin.  
Writing a logic 0 to a DDRC bit disables the output buffer for the  
associated port C pin. A reset initializes all DDRC bits to logic 0s,  
configuring all port C pins as inputs.  
Advance Information  
102  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Parallel Input/Output  
MOTOROLA  
Parallel Input/Output  
Port C (28-Pin Versions Only)  
Address: $0006  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
DDRC7 DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0  
Write:  
Reset:  
0
0
0
0
0
0
0
0
Figure 7-14. Data Direction Register C (DDRC)  
DDRC7DDRC0 Port C Data Direction Bits  
These read/write bits control port C data direction. Reset clears the  
DDRC7DDRC0 bits.  
1 = Corresponding port C pin configured as output and pulldown  
device disabled  
0 = Corresponding port C pin configured as input  
7.5.3 Port C Pulldown Devices  
All port C pins can have software programmable pulldown devices  
enabled or disabled globally by the SWPDI bit in the MOR. These  
pulldown devices are individually controlled by the write-only pulldown  
register A (PDRA) shown in Figure 7-3. PDICH controls the upper four  
pins (PC7PC4) and PDICL controls the lower four pins (PC3PC0).  
Clearing the PDICH or PDICL bits in the PDRA turns on the pulldown  
devices if the port C pin is an input. Reading the PDRA returns undefined  
results since it is a write-only register. Reset clears the PDICH and  
PDICL bits, which turns on all the port C pulldown devices.  
7.5.4 Port C Logic  
Figure 7-15 shows the I/O logic of port C.  
When a port C pin is programmed as an output, reading the port bit  
actually reads the value of the data latch and not the voltage on the pin  
itself. When a port C pin is programmed as an input, reading the port bit  
reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its DDR bit. Table 7-4 summarizes the  
operations of the port C pins.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
103  
Parallel Input/Output  
Parallel Input/Output  
READ $0006  
WRITE $0006  
DATA DIRECTION  
REGISTER C  
BIT DDRCx  
R
PORT C DATA  
REGISTER  
BIT PCx  
WRITE $0002  
PCx  
HIGH SINK/SOURCE  
CURRENT CAPABILITY  
READ $0002  
WRITE $0010  
PULLDOWN  
REGISTER A  
BIT PDICx  
PULLDOWN  
DEVICE  
R
RESET  
MASK OPTION REGISTER ($1FF1)  
Figure 7-15. Port C I/O Circuit  
Table 7-4. Port C Pin Functions (28-Pin Versions Only)  
Control Bits  
PORTC Access  
Result on  
Port C  
Pin(s)  
(Pin or Data Register)  
Port C Pins  
Port C  
SWPDI  
in MOR  
DDRCx(1)  
PDICH  
PDICL  
0
Read  
Pin  
Write  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Pulldown  
Pin  
X(2)  
X(2)  
X
0
0
1
0
0
0
1
0
0
0
1
On  
Off  
Off  
Off  
On  
Off  
Off  
Off  
PCx in  
PCx in  
PCx in  
PCx out  
PCx in  
PCx in  
PCx in  
PCx out  
PC0  
PC1  
PC2  
PC3  
1
Pin  
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
Pin  
X(2)  
0
X(2)  
0
Data  
Pin  
PC4  
PC5  
PC6  
PC7  
0
1
Pin  
1
X
Pin  
X(2)  
X(2)  
Data  
1. DDRC can always be read or written.  
2. Dont care  
Advance Information  
104  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Parallel Input/Output  
Parallel Input/Output  
Port Transitions  
7.6 Port Transitions  
Glitches and temporary floating inputs can occur if the control bits  
regarding each port I/O pin are not performed in the correct sequence.  
Do not use read-modify-write instructions on pulldown register A  
or B.  
Avoid glitches on port pins by writing to the port data register  
before changing data direction register bits from a logic 0 to a  
logic 1.  
Avoid a floating port input by clearing its pulldown register bit  
before changing its data direction register bit from a logic 1 to a  
logic 0.  
The SWPDI bit in the MOR turns off all port pulldown devices and  
disables software control of the pulldown devices. Reset has no  
effect on the pulldown devices when the SWPDI bit is set.  
Two or more output pins of the same port can be connected  
electrically to provide output currents up to the sum of the  
maximum specified drive currents as defined in 15.8 DC  
Electrical Characteristics (5.0 Vdc) and 15.9 DC Electrical  
Characteristics (3.0 Vdc). Care must be taken to ensure that all  
ganged pins always maintain the same output logic value.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
105  
Parallel Input/Output  
Parallel Input/Output  
Advance Information  
106  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Parallel Input/Output  
Advance Information MC68HC705JJ7/MC68HC705JP7  
Section 8. Analog Subsystem  
8.1 Contents  
8.2  
8.3  
8.4  
8.5  
8.6  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
Analog Multiplex Register. . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
Analog Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Analog Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
A/D Conversion Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
8.7  
8.7.1  
Voltage Measurement Methods . . . . . . . . . . . . . . . . . . . . . . .132  
Absolute Voltage Readings . . . . . . . . . . . . . . . . . . . . . . . .133  
Internal Absolute Reference . . . . . . . . . . . . . . . . . . . . .133  
External Absolute Reference . . . . . . . . . . . . . . . . . . . . .134  
Ratiometric Voltage Readings . . . . . . . . . . . . . . . . . . . . . .134  
Internal Ratiometric Reference . . . . . . . . . . . . . . . . . . .135  
External Ratiometric Reference. . . . . . . . . . . . . . . . . . .136  
8.7.1.1  
8.7.1.2  
8.7.2  
8.7.2.1  
8.7.2.2  
8.8  
8.8.1  
8.8.2  
Voltage Comparator Features . . . . . . . . . . . . . . . . . . . . . . . .136  
Voltage Comparator 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
Voltage Comparator 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
8.9  
Current Source Features . . . . . . . . . . . . . . . . . . . . . . . . . . . .138  
8.10 Internal Temperature Sensing Diode Features. . . . . . . . . . . .138  
8.11 Sample and Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138  
8.12 Port B Interaction with Analog Inputs . . . . . . . . . . . . . . . . . . .139  
8.13 Port B Pins as Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
8.14 Port B Pulldowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
8.15 Noise Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
107  
Analog Subsystem  
Analog Subsystem  
8.2 Introduction  
The analog subsystem of the MC68HC705JJ7/MC68HC705JP7 is  
based on two on-chip voltage comparators and a selectable current  
charge/discharge function as shown in Figure 8-1.  
This configuration provides several features:  
Two independent voltage comparators with external access to  
both inverting and non-inverting inputs  
One voltage comparator can be connected as a single-slope  
analog-to-digital (A/D) and the other connected as a  
single-voltage comparator. The possible single-slope A/D  
connection provides these features:  
A/D conversions can use VDD or an external voltage as a  
reference with software used to calculate ratiometric or  
absolute results  
Channel access of up to four inputs via multiplexer control with  
independent multiplexer control allowing mixed input  
connections  
Access to VDD and VSS for calibration  
Divide by 2 to extend input voltage range  
Each comparator can be inverted to calculate input offsets.  
Internal sample and hold capacitor  
Direct digital output of comparator 1 to the PB4 pin  
Voltages are resolved by measuring the time it takes an external  
capacitor to charge up to the level of the unknown input voltage being  
measured. The beginning of the A/D conversion time can be started by  
several means:  
Output compare from the 16-bit programmable timer  
Timer overflow from the 16-bit programmable timer  
Direct software control via a register bit  
Advance Information  
108  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Analog Subsystem  
Analog Subsystem  
Introduction  
PB3/AN3/TCAP  
2 TO 1  
MUX  
V
TCAP  
DD  
I
PORTB  
LOGIC  
CHG  
CHG  
ATD1  
ATD2  
ISEN  
CHARGE  
CURRENT  
CONTROL  
LOGIC  
PB0  
AN0  
I
DISCHG  
V
DD  
CP2EN  
ICEN  
CP2EN  
COMP2  
+
INTERNAL  
TEMPERATURE  
DIODE  
CP1EN  
CPIE  
INV  
$001D  
ANALOG  
INTERRUPT  
V
DD  
80 kΩ  
80 kΩ  
CPF2  
CPF1  
CMP2  
V
REF  
PORTB  
LOGIC  
SAMPLE  
CAP  
CMP1  
VOFF  
PB1  
AN1  
MUX1  
100 MV  
OFFSET  
PORTB  
LOGIC  
$001E  
PB2  
AN2  
CP1EN  
OPT (COPR)  
MUX2  
MUX3  
PORTB  
LOGIC  
+
HOLD  
DHOLD  
INV  
COMP1  
INV  
PB3  
AN3  
TCAP  
V
V
REF  
REF  
PORTB  
LOGIC  
MUX4  
MUX3  
MUX2  
MUX1  
PB4  
AN4  
TCMP  
MUX4  
PORT B  
CONTROL  
LOGIC  
OLVL  
V
COE1  
OPT (COPR)  
AOFF  
$0003  
V
+
SS  
MUX4  
MUX3  
MUX2  
MUX1  
DENOTES  
INTERNAL  
V
SS  
ANALOG V  
SS  
AV = V = V  
AOFF  
SS  
SS  
Figure 8-1. Analog Subsystem Block Diagram  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
109  
Analog Subsystem  
Analog Subsystem  
The end of the A/D conversion time can be captured by these means:  
Input capture in the 16-bit programmable timer  
Interrupt generated by the comparator output  
Software polling of the comparator output using software loop time  
8.3 Analog Multiplex Register  
The analog multiplex register (AMUX) controls the general  
interconnection and operation. The control bits in the AMUX are shown  
in Figure 8-2.  
Address: $0003  
Bit 7  
HOLD  
1
6
DHOLD  
0
5
INV  
0
4
VREF  
0
3
MUX4  
0
2
MUX3  
0
1
MUX2  
0
Bit 0  
MUX1  
0
Read:  
Write:  
Reset:  
Figure 8-2. Analog Multiplex Register (AMUX)  
HOLD, DHOLD  
These read/write bits control the source connection to the negative  
input of voltage comparator 2 shown in Figure 8-3. This allows the  
voltage on the internal temperature sensing diode, the channel  
selection bus, or the divide-by-two channel selection bus to charge  
the internal sample capacitor and to also be presented to comparator  
2. The decoding of these sources is given in Table 8-1.  
During the hold case when both the HOLD and DHOLD bits are clear,  
the VOFF bit in the analog status register (ASR) can offset the VSS  
reference on the sample capacitor by approximately 100 mV. This  
offset source is bypassed whenever the sample capacitor is being  
charged with either the HOLD or DHOLD bit set. The VOFF bit must  
be enabled by the OPT bit in the COPR at location $1FF0.  
Advance Information  
110  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Analog Subsystem  
MOTOROLA  
Analog Subsystem  
Analog Multiplex Register  
V
DD  
PB0  
+
COMP2  
INTERNAL  
TEMPERATURE  
DIODE  
CHANNEL  
SELECTION  
BUS  
80 kΩ  
80 kΩ  
SAMPLE  
CAP  
VOFF  
OPT (MOR)  
HOLD  
V
SS  
OFFSET  
DHOLD  
Figure 8-3. Comparator 2 Input Circuit  
Table 8-1. Comparator 2 Input Sources  
HOLD  
DHOLD  
OPT  
VOFF Voltage  
Source To Negative Input  
of Comparator 2  
Case  
(AMUX) (AMUX) (MOR) (ASR)  
Offset  
X(1)  
Sample capacitor connected to  
comparator 2 negative input; very low leakage  
current.  
0
No  
1
0
Hold  
sample  
voltage  
0
0
Sample capacitor connected to comparator 2  
negative input; bottom of capacitor offset from  
VSS by approximately 100 mV, very low  
1
1
Yes  
leakage current.  
Signal on channel selection bus is divided  
by 2 and connected to sample capacitor  
and comparator 2 negative input  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
Divide input  
Direct input  
0
1
1
1
0
1
No  
No  
No  
Signal on channel selection bus is connected  
directly to sample capacitor and comparator 2  
negative input.  
Internal  
temperature  
diode  
Internal temperature sensing diode connected  
directly to sample capacitor and comparator 2  
negative input.  
1. Dont care  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
111  
Analog Subsystem  
Analog Subsystem  
During a reset, the HOLD bit is set and the DHOLD bit is cleared,  
which connects the internal sample capacitor to the channel selection  
bus. And since a reset also clears the MUX[1:4] bits, then the channel  
selection bus will be connected to VSS and the internal sample  
capacitor will be discharged to VSS following the reset.  
NOTE: When sampling a voltage for later conversion, the HOLD and DHOLD  
bits should be cleared before making any changes in the MUX channel  
selection. If the MUX channel and the HOLD/DHOLD are changed on  
the same write cycle to the AMUX register, the sampled voltage may be  
altered during the channel switching.  
INV  
This is a read/write bit that controls the relative polarity of the inherent  
input offset voltage of the voltage comparators. This bit allows voltage  
comparisons to be made with both polarities and then averaged  
together by taking the sum of the two readings and then dividing by 2  
(logical shift right).  
The polarity of the input offset is reversed by interchanging the  
internal voltage comparator inputs while also inverting the comparator  
output. This interchange does not alter the action of the voltage  
comparator output with respect to its port pins. That is, the output will  
only go high if the voltage on the positive input (PB2 pin for  
comparator 1 and PB0 pin for comparator 2) is above the voltage on  
the respective negative input (PB3 pin for comparator 1 and PB1 pin  
for comparator 2). This is shown schematically in Figure 8-4. This bit  
is cleared by a reset of the device.  
1 = The voltage comparators are internally inverted.  
0 = The voltage comparators are not internally inverted.  
NOTE: The effect of changing the state of the INV bit is to only change the  
polarity of the input offset voltage. It does not change the output phase  
of the CPF1 or CPF2 flags with respect to the external port pins.  
Advance Information  
112  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Analog Subsystem  
Analog Subsystem  
Analog Multiplex Register  
RISE  
WHEN  
V+ > V–  
RISE  
WHEN  
V+ > V–  
V+  
V+  
V
V
IO  
+
+
COMP  
IO  
COMP  
V–  
V–  
INV = 0  
INV = 1  
Figure 8-4. INV Bit Action  
NOTE: Either comparator may generate an output flag when the inputs are  
exchanged due to a change in the state of the INV bit. It is therefore  
recommended that the INV bit not be changed while waiting for a  
comparator flag. Further, any changes to the state of the INV bit should  
be followed by writing a logic 1 to both the CPFR1 and CPFR2 bits to  
clear any extraneous CPF1 or CPF2 flags that may have occurred.  
VREF  
This read/write bit connects the channel select bus to VDD for making  
a reference voltage measurement. It cannot be selected if any of the  
other input sources to the channel select bus are selected as shown  
in Table 8-2. This bit is cleared by a reset of the device.  
1 = Channel select bus connected to VDD if all MUX1:4 are cleared.  
0 = Channel select bus cannot be connected to VDD  
.
MUX1:4  
These are read/write bits that connect the analog subsystem pins to  
the channel select bus and voltage comparator 2 for purposes of  
making a voltage measurement. They can be selected individually or  
combined with any of the other input sources to the channel select  
bus as shown in Table 8-2.  
NOTE: The VAOFF voltage source shown in Figure 8-1 depicts a small offset  
voltage generated by the total chip current passing through the package  
bond wires and lead frame that are attached to the single VSS pin. This  
offset raises the internal VSS reference (AVSS) in the analog subsystem  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
113  
Analog Subsystem  
Analog Subsystem  
with respect to the external VSS pin. Turning on the VSS MUX to the  
channel select bus connects it to this internal AVSS reference line.  
When making A/D conversions, this AVSS offset gets placed on the  
external ramping capacitor since the discharge device on the PB0/AN0  
pin discharges the external capacitor to the internal AVSS line. Under  
these circumstances, the positive input (+) to comparator 2 will always  
be higher than the negative input () until the negative input reaches the  
AVSS offset voltage plus any offset in comparator 2.  
Therefore, input voltages cannot be resolved if they are less than the  
sum of the AVSS offset and the comparator offset, because they will  
always yield a low output from the comparator.  
Table 8-2. Channel Select Bus Combinations  
Analog Multiplex Register  
Channel Select Bus Connected to:  
PB4/AN4/  
TCMP  
PB3/AN3/  
TCAP  
VDD  
VSS  
VREF MUX4 MUX3 MUX2 MUX1  
PB2/AN2  
PB1/AN1  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
On  
Hi-Z  
Hi-Z  
On  
Hi-Z  
On  
On  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
On  
Hi-Z  
On  
On  
Hi-Z  
Hi-Z  
On  
Hi-Z  
On  
On  
On  
Hi-Z  
On  
On  
On  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
On  
Hi-Z  
Hi-Z  
On  
Hi-Z  
On  
On  
On  
Hi-Z  
On  
On  
On  
On  
Hi-Z  
Hi-Z  
On  
Hi-Z  
On  
On  
On  
On  
On  
Hi-Z  
On  
On  
On  
On  
1. Don/t care  
Advance Information  
114  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Analog Subsystem  
Analog Subsystem  
Analog Control Register  
8.4 Analog Control Register  
The analog control register (ACR) controls the power-up, interrupt, and  
flag operation. The analog subsystem draws current while it is operating.  
The resulting power consumption can be reduced by powering down the  
analog subsystem when not in use (refer to 15.6 Supply Current  
Characteristics (VDD = 4.5 to 5.5 Vdc)). This can be done by clearing  
three enable bits (ISEN, CP1EN, and CP2EN) in the ACR at $001D.  
Since these bits are cleared following a reset, the voltage comparators  
and the charge current source will be powered down following a reset of  
the device.  
The control bits in the ACR are shown in Figure 8-5. All the bits in this  
register are cleared by a reset of the device.  
$001D  
Bit 7  
Address:  
6
ATD2  
0
5
ATD1  
0
4
ICEN  
0
3
CPIE  
0
2
1
Bit 0  
ISEN  
0
Read:  
Write:  
Reset:  
CHG  
0
CP2EN CP1EN  
0
0
Figure 8-5. Analog Control Register (ACR)  
CHG  
The CHG enable bit allows direct control of the charge current source  
and the discharge device and also reflects the state of the discharge  
device. This bit is cleared by a reset of the device.  
1 = If the ISEN bit is also set, the charge current source is sourcing  
current out of the PB0/AN0 pin. Writing a logic 1 enables the  
charging current out of the PB0/AN0 pin.  
0 = The discharge device is sinking current into the PB0/AN0 pin.  
Writing a logic 0 disables the charging current and enables the  
discharging current into the PB0/AN0 pin, if the ISEN bit is also  
set.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
115  
Analog Subsystem  
Analog Subsystem  
ATD1ATD2  
The ATD1ATD2 enable bits select one of the four operating modes  
used for making A/D conversions via the single-slope method.These  
four modes are given in Table 8-3. These bits have no effect if the  
ISEN enable bit is cleared. These bits are cleared by a reset of the  
device and thereby return the analog subsystem to the manual A/D  
conversion method.  
Table 8-3. A/D Conversion Options  
A/D  
Option  
Mode  
A/D Options  
Charge  
Control  
Current Flow  
to/from PB0/AN0  
ISEN ATD2 ATD1 CHG  
Current  
source and  
discharge  
disabled  
Current control disabled,  
no source or sink current  
Disabled  
0
1
X
0
X
0
X
1
Begin sourcing current  
when the CHG bit is set  
and continue to source  
current until the CHG bit  
is cleared.  
The CHG bit remains set  
until the next time ICF  
occurs.  
1
1
1
1
1
1
0
1
1
1
0
1
The CHG bit remains  
cleared until the next  
time OCF occurs.  
Automatic  
charge and  
discharge  
(OCFICF)  
synchronized  
to timer  
3
The CHG bit remains set  
until the next time ICF  
occurs.  
ICEN  
This is a read/write bit that enables a voltage comparison to trigger the  
input capture register of the programmable timer when the CPF2 flag  
bit is set. Therefore, an A/D conversion could be started by receiving  
an OCF or TOF from the programmable timer and then terminated  
when the voltage on the external ramping capacitor reaches the level  
of the unknown voltage. The time of termination will be stored in the  
Advance Information  
116  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Analog Subsystem  
MOTOROLA  
Analog Subsystem  
Analog Control Register  
16-bit buffer located at $0014 and $0015. This bit is automatically set  
whenever mode 2 or 3 is selected by setting the ATD2 control bit. This  
bit is cleared by a reset of the device.  
1 = Connects the CPF2 flag bit to the timer input capture register  
0 = Connects the PB3/AN3 pin to the timer input capture register  
NOTE: For the input capture to occur when the output of comparator 2 goes  
high, the IEDG bit in the TCR must also be set.  
When the ICEN bit is set, the input capture function of the programmable  
timer is not connected to the PB3/AN3/TCAP pin but is driven by the  
CPF2 output flag from comparator 2. To return to capturing times from  
external events, the ICEN bit must first be cleared before the timed event  
occurs.  
CPIE  
This is a read/write bit that enables an analog interrupt when either of  
the CPF1 or CPF2 flag bits is set to a logic 1. This bit is cleared by a  
reset of the device.  
1 = Enables analog interrupts when comparator flag bits are set  
0 = Disables analog interrupts when comparator flag bits are set  
NOTE: If both the ICEN and CPIE bits are set, they will both generate an  
interrupt by different paths. One will be the programmable timer interrupt  
due to the input capture and the other will be the analog interrupt due to  
the output of comparator 2 going high. In this case, the input capture  
interrupt will be entered first due to its higher priority. The analog  
interrupt will then need to be serviced even if the comparator 2 output  
has been reset or the input capture flag (ICF) has been cleared.  
CP2EN  
The CP2EN enable bit controls power to voltage comparator 2 in the  
analog subsystem. Powering down a comparator will drop the supply  
current. This bit is cleared by a reset of the device.  
1 = Writing a logic 1 powers up voltage comparator 2.  
0 = Writing a logic 0 powers down voltage comparator 2.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
117  
Analog Subsystem  
Analog Subsystem  
NOTE: Voltage comparators power up slower than digital logic and their outputs  
may go through indeterminate states which might set their respective  
flags (CPF1, CPF2). It is therefore recommended to power up the  
charge current source first (ISEN), then to power up any comparators,  
and finally clear the flag bits by writing a logic 1 to the respective CPFR1  
or CPFR2 bits in the ACR.  
CP1EN  
The CP1EN enable bit will power down the voltage comparator 1 in  
the analog subsystem. Powering down a comparator will drop the  
supply current. This bit is cleared by a reset of the device.  
1 = Writing a logic 1 powers up voltage comparator 1  
0 = Writing a logic 0 powers down voltage comparator 1  
ISEN  
The ISEN enable bit will power down the charge current source and  
disable the discharge device in the analog subsystem. Powering  
down the current source will drop the supply current by about 200 µA.  
This bit is cleared by a reset of the device.  
1 = Writing a logic 1 powers up the ramping current source and  
enables the discharge device on the PB0/AN0 pin.  
0 = Writing a logic 0 powers down the ramping current source and  
disables the discharge device on the PB0/AN0 pin.  
NOTE: The analog subsystem has support circuitry which draws current. This  
current will be powered down if both comparators and the charge current  
source are powered down (ISEN, CP1EN, and CP2EN all cleared).  
Powering up either comparator or the charge current source will activate  
the support circuitry.  
Advance Information  
118  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Analog Subsystem  
Analog Subsystem  
Analog Status Register  
8.5 Analog Status Register  
The analog status register (ASR) contains status and control of the  
comparator flag bits. These bits in the ASR are shown in Figure 8-6. All  
the bits in this register are cleared by a reset of the device.  
Address: $001E  
Bit 7  
6
5
4
3
2
1
Bit 0  
CMP1  
R
Read:  
Write:  
Reset:  
CPF2  
CPF1  
0
CPFR2  
0
0
CPFR1  
0
CMP2  
COE1  
VOFF  
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 8-6. Analog Status Register (ASR)  
CPF2  
This read-only flag bit is edge sensitive to the rising output of  
comparator 2. It is set when the voltage on the PB0/AN0 pin rises  
above the voltage on a sample capacitor which creates a positive  
edge on the output of comparator 2, regardless of the state of the INV  
bit in the AMUX register. This bit is reset by writing a logic 1 to the  
CPFR2 reset bit in the ASR. This bit is cleared by a reset of the  
device.  
1 = A positive transition on the output of comparator 2 has occurred  
since the last time the CPF2 flag has been cleared.  
0 = A positive transition on the output of comparator 2 has not  
occurred since the last time the CPF2 flag has been cleared.  
CPF1  
This read-only flag bit is edge sensitive to the rising output of  
comparator 1. It is set when the voltage on the PB2/AN2 pin rises  
above the voltage on the PN3/AN3/TCAP pin which creates a positive  
edge on the output of comparator 1, regardless of the state of the INV  
bit in the AMUX register. This bit is reset by writing a logic 1 to the  
CPFR1 reset bit in the ASR. This bit is cleared by a reset of the  
device.  
1 = A positive transition on the output of comparator 1 has occurred  
since the last time the CPF1 flag has been cleared.  
0 = A positive transition on the output of comparator 1 has not  
occurred since the last time the CPF1 flag has been cleared.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
119  
Analog Subsystem  
Analog Subsystem  
CPFR2  
Writing a logic 1 to this write-only flag clears the CPF2 flag in the ASR.  
Writing a logic 0 to this bit has no effect. Reading the CPFR2 bit will  
return a logic 0. By default, this bit looks cleared following a reset of  
the device.  
1 = Clears the CPF2 flag bit  
0 = No effect  
CPFR1  
Writing a logic 1 to this write-only flag clears the CPF1 flag in the ASR.  
Writing a logic 0 to this bit has no effect. Reading the CPFR1 bit will  
return a logic 0. By default, this bit looks cleared after a reset of the  
device.  
1 = Clears the CPF1 flag bit  
0 = No effect  
NOTE: The CPFR1 and CPFR2 bits should be written with logic 1s following a  
power-up of either comparator. This will clear out any latched CPF1 or  
CPF2 flag bits which might have been set during the slower power-up  
sequence of the analog circuitry.  
If both inputs to a comparator are above the maximum common-mode  
input voltage (VDD 1.5 V), the output of the comparator is indeterminate  
and may set the comparator flag. Applying a reset to the device may only  
temporarily clear this flag as long as both inputs of a comparator remain  
above the maximum common-mode input voltages.  
VOFF  
This read-write bit controls the addition of an offset voltage to the  
bottom of the sample capacitor. It is not active unless the OPT bit in  
the COPR at location $1FF0 is set. Any reads of the VOFF bit location  
return a logic 0 if the OPT bit is clear. During the time that the sample  
capacitor is connected to an input (either HOLD or DHOLD set), the  
bottom of the sample capacitor is connected to VSS. The VOFF bit is  
cleared by a reset of the device. For more information, see 8.11  
Sample and Hold.  
1 = Enables approximately 100 mV offset to be added to the  
sample voltage when both the HOLD and DHOLD control bits  
are cleared  
0 = Connects the bottom of the sample capacitor to VSS  
Advance Information  
120  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Analog Subsystem  
Analog Subsystem  
Analog Status Register  
COE1  
This read-write bit controls the output of comparator 1 to the PB4 pin.  
It is not active unless the OPT bit in the COPR at location $1FF0 is  
set. Any reads of the COE1 bit location return a logic 0 if the OPT bit  
is clear. The COE1 bit is cleared by a reset of the device.  
1 = Enables the output of comparator 1 to be ORed with the PB4  
data bit and OLVL bit, if the DDRB4 bit is also set  
0 = Disables the output of comparator 1 from affecting the PB4 pin  
CMP2  
This read-only bit shows the state of comparator 2 during the time that  
the bit is read. This bit is therefore the current state of the comparator  
without any latched history. The CMP2 bit will be high if the voltage  
on the PB0/AN0 pin is greater than the voltage on the PB1/AN1 pin,  
regardless of the state of the INV bit in the AMUX register. Since a  
reset disables comparator 2, this bit returns a logic 0 following a reset  
of the device.  
1 = The voltage on the positive input on comparator 2 is higher than  
the voltage on the negative input of comparator 2.  
0 = The voltage on the positive input on comparator 2 is lower than  
the voltage on the negative input of comparator 2.  
CMP1  
This read-only bit shows the state of comparator 1 during the time that  
the bit is read. This bit is therefore the current state of the comparator  
without any latched history. The CMP1 bit will be high if the voltage  
on the PB2/AN2 pin is greater than the voltage on the PB3/AN3/TCAP  
pin, regardless of the state of the INV bit in the AMUX register. Since  
a reset disables comparator 1, this bit returns a logic 0 following a  
reset of the device.  
1 = The voltage on the positive input on comparator 1 is higher than  
the voltage on the negative input of comparator 1.  
0 = The voltage on the positive input on comparator 1 is lower than  
the voltage on the negative input of comparator 1.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
121  
Analog Subsystem  
Analog Subsystem  
8.6 A/D Conversion Methods  
The control bits in the ACR provide various options to charge or  
discharge current through the PB0/AN0 pin to perform single-slope A/D  
conversions using an external capacitor from the PB0/AN0 pin to VSS as  
shown in Figure 8-7. The various A/D conversion triggering options are  
given in Table 8-3.  
C x VX  
Charge Time =  
I
V
1.5 Vdc  
DD  
UNKNOWN VOLTAGE ON () INPUT  
VOLTAGE ON  
CAPACITOR  
CONNECTED  
TO (+) INPUT  
CHARGE TIME  
TO MATCH UNKNOWN  
DISCHARGE TIME  
TO RESET CAPACITOR  
MAXIMUM CHARGE TIME  
TO V 1.5 Vdc  
DD  
+ 5 V  
V
DD  
PB4/AN4  
PB3/AN3  
PB2/AN2  
PB1/AN1  
PB0/AN0  
UNKNOWN  
OR REFERENCE  
SIGNALS  
MC68HC705JJ7  
MC68HC705JP7  
V
SS  
RAMP  
CAP  
Figure 8-7. Single-Slope A/D Conversion Method  
The top three bits of the ACR control the charging and discharging  
current into or out of the PB0/AN0 pin. These three bits will have no  
effect on the PB0/AN0 pin if the ISEN enable bit is cleared. Any clearing  
of the ISEN bit will immediately disable both the charge current source  
and the discharge device. Since all these bits and the ISEN bit are  
Advance Information  
122  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Analog Subsystem  
MOTOROLA  
Analog Subsystem  
A/D Conversion Methods  
cleared when the device is reset, the MC68HC705JJ7/MC68HC705JP7  
starts with the charge and discharge function disabled.  
The length of time required to reach the maximum voltage to be  
measured and the speed of the time counting mechanism will determine  
the resolution of the reading. The time to ramp the external capacitor  
voltage to match the maximum voltage is dependent on:  
Charging current to external capacitor  
Value of the external capacitor  
Clock rate for timing function  
Any prescaling of the clock to the timing function  
Desired resolution  
The charging behavior is described by the general equation:  
tCHG = CEXT x VX / ICHG  
Where:  
tCHG = Charge time (seconds)  
CEXT = Capacitance (µF)  
VX  
= Unknown voltage (volts)  
ICHG = Charge current (µA)  
Since the MCU can measure time in a variety of ways, the resolution of  
the conversion will depend on the length of the time keeping function and  
its prescaling to the oscillator frequency (fOSC). Therefore, the charge  
time also equals:  
tCHG = P x N / fOSC  
Where:  
P
N
= Prescaler value (÷ 2, ÷ 4, ÷ 8, etc.)  
= Number of counts during charge time  
fOSC = Oscillator clock frequency (Hz)  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
123  
Analog Subsystem  
Analog Subsystem  
NOTE: Noise on the system ground or the external ramping capacitor can cause  
the comparator to trip prematurely. Therefore, in any given application it  
is best to use the fastest possible ramp rate (shortest charge time).  
The previous two equations for the charge time, tCHG, can be combined  
to form the following expression for the full scale count (NFS) of the  
measured time versus the full scale unknown voltage (VFS):  
NFS = CEXT x VFS x fOSC / (P x ICHG  
)
Since a given timing method has a fixed charge current and prescaler,  
then the variation in the resultant count for a given unknown voltage is  
mainly dependent on the operating frequency and the capacitance value  
used. The desired external capacitance for a given voltage range, fOSC  
conversion method, and resolution is defined as:  
,
CEXT = NFS x P x ICHG / (VFS x fOSC  
)
NOTE: The value of any capacitor connected directly to the PB0/AN0 pin should  
be limited to less than 2 microfarads. Larger capacitances will create  
high discharge currents which may damage the device or create signal  
noise.  
The full scale voltage range for a given capacitance, fOSC, conversion  
method, and resolution is defined as:  
VFS = NFS x P x ICHG / (CEXT x fOSC  
)
Once charged to a given voltage, a finite amount of time will be required  
to discharge the capacitor back to its start voltage at VSS. This discharge  
time will be solely based on the value of capacitance used and the  
sinking current of the internal discharge device. To allow a reasonable  
time for the capacitor to return to VSS levels, the discharge time should  
last about 10 milliseconds per microfarad of capacitance attached to the  
PB0 pin. If the total charge/discharge cycle time is critical, then the  
discharge time should be at least 1/10 of the most recent charge time.  
Shorter discharge times may be used if lesser accuracy in the voltage  
measurement is acceptable.  
Advance Information  
124  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Analog Subsystem  
MOTOROLA  
Analog Subsystem  
A/D Conversion Methods  
NOTE: Sufficient time should be allowed to discharge the external capacitor or  
subsequent charge times will be shortened with resultant errors in timing  
conversion.  
Table 8-4 gives the range of values of each parameter in the A/D timing  
conversion and Table 8-5 gives some A/D conversion examples for  
several bit resolutions.  
The mode selection bits in the ACR allow four methods of single-slope  
A/D conversion. Each of these methods is shown in Figure 8-8 through  
Figure 8-11 using the signal names and parameters given in Table 8-4.  
Manual start and stop (mode 0) Figure 8-8  
Manual start and automatic discharge (mode 1) Figure 8-9  
Automatic start and stop from TOF to ICF (mode 2) Figure 8-10  
Automatic start and stop from OCF to ICF (mode 3) Figure 8-11  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
125  
Analog Subsystem  
Analog Subsystem  
Table 8-4. A/D Conversion Parameters  
Name  
Function  
Min  
Typ  
Max  
Units  
VX  
VSS  
VDD 1.5  
Unknown voltage on channel selection bus  
V
V
VMAX  
VDD 1.5  
Maximum charging voltage on external capacitor  
Charging current on external ramping capacitor  
VDD = 3 Vdc  
Refer to 15.10 Analog Subsystem  
Characteristics (5.0 Vdc) and 15.11 Analog  
ICHG  
V
DD = 5 Vdc  
Subsystem Characteristics (3.0 Vdc)  
Refer to 15.10 Analog Subsystem  
Characteristics (5.0 Vdc) and 15.11 Analog  
Subsystem Characteristics (3.0 Vdc)  
IDIS  
Discharge current on external ramping capacitor  
Time to charge external capacitor  
(100 kHz < fOSC < 4.0 MHz)  
2.56  
10.24  
40.96  
120(1)  
120(1)  
0.032  
0.128  
0.512  
2.048  
8.192  
0.128  
0.512  
2.048  
8.196  
32.768  
4-bit result  
6-bit result  
8-bit result  
10-bit result  
12-bit result  
tCHG  
ms  
tDIS Time to discharge external capacitor, CEXT  
0.0001  
1
5
10  
2.0  
ms/ µF  
µF  
CEXT  
N
Capacitance of external ramping capacitor  
0.1  
Number of counts for ICHG to charge CEXT to VX  
1024  
65536  
Counts  
Prescaler into timing function (÷ P)  
Using core timer  
8
8
24  
8
8
8
8
P
÷ P  
Using 16-bit programmable timer  
Using software loops  
User defined User defined  
Refer to 15.12 Control Timing (5.0 Vdc)  
and 15.13 Control Timing (3.0 Vdc)  
fOSC  
Clock source frequency (excluding any prescaling)  
1. Limited by requirement for CEXT to be less than 2.0 µF  
Advance Information  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Analog Subsystem MOTOROLA  
126  
Analog Subsystem  
A/D Conversion Methods  
Table 8-5. Sample Conversion Timing (VDD = 5.0 Vdc)  
VX  
fOSC  
tCHG  
(ms)  
CEXT  
Bits Counts  
A/D Method  
Clock Source  
(Vdc)  
(MHz)  
(µF)  
Low-power oscillator  
0.1  
1.0  
2.0  
4.0  
0.1  
1.0  
2.0  
4.0  
0.1  
1.0  
2.0  
4.0  
0.1  
1.0  
2.0  
4.0  
0.1  
1.0  
2.0  
4.0  
0.1  
1.0  
2.0  
4.0  
0.1  
1.0  
2.0  
4.0  
0.1  
1.0  
2.0  
4.0  
3.840  
0.384  
0.192  
0.096  
1.280  
0.128  
0.064  
0.032  
15.36  
1.536  
0.768  
0.384  
5.120  
0.512  
0.256  
0.128  
61.44  
6.144  
3.072  
1.536  
20.48  
2.048  
1.024  
0.512  
Note 1  
8.192  
4.096  
2.048  
Note 1  
32.768  
16.384  
8.192  
0.110  
0.011  
0.006  
0.003  
0.037  
0.004  
0.002  
0.001  
0.439  
0.044  
0.022  
0.011  
0.585  
0.059  
0.029  
0.015  
1.755  
0.176  
0.088  
0.044  
0.585  
0.059  
0.029  
0.015  
Note 1  
0.234  
0.117  
0.059  
Note 1  
0.936  
0.468  
0.234  
Software loop  
(12 bus cycles)  
(24 fOSC cycles)  
4
4
16  
16  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
External pin oscillator  
Low-power oscillator  
External pin oscillator  
Low-power oscillator  
External pin oscillator  
Low-power oscillator  
External pin oscillator  
Low-power oscillator  
External pin oscillator  
Low-power oscillator  
External pin oscillator  
Low-power oscillator  
External pin oscillator  
Low-power oscillator  
External pin oscillator  
Mode 0 or 1 (manual)  
Programmable timer  
(prescaler = 8)  
Mode 2 or 3  
(TOF ICF or OCF ICF)  
Software loop  
(12 bus cycles)  
(24 fOSC cycles)  
6
64  
Mode 0 or 1 (manual)  
Programmable timer  
(prescaler = 8)  
Mode 2 or 3  
(TOF CF or OCF ICF)  
6
64  
Software loop  
(12 bus cycles)  
(24 fOSC cycles)  
8
256  
256  
1024  
4096  
Mode 0 or 1 (manual)  
Programmable timer  
(prescaler = 8)  
Mode 2 or 3  
(TOF CF or OCF ICF)  
8
Programmable timer  
(prescaler = 8)  
Mode 2 or 3  
(TOF ICF or OCF ICF)  
10  
12  
Programmable timer  
(prescaler = 8)  
Mode 2 or 3  
(TOF ICF or OCF ICF)  
1. Not usable as the value of CEXT would be greater than 2.0 µF  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
AdvanceInformation  
127  
MOTOROLA  
Analog Subsystem  
Analog Subsystem  
t
DIS  
t
t
DIS  
t
DIS  
MAX  
(MIN)  
(MIN)  
V
CAP  
V
MAX  
t
CHG  
t
x I  
CHG CHG  
V
V =  
X
X
C
EXT  
CHG  
COMP2  
TOF  
OCF  
ICF  
0
2
3
4
5
1
1
Point  
Action  
Software/Hardware Action  
Dependent Variable(s)  
Begin initial discharge and select mode 0  
by clearing the CHG, ATD2, and ATD1  
control bits in the ACR.  
0
Software write  
Software  
VCAP falls to VSS  
.
Wait out minimum tDIS time.  
Software write  
VMAX, IDIS, CEXT  
Software  
1
2
Stop discharge and begin charge by setting  
CHG control bit in ACR.  
VCAP rises to VX and comparator 2 output  
trips, setting CPF2 and CMP2.  
Wait out tCHG time.  
None  
VX, ICHG, CEXT  
3
4
V
CAP reaches VMAX  
.
VMAX, ICHG, CEXT  
Begin next discharge by clearing the CHG  
control bit in the ACR. Reset CPF2 by  
writing a 1 to CPFR2.  
5
Software write  
Software  
Figure 8-8. A/D Conversion Full Manual Control (Mode 0)  
Advance Information  
128  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Analog Subsystem  
Analog Subsystem  
A/D Conversion Methods  
t
DIS  
t
t
DIS  
DIS  
(MIN)  
(MIN)  
V
CAP  
V
MAX  
t
CHG  
t
x I  
CHG CHG  
V
V =  
X
X
C
EXT  
CHG  
COMP2  
TOF  
OCF  
ICF  
0
1
2
3
1
2
Point  
Action  
Begin initial discharge and select  
Software/Hardware Action  
Dependent Variable(s)  
0
mode 1 by clearing CHG and ATD2 Software write  
and setting ATD1 in the ACR.  
Software  
V
CAP falls to VSS  
.
Wait out minimum tDIS time.  
Software write  
VMAX, IDIS, CEXT  
Software  
1
2
Stop discharge and begin charge by  
setting CHG control bit in ACR.  
VCAP rises to VX and comparator 2  
output trips, setting CPF2 and  
CMP2, which clears CHG control bit  
in the ACR. Reset CPF2 by writing a  
1 to CPFR2.  
Wait out tCHG time.  
CPF2 clears CHG control bit.  
VX, ICHG, CEXT  
3
Figure 8-9. A/D Conversion Manual/Auto Discharge Control (Mode 1)  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
129  
Analog Subsystem  
Analog Subsystem  
t
DIS  
t
t
DIS  
DIS  
(MIN)  
(MIN)  
V
CAP  
V
MAX  
t
CHG  
t
x I  
CHG CHG  
V
V =  
X
X
C
EXT  
CHG  
COMP2  
(TCAP)  
TOF  
OCF  
ICF  
0
1
2
3
1
2
Point  
Action  
Software/Hardware Action  
Dependent Variable(s)  
Software  
Begin initial discharge and select mode 2  
by clearing CHG and ATD1 and setting  
ATD2 in the ACR. Also set ICEN bit in  
ACR and IEDG bit in TCR.  
0
Software write  
VCAP falls to VSS  
.
Wait out minimum tDIS time.  
VMAX, IDIS, CEXT  
1
2
Stop discharge and begin charge when  
the next TOF sets the CHG control bit in  
ACR.  
Free-running timer  
counter overflow, fOSC  
Timer TOF sets the CHG control  
bit in the ACR.  
VCAP rises to VX and comparator 2  
output trips, setting CPF2 and CMP2,  
which causes an ICF from the timer and Timer ICF clears the CHG control  
clears the CHG control bit in ACR. Must bit in the ACR.  
clear CPF2 to trap next CPF2 flag.  
Wait out tCHG time.  
VX, ICHG, CEXT  
3
Figure 8-10. A/D Conversion TOF/ICF Control (Mode 2)  
Advance Information  
130  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Analog Subsystem  
Analog Subsystem  
A/D Conversion Methods  
t
DIS  
t
t
DIS  
DIS  
(MIN)  
(MIN)  
V
CAP  
V
MAX  
t
CHG  
t
x I  
CHG CHG  
V
V =  
X
X
C
EXT  
CHG  
COMP2  
(TCAP)  
TOF  
OCF  
ICF  
0
1
2
3
1
2
Point  
Action  
Software/Hardware Action  
Dependent Variable(s)  
Begin initial discharge and select mode 3  
by clearing CHG and setting ATD2 and  
ATD1 in the ACR. Also set ICEN bit in  
ACR and IEDG bit in TCR.  
0
Software write  
Software  
VCAP falls to VSS. Set timer output  
Wait out minimum tDIS time.  
VMAX, IDIS, CEXT,  
1
2
compare registers (OCRH and OCRL) to  
desired charge start time.  
Software write to OCRH, OCRL  
software  
Stop discharge and begin charge when  
the next OCF sets the CHG control bit in  
ACR.  
Free-running timer  
output compare, fOSC  
Timer OCF sets the CHG control  
bit in the ACR.  
VCAP rises to VX and comparator 2  
output trips, setting CPF2 and CMP2,  
which causes an ICF from the timer and  
clears the CHG control bit in ACR. Must  
clear CPF2 to trap next CPF2 flag. Load  
next OCF.  
Wait out tCHG time.  
Timer ICF clears the CHG control  
bit in the ACR.  
VX, ICHG, CEXT  
3
Figure 8-11. A/D Conversion OCF/ICF Control (Mode 3)  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
131  
Analog Subsystem  
Analog Subsystem  
8.7 Voltage Measurement Methods  
The methods for obtaining a voltage measurement can use software  
techniques to express these voltages as absolute or ratiometric  
readings.  
In most applications the external capacitor, the clock source, the  
reference voltage, and the charging current may vary between devices  
and with changes in supply voltage or ambient temperature. All of these  
variations must be considered when determining the desired resolution  
of the measurement. The maximum and minimum extremes for the full  
scale count will be:  
NFSMIN = CEXTMIN x VFSMIN x fOSCMIN / (P x ICHGMAX  
)
NFSMAX = CEXTMAX x VFSMAX x fOSCMAX / (P x ICHGMIN  
)
The minimum count should be the desired resolution, and the counting  
mechanism must be capable of counting to the maximum. The final  
scaling of the count will be by a math routine which calculates:  
VX = VREF x (NX NOFF) / (NREF NOFF  
)
Where:  
VREF = Known reference voltage  
VX  
NX  
= Unknown voltage between VSS and VREF  
= Conversion count for unknown voltage  
NREF = Conversion count for known reference voltage (VREF  
)
NOFF = Conversion count for minimum reference voltage (VSS)  
When VREF is a stable voltage source such as a zener or other reference  
source, then the unknown voltage will be determined as an absolute  
reading. If VREF is the supply source to the device (VDD), then the  
unknown voltage will be determined as a ratio of VDD, or a ratiometric  
reading.  
If the unknown voltage applied to the comparator is greater than its  
common-mode range (VDD 1.5 volts), then the external capacitor will  
try to charge to the same level. This will cause both comparator inputs to  
be above the common-mode range and the output of the comparator will  
Advance Information  
132  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Analog Subsystem  
MOTOROLA  
Analog Subsystem  
Voltage Measurement Methods  
be indeterminate. In this case the comparator output flags may also be  
set even if the actual voltage on the positive input (+) is less than the  
voltage on the negative input (). All A/D conversion methods should  
have a maximum time check to determine if this case is occurring.  
Once the maximum timeout detection has been made, the state of the  
comparator outputs can be tested to determine the situation. However,  
such tests should be carefully designed when using modes 1, 2, or 3 as  
these modes cause the immediate automatic discharge of the external  
ramping capacitor before any software check can be made of the output  
state of comparator 2.  
NOTE: All A/D conversion methods should include a test for a maximum  
elapsed time to detect error cases where the inputs may be outside of  
the design specification.  
8.7.1 Absolute Voltage Readings  
The absolute value of a voltage measurement can be calculated in  
software by first taking a reference reading from a fixed source and then  
comparing subsequent unknown voltages to that reading as a  
percentage of the reference voltage multiplied times the known  
reference value.  
The accuracy of absolute readings will depend on the error sources  
taken into account using the features of the analog subsystem and  
appropriate software as described in Table 8-6. As can be seen from this  
table, most of the errors can be reduced by frequent comparisons to a  
known voltage, use of the inverted comparator inputs, and averaging of  
multiple samples.  
8.7.1.1 Internal Absolute Reference  
If a stable source of VDD is provided, the reference measurement point  
can be internally selected. In this case, the reference reading can be  
taken by setting the VREF bit and clearing the MUX1:4 bits in the AMUX  
register. This connects the channel selection bus to the VDD pin. To stay  
within the VMAX range, the DHOLD bit should be used to select the 1/2  
divided input.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
133  
Analog Subsystem  
Analog Subsystem  
8.7.1.2 External Absolute Reference  
If a stable external source is provided, the reference measurement point  
can be any one of the channel selected pins from PB1PB4. In this case  
the reference reading can be taken by setting the MUX bit in the AMUX  
which connects channel selection bus to the pin connected to the  
external reference source. If the external reference is greater than  
VDD 1.5 volts, then the DHOLD bit should be used to select the 1/2  
divided input.  
Table 8-6. Absolute Voltage Reading Errors  
Accuracy Improvements Possible  
Error Source  
In Hardware  
In Software  
Change in reference  
voltage  
Calibration and storage of reference source  
over temperature and supply voltage  
Provide closer tolerance reference  
Change in magnitude of  
ramp current source  
Compare unknown with recent  
measurement from reference  
Not adjustable  
Not adjustable  
Non-linearity of ramp  
current source vs.  
voltage  
Calibration and storage of voltages at 1/4,  
1/2, 3/4, and FS  
Frequency shift in  
internal low-power  
oscillator  
Compare unknown with recent  
measurement from reference  
Use external oscillator with crystal  
Use faster conversion times  
Not adjustable  
Sampling capacitor  
leakage  
Compare unknown with recent  
measurement from reference  
Compare unknown with recent  
measurement from reference OR avoid use  
of divided input  
Internal voltage divider  
ratio  
Sum two readings on reference or  
unknown using INV and INV control bit and  
divide by 2 (average of both)  
Input offset voltage of  
comparator 2  
Not adjustable  
Close decoupling at VDD and VSS pins  
and reduce supply source impedance  
Average multiple readings on both the  
reference and the unknown voltage  
Noise internal to MCU  
8.7.2 Ratiometric Voltage Readings  
The ratiometric value of a voltage measurement can be calculated in  
software by first taking a reference reading from a reference source and  
then comparing subsequent unknown voltages to that reading as a  
percentage of the reference value. The accuracy of ratiometric readings  
Advance Information  
134  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Analog Subsystem  
MOTOROLA  
Analog Subsystem  
Voltage Measurement Methods  
will depend on the variety of sources, but will generally be better than for  
absolute readings. Many of these error sources can be taken into  
account using the features of the analog subsystem and appropriate  
software as described in Table 8-7. As with absolute measurements,  
most of the errors can be reduced by frequent comparisons to the  
reference voltage, use of the inverted comparator inputs, and averaging  
of multiple samples.  
Table 8-7. Ratiometric Voltage Reading Errors  
Accuracy Improvements Possible  
Error Source  
In Hardware  
In Software  
Change in reference  
voltage  
Compare unknown with recent  
measurement from reference  
Not required for ratiometric  
Change in magnitude of  
ramp current source  
Compare unknown with recent  
measurement from reference  
Not adjustable  
Non-linearity of ramp  
current source vs. voltage  
Calibration and storage of voltages at  
1/4, 1/2, 3/4, and FS  
Not adjustable  
Frequency shift in internal  
low-power oscillator  
Compare unknown with recent  
measurement from reference  
Not required for ratiometric  
Compare unknown with recent  
measurement from reference  
Sampling capacitor leakage Use faster conversion times  
Internal voltage divider ratio Not adjustable  
Compare unknown with recent  
measurement from reference  
Sum two readings on reference or  
unknown using INV and INV control bit  
and divide by 2 (average of both)  
Input offset voltage of  
Not adjustable  
comparator 2  
Close decoupling at VDD and VSS pins  
and reduce supply source impedance  
Average multiple readings on both the  
reference and the unknown voltage  
Noise internal to MCU  
8.7.2.1 Internal Ratiometric Reference  
If readings are to be ratiometric to VDD, the reference measurement  
point can be internally selected. In this case the reference reading can  
be taken by setting the VREF bit and clearing the MUX1:4 bits in the  
AMUX register which connects the channel selection bus to the VDD pin.  
In order to stay within the VMAX range, the DHOLD bit should be used to  
select the 1/2 divided input.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
135  
Analog Subsystem  
Analog Subsystem  
8.7.2.2 External Ratiometric Reference  
If readings are to be ratiometric to some external source, the reference  
measurement point can be connected to any one of the channel selected  
pins from PB1PB4. In this case, the reference reading can be taken by  
setting the MUX bit in the AMUX which connects channel selection bus  
to the pin connected to the external reference source. If the external  
reference is greater than VDD 1.5 volts, then the DHOLD bit should be  
used to select the 1/2 divided input.  
8.8 Voltage Comparator Features  
The two internal comparators can be used as simple voltage  
comparators if set up as described in Table 8-8. Both comparators can  
be active in the wait mode and can directly restart the part by means of  
the analog interrupt. Both comparators can also be active in the stop  
mode, but cannot directly restart the part. However, the comparators can  
directly drive PB4 which can then be connected externally to activate  
either a port interrupt on the PA0:3 pins or the IRQ/VPP pin.  
Table 8-8. Voltage Comparator Setup Conditions  
Prog. Timer  
Current Discharge  
Port B Pin  
Pulldowns  
Disabled  
Port B Pin  
as Inputs  
Input  
Capture  
Source  
Comparator Source  
Device  
Enable  
Disable  
Not  
affected  
Not  
affected  
DDRB2 = 0 PDIB2 = 1  
DDRB3 = 0 PDIB3 = 1  
Not  
affected  
1
2
DDRB0 = 0 PDIB0 = 1  
DDRB1 = 0 PDIB1 = 1  
ICEN = 0  
IEDG = 1  
ISEN = 0 ISEN = 0  
8.8.1 Voltage Comparator 1  
Voltage comparator 1 is always connected to two of the port B I/O pins.  
These pins should be configured as inputs and have their software  
programmable pulldowns disabled. Also, the negative input of voltage  
comparator 1 is connected to the PB3/AN3/TCAP and shared with the  
input capture function of the 16-bit programmable timer. Therefore, the  
timer input capture interrupt should be disabled so that changes in the  
Advance Information  
136  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Analog Subsystem  
MOTOROLA  
Analog Subsystem  
Voltage Comparator Features  
voltage on the PB3/AN3/TCAP pin do not cause unwanted input capture  
interrupts.  
The output of comparator 1 can be connected to the port logic driving the  
PB4/AN4/TCMP/CMP1 pin such that the output of the comparator is  
ORed with the PB4 data bit and the OLVL bit from the 16-bit timer. This  
capability requires that the OPT bit is set in the COPR at location $1FF0  
as in Figure 8-12, and the COE1 bit is set in the ASR at location $001E.  
Address: $1FF0  
Bit 7  
EPMSEC  
U
6
OPT  
U
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
COPC  
U
U
U
U
U
U
= Unimplemented  
U = Unaffected  
Figure 8-12. COP and Security Register (COPR)  
OPT Optional Features Bit  
The OPT bit enables two additional features: direct drive by  
comparator 1 output to PB4 and voltage offset capability to sample  
capacitor in analog subsystem.  
1 = Optional features enabled  
0 = Optional features disabled  
8.8.2 Voltage Comparator 2  
Voltage comparator 2 can be used as a simple comparator if its charge  
current source and discharge device are disabled by clearing the ISEN  
bit in the ACR. If the ISEN bit is set, the internal ramp discharge device  
connected to PB0/AN0 may become active and try to pull down any  
voltage source that may be connected to that pin. Also, since voltage  
comparator 2 is always connected to two of the port B I/O pins, these  
pins should be configured as inputs and have their software  
programmable pulldowns disabled.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
137  
Analog Subsystem  
Analog Subsystem  
8.9 Current Source Features  
The internal current source connected to the PB0/AN0 pin supplies  
about 100 µA of current when the discharge device is disabled and the  
current source is active. Therefore, this current source can be used in an  
application if the ISEN enable bit is set to power up the current source  
and by setting the A/D conversion method to manual mode 0 (ATD1 and  
ATD2 cleared) and the charge current enabled (CHG set).  
8.10 Internal Temperature Sensing Diode Features  
An internal diode is forward biased to VSS and will have its voltage  
change, VD, for each degree centigrade rise in the temperature of the  
device. This temperature sensing diode is powered up from a current  
source only during the time that the diode is selected. When on, this  
current source typically adds about 30 µA to the IDD current.  
The temperature sensing diode can be selected by setting both the  
HOLD and DHOLD bits in the AMUX register (see 8.3 Analog Multiplex  
Register).  
8.11 Sample and Hold  
When using the internal sample capacitor to capture a voltage for later  
conversion, the HOLD or DHOLD bit must be cleared first before  
changing any channel selection. If both the HOLD (or DHOLD) bit and  
the channel selection are changed on the same write cycle, the sample  
may be corrupted during the switching transitions.  
NOTE: The sample capacitor can be affected by excessive noise created with  
respect to the devices VSS pin such that it may appear to leak down or  
charge up depending on the voltage level stored on the sample  
capacitor. It is recommended to avoid switching large currents through  
the port pins while a voltage is to remain stored on the sample capacitor.  
The additional option of adding an offset voltage to the bottom of the  
sample capacitor allows unknown voltages near VSS to be sampled and  
then shifted up past the comparator offset and the device offset caused  
Advance Information  
138  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Analog Subsystem  
Analog Subsystem  
Port B Interaction with Analog Inputs  
by a single VSS return pin. This offset also provides a means to measure  
the internal VSS level regardless of the comparator offset to determine  
NOFF as described in 8.7 Voltage Measurement Methods. In either  
case the OPT bit must be set in the COPR located at $1FF0 as in  
Figure 8-12 and the VOFF bit must be set in the ASR. It is not necessary  
to switch the VOFF bit during conversions, since the offset is controlled  
by the HOLD and DHOLD bits when the VOFF is active. Refer to  
8.3 Analog Multiplex Register for more details on the design and  
decoding of the sample and hold circuit.  
8.12 Port B Interaction with Analog Inputs  
The analog subsystem is connected directly to the port B I/O pins without  
any intervening gates. It is, therefore, possible to measure the voltages  
on port B pins set as inputs or to have the analog voltage measurements  
corrupted by port B pins set as outputs.  
8.13 Port B Pins as Inputs  
All the port B pins will power up as inputs or return to inputs after a reset  
of the device since the bits in the port B data direction register will be  
reset.  
If any port B pins are to be used for analog voltage measurements, they  
should be left as inputs. In this case, not only can the voltage on the pin  
be measured, but the logic state of the port B pins can be read from  
location $0002.  
8.14 Port B Pulldowns  
All the port B pins have internal software programmable pulldown  
devices available dependent on the state of the SWPDI bit in the mask  
option register (MOR).  
If the pulldowns are enabled, they will create an approximate 100 µA  
load to any analog source connected to the pin. In some cases, the  
analog source may be able to supply this current without causing any  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
139  
Analog Subsystem  
Analog Subsystem  
error due to the analog source output impedance. Since this may not  
always be true, it is therefore best to disable port B pulldowns on those  
pins used for analog input sources.  
8.15 Noise Sensitivity  
In addition to the normal effects of electrical noise on the analog input  
signal there can also be other noise-related effects caused by the  
digital-to-analog interface. Since there is only one VSS return for both the  
digital and the analog subsystems on the device, currents in the digital  
section may affect the analog ground reference within the device. This  
can add voltage offsets to measured inputs or cause channel-to-channel  
crosstalk.  
To reduce the impact of these effects, there should be no switching of  
heavy I/O currents to or from the device while there is a critical analog  
conversion or voltage comparison in process. Limiting switched I/O  
currents to 24 mA during these times is recommended.  
A noise reduction benefit can be gained with 0.1-µF bypass capacitors  
from each analog input (PB4:1) to the VSS pin. Also, try to keep all the  
digital power supply or load currents from passing through any  
conductors which are the return paths for an analog signal.  
Advance Information  
140  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Analog Subsystem  
MOTOROLA  
Advance Information MC68HC705JJ7/MC68HC705JP7  
Section 9. Simple Synchronous Serial Interface  
9.1 Contents  
9.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
9.3  
SIOP Signal Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
Serial Clock (SCK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
Serial Data Input (SDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . .144  
Serial Data Output (SDO). . . . . . . . . . . . . . . . . . . . . . . . . .144  
9.3.1  
9.3.2  
9.3.3  
9.4  
SIOP Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
SIOP Control Register (SCR). . . . . . . . . . . . . . . . . . . . . . .145  
SIOP Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
SIOP Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
9.4.1  
9.4.2  
9.4.3  
9.2 Introduction  
The simple synchronous serial I/O port (SIOP) subsystem is designed to  
provide efficient serial communications with peripheral devices or other  
MCUs. SIOP is implemented as a 3-wire master/slave system with serial  
clock (SCK), serial data input (SDI), and serial data output (SDO). A  
block diagram of the SIOP is shown in Figure 9-1.  
The SIOP subsystem shares its input/output pins with port B. When the  
SIOP is enabled (SPE bit set in the SCR), the port B data direction and  
data registers are bypassed by the SIOP. The port B data direction and  
data registers will remain accessible and can be altered by the  
application software, but these actions will not affect the SIOP  
transmitted or received data.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA Simple Synchronous Serial Interface  
Advance Information  
141  
Simple Synchronous Serial Interface  
PORTB LOGIC  
PORTB LOGIC  
OSCILLATOR  
÷2  
CLOCK  
CLOCK  
DIVIDER  
AND  
CLOCK  
CONTROL  
SPR0  
SPR1  
CPHA  
MSTR  
SPE  
PB7  
SCK  
SELECT  
LSBF  
SPIR  
SPIE  
PB6  
SDI  
PORTB LOGIC  
$000A  
DIN  
DOUT  
CLK  
LATCH  
SIOP  
INTERRUPT  
8-BIT SHIFT  
REGISTER  
COMP  
Q
S
ERROR  
PB5  
SDO  
SPIF  
R
DCOL  
FORMAT CONTROL  
(LSB OR MSB FIRST)  
$000B  
SIOP  
DATA REGISTER  
(SDR)  
$000C  
INTERNAL M68HC05 BUS  
Figure 9-1. SIOP Block Diagram  
Advance Information  
142  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Simple Synchronous Serial Interface MOTOROLA  
Simple Synchronous Serial Interface  
SIOP Signal Format  
9.3 SIOP Signal Format  
The SIOP subsystem can be software configured for master or slave  
operation. No external mode selection inputs are available (for instance,  
no slave select pin).  
9.3.1 Serial Clock (SCK)  
The state of the SCK output remains a fixed logic level during idle  
periods between data transfers. The edges of SCK indicate the  
beginning of each output data transfer and latch any incoming data  
received. The first bit of transmitted data is output from the SDO pin on  
the first falling edge of SCK. The first bit of received data is accepted at  
the SDI pin on the first rising edge of SCK after the first falling edge. The  
transfer is terminated upon the eighth rising edge of SCK.  
The idle state of the SCK is determined by the state of the CPHA bit in  
the SCR. When the CPHA is clear, SCK will remain idle at a logic 1 as  
shown in Figure 9-2. When the CPHA is set, SCK will remain idle at a  
logic 0 as shown in Figure 9-3. In both cases, the SDO changes data on  
the falling edge of the SCK, and the SDI latches data in on the rising  
edge of SCK.  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
SDO  
SCK  
(IDLE = 1)  
(CPHA = 0)  
100 ns  
100 ns  
SDI  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
Figure 9-2. SIOP Timing Diagram (CPHA = 0)  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
AdvanceInformation  
143  
MOTOROLA  
Simple Synchronous Serial Interface  
Simple Synchronous Serial Interface  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
SDO  
(IDLE = 0)  
SCK  
(CPHA = 1)  
100 ns  
100 ns  
SDI  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
Figure 9-3. SIOP Timing Diagram (CPHA = 1)  
The only difference in the master and slave modes of operation is the  
sourcing of the SCK. In master mode, SCK is driven from an internal  
source within the MCU. In slave mode, SCK is driven from a source  
external to the MCU. The SCK frequency is based on one of four  
divisions of the oscillator clock that is selected by the SPR0 and SPR1  
bits in the SCR.  
9.3.2 Serial Data Input (SDI)  
The SDI pin becomes an input as soon as the SIOP subsystem is  
enabled. New data is presented to the SDI pin on the falling edge of  
SCK. Valid data must be present at least 100 nanoseconds before the  
rising edge of SCK and remain valid for 100 nanoseconds after the rising  
edge of SCK. See Figure 9-3.  
9.3.3 Serial Data Output (SDO)  
The SDO pin becomes an output as soon as the SIOP subsystem is  
enabled. The state of the PB5/SDO pin reflects the value of the first bit  
received on the previous transmission. Prior to enabling the SIOP, the  
PB5/SDO can be initialized to determine the beginning state. While  
SIOP is enabled, the port B logic cannot be used as a standard output  
since that pin is connected to the last stage of the SIOP serial shift  
register. A control bit (LSBF) is included in the SCR to allow the data to  
be transmitted in either the MSB first format or the LSB first format.  
Advance Information  
144  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Simple Synchronous Serial Interface  
MOTOROLA  
Simple Synchronous Serial Interface  
SIOP Registers  
The first data bit will be shifted out to the SDO pin on the first falling edge  
of the SCK. The remaining data bits will be shifted out to the SDI pin on  
subsequent falling edges of SCK. The SDO pin will present valid data at  
least 100 nanoseconds before the rising edge of the SCK and remain  
valid for 100 nanoseconds after the rising edge of SCK. See Figure 9-3.  
9.4 SIOP Registers  
The SIOP is programmed and controlled by the SIOP control register  
(SCR) located at address $000A, the SIOP status register (SSR) located  
at address $000B, and the SIOP data register (SDR) located at address  
$000C.  
9.4.1 SIOP Control Register (SCR)  
The SIOP control register (SCR) is located at address $000A and  
contains seven control bits and a write-only reset of the interrupt flag.  
Figure 9-4 shows the position of each bit in the register and indicates the  
value of each bit after reset.  
Address: $000A  
Bit 7  
SPIE  
0
6
SPE  
0
5
LSBF  
0
4
MSTR  
0
3
0
2
CPHA  
0
1
SPR1  
0
Bit 0  
SPR0  
0
Read:  
Write:  
Reset:  
SPIR  
0
Figure 9-4. SIOP Control Register (SCR)  
SPIE Serial Peripheral Interrupt Enable Bit  
The SPIE bit enables the SIOP to generate an interrupt whenever the  
SPIF flag bit in the SSR is set. Clearing the SPIE bit will not affect the  
state of the SPIF flag bit and will not terminate a serial interrupt once  
the interrupt sequence has started. Reset clears the SPIE bit.  
1 = Serial interrupt enabled  
0 = Serial interrupt disabled  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA Simple Synchronous Serial Interface  
AdvanceInformation  
145  
Simple Synchronous Serial Interface  
NOTE: If the SPIE bit is cleared just after the serial interrupt sequence has  
started (for instance, the CPU status is being stacked), then the CPU will  
be unable to determine the source of the interrupt and will vector to the  
reset vector as a default.  
SPE Serial Peripheral Enable Bit  
The SPE bit switches the port B interface such that SDO/PB5 is the  
serial data output, SDI/PB6 is the serial data input, and SCK/PB7 is a  
serial clock input in the slave mode or a serial clock output in the  
master mode. The port B DDR and data registers can be manipulated  
as usual, but these actions will not affect the transmitted or received  
data. The SPE bit is readable and writable at any time, but clearing  
the SPE bit while a transmission is in progress will 1) abort the  
transmission, 2) reset the serial bit counter, and 3) convert port B to a  
general-purpose I/O port. Reset clears the SPE bit.  
1 = Serial peripheral enabled (port B I/O disabled)  
0 = Serial peripheral disabled (port B I/O enabled)  
LSBF Least Significant Bit First Bit  
The LSBF bit controls the format of the transmitted and received data  
to be transferred LSB or MSB first. Reset clears this bit.  
1 = LSB transferred first  
0 = MSB transferred first  
MSTR Master Mode Select Bit  
The MSTR bit configures the serial I/O port for master mode. A  
transfer is initiated by writing to the SDR. Also, the SCK pin becomes  
an output providing a synchronous data clock dependent upon the  
divider of the oscillator frequency selected by the SPR0:1 bits. When  
the device is in master mode, the SDO and SDI pins do not change  
function. These pins behave exactly the same in both the master and  
slave modes. The MSTR bit is readable and writable at any time  
regardless of the state of the SPE bit. Clearing the MSTR bit will abort  
any transfers that may have been in progress. Reset clears the MSTR  
bit, placing the SIOP subsystem in slave mode.  
1 = SIOP set up as master, SCK is an output  
0 = SIOP set up as slave, SCK is an input  
Advance Information  
146  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Simple Synchronous Serial Interface  
MOTOROLA  
Simple Synchronous Serial Interface  
SIOP Registers  
SPIR Serial Peripheral Interrupt Reset Bit  
The SPIR bit is a write-only control to reset the SPIF flag bit in the  
SSR. Reading the SPIR bit will return a logic 0.  
1 = Reset the SPIF flag bit  
0 = No effect  
CPHA Clock Phase Bit  
The CPHA bit controls the clock timing and phase in the SIOP. Data  
is changed on the falling edge of SCK and data is captured (read) on  
the rising edge of SCK. This bit is cleared by reset.  
1 = SCK is idle low  
0 = SCK is idle high  
SPR0:1 Serial Peripheral Clock Rate Select Bits  
The SPR0 and SPR1 bits select one of four clock rates given in  
Table 9-1 to be supplied on the PB7/SCK pin when the device is  
configured with the SIOP as a master (MSTR = 1). The fastest rate is  
when both SPR0 and SPR1 are set. Both the SPR0 and SPR1 bits  
are cleared by reset, which places the SIOP clock selection at the  
slowest rate.  
Table 9-1. SIOP Clock Rate Selection  
SIOP Clock Rate  
SPR1  
SPR0  
Oscillator Frequency  
Divided by:  
0
0
1
1
0
1
0
1
64  
32  
16  
8
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
AdvanceInformation  
147  
MOTOROLA  
Simple Synchronous Serial Interface  
Simple Synchronous Serial Interface  
9.4.2 SIOP Status Register  
The SIOP status register (SSR) is located at address $000B and  
contains two read-only bits. Figure 9-5 shows the position of each bit in  
the register and indicates the value of each bit after reset.  
Address: $000B  
Bit 7  
6
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
SPIF  
DCOL  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 9-5. SIOP Status Register (SSR)  
SPIF Serial Port Interrupt Flag  
The SPIF is a read-only status bit that is set on the last rising edge of  
SCK and indicates that a data transfer has been completed. It has no  
effect on any future data transfers and can be ignored. The SPIF bit  
can be cleared by reading the SSR followed by a read or write of the  
SDR or by writing a logic 1 to the SPIR bit in the SCR. If the SPIF is  
cleared before the last rising edge of SCK it will be set again on the  
last rising edge of SCK. Reset clears the SPIF bit.  
1 = Serial transfer complete, serial interrupt if the SPIE bit in SCR  
is set  
0 = Serial transfer in progress or serial interface idle  
DCOL Data Collision Bit  
The DCOL is a read-only status bit which indicates that an illegal  
access of the SDR has occurred. The DCOL bit will be set when  
reading or writing the SDR after the first falling edge of SCK and  
before SPIF is set. Reading or writing the SDR during this time will  
result in invalid data being transmitted or received. The DCOL bit is  
cleared by reading the SSR (when the SPIF bit is set) followed by a  
read or write of the SDR. If the last part of the clearing sequence is  
Advance Information  
148  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Simple Synchronous Serial Interface  
MOTOROLA  
Simple Synchronous Serial Interface  
SIOP Registers  
done after another transfer has started, the DCOL bit will be set again.  
Reset clears the DCOL bit.  
1 = Illegal access of the SDR occurred  
0 = No illegal access of the SDR detected  
9.4.3 SIOP Data Register  
The SIOP data register (SDR) is located at address $000C and serves  
as both the transmit and receive data register. Writing to this register will  
initiate a message transmission if the node is in master mode. The SIOP  
subsystem is not double buffered and any write to this register will  
destroy the previous contents. The SDR can be read at any time.  
However, if a transfer is in progress the results may be ambiguous.  
Writing to the SDR while a transfer is in progress can cause invalid data  
to be transmitted and/or received. Figure 9-6 shows the position of each  
bit in the register. This register is not affected by reset.  
Address: $000C  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
Unaffected by reset  
Figure 9-6. SIOP Data Register (SDR)  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA Simple Synchronous Serial Interface  
AdvanceInformation  
149  
Simple Synchronous Serial Interface  
Advance Information  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Simple Synchronous Serial Interface MOTOROLA  
150  
Advance Information MC68HC705JJ7/MC68HC705JP7  
Section 10. Core Timer  
10.1 Contents  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
10.3 Core Timer Status and Control Register. . . . . . . . . . . . . . . . .153  
10.4 Core Timer Counter Register . . . . . . . . . . . . . . . . . . . . . . . . .155  
10.5 COP Watchdog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
10.2 Introduction  
This section describes the operation of the core timer and the computer  
operating properly (COP) watchdog as shown by the block diagram in  
Figure 10-1.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
151  
Core Timer  
Core Timer  
RESET  
INTERNAL  
CLOCK  
$0009  
OVERFLOW  
CORE TIMER COUNTER REGISTER  
÷ 4  
÷ 2  
OSC1  
BITS 07 OF 15-STAGE  
RIPPLE COUNTER  
INTERNAL CLOCK ÷ 1024  
CORE TIMER  
INTERRUPT  
REQUEST  
$0008  
CORE TIMER STATUS/CONTROL REGISTER  
RESET  
RTI RATE SELECT  
$1FF0  
COPR REGISTER  
÷ 2  
÷ 2  
÷ 2  
÷ 2  
÷ 2  
÷ 2  
÷ 2  
POWER-ON  
RESET  
COP  
WATCHDOG  
RESET  
÷ 2  
÷ 2  
÷ 2  
÷ 2  
RESET  
Figure 10-1. Core Timer Block Diagram  
Advance Information  
152  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Core Timer  
Core Timer  
Core Timer Status and Control Register  
10.3 Core Timer Status and Control Register  
The read/write core timer status and control register (CTSCR) contains  
the interrupt flag bits, interrupt enable bits, interrupt flag bit resets, and  
the rate selects for the real-time interrupt as shown in Figure 10-2.  
Address:  
$0008  
Bit 7  
6
5
CTOFE  
0
4
RTIE  
0
3
2
1
RT1  
1
Bit 0  
RT0  
1
Read:  
Write:  
Reset:  
CTOF  
RTIF  
0
CTOFR  
0
0
RTIFR  
0
0
0
= Unimplemented  
Figure 10-2. Core Timer Status and Control Register (CTSCR)  
CTOF Core Timer Overflow Flag  
This read-only flag becomes set when the first eight stages of the core  
timer counter roll over from $FF to $00. The CTOF flag bit generates  
a timer overflow interrupt request if CTOFE is also set. The CTOF flag  
bit is cleared by writing a logic 1 to the CTOFR bit. Writing to CTOF  
has no effect. Reset clears CTOF.  
1 = Overflow in core timer has occurred.  
0 = No overflow of core timer since CTOF last cleared  
RTIF Real-Time Interrupt Flag  
This read-only flag becomes set when the selected real-time interrupt  
(RTI) output becomes active. RTIF generates a real-time interrupt  
request if RTIE is also set. The RTIF enable bit is cleared by writing a  
logic 1 to the RTIFR bit. Writing to RTIF has no effect. Reset clears  
RTIF.  
1 = Overflow in real-time counter has occurred.  
0 = No overflow of real-time counter since RTIF last cleared  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
153  
Core Timer  
Core Timer  
CTOFE Core Timer Overflow Interrupt Enable Bit  
This read/write bit enables core timer overflow interrupts. Reset  
clears CTOFE.  
1 = Core timer overflow interrupts enabled  
0 = Core timer overflow interrupts disabled  
RTIE Real-Time Interrupt Enable Bit  
This read/write bit enables real-time interrupts. Reset clears RTIE.  
1 = Real-time interrupts enabled  
0 = Real-time interrupts disabled  
CTOFR Core Timer Overflow Flag Reset Bit  
Writing a logic 1 to this write-only bit clears the CTOF bit. CTOFR  
always reads as a logic 0. Reset does not affect CTOFR.  
1 = Clear CTOF flag bit  
0 = No effect on CTOF flag bit  
RTIFR Real-Time Interrupt Flag Reset Bit  
Writing a logic 1 to this write-only bit clears the RTIF bit. RTIFR  
always reads as a logic 0. Reset does not affect RTIFR.  
1 = Clear RTIF flag bit  
0 = No effect on RTIF flag bit  
RT1 and RT0 Real-Time Interrupt Select Bits 1 and 0  
These read/write bits select one of four real-time interrupt rates, as  
shown in Table 10-1. Because the selected RTI output drives the  
COP watchdog, changing the real -time interrupt rate also changes  
the counting rate of the COP watchdog. Reset sets RT1 and RT0,  
selecting the longest COP timeout period and longest real-time  
interrupt period.  
NOTE: Changing RT1 and RT0 when a COP timeout is imminent or uncertain  
may cause a real-time interrupt request to be missed or an additional  
real-time interrupt request to be generated. Clear the COP timer just  
before changing RT1 and RT0.  
Advance Information  
154  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Core Timer  
Core Timer  
Core Timer Counter Register  
Table 10-1. Core Timer Interrupt Rates and COP Timeout Selection  
Timer Overflow  
Real-Time  
Interrupt Period  
(RTI)  
COP Timeout Period  
COP = 7-to-8 RTI Periods  
(Milliseconds)  
Interrupt Period  
TOF = 1/(fOSC ÷ 211)  
(Microseconds)  
RTI  
Rate  
= fOSC  
(Milliseconds)  
RT1 RT0  
@ fOSC (MHz)  
@ fOSC (MHz)  
@ fOSC (MHz)  
divided  
by:  
4.2 MHz  
Min Max  
7.80 16.4 32.8 54.6 62.4  
2.0 MHz  
1.0 MHz  
4.2  
2.0  
1.0  
4.2  
2.0  
1.0  
MHz MHz MHz  
MHz MHz MHz  
Min  
Max  
131  
262  
524  
Min  
229  
459  
Max  
262  
524  
215  
216  
217  
218  
0
0
1
1
0
1
0
1
115  
229  
459  
15.6 32.8 65.5  
109  
218  
437  
125  
250  
499  
488 1024 2048  
31.2 65.5  
62.4 131  
131  
262  
918 1049  
918 1049 1835 2097  
10.4 Core Timer Counter Register  
A 15-stage ripple counter driven by a divide-by-eight prescaler is the  
basis of the core timer. The value of the first eight stages is readable at  
any time from the read-only timer counter register as shown in  
Figure 10-3.  
Address:  
$0009  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 10-3. Core Timer Counter Register (CTCR)  
Power-on clears the entire counter chain and begins clocking the  
counter. After the startup delay (16 or 4064 internal bus cycles  
depending on the DELAY bit in the mask option register (MOR)), the  
power-on reset circuit is released, clearing the counter again and  
allowing the MCU to come out of reset.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
155  
Core Timer  
Core Timer  
Each count of the timer counter register takes eight oscillator cycles or  
four cycles of the internal bus. A timer overflow function at the eighth  
counter stage allows a timer interrupt every 2048 oscillator clock cycles  
or every 1024 internal bus cycles.  
10.5 COP Watchdog  
Four counter stages at the end of the core timer make up the computer  
operating properly (COP) watchdog which can be enabled by the  
COPEN bit in the MOR. The COP watchdog is a software error detection  
system that automatically times out and resets the MCU if the COP  
watchdog is not cleared periodically by a program sequence. Writing a  
logic 0 to COPC bit in the COPR register clears the COP watchdog and  
prevents a COP reset.  
Address:  
$1FF0  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
OPT  
Write: EPMSEC  
Reset:  
COPC  
Unaffected by reset  
= Unimplemented  
Figure 10-4. COP and Security Register (COPR)  
EPMSEC EPROM Security(1) Bit  
The EPMSEC bit is a write-only security bit to protect the contents of  
the user EPROM code stored in locations $0700$1FFF.  
OPT Optional Features Bit  
The OPT bit enables two additional features: direct drive by  
comparator outputs to port A and voltage offset capability to sample  
capacitor in analog subsystem.  
1 = Optional features enabled  
0 = Optional features disabled  
1. No security feature is absolutely secure. However, Motorolas strategy is to make reading or  
copying the EPROM/OTPROM difficult for unauthorized users.  
Advance Information  
156  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Core Timer  
MOTOROLA  
Core Timer  
COP Watchdog  
COPC COP Clear Bit  
This write-only bit resets the COP watchdog. The COP watchdog is  
active in the run, wait, and halt modes of operation if the COP is  
enabled by setting the COPEN bit in the MOR. The STOP instruction  
disables the COP watchdog by clearing the counter and turning off its  
clock source.  
In applications that depend on the COP watchdog, the STOP  
instruction can be disabled by setting the SWAIT bit in the MOR. In  
applications that have wait cycles longer than the COP timeout  
period, the COP watchdog can be disabled by clearing the COPEN  
bit. Table 10-2 summarizes recommended conditions for enabling  
and disabling the COP watchdog.  
NOTE: If the voltage on the IRQ/VPP pin exceeds 1.5 × VDD, the COP watchdog  
turns off and remains off until the IRQ/VPP pin voltage falls below  
1.5 × VDD  
.
Table 10-2. COP Watchdog Recommendations  
SWAIT  
(in MOR)(1)  
Voltage on  
IRQ/VPP Pin  
Recommended COP  
Watchdog Condition  
Wait/Halt Time  
Less than COP  
timeout period  
Enabled(2)  
Disabled  
Less than 1.5 × VDD  
Less than 1.5 × VDD  
1
1
Greater than COP  
timeout period  
X(3)  
X(3)  
Less than 1.5 × VDD  
More than 1.5 × VDD  
0
Disabled  
Disabled  
X
1. The SWAIT bit in the MOR converts STOP instructions to HALT instructions.  
2. Reset the COP watchdog immediately before executing the WAIT/HALT instruction.  
3. Dont care  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
157  
Core Timer  
Core Timer  
Advance Information  
158  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Core Timer  
Advance Information MC68HC705JJ7/MC68HC705JP7  
Section 11. Programmable Timer  
11.1 Contents  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
11.3 Timer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162  
11.4 Alternate Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . .163  
11.5 Input Capture Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
11.6 Output Compare Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .167  
11.7 Timer Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
11.8 Timer Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
11.9 Timer Operation during Wait Mode. . . . . . . . . . . . . . . . . . . . .173  
11.10 Timer Operation during Stop Mode . . . . . . . . . . . . . . . . . . . .173  
11.11 Timer Operation during Halt Mode . . . . . . . . . . . . . . . . . . . . .173  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
159  
Programmable Timer  
Programmable Timer  
11.2 Introduction  
The MC68HC705JJ7/MC68HC705JP7 MCU contains a 16-bit  
programmable timer with an input capture function and an output  
compare function as shown by the block diagram in Figure 11-1.  
The basis of the capture/compare timer is a 16-bit free-running counter  
which increases in count with every four internal bus clock cycles. The  
counter is the timing reference for the input capture and output compare  
functions. The input capture and output compare functions provide a  
means to latch the times at which external events occur, to measure  
input waveforms, and to generate output waveforms and timing delays.  
Software can read the value in the 16-bit free-running counter at any  
time without affecting the counter sequence.  
The input/output (I/O) registers for the input capture and output compare  
functions are pairs of 8-bit registers, because of the 16-bit timer  
architecture used. Each register pair contains the high and low bytes of  
that function. Generally, accessing the low byte of a specific timer  
function allows full control of that function; however, an access of the  
high byte inhibits that specific timer function until the low byte is also  
accessed.  
Because the counter is 16 bits long and preceded by a fixed  
divide-by-four prescaler, the counter rolls over every 262,144 internal  
clock cycles (every 524,288 oscillator clock cycles). Timer resolution  
with a 4-MHz crystal oscillator is 2 microseconds/count.  
The interrupt capability, the input capture edge, and the output compare  
state are controlled by the timer control register (TCR) located at $0012,  
and the status of the interrupt flags can be read from the timer status  
register (TSR) located at $0013.  
Advance Information  
160  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Programmable Timer  
MOTOROLA  
Programmable Timer  
Introduction  
PB3  
AN3  
TCAP  
EDGE  
SELECT  
& DETECT  
LOGIC  
INPUT  
SELECT  
MUX  
ICRH ($0014)  
TMRH ($0018)  
ICRL ($0015)  
TMRL ($0019)  
ACRH ($001A)  
ACRL ($001B)  
CPF2  
FLAG  
BIT  
FROM  
ANALOG  
SUBSYSTEM  
INTERNAL  
CLOCK  
(OSC ÷ 2)  
16-BIT COUNTER  
÷ 4  
ICEN  
CONTROL  
BIT  
16-BIT COMPARATOR  
PB4  
D Q  
C
PIN I/O  
LOGIC  
AN4  
TCMP  
OCRH ($0016)  
OCRL ($0017)  
ANALOG  
COMP 1  
TIMER  
INTERRUPT  
REQUEST  
RESET  
TIMER CONTROL REGISTER  
TIMER STATUS REGISTER  
$0013  
$0012  
INTERNAL DATA BUS  
Figure 11-1. Programmable Timer Overall Block Diagram  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
161  
Programmable Timer  
Programmable Timer  
11.3 Timer Registers  
The functional block diagram of the 16-bit free-running timer counter and  
timer registers is shown in Figure 11-2. The timer registers include a  
transparent buffer latch on the LSB of the 16-bit timer counter.  
READ  
TMRL  
LATCH  
TMRL ($0019)  
TMR LSB  
READ  
TMRH  
READ  
$FFFC  
TMRH ($0018)  
INTERNAL  
CLOCK  
(OSC ÷ 2)  
RESET  
16-BIT COUNTER  
÷ 4  
OVERFLOW (TOF)  
TIMER  
INTERRUPT  
REQUEST  
TIMER CONTROL REG.  
$0012  
TIMER STATUS REG.  
$0013  
INTERNAL  
DATA  
BUS  
Figure 11-2. Programmable Timer Block Diagram  
The timer registers (TMRH and TMRL) shown in Figure 11-3 are  
read-only locations which contain the current high and low bytes of the  
16-bit free-running counter. Writing to the timer registers has no effect.  
Reset of the device presets the timer counter to $FFFC.  
The TMRL latch is a transparent read of the LSB until a read of the  
TMRH takes place. A read of the TMRH latches the LSB into the TMRL  
location until the TMRL is again read. The latched value remains fixed  
even if multiple reads of the TMRH take place before the next read of the  
TMRL. Therefore, when reading the MSB of the timer at TMRH, the LSB  
of the timer at TMRL must also be read to complete the read sequence.  
During power-on reset (POR), the counter is initialized to $FFFC and  
begins counting after the oscillator startup delay. Because the counter is  
16 bits and preceded by a fixed prescaler, the value in the counter  
repeats every 262,144 internal bus clock cycles (524,288 oscillator  
cycles).  
Advance Information  
162  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Programmable Timer  
MOTOROLA  
Programmable Timer  
Alternate Counter Registers  
Address: $0018  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
1
1
1
1
1
1
1
1
Address: $0018  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
1
1
1
1
1
1
0
0
= Unimplemented  
Figure 11-3. Programmable Timer Registers (TMRH and TMRL)  
When the free-running counter rolls over from $FFFF to $0000, the timer  
overflow flag bit (TOF) is set in the TSR. When the TOF is set, it can  
generate an interrupt if the timer overflow interrupt enable bit (TOIE) is  
also set in the TCR. The TOF flag bit can only be reset by reading the  
TMRL after reading the TSR.  
Other than clearing any possible TOF flags, reading the TMRH and  
TMRL in any order or any number of times does not have any effect on  
the 16-bit free-running counter.  
NOTE: To prevent interrupts from occurring between readings of the TMRH and  
TMRL, set the I bit in the condition code register (CCR) before reading  
TMRH and clear the I bit after reading TMRL.  
11.4 Alternate Counter Registers  
The functional block diagram of the 16-bit free-running timer counter and  
alternate counter registers is shown in Figure 11-4. The alternate  
counter registers behave the same as the timer registers, except that  
any reads of the alternate counter will not have any effect on the TOF  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
163  
Programmable Timer  
Programmable Timer  
flag bit and timer interrupts. The alternate counter registers include a  
transparent buffer latch on the LSB of the 16-bit timer counter.  
INTERNAL  
DATA  
BUS  
LATCH  
READ  
ACRL  
ACRL ($001B)  
TMR LSB  
READ  
ACRH  
READ  
$FFFC  
ACRH ($001A)  
INTERNAL  
CLOCK  
RESET  
÷ 4  
16-BIT COUNTER  
(OSC ÷ 2)  
Figure 11-4. Alternate Counter Block Diagram  
The alternate counter registers (ACRH and ACRL) shown in  
Figure 11-5 are read-only locations which contain the current high and  
low bytes of the 16-bit free-running counter. Writing to the alternate  
counter registers has no effect. Reset of the device presets the timer  
counter to $FFFC.  
The ACRL latch is a transparent read of the LSB until a read of the  
ACRH takes place. A read of the ACRH latches the LSB into the ACRL  
location until the ACRL is again read. The latched value remains fixed  
even if multiple reads of the ACRH take place before the next read of the  
ACRL. Therefore, when reading the MSB of the timer at ACRH, the LSB  
of the timer at ACRL must also be read to complete the read sequence.  
During power-on reset (POR), the counter is initialized to $FFFC and  
begins counting after the oscillator startup delay. Because the counter is  
16 bits and preceded by a fixed prescaler, the value in the counter  
repeats every 262,144 internal bus clock cycles (524,288 oscillator  
cycles).  
Reading the ACRH and ACRL in any order or any number of times does  
not have any effect on the 16-bit free-running counter or the TOF flag bit.  
NOTE: To prevent interrupts from occurring between readings of the ACRH and  
ACRL, set the I bit in the condition code register (CCR) before reading  
ACRH and clear the I bit after reading ACRL.  
Advance Information  
164  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Programmable Timer  
Programmable Timer  
Input Capture Registers  
Address: $001A  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
1
1
1
1
1
1
1
1
Address: $001B  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
1
1
1
1
1
1
0
0
= Unimplemented  
Figure 11-5. Alternate Counter Registers (ACRH and ACRL)  
11.5 Input Capture Registers  
The input capture function is a means to record the time at which an  
event occurs. The source of the event can be the change on an external  
pin (PB3/AN3/TCAP) or the CPF2 flag bit of voltage comparator 2 in the  
analog subsystem. The ICEN bit in the analog subsystem control  
register (ACR) at $001D selects which source is the input signal. When  
the input capture circuitry detects an active edge on the selected source,  
it latches the contents of the free-running timer counter registers into the  
input capture registers as shown in Figure 11-6.  
NOTE: Both the ICEN bit in the ACR and the IEDG bit in the TCR must be set  
when using voltage comparator 2 to trigger the input capture function.  
Latching values into the input capture registers at successive edges of  
the same polarity measures the period of the selected input signal.  
Latching the counter values at successive edges of opposite polarity  
measures the pulse width of the signal.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
165  
Programmable Timer  
Programmable Timer  
INTERNAL  
DATA  
BUS  
READ  
ICRH  
PB3  
AN3  
TCAP  
EDGE  
SELECT  
& DETECT  
LOGIC  
ICRH ($0014)  
INPUT  
SELECT  
MUX  
ICRL ($0015)  
READ  
ICRL  
LATCH  
INTERNAL  
CLOCK  
÷ 4  
16-BIT COUNTER  
INPUT CAPTURE (ICF)  
CPF2  
FLAG  
BIT  
(OSC ÷ 2)  
TIMER  
INTERRUPT  
REQUEST  
FROM  
ANALOG  
SUBSYSTEM  
ICEN  
CONTROL  
BIT  
RESET  
TIMER CONTROL REG.  
$0012  
TIMER STATUS REG.  
$0013  
INTERNAL  
DATA  
BUS  
Figure 11-6. Timer Input Capture Block Diagram  
The input capture registers are made up of two 8-bit read-only registers  
(ICRH and ICRL) as shown in Figure 11-7. The input capture edge  
detector contains a Schmitt trigger to improve noise immunity. The edge  
that triggers the counter transfer is defined by the input edge bit (IEDG)  
in the TCR. Reset does not affect the contents of the input capture  
registers.  
Address: $0014  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Unaffected by reset  
Address: $0015  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
Unaffected by reset  
= Unimplemented  
Figure 11-7. Input Capture Registers (ICRH and ICRL)  
Advance Information  
166  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Programmable Timer  
Programmable Timer  
Output Compare Registers  
The result obtained by an input capture will be one count higher than the  
value of the free-running timer counter preceding the external transition.  
This delay is required for internal synchronization. Resolution is affected  
by the prescaler, allowing the free-running timer counter to increment  
once every four internal clock cycles (eight oscillator clock cycles).  
Reading the ICRH inhibits future captures until the ICRL is also read.  
Reading the ICRL after reading the timer status register (TSR) clears the  
ICF flag bit. There is no conflict between reading the ICRL and transfers  
from the free-running timer counters. The input capture registers always  
contain the free-running timer counter value which corresponds to the  
most recent input capture.  
NOTE: To prevent interrupts from occurring between readings of the ICRH and  
ICRL, set the I bit in the condition code register (CCR) before reading  
ICRH and clear the I bit after reading ICRL.  
11.6 Output Compare Registers  
The output compare function is a means of generating an output signal  
when the 16-bit timer counter reaches a selected value as shown in  
Figure 11-8. Software writes the selected value into the output compare  
registers. On every fourth internal clock cycle (every eight oscillator  
clock cycles) the output compare circuitry compares the value of the  
free-running timer counter to the value written in the output compare  
registers. When a match occurs, the timer transfers the output level  
(OLVL) from the timer control register (TCR) to the PB4/AN4/TCMP pin.  
Software can use the output compare register to measure time periods,  
to generate timing delays, or to generate a pulse of specific duration  
or a pulse train of specific frequency and duty cycle on the  
PB4/AN4/TCMP pin.  
The planned action on the PB4/AN4/TCMP pin depends on the value  
stored in the OLVL bit in the TCR, and it occurs when the value of the  
16-bit free-running timer counter matches the value in the output  
compare registers shown in Figure 11-9. These registers are read/write  
bits and are unaffected by reset.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
167  
Programmable Timer  
Programmable Timer  
R/W  
OCRH  
R/W  
OCRL  
OCRH ($0016)  
OCRL ($0017)  
EDGE  
SELECT  
DETECT  
LOGIC  
PB4  
16-BIT COMPARATOR  
AN4  
TCMP  
$FFFC  
INTERNAL  
CLOCK  
(OSC ÷ 2)  
÷ 4  
16-BIT COUNTER  
OUTPUT COMPARE  
(OCF)  
TIMER  
INTERRUPT  
REQUEST  
RESET  
TIMER CONTROL REG.  
$0012  
TIMER STATUS REG.  
$0013  
INTERNAL  
DATA  
BUS  
Figure 11-8. Timer Output Compare Block Diagram  
Address: $0016  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Unaffected by reset  
Address: $0017  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Bit 7  
Write:  
Reset:  
Unaffected by reset  
Figure 11-9. Output Compare Registers (OCRH and OCRL)  
Advance Information  
168  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Programmable Timer  
Programmable Timer  
Output Compare Registers  
Writing to the OCRH before writing to the OCRL inhibits timer compares  
until the OCRL is written. Reading or writing to the OCRL after reading  
the TCR will clear the output compare flag bit (OCF). The output  
compare OLVL state will be clocked to its output latch regardless of the  
state of the OCF.  
To prevent OCF from being set between the time it is read and the time  
the output compare registers are updated, use this procedure:  
1. Disable interrupts by setting the I bit in the condition code register.  
2. Write to the OCRH. Compares are now inhibited until OCRL is  
written.  
3. Read the TSR to arm the OCF for clearing.  
4. Enable the output compare registers by writing to the OCRL. This  
also clears the OCF flag bit in the TSR.  
5. Enable interrupts by clearing the I bit in the condition code register.  
A software example of this procedure is shown in Table 11-1.  
Table 11-1. Output Compare Initialization Example  
9B  
...  
SEI  
...  
DISABLE INTERRUPTS  
.....  
...  
...  
.....  
B7  
B6  
BF  
...  
16  
13  
17  
STA  
LDA  
STX  
...  
OCRH INHIBIT OUTPUT COMPARE  
TSR  
ARM OCF FLAG FOR CLEARING  
OCRL READY FOR NEXT COMPARE, OCF CLEARED  
.....  
...  
...  
.....  
9A  
CLI  
ENABLE INTERRUPTS  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
Programmable Timer  
169  
Programmable Timer  
11.7 Timer Control Register  
The timer control register (TCR) shown in Figure 11-10, performs the  
following functions:  
Enables input capture interrupts  
Enables output compare interrupts  
Enables timer overflow interrupts  
Controls the active edge polarity of the TCAP signal  
Controls the active level of the TCMP output  
Reset clears all the bits in the TCR with the exception of the IEDG bit  
which is unaffected.  
Address: $0012  
Bit 7  
ICIE  
0
6
OCIE  
0
5
TOIE  
0
4
0
3
0
2
0
1
IEDG  
U
Bit 0  
OLVL  
0
Read:  
Write:  
Reset:  
0
0
0
= Unimplemented  
U = Unaffected  
Figure 11-10. Timer Control Register (TCR)  
ICIE Input Capture Interrupt Enable Bit  
This read/write bit enables interrupts caused by an active signal on  
the TCAP pin or from CPF2 flag bit of the analog subsystem voltage  
comparator 2. Reset clears the ICIE bit.  
1 = Input capture interrupts enabled  
0 = Input capture interrupts disabled  
OCIE Output Compare Interrupt Enable Bit  
This read/write bit enables interrupts caused by an active match of the  
output compare function. Reset clears the OCIE bit.  
1 = Output compare interrupts enabled  
0 = Output compare interrupts disabled  
Advance Information  
170  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Programmable Timer  
MOTOROLA  
Programmable Timer  
Timer Status Register  
TOIE Timer Overflow Interrupt Enable  
This read/write bit enables interrupts caused by a timer overflow.  
Reset clears the TOIE bit.  
1 = Timer overflow interrupts enabled  
0 = Timer overflow interrupts disabled  
IEDG Input Capture Edge Select  
The state of this read/write bit determines whether a positive or  
negative transition triggers a transfer of the contents of the timer  
register to the input capture register. This transfer can occur due to  
transitions on the TCAP pin or the CPF2 flag bit of voltage comparator  
2. Resets have no effect on the IEDG bit.  
1 = Positive edge (low-to-high transition) triggers input capture  
0 = Negative edge (high-to-low transition) triggers input capture  
NOTE: The IEDG bit must be set when either mode 2 or 3 of the analog  
subsystem is being used for A/D conversions. Otherwise, the input  
capture will not occur on the rising edge of the comparator 2 flag.  
OLVL Output Compare Output Level Select  
The state of this read/write bit determines whether a logic 1 or a logic  
0 is transferred to the TCMP pin when a successful output compare  
occurs. Reset clears the OLVL bit.  
1 = Signal to TCMP pin goes high on output compare.  
0 = Signal to TCMP pin goes low on output compare.  
11.8 Timer Status Register  
The timer status register (TSR) shown in Figure 11-11 contains flags for  
these events:  
An active signal on the TCAP pin or the CPF2 flag bit of voltage  
comparator 2 in the analog subsystem, transferring the contents  
of the timer registers to the input capture registers  
A match between the 16-bit counter and the output compare  
registers, transferring the OLVL bit to the PB4/AN4/TCMP pin if  
that pin is set as an output  
An overflow of the timer registers from $FFFF to $0000  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
171  
Programmable Timer  
Programmable Timer  
Writing to any of the bits in the TSR has no effect. Reset does not  
change the state of any of the flag bits in the TSR.  
Address: $0013  
Bit 7  
6
5
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
ICF  
OCF  
TOF  
U
U
U
0
0
0
0
0
= Unimplemented  
U = Unaffected  
Figure 11-11. Timer Status Register (TSR)  
ICF Input Capture Flag  
The ICF bit is automatically set when an edge of the selected polarity  
occurs on the TCAP pin. Clear the ICF bit by reading the timer status  
register with the ICF set, and then reading the low byte (ICRL, $0015)  
of the input capture registers. Resets have no effect on ICF.  
OCF Output Compare Flag  
The OCF bit is automatically set when the value of the timer registers  
matches the contents of the output compare registers. Clear the OCF  
bit by reading the timer status register with the OCF set and then  
accessing the low byte (OCRL, $0017) of the output compare  
registers. Resets have no effect on OCF.  
TOF Timer Overflow Flag  
The TOF bit is automatically set when the 16-bit timer counter rolls  
over from $FFFF to $0000. Clear the TOF bit by reading the timer  
status register with the TOF set and then accessing the low byte  
(TMRL, $0019) of the timer registers. Resets have no effect on TOF.  
Advance Information  
172  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Programmable Timer  
MOTOROLA  
Programmable Timer  
Timer Operation during Wait Mode  
11.9 Timer Operation during Wait Mode  
During wait mode, the 16-bit timer continues to operate normally and  
may generate an interrupt to trigger the MCU out of wait mode.  
11.10 Timer Operation during Stop Mode  
When the MCU enters stop mode, the free-running counter stops  
counting (the internal processor clock is stopped). It remains at that  
particular count value until stop mode is exited by applying a low signal  
to the IRQ/VPP pin, at which time the counter resumes from its stopped  
value as if nothing had happened. If stop mode is exited via an external  
reset (logic low applied to the RESET pin), the counter is forced to  
$FFFC.  
If a valid input capture edge occurs during stop mode, the input capture  
detect circuitry will be armed. This action does not set any flags or wake  
up the MCU, but when the MCU does wake up there will be an active  
input capture flag (and data) from the first valid edge. If the stop mode is  
exited by an external reset, no input capture flag or data will be present  
even if a valid input capture edge was detected during stop mode.  
11.11 Timer Operation during Halt Mode  
When the MCU enters halt mode, the functions and states of the 16-bit  
programmable timer are the same as for wait mode described in  
11.9 Timer Operation during Wait Mode.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
173  
Programmable Timer  
Programmable Timer  
Advance Information  
174  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Programmable Timer  
Advance Information MC68HC705JJ7/MC68HC705JP7  
Section 12. Personality EPROM (PEPROM)  
12.1 Contents  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175  
12.3 PEPROM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
12.3.1 PEPROM Bit Select Register . . . . . . . . . . . . . . . . . . . . . . .177  
12.3.2 PEPROM Status and Control Register. . . . . . . . . . . . . . . .178  
12.4 PEPROM Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
12.5 PEPROM Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
12.6 PEPROM Erasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
12.2 Introduction  
This section describes how to program the 64-bit personality erasable  
programmable read-only memory (PEPROM). Figure 12-1 shows the  
structure of the PEPROM subsystem.  
NOTE: In packages with no quartz window, the PEPROM functions as one-time  
programmable ROM (OTPROM).  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA Personality EPROM (PEPROM)  
Advance Information  
175  
Personality EPROM (PEPROM)  
INTERNAL DATA BUS  
$000F  
PEPROM STATUS/CONTROL REGISTER  
RESET  
SINGLE  
SENSE  
AMPLIFIER  
V
PP  
ROW 0  
ROW 1  
ROW 2  
ROW 3  
ROW 4  
ROW 5  
ROW 6  
ROW 7  
8-TO-1 COLUMN DECODER  
AND MULTIPLEXER  
8-TO-1 ROW DECODER  
AND MULTIPLEXER  
V
SWITCH  
V SWITCH  
PP  
PP  
ROW ZERO  
DECODER  
PEPROM BIT SELECT REGISTER  
RESET  
$000E  
INTERNAL DATA BUS  
Figure 12-1. Personality EPROM Block Diagram  
Advance Information  
176  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Personality EPROM (PEPROM) MOTOROLA  
Personality EPROM (PEPROM)  
PEPROM Registers  
12.3 PEPROM Registers  
Two I/O registers control programming and reading of the PEPROM:  
The PEPROM bit select register (PEBSR)  
The PEPROM status and control register (PESCR)  
12.3.1 PEPROM Bit Select Register  
The PEPROM bit select register (PEBSR) selects one of 64 bits in the  
PEPROM array. Reset clears all the bits in the PEPROM bit select  
register.  
Address:  
$000E  
Bit 7  
6
PEB6  
0
5
PEB5  
0
4
PEB4  
0
3
PEB3  
0
2
PEB2  
0
1
PEB1  
0
Bit 0  
PEB0  
0
Read:  
Write:  
Reset:  
PEB7  
0
Figure 12-2. PEPROM Bit Select Register (PEBSR)  
PEB7 and PEB6 Not connected to the PEPROM array  
These read/write bits are available as storage locations. Reset clears  
PEB7 and PEB6.  
PEB5PEB0 PEPROM Bit Selects  
These read/write bits select one of 64 bits in the PEPROM as shown  
in Table 12-1. Bits PEB20 select the PEPROM row, and bits  
PEB5PEB3 select the PEPROM column. Reset clears PEB5PEB0,  
selecting the PEPROM bit in row zero, column zero.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA Personality EPROM (PEPROM)  
AdvanceInformation  
177  
Personality EPROM (PEPROM)  
12.3.2 PEPROM Status and Control Register  
The PEPROM status and control register (PESCR) controls the  
PEPROM programming voltage. This register also transfers the  
PEPROM bits to the internal data bus and contains a flag bit when row  
zero is selected.  
Address:  
$000F  
Bit 7  
6
0
5
PEPGM  
0
4
0
3
2
0
1
0
Bit 0  
Read: PEDATA  
Write:  
0
PEPRZF  
R
R
0
R
0
Reset:  
U
0
0
0
1
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 12-3. PEPROM Status and Control Register (PESCR)  
PEDATA PEPROM Data Bit  
This read-only bit is the output state of the PEPROM sense amplifier  
and shows the state of the currently selected bit. The state of the  
PEDATA bit does not affect the programming of the bit selected by the  
PEBSR. Reset does not affect the PEDATA bit.  
1 = PEPROM data is a logic 1.  
0 = PEPROM data is a logic 0.  
PEPGM PEPROM Program Control Bit  
This read/write bit controls the switches that apply the programming  
voltage from the IRQ/VPP pin to the selected PEPROM bit cell. When  
the PEPGM bit is set, the selected bit cell will be programmed to a  
logic 1, regardless of the state of the PEDATA bit. Reset clears the  
PEPGM bit.  
1 = Programming voltage applied to array bit  
0 = Programming voltage not applied to array bit  
PEPRZF PEPROM Row Zero Flag  
This read-only bit is set when the PEPROM bit select register selects  
the first row (row zero) of the PEPROM array. Selecting any other row  
clears PEPRZF. Monitoring PEPRZF can reduce the code needed to  
Advance Information  
178  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Personality EPROM (PEPROM)  
MOTOROLA  
Personality EPROM (PEPROM)  
PEPROM Programming  
access one byte of eight PEPROM locations. Reset clears the  
PEPROM bit select register, thereby setting the PEPRZF bit by  
default.  
1 = Row zero selected  
0 = Row zero not selected  
Table 12-1. PEPROM Bit Selection  
PEBSR  
PEPROM Bit Selected  
$00  
$01  
|
Row 0  
Row 1  
|
Column 0  
Column 0  
|
V
V
V
$07  
$08  
$09  
|
Row 7  
Row 0  
Row 1  
|
Column 0  
Column 1  
Column 1  
|
V
V
V
$37  
$38  
$39  
|
Row 7  
Row 0  
Row 1  
|
Column 6  
Column 7  
Column 7  
|
V
V
V
$3E  
$3F  
Row 6  
Row 7  
Column 7  
Column 7  
12.4 PEPROM Programming  
Factory-provided software for programming the PEPROM is available on  
the World Wide Web at:  
http://www.motorola.com/mcu/  
NOTE: While the PEPGM bit is set and the VPP voltage level is applied to the  
IRQ/VPP pin, do not access bits that are to be left unprogrammed  
(erased).  
To program the PEPROM bits properly, the VDD voltage must be greater  
than 4.5 Vdc.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA Personality EPROM (PEPROM)  
AdvanceInformation  
179  
Personality EPROM (PEPROM)  
The PEPROM can also be programmed by user software with the VPP  
voltage level applied to the IRQ/VPP pin. This sequence shows how to  
program each PEPROM bit:  
1. Select a PEPROM bit by writing to the PEBSR.  
2. Set the PEPGM bit in the PESCR.  
3. Wait for the programming time, tEPGM  
4. Clear the PEPGM bit.  
.
5. Move to next PEPROM bit to be programmed in step 1.  
12.5 PEPROM Reading  
This sequence shows how to read the PEPROM:  
1. Select a bit by writing to the PEBSR.  
2. Read the PEDATA bit in the PESCR.  
3. Store the PEDATA bit in RAM or in a register.  
4. Select another bit by changing the PEBSR.  
5. Continue reading and storing the PEDATA bits until the required  
personality EPROM data is retrieved and stored.  
Reading the PEPROM is easiest when each PEPROM column contains  
one byte. Selecting a row 0 bit selects the first bit, and incrementing the  
PEPROM bit select register (PEBSR) selects the next bit in row 1 from  
the same column. Incrementing PEBSR seven more times selects the  
remaining bits of the column and ends up selecting the bit in row 0 of the  
next column, thereby setting the row 0 flag, PEPRZF.  
NOTE: A PEPROM byte that has been read can be transferred to the personality  
EPROM bit select register (PEBSR) as a temporary storage location  
such that subsequent reads of the PEBSR quickly yield that PEPROM  
byte.  
Advance Information  
180  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Personality EPROM (PEPROM) MOTOROLA  
Personality EPROM (PEPROM)  
PEPROM Erasing  
12.6 PEPROM Erasing  
MCUs with windowed packages permit PEPROM erasing with ultraviolet  
light. Erase the PEPROM by exposing it to 15 Ws/cm2 of ultraviolet light  
with a wavelength of 2537 angstroms. Position the ultraviolet light  
source 1 inch from the window. Do not use a shortwave filter. The erased  
state of a PEPROM bit is a logic 0.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA Personality EPROM (PEPROM)  
AdvanceInformation  
181  
Personality EPROM (PEPROM)  
Advance Information  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Personality EPROM (PEPROM) MOTOROLA  
182  
Advance Information MC68HC705JJ7/MC68HC705JP7  
Section 13. EPROM/OTPROM  
13.1 Contents  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
13.3 EPROM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
13.3.1 EPROM Programming Register . . . . . . . . . . . . . . . . . . . . .184  
13.3.2 Mask Option Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
13.3.3 EPROM Security Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
13.4 EPROM Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
13.4.1 MOR Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
13.4.2 EPMSEC Programming . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
13.5 EPROM Erasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
13.2 Introduction  
This section describes how to program the 6160-byte erasable  
programmable read-only memory/one-time programmable read-only  
memory (EPROM/OTPROM), the mask option register (MOR), and the  
EPROM security bit (EPMSEC).  
NOTE: In packages with no quartz window, the EPROM functions as one-time  
programmable ROM (OTPROM).  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
183  
EPROM/OTPROM  
EPROM/OTPROM  
13.3 EPROM Registers  
The EPROM programming register (EPROG) controls the actual  
programming of the EPROM bytes and the mask option register (MOR).  
The MOR controls eight mask options found on the read-only memory  
(ROM) version of this microcontroller unit (MCU). There is an additional  
EPROM bit (EPMSEC) located at the computer operating properly  
(COP) address to provide EPROM array security.  
13.3.1 EPROM Programming Register  
The EPROM programming register (EPROG) shown in Figure 13-1  
contains the control bits for programming the EPROM. In normal  
operation, the EPROM programming register contains all logic 0s.  
Address:  
$001C  
Bit 7  
0
6
0
5
0
4
0
3
0
2
ELAT  
0
1
MPGM  
0
Bit 0  
EPGM  
0
Read:  
Write:  
Reset:  
R
0
R
0
R
0
R
0
0
= Unimplemented  
R
= Reserved for test  
Figure 13-1. EPROM Programming Register (EPROG)  
EPGM EPROM Programming Bit  
This read/write bit applies the voltage from the IRQ/VPP pin to the  
EPROM. To write the EPGM bit, the ELAT bit must already be set.  
Clearing the ELAT bit also clears the EPGM bit. Reset clears EPGM.  
1 = EPROM programming power switched on  
0 = EPROM programming power switched off  
MPGM Mask Option Register (MOR) Programming Bit  
This read/write bit applies programming power from the IRQ/VPP pin  
to the MOR. Reset clears MPGM.  
1 = MOR programming power switched on  
0 = MOR programming power switched off  
Advance Information  
184  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
EPROM/OTPROM  
MOTOROLA  
EPROM/OTPROM  
EPROM Registers  
ELAT EPROM Bus Latch Bit  
This read/write bit configures address and data buses for  
programming the EPROM array. EPROM data cannot be read when  
ELAT is set. Clearing the ELAT bit also clears the EPGM bit. Reset  
clears ELAT.  
1 = Address and data buses configured for EPROM programming  
of the array. The address and data buses are latched in the  
EPROM array when a subsequent write to the array is made.  
Data in the EPROM array cannot be read.  
0 = Address and data buses configured for normal operation  
Whenever the ELAT bit is cleared, the EPGM bit is also cleared. Both the  
EPGM and the ELAT bit cannot be set using the same write instruction.  
Any attempt to set both the ELAT and EPGM bit on the same write  
instruction cycle will result in the ELAT bit being set and the EPGM bit  
being cleared. To program a byte of EPROM, manipulate the EPROG  
register as follows:  
1. Set the ELAT bit in the EPROG register.  
2. Write the desired data to the desired EPROM address.  
3. Set the EPGM bit in the EPROG register for the specified  
programming time, tEPGM  
.
4. Clear the ELAT and EPGM bits in the EPROG register.  
13.3.2 Mask Option Register  
The mask option register (MOR) shown in Figure 13-2 is an EPROM  
byte that controls eight mask options. The MOR is unaffected by reset.  
The erased state of the MOR is $00. The options that can be  
programmed by the MOR are:  
1. Port software programmable pulldown devices (enable or disable)  
2. Startup delay after stop (16 or 4064 cycles)  
3. Oscillator shunt resistor (2 Mor open)  
4. STOP instruction (enable or disable)  
5. Low-voltage reset (enable or disable)  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
185  
EPROM/OTPROM  
EPROM/OTPROM  
6. Port A external interrupt function (enable or disable)  
7. IRQ trigger sensitivity (edge-triggered only or both edge- and  
level-triggered)  
8. COP watchdog (enable or disable)  
Address:  
$1FF1  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
SWPDI  
DELAY OSCRES SWAIT  
LVREN  
PIRQ  
LEVEL COPEN  
Reset:  
Erased:  
Unaffected by reset  
0
0
0
0
0
0
0
0
Figure 13-2. Mask Option Register (MOR)  
SWPDI Software Pulldown Inhibit Bit  
This EPROM bit inhibits software control of the port A and port B  
pulldown devices.  
1 = Software pulldown inhibited  
0 = Software pulldown enabled  
DELAY Stop Startup Delay Bit  
This EPROM bit selects the number of bus cycles that must elapse  
before bus activity begins following a restart from the stop mode.  
1 = Startup delay is 4064 bus cycles.  
0 = Startup delay is 16 bus cycles.  
CAUTION: The 16-cycle delay option will work properly in devices with the internal  
low-power oscillator or with a steady external clock source. Check  
crystal/ceramic resonator specifications carefully before using the  
16-cycle delay option with a crystal or ceramic resonator.  
OSCRES Oscillator Resistor Bit  
This EPROM bit configures the internal shunt resistor.  
1 = Oscillator configured with 2 M¾ shunt resistor  
0 = Oscillator configured without a shunt resistor  
Advance Information  
186  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
EPROM/OTPROM  
EPROM/OTPROM  
EPROM Registers  
NOTE: The optional oscillator resistor is NOT recommended for devices that  
use an external RC oscillator. For such devices, this bit should be left  
erased as a 0.  
SWAIT STOP Conversion to WAIT Bit  
This EPROM bit disables the STOP instruction and prevents  
inadvertently turning off the COP watchdog with a STOP instruction.  
When the SWAIT bit is set, a STOP instruction puts the MCU in halt  
mode. Halt mode is a wait-like low-power state. The internal oscillator  
and timer clock continue to run, but the CPU clock stops. When the  
SWAIT bit is clear, a STOP instruction stops the internal oscillator, the  
internal clock, the CPU clock, the timer clock, and the COP watchdog  
timer.  
1 = STOP instruction converted to WAIT instruction  
0 = STOP instruction not converted to WAIT instruction  
LVREN Low-Voltage Reset Enable Bit  
This EPROM bit enables the low-voltage reset (LVR) function.  
1 = LVR function enabled  
0 = LVR function disabled  
PIRQ Port A IRQ Enable Bit  
This EPROM bit enables the PA3PA0 pins to function as external  
interrupt sources.  
1 = PA3PA0 enabled as external interrupt sources  
0 = PA3PA0 not enabled as external interrupt sources  
LEVEL External Interrupt Sensitivity Bit  
This EPROM bit makes the external interrupt inputs level-triggered as  
well as edge-triggered  
1 = IRQ/VPP pin negative-edge triggered and low-level triggered;  
PA3PA0 pins positive-edge triggered and high-level triggered  
0 = IRQ/VPP pin negative-edge triggered only; PA3PA0 pins  
positive-edge triggered only  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
187  
EPROM/OTPROM  
EPROM/OTPROM  
COPEN COP Watchdog Enable Bit  
This EPROM bit enables the COP watchdog.  
1 = COP watchdog enabled  
0 = COP watchdog disabled  
13.3.3 EPROM Security Bit  
An EPROM programmable bit is provided at the location of the COP  
watchdog register at $1FF0 as shown in Figure 13-3. This bit allows  
control of access to the EPROM array. Any accesses of the EPROM  
locations will return undefined results when the EPMSEC bit is set. Refer  
to 13.4.2 EPMSEC Programming for programming instructions.  
Address: $1FF0  
Bit 7  
6
5
4
3
2
1
Bit 0  
COPC  
Read:  
OPT  
Write: EPMSEC  
Reset:  
Unaffected by reset  
Erased:  
0
= Unimplemented  
Figure 13-3. EPROM Security in COP and Security Register (COPR)  
EPMSEC EPROM Security1  
This EPROM write-only bit enables the access to the EPROM array.  
1 = Access to the EPROM array in non-user modes is denied.  
0 = Access to the EPROM array in non-user modes is enabled.  
1. No security feature is absolutely secure. However, Motorolas strategy is to make reading or  
copying the EPROM/OTPROM difficult for unauthorized users.  
Advance Information  
188  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
EPROM/OTPROM  
MOTOROLA  
EPROM/OTPROM  
EPROM Programming  
13.4 EPROM Programming  
A programming board is available from Motorola to download to the  
on-chip EPROM/OTPROM using the factory-provided programming  
software. Factory-provided software for programming the PEPROM is  
available on the World Wide Web at:  
http://www.motorola.com/mcu/  
The programming software copies to the 6144-byte space located at  
EPROM addresses $0700$1EFF and to the 16-byte space at  
addresses $1FF0$1FFF which includes the mask option register at  
address $1FF1, and the security bit at address $1FF0.  
NOTE: To program the EPROM/OTPROM, MOR, or EPMSEC bits properly, the  
VDD voltage must be greater than 4.5 volts.  
13.4.1 MOR Programming  
The contents of the MOR should be programmed using the programmer  
board. To program any bits in the MOR, the desired bit states must be  
written to the MOR address and then the MPGM bit in the EPROG  
register must be used. The following sequence will program the MOR:  
1. Write the desired data to the MOR location ($1FF1).  
2. Apply the programming voltage to the IRQ/VPP pin.  
3. Set the MPGM bit in the EPROG.  
4. Wait for the programming time, tMPGM  
.
5. Clear the MPGM bit in the EPROG.  
6. Remove the programming voltage from the IRQ/VPP pin.  
Once the MOR bits have been programmed, some of the options may  
experience glitches in operation after removal of the programming  
voltage. It is recommended that the part be reset before trying to verify  
the contents of the user EPROM or the MOR itself.  
NOTE: The contents of the EPROM or the MOR cannot be accessed if the  
EPMSEC bit in the COPR register has been set.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
189  
EPROM/OTPROM  
EPROM/OTPROM  
13.4.2 EPMSEC Programming  
The EPMSEC bit is programmable. To program the EPMSEC bit, the  
desired state must be written to the COP address and then the MPGM  
bit in the EPROG register must be used. The following sequence will  
program the EPMSEC bit:  
1. Write the desired data to bit 7 of the COPR location ($1FF0).  
2. Apply the programming voltage to the IRQ/VPP pin.  
3. Set the MPGM bit in the EPROG.  
4. Wait for the programming time, tMPGM  
.
5. Clear the MPGM bit in the EPROG.  
6. Remove the programming voltage from the IRQ/VPP pin.  
Once the EPMSEC bit has been programmed to a logic 1, access to the  
contents of the EPROM and MOR in the expanded non-user modes will  
be denied. It is therefore recommended that the user EPROM and MOR  
in the part first be programmed and fully verified before setting the  
EPMSEC bit.  
13.5 EPROM Erasing  
MCUs with windowed packages permit EPROM erasing with ultraviolet  
light. Erase the EPROM by exposing it to 15 Ws/cm2 of ultraviolet light  
with a wavelength of 2537 angstroms. Position the ultraviolet light  
source 1 inch from the window. Do not use a shortwave filter. The erased  
state of an EPROM bit is a logic 0.  
NOTE: Unlike many commercial EPROMs, an erased EPROM byte in the MCU  
will read as $00. All unused locations should be programmed as 0s.  
Advance Information  
190  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
EPROM/OTPROM  
Advance Information MC68HC705JJ7/MC68HC705JP7  
Section 14. Instruction Set  
14.1 Contents  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
14.3 Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
14.3.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
14.3.2 Immediate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
14.3.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
14.3.4 Extended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
14.3.5 Indexed, No Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
14.3.6 Indexed, 8-Bit Offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
14.3.7 Indexed, 16-Bit Offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
14.3.8 Relative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
14.4 Instruction Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
14.4.1 Register/Memory Instructions. . . . . . . . . . . . . . . . . . . . . . .195  
14.4.2 Read-Modify-Write Instructions . . . . . . . . . . . . . . . . . . . . .196  
14.4.3 Jump/Branch Instructions. . . . . . . . . . . . . . . . . . . . . . . . . .197  
14.4.4 Bit Manipulation Instructions . . . . . . . . . . . . . . . . . . . . . . .199  
14.4.5 Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
14.5 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .201  
14.6 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
14.2 Introduction  
The microcontroller unit (MCU) instruction set has 62 instructions and  
uses eight addressing modes. The instructions include all those of the  
M146805 CMOS Family plus one more: the unsigned multiply (MUL)  
instruction. The MUL instruction allows unsigned multiplication of the  
contents of the accumulator (A) and the index register (X). The  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
191  
Instruction Set  
Instruction Set  
high-order product is stored in the index register, and the low-order  
product is stored in the accumulator.  
14.3 Addressing Modes  
The CPU uses eight addressing modes for flexibility in accessing data.  
The addressing modes provide eight different ways for the CPU to find  
the data required to execute an instruction. The eight addressing modes  
are:  
Inherent  
Immediate  
Direct  
Extended  
Indexed, no offset  
Indexed, 8-bit offset  
Indexed, 16-bit offset  
Relative  
14.3.1 Inherent  
Inherent instructions are those that have no operand, such as return  
from interrupt (RTI) and stop (STOP). Some of the inherent instructions  
act on data in the CPU registers, such as set carry flag (SEC) and  
increment accumulator (INCA). Inherent instructions require no operand  
address and are one byte long.  
14.3.2 Immediate  
Immediate instructions are those that contain a value to be used in an  
operation with the value in the accumulator or index register. Immediate  
instructions require no operand address and are two bytes long. The  
opcode is the first byte, and the immediate data value is the second byte.  
Advance Information  
192  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Instruction Set  
MOTOROLA  
Instruction Set  
Addressing Modes  
14.3.3 Direct  
Direct instructions can access any of the first 256 memory locations with  
two bytes. The first byte is the opcode, and the second is the low byte of  
the operand address. In direct addressing, the CPU automatically uses  
$00 as the high byte of the operand address.  
14.3.4 Extended  
Extended instructions use three bytes and can access any address in  
memory. The first byte is the opcode; the second and third bytes are the  
high and low bytes of the operand address.  
When using the Motorola assembler, the programmer does not need to  
specify whether an instruction is direct or extended. The assembler  
automatically selects the shortest form of the instruction.  
14.3.5 Indexed, No Offset  
Indexed instructions with no offset are 1-byte instructions that can  
access data with variable addresses within the first 256 memory  
locations. The index register contains the low byte of the effective  
address of the operand. The CPU automatically uses $00 as the high  
byte, so these instructions can address locations $0000$00FF.  
Indexed, no offset instructions are often used to move a pointer through  
a table or to hold the address of a frequently used random-access  
memory (RAM) or input/output (I/O) location.  
14.3.6 Indexed, 8-Bit Offset  
Indexed, 8-bit offset instructions are 2-byte instructions that can access  
data with variable addresses within the first 511 memory locations. The  
CPU adds the unsigned byte in the index register to the unsigned byte  
following the opcode. The sum is the effective address of the operand.  
These instructions can access locations $0000$01FE.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
193  
Instruction Set  
Instruction Set  
Indexed 8-bit offset instructions are useful for selecting the kth element  
in an n-element table. The table can begin anywhere within the first 256  
memory locations and could extend as far as location 510 ($01FE). The  
k value is typically in the index register, and the address of the beginning  
of the table is in the byte following the opcode.  
14.3.7 Indexed, 16-Bit Offset  
Indexed, 16-bit offset instructions are 3-byte instructions that can access  
data with variable addresses at any location in memory. The CPU adds  
the unsigned byte in the index register to the two unsigned bytes  
following the opcode. The sum is the effective address of the operand.  
The first byte after the opcode is the high byte of the 16-bit offset; the  
second byte is the low byte of the offset.  
Indexed, 16-bit offset instructions are useful for selecting the kth element  
in an n-element table anywhere in memory.  
As with direct and extended addressing, the Motorola assembler  
determines the shortest form of indexed addressing.  
14.3.8 Relative  
Relative addressing is only for branch instructions. If the branch  
condition is true, the CPU finds the effective branch destination by  
adding the signed byte following the opcode to the contents of the  
program counter. If the branch condition is not true, the CPU goes to the  
next instruction. The offset is a signed, twos complement byte that gives  
a branching range of 128 to +127 bytes from the address of the next  
location after the branch instruction.  
When using the Motorola assembler, the programmer does not need to  
calculate the offset, because the assembler determines the proper offset  
and verifies that it is within the span of the branch.  
Advance Information  
194  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Instruction Set  
MOTOROLA  
Instruction Set  
Instruction Types  
14.4 Instruction Types  
The MCU instructions fall into the following five categories:  
Register/memory instructions  
Read-modify-write instructions  
Jump/branch instructions  
Bit manipulation instructions  
Control instructions  
14.4.1 Register/Memory Instructions  
These instructions operate on CPU registers and memory locations.  
Most of them use two operands. One operand is in either the  
accumulator or the index register. The CPU finds the other operand in  
memory.  
Table 14-1. Register/Memory Instructions  
Instruction  
Add Memory Byte and Carry Bit to Accumulator  
Add Memory Byte to Accumulator  
AND Memory Byte with Accumulator  
Bit Test Accumulator  
Mnemonic  
ADC  
ADD  
AND  
BIT  
Compare Accumulator  
CMP  
CPX  
EOR  
LDA  
Compare Index Register with Memory Byte  
EXCLUSIVE OR Accumulator with Memory Byte  
Load Accumulator with Memory Byte  
Load Index Register with Memory Byte  
Multiply  
LDX  
MUL  
ORA  
SBC  
STA  
OR Accumulator with Memory Byte  
Subtract Memory Byte and Carry Bit from Accumulator  
Store Accumulator in Memory  
Store Index Register in Memory  
STX  
Subtract Memory Byte from Accumulator  
SUB  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
195  
Instruction Set  
Instruction Set  
14.4.2 Read-Modify-Write Instructions  
These instructions read a memory location or a register, modify its  
contents, and write the modified value back to the memory location or to  
the register.  
NOTE: Do not use read-modify-write operations on write-only registers.  
Table 14-2. Read-Modify-Write Instructions  
Instruction  
Arithmetic Shift Left (Same as LSL)  
Arithmetic Shift Right  
Bit Clear  
Mnemonic  
ASL  
ASR  
BCLR(1)  
BSET(1)  
CLR  
COM  
DEC  
INC  
Bit Set  
Clear Register  
Complement (Ones Complement)  
Decrement  
Increment  
Logical Shift Left (Same as ASL)  
Logical Shift Right  
LSL  
LSR  
Negate (Twos Complement)  
Rotate Left through Carry Bit  
Rotate Right through Carry Bit  
Test for Negative or Zero  
NEG  
ROL  
ROR  
TST(2)  
1. Unlike other read-modify-write instructions, BCLR and  
BSET use only direct addressing.  
2. TST is an exception to the read-modify-write sequence be-  
cause it does not write a replacement value.  
Advance Information  
196  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Instruction Set  
Instruction Set  
Instruction Types  
14.4.3 Jump/Branch Instructions  
Jump instructions allow the CPU to interrupt the normal sequence of the  
program counter. The unconditional jump instruction (JMP) and the  
jump-to-subroutine instruction (JSR) have no register operand. Branch  
instructions allow the CPU to interrupt the normal sequence of the  
program counter when a test condition is met. If the test condition is not  
met, the branch is not performed.  
The BRCLR and BRSET instructions cause a branch based on the state  
of any readable bit in the first 256 memory locations. These 3-byte  
instructions use a combination of direct addressing and relative  
addressing. The direct address of the byte to be tested is in the byte  
following the opcode. The third byte is the signed offset byte. The CPU  
finds the effective branch destination by adding the third byte to the  
program counter if the specified bit tests true. The bit to be tested and its  
condition (set or clear) is part of the opcode. The span of branching is  
from 128 to +127 from the address of the next location after the branch  
instruction. The CPU also transfers the tested bit to the carry/borrow bit  
of the condition code register.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
197  
Instruction Set  
Instruction Set  
Table 14-3. Jump and Branch Instructions  
Instruction  
Branch if Carry Bit Clear  
Branch if Carry Bit Set  
Branch if Equal  
Mnemonic  
BCC  
BCS  
BEQ  
Branch if Half-Carry Bit Clear  
Branch if Half-Carry Bit Set  
Branch if Higher  
BHCC  
BHCS  
BHI  
Branch if Higher or Same  
Branch if IRQ/VPP Pin High  
BHS  
BIH  
Branch if IRQ/VPP Pin Low  
BIL  
BLO  
Branch if Lower  
Branch if Lower or Same  
Branch if Interrupt Mask Clear  
Branch if Minus  
BLS  
BMC  
BMI  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
BMS  
BNE  
BPL  
Branch Always  
BRA  
BRCLR  
BRN  
BRSET  
BSR  
JMP  
Branch if Bit Clear  
Branch Never  
Branch if Bit Set  
Branch to Subroutine  
Unconditional Jump  
Jump to Subroutine  
JSR  
Advance Information  
198  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Instruction Set  
Instruction Set  
Instruction Types  
14.4.4 Bit Manipulation Instructions  
The CPU can set or clear any writable bit in the first 256 bytes of  
memory, which includes I/O registers and on-chip RAM locations. The  
CPU can also test and branch based on the state of any bit in any of the  
first 256 memory locations.  
Table 14-4. Bit Manipulation Instructions  
Instruction  
Mnemonic  
BCLR  
Bit Clear  
Branch if Bit Clear  
Branch if Bit Set  
Bit Set  
BRCLR  
BRSET  
BSET  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
199  
Instruction Set  
Instruction Set  
14.4.5 Control Instructions  
These instructions act on central processor unit (CPU) registers and  
control CPU operation during program execution.  
Table 14-5. Control Instructions  
Instruction  
Clear Carry Bit  
Mnemonic  
CLC  
CLI  
Clear Interrupt Mask  
No Operation  
NOP  
RSP  
RTI  
Reset Stack Pointer  
Return from Interrupt  
Return from Subroutine  
Set Carry Bit  
RTS  
SEC  
SEI  
Set Interrupt Mask  
Stop Oscillator and Enable IRQ/VPP Pin  
STOP  
SWI  
TAX  
TXA  
WAIT  
Software Interrupt  
Transfer Accumulator to Index Register  
Transfer Index Register to Accumulator  
Stop CPU Clock and Enable Interrupts  
Advance Information  
200  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Instruction Set  
Instruction Set  
Instruction Set Summary  
14.5 Instruction Set Summary  
.
Table 14-6. Instruction Set Summary (Sheet 1 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
H I N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A9  
ii  
2
3
4
5
4
3
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
B9 dd  
C9 hh ll  
D9 ee ff  
E9  
F9  
Add with Carry  
A (A) + (M) + (C)  
ꢀ  
ꢀ ꢀ  
ff  
ADD #opr  
ADD opr  
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AB  
ii  
2
3
4
5
4
3
BB dd  
CB hh ll  
DB ee ff  
EB  
FB  
Add without Carry  
A (A) + (M)  
A (A) (M)  
ꢀ  
ꢀ ꢀ  
ff  
AND #opr  
AND opr  
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A4  
ii  
2
3
4
5
4
3
B4 dd  
C4 hh ll  
D4 ee ff  
E4  
F4  
Logical AND  
— — ꢀ ꢀ —  
ff  
ASL opr  
ASLA  
ASLX  
ASL opr,X  
ASL ,X  
DIR  
INH  
INH  
IX1  
IX  
38 dd  
48  
58  
5
3
3
6
5
Arithmetic Shift Left  
(Same as LSL)  
— — ꢀ  
C
0
68  
78  
ff  
b7  
b7  
b0  
b0  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR ,X  
DIR  
INH  
INH  
IX1  
IX  
37 dd  
47  
57  
5
3
3
6
5
C
Arithmetic Shift Right  
— — ꢀ  
67  
77  
ff  
Branch if Carry Bit  
Clear  
BCC rel  
PC (PC) + 2 + rel ? C = 0  
— — — — —  
REL  
24  
rr  
3
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
5
5
5
5
5
5
5
5
BCLR n opr  
Clear Bit n  
Mn 0  
— — — — —  
Branch if Carry Bit Set  
(Same as BLO)  
BCS rel  
BEQ rel  
PC (PC) + 2 + rel ? C = 1  
PC (PC) + 2 + rel ? Z = 1  
— — — — —  
— — — — —  
REL  
REL  
25  
27  
rr  
rr  
3
3
Branch if Equal  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
201  
Instruction Set  
Instruction Set  
Table 14-6. Instruction Set Summary (Sheet 2 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
H I N Z C  
Branch if Half-Carry  
Bit Clear  
BHCC rel  
PC (PC) + 2 + rel ? H = 0  
PC (PC) + 2 + rel ? H = 1  
— — — — —  
REL  
28  
rr  
3
Branch if Half-Carry  
Bit Set  
BHCS rel  
BHI rel  
— — — — —  
— — — — —  
— — — — —  
REL  
REL  
REL  
29  
22  
24  
rr  
rr  
rr  
3
3
3
Branch if Higher  
PC (PC) + 2 + rel ? C  
Z = 0  
Branch if Higher or  
Same  
BHS rel  
PC (PC) + 2 + rel ? C = 0  
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
— — — — —  
— — — — —  
REL  
REL  
2F  
2E  
A5  
B5 dd  
C5 hh ll  
D5 ee ff  
rr  
rr  
ii  
3
3
BIT #opr  
BIT opr  
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
2
3
4
5
4
3
Bit Test  
Accumulator with  
Memory Byte  
(A) (M)  
— — ꢀ ꢀ —  
E5  
F5  
ff  
p
Branch if Lower  
(Same as BCS)  
BLO rel  
BLS rel  
PC (PC) + 2 + rel ? C = 1  
— — — — —  
— — — — —  
REL  
REL  
25  
23  
rr  
rr  
3
3
Branch if Lower or  
Same  
PC (PC) + 2 + rel ? C  
Z = 1  
Branch if Interrupt  
Mask Clear  
BMC rel  
BMI rel  
BMS rel  
PC (PC) + 2 + rel ? I = 0  
PC (PC) + 2 + rel ? N = 1  
PC (PC) + 2 + rel ? I = 1  
— — — — —  
— — — — —  
— — — — —  
REL  
REL  
REL  
2C rr  
2B rr  
2D rr  
3
3
3
Branch if Minus  
Branch if Interrupt  
Mask Set  
BNE rel  
BPL rel  
BRA rel  
Branch if Not Equal  
Branch if Plus  
PC (PC) + 2 + rel ? Z = 0  
PC (PC) + 2 + rel ? N = 0  
PC (PC) + 2 + rel ? 1 = 1  
— — — — —  
— — — — —  
— — — — —  
REL  
REL  
REL  
26  
2A  
20  
rr  
rr  
rr  
3
3
3
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n opr rel Branch if bit n clear  
PC (PC) + 2 + rel ? Mn = 0  
— — — — ꢀ  
Advance Information  
202  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Instruction Set  
Instruction Set  
Instruction Set Summary  
Table 14-6. Instruction Set Summary (Sheet 3 of 7)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
H I N Z C  
— — — — ꢀ  
— — — — —  
— — — — —  
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n opr rel Branch if Bit n Set  
PC (PC) + 2 + rel ? Mn = 1  
PC (PC) + 2 + rel ? 1 = 0  
Mn 1  
BRN rel  
Branch Never  
Set Bit n  
REL  
21  
rr  
3
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
5
5
5
5
5
5
5
5
BSET n opr  
PC (PC) + 2; push (PCL)  
SP (SP) 1; push (PCH)  
SP (SP) 1  
Branch to  
Subroutine  
BSR rel  
— — — — —  
REL  
AD rr  
6
PC (PC) + rel  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
— — — — 0  
0 — — —  
INH  
INH  
98  
9A  
2
2
Clear Interrupt Mask  
CLR opr  
CLRA  
CLRX  
CLR opr,X  
CLR ,X  
M $00  
A $00  
X $00  
M $00  
M $00  
DIR  
INH  
INH  
IX1  
IX  
3F dd  
4F  
5F  
5
3
3
6
5
Clear Byte  
— — 0 1 —  
6F  
7F  
ff  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A1  
ii  
2
3
4
5
4
3
B1 dd  
C1 hh ll  
D1 ee ff  
E1  
F1  
Compare  
Accumulator with  
Memory Byte  
(A) (M)  
— — ꢀ  
ff  
COM opr  
COMA  
COMX  
COM opr,X  
COM ,X  
M (M) = $FF (M)  
DIR  
INH  
INH  
IX1  
IX  
33 dd  
43  
53  
5
3
3
6
5
A ( ) = $FF (M)  
A
Complement Byte  
(Ones Complement)  
X ( ) = $FF (M)  
— — ꢀ  
1
X
M (M) = $FF (M)  
63  
73  
ff  
M ( ) = $FF (M)  
M
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
203  
Instruction Set  
Instruction Set  
Table 14-6. Instruction Set Summary (Sheet 4 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
H I N Z C  
CPX #opr  
CPX opr  
CPX opr  
CPX opr,X  
CPX opr,X  
CPX ,X  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A3  
ii  
2
3
4
5
4
3
B3 dd  
C3 hh ll  
D3 ee ff  
E3  
F3  
Compare Index  
Register with  
Memory Byte  
(X) (M)  
— — ꢀ  
1
ff  
DEC opr  
DECA  
DECX  
DEC opr,X  
DEC ,X  
M (M) 1  
A (A) 1  
X (X) 1  
M (M) 1  
M (M) 1  
DIR  
INH  
INH  
IX1  
IX  
3A dd  
4A  
5A  
5
3
3
6
5
Decrement Byte  
— — ꢀ ꢀ —  
6A  
7A  
ff  
EOR #opr  
EOR opr  
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A8  
ii  
2
3
4
5
4
3
B8 dd  
C8 hh ll  
D8 ee ff  
E8  
F8  
EXCLUSIVE OR  
Accumulator with  
Memory Byte  
A (A) (M)  
— — ꢀ ꢀ —  
ff  
INC opr  
INCA  
INCX  
INC opr,X  
INC ,X  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
INH  
IX1  
IX  
3C dd  
4C  
5C  
5
3
3
6
5
Increment Byte  
— — ꢀ ꢀ —  
— — — — —  
— — — — —  
6C  
7C  
ff  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
EXT  
IX2  
IX1  
IX  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
FC  
2
3
4
3
2
Unconditional Jump  
Jump to Subroutine  
PC Jump Address  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
IX2  
IX1  
IX  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
FD  
5
6
7
6
5
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) 1  
Push (PCH); SP (SP) 1  
PC Conditional Address  
LDA #opr  
LDA opr  
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A6  
ii  
2
3
4
5
4
3
B6 dd  
C6 hh ll  
D6 ee ff  
E6  
F6  
Load Accumulator with  
Memory Byte  
A (M)  
— — ꢀ ꢀ —  
ff  
Advance Information  
204  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Instruction Set  
Instruction Set  
Instruction Set Summary  
Table 14-6. Instruction Set Summary (Sheet 5 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
H I N Z C  
LDX #opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AE  
ii  
2
3
4
5
4
3
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
BE dd  
CE hh ll  
DE ee ff  
EE  
FE  
Load Index Register  
with Memory Byte  
X (M)  
— — ꢀ ꢀ —  
ff  
LSL opr  
LSLA  
LSLX  
LSL opr,X  
LSL ,X  
DIR  
INH  
INH  
IX1  
IX  
38 dd  
48  
58  
5
3
3
6
5
Logical Shift Left  
(Same as ASL)  
C
0
— — ꢀ  
b7  
b0  
68  
78  
ff  
LSR opr  
LSRA  
LSRX  
LSR opr,X  
LSR ,X  
DIR  
INH  
INH  
IX1  
IX  
34 dd  
44  
54  
5
3
3
6
5
0
C
Logical Shift Right  
Unsigned Multiply  
— — 0  
b7  
b0  
64  
74  
ff  
X : A (X) × (A)  
0 — — — 0  
INH  
42  
11  
MUL  
NEG opr  
NEGA  
NEGX  
NEG opr,X  
NEG ,X  
M (M) = $00 (M)  
A (A) = $00 (A)  
X (X) = $00 (X)  
M (M) = $00 (M)  
M (M) = $00 (M)  
DIR  
INH  
INH  
IX1  
IX  
30  
40  
50  
60  
70  
ii  
5
3
3
6
5
Negate Byte  
(Twos Complement)  
— — ꢀ  
ꢀ ꢀ  
ff  
No Operation  
— — — — —  
INH  
9D  
AA  
BA dd  
CA hh ll  
DA ee ff  
2
NOP  
ORA #opr  
ORA opr  
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
ii  
2
3
4
5
4
3
Logical OR  
Accumulator with  
Memory  
A (A)  
(M)  
— — ꢀ ꢀ —  
EA  
FA  
ff  
ROL opr  
ROLA  
ROLX  
ROL opr,X  
ROL ,X  
DIR  
INH  
INH  
IX1  
IX  
39 dd  
49  
59  
5
3
3
6
5
Rotate Byte Left  
through Carry Bit  
C
— — ꢀ  
b7  
b0  
69  
79  
ff  
ROR opr  
RORA  
RORX  
ROR opr,X  
ROR ,X  
DIR  
INH  
INH  
IX1  
IX  
36 dd  
46  
56  
5
3
3
6
5
Rotate Byte Right  
through Carry Bit  
C
— — ꢀ  
b7  
b0  
66  
76  
ff  
RSP  
Reset Stack Pointer  
SP $00FF  
— — — — —  
INH  
9C  
2
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
205  
Instruction Set  
Instruction Set  
Table 14-6. Instruction Set Summary (Sheet 6 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
H I N Z C  
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
Return from Interrupt  
INH  
INH  
80  
A2  
B2 dd  
C2 hh ll  
D2 ee ff  
6
Return from  
Subroutine  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTS  
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
ii  
2
3
4
5
4
3
Subtract Memory Byte  
and Carry Bit from  
Accumulator  
A (A) (M) (C)  
— — ꢀ  
E2  
F2  
ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
— — — — 1  
1 — — —  
INH  
INH  
99  
9B  
2
2
Set Interrupt Mask  
STA opr  
STA opr  
STA opr,X  
STA opr,X  
STA ,X  
DIR  
EXT  
IX2  
IX1  
IX  
B7 dd  
C7 hh ll  
D7 ee ff  
4
5
6
5
4
Store Accumulator in  
Memory  
M (A)  
— — ꢀ ꢀ —  
0 — — —  
— — ꢀ ꢀ —  
E7  
F7  
ff  
Stop Oscillator and  
Enable IRQ Pin  
STOP  
INH  
8E  
2
STX opr  
STX opr  
STX opr,X  
STX opr,X  
STX ,X  
DIR  
EXT  
IX2  
IX1  
IX  
BF dd  
CF hh ll  
DF ee ff  
4
5
6
5
4
Store Index  
Register In Memory  
M (X)  
EF  
FF  
ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A0  
ii  
2
3
4
5
4
3
B0 dd  
C0 hh ll  
D0 ee ff  
E0  
F0  
Subtract Memory Byte  
from  
Accumulator  
A (A) (M)  
— — ꢀ  
ꢀ ꢀ  
ff  
PC (PC) + 1; Push (PCL)  
SP (SP) 1; Push (PCH)  
SP (SP) 1; Push (X)  
SP (SP) 1; Push (A)  
SP (SP) 1; Push (CCR)  
SP (SP) 1; I 1  
SWI  
Software Interrupt  
1 — — —  
INH  
83  
10  
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
Advance Information  
206  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Instruction Set  
Instruction Set  
Opcode Map  
Table 14-6. Instruction Set Summary (Sheet 7 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
H I N Z C  
Transfer  
TAX  
Accumulator to Index  
Register  
X (A)  
— — — — —  
INH  
97  
2
TST opr  
TSTA  
TSTX  
TST opr,X  
TST ,X  
DIR  
INH  
INH  
IX1  
IX  
3D dd  
4D  
5D  
4
3
3
5
4
Test Memory Byte for  
Negative or Zero  
(M) $00  
A (X)  
— — — — —  
6D  
7D  
ff  
Transfer Index  
Register to  
Accumulator  
TXA  
— — — — —  
INH  
INH  
9F  
8F  
2
2
Stop CPU Clock and  
Enable  
WAIT  
— — —  
Interrupts  
A
C
Accumulator  
Carry/borrow flag  
opr  
PC  
Operand (one or two bytes)  
Program counter  
CCR Condition code register  
dd Direct address of operand  
dd rr Direct address of operand and relative offset of branch instruction  
DIR Direct addressing mode  
ee ff High and low bytes of offset in indexed, 16-bit offset addressing  
EXT Extended addressing mode  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
rel  
rr  
SP  
X
Relative program counter offset byte  
Relative program counter offset byte  
Stack pointer  
ff  
H
Offset byte in indexed, 8-bit offset addressing  
Half-carry flag  
Index register  
Z
Zero flag  
hh ll High and low bytes of operand address in extended addressing  
#
Immediate value  
Logical AND  
I
Interrupt mask  
ii  
Immediate operand byte  
Logical OR  
IMM Immediate addressing mode  
INH Inherent addressing mode  
Logical EXCLUSIVE OR  
Contents of  
Negation (twos complement)  
Loaded with  
( )  
( )  
?
IX  
Indexed, no offset addressing mode  
IX1 Indexed, 8-bit offset addressing mode  
IX2 Indexed, 16-bit offset addressing mode  
If  
M
N
n
Memory location  
Negative flag  
Any bit  
:
Concatenated with  
Set or cleared  
Not affected  
14.6 Opcode Map  
See Table 14-7.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
207  
Instruction Set  
Table 14-7. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
INH  
INH  
IX1  
IX  
INH  
INH  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
MSB  
LSB  
MSB  
LSB  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
5
5
3
5
3
3
6
5
9
2
3
4
5
4
3
BRSET0  
BSET0  
BRA  
NEG  
NEGA  
NEGX  
NEG  
NEG  
RTI  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
CMP  
SBC  
CPX  
AND  
BIT  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
3
DIR  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
DIR  
5
2
2
2
2
2
REL  
3
2
DIR  
1
INH  
1
INH  
2
IX1  
1
IX  
1
1
INH  
6
2
2
2
2
2
2
2
IMM  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT  
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IX2  
5
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IX1  
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IX  
3
5
BRCLR0  
BCLR0  
BRN  
RTS  
CMP  
CMP  
CMP  
CMP  
CMP  
3
DIR  
DIR  
5
REL  
3
INH  
IMM  
2
DIR  
3
EXT  
4
IX2  
IX1  
IX  
3
5
11  
5
4
BRSET1  
BSET1  
BHI  
MUL  
SBC  
SBC  
SBC  
SBC  
CPX  
SBC  
CPX  
3
DIR  
DIR  
5
REL  
3
1
1
1
INH  
3
IMM  
2
DIR  
3
EXT  
4
IX2  
5
IX1  
4
IX  
3
5
5
3
6
5
10  
BRCLR1  
BCLR1  
BLS  
COM  
COMA  
COMX  
COM  
COM  
LSR  
SWI  
CPX  
CPX  
CPX  
3
DIR  
DIR  
5
REL  
3
2
2
DIR  
5
INH  
3
1
1
INH  
3
2
2
IX1  
6
1
1
IX  
5
1
INH  
IMM  
2
DIR  
3
EXT  
4
IX2  
5
IX1  
4
IX  
3
5
BRSET2  
BSET2  
BCC  
LSR  
LSRA  
LSRX  
LSR  
AND  
AND  
AND  
AND  
AND  
3
DIR  
DIR  
5
REL  
3
DIR  
INH  
INH  
IX1  
6
IX  
IMM  
2
DIR  
3
EXT  
4
IX2  
IX1  
IX  
3
5
5
4
BRCLR2  
BCLR2 BCS/BLO  
BIT  
IMM  
2
BIT  
BIT  
EXT  
4
BIT  
LDA  
STA  
BIT  
LDA  
STA  
3
DIR  
DIR  
5
2
2
2
2
2
2
2
2
2
2
2
REL  
3
DIR  
3
IX2  
5
IX1  
4
IX  
3
5
5
3
3
5
BRSET3  
BSET3  
BNE  
ROR  
RORA  
RORX  
ROR  
ROR  
ASR  
LDA  
LDA  
LDA  
LDA  
STA  
EOR  
ADC  
ORA  
ADD  
JMP  
JSR  
LDX  
STX  
3
DIR  
DIR  
5
REL  
3
2
2
DIR  
5
1
1
INH  
3
1
1
INH  
3
2
2
IX1  
1
1
IX  
5
IMM  
DIR  
EXT  
5
IX2  
6
IX1  
5
IX  
4
5
6
2
4
BRCLR3  
BCLR3  
BEQ  
ASR  
ASRA  
ASRX  
ASR  
TAX  
STA  
STA  
3
DIR  
DIR  
5
REL  
3
DIR  
5
INH  
3
INH  
3
IX1  
6
IX  
5
1
1
1
1
1
1
1
INH  
2
DIR  
3
EXT  
4
IX2  
5
IX1  
4
IX  
3
5
2
BRSET4  
BSET4  
BHCC  
ASL/LSL ASLA/LSLA ASLX/LSLX ASL/LSL ASL/LSL  
CLC  
EOR  
EOR  
EOR  
EOR  
EOR  
3
DIR  
DIR  
5
REL  
3
2
2
2
DIR  
5
1
1
1
INH  
3
1
1
1
INH  
3
2
2
2
IX1  
6
1
1
1
IX  
5
INH  
2
2
2
2
2
IMM  
2
DIR  
3
EXT  
4
IX2  
IX1  
IX  
3
5
5
4
BRCLR4  
BCLR4  
BHCS  
ROL  
ROLA  
ROLX  
ROL  
ROL  
DEC  
SEC  
ADC  
ADC  
ADC  
ADC  
ADC  
3
DIR  
DIR  
5
REL  
3
DIR  
5
INH  
3
INH  
3
IX1  
6
IX  
5
INH  
2
IMM  
2
DIR  
3
EXT  
4
IX2  
5
IX1  
4
IX  
3
5
BRSET5  
BSET5  
BPL  
DEC  
DECA  
DECX  
DEC  
CLI  
ORA  
ORA  
ORA  
ORA  
ORA  
3
DIR  
DIR  
5
REL  
3
DIR  
INH  
INH  
IX1  
IX  
INH  
2
IMM  
2
DIR  
3
EXT  
4
IX2  
5
IX1  
4
IX  
3
5
BRCLR5  
BCLR5  
BMI  
SEI  
ADD  
ADD  
ADD  
ADD  
ADD  
3
DIR  
DIR  
5
REL  
3
INH  
2
IMM  
DIR  
2
EXT  
3
IX2  
4
IX1  
3
IX  
2
5
5
3
3
6
5
BRSET6  
BSET6  
BMC  
INC  
INCA  
INCX  
INC  
TST  
INC  
TST  
RSP  
JMP  
JMP  
JMP  
JSR  
LDX  
STX  
JMP  
JSR  
LDX  
STX  
3
DIR  
DIR  
5
REL  
3
2
2
DIR  
4
1
1
INH  
3
1
1
INH  
3
2
2
IX1  
5
1
1
IX  
4
INH  
2
DIR  
5
EXT  
6
IX2  
7
IX1  
6
IX  
5
5
6
BRCLR6  
BCLR6  
BMS  
TST  
TSTA  
TSTX  
NOP  
BSR  
JSR  
JSR  
3
DIR  
DIR  
5
REL  
3
DIR  
INH  
INH  
IX1  
IX  
INH  
2
2
REL  
2
DIR  
3
EXT  
4
IX2  
5
IX1  
4
IX  
3
5
2
BRSET7  
BSET7  
BIL  
REL  
3
STOP  
LDX  
LDX  
LDX  
3
DIR  
DIR  
5
1
1
INH  
2
IMM  
DIR  
4
EXT  
5
IX2  
6
IX1  
5
IX  
4
5
5
3
3
6
5
2
BRCLR7  
BCLR7  
BIH  
CLR  
CLRA  
INH  
CLRX  
INH  
CLR  
CLR  
WAIT  
TXA  
INH  
STX  
STX  
3
DIR  
DIR  
REL  
2
DIR  
1
1
2
IX1  
1
IX  
INH  
1
DIR  
EXT  
IX2  
IX1  
IX  
INH = Inherent  
IMM = Immediate  
DIR = Direct  
REL = Relative  
IX = Indexed, No Offset  
IX1 = Indexed, 8-Bit Offset  
IX2 = Indexed, 16-Bit Offset  
MSB  
0
MSB of Opcode in Hexadecimal  
LSB  
5 Number of Cycles  
BRSET0 Opcode Mnemonic  
DIR Number of Bytes/Addressing Mode  
LSB of Opcode in Hexadecimal  
0
EXT = Extended  
3
Advance Information MC68HC705JJ7/MC68HC705JP7  
Section 15. Electrical Specifications  
15.1 Contents  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210  
15.3 Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210  
15.4 Operating Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .211  
15.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
15.6 Supply Current Characteristics  
(VDD = 4.5 to 5.5 Vdc) . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
15.7 Supply Current Characteristics  
(VDD = 2.7 to 3.3 Vdc) . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
15.8 DC Electrical Characteristics (5.0 Vdc). . . . . . . . . . . . . . . . . .215  
15.9 DC Electrical Characteristics (3.0 Vdc). . . . . . . . . . . . . . . . . .216  
15.10 Analog Subsystem Characteristics (5.0 Vdc) . . . . . . . . . . . . .217  
15.11 Analog Subsystem Characteristics (3.0 Vdc) . . . . . . . . . . . . .218  
15.12 Control Timing (5.0 Vdc). . . . . . . . . . . . . . . . . . . . . . . . . . . . .220  
15.13 Control Timing (3.0 Vdc). . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
15.14 PEPROM and EPROM Programming  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224  
15.15 SIOP Timing (VDD = 5.0 Vdc). . . . . . . . . . . . . . . . . . . . . . . . .225  
15.16 SIOP Timing (VDD = 3.0 Vdc). . . . . . . . . . . . . . . . . . . . . . . . .226  
15.17 Reset Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
209  
Electrical Specifications  
Electrical Specifications  
15.2 Introduction  
This section contains the electrical and timing specifications.  
15.3 Maximum Ratings  
Maximum ratings are the extreme limits to which the MCU can be  
exposed without permanently damaging it.  
The MCU contains circuitry to protect the inputs against damage from  
high static voltages; however, do not apply voltages higher than those  
shown in the table below. Keep VIn and VOut within the range  
V
SS (VIn or VOut) VDD. Connect unused inputs to the appropriate  
voltage level, either VSS or VDD  
.
Rating  
Symbol  
Value  
Unit  
VDD  
Supply voltage  
0.3 to +7.0  
V
Bootloader/self-check mode  
(IRQ/VPP pin only)  
VIn  
VSS 0.3 to 17  
V
Current drain per pin excluding VDD and VSS  
Operating junction temperature  
I
25  
mA  
° C  
° C  
TJ  
+150  
Tstg  
Storage temperature range  
65 to +150  
NOTE: This device is not guaranteed to operate properly at the maximum  
ratings. Refer to 15.8 DC Electrical Characteristics (5.0 Vdc) and 15.9  
DC Electrical Characteristics (3.0 Vdc) for guaranteed operating  
conditions.  
Advance Information  
210  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Electrical Specifications  
MOTOROLA  
Electrical Specifications  
Operating Temperature Range  
15.4 Operating Temperature Range  
Characteristic  
Symbol  
Value  
Unit  
Operating temperature range  
Extended  
TL to TH  
40 to +85  
TA  
° C  
15.5 Thermal Characteristics  
Characteristic  
Thermal resistance  
Symbol  
Value  
Unit  
Plastic DIP  
SOIC  
θJA  
60  
° C/W  
15.6 Supply Current Characteristics (V = 4.5 to 5.5 Vdc)  
DD  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
RUN(3) (analog and LVR disabled)  
Internal low-power oscillator at 100 kHz  
Internal low-power oscillator at 500 kHz  
External oscillator running at 4.2 MHz  
150  
375  
3.00  
568  
1100  
5.20  
µA  
µA  
mA  
IDD  
WAIT(4) (analog and LVR disabled)  
Internal low-power oscillator at 100 kHz  
Internal low-power oscillator at 500 kHz  
External oscillator running at 4.2 MHz  
45  
75  
1.00  
85  
375  
2.20  
µA  
µA  
mA  
IDD  
STOP(5) (analog and LVR disabled)  
Typical  
40° C to 85° C  
IDD  
2
4
10  
20  
µA  
µA  
Incremental IDD for enabled modules  
IDD  
5
380  
15  
475  
LVR  
Analog subsystem  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 V, TL TA TH, unless otherwise noted. All values shown reflect average measurements.  
2. Typical values at midpoint of voltage range, 25°C only  
3. Run (Operating) IDD, Wait IDD: Measured using external square wave clock source to OSC1 pin or internal oscillator, all  
inputs 0.2 Vdc from either supply rail (VDD or VSS); no dc loads, less than 50 pF on all outputs, CL = 20 pF on OSC2.  
4. Wait IDD is affected linearly by the OSC2 capacitance.  
5. Stop IDD: All ports configured as inputs, VIL = 0.2 Vdc, VIH = VDD 0.2 Vdc, OSC1 = VDD  
.
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
211  
Electrical Specifications  
Electrical Specifications  
15.7 Supply Current Characteristics (V = 2.7 to 3.3 Vdc)  
DD  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
RUN(3) (analog and LVR disabled)  
Internal low-power oscillator at 100 kHz  
Internal low-power oscillator at 500 kHz  
External oscillator running at 2.1 MHz  
70  
320  
1.25  
320  
800  
2.60  
µA  
µA  
mA  
IDD  
WAIT(4) (analog and LVR disabled)  
Internal low-power oscillator at 100 kHz  
Internal low-power oscillator at 500 kHz  
External oscillator running at 2.1 MHz  
20  
40  
0.50  
65  
250  
1.10  
µA  
µA  
mA  
IDD  
STOP(5) (analog and LVR disabled)  
25° C  
40° C to 85° C  
IDD  
1
2
5
10  
µA  
µA  
Incremental IDD for enabled modules  
IDD  
5
380  
15  
475  
LVR  
Analog subsystem  
1. VDD = 2.7 to 3.3 Vdc, VSS = 0 V, TL TA TH, unless otherwise noted. All values shown reflect average measurements.  
2. Typical values at midpoint of voltage range, 25°C only.  
3. Run (Operating) IDD, Wait IDD: Measured using external square wave clock source to OSC1 pin or internal oscillator, all  
inputs 0.2 Vdc from either supply rail (VDD or VSS); no dc loads, less than 50 pF on all outputs, CL = 20 pF on OSC2.  
4. Wait IDD is affected linearly by the OSC2 capacitance.  
5. Stop IDD: All ports configured as inputs, VIL = 0.2 Vdc, VIH = VDD 0.2 Vdc, OSC1 = VDD  
.
Advance Information  
212  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
Supply Current Characteristics (VDD = 2.7 to 3.3 Vdc)  
3.50E03  
3.00E03  
2.50E03  
2.00E03  
1.50E03  
1.00E03  
5.00E04  
0.00E+00  
5.5 V  
4.5 V  
3.3 V  
2.7 V  
0
0.5  
1
1.5  
2
2.5  
FREQUENCY IN MHz  
Figure 15-1. Typical Run IDD versus Internal  
Clock Frequency at 25° C  
1.60E03  
1.40E03  
1.20E03  
1.00E03  
5.5 V  
4.5 V  
3.3 V  
2.7 V  
8.00E04  
6.00E04  
4.00E04  
2.00E04  
0.00E+00  
0
0.5  
1
1.5  
2
2.5  
FREQUENCY IN MHz  
Figure 15-2. Typical Wait IDD versus Internal  
Clock Frequency at 25° C  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
213  
Electrical Specifications  
Electrical Specifications  
3.50E03  
3.00E03  
2.50E03  
2.00E03  
1.50E03  
1.00E03  
5.00E04  
40° C  
25° C  
85° C  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
SUPPLY VOLTAGE IN VOLTS  
Figure 15-3. Typical Run IDD with External Oscillator  
1.80E03  
1.60E03  
1.40E03  
1.20E03  
1.00E03  
8.00E04  
6.00E04  
4.00E04  
2.00E04  
40°C  
25°C  
85°C  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
SUPPLY VOLTAGE IN VOLTS  
Figure 15-4. Typical Wait IDD with External Oscillator  
4.50E06  
4.00E06  
3.50E06  
3.00E06  
40° C  
2.50E06  
2.00E06  
1.50E06  
1.00E06  
5.00E07  
0.00E+00  
25°C  
85°C  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
SUPPLY VOLTAGE IN VOLTS  
Figure 15-5. Typical Stop IDD with Analog and LVR Disabled  
Advance Information  
214  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Electrical Specifications  
MOTOROLA  
Electrical Specifications  
DC Electrical Characteristics (5.0 Vdc)  
15.8 DC Electrical Characteristics (5.0 Vdc)  
Characteristic(1), (2)  
Typ(3)  
Symbol  
Min  
Max  
Unit  
Output voltage  
I
= 10.0 µA  
VOL  
VOH  
Load  
Load  
0.1  
V
VDD 0.1  
I
= 10.0 µA  
Output high voltage  
(I  
= 0.8 mA) PB0PB7  
= 4.0 mA) PA0PA5, PB4, PC0PC7(4)  
VDD 0.8  
VDD 0.8  
Load  
Load  
VOH  
V
V
(I  
Output low voltage  
(I  
(I  
(I  
= 1.6 mA) PB0PB7, RESET  
Load  
Load  
Load  
0.4  
0.4  
1.5  
VOL  
= 10 mA) PA0PA5, PB4, PC0PC7(4)  
= 15 mA) PA0PA5, PB4, PC0PC7(4)  
High source current  
Total for all (6) PA0PA5 pins and PB4  
Total for all (8) PC0PC7(4) pins  
IOH  
20  
30  
mA  
mA  
High sink current  
Total for all (6) PA0PA5 pins and PB4  
Total for all (8) PC0PC7(4) pins  
IOL  
40  
60  
Input high voltage  
PA0PA5, PB0PB7, PC0PC7(4), RESET, OSC1, IRQ/VPP  
VIH  
VIL  
IIn  
0.7 x VDD  
VDD  
0.3 x VDD  
1
V
V
Input low voltage  
PA0PA5, PB0PB7, PC0PC7(4), RESET, OSC1, IRQ/VPP  
VSS  
Input current  
OSC1, IRQ/VPP  
1  
µA  
Input current  
RESET (pullup, source)  
RESET (pulldown, sink)  
IIn  
10  
6  
µA  
mA  
I/O ports hi-Z leakage current (pulldowns off)  
PA0PA6, PB0PB7, PC0PC7(4)  
IOZ  
2  
2
µA  
µA  
Input pulldown current  
PA0PA5, PB0PB7, PC0PC7(4) (VIn ; VIH = 0.7 x VDD  
PA0PA5, PB0PB7, PC0PC7(4) (VIn ; VIL = 0.3 x VDD  
)
IIL  
40  
25  
100  
65  
280  
190  
)
1. +4.5 VDD +5.5 V, VSS = 0 V, TL TA TH, unless otherwise noted  
2. All values shown reflect average measurements.  
3. Typical values at midpoint of voltage range, 25°C only.  
4. PC0PC7 parameters only apply to MC68HC705JP7.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
AdvanceInformation  
215  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
15.9 DC Electrical Characteristics (3.0 Vdc)  
Characteristic(1), (2)  
Typ(3)  
Symbol  
Min  
Max  
Unit  
Output voltage  
I
= 10.0 µA  
VOL  
VOH  
Load  
Load  
0.1  
V
VDD 0.1  
I
= 10.0 µA  
Output high voltage  
(I  
= 0.2 mA) PB0PB7  
= 2.0 mA) PA0PA5, PB4, PC0PC7(4)  
VDD 0.8  
VDD 0.8  
Load  
Load  
VOH  
V
V
(I  
Output low voltage  
(I  
= 1.6 mA) PB0PB7, RESET  
= 5 mA) PA0PA5, PB4, PC0PC7(4)  
Load  
Load  
VOL  
0.3  
0.3  
(I  
High source current  
Total for all (6) PA0PA5 pins and PB4  
Total for all (8) PC0PC7(4) pins  
IOH  
20  
30  
mA  
mA  
High sink current  
Total for all (6) PA0PA5 pins and PB4  
Total for all (8) PC0PC7(4) pins  
IOL  
40  
60  
Input high voltage  
PA0PA5, PB0PB7, PC0PC7(4), RESET, OSC1, IRQ/VPP  
VIH  
VIL  
IIn  
0.7 x VDD  
VDD  
0.2 x VDD  
1
V
V
Input low voltage  
PA0PA5, PB0PB7, PC0PC7(4), RESET, OSC1, IRQ/VPP  
VSS  
Input current  
OSC1, IRQ/VPP  
1  
µA  
Input current  
RESET (pullup, source)  
RESET (pulldown, sink)  
IIn  
5
3  
µA  
mA  
I/O ports hi-Z leakage current (pulldowns off)  
PA0PA6, PB0PB7, PC0PC7(4)  
IOZ  
2  
2
µA  
µA  
Input pulldown current  
PA0PA5, PB0PB7, PC0PC7(4) (VIn ; VIH = 0.7 x VDD  
PA0PA5, PB0PB7, PC0PC7(4) (VIn ; VIL = 0.3 x VDD  
)
IIL  
10  
4
25  
20  
75  
40  
)
1. +2.7 VDD +3.3 V, VSS = 0 V, TL TA TH, unless otherwise noted  
2. All values shown reflect average measurements.  
3. Typical values at midpoint of voltage range, 25°C only.  
4. PC0PC7 parameters only apply to MC68HC705JP7.  
Advance Information  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Electrical Specifications MOTOROLA  
216  
Electrical Specifications  
Analog Subsystem Characteristics (5.0 Vdc)  
15.10 Analog Subsystem Characteristics (5.0 Vdc)  
NOTE: See Figure 15-6.  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Voltage comparators  
15  
VIO  
VCMR  
ZIn  
Input offset voltage  
mV  
V
VDD 1.5  
Common-mode range  
Comparator 1 input impedance  
800  
kΩ  
Comparator 2 input impedance  
ZIn  
ZIn  
Direct input to comparator 2 (HOLD = 1, DHOLD = 0)  
Divider input to comparator 2 (HOLD = 0, DHOLD = 1)  
800  
80  
kΩ  
kΩ  
Input divider ratio (comparator 2, HOLD = 0, DHOLD =1)  
RDIV  
0.49  
0.51  
VIn = 0 to VDD 1.5 V  
Analog subsystem internal VSS offset  
VAOFF  
RMUX  
20  
40  
3
mV  
Sum of comparator offset and IR drop through VSS  
Channel selection multiplexer switch resistance  
kΩ  
External current source (PB0/AN0)  
Source current (VOut = VDD/2)  
ICHG  
ICHG  
IDIS  
85  
113  
±1  
µA  
%FS  
mA  
Source current linearity (VOut = 0 to VDD 1.5 Vdc)  
Discharge sink current (VOut = 0.4 V)  
1.1  
External capacitor (connected to PB0/AN0)  
Voltage range  
VCAP  
tDIS  
VSS  
VDD 1.5  
V
ms/µF  
µF  
Discharge time  
5
10  
2
CEXT  
Value of external ramping capacitor  
Internal sample and hold capacitor  
Capacitance  
CSH  
8
13  
pF  
Charge/discharge time (0 to 3.5 Vdc)  
Direct connection (HOLD = 1, DHOLD = 0)  
tSHCHG  
tSHDCHG  
tSHTCHG  
CSHDIS  
1
2
µs  
µs  
Divided connection (HOLD = 0, DHOLD = 1)  
Temperature diode connection (HOLD = 1, DHOLD = 1)  
Leakage discharge rate  
1
µs  
0.2  
V/sec  
Internal temperature sensing diode  
VD  
Voltage at TJ = 25°C  
0.65  
1.8  
0.71  
2.0  
V
TCD  
Temperature change in voltage  
mV/°C  
1. +4.5 VDD +5.5 V, VSS = 0 V, TL TA TH, unless otherwise noted  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
AdvanceInformation  
217  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
15.11 Analog Subsystem Characteristics (3.0 Vdc)  
NOTE: See Figure 15-6.  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Voltage comparators  
mV  
V
VIO  
VCMR  
ZIn  
Input offset voltage  
15  
VDD 1.5  
Common-mode range  
800  
kΩ  
Comparator 1 input impedance  
Comparator 2 input impedance  
ZIn  
ZIn  
800  
80  
kΩ  
kΩ  
Direct input to comparator 2 (HOLD = 1, DHOLD = 0)  
Divider input to comparator 2 (HOLD = 0, DHOLD = 1)  
Input divider ratio (comparator 2, HOLD = 0, DHOLD =1)  
RDIV  
0.49  
0.51  
VIn = 0 to VDD 1.5 V  
Analog subsystem internal VSS offset  
Multiplexer switch resistance  
VAOFF  
RMUX  
10  
30  
5
mV  
kΩ  
External current source (PB0/AN0)  
Source current (VOut = VDD/2)  
ICHG  
ICHG  
IDIS  
75  
1
104  
±1  
µA  
%FS  
mA  
Source current linearity (VOut = 0 to VDD 1.5 Vdc)  
Discharge sink current (VOut = 0.4 V)  
External capacitor (connected to PB0/AN0)  
Voltage range  
VCAP  
tDIS  
CEXT  
VSS  
5
VDD 1.5  
V
ms/µF  
µF  
Discharge time  
10  
2
Value of external ramping capacitor  
Internal sample and hold capacitor  
Capacitance  
8
13  
pF  
CSH  
Charge/discharge time (0 to 3.5 Vdc)  
Direct connection (HOLD = 1, DHOLD = 0)  
Divided connection (HOLD = 0, DHOLD = 1)  
Temperature diode connection (HOLD = 1, DHOLD = 1)  
Leakage discharge rate  
tSHCHG  
tSHDCHG  
tSHTCHG  
CSHDIS  
1
2
µs  
µs  
1
µs  
0.1  
V/sec  
Internal temperature sensing diode  
VD  
Voltage at TJ = 25°C  
0.65  
1.8  
0.71  
2.0  
V
TCD  
Temperature change in voltage  
mV/°C  
1. +2.7 VDD +3.3 V, VSS = 0 V, TL TA TH, unless otherwise noted  
Advance Information  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Electrical Specifications MOTOROLA  
218  
Electrical Specifications  
Analog Subsystem Characteristics (3.0 Vdc)  
820  
800  
780  
760  
740  
720  
700  
680  
660  
640  
620  
600  
580  
560  
45  
35  
25  
15  
5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
TEMPERATURE IN °C  
Figure 15-6. Typical Temperature Diode Performance  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
219  
Electrical Specifications  
Electrical Specifications  
15.12 Control Timing (5.0 Vdc)  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Frequency of oscillation (OSC)  
RC oscillator option  
0.1  
dc  
4.2  
4.2  
4.2  
MHz  
MHz  
MHz  
Crystal oscillator option  
External clock source  
fOSC  
Internal low-power oscillator  
Standard product (100 kHz nominal)  
Mask option (500 kHz nominal, see Note 3)  
60  
300  
140  
700  
kHz  
kHz  
Internal operating frequency, crystal, or external clock (fOSC/2)  
RC oscillator option  
Crystal oscillator option  
External clock source  
0.05  
dc  
2.1  
2.1  
2.1  
MHz  
MHz  
MHz  
fOP  
Internal low-power oscillator  
Standard product (100 kHz nominal)  
30  
150  
75  
350  
kHz  
kHz  
Mask option (500 kHz nominal(2)  
)
Cycle time (1/fOP  
)
External oscillator or clock source  
Internal low-power oscillator  
476  
ns  
tcyc  
Standard product (100 kHz nominal)  
Mask option (500 kHz nominal(2)  
14.29  
2.86  
33.33  
6.67  
µs  
µs  
)
16-bit timer  
tRESL  
tTH, tTL  
tcyc  
ns  
Resolution  
Input capture (TCAP) pulse width  
4.0  
284  
tILIH  
tILIL  
Interrupt pulse width low (edge-triggered)  
Interrupt pulse period  
284  
ns  
(3)  
tcyc  
tOH, tOL  
OSC1 pulse width (external clock input)  
110  
ns  
Analog subsystem response  
Voltage comparators  
tCPROP  
tCDELAY  
Switching time (10 mV overdrive, either input)  
Comparator power-up delay (bias circuit already powered up)  
External current source (PB0/AN0)  
2
2
µs  
µs  
tISTART  
tIDELAY  
tBDELAY  
Switching time (IDIS to IRAMP  
Power-up delay (bias circuit already powered up)  
Bias circuit power-up delay  
)
1
2
2
µs  
µs  
µs  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 V, TL TA TH, unless otherwise noted  
2. The 500-kHz nominal mask option is available through special order only. Contact your local Motorola sales representative  
for detailed ordering information. Not offered with the RC oscillator.  
3. The minimum period, tILIL, should not be less than the number of cycle times it takes to execute the interrupt service routine  
plus 21 tcyc  
.
Advance Information  
220  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
Control Timing (3.0 Vdc)  
15.13 Control Timing (3.0 Vdc)  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Frequency of oscillation (OSC)  
RC oscillator option  
0.1  
dc  
2.1  
2.1  
2.1  
MHz  
MHz  
MHz  
Crystal oscillator option  
External clock source  
fOSC  
Internal low-power oscillator  
Standard product (100 kHz nominal)  
Mask option (500 kHz nominal, see Note 3))  
60  
300  
140  
700  
kHz  
kHz  
Internal operating frequency, crystal, or external clock (fOSC/2)  
RC oscillator option  
Crystal oscillator option  
External clock source  
0.05  
dc  
1.05  
1.05  
1.05  
MHz  
MHz  
MHz  
fOP  
Internal low-power oscillator  
Standard product (100 kHz nominal)  
30  
150  
70  
350  
kHz  
kHz  
Mask option (500 kHz nominal(2)  
)
Cycle time (1/fOP  
)
External oscillator or clock source  
Internal low-power oscillator  
952  
ns  
tcyc  
Standard product (100 kHz nominal)  
Mask option (500 kHz nominal(2)  
14.29  
2.86  
33.33  
6.67  
µs  
µs  
)
16-bit timer  
tRESL  
tTH, tTL  
tcyc  
ns  
Resolution  
Input capture (TCAP) pulse width  
4.0  
284  
tILIH  
tILIL  
Interrupt pulse width low (edge-triggered)  
Interrupt pulse period  
284  
ns  
(3)  
tcyc  
tOH, tOL  
OSC1 pulse width (external clock input)  
110  
ns  
Analog subsystem response  
Voltage comparators  
tCPROP  
tCDELAY  
Switching time (10 mV overdrive, either input)  
Comparator power-up delay (bias circuit already powered up)  
External current source (PB0/AN0)  
2
2
µs  
µs  
tISTART  
tIDELAY  
tBDELAY  
Switching time (IDIS to IRAMP  
)
1
2
2
µs  
µs  
µs  
Power-up delay (bias circuit already powered up)  
Bias circuit power-up delay  
1. +2.7 VDD +3.3 V, VSS = 0 V, TL TA TH, unless otherwise noted  
2. The 500 kHz nominal mask option is available through special order only. Contact your local Motorola sales representative  
for detailed ordering information. Not offered with the RC oscillator option.  
3. The minimum period, tILIL, should not be less than the number of cycle times it takes to execute the interrupt service routine  
plus 21 tcyc  
.
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
221  
Electrical Specifications  
Electrical Specifications  
510000  
500000  
490000  
480000  
470000  
460000  
450000  
440000  
430000  
420000  
45 35 25 15  
5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
TEMPERATURE IN ° C  
Figure 15-7. Typical 500 kHz External Low-Power  
Oscillator Frequency  
114000  
113500  
113000  
112500  
112000  
111500  
111000  
110500  
110000  
109500  
45 35 25 15  
5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
TEMPERATURE IN °C  
Figure 15-8. Typical 100 kHz External Low-Power  
Oscillator Frequency  
Advance Information  
222  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
Control Timing (3.0 Vdc)  
2.5  
2
1.5  
1
V
= 5.5 V  
= 4.5 V  
DD  
V
DD  
0.5  
0
12.1  
24.9  
49.9  
EXTERNAL RESISTOR VALUE (k)  
Figure 15-9. Typical RC Oscillator Internal Operating  
Frequency Range versus Resistance for High VDD  
Operating Range at T = 25° C  
2
1.5  
1
V
= 3.3 V  
= 2.7 V  
DD  
V
DD  
0.5  
0
12.1  
24.9  
49.9  
EXTERNAL RESISTOR VALUE (k)  
Figure 15-10. Typical RC Oscillator Internal Operating  
Frequency Range versus Resistance for Low VDD  
Operating Range at T = 25° C  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
223  
Electrical Specifications  
Electrical Specifications  
15.14 PEPROM and EPROM Programming Characteristics  
Characteristic(1)  
PEPROM programming voltage (IRQ/VPP  
PEPROM programming voltage (IRQ/VPP  
PEPROM programming time per bit  
Symbol  
VPP  
Min  
16.0  
Typ  
16.5  
3.0  
Max  
17.0  
5.0  
Unit  
V
)
)
IPP  
mA  
ms  
V
tEPGM  
VPP  
4.0  
EPROM/MOR programming voltage (IRQ/VPP  
)
16.0  
16.5  
3.0  
17.0  
5.0  
EPROM/MOR programming current (IRQ/VPP  
EPROM programming time per byte  
MOR programming time  
)
IPP  
mA  
ms  
ms  
tEPGM  
tMPGM  
4.0  
10.0  
1. +4.5 VDD +5.5 V, VSS = 0 V, TL TA TH, unless otherwise noted  
NOTE: To program the EPROM/OTPROM, MOR, or EPMSEC bits, the voltage  
on VDD must be greater than 4.5 volts.  
Advance Information  
224  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
SIOP Timing (VDD = 5.0 Vdc)  
15.15 SIOP Timing (V = 5.0 Vdc)  
DD  
Characteristic(1)  
Symbol  
Min  
Typ  
Max  
Unit  
Frequency of operation  
Master  
Slave  
fSIOP(M)  
fSIOP(S)  
0.25 x fOP  
dc  
0.25 x fOP  
0.25 x fOP  
1050  
kHz  
Cycle time  
Master  
Slave  
tSCK(M)  
tSCK(M)  
4.0 x tcyc  
4.0 x tcyc  
4.0 x tcyc  
3.8  
µs  
Clock (SCK) low time (fOP = 4.2 MHz)  
SDO data valid time  
SDO hold time  
tSCKL  
tV  
tHO  
tS  
952  
200  
ns  
ns  
ns  
ns  
ns  
0
SDI setup time  
100  
100  
tH  
SDI hold time  
1. +4.5 VDD +5.5 V, VSS = 0 V, TL TA TH, unless otherwise noted  
t
SCK  
t
SCKL  
SCK  
t
t
V
HO  
SDO  
SDI  
MSB  
BIT 1  
LSB  
t
S
LSB  
MSB  
VALID DATA  
t
H
Figure 15-11. SIOP Timing Diagram  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
225  
Electrical Specifications  
Electrical Specifications  
15.16 SIOP Timing (V = 3.0 Vdc)  
DD  
Characteristic(1)  
Frequency of operation  
Symbol  
Min  
Typ  
Max  
Unit  
Master  
Slave  
fSIOP(M)  
fSIOP(S)  
0.25 x fOP  
dc  
0.25 x fOP  
0.25 x fOP  
525  
kHz  
Cycle time  
Master  
Slave  
tSCK(M)  
tSCK(M)  
4.0 x tcyc  
4.0 x tcyc  
4.0 x tcyc  
1.9  
µs  
Clock (SCK) low time (fOP = 2.1 MHz)  
tSCKL  
tV  
tHO  
tS  
1905  
400  
ns  
ns  
ns  
ns  
ns  
SDO data valid time  
SDO hold time  
SDI setup time  
SDI hold time  
0
200  
200  
tH  
1. +2.7 VDD +3.3 V, VSS = 0 V, TL TA TH, unless otherwise noted  
Advance Information  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Electrical Specifications MOTOROLA  
226  
Electrical Specifications  
Reset Characteristics  
15.17 Reset Characteristics  
Characteristic(1)  
Symbol  
Min  
Typ  
Max  
Unit  
Low-voltage reset  
Rising recovery voltage  
Falling reset voltage  
LVR hysteresis  
VLVRR  
VLVRF  
VLVRH  
2.4  
2.3  
30  
3.4  
3.3  
70  
4.4  
4.3  
V
V
mV  
POR recovery voltage(2)  
POR VDD slew rate(2)  
VPOR  
0
100  
mV  
SVDDR  
SVDDF  
Rising(2)  
Falling(2)  
0.1  
0.05  
V/µs  
tRL  
tCYC  
tCYC  
RESET pulse width (when bus clock active)  
1.5  
3
RESET pulldown pulse width from internal  
reset  
tRPD  
4
1. +2.7 VDD +3.3 V, VSS = 0 V, TL TA TH, unless otherwise noted  
2. By design, not tested  
4.5  
4
3.5  
3
2.5  
45 35 25 15 5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
TEMPERATURE IN ° C  
Figure 15-12. Typical Falling Low Voltage Reset  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA Electrical Specifications  
AdvanceInformation  
227  
Electrical Specifications  
1
OSC1  
t
RL  
RESET  
(2)  
4064 or 16 t  
cyc  
INTERNAL  
(3)  
CLOCK  
INTERNAL  
ADDRESS  
1FFE  
1FFF  
NEW PCH NEW PCL  
(3)  
BUS  
INTERNAL  
DATA  
NEW  
PCH  
NEW  
PCL  
Op  
code  
(3)  
BUS  
Notes:  
1. Represents the internal gating of the OSC1 pin  
2. Normal delay of 4064 tcyc or short delay option of 16 tcyc  
3. Internal timing signal and data information not available externally  
Figure 15-13. Stop Recovery Timing Diagram  
INTERNAL  
1
RESET  
RESET  
PIN  
(2)  
t
4064 or 16 t  
cyc  
RPD  
INTERNAL  
(3)  
CLOCK  
INTERNAL  
ADDRESS  
1FFF  
NEW PCH NEW PCL  
1FFE  
(3)  
BUS  
INTERNAL  
DATA  
NEW  
PCH  
NEW  
PCL  
(3)  
BUS  
Notes:  
1.Represents the internal reset from low-voltage reset, illegal opcode fetch or COP watchdog timeout  
2.Only if reset occurs during normal delay of 4064 tCYC or short delay option of 16 tCYC for initial power-up  
or stop recovery.  
3.Internal timing signal and data information not available externally  
Figure 15-14. Internal Reset Timing Diagram  
Advance Information  
228  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Electrical Specifications MOTOROLA  
Electrical Specifications  
Reset Characteristics  
V
V
DD  
LVRR  
V
LVRF  
LOW  
VOLTAGE  
RESET  
RESET  
1
PIN  
(2)  
t
4064 or 16 t  
cyc  
RPD  
INTERNAL  
3
CLOCK  
INTERNAL  
ADDRESS  
1FFF  
NEW PCH NEW PCL  
1FFE  
(3)  
BUS  
INTERNAL  
DATA  
NEW  
PCH  
NEW  
PCL  
(3)  
BUS  
Notes:  
1. RESET pin pulled down by internal device  
2 Only if LVR occurs during normal delay of 4064 tcyc or short delay option of 16 tcyc for initial power-up  
or stop recovery.  
3 Internal timing signal and data information not available externally  
Figure 15-15. Low-Voltage Reset Timing Diagram  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
229  
Electrical Specifications  
Electrical Specifications  
Advance Information  
230  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Electrical Specifications  
Advance Information MC68HC705JJ7/MC68HC705JP7  
Section 16. Mechanical Specifications  
16.1 Contents  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231  
16.3 20-Pin Plastic Dual In-Line Package (Case 738) . . . . . . . . . .232  
16.4 20-Pin Small Outline Integrated Circuit (Case 751D) . . . . . . .233  
16.5 28-Pin Plastic Dual In-Line Package (Case 710) . . . . . . . . . .233  
16.6 28-Pin Small Outline Integrated Circuit (Case 751F) . . . . . . .234  
16.7 20-Pin Windowed Ceramic Integrated Circuit  
(Case 732). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234  
16.8 28-Pin Windowed Ceramic Integrated Circuit  
(Case 733A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
16.2 Introduction  
The MC68HC705JJ7 is available in:  
20-pin plastic dual in-line package (PDIP)  
20-pin small outline integrated circuit (SOIC) package  
20-pin windowed ceramic package  
The MC68HC705JP7 is available in:  
28-pin plastic dual in-line package (PDIP)  
28-pin small outline integrated circuit (SOIC) package  
28-pin windowed ceramic package  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA Mechanical Specifications  
Advance Information  
231  
Mechanical Specifications  
The following figures show the latest packages at the time of this  
publication. To make sure that you have the latest case outline  
specifications, contact one of the following:  
Local Motorola Sales Office  
World Wide Web at:  
http://www.motorola.com/mcu/  
Follow World Wide Web on-line instructions to retrieve the current  
mechanical specifications.  
16.3 20-Pin Plastic Dual In-Line Package (Case 738)  
-A-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
20  
1
11  
10  
B
4. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
C
L
INCHES  
MIN MAX  
1.010 1.070 25.66 27.17  
MILLIMETERS  
DIM  
A
B
C
D
E
MIN MAX  
0.240 0.260  
0.150 0.180  
0.015 0.022  
0.050 BSC  
6.10  
3.81  
0.39  
6.60  
4.57  
0.55  
-T-  
SEATING  
PLANE  
K
M
1.27 BSC  
0.050 0.070  
0.100 BSC  
0.008 0.015  
0.110 0.140  
0.300 BSC  
1.27  
1.77  
F
E
N
G
J
2.54 BSC  
0.21  
2.80  
0.38  
3.55  
G
F
J 20 PL  
K
L
7.62 BSC  
0°  
0.51  
D 20 PL  
0.25 (0.010)  
M
M
0.25 (0.010)  
T B  
0°  
0.020 0.040  
15°  
15°  
1.01  
M
N
M
M
A
T
Advance Information  
232  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Mechanical Specifications MOTOROLA  
Mechanical Specifications  
20-Pin Small Outline Integrated Circuit (Case 751D)  
16.4 20-Pin Small Outline Integrated Circuit (Case 751D)  
-A-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
20  
11  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
-B-  
P 10 PL  
4. MAXIMUM MOLD PROTRUSION 0.150  
(0.006) PER SIDE.  
M
M
0.010 (0.25)  
B
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
1
10  
D 20 PL  
J
MILLIMETERS  
MIN MAX  
12.65 12.95  
INCHES  
MIN MAX  
M
S
S
0.010 (0.25)  
T
A
B
DIM  
A
0.499 0.510  
0.292 0.299  
0.093 0.104  
0.014 0.019  
0.020 0.035  
0.050 BSC  
B
7.40  
2.35  
0.35  
0.50  
7.60  
2.65  
0.49  
0.90  
F
C
D
F
R X 45°  
1.27 BSC  
G
J
0.25  
0.10  
0°  
0.32  
0.25  
7°  
0.010 0.012  
0.004 0.009  
K
C
M
P
0° 7°  
0.395 0.415  
10.05 10.55  
0.25 0.75  
-T-  
SEATING  
PLANE  
R
0.010 0.029  
M
K
G 18 PL  
16.5 28-Pin Plastic Dual In-Line Package (Case 710)  
NOTES:  
1. POSITIONAL TOLERANCE OF LEADS (D),  
SHALL BE WITHIN 0.25mm (0.010) AT  
MAXIMUM MATERIAL CONDITION, IN  
RELATION TO SEATING PLANE AND  
EACH OTHER.  
2. DIMENSION L TO CENTER OF LEADS  
WHEN FORMED PARALLEL.  
3. DIMENSION B DOES NOT INCLUDE  
MOLD FLASH.  
28  
1
15  
14  
B
MILLIMETERS  
MIN MAX  
INCHES  
MIN MAX  
DIM  
A
B
C
D
F
36.45 37.21  
13.72 14.22  
1.435 1.465  
0.540 0.560  
0.155 0.200  
0.014 0.022  
0.040 0.060  
L
A
C
3.94  
0.36  
1.02  
5.08  
0.56  
1.52  
N
G
H
J
2.54 BSC  
0.100 BSC  
1.65  
0.20  
2.92  
2.16  
0.38  
3.43  
0.065 0.085  
0.008 0.015  
0.115 0.135  
J
H
G
K
L
M
K
SEATING  
PLANE  
15.24 BSC  
0.600 BSC  
F
D
0°  
0.51  
15°  
1.02  
0°  
0.020 0.040  
15°  
M
N
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA Mechanical Specifications  
AdvanceInformation  
233  
Mechanical Specifications  
16.6 28-Pin Small Outline Integrated Circuit (Case 751F)  
-A-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
28  
1
15  
14X P  
M
M
-B-  
0.010 (0.25)  
B
4. MAXIMUM MOLD PROTRUSION 0.15  
(0.006) PER SIDE.  
14  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
28X D  
M
M
S
S
B
0.010 (0.25)  
T
A
R X 45°  
MILLIMETERS  
MIN MAX  
17.80 18.05  
INCHES  
MIN MAX  
C
DIM  
A
-T-  
0.701 0.711  
0.292 0.299  
0.093 0.104  
0.014 0.019  
0.016 0.035  
0.050 BSC  
-T-  
SEATING  
PLANE  
B
7.40  
2.35  
0.35  
0.41  
7.60  
2.65  
0.49  
0.90  
26X G  
C
D
K
F
F
G
J
1.27 BSC  
0.23  
0.13  
0°  
0.32  
0.29  
8°  
0.009 0.013  
0.005 0.011  
J
K
M
P
0° 8°  
0.395 0.415  
10.05 10.55  
0.25 0.75  
R
0.010 0.029  
16.7 20-Pin Windowed Ceramic Integrated Circuit (Case 732)  
NOTES:  
1. LEADS WITHIN 0.010 DIAMETER, TRUE  
POSITION AT SEATING PLANE, AT MAXIMUM  
MATERIAL CONDITION.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
20  
1
11  
10  
3. DIMENSIONS A AND B INCLUDE MENISCUS.  
B
C
INCHES  
A
DIM MIN  
MAX  
A
B
C
D
F
G
H
J
K
L
M
N
0.940 0.990  
0.260 0.295  
0.150 0.200  
0.015 0.022  
0.055 0.065  
0.100 BSC  
0.020 0.050  
0.008 0.012  
0.125 0.160  
0.300 BSC  
L
F
N
J
H
K
M
G
0
15  
D
0.010 0.040  
SEATING  
PLANE  
Advance Information  
234  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Mechanical Specifications MOTOROLA  
Mechanical Specifications  
28-Pin Windowed Ceramic Integrated Circuit (Case 733A)  
16.8 28-Pin Windowed Ceramic Integrated Circuit (Case 733A)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION A AND B INCLUDE MENISCUS.  
4. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
28  
15  
14  
B
1
INCHES  
DIM MIN MAX  
MILLIMETERS  
M
J
A–  
MIN  
36.45  
12.70  
4.06  
MAX  
37.84  
15.36  
6.09  
L
A
B
C
D
F
1.435  
0.500  
0.160  
0.015  
0.050  
1.490  
0.605  
0.240  
0.022  
0.065  
0.38  
1.27  
0.55  
1.65  
N
C
G
J
0.100 BSC  
2.54 BSC  
T–  
SEATING  
PLANE  
0.008  
0.125  
0.012  
0.160  
0.20  
3.17  
0.30  
4.06  
K
K
L
0.600 BSC  
15.24 BSC  
G
M
N
0
0.020  
15  
0.050  
0
_
0.51  
15  
_
1.27  
_
_
F
D 28 PL  
M
M
0.25 (0.010)  
T A  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA Mechanical Specifications  
AdvanceInformation  
235  
Mechanical Specifications  
Advance Information  
236  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Mechanical Specifications MOTOROLA  
Advance Information MC68HC705JJ7/MC68HC705JP7  
Section 17. Ordering Information  
17.1 Contents  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237  
17.3 MC68HC705JJ7 Order Numbers . . . . . . . . . . . . . . . . . . . . . .238  
17.4 MC68HC705JP7 Order Numbers. . . . . . . . . . . . . . . . . . . . . .239  
17.2 Introduction  
This section contains instructions for ordering the various erasable  
programmable read-only memory (EPROM) versions of the  
MC68HC05JJ/JP Family of microcontrollers.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Advance Information  
237  
Ordering Information  
Ordering Information  
17.3 MC68HC705JJ7 Order Numbers  
MC order numbers for the available 20-pin package types are shown  
here.  
EPO  
Oscill.  
Type(1)  
Operating  
Temperature  
Range  
Package  
Type  
LPO Freq.  
(kHz)  
Order Number  
Plastic DIP(2)  
SOIC(3)  
XTAL  
100  
100  
40 to 85° C  
40 to 85° C  
MC68HC705JJ7CP  
XTAL  
MC68HC705JJ7CDW  
CERDIP(4), (5)  
Plastic DIP  
SOIC  
XTAL  
RC  
100  
100  
100  
100  
500  
500  
500  
40 to 85° C  
40 to 85° C  
40 to 85° C  
40 to 85° C  
40 to 85° C  
40 to 85° C  
40 to 85° C  
MC68HC705JJ7S  
MC68HRC705JJ7CP  
MC68HRC705JJ7CDW  
MC68HRC705JJ7S  
MC68HC705SJ7CP  
MC68HC705SJ7CDW  
MC68HC705SJ7S  
RC  
CERDIP(5)  
Plastic DIP  
SOIC  
RC  
XTAL  
XTAL  
XTAL  
CERDIP(5)  
1. Crystal/ceramic resonator or RC oscillator  
2. Plastic dual in-line package (P, case outline 738)  
3. Small outline integrated circuit package (DW, case outline 751D)  
4. Windowed ceramic dual in-line package (S, case outline 732)  
5. CERDIP parts are only guaranteed at room temperature and are for evoluation purposes  
only.  
Advance Information  
238  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
Ordering Information  
MOTOROLA  
Ordering Information  
MC68HC705JP7 Order Numbers  
17.4 MC68HC705JP7 Order Numbers  
MC order numbers for the available 28-pin package types are shown  
here.  
EPO  
Oscill.  
Type(1)  
Operating  
Temperature  
Range  
Package  
Type  
LPO Freq.  
(kHz)  
Order Number  
Plastic DIP(2)  
SOIC(3)  
XTAL  
100  
100  
40 to 85° C  
40 to 85° C  
MC68HC705JP7CP  
XTAL  
MC68HC705JP7CDW  
CERDIP(4), (5)  
Plastic DIP  
SOIC  
XTAL  
RC  
100  
100  
100  
100  
500  
500  
500  
40 to 85° C  
40 to 85° C  
40 to 85° C  
40 to 85° C  
40 to 85° C  
40 to 85° C  
40 to 85° C  
MC68HC705JP7S  
MC68HRC705JP7CP  
MC68HRC705JP7CDW  
MC68HRC705JP7S  
MC68HC705SP7CP  
MC68HC705SP7CDW  
MC68HC705SP7S  
RC  
CERDIP(5)  
Plastic DIP  
SOIC  
RC  
XTAL  
XTAL  
XTAL  
CERDIP(5)  
1. Crystal/ceramic resonator or RC oscillator  
2. Plastic dual in-line package (P, case outline 710)  
3. Small outline integrated circuit package (DW, case outline 751F)  
4. Windowed ceramic dual in-line package (S, case outline 733A)  
5. CERDIP parts are only guaranteed at room temperature and are for evoluation purposes  
only.  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
AdvanceInformation  
239  
Ordering Information  
Ordering Information  
Advance Information  
240  
MC68HC705JJ7 • MC68HC705JP7 — REV 4  
MOTOROLA  
Ordering Information  
blank  
How to Reach Us:  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution  
P.O. Box 5405  
Denver, Colorado 80217  
1-303-675-2140  
1-800-441-2447  
TECHNICAL INFORMATION CENTER:  
1-800-521-6274  
JAPAN:  
Motorola Japan Ltd.  
SPS, Technical Information Center  
3-20-1, Minami-Azabu, Minato-ku  
Tokyo 106-8573 Japan  
81-3-3440-3569  
ASIA/PACIFIC:  
Motorola Semiconductors H.K. Ltd.  
Silicon Harbour Centre  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
852-26668334  
HOME PAGE:  
http://www.motorola.com/semiconductors/  
MC68HC705JJ7/D  
REV 4  
68HC705JJ7 Product Summary Page  
mit Q  
Search  
Motorola : Semiconductors :  
68HC705JJ7 : Microcontroller  
Page Contents  
The Motorola MC68HC705JJ7 is a member of the M68HC05JJ and M68HC705JP Families of  
microcontrollers. All MCUs in the family use the popular M68HC05 central processor unit  
(CPU) and are available with a variety of subsystems, memory sizes and types, and package  
types.  
Features  
Parametrics  
Documentation  
Development  
Tools/Boards  
Design Tools  
Orderable Parts  
68HC705JJ7 Features  
Other Info  
Low-Cost, HC05 Core MCU in 20-Pin Package (MC68HC05JJ6)  
6160 Bytes of User EPROM, Including 8 Bytes of Security Code and 16 Bytes of User  
Vectors  
224 Bytes of Low-Power User RAM  
64 Bits of personality EPROM  
16-Bit Programmable Timer with Input Capture and Output Compare  
15-Stage Core Timer, Including 8-Bit Free-Running Counter and 4-Stage, Selectable  
Real-Time Interrupt Generator  
Simple Serial Input/Output Port (SIOP) with Interrupt Capability  
Two Voltage Comparators which Can be Combined with the 16-Bit Programmable  
Timer to Create a 4-Channel, Single-Slope Analog-to-Digital (A/D) Converter  
Voltage Comparator 1 Output Can Drive the PB4 Port Pin Directly under Software Control  
14 I/O Lines, Including High-Source/Sink Current Capability on 6 I/O Pins  
FAQs  
Literature Services  
Acceleration, Pressure,  
Alarm IC, and Smoke  
IC Sensors  
Automotive  
Microcontrollers  
Motor Control  
3rd Party Design Help  
[top]  
68HC705JJ7 Parametrics  
Bus Frequency  
(Max)  
RAM EPROM/OTP  
Operating Voltage  
(V)  
Timer  
I/O Serial  
A/D  
(Bytes)  
(Bytes)  
(MHz)  
224 6K + 64 Bit PEP 16-Bit, 1I/C, 1O/C, MFT, RTI 14 SIOP 4-CH 12-Bit  
3.3, 5.0  
2.1  
[top]  
68HC705JJ7 Documentation  
68HC705JJ7 Product Summary Page  
Application Note  
ID  
Name  
Format Size K Rev # Date Last Modified Order Availability  
MC68HC05SR3 and MC68HC705SR3 Design  
Notes  
AN-HK-22/D  
pdf 3241  
0
0
1/01/1994  
1/01/1994  
-
-
MC6805R3 and MC68HC05SR3 Technical  
Comparison  
AN-HK-23/D  
pdf  
pdf  
544  
82  
Designing for Electromagnetic Compatibility  
(EMC) with HCMOS Microcontrollers  
AN1050/D  
AN1055/D  
AN1067/D  
0
0
1
1/01/2000  
1/01/1990  
5/31/2002  
M6805 16-Bit Support Macros  
pdf 1048  
Pulse Generation and Detection with  
Microcontroller Units  
pdf  
242  
Arithmetic Waveform Synthesis with the HC05/08  
MCUs  
AN1222/D  
AN1222SW  
AN1259/D  
pdf  
zip  
pdf  
24  
20  
78  
0
0
0
1/01/1993  
1/01/1995  
1/01/1995  
Software Files for AN1222 zipped  
-
-
System Design and Layout Techniques for Noise  
Reduction in MCU-Based Systems  
Simple Real-Time Kernels for M68HC05  
Microcontrollers  
AN1262/D  
AN1262SW  
AN1263/D  
pdf  
zip  
pdf  
84  
11  
0
0
0
1/01/1995  
1/01/1995  
1/01/1995  
Software files for AN1262  
Designing for Electromagnetic Compatibility with  
Single-Chip Microcontrollers  
104  
Adding a Voice User Interface to M68HC05  
Applications  
AN1292/D  
AN1292SW  
AN1662/D  
pdf  
zip  
pdf  
155  
215  
584  
0
0
0
1/01/1996  
1/01/1996  
3/13/2001  
Software files for AN1292 zipped  
-
-
-
Low Cost Universal Motor Phase Angle Drive  
System  
Low Cost Universal Motor Sensorless Phase Angle  
Drive System  
AN1663/D  
AN1667/D  
pdf 1178  
0
0
1/01/1998  
7/10/2002  
Software SCI Implementation to the MISC  
Communication Protocol  
pdf  
112  
AN1667SW  
AN1688/D  
Software for AN1667, zip format  
MISC Bus Slave Switch Node  
zip  
pdf  
93  
1.0  
0
7/31/2002  
7/11/2002  
243  
Noise Reduction Techniques for Microcontroller-  
Based Systems  
AN1705/D  
AN1708/D  
AN1723/D  
pdf  
pdf  
pdf  
67  
82  
0
0
0
1/01/1999  
1/01/1997  
1/01/1997  
Single-Slope Analog-to-Digital (A/D) Conversion  
-
-
Interfacing MC68HC05 Microcontrollers to the  
IBM AT Keyboard Interface  
274  
AN1734/D  
Pulse Width Modulation Using the 16-Bit Timer  
Software files for AN1734 zipped  
pdf  
zip  
102  
2
0
0
1/01/1998  
1/01/1997  
AN1734SW  
Instruction Cycle Timing of MC68HC05JJ/JP  
Series Microcontrollers  
AN1738/D  
AN1739/D  
AN1740/D  
pdf  
pdf  
pdf  
111  
509  
425  
0
0
0
1/01/1998  
11/01/2001  
1/01/1998  
A/D Conversion Software for the MC68HC05JJ/JP  
Series Microcontrollers  
Applications Using the Analog Subsystem on  
MC68HC05JJ/JP Series Microcontrollers  
68HC705JJ7 Product Summary Page  
In-Circuit and Emulation Considerations for  
MC68HC05JJ/JP Series Microcontrollers  
AN1741/D  
AN1744/D  
pdf  
pdf  
125  
80  
0
0
1/01/1998  
1/01/1998  
Resetting Microcontrollers During Power  
Transitions  
AN1752/D  
AN1757/D  
AN1758/D  
Data Structures for 8-Bit Microcontrollers  
Add a Unique Silicon Serial Number to the HC05  
Add Addressable Switches to the HC05  
pdf  
pdf  
pdf  
213  
105  
111  
1
0
0
5/07/2001  
1/01/1998  
1/01/1998  
Precision Sine-Wave Tone Synthesis Using 8-Bit  
MCUs  
AN1771/D  
AN1775/D  
AN1818/D  
pdf  
pdf  
pdf  
250  
86  
0
1
0
1/01/1998  
1/01/1998  
1/01/1999  
Expanding Digital Input with an A/D Converter  
Software SCI Routines with the 16-Bit Timer  
Module  
84  
AN1820/D  
AN1820SW  
AN2103/D  
Software I2C Communications  
pdf  
zip  
pdf  
55  
2
0
0
0
1/01/1999  
1/01/1998  
12/01/2000  
Software files for AN1820 zipped  
-
-
Local Interconnect Network (LIN) Demonstration  
953  
Digital Direct Current Ignition System Using  
HC08 Microcontrollers  
AN2159/D  
AN2159SW  
AN4006/D  
pdf  
zip  
pdf  
129  
182  
61  
0
1
0
11/20/2001  
3/08/2002  
3/27/2000  
AN2159SW  
Digital Captive Discharge Ignition System Using  
HC05/HC08 8-Bit Microcontrollers  
AN442/D  
AN463/D  
Driving LCDs with M6805 Microprocessors  
68HC05K0 Infra-red Remote Control  
pdf 1134  
pdf 111  
pdf 2859  
0
0
1/01/1991  
1/01/1992  
Software Driver Routines for the Motorola  
MC68HC05 CAN Module  
AN464/D  
0
1/01/1993  
Simple A/D for MCUs without Built-In A/D  
Converters  
AN477/D  
AN499/D  
AN991/D  
ANE416/D  
pdf  
pdf  
pdf  
224  
154  
251  
0
0
1
0
1/01/1993  
7/01/1996  
1/28/2002  
1/01/1988  
Let the MC68HC705 Program Itself  
Using the Serial Peripheral Interface to  
Communicate Between Multiple Microcomputers  
MC68HC05B4 Radio Synthesizer  
pdf 1958  
Brochure  
ID  
Name  
Format Size K Rev # Date Last Modified Order Availability  
pdf 621 4/03/2002  
Embedded Flash: Changing the  
Technology World for the Better  
FLYREMBEDFLASH/D  
1
Data Sheets  
ID  
Name  
Format Size K Rev # Date Last Modified Order Availability  
MC68HC705JJ7, MC68HC705JP7,  
MC68HC705SJ7, MC68HC705SP7,  
MC68HRC705JJ7, MC68HRC705JP7  
Advance Information  
MC68HC705JJ7/D  
pdf 2622  
4
9/27/2001  
68HC705JJ7 Product Summary Page  
Engineering Bulletin  
ID  
Name  
Format Size K Rev # Date Last Modified Order Availability  
System Design Considerations: Converting from the  
MC68HC805B6 to the MC68HC705B16  
Microcontroller  
EB166/D  
pdf  
757  
0
1/01/1993  
Differences between the MC68HC705B16 and the  
MC68HC705B16N  
EB180/D  
EB181/D  
EB349/D  
EB396/D  
pdf  
pdf  
pdf  
pdf  
20  
181  
45  
0
0
1
0
1/01/1996  
1/01/1997  
6/22/2000  
6/19/2002  
Frequently Asked Questions and Answers for the  
M68HC05 Family MCAN Module  
RAM Data Retention Considerations for Motorola  
Microcontrollers  
Use of OSC2/XTAL as a Clock Output on Motorola  
Microcontrollers  
49  
EB413/D  
EB421/D  
Resetting MCUs  
pdf  
pdf  
62  
78  
0
0
1/01/2000  
2/23/2000  
The Motorola MCAN Module  
Errata  
ID  
Name  
Format Size K Rev # Date Last Modified Order Availability  
68HC705JJ7 Device Information Sheet:  
G58T Mask Sets  
68HC705JJ7MSE1/D  
68HC705JJ7MSE2/D  
68HC705JJ7MSE3/D  
pdf  
pdf  
pdf  
24  
15  
14  
1
0
0
11/06/1996  
8/27/1997  
1/06/1999  
-
-
-
68HC705JJ7MSE2AD/D Device  
Information Sheet: 0H70H/1H70H Mask  
Sets  
68HC705JJ7MSE3 Device Information  
Sheet: 0H70H/1H70H Mask Sets  
Reference Manual  
ID  
Name  
Format Size K Rev # Date Last Modified Order Availability  
M68HC05AG/AD  
M68HC05 Applications Guide  
pdf 3272  
4
3/18/2002  
-
HC05 Family - Understanding Small  
Microcontrollers  
M68HC05TB/D  
pdf 2866  
2
1/01/1998  
MC68HC05C4, C8, C9, MC68HC705C8,  
MC68HC805C4, MC68HCL05C4, C8,  
MC68HSC05C4, C8 Programming  
Reference  
MC68HC05CXRG/D  
pdf 3150  
1
2/23/2000  
-
Selector Guide  
ID  
Name  
Microcontrollers SPS Sales Guide  
Format Size K Rev # Date Last Modified Order Availability  
pdf 600 9/26/2002  
SG1006/D  
0
68HC705JJ7 Product Summary Page  
SG1011/D  
Software and Development Tools Sales Guide  
pdf  
pdf  
259  
62  
1
0
9/26/2002  
6/24/2002  
Application Selector Guide Index and Cross-  
Reference.  
SG2000CR/D  
[top]  
68HC705JJ7 Development Tools/Boards  
ID  
Name  
Vendor ID  
Order Availability  
X68EM05JP7  
KITMMDS05JP  
KITMMEVS05JP  
M68ICS05JP  
CWHC05  
Emulation Module  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
METROWERKS  
Modular Development System (MMDS) Kits  
Modular Evaluation System (MMEVS)  
M68ICS05JP Development Tool Kit  
CodeWarrior Development Tools for HC05  
[top]  
Design Tools  
Software  
ID  
Name  
Vendor ID  
Format  
asm  
Size K  
4
Rev #  
General Math routines  
MATH16ACOD  
-
-
General Math routines  
MATHAGBCOD  
asm  
6
Software Tools/Assemblers  
ID  
Name  
Vendor ID  
Format  
arc  
Size K  
55  
Rev #  
0
ASHC5ASM  
DOS based freeware assembler  
MOTOROLA  
Software/Application Software/Code Examples  
ID  
Name  
Vendor ID Format Size K Rev #  
HC05 Software Example: Home Thermostat example using the  
705C8 with indoor/outdoor temperature and time of day  
C8THERMSW  
FLOAT05COD  
HC05DELAYSW  
MOTOROLA zip  
MOTOROLA zip  
MOTOROLA zip  
11  
13  
2
-
-
-
Floating Point routines  
HC05 Software Example: Subroutine that delays for a whole  
number of milliseconds  
68HC705JJ7 Product Summary Page  
HC05EXSW  
Library containing software examples in assembly for 68HC05  
MOTOROLA zip  
MOTOROLA zip  
45  
7
-
-
HC05 Software Examples: Using keyboard interrupts and  
decoding a matrix keypad  
HC05KEYINTSW  
HC05 Software Example: Keypad debounce and decode. When a  
key is found, it is changed to ASCII and displayed on an LCD  
HC05KEYPADSW  
HC05LCDSW  
MOTOROLA zip  
MOTOROLA zip  
2
1
-
-
HC05 Software Example: Initializes an LCD and displays  
ABCDEF...S  
HC05 Software Example: Serial Communications Interface  
example  
HC05SCISW  
HC05SPISW  
MOTOROLA zip  
MOTOROLA zip  
1
1
-
-
HC05 Software Example: Serial Peripheral Interface example  
HC05 Software Example: Simple program that reads the state of a  
switch on a general-purpose I/O pin and lights an LED based on  
the state of the switch  
HC05SWITCHSW  
MOTOROLA zip  
1
-
HC05TIMERSW  
J1APWMSW  
HC05 Software Example: Using the 68HC05 16-bit Timer  
MOTOROLA zip  
MOTOROLA zip  
1
1
-
-
HC05 Software Example: Low frequency PWM example using the  
68HC705J1A real-time interrupt and timer overflow interrupt  
HC05 Software example: Software UART example that transmits  
and receives data on the 68HC705J1A  
J1AUARTSW  
K1THERMSW  
MOTOROLA zip  
MOTOROLA zip  
2
5
-
-
HC05 Software Example: Thermometer project using the  
68HC705K1  
SAMPPROGCOD  
THERM-CCOD  
Example routines  
MOTOROLA exe  
MOTOROLA zip  
35  
11  
-
-
Thermometer example in C  
Software/Operating Systems  
ID  
Name  
Vendor ID Format Size K Rev #  
PE68HC05SIM  
Windows upgrades for P&E's simulator software for 68HC05  
PEMICRO  
html  
0
-
[top]  
Orderable Parts Information  
Budgetary  
Price  
QTY 1000+ Availability  
($US)  
Order  
Life Cycle Description (code)  
PartNumber  
Package Info  
Remarks  
Small  
Outline  
(Wide-Body  
SOIC)  
PRODUCT  
MATURITY/SATURATION(4)  
-40 to +85  
C
KXC705JJ7CDW  
$2.19  
68HC705JJ7 Product Summary Page  
Small  
Outline  
Integrated  
Circuit  
PRODUCT  
MATURITY/SATURATION(4)  
-40 to +85  
C
MC68HC705JJ7CDW  
$2.19  
(SOIC)  
Plastic Dual  
In-Line  
Package  
(PDIP)  
PRODUCT  
MATURITY/SATURATION(4)  
-40 to +85  
C
MC68HC705JJ7CP  
XC68HC705JJ7CP  
-
Plastic Dual-  
in-Line  
PRODUCT  
MATURITY/SATURATION(4)  
-40 to +85  
C
$2.19  
(PDIP)  
Shrink  
Plastic Dual-  
in-Line-  
PROD PHASE OUT/SEE LAST ORD -40 to +85  
XC68HC705JJ7CS  
$35.00  
-
DT(6) 30 Nov 2002  
C
window  
(SDIP)  
Small  
Outline  
(Wide-Body  
SOIC)  
PRODUCT  
MATURITY/SATURATION(4)  
-40 to +85  
C
XC68HRC705JJ7CDW  
XC68HRC705JJ7CP  
$2.19  
$2.19  
Plastic Dual-  
in-Line  
PRODUCT  
MATURITY/SATURATION(4)  
-40 to +85  
C
(PDIP)  
PRODUCT  
MATURITY/SATURATION(4)  
KMC705JJ7CDW  
KMC705SJ7CP  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PRODUCT  
MATURITY/SATURATION(4)  
-
PRODUCT  
MATURITY/SATURATION(4)  
KMC705JJ7CP  
-
PRODUCT  
MATURITY/SATURATION(4)  
KMCHRC705JJ7CDW  
KMCHRC705JJ7CP  
KXC705JJ7CP  
-
PRODUCT  
MATURITY/SATURATION(4)  
-
PRODUCT  
MATURITY/SATURATION(4)  
-
PROD PHASE OUT/SEE LAST ORD  
DT(6) 30 Nov 2002  
KXC705JJ7S  
$35.00  
PROD PHASE OUT/SEE LAST ORD  
DT(6) 30 Nov 2002  
KXCHRC705JJ7S  
XC68HC705JJ7S  
XC68HRC705JJ7S  
MC68HC705SJ7CDW  
MC68HRC705JJ7CDW  
$35.00  
PROD PHASE OUT/SEE LAST ORD  
DT(6) 30 Nov 2002  
-
-
-
-
PROD PHASE OUT/SEE LAST ORD  
DT(6) 30 Nov 2002  
PRODUCT  
MATURITY/SATURATION(4)  
PRODUCT NEWLY INTRO'D/RAMP-  
UP(1)  
68HC705JJ7 Product Summary Page  
PRODUCT  
MATURITY/SATURATION(4)  
MC68HRC705JJ7CP  
-
-
-
-
Plastic Dual-  
in-Line  
REMOVED FROM ACTIVE  
PORTFOLIO(8)  
-40 to +85  
C
XC68HC705SJ7CP  
$2.40  
(PDIP)  
[top]  
Motorola Home | Semiconductors | Login | Support | Contact Us | Site Map  
Products | Documentation | Tools | Design Resources | Applications  
Search  
Advanced | Parametric | Part Number | FAQ  
Select Country  
Motorola Home | Semiconductors Home | Contact Us  
Products | Design Support | Register | Login  
Semiconductors  
Motorola > Semiconductors >  
68HC705JP7 : Microcontroller  
Page Contents:  
The Motorola MC68HC705JP6 is a member of the M68HC05JJ and M68HC705JP Families of  
microcontrollers. All MCUs in the family use the popular M68HC05 central processor unit (CPU) and are  
available with a variety of subsystems, memory sizes and types, and package types.  
Features  
Documentation  
Tools  
Orderable Parts  
Related Links  
Block Diagram  
68HC705JP7 Features  
Other Info:  
FAQs  
Low-Cost, HC05 Core MCU in 20-Pin Package (MC68HC05JJ6)  
6160 Bytes of User EPROM, Including 8 Bytes of Security Code and 16 Bytes of User Vectors  
224 Bytes of Low-Power User RAM  
3rd Party Design Help  
3rd Party Tool  
Vendors  
64 Bits of personality EPROM  
16-Bit Programmable Timer with Input Capture and Output Compare  
15-Stage Core Timer, Including 8-Bit Free-Running Counter and 4-Stage, Selectable Real-Time  
Interrupt Generator  
3rd Party Trainers  
Rate this Page  
Simple Serial Input/Output Port (SIOP) with Interrupt Capability  
Two Voltage Comparators which Can be Combined with the 16-Bit Programmable Timer to Create  
a 4-Channel, Single-Slope Analog-to-Digital (A/D) Converter  
Voltage Comparator 1 Output Can Drive the PB4 Port Pin Directly under Software Control  
22 I/O Lines, Including High-Source/Sink Current Capability on 14 I/O Pins  
--  
-
0
+
++  
Submit  
Care to Comment?  
Return to Top  
68HC705JP7 Documentation  
Documentation  
Application Note  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
AN-HK-22  
AN-HK-23  
AN1050_D  
AN1055/D  
AN1067/D  
AN1222/D  
AN1222SW  
AN1259/D  
MC68HC05SR3 and MC68HC705SR3 Design Notes  
MC6805R3 and MC68HC05SR3 Technical Comparison  
0
0
1/01/1994  
MOTOROLA  
pdf  
0
0
0
0
1
0
0
0
1/01/1994  
Designing for Electromagnetic Compatibility (EMC) with  
HCMOS Microcontrollers  
MOTOROLA  
pdf  
82  
1/01/2000  
1/01/1990  
5/31/2002  
1/01/1993  
1/01/1995  
1/01/1995  
-
MOTOROLA  
pdf  
1048  
M6805 16-Bit Support Macros  
MOTOROLA  
pdf  
Pulse Generation and Detection with Microcontroller Units  
Arithmetic Waveform Synthesis with the HC05/08 MCUs  
Software Files for AN1222 zipped  
242  
24  
MOTOROLA  
pdf  
MOTOROLA  
zip  
20  
-
System Design and Layout Techniques for Noise  
Reduction in MCU-Based Systems  
MOTOROLA  
pdf  
78  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
AN1262/D  
AN1262SW  
AN1263/D  
AN1292/D  
AN1292SW  
AN1516/D  
AN1662/D  
AN1663/D  
AN1667/D  
AN1667SW  
AN1688/D  
AN1705/D  
AN1708/D  
AN1708SW  
AN1723/D  
AN1734/D  
AN1734SW  
AN1738/D  
AN1739/D  
AN1740/D  
AN1741/D  
AN1744/D  
AN1752/D  
AN1757/D  
AN1758/D  
AN1771/D  
AN1775/D  
AN1818/D  
AN1820/D  
Simple Real-Time Kernels for M68HC05 Microcontrollers  
Software files for AN1262  
pdf  
zip  
pdf  
pdf  
zip  
pdf  
pdf  
pdf  
pdf  
zip  
pdf  
pdf  
pdf  
zip  
pdf  
pdf  
zip  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
84  
11  
0
0
0
0
0
2
0
0
0
1/01/1995  
1/01/1995  
1/01/1995  
1/01/1996  
1/01/1996  
1/24/2003  
3/13/2001  
1/01/1998  
7/10/2002  
-
-
Designing for Electromagnetic Compatibility with Single-  
Chip Microcontrollers  
104  
155  
215  
77  
Adding a Voice User Interface to M68HC05 Applications  
Software files for AN1292 zipped  
Liquid Level Control Using a Motorola Pressure Sensor  
Low Cost Universal Motor Phase Angle Drive System  
584  
Low Cost Universal Motor Sensorless Phase Angle Drive MOTOROLA  
System  
1178  
-
-
Software SCI Implementation to the MISC Communication MOTOROLA  
Protocol  
112  
MOTOROLA  
Software for AN1667, zip format  
93 1.0 7/31/2002  
MOTOROLA  
MISC Bus Slave Switch Node  
243  
67  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
7/11/2002  
1/01/1999  
1/01/1997  
1/01/1997  
1/01/1997  
1/01/1998  
1/01/1997  
Noise Reduction Techniques for Microcontroller-Based  
Systems  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
Single-Slope Analog-to-Digital (A/D) Conversion  
Software files for AN1708 zipped  
82  
-
-
65  
Interfacing MC68HC05 Microcontrollers to the IBM AT  
Keyboard Interface  
274  
102  
2
Pulse Width Modulation Using the 16-Bit Timer  
Software files for AN1734 zipped  
-
Instruction Cycle Timing of MC68HC05JJ/JP Series  
Microcontrollers  
111  
509  
425  
125  
80  
1/01/1998  
A/D Conversion Software for the MC68HC05JJ/JP Series MOTOROLA  
Microcontrollers  
11/01/2001  
Applications Using the Analog Subsystem on  
MC68HC05JJ/JP Series Microcontrollers  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
1/01/1998  
1/01/1998  
1/01/1998  
5/07/2001  
1/01/1998  
1/01/1998  
1/01/1998  
1/01/1998  
1/01/1999  
1/01/1999  
In-Circuit and Emulation Considerations for  
MC68HC05JJ/JP Series Microcontrollers  
Resetting Microcontrollers During Power Transitions  
Data Structures for 8-Bit Microcontrollers  
213  
105  
111  
250  
86  
Add a Unique Silicon Serial Number to the HC05  
Add Addressable Switches to the HC05  
Precision Sine-Wave Tone Synthesis Using 8-Bit MCUs  
Expanding Digital Input with an A/D Converter  
Software SCI Routines with the 16-Bit Timer Module  
Software I2C Communications  
84  
55  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
AN1820SW  
AN2103/D  
AN2159/D  
AN2159SW  
AN4006/D  
AN442/D  
AN463/D  
AN464/D  
AN477/D  
AN499/D  
AN991/D  
ANE416/D  
Software files for AN1820 zipped  
zip  
pdf  
pdf  
zip  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
2
0
0
0
1
0
0
0
0
0
0
1
0
1/01/1998  
-
-
12/01/2000  
Local Interconnect Network (LIN) Demonstration  
953  
129  
182  
Digital Direct Current Ignition System Using HC08  
Microcontrollers  
11/20/2001  
AN2159SW  
3/08/2002  
3/27/2000  
1/01/1991  
1/01/1992  
1/01/1993  
1/01/1993  
7/01/1996  
1/28/2002  
1/01/1988  
Digital Captive Discharge Ignition System Using  
HC05/HC08 8-Bit Microcontrollers  
61  
1134  
Driving LCDs with M6805 Microprocessors  
68HC05K0 Infra-red Remote Control  
111  
Software Driver Routines for the Motorola MC68HC05  
CAN Module  
2859  
Simple A/D for MCUs without Built-In A/D Converters  
Let the MC68HC705 Program Itself  
224  
154  
Using the Serial Peripheral Interface to Communicate  
Between Multiple Microcomputers  
251  
1958  
MC68HC05B4 Radio Synthesizer  
Brochure  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
5/21/2003  
BR68HC08FAMAM/D  
FLYREMBEDFLASH/D  
68HC08 Family: High Performance and Flexibility  
57  
2
Embedded Flash: Changing the Technology World for MOTOROLA  
the Better  
5/21/2003  
pdf  
68  
2
Data Sheets  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
MC68HC705JJ7, MC68HC705JP7, MC68HC705SJ7,  
MC68HC705SP7, MC68HRC705JJ7, MC68HRC705JP7  
Advance Information  
MC68HC705JJ7/D  
MOTOROLA  
pdf  
2622  
9/27/2001  
4
Engineering Bulletin  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
System Design Considerations: Converting from the  
MC68HC805B6 to the MC68HC705B16 Microcontroller  
MOTOROLA  
pdf  
757  
1/01/1993  
EB166/D  
EB180/D  
EB181/D  
EB349/D  
EB396/D  
EB413/D  
EB421/D  
0
Differences between the MC68HC705B16 and the  
MC68HC705B16N  
MOTOROLA  
pdf  
1/01/1996  
1/01/1997  
6/22/2000  
6/19/2002  
1/01/2000  
2/23/2000  
20  
0
0
1
0
0
0
Frequently Asked Questions and Answers for the  
M68HC05 Family MCAN Module  
MOTOROLA  
pdf  
181  
RAM Data Retention Considerations for Motorola  
Microcontrollers  
MOTOROLA  
pdf  
45  
49  
62  
78  
Use of OSC2/XTAL as a Clock Output on Motorola  
Microcontrollers  
MOTOROLA  
pdf  
MOTOROLA  
pdf  
Resetting MCUs  
MOTOROLA  
pdf  
The Motorola MCAN Module  
Errata - Click here for important errata information  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
68HC705JP7MSE1/D  
68HC705JP7 Device Information Sheet: G58T Mask  
Sets  
MOTOROLA  
pdf  
11/06/1996  
-
24  
1
68HC705JP7MSE2/D  
MOTOROLA  
pdf  
Device Information Sheet: 0H70H/1H70H Mask Sets  
15  
0
8/27/1997  
-
Fact Sheets  
Date Last  
Modified  
ID  
Name  
Vendor ID  
Format Size K Rev #  
pdf 48  
Order Availability  
CWDEVSTUDFACTHC08  
Development Studio  
MOTOROLA  
2
5/13/2002  
-
Reference Manual  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
2866  
1/01/1998  
M68HC05TB/D  
MC68HC05CXRG/D  
HC05 Family - Understanding Small Microcontrollers  
MC68HC05C4, C8, C9, MC68HC705C8,  
MC68HC805C4, MC68HCL05C4, C8, MC68HSC05C4,  
C8 Programming Reference  
2
MOTOROLA  
pdf  
3150  
2/23/2000  
-
1
Selector Guide  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
579  
10/24/2003  
SG1002  
SG1006  
SG1010  
SG1011  
SG2000CR  
SG2039  
Analog Selector Guide - Quarter 4, 2003  
Microcontrollers Selector Guide - Quarter 4, 2003  
Sensors Selector Guide - Quarter 4, 2003  
0
MOTOROLA  
pdf  
826  
219  
287  
10/24/2003  
10/24/2003  
10/24/2003  
11/11/2003  
0
0
0
3
0
MOTOROLA  
pdf  
Software and Development Tools Selector Guide - Quarter MOTOROLA  
4, 2003  
pdf  
pdf  
pdf  
MOTOROLA  
Application Selector Guide Index and Cross-Reference.  
95  
0
Application Selector Guide - Vacuum Cleaners Vacuum  
Cleaners  
MOTOROLA  
6/17/2003  
Return to Top  
68HC705JP7 Tools  
Hardware Tools  
Emulators/Probes/Wigglers  
ID  
Name  
Vendor ID  
HITEX  
ISYS  
Format  
Size K Rev #  
Order Availability  
AX-6811  
IC10000  
IC20000  
IC40000  
AX-6811  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
iC1000 PowerEmulator  
iC2000 PowerEmulator  
iC4000 ActiveEmulator  
ISYS  
ISYS  
Evaluation/Development Boards and Systems  
ID  
Name  
Vendor ID  
Format Size K Rev # Order Availability  
X68EM05JP7  
Emulation Module  
MOTOROLA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
KITMMDS05JP  
KITMMEVS05JP  
M68ICS05JP  
Modular Development System (MMDS) Kits  
Modular Evaluation System (MMEVS)  
M68ICS05JP Development Tool Kit  
Low-noise Flex Cable  
MOTOROLA  
MOTOROLA  
MOTOROLA  
METROWERKS  
M68CBL05A  
Programmers  
ID  
Name  
Vendor ID  
SYSGEN  
Format  
Size K Rev #  
Order Availability  
POWERLAB  
Universal Programmer  
-
-
-
-
Software  
Application Software  
Code Examples  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
HC05 Software Example: Home Thermostat example using the MOTOROLA  
705C8 with indoor/outdoor temperature and time of day  
C8THERMSW  
FLOAT05COD  
HC05DELAYSW  
zip  
zip  
zip  
zip  
zip  
11  
-
-
-
-
-
-
MOTOROLA  
Floating Point routines  
13  
2
-
-
-
-
HC05 Software Example: Subroutine that delays for a whole  
number of milliseconds  
MOTOROLA  
Library containing software examples in assembly for 68HC05 MOTOROLA  
HC05EXSW  
45  
7
HC05KEYINTSW  
HC05 Software Examples: Using keyboard interrupts and  
decoding a matrix keypad  
MOTOROLA  
MOTOROLA  
HC05 Software Example: Keypad debounce and decode.  
When a key is found, it is changed to ASCII and displayed on  
an LCD  
HC05KEYPADSW  
zip  
2
-
-
HC05 Software Example: Initializes an LCD and displays  
ABCDEF...S  
MOTOROLA  
MOTOROLA  
MOTOROLA  
HC05LCDSW  
HC05SCISW  
zip  
zip  
zip  
1
1
1
-
-
-
-
-
-
HC05 Software Example: Serial Communications Interface  
example  
HC05SPISW  
HC05 Software Example: Serial Peripheral Interface example  
HC05 Software Example: Simple program that reads the state  
of a switch on a general-purpose I/O pin and lights an LED  
based on the state of the switch  
HC05SWITCHSW  
MOTOROLA  
MOTOROLA  
MOTOROLA  
zip  
zip  
zip  
1
1
1
-
-
-
-
-
-
HC05TIMERSW  
J1APWMSW  
HC05 Software Example: Using the 68HC05 16-bit Timer  
HC05 Software Example: Low frequency PWM example using  
the 68HC705J1A real-time interrupt and timer overflow  
interrupt  
HC05 Software example: Software UART example that  
transmits and receives data on the 68HC705J1A  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
J1AUARTSW  
K1THERMSW  
MATH16ACOD  
zip  
zip  
2
5
-
-
-
-
-
-
-
-
-
-
HC05 Software Example: Thermometer project using the  
68HC705K1  
General Math routines  
General Math routines  
Example routines  
asm  
asm  
exe  
4
MATHAGBCOD  
6
SAMPPROGCOD  
35  
MOTOROLA  
THERM-CCOD  
Thermometer example in C  
zip  
11  
-
-
Software Tools  
Assemblers  
Order  
Availability  
ID  
Name  
Vendor ID Format Size K Rev #  
ASHC5ASM  
AX6805  
DOS based freeware assembler  
MOTOROLA  
COSMIC  
arc  
-
55  
-
0
-
-
-
AX6805 relocatable/absolute macro assembler for HC05  
Compilers  
ID  
Name  
Vendor ID  
Format Size K Rev # Order Availability  
CWHC05  
CX6805  
METROWERKS  
COSMIC  
CodeWarrior Development Tools for HC05  
CX6805 C Cross Compiler for HC05  
-
-
-
-
-
-
-
Debuggers  
ID  
Name  
Vendor ID  
Format Size K Rev # Order Availability  
CWHC05  
METROWERKS  
CodeWarrior Development Tools for HC05  
-
-
-
ZAP 6805 MMDS  
ZAP 6805 SIM  
AX-6811  
COSMIC  
COSMIC  
HITEX  
ZAP 6805 MMDS Debugger  
ZAP 6805 Simulator Debugger  
AX-6811  
-
-
-
-
-
-
-
-
-
-
-
-
Emulation  
ID  
Size Rev  
Order  
Availability  
Name  
M68EM05JP7  
Vendor ID Format  
K
#
MOTOROLA  
exe  
M68EM05JP7  
Self extracting PC file. Emulation module configuration/help file for  
MMDS and MMEVS.  
23  
1
-
IDE (Integrated Development Environment)  
Order  
Availability  
ID  
Name  
Vendor ID  
Format Size K Rev #  
CWHC05  
METROWERKS  
CodeWarrior Development Tools for HC05  
-
-
-
IDEA05  
COSMIC  
ISYS  
IDEA05 integrated development environment for HC05  
winIDEA  
-
-
-
-
-
-
-
-
IC-SW-OPR  
Models  
Instruction Set Simulator  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
PEMICRO  
K
#
PE68HC05SIM  
Windows upgrades for P&E's simulator software for 68HC05  
html  
0
-
-
Performance and Testing  
ID  
Name  
Vendor ID  
Format  
Size K  
Rev #  
Order Availability  
AX-6811  
HITEX  
AX-6811  
-
-
-
-
Return to Top  
Orderable Parts Information  
Budgetary  
Price  
QTY 1000+  
($US)  
Tape  
and  
Reel  
Package  
Info  
Additional  
Info  
Order  
Availability  
Life Cycle Description (code)  
PartNumber  
REMOVED FROM ACTIVE  
PORTFOLIO(8)  
SOIC 28W  
PDIP 28  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
KMC705JP7CDW  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
-
-
-
-
REMOVED FROM ACTIVE  
PORTFOLIO(8)  
KMC705JP7CP  
-
REMOVED FROM ACTIVE  
PORTFOLIO(8)  
PDIP 28  
KMC705SP7CP  
-
PRODUCT  
MATURITY/SATURATION(4)  
SOIC 28W  
PDIP 28  
MC68HC705JP7CDW  
MC68HC705JP7CP  
MC68HC705SJ7CP  
MC68HC705SP7CDW  
MC68HC705SP7CP  
MC68HRC705JP7CDW  
MC68HRC705JP7CP  
$2.29  
PRODUCT  
MATURITY/SATURATION(4)  
$2.29  
PRODUCT  
MATURITY/SATURATION(4)  
PDIP 20  
-
-
-
-
-
-
-
-
-
-
PRODUCT  
MATURITY/SATURATION(4)  
SOIC 28W  
PDIP 28  
PRODUCT  
MATURITY/SATURATION(4)  
PRODUCT  
MATURITY/SATURATION(4)  
SOIC 28W  
PRODUCT  
MATURITY/SATURATION(4)  
PDIP 28  
CHIPS SM  
<50000 SQ No  
MILS  
PRODUCT  
MATURITY/SATURATION(4)  
more  
MCC68HRC705JP7  
-
-
REMOVED FROM ACTIVE  
PORTFOLIO(8)  
SOIC 28W  
PDIP 28  
more  
more  
more  
XC68HRC705JP7CDW  
XC68HRC705JP7CP  
XCC68HC705JP7  
No  
No  
No  
-
-
-
REMOVED FROM ACTIVE  
PORTFOLIO(8)  
REMOVED FROM ACTIVE  
PORTFOLIO(8)  
-
NOTE: Are you looking for an obsolete orderable part? Click HERE to check our distributors' inventory.  
Return to Top  
Related Links  
Automotive  
Microcontrollers  
Motor Control  
Return to Top  
http://www.motorola.com/ | Site Map | Contact Motorola | Terms of Use | Privacy Practices  
© Copyright 1994-2003 Motorola, Inc. All Rights Reserved.  
Search  
Advanced | Parametric | Part Number | FAQ  
Select Country  
Motorola Home | Semiconductors Home | Contact Us  
Products | Design Support | Register | Login  
Semiconductors  
Motorola > Semiconductors >  
68HC705JJ7 : Microcontroller  
Page Contents:  
The Motorola MC68HC705JJ7 is a member of the M68HC05JJ and M68HC705JP Families of  
microcontrollers. All MCUs in the family use the popular M68HC05 central processor unit (CPU) and are  
available with a variety of subsystems, memory sizes and types, and package types.  
Features  
Documentation  
Tools  
Orderable Parts  
Related Links  
Block Diagram  
68HC705JJ7 Features  
Other Info:  
FAQs  
Low-Cost, HC05 Core MCU in 20-Pin Package (MC68HC05JJ6)  
6160 Bytes of User EPROM, Including 8 Bytes of Security Code and 16 Bytes of User Vectors  
224 Bytes of Low-Power User RAM  
3rd Party Design Help  
3rd Party Tool  
Vendors  
64 Bits of personality EPROM  
16-Bit Programmable Timer with Input Capture and Output Compare  
15-Stage Core Timer, Including 8-Bit Free-Running Counter and 4-Stage, Selectable Real-Time  
Interrupt Generator  
3rd Party Trainers  
Rate this Page  
Simple Serial Input/Output Port (SIOP) with Interrupt Capability  
Two Voltage Comparators which Can be Combined with the 16-Bit Programmable Timer to Create  
a 4-Channel, Single-Slope Analog-to-Digital (A/D) Converter  
Voltage Comparator 1 Output Can Drive the PB4 Port Pin Directly under Software Control  
14 I/O Lines, Including High-Source/Sink Current Capability on 6 I/O Pins  
--  
-
0
+
++  
Submit  
Care to Comment?  
Return to Top  
68HC705JJ7 Documentation  
Documentation  
Application Note  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
AN-HK-22  
AN-HK-23  
AN1050_D  
AN1055/D  
AN1067/D  
AN1222/D  
AN1222SW  
AN1259/D  
MC68HC05SR3 and MC68HC705SR3 Design Notes  
MC6805R3 and MC68HC05SR3 Technical Comparison  
0
0
1/01/1994  
MOTOROLA  
pdf  
0
0
0
0
1
0
0
0
1/01/1994  
Designing for Electromagnetic Compatibility (EMC) with  
HCMOS Microcontrollers  
MOTOROLA  
pdf  
82  
1/01/2000  
1/01/1990  
5/31/2002  
1/01/1993  
1/01/1995  
1/01/1995  
-
MOTOROLA  
pdf  
1048  
M6805 16-Bit Support Macros  
MOTOROLA  
pdf  
Pulse Generation and Detection with Microcontroller Units  
Arithmetic Waveform Synthesis with the HC05/08 MCUs  
Software Files for AN1222 zipped  
242  
24  
MOTOROLA  
pdf  
MOTOROLA  
zip  
20  
-
System Design and Layout Techniques for Noise  
Reduction in MCU-Based Systems  
MOTOROLA  
pdf  
78  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
AN1262/D  
AN1262SW  
AN1263/D  
AN1292/D  
AN1292SW  
AN1516/D  
AN1662/D  
AN1663/D  
AN1667/D  
AN1667SW  
AN1688/D  
AN1705/D  
AN1708/D  
AN1723/D  
AN1734/D  
AN1734SW  
AN1738/D  
AN1739/D  
AN1740/D  
AN1741/D  
AN1744/D  
AN1752/D  
AN1757/D  
AN1758/D  
AN1771/D  
AN1775/D  
AN1818/D  
AN1820/D  
AN1820SW  
Simple Real-Time Kernels for M68HC05 Microcontrollers  
Software files for AN1262  
pdf  
zip  
pdf  
pdf  
zip  
pdf  
pdf  
pdf  
pdf  
zip  
pdf  
pdf  
pdf  
pdf  
pdf  
zip  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
zip  
84  
11  
0
0
0
0
0
2
0
0
0
1/01/1995  
1/01/1995  
1/01/1995  
1/01/1996  
1/01/1996  
1/24/2003  
3/13/2001  
1/01/1998  
7/10/2002  
-
-
Designing for Electromagnetic Compatibility with Single-  
Chip Microcontrollers  
104  
155  
215  
77  
Adding a Voice User Interface to M68HC05 Applications  
Software files for AN1292 zipped  
Liquid Level Control Using a Motorola Pressure Sensor  
Low Cost Universal Motor Phase Angle Drive System  
584  
Low Cost Universal Motor Sensorless Phase Angle Drive MOTOROLA  
System  
1178  
-
-
Software SCI Implementation to the MISC Communication MOTOROLA  
Protocol  
112  
MOTOROLA  
Software for AN1667, zip format  
93 1.0 7/31/2002  
MOTOROLA  
MISC Bus Slave Switch Node  
243  
67  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
7/11/2002  
1/01/1999  
1/01/1997  
1/01/1997  
1/01/1998  
1/01/1997  
Noise Reduction Techniques for Microcontroller-Based  
Systems  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
Single-Slope Analog-to-Digital (A/D) Conversion  
82  
-
-
Interfacing MC68HC05 Microcontrollers to the IBM AT  
Keyboard Interface  
274  
102  
2
Pulse Width Modulation Using the 16-Bit Timer  
Software files for AN1734 zipped  
Instruction Cycle Timing of MC68HC05JJ/JP Series  
Microcontrollers  
111  
509  
425  
125  
80  
1/01/1998  
A/D Conversion Software for the MC68HC05JJ/JP Series MOTOROLA  
Microcontrollers  
11/01/2001  
Applications Using the Analog Subsystem on  
MC68HC05JJ/JP Series Microcontrollers  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
1/01/1998  
1/01/1998  
1/01/1998  
5/07/2001  
1/01/1998  
1/01/1998  
1/01/1998  
1/01/1998  
1/01/1999  
1/01/1999  
1/01/1998  
In-Circuit and Emulation Considerations for  
MC68HC05JJ/JP Series Microcontrollers  
Resetting Microcontrollers During Power Transitions  
Data Structures for 8-Bit Microcontrollers  
Add a Unique Silicon Serial Number to the HC05  
Add Addressable Switches to the HC05  
213  
105  
111  
250  
86  
Precision Sine-Wave Tone Synthesis Using 8-Bit MCUs  
Expanding Digital Input with an A/D Converter  
Software SCI Routines with the 16-Bit Timer Module  
Software I2C Communications  
84  
55  
Software files for AN1820 zipped  
2
-
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
12/01/2000  
11/20/2001  
AN2103/D  
AN2159/D  
AN2159SW  
AN4006/D  
AN442/D  
AN463/D  
AN464/D  
AN477/D  
AN499/D  
AN991/D  
ANE416/D  
Local Interconnect Network (LIN) Demonstration  
pdf  
pdf  
zip  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
953  
129  
182  
0
0
1
0
0
0
0
0
0
1
0
Digital Direct Current Ignition System Using HC08  
Microcontrollers  
AN2159SW  
3/08/2002  
3/27/2000  
1/01/1991  
1/01/1992  
1/01/1993  
1/01/1993  
7/01/1996  
1/28/2002  
1/01/1988  
-
Digital Captive Discharge Ignition System Using  
HC05/HC08 8-Bit Microcontrollers  
61  
1134  
Driving LCDs with M6805 Microprocessors  
68HC05K0 Infra-red Remote Control  
111  
Software Driver Routines for the Motorola MC68HC05  
CAN Module  
2859  
Simple A/D for MCUs without Built-In A/D Converters  
Let the MC68HC705 Program Itself  
224  
154  
Using the Serial Peripheral Interface to Communicate  
Between Multiple Microcomputers  
251  
1958  
MC68HC05B4 Radio Synthesizer  
Brochure  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
5/21/2003  
BR68HC08FAMAM/D  
FLYREMBEDFLASH/D  
68HC08 Family: High Performance and Flexibility  
57  
2
Embedded Flash: Changing the Technology World for MOTOROLA  
the Better  
5/21/2003  
pdf  
68  
2
Data Sheets  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
MC68HC705JJ7, MC68HC705JP7, MC68HC705SJ7,  
MC68HC705SP7, MC68HRC705JJ7, MC68HRC705JP7  
Advance Information  
MC68HC705JJ7/D  
MOTOROLA  
pdf  
2622  
9/27/2001  
4
Engineering Bulletin  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
System Design Considerations: Converting from the  
MC68HC805B6 to the MC68HC705B16 Microcontroller  
MOTOROLA  
pdf  
757  
1/01/1993  
EB166/D  
EB180/D  
EB181/D  
EB349/D  
EB396/D  
EB413/D  
EB421/D  
0
Differences between the MC68HC705B16 and the  
MC68HC705B16N  
MOTOROLA  
pdf  
1/01/1996  
1/01/1997  
6/22/2000  
6/19/2002  
1/01/2000  
2/23/2000  
20  
0
0
1
0
0
0
Frequently Asked Questions and Answers for the  
M68HC05 Family MCAN Module  
MOTOROLA  
pdf  
181  
RAM Data Retention Considerations for Motorola  
Microcontrollers  
MOTOROLA  
pdf  
45  
49  
62  
78  
Use of OSC2/XTAL as a Clock Output on Motorola  
Microcontrollers  
MOTOROLA  
pdf  
MOTOROLA  
pdf  
Resetting MCUs  
MOTOROLA  
pdf  
The Motorola MCAN Module  
Errata - Click here for important errata information  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
68HC705JJ7MSE1/D  
68HC705JJ7 Device Information Sheet: G58T Mask  
Sets  
MOTOROLA  
pdf  
11/06/1996  
-
24  
1
68HC705JJ7MSE2/D  
68HC705JJ7MSE3/D  
68HC705JJ7MSE2AD/D Device Information Sheet:  
0H70H/1H70H Mask Sets  
MOTOROLA  
pdf  
15  
14  
0
0
8/27/1997  
1/06/1999  
-
-
68HC705JJ7MSE3 Device Information Sheet:  
0H70H/1H70H Mask Sets  
MOTOROLA  
pdf  
Fact Sheets  
Date Last  
Modified  
ID  
Name  
Vendor ID  
Format Size K Rev #  
Order Availability  
CWDEVSTUDFACTHC08  
Development Studio  
MOTOROLA  
pdf  
48  
2
5/13/2002  
-
Reference Manual  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
2866  
1/01/1998  
M68HC05TB/D  
MC68HC05CXRG/D  
HC05 Family - Understanding Small Microcontrollers  
MC68HC05C4, C8, C9, MC68HC705C8,  
MC68HC805C4, MC68HCL05C4, C8, MC68HSC05C4,  
C8 Programming Reference  
2
MOTOROLA  
pdf  
3150  
2/23/2000  
-
1
Selector Guide  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
579  
10/24/2003  
SG1002  
SG1006  
SG1010  
SG1011  
SG2000CR  
SG2039  
Analog Selector Guide - Quarter 4, 2003  
Microcontrollers Selector Guide - Quarter 4, 2003  
Sensors Selector Guide - Quarter 4, 2003  
0
MOTOROLA  
pdf  
826  
219  
287  
10/24/2003  
10/24/2003  
10/24/2003  
11/11/2003  
0
0
0
3
0
MOTOROLA  
pdf  
Software and Development Tools Selector Guide - Quarter MOTOROLA  
4, 2003  
pdf  
pdf  
pdf  
MOTOROLA  
Application Selector Guide Index and Cross-Reference.  
95  
0
Application Selector Guide - Vacuum Cleaners Vacuum  
Cleaners  
MOTOROLA  
6/17/2003  
Return to Top  
68HC705JJ7 Tools  
Hardware Tools  
Emulators/Probes/Wigglers  
ID  
Name  
Vendor ID  
HITEX  
ISYS  
Format  
Size K Rev #  
Order Availability  
AX-6811  
IC10000  
IC20000  
IC40000  
AX-6811  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
iC1000 PowerEmulator  
iC2000 PowerEmulator  
iC4000 ActiveEmulator  
ISYS  
ISYS  
Evaluation/Development Boards and Systems  
ID  
Name  
Vendor ID  
Format Size K Rev # Order Availability  
X68EM05JP7  
Emulation Module  
MOTOROLA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
KITMMDS05JP  
KITMMEVS05JP  
M68ICS05JP  
Modular Development System (MMDS) Kits  
Modular Evaluation System (MMEVS)  
M68ICS05JP Development Tool Kit  
Low-noise Flex Cable  
MOTOROLA  
MOTOROLA  
MOTOROLA  
METROWERKS  
M68CBL05A  
Programmers  
ID  
Name  
Vendor ID Format Size K Rev # Order Availability  
AP520  
SYSGEN  
SYSGEN  
SYSGEN  
Automated Programming System  
Universal Programmer  
-
-
-
-
-
-
-
-
-
-
-
-
POWERLAB  
T9600  
High-speed universal gang programmer  
Software  
Application Software  
Code Examples  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
HC05 Software Example: Home Thermostat example using the MOTOROLA  
705C8 with indoor/outdoor temperature and time of day  
C8THERMSW  
FLOAT05COD  
HC05DELAYSW  
zip  
zip  
zip  
zip  
zip  
11  
-
-
MOTOROLA  
Floating Point routines  
13  
2
-
-
-
-
-
-
-
-
HC05 Software Example: Subroutine that delays for a whole  
number of milliseconds  
MOTOROLA  
Library containing software examples in assembly for 68HC05 MOTOROLA  
HC05EXSW  
45  
7
HC05KEYINTSW  
HC05 Software Examples: Using keyboard interrupts and  
decoding a matrix keypad  
MOTOROLA  
MOTOROLA  
HC05 Software Example: Keypad debounce and decode.  
When a key is found, it is changed to ASCII and displayed on  
an LCD  
HC05KEYPADSW  
zip  
2
-
-
HC05 Software Example: Initializes an LCD and displays  
ABCDEF...S  
MOTOROLA  
MOTOROLA  
MOTOROLA  
HC05LCDSW  
HC05SCISW  
zip  
zip  
zip  
1
1
1
-
-
-
-
-
-
HC05 Software Example: Serial Communications Interface  
example  
HC05SPISW  
HC05 Software Example: Serial Peripheral Interface example  
HC05 Software Example: Simple program that reads the state  
of a switch on a general-purpose I/O pin and lights an LED  
based on the state of the switch  
HC05SWITCHSW  
MOTOROLA  
MOTOROLA  
MOTOROLA  
zip  
zip  
zip  
1
1
1
-
-
-
-
-
-
HC05TIMERSW  
J1APWMSW  
HC05 Software Example: Using the 68HC05 16-bit Timer  
HC05 Software Example: Low frequency PWM example using  
the 68HC705J1A real-time interrupt and timer overflow  
interrupt  
HC05 Software example: Software UART example that  
transmits and receives data on the 68HC705J1A  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
J1AUARTSW  
K1THERMSW  
MATH16ACOD  
MATHAGBCOD  
zip  
zip  
2
5
4
6
-
-
-
-
-
-
-
-
HC05 Software Example: Thermometer project using the  
68HC705K1  
General Math routines  
General Math routines  
asm  
asm  
SAMPPROGCOD  
THERM-CCOD  
MOTOROLA  
MOTOROLA  
Example routines  
exe  
zip  
35  
11  
-
-
-
-
Thermometer example in C  
Software Tools  
Assemblers  
Order  
Availability  
ID  
Name  
Vendor ID Format Size K Rev #  
ASHC5ASM  
AX6805  
DOS based freeware assembler  
MOTOROLA  
COSMIC  
arc  
-
55  
-
0
-
-
-
AX6805 relocatable/absolute macro assembler for HC05  
Compilers  
ID  
Name  
Vendor ID  
Format Size K Rev # Order Availability  
CWHC05  
CX6805  
METROWERKS  
COSMIC  
CodeWarrior Development Tools for HC05  
CX6805 C Cross Compiler for HC05  
-
-
-
-
-
-
-
Debuggers  
ID  
Name  
Vendor ID  
Format Size K Rev # Order Availability  
CWHC05  
METROWERKS  
CodeWarrior Development Tools for HC05  
-
-
-
ZAP 6805 MMDS  
ZAP 6805 SIM  
AX-6811  
COSMIC  
COSMIC  
HITEX  
ZAP 6805 MMDS Debugger  
ZAP 6805 Simulator Debugger  
AX-6811  
-
-
-
-
-
-
-
-
-
-
-
-
IDE (Integrated Development Environment)  
Order  
Availability  
ID  
Name  
Vendor ID  
Format Size K Rev #  
CWHC05  
METROWERKS  
CodeWarrior Development Tools for HC05  
-
-
-
IDEA05  
COSMIC  
ISYS  
IDEA05 integrated development environment for HC05  
winIDEA  
-
-
-
-
-
-
-
-
IC-SW-OPR  
Models  
Instruction Set Simulator  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
PEMICRO  
K
#
PE68HC05SIM  
Windows upgrades for P&E's simulator software for 68HC05  
html  
0
-
-
Performance and Testing  
ID  
Name  
Vendor ID  
Format  
Size K  
Rev #  
Order Availability  
AX-6811  
HITEX  
AX-6811  
-
-
-
-
Return to Top  
Orderable Parts Information  
Budgetary  
Price  
QTY 1000+  
($US)  
Tape  
and  
Reel  
Package  
Info  
Additional  
Info  
Order  
Availability  
Life Cycle Description (code)  
PartNumber  
REMOVED FROM ACTIVE  
PORTFOLIO(8)  
SOIC 20W  
PDIP 20  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
KMC705JJ7CDW  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
-
-
-
-
-
-
REMOVED FROM ACTIVE  
PORTFOLIO(8)  
KMC705JJ7CP  
-
REMOVED FROM ACTIVE  
PORTFOLIO(8)  
PDIP 20  
KMC705SJ7CP  
-
REMOVED FROM ACTIVE  
PORTFOLIO(8)  
SOIC 20W  
PDIP 20  
KMCHRC705JJ7CDW  
KMCHRC705JJ7CP  
MC68HC705JJ7CDW  
MC68HC705JJ7CP  
MC68HC705SJ7CDW  
MC68HRC705JJ7CDW  
MC68HRC705JJ7CP  
XC68HC705JJ7CP  
XC68HRC705JJ7CDW  
XC68HRC705JJ7CP  
-
REMOVED FROM ACTIVE  
PORTFOLIO(8)  
-
PRODUCT  
MATURITY/SATURATION(4)  
SOIC 20W  
PDIP 20  
$2.19  
PRODUCT  
MATURITY/SATURATION(4)  
$2.19  
PRODUCT  
MATURITY/SATURATION(4)  
SOIC 20W  
SOIC 20W  
PDIP 20  
-
-
PRODUCT  
MATURITY/SATURATION(4)  
-
PRODUCT  
MATURITY/SATURATION(4)  
$2.19  
REMOVED FROM ACTIVE  
PORTFOLIO(8)  
PDIP 20  
-
-
-
REMOVED FROM ACTIVE  
PORTFOLIO(8)  
SOIC 20W  
PDIP 20  
REMOVED FROM ACTIVE  
PORTFOLIO(8)  
NOTE: Are you looking for an obsolete orderable part? Click HERE to check our distributors' inventory.  
Return to Top  
Related Links  
Automotive  
Microcontrollers  
Motor Control  
Return to Top  
http://www.motorola.com/ | Site Map | Contact Motorola | Terms of Use | Privacy Practices  
© Copyright 1994-2003 Motorola, Inc. All Rights Reserved.  

相关型号:

KMC705JJ7CP

Microcontroller, 8-Bit, OTPROM, 2.1MHz, HCMOS, PDIP20, PLASTIC, DIP-20
MOTOROLA

KMC705JP7CDW

8-BIT, OTPROM, 2.1MHz, MICROCONTROLLER, PDSO28, SOIC-28
MOTOROLA

KMC705JP7CP

8-BIT, OTPROM, 2.1MHz, MICROCONTROLLER, PDIP28, PLASTIC, DIP-28
MOTOROLA

KMC705KJ1CDW

8-BIT, OTPROM, 4MHz, MICROCONTROLLER, PDSO16, SOIC-16
MOTOROLA

KMC705P6ACDW

Microcontroller, 8-Bit, OTPROM, 2.1MHz, HCMOS, PDSO28, SOIC-28
MOTOROLA

KMC705P6ACP

Microcontroller, 8-Bit, OTPROM, 2.1MHz, HCMOS, PDIP28, PLASTIC, DIP-28
MOTOROLA

KMC705SJ7CP

8-BIT, OTPROM, 2.1MHz, MICROCONTROLLER, PDIP20, PLASTIC, DIP-20
MOTOROLA

KMC705SP7CP

Microcontroller, 8-Bit, OTPROM, 2.1MHz, HCMOS, PDIP28, PLASTIC, DIP-28
MOTOROLA

KMC705X32CFU4

Microcontroller, 8-Bit, OTPROM, 2.2MHz, HCMOS, PQFP64, 20 X 20, QFP-64
MOTOROLA

KMC705X32MFU4

Microcontroller, 8-Bit, OTPROM, 2.2MHz, HCMOS, PQFP64, 20 X 20, QFP-64
MOTOROLA

KMC7447AVS1167NB

32-BIT, 1167MHz, RISC PROCESSOR, PBGA360, 25 X 25 MM, 2.20 MM HEIGHT, 1.27 MM PITCH, ROHS COMPLIANT, FCCLGA-360
NXP

KMC7447RX1000NB

RISC Microprocessor, 32-Bit, 1000MHz, CMOS, CBGA360, 25 X 25 MM, 3.20 MM HEIGHT, 1.27 MM PITCH, CERAMIC, FLIP CHIP, BGA-360
MOTOROLA