LP2951CD-5.0 [MOTOROLA]

FIXED/ADJUSTABLE POSITIVE LDO REGULATOR, 0.45V DROPOUT, PDSO8, PLASTIC, SO-8;
LP2951CD-5.0
型号: LP2951CD-5.0
厂家: MOTOROLA    MOTOROLA
描述:

FIXED/ADJUSTABLE POSITIVE LDO REGULATOR, 0.45V DROPOUT, PDSO8, PLASTIC, SO-8

光电二极管 输出元件 调节器
文件: 总16页 (文件大小:251K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by LP2950/D  
MICROPOWER  
LOW DROPOUT  
VOLTAGE REGULATORS  
The LP2950 and LP2951 are micropower voltage regulators that are  
specifically designed to maintain proper regulation with an extremely low  
input–to–output voltage differential. These devices feature a very low  
quiescent bias current of 75 µA and are capable of supplying output currents  
in excess of 100 mA. Internal current and thermal limiting protection is  
provided.  
Z SUFFIX  
PLASTIC PACKAGE  
CASE 29  
The LP2951 has three additional features. The first is the Error Output  
that can be used to signal external circuitry of an out of regulation condition,  
or as a microprocessor power–on reset. The second feature allows the  
output voltage to be preset to 5.0 V, 3.3 V or 3.0 V output (depending on the  
version) or programmed from 1.25 V to 29 V. It consists of a pinned out  
resistor divider along with direct access to the Error Amplifier feedback input.  
The third feature is a Shutdown input that allows a logic level signal to  
turn–off or turn–on the regulator output.  
(TO–226AA/TO–92)  
Pin: 1. Output  
1
2
2. Ground  
3
3. Input  
DT SUFFIX  
Due to the low input–to–output voltage differential and bias current  
specifications, these devices are ideally suited for battery powered  
computer, consumer, and industrial equipment where an extension of  
useful battery life is desirable. The LP2950 is available in the three pin case  
29 and DPAK packages, and the LP2951 is available in the eight pin  
dual–in–line, SO–8 and Micro–8 surface mount packages. The ‘A’ suffix  
devices feature an initial output voltage tolerance ±0.5%.  
PLASTIC PACKAGE  
1
CASE 369A  
(DPAK)  
3
Pin: 1. Input  
2. Ground  
1
2
3
3. Output  
LP2950 and LP2951 Features:  
(Top View)  
Low Quiescent Bias Current of 75 µA  
Low Input–to–Output Voltage Differential of 50 mV at 100 µA and  
Heatsink surface (shown as terminal 4 in  
case outline drawing) is connected to Pin 2.  
380 mV at 100 mA  
5.0 V, 3.3 V or 3.0 V ±0.5% Allows Use as a Regulator or Reference  
Extremely Tight Line and Load Regulation  
D SUFFIX  
PLASTIC PACKAGE  
8
CASE 751  
(SO–8)  
Requires Only a 1.0 µF Output Capacitor for Stability  
Internal Current and Thermal Limiting  
1
LP2951 Additional Features:  
N SUFFIX  
PLASTIC PACKAGE  
Error Output Signals an Out of Regulation Condition  
Output Programmable from 1.25 V to 29 V  
Logic Level Shutdown Input  
CASE 626  
8
1
DM SUFFIX  
8
PLASTIC PACKAGE  
CASE 846A  
1
(Micro–8)  
1
2
3
4
8
7
6
5
Output  
Input  
Sense  
Shutdown  
Gnd  
Feedback  
V
Tap  
O
Error Output  
(See Following Page for Ordering Information.)  
(Top View)  
Motorola, Inc. 1996  
Rev 4  
LP2950 LP2951  
ORDERING INFORMATION  
Operating  
Temperature Range  
Device  
Type  
Package  
LP2950CZ–**  
LP2950ACZ–**  
TO–92/TO–226AA  
Fixed Voltage  
(3.0, 3.3 or 5.0 V)  
LP2950CDT–**  
LP2950ACDT–**  
DPAK  
SO–8  
LP2951CD  
LP2951ACD  
Adjustable or  
5.0 V Fixed  
LP2951CD–**  
LP2951ACD–**  
Adjustable or Fixed  
(3.0, 3.3 V)  
T = –40° to +125°C  
J
LP2951CN  
LP2951ACN  
Adjustable or  
5.0 V Fixed  
Plastic  
LP2951CN–**  
LP2951ACN–**  
Adjustable or Fixed  
(3.0, 3.3 V)  
LP2951CDM  
LP2951ACDM  
Adjustable or  
5.0 V Fixed  
Micro–8  
LP2951CDM–**  
LP2951ACDM–**  
Adjustable or Fixed  
(3.0, 3.3 V)  
** = Voltage option of 3.0, 3.3 or 5.0 V.  
DEVICE TYPE/NOMINAL OUTPUT VOLTAGE  
Device No. (±1%)  
Device No. (±0.5%)  
Nominal Voltage  
LP2950CX–5.0  
LP2950CX–3.3  
LP2950CX–3.0  
LP2951CX  
LP2950CX–3.3  
LP2951CX–3.0  
LP2950ACX–5.0  
LP2950ACX–3.3  
LP2950ACX–3.0  
LP2951ACX  
LP2951ACX–3.3  
LP2951ACX–3.0  
5.0  
3.3  
3.0  
Adjustable or 5.0  
Adjustable or 3.3  
Adjustable or 3.0  
X = Package suffix.  
Representative Block Diagrams  
Input  
3
Output  
5.0 V/100 mA  
1
1.0 µF  
Battery or  
Unregulated DC  
182 k  
60 k  
Error Amplifier  
1.23 V  
Reference  
LP2950CZ–5.0  
Gnd  
2
5.0 V/100 mA  
Input  
8
Output  
Sense  
182 k  
2
1
Battery or  
Unregulated DC  
1.0  
µ
F
V
6
Tap  
O
60 k  
330 k  
7
Feedback  
Error  
Amplifier  
Shutdown  
From  
3
60 k  
50 k  
75 mV/  
60 mV  
CMOS/TTL  
Error  
Output  
To CMOS/TTL  
5
Error Detection  
Comparator  
1.23 V  
Reference  
LP2951CD or CN  
Gnd  
4
This device contains 34 active transistors.  
2
MOTOROLA ANALOG IC DEVICE DATA  
LP2950 LP2951  
MAXIMUM RATINGS (T = 25°C, unless otherwise noted.)  
A
Rating  
Symbol  
Value  
Unit  
Input Voltage  
V
CC  
30  
Vdc  
Power Dissipation and Thermal Characteristics  
Maximum Power Dissipation  
P
Internally Limited  
W
D
Case 751(SO–8) D Suffix  
Thermal Resistance, Junction–to–Ambient  
Thermal Resistance, Junction–to–Case  
Case 369A (DPAK) DT Suffix [Note 1]  
Thermal Resistance, Junction–to–Ambient  
Thermal Resistance, Junction–to–Case  
Case 29 (TO–226AA/TO–92) Z Suffix  
Thermal Resistance, Junction–to–Ambient  
Thermal Resistance, Junction–to–Case  
Case 626 N Suffix  
R
R
180  
45  
°C/W  
°C/W  
θJA  
θJC  
R
θJA  
R
θJC  
92  
6.0  
°C/W  
°C/W  
R
θJA  
R
θJC  
160  
83  
°C/W  
°C/W  
Thermal Resistance, Junction–to–Ambient  
Case 846A (Micro–8) DM Suffix  
R
105  
°C/W  
θJA  
Thermal Resistance, Junction–to–Ambient  
R
240  
°C/W  
θJA  
Feedback Input Voltage  
V
fb  
–1.5 to +30  
Vdc  
Shutdown Input Voltage  
V
–0.3 to +30  
–0.3 to +30  
–40 to +125  
–65 to +150  
Vdc  
Vdc  
°C  
sd  
Error Comparator Output Voltage  
Operating Junction Temperature  
Storage Temperature Range  
V
err  
T
J
T
stg  
°C  
NOTE: 1. The Junction–to–Ambient Thermal Resistance is determined by PC board copper area  
per Figure 26.  
2. ESD data available upon request.  
ELECTRICAL CHARACTERISTICS (V = V + 1.0 V, I = 100 µA, C = 1.0 µF, T = 25°C [Note 1], unless otherwise  
in  
O
O
O
J
noted.)  
Characteristic  
Output Voltage, 5.0 V Versions  
= 6.0 V, I = 100 µA, T = 25°C  
Symbol  
Min  
Typ  
Max  
Unit  
V
O
V
O
V
O
V
V
in  
O
J
LP2950C–5.0/LP2951C  
LP2950AC–5.0/LP2951AC  
4.950  
4.975  
5.000  
5.000  
5.050  
5.025  
T = 40 to +125°C  
J
LP2950C–5.0/LP2951C  
4.900  
4.940  
5.100  
5.060  
LP2950AC–5.0/LP2951AC  
V
in  
= 6.0 to 30 V, I = 100 µA to 100 mA, T = 40 to +125°C  
O J  
LP2950C–5.0/LP2951C  
LP2950AC–5.0/LP2951AC  
4.880  
4.925  
5.120  
5.075  
Output Voltage, 3.3 V Versions  
= 4.3 V, I = 100 µA, T = 25°C  
V
V
in  
O
J
LP2950C–3.3/LP2951C–3.3  
LP2950AC–3.3/LP2951AC–3.3  
3.267  
3.284  
3.300  
3.300  
3.333  
3.317  
T = 40 to +125°C  
J
LP2950C–3.3/LP2951C–3.3  
3.234  
3.260  
3.366  
3.340  
LP2950AC–3.3/LP2951AC–3.3  
V
in  
= 4.3 to 30 V, I = 100 µA to 100 mA, T = 40 to +125°C  
O J  
LP2950C–3.3/LP2951C–3.3  
LP2950AC–3.3/LP2951AC–3.3  
3.221  
3.254  
3.379  
3.346  
Output Voltage, 3.0 V Versions  
= 4.0 V, I = 100 µA, T = 25°C  
V
V
in  
O
J
LP2950C–3.0/LP2951C–3.0  
LP2950AC–3.0/LP2951AC–3.0  
2.970  
2.985  
3.000  
3.000  
3.030  
3.015  
T = 40 to +125°C  
J
LP2950C–3.0/LP2951C–3.0  
LP2950AC–3.0/LP2951AC–3.0  
2.940  
2.964  
3.060  
3.036  
V
in  
= 4.0 to 30 V, I = 100 µA to 100 mA, T = 40 to +125°C  
O J  
LP2950C–3.0/LP2951C–3.0  
LP2950AC–3.0/LP2951AC–3.0  
2.928  
2.958  
3.072  
3.042  
3
MOTOROLA ANALOG IC DEVICE DATA  
LP2950 LP2951  
ELECTRICAL CHARACTERISTICS (continued) (V = V + 1.0 V, I = 100 µA, C = 1.0 µF, T = 25°C [Note 1], unless otherwise  
in  
O
O
O
J
noted.)  
Characteristic  
+1.0 V to 30 V) [Note 2]  
Symbol  
Min  
Typ  
Max  
Unit  
Line Regulation (V = V  
in  
Reg  
%
O(nom)  
line  
LP2950C–XX/LP2951C/LP2951C–XX  
LP2950AC–XX/LP2951AC/LP2951AC–XX  
0.08  
0.04  
0.20  
0.10  
Load Regulation (I = 100 µA to 100 mA)  
Reg  
%
O
load  
LP2950C–XX/LP2951C/LP2951C–XX  
LP2950AC–XX/LP2951AC/LP2951AC–XX  
0.13  
0.05  
0.20  
0.10  
Dropout Voltage  
V – V  
I
mV  
O
I
O
I
O
= 100 µA  
= 100 mA  
30  
350  
80  
450  
Supply Bias Current  
I
CC  
I
O
I
O
= 100 µA  
= 100 mA  
93  
4.0  
120  
12  
µA  
mA  
Dropout Supply Bias Current (V = V  
in  
O
– 0.5 V,  
I
110  
170  
µA  
O(nom)  
CCdropout  
I
= 100 µA) [Note 2]  
Current Limit (V Shorted to Ground)  
O
I
220  
300  
mA  
%/W  
Limit  
Reg  
Thermal Regulation  
0.05  
0.20  
thermal  
Output Noise Voltage (10 Hz to 100 kHz) [Note 3]  
V
n
µVrms  
C
C
= 1.0 µF  
= 100 µF  
126  
56  
L
L
LP2951A/LP2951AC ONLY  
Reference Voltage (T = 25°C)  
LP2951C/LP2951C–XX  
LP2951AC/LP2951AC–XX  
V
V
V
V
J
ref  
1.210  
1.220  
1.235  
1.235  
1.260  
1.250  
Reference Voltage (T = 40 to +125°C)  
V
ref  
J
LP2951C/LP2951C–XX  
LP2951AC/LP2951AC–XX  
1.200  
1.200  
1.270  
1.260  
Reference Voltage (T = 40 to +125°C)  
V
ref  
J
I
O
= 100 µA to 100 mA, V = 23 to 30 V  
in  
LP2951C/LP2951C–XX  
LP2951AC/LP2951AC–XX  
1.185  
1.190  
1.285  
1.270  
Feedback Pin Bias Current  
ERROR COMPARATOR  
Output Leakage Current (V  
I
15  
40  
nA  
FB  
= 30 V)  
I
0.01  
150  
45  
1.0  
250  
µA  
mV  
mV  
mV  
mV  
OH  
lkg  
Output Low Voltage (V = 4.5 V, I  
in  
= 400 µA)  
V
V
OL  
OL  
Upper Threshold Voltage (V = 6.0 V)  
in  
40  
thu  
Lower Threshold Voltage (V = 6.0 V)  
in  
V
60  
95  
thl  
hy  
Hysteresis (V = 6.0 V)  
in  
V
15  
SHUTDOWN INPUT  
Input Logic Voltage  
V
shtdn  
V
Logic “0” (Regulator “On”)  
Logic “1” (Regulator “Off”)  
0
2.0  
0.7  
30  
Shutdown Pin Input Current  
I
µA  
µA  
shtdn  
V
shtdn  
V
shtdn  
= 2.4 V  
= 30 V  
35  
450  
50  
600  
Regulator Output Current in Shutdown Mode  
(V = 30 V, V = 2.0 V, V = 0, Pin 6 Connected to Pin 7)  
I
off  
3.0  
10  
in  
shtdn  
O
NOTES: 1. Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
2. V is the part number voltage option.  
O(nom)  
3. Noise tests on the LP2951 are made with a 0.01 µF capacitor connected across Pins 7 and 1.  
4
MOTOROLA ANALOG IC DEVICE DATA  
LP2950 LP2951  
DEFINITIONS  
Dropout Voltage – The input/output voltage differential at  
Output Noise Voltage – The rms ac voltage at the output,  
with constant load and no input ripple, measured over a  
specified frequency range.  
Leakage Current – Current drawn through a bipolar  
transistor collector–base junction, under a specified collector  
voltage, when the transistor is “off”.  
Upper Threshold Voltage – Voltage applied to the  
comparator input terminal, below the reference voltage  
which is applied to the other comparator input terminal,  
which causes the comparator output to change state from a  
logic “0” to “1”.  
Lower Threshold Voltage – Voltage applied to the  
comparator input terminal, below the reference voltage  
which is applied to the other comparator input terminal,  
which causes the comparator output to change state from a  
logic “1” to “0”.  
which the regulator output no longer maintains regulation  
against further reductions in input voltage. Measured when  
the output drops 100 mV below its nominal value (which is  
measured at 1.0 V differential), dropout voltage is affected by  
junction temperature, load current and minimum input supply  
requirements.  
Line Regulation – The change in output voltage for a  
change in input voltage. The measurement is made under  
conditions of low dissipation or by using pulse techniques  
such that average chip temperature is not significantly  
affected.  
Load Regulation – The change in output voltage for a  
change in load current at constant chip temperature.  
Maximum Power Dissipation – The maximum total  
device dissipation for which the regulator will operate within  
specifications.  
Hysteresis – The difference between Lower Threshold  
voltage and Upper Threshold voltage.  
Bias Current – Current which is used to operate the  
regulator chip and is not delivered to the load.  
Figure 1. Quiescent Current  
Figure 2. Dropout Characteristics  
10  
6.0  
LP2951C  
5.0  
4.0  
3.0  
2.0  
T
= 25°C  
A
R
= 50 k  
L
L
1.0  
0.1  
R
= 50  
1.0  
0
0.01  
0.1  
1.0  
10  
100  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
I , LOAD CURRENT (mA)  
L
V
, INPUT VOLTAGE (V)  
in  
Figure 3. Input Current  
Figure 4. Output Voltage versus Temperature  
250  
5.00  
200  
150  
100  
50  
4.99  
4.98  
4.97  
4.96  
4.95  
0.1 mA Load Current  
No Load  
LP2951C  
0
0
5.0  
10  
15  
20  
25  
– 50  
0
50  
100  
150  
V
, INPUT VOLTAGE (V)  
T , AMBIENT TEMPERATURE (°C)  
in  
A
5
MOTOROLA ANALOG IC DEVICE DATA  
LP2950 LP2951  
Figure 5. Dropout Voltage versus  
Output Current  
Figure 6. Dropout Voltage versus Temperature  
400  
350  
550  
500  
55  
50  
T
= 25°C  
A
300  
250  
200  
150  
100  
450  
400  
350  
300  
45  
40  
35  
30  
R
= 50  
L
R
= 50 k  
50  
0
L
0.1  
1.0  
10  
100  
– 50  
0
50  
T, TEMPERATURE (°C)  
100  
150  
I
, OUTPUT CURRENT (mA)  
O
Figure 7. Error Comparator Output  
Figure 8. Line Transient Response  
5.0  
4.0  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
V
in  
LP2951C  
= 330 k  
R
L
4.0  
3.0  
2.0  
1.0  
0
2.0  
T
= 25°C  
A
V
Decreasing  
in  
0
V
out  
V
Increasing  
in  
– 2.0  
– 4.0  
– 6.0  
T
= 25°C  
= 1.0 µF  
= 1.0 mA  
= 5.0 V  
A
C
L
I
L
V
O
4.70  
4.74  
4.78  
4.82  
4.86  
4.90  
0
100  
200  
300  
400  
500  
600  
700  
800  
V
, INPUT VOLTAGE (V)  
t, TIME (µs)  
in  
Figure 9. LP2951 Enable Transient  
Figure 10. Load Transient Response  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
200  
150  
100  
50  
C
= 1.0 µF  
C
= 1.0 µF  
= 5.0 V  
L
L
400  
200  
0
V
out  
= 25°C  
T
A
V
out  
C
= 10 µF  
L
T
= 25°C  
= 10 mA  
= 8.0 V  
A
I
V
V
L
in  
– 200  
– 400  
I
Load  
= 5.0 V  
out  
0
Shutdown Input  
200  
–1.0  
– 50  
–100  
0
100  
300  
400  
0
50  
100  
150  
200  
t, TIME (ms)  
250  
300  
350  
400  
t, TIME (µs)  
6
MOTOROLA ANALOG IC DEVICE DATA  
LP2950 LP2951  
Figure 11. Ripple Rejection  
Figure 12. Output Noise  
80  
60  
40  
4.0  
3.0  
I = 100 mA  
L
T
= 25°C  
= 5.0 V  
A
C
= 1.0 µF  
V
L
O
LP2951C  
I = 0.1 mA  
L
2.0  
1.0  
0
T
= 25°C  
= 1.0 µF  
= 6.0 V  
A
C
= 100 µF  
20  
0
L
C
V
L
in  
V
= 5.0 V  
out  
1.0  
1.0 k  
f, FREQUENCY (Hz)  
100  
1.0 k  
f, FREQUENCY (Hz)  
10  
100  
10 k  
100 k  
10 k  
100 k  
Figure 13. Shutdown Threshold Voltage  
versus Temperature  
Figure 14. Maximum Rated  
Output Current  
1.8  
1.6  
100  
4.0  
T
= 25°C  
A
80  
60  
40  
20  
0
2.0  
T
= 75°C  
A
0
1.4  
1.2  
Output “Off”  
Output “On”  
– 2.0  
– 4.0  
– 6.0  
1.0  
0.8  
LP2951CN  
5.0  
– 40 – 20  
0
20  
40  
60  
80  
100 120 140 160  
0
10  
15  
V , INPUT VOLTAGE (V)  
in  
20  
25  
30  
35  
40  
t, TEMPERATURE (  
°C)  
7
MOTOROLA ANALOG IC DEVICE DATA  
LP2950 LP2951  
APPLICATIONS INFORMATION  
Introduction  
The LP2950/LP2951 regulators are designed with  
internal current limiting and thermal shutdown making them  
user–friendly. Typical application circuits for the LP2950 and  
LP2951 are shown in Figures 17 through 25.  
These regulators are not internally compensated and thus  
require a 1.0 µF (or greater) capacitance between the  
LP2950/LP2951 output terminal and ground for stability.  
Most types of aluminum, tantalum or multilayer ceramic will  
perform adequately. Solid tantalums or appropriate  
multilayer ceramic capacitors are recommended for  
operation below 25°C.  
When operated in the shutdown mode, the error  
comparator output will go high if it has been pulled up to an  
external supply. To avoid this invalid response, the error  
comparator output should be pulled up to V  
Figure 15).  
(see  
out  
Figure 15. ERROR Output Timing  
5.0 V  
4.70 V  
4.75 V  
Output  
Voltage  
At lower values of output current, less output capacitance  
is required for output stability. The capacitor can be reduced  
to 0.33 µF for currents less than 10 mA, or 0.1 µF for currents  
below 1.0 mA. Using the 8–pin versions at voltages less than  
5.0 V operates the error amplifier at lower values of gain, so  
that more output capacitance is needed for stability. For the  
worst case operating condition of a 100 mA load at 1.23 V  
output (Output Pin 1 connected to the feedback Pin 7) a  
minimum capacitance of 3.3 µF is recommended.  
Pull–Up  
to Ext  
Not  
Valid  
Not  
Valid  
ERROR  
Pull–Up  
to V  
out  
4.75 V + V  
dropout  
4.70 V + V  
dropout  
The LP2950 will remain stable and in regulation when  
operated with no output load. When setting the output voltage  
of the LP2951 with external resistors, the resistance values  
should be chosen to draw a minimum of 1.0 µA.  
A bypass capacitor is recommended across the  
LP2950/LP2951 input to ground if more than 4 inches of  
wire connects the input to either a battery or power supply  
filter capacitor.  
Input capacitance at the LP2951 Feedback Pin 7 can  
create a pole, causing instability if high value external  
resistors are used to set the output voltage. Adding a 100 pF  
capacitor between the Output Pin 1 and the Feedback Pin 7  
and increasing the output filter capacitor to at least 3.3 µF will  
stabilize the feedback loop.  
Input  
Voltage  
1.3 V  
1.3 V  
Programming the Output Voltage (LP2951)  
The LP2951CX may be pin–strapped for 5.0 V using its  
internal voltage divider by tying Pin 1 (output) to Pin 2 (sense)  
and Pin 7 (feedback) to Pin 6 (5.0 V tap). Alternatively, it may  
be programmed for any output voltage between its 1.235  
reference voltage and its 30 V maximum rating. An external  
pair of resistors is required, as shown in Figure 16.  
Figure 16. Adjustable Regulator  
V
in  
Error Detection Comparator  
The comparator switches to a positive logic low whenever  
the LP2951 output voltage falls more than approximately  
5.0% out of regulation. This value is the comparator’s  
designed–in offset voltage of 60 mV divided by the 1.235 V  
internal reference. As shown in the representative block  
diagram. This trip level remains 5.0% below normal  
regardless of the value of regulated output voltage. For  
example, the error flag trip level is 4.75 V for a normal 5.0 V  
regulated output, or 9.50 V for a 10 V output voltage.  
Figure 1 is a timing diagram which shows the ERROR  
signal and the regulated output voltage as the input voltage to  
the LP2951 is ramped up and down. The ERROR signal  
becomes valid (low) at about 1.3 V input. It goes high when  
100 k  
5
8
V
in  
1
Error  
Output  
V
out  
Error  
V
out  
1.23 to 30 V  
2
NC  
NC  
SNS  
R1  
Shutdown  
Input  
3
6
0.01 µF  
SD  
Gnd  
V
T
O
3.3 µF  
FB  
4
7
R
2
the input reaches about 5.0 V (V  
exceeds about 4.75 V).  
out  
Since the LP2951’s dropout voltage is dependent upon the  
load current (refer to the curve in the Typical Performance  
Characteristics), the input voltage trip point will vary with load  
current. The output voltage trip point does not vary with load.  
The error comparator output is an open collector which  
requires an external pull–up resistor. This resistor may be  
returned to the output or some other voltage within the  
system. The resistance value should be chosen to be  
consistent with the 400 µA sink capability of the error  
comparator. A value between 100 k and 1.0 Mis suggested.  
No pull–up resistance is required if this output is unused.  
The complete equation for the output voltage is:  
(
)
V
1
R1 R2  
I
R1  
out  
ref  
FB  
where V is the nominal 1.235 V reference voltage and I  
ref FB  
is the feedback pin bias current, nominally 20 nA. The  
minimum recommended load current of 1.0 µA forces an  
upper limit of 1.2 Mon the value of R2, if the regulator must  
work with no load. I  
which may be eliminated at room temperature by adjusting  
R1. For better accuracy, choosing R2 = 100 k reduces this  
will produce a 2% typical error in V  
FB  
out  
8
MOTOROLA ANALOG IC DEVICE DATA  
LP2950 LP2951  
error to 0.17% while increasing the resistor program current  
to 12 µA. Since the LP2951 typically draws 75 µA at no load  
with Pin 2 open circuited, the extra 12 µA of current drawn is  
often a worthwhile tradeoff for eliminating the need to set  
output voltage in test.  
Figure 17. 1.0 A Regulator with 1.2 V Dropout  
Unregulated  
Input  
MTB23P06E  
1.0 µF  
10 k  
0.01 µF  
Output Noise  
In many applications it is desirable to reduce the noise  
present at the output. Reducing the regulator bandwidth by  
increasing the size of the output capacitor is the only method  
for reducing noise on the 3 lead LP2950. However,  
increasing the capacitor from 1.0 µF to 220 µF only  
decreases the noise from 430 µV to 160 µVrms for a 100 kHz  
bandwidth at the 5.0 V output.  
Noise can be reduced fourfold by a bypass capacitor  
across R1, since it reduces the high frequency gain from 4 to  
unity. Pick  
V
out  
5.0 V  
0 to 1.0 A  
±
1.0%  
8
V
in  
1
2
5
3
Error  
Output  
V
Error  
out  
SNS  
LP2951CN  
6
Shutdown  
Input  
SD  
V
T
O
220 µF  
Gnd  
4
FB  
7
1
C
Bypass  
0.002  
1.0 M  
µF  
2 R1 x 200 Hz  
or about 0.01 µF. When doing this, the output capacitor  
must be increased to 3.3 µF to maintain stability. These  
changes reduce the output noise from 430 µV to 126 µVrms  
for a 100 kHz bandwidth at 5.0 V output. With bypass  
capacitor added, noise no longer scales with output voltage  
so that improvements are more dramatic at higher output  
voltages.  
2.0 k  
9
MOTOROLA ANALOG IC DEVICE DATA  
LP2950 LP2951  
TYPICAL APPLICATIONS  
Figure 18. Lithium Ion Battery Cell Charger  
Figure 19. Low Drift Current Sink  
+V = 2.0 to 30 V  
Unregulated Input  
6.0 to 10 Vdc  
I
L
I
= 1.23/R  
Load  
L
8
V
1N4001  
330 pF  
4.2 V ± 0.025 V  
in  
1
2
5
Error  
V
NC  
out  
8
0.1 µF  
2.0 M  
1.0%  
NC  
NC  
SNS  
V
in  
1
Error  
Output  
5
3
LP2951CN  
V
0.1 µF  
Error  
out  
3
6
SD  
V
T
O
2
6
SNS  
806 k  
1.0%  
Lithium Ion  
Rechargeable  
Cell  
Gnd  
4
FB  
2.2  
µF  
LP2951CN  
Shutdown  
Input  
7
SD  
V
T
O
50 k  
Gnd  
4
FB  
7
Gnd  
1.0 µF  
R
Figure 20. Latch Off When Error Flag Occurs  
Figure 21. 5.0 V Regulator with 2.5 V Sleep Function  
+V  
in  
+V  
in  
CMOS  
Gate  
*Sleep  
Input  
8
470 k  
470 k  
V
8
in  
47 k  
Error  
1
2
5
3
V
V
out  
Error  
out  
V
2N3906  
V
2N3906  
out  
in  
1
2
470 k  
5
V
out  
Error  
Output  
NC  
NC  
SNS  
LP2951CN  
Reset  
NC  
NC  
SNS  
200 k  
100 k  
6
LP2951CN  
R1  
R2  
SD  
V
T
O
Shutdown  
Input  
3
6
3.3 µF  
Normally  
Closed  
SD  
V
T
O
Gnd  
4
FB  
1.0 µF  
100 pF  
7
Gnd  
4
FB  
7
100 k  
Error flag occurs when V is too low to  
in  
maintain V , or if V  
out out  
excessive load current.  
is reduced by  
10  
MOTOROLA ANALOG IC DEVICE DATA  
LP2950 LP2951  
Figure 22. Regulator with Early Warning and Auxiliary Output  
+V  
in  
8
V
D2  
in  
1
2
Memory  
V+  
5
3
V
Error  
out  
D1  
1.0 µF  
20  
3.6 V  
NiCad  
SNS  
LP2951CN  
#1  
6
NC  
SD  
V
T
O
Gnd  
4
FB  
7
Early Warning  
Reset  
27 k  
All diodes are 1N4148.  
D3  
Early Warning flag on low input voltage.  
µP  
2.7 M  
Main output latches off at lower input  
voltages.  
D4  
V
DD  
Q1  
2N3906  
8
Battery backup on auxiliary output.  
330 k  
V
in  
1
2
5
3
Operation: Regulator #1’s V  
programmed one diode drop above 5.0 V.  
is  
out  
V
Error  
out  
Main  
Output  
Its error flag becomes active when V < 5.7  
V. When V drops below 5.3 V, the error  
in  
flag of regulator #2 becomes active and via  
in  
SNS  
LP2951CN  
#2  
1.0 µF  
Q1 latches the main output “off”. When V  
6
in  
SD  
V
T
O
again exceeds 5.7 V, regulator #1 is back in  
regulation and the early warning signal  
rises, unlatching regulator #2 via D3.  
Gnd  
4
FB  
7
Figure 23. 2.0 A Low Dropout Regulator  
+V  
in  
Current Limit  
Section  
0.05  
470  
680  
2N3906  
1000 µF  
2N3906  
MJE2955  
.33 µF  
10 k  
4.7 M  
8
V
in  
1
2
Error  
Flag  
5
3
V
Error  
out  
V
@ 2.0 A  
NC  
NC  
47  
SNS  
out  
LP2951CN  
220  
6
4.7  
Tant  
µF  
SD  
V
T
O
100 µF  
R1  
Gnd  
4
FB  
20 k  
.01 µF  
7
R2  
0.033 µF  
V
= 1.25V (1.0 + R1/R2)  
out  
For 5.0 V output, use internal resistors. Wire Pin 6 to 7,  
and wire Pin 2 to +V Bus.  
out  
11  
MOTOROLA ANALOG IC DEVICE DATA  
LP2950 LP2951  
Figure 24. Open Circuit Detector for  
4.0 to 20 mA Current Loop  
+5.0 V  
4.7 k  
Output*  
1
2
5
4
20 mA  
NC  
8
V
in  
1
4
5
3
V
Error  
out  
2
NC  
NC  
SNS  
LP2951CN  
* High for  
< 3.5 mA  
6
I
L
NC  
SD  
V
T
O
0.1 µF  
1N4001  
Gnd  
4
FB  
7
1N457  
1N457  
1N457  
360  
Figure 25. Low Battery Disconnect  
31.6 k  
6.0 V Lead–Acid  
Battery  
100 k  
2N3906  
NC  
8
V
in  
1
2
5
3
V
Main V+  
Error  
out  
1
MC34164P–5  
2
SNS  
Memory V+  
3
LP2951CN  
1.0 µF  
6
20  
SD  
V
T
NC  
O
NiCad Backup  
Battery  
Gnd  
4
FB  
7
NC  
Figure 26. DPAK Thermal Resistance and Maximum  
Power Dissipation versus P.C.B. Copper Length  
100  
90  
80  
70  
60  
50  
40  
2.4  
P
for T = 50  
A
°
C
D(max)  
Free Air  
Mounted  
Vertically  
2.0  
1.6  
1.2  
0.8  
0.4  
0
2.0 oz. Copper  
L
Minimum  
Size Pad  
L
R
θ
JA  
0
5.0  
10  
15  
20  
25  
30  
L, LENGTH OF COPPER (mm)  
12  
MOTOROLA ANALOG IC DEVICE DATA  
LP2950 LP2951  
OUTLINE DIMENSIONS  
Z SUFFIX  
PLASTIC PACKAGE  
CASE 29–04  
(TO–226AA/TO–92)  
ISSUE AD  
NOTES:  
A
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
B
2. CONTROLLING DIMENSION: INCH.  
3. CONTOUR OF PACKAGE BEYOND DIMENSION R  
IS UNCONTROLLED.  
R
4. DIMENSION F APPLIES BETWEEN P AND L.  
DIMENSION D AND J APPLY BETWEEN L AND K  
MINIMUM. LEAD DIMENSION IS UNCONTROLLED  
IN P AND BEYOND DIMENSION K MINIMUM.  
P
L
F
SEATING  
PLANE  
K
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
P
MAX  
0.205  
0.210  
0.165  
0.022  
0.019  
0.055  
0.105  
0.020  
–––  
MIN  
4.45  
4.32  
3.18  
0.41  
0.41  
1.15  
2.42  
0.39  
12.70  
6.35  
2.04  
–––  
MAX  
5.20  
5.33  
4.19  
0.55  
0.48  
1.39  
2.66  
0.50  
–––  
0.175  
0.170  
0.125  
0.016  
0.016  
0.045  
0.095  
0.015  
0.500  
0.250  
0.080  
–––  
D
X X  
G
J
H
V
C
–––  
–––  
SECTION X–X  
0.105  
0.100  
–––  
2.66  
2.54  
–––  
1
N
R
V
0.115  
0.135  
2.93  
3.43  
N
–––  
–––  
DT SUFFIX  
PLASTIC PACKAGE  
CASE 369A–13  
(DPAK)  
ISSUE Y  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
SEATING  
PLANE  
–T–  
2. CONTROLLING DIMENSION: INCH.  
C
B
R
INCHES  
MILLIMETERS  
E
V
DIM  
A
B
C
D
E
MIN  
MAX  
0.250  
0.265  
0.094  
0.035  
0.040  
0.047  
MIN  
5.97  
6.35  
2.19  
0.69  
0.84  
0.94  
MAX  
6.35  
6.73  
2.38  
0.88  
1.01  
1.19  
0.235  
0.250  
0.086  
0.027  
0.033  
0.037  
4
2
Z
A
K
S
F
1
3
G
H
J
K
L
0.180 BSC  
4.58 BSC  
U
0.034  
0.018  
0.102  
0.040  
0.023  
0.114  
0.87  
0.46  
2.60  
1.01  
0.58  
2.89  
0.090 BSC  
2.29 BSC  
F
J
R
S
U
V
0.175  
0.020  
0.020  
0.030  
0.138  
0.215  
0.050  
–––  
0.050  
–––  
4.45  
0.51  
0.51  
0.77  
3.51  
5.46  
1.27  
–––  
1.27  
–––  
L
H
D 2 PL  
0.13 (0.005)  
Z
M
G
T
13  
MOTOROLA ANALOG IC DEVICE DATA  
LP2950 LP2951  
OUTLINE DIMENSIONS  
N SUFFIX  
PLASTIC PACKAGE  
CASE 626–05  
ISSUE K  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
8
5
4
–B–  
1
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
G
H
J
MIN  
9.40  
6.10  
3.94  
0.38  
1.02  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.370  
0.240  
0.155  
0.015  
0.040  
0.400  
0.260  
0.175  
0.020  
0.070  
F
NOTE 2  
–A–  
L
2.54 BSC  
0.100 BSC  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
0.76  
0.20  
2.92  
K
L
C
7.62 BSC  
0.300 BSC  
0.76  
10  
1.01  
°
10  
0.040  
°
M
N
J
0.030  
–T–  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
0.13 (0.005)  
A
B
T
D SUFFIX  
PLASTIC PACKAGE  
CASE 751–05  
(SO–8)  
ISSUE R  
NOTES:  
D
A
E
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. DIMENSIONS ARE IN MILLIMETERS.  
3. DIMENSION D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS  
OF THE B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
C
8
5
M
M
0.25  
B
H
1
4
h X 45  
MILLIMETERS  
B
C
e
DIM  
A
A1  
B
C
D
E
e
H
h
MIN  
1.35  
0.10  
0.35  
0.18  
4.80  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
5.00  
4.00  
A
SEATING  
PLANE  
L
1.27 BSC  
0.10  
5.80  
0.25  
0.40  
0
6.20  
0.50  
1.25  
7
A1  
B
L
M
S
S
0.25  
C
B
A
14  
MOTOROLA ANALOG IC DEVICE DATA  
LP2950 LP2951  
OUTLINE DIMENSIONS  
DM SUFFIX  
PLASTIC PACKAGE  
CASE 846A–02  
(Micro–8)  
ISSUE C  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–A–  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)  
PER SIDE.  
–B–  
K
MILLIMETERS  
INCHES  
PIN 1 ID  
G
DIM  
A
B
C
D
MIN  
2.90  
2.90  
–––  
MAX  
3.10  
3.10  
1.10  
0.40  
MIN  
MAX  
0.122  
0.122  
0.043  
0.016  
D 8 PL  
0.114  
0.114  
–––  
M
S
S
0.08 (0.003)  
T
B
A
0.25  
0.010  
G
H
J
K
L
0.65 BSC  
0.026 BSC  
0.05  
0.13  
4.75  
0.40  
0.15  
0.23  
5.05  
0.70  
0.002  
0.005  
0.187  
0.016  
0.006  
0.009  
0.199  
0.028  
SEATING  
PLANE  
–T–  
0.038 (0.0015)  
C
L
J
H
15  
MOTOROLA ANALOG IC DEVICE DATA  
LP2950 LP2951  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
LP2950/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY