MC100ES6226FA [MOTOROLA]

2.5/3.3V Differential LVPECL 1:9 Clock Distribution Buffer and Clock Divider; 2.5 / 3.3V的差分LVPECL 1 : 9时钟分配缓冲器和时钟分频器
MC100ES6226FA
型号: MC100ES6226FA
厂家: MOTOROLA    MOTOROLA
描述:

2.5/3.3V Differential LVPECL 1:9 Clock Distribution Buffer and Clock Divider
2.5 / 3.3V的差分LVPECL 1 : 9时钟分配缓冲器和时钟分频器

时钟驱动器 逻辑集成电路
文件: 总12页 (文件大小:279K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.Order Number: MC100ES6226/D  
Rev 1, 12/2001  
SEMICONDUCTOR TECHNICAL DATA  
The Motorola MC100ES6226 is a bipolar monolithic differential clock  
distribution buffer and clock divider. Designed for most demanding clock  
distribution systems, the MC100ES6226 supports various applications  
that require a large number of outputs to drive precisely aligned clock  
signals. Using SiGe technology and a fully differential architecture, the  
device offers superior digitial signal characteristics and very low clock  
skew error. Target applications for this clock driver are high performance  
clock distribution systems for computing, networking and  
telecommunication systems.  
2.5V/3.3V DIFFERENTIAL  
LVPECL 1:9 CLOCK  
DISTRIBUTION BUFFER AND  
CLOCK DIVIDER  
Features:  
Fully differential architecture from input to all outputs  
SiGe technology supports near-zero output skew  
Selectable 1:1 or 1:2 frequency outputs  
LVPECL compatible differential clock inputs and outputs  
LVCMOS compatible control inputs  
Single 3.3V or 2.5V supply  
Max. 35 ps maximum output skew (within output bank)  
Max. 50 ps maximum device skew  
FA SUFFIX  
32–LEAD LQFP PACKAGE  
CASE 873A  
Supports DC operation and up to 3 GHz (typ.) clock signals  
Synchronous output enable eliminating output runt pulse generation  
and metastability  
Standard 32 lead LQFP package  
Industrial temperature range  
Functional Description  
MC100ES6226 is designed for very skew critical differential clock distribution systems and supports clock frequencies from  
DC up to 3.0 GHz. Typical applications for the MC100ES6226 are primary clock distribution systems on backplanes of  
high-performance computer, networking and telecommunication systems, as well as on-board clocking of OC-3, OC-12 and  
OC-48 speed communication systems.  
The MC100ES6226 can be operated from a 3.3V or 2.5V positive supply without the requirement of a negative supply line.  
Each of the output banks of three differential clock output pairs may be independently configured to distribute the input frequency  
or half of the input frequency. The FSEL0 and FSEL1 clock frequency selects are asychronous control inputs. Any changes of the  
control inputs require a MR pulse for resynchronization of the ÷2 outputs.  
For More Information On This Product,  
Motorola, Inc. 2001  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC100ES6226  
Bank A  
V
CC  
QA0  
QA0  
QA1  
QA1  
÷1  
CLK  
CLK  
÷2  
QA2  
QA2  
Bank B  
QB0  
QB0  
MR  
QB1  
QB1  
QB2  
QB2  
FSEL0  
FSEL1  
Bank C  
QC0  
QC0  
QC1  
QC1  
QC2  
QC2  
Sync  
OE  
Figure 1. MC100ES6226 Logic Diagram  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
QC0  
QC0  
QC1  
QA2  
QA2  
VCC  
QA1  
QA1  
QA0  
QA0  
VCC  
QC1  
VCC  
QC2  
MC100ES6226  
QC2  
VCC  
1
2
3
4
5
6
7
8
Figure 2. 32–Lead Package Pinout (Top View)  
For More Information On This Product,  
MOTOROLA  
2
TIMING SOLUTIONS  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC100ES6226  
TABLE 1: PIN CONFIGURATION  
Pin  
I/O  
Input  
Type  
Function  
CLK, CLK  
LVPECL  
Differential reference clock signal input  
OE  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
Output enable  
MR  
Device reset  
FSEL0, FSEL1  
Output frequency divider select  
QA[0-2], QA[0-2]  
QB[0-2], QB[0-2]  
QC[0-2], QC[0-2]  
Output  
LVPECL  
Differential clock outputs (banks A, B and C)  
GND  
Supply  
Supply  
GND  
VCC  
Negative power supply  
V
CC  
Positive power supply. All V  
correct DC and AC operation  
pins must be connected to the positive power supply for  
CC  
TABLE 2: FUNCTION TABLE  
Control  
Default  
0
1
OE  
0
Qx[0-2], Qx[0-2] are active. Deassertion of OE can  
be asynchronous to the reference clock without  
generation of output runt pulses  
Qx[0-2] = L, Qx[0-2] =H (outputs disabled).  
Assertion of OE can be asynchronous to the  
reference clock without generation of output runt  
pulses  
MR  
0
Normal operation  
Device reset (asynchronous)  
FSEL0, FSEL1  
00  
See Following Table  
TABLE 3: Output Frequency Select Control  
FSEL1  
QC0 to QC2  
f = f  
QC0:2 CLK  
FSEL0  
QA0 to QA2  
QB0 to QB2  
0
0
1
0
1
f
f
f
= f  
f
f
= f  
QA0:2 CLK  
= f  
QB0:2 CLK  
= f  
QB0:2 CLK  
0
1
1
f
f
f
= f  
÷ 2  
÷ 2  
÷ 2  
QA0:2 CLK  
QC0:2 CLK  
= f  
f
= f  
QB0:2 CLK  
÷ 2  
÷ 2  
= f  
QC0:2 CLK  
QA0:2 CLK  
= f ÷ 2  
f
f
= f  
QB0:2 CLK  
= f  
QC0:2 CLK  
QA0:2 CLK  
a
TABLE 4: ABSOLUTE MAXIMUM RATINGS  
Symbol  
Characteristics  
Min  
-0.3  
-0.3  
-0.3  
Max  
Unit  
V
Condition  
V
CC  
Supply Voltage  
3.6  
V
IN  
DC Input Voltage  
V
V
+0.3  
V
CC  
V
OUT  
DC Output Voltage  
DC Input Current  
+0.3  
V
CC  
I
IN  
±20  
mA  
mA  
°C  
I
DC Output Current  
Storage temperature  
±50  
OUT  
T
S
-65  
125  
a. Absolutemaximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions  
or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not  
implied.  
For More Information On This Product,  
TIMING SOLUTIONS  
3
MOTOROLA  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC100ES6226  
TABLE 5: GENERAL SPECIFICATIONS  
Symbol  
Characteristics  
Output termination voltage  
Min  
Typ  
Max  
Unit  
V
Condition  
a
- 2  
CC  
V
TT  
V
MM  
HBM  
CDM  
LU  
ESD Protection (Machine model)  
ESD Protection (Human body model)  
ESD Protection (Charged device model)  
Latch-up immunity  
200  
2000  
1000  
200  
V
V
V
mA  
pF  
C
4.0  
Inputs  
IN  
θ
Thermal resistance junction to ambient  
JESD 51-3, single layer test board  
JA  
83.1  
73.3  
68.9  
63.8  
57.4  
86.0  
75.4  
70.9  
65.3  
59.6  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Natural convection  
100 ft/min  
200 ft/min  
400 ft/min  
800 ft/min  
JESD 51-6, 2S2P multilayer test board  
Thermal resistance junction to case  
59.0  
54.4  
52.5  
50.4  
47.8  
60.6  
55.7  
53.8  
51.5  
48.8  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Natural convection  
100 ft/min  
200 ft/min  
400 ft/min  
800 ft/min  
θ
23.0  
26.3  
°C/W  
MIL-SPEC 883E  
Method 1012.1  
JC  
b
Operating junction temperature  
(continuous operation) MTBF = 9.1 years  
0
110  
°C  
a. Output termination voltage V = 0V for V  
TT  
= 2.5V operation is supported but the power consumption of the device will increase.  
CC  
b. Operating junction temperature impacts device life time. Maximum continuous operating junction temperature should be selected according  
to the application life time requirements (See application note AN1545 for more information). The device AC and DC parameters are  
specified up to 110°C junction temperature allowing the MC100ES6226 to be used in applications requiring industrial temperature range. It  
is recommended that users of the MC100ES6226 employ thermal modeling analysis to assist in applying the junction temperature  
specifications to their particular application.  
For More Information On This Product,  
MOTOROLA  
4
TIMING SOLUTIONS  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC100ES6226  
a
= 3.3V ± 5% and 2.5V ± 5%, T = 0°C to +110°C)  
J
TABLE 6: DC CHARACTERISTICS (V  
CC  
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
LVCMOS control inputs (OE, FSEL0, FSEL1, MR)  
V
Input voltage low  
Input voltage high  
V
V
= 3.3 V  
= 2.5 V  
0.8  
0.7  
V
V
IL  
IH  
IN  
CC  
CC  
V
V
CC  
V
CC  
= 3.3 V  
= 2.5 V  
2.2  
1.7  
b
I
Input Current  
±150  
µA  
V
IN  
= V  
or V = GND  
CC IN  
c
LVPECL clock inputs (CLK, CLK)  
d
V
DC differential input voltage  
Differential cross point voltage  
Input high voltage  
0.1  
1.0  
1.3  
V
V
Differential operation  
Differential operation  
PP  
e
V
CMR  
V
-0.3  
CC  
V
TBD  
TBD  
TBD  
IH  
V
Input low voltage  
TBD  
IL  
I
IN  
Input Current  
±150  
µA  
V = TBD or V = TBD  
IN IN  
LVPECL clock outputs (QA[2:0], QB[2:0], QC[2:0])  
V
Output High Voltage  
Output Low Voltage  
V
V
-1.1  
V
V
-0.8  
V
V
Termination 50 to V  
Termination 50 to V  
OH  
CC  
CC  
TT  
TT  
V
-1.8  
-1.4  
OL  
CC  
CC  
Supply current  
I
Maximum Quiescent Supply Current  
without output termination current  
65  
110  
400  
mA  
mA  
GND pin  
GND  
I
Maximum Quiescent Supply Current  
with output termination current  
325  
All V  
Pins  
CC  
CC  
a. AC characterisitics are design targets and pending characterization.  
b. Input have internal pullup/pulldown resistors which affect the input current.  
c. Clock inputs driven by LVPECL compatible signals.  
d.  
e.  
V
is the minimum differential input voltage swing required to maintain AC characteristic.  
PP  
V
CMR  
(DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V  
CMR  
(DC)  
range and the input swing lies within the V  
(DC) specification.  
PP  
For More Information On This Product,  
TIMING SOLUTIONS  
5
MOTOROLA  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC100ES6226  
a b  
= 3.3V ± 5% and 2.5V ± 5%, T = 0°C to +110°C)  
J
TABLE 7: AC CHARACTERISTICS (V  
CC  
Symbol  
Characteristics  
Min  
0.2  
1.0  
Typ  
Max  
Unit  
V
Condition  
c
V
PP  
Differential input voltage  
(peak-to-peak)  
0.3  
1.3  
d
V
CMR  
Differential input crosspoint voltage  
V
V
-0.3  
V
CC  
V
Differential output crosspoint voltage  
V
-1.45  
-1.1  
V
X,OUT  
O(P-P)  
CC  
CC  
V
Differential output voltage (peak-to-peak)  
f
< 300 MHz  
0.45  
0.3  
TBD  
0.72  
0.55  
0.37  
0.95  
0.95  
0.95  
V
V
V
O
f
f
< 1.5 GHz  
< 2.7 GHz  
O
O
e
f
Input Frequency  
0
3000  
MHz  
ps  
CLK  
t
Propagation Delay CLK to Qx[]  
475  
500  
800  
Differential  
Differential  
PD  
t
Output-to-output skew  
(within QA[2:0])  
(within QB[2:0])  
(within QC[2:0])  
(within device)  
11  
12  
4
25  
25  
20  
60  
ps  
ps  
ps  
ps  
sk(O)  
t
Output-to-output skew  
(part-to-part)  
325  
ps  
Differential  
sk(PP)  
t
Output cycle-to-cycle jitter  
JIT(CC)  
single frequency configuration  
÷1/÷2 frequency configuration  
TBD  
TBD  
FSEL0 = FSEL1  
FSEL0 FSEL1  
DC  
Output duty cycle  
Qx = ÷1, f < 300 MHz  
48  
45  
50  
50  
52  
55  
%
%
DC = 50%  
fref  
O
O
Qx = ÷1, f > 300 MHz  
O
Qx = ÷2, f < 300 MHz  
49  
47.5  
50  
50  
51  
52.5  
%
%
O
Qx = ÷2, f > 300 MHz  
O
t , t  
r f  
Output Rise/Fall Time  
Output disable time  
Output enable time  
0.05  
200  
ns  
ns  
ns  
20% to 80%  
f
t
2.5 T + t  
4.5 T + t  
PD  
T=CLK period  
T=CLK period  
PDL  
PD  
g
t
3 T + t  
5 T + t  
PD  
PLD  
PD  
a. AC characterisitics are design targets and pending characterization.  
b. AC characteristics apply for parallel output termination of 50to V  
.
TT  
is the minimum differential input voltage swing required to maintain AC characteristics including tpd and device-to-device skew.  
c.  
d.  
V
V
PP  
CMR  
(AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V  
(AC)  
(AC) impacts the device propagation delay,  
CMR  
range and the input swing lies within the V  
device and part-to-part skew.  
(AC) specification. Violation of V  
CMR  
(AC) or V  
PP  
PP  
e. The MC100ES6226 is fully operational up to 3.0 GHz and is characterized up to 2.7 GHz.  
f. Propagation delay OE deassertion to differential output disabled (differential low: true output low, complementary output high).  
g. Propagation delay OE assertion to output enabled (active).  
CLK  
CLK  
50%  
OE  
t
(OE to Qx)  
PDL  
t
(OE to Qx)  
PLD  
Qx  
Qx  
Outputs disabled  
Figure 3. MC100ES6226 output disable/enable timing  
For More Information On This Product,  
MOTOROLA  
6
TIMING SOLUTIONS  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC100ES6226  
Z
O
= 50Ω  
Z = 50Ω  
O
Differential  
Pulse Generator  
Z = 50  
DUT  
MC100ES6226  
R = 50Ω  
T
R = 50Ω  
T
V
TT  
V
TT  
Figure 4. MC100ES6226 AC test reference  
APPLICATIONS INFORMATION  
Maintaining Lowest Device Skew  
to GND. If the spectral frequencies of the internally generated  
switching noise on the supply pins cross the series resonant  
point of an individual bypass capacitor, its overall impedance  
begins to look inductive and thus increases with increasing  
frequency. The parallel capacitor combination shown  
ensures that a low impedance path to ground exists for  
frequencies well above the noise bandwidth.  
The MC100ES6226 guarantees low output-to-output bank  
skew of 35 ps and a part-to-part skew of max. TBD ps. To  
ensure low skew clock signals in the application, both outputs  
of any differential output pair need to be terminated  
identically, even if only one output is used. When fewer than  
all nine output pairs are used, identical termination of all  
output pairs within the output bank is recommended. If an  
entire output bank is not used, it is recommended to leave all  
of these outputs open and unterminated. This will reduce the  
device power consumption while maintaining minimum  
output skew.  
V
V
CC  
CC  
MC100ES6226  
33...100 nF  
0.1 nF  
Power Supply Bypassing  
The MC100ES6226 is a mixed analog/digital product. The  
differential architecture of the MC100ES6226 supports low  
noise signal operation at high frequencies. In order to  
Figure 5. V  
CC  
Power Supply Bypass  
maintain its superior signal quality, all V  
pins should be  
CC  
bypassed by high-frequency ceramic capacitors connected  
For More Information On This Product,  
TIMING SOLUTIONS  
7
MOTOROLA  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC100ES6226  
NOTES  
For More Information On This Product,  
MOTOROLA  
8
TIMING SOLUTIONS  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC100ES6226  
NOTES  
For More Information On This Product,  
TIMING SOLUTIONS  
9
MOTOROLA  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC100ES6226  
NOTES  
For More Information On This Product,  
MOTOROLA  
10  
TIMING SOLUTIONS  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC100ES6226  
OUTLINE DIMENSIONS  
FA SUFFIX  
LQFP PACKAGE  
CASE 873A-02  
ISSUE A  
4X  
A
A1  
0.20 (0.008) AB TU  
Z
32  
25  
1
–U–  
V
–T–  
B
AE  
AE  
P
B1  
DETAIL Y  
–Z–  
V1  
17  
8
DETAIL Y  
9
4X  
0.20 (0.008) AC TU  
Z
9
NOTES:  
S1  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
S
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE AB– IS LOCATED AT BOTTOM  
OF LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS T–, –U–, AND Z– TO BE DETERMINED  
AT DATUM PLANE AB.  
DETAIL AD  
G
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE AC–.  
–AB–  
–AC–  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 (0.010) PER SIDE. DIMENSIONS A AND B  
DO INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE AB.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.520 (0.020).  
SEATING  
PLANE  
0.10 (0.004) AC  
BASE  
METAL  
N
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE  
0.0076 (0.0003).  
9. EXACT SHAPE OF EACH CORNER MAY VARY  
FROM DEPICTION.  
F
D
8X M  
MILLIMETERS  
DIM MIN MAX  
7.000 BSC  
INCHES  
MIN MAX  
0.276 BSC  
0.138 BSC  
0.276 BSC  
0.138 BSC  
R
J
A
A1  
B
3.500 BSC  
7.000 BSC  
3.500 BSC  
1.400 1.600 0.055 0.063  
0.300 0.450 0.012 0.018  
1.350 1.450 0.053 0.057  
0.300 0.400 0.012 0.016  
SECTION AE–AE  
E
C
B1  
C
D
E
F
W
G
H
J
K
M
N
P
0.800 BSC  
0.031 BSC  
Q
H
K
X
0.050 0.150 0.002 0.006  
0.090 0.200 0.004 0.008  
0.500 0.700 0.020 0.028  
12 REF  
0.090 0.160 0.004 0.006  
0.400 BSC 0.016 BSC  
12 REF  
DETAIL AD  
Q
R
1
5
1
5
0.150 0.250 0.006 0.010  
S
9.000 BSC  
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
0.354 BSC  
0.177 BSC  
0.354 BSC  
0.177 BSC  
0.008 REF  
0.039 REF  
S1  
V
V1  
W
X
For More Information On This Product,  
TIMING SOLUTIONS  
11  
MOTOROLA  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC100ES6226  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
MOTOROLA and the  
logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners.  
Motorola, Inc. 2001.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26668334  
Technical Information Center: 1–800–521–6274  
HOME PAGE: http://www.motorola.com/semiconductors/  
MC100ES6226/D  
For More Information On This Product,  
Go to: www.freescale.com  

相关型号:

MC100ES6226FAR2

Low Skew Clock Driver, 100E Series, 9 True Output(s), 0 Inverted Output(s), ECL, PQFP32, PLASTIC, LQFP-32
IDT

MC100ES6226FAR2

Low Skew Clock Driver, 100E Series, 9 True Output(s), 0 Inverted Output(s), ECL, PQFP32, LQFP-32
MOTOROLA

MC100ES6254

2.5/3.3V Differential LVPECL 2x2 Clock Switch and Fanout Buffer
MOTOROLA

MC100ES6254

2.5/3.3V DIFFERENTIAL LVPECL 2x2 CLOCK SWITCH AND FANOUT BUFFER
IDT

MC100ES6254AC

2.5/3.3V DIFFERENTIAL LVPECL 2x2 CLOCK SWITCH AND FANOUT BUFFER
IDT

MC100ES6254ACR2

2.5/3.3V DIFFERENTIAL LVPECL 2x2 CLOCK SWITCH AND FANOUT BUFFER
IDT

MC100ES6254FA

2.5/3.3V DIFFERENTIAL LVPECL 2x2 CLOCK SWITCH AND FANOUT BUFFER
IDT

MC100ES6254FAR2

2.5/3.3V DIFFERENTIAL LVPECL 2x2 CLOCK SWITCH AND FANOUT BUFFER
IDT

MC100ES7011HD

Low Skew Clock Driver, 100E Series, 2 True Output(s), 0 Inverted Output(s), ECL, PDSO8, SOIC-8
IDT

MC100ES7011HD

100E SERIES, LOW SKEW CLOCK DRIVER, 2 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PDSO8, PLASTIC, SOIC-8
NXP

MC100ES7011HDR2

100E SERIES, LOW SKEW CLOCK DRIVER, 2 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PDSO8, PLASTIC, SOIC-8
NXP

MC100ES7011PD

100E SERIES, LOW SKEW CLOCK DRIVER, 2 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PDSO8, PLASTIC, SOIC-8
NXP