MC10E196FN [MOTOROLA]

PROGRAMMABLE DELAY CHIP; 可编程延迟芯片
MC10E196FN
型号: MC10E196FN
厂家: MOTOROLA    MOTOROLA
描述:

PROGRAMMABLE DELAY CHIP
可编程延迟芯片

延迟线 逻辑集成电路 输入元件
文件: 总7页 (文件大小:152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SEMICONDUCTOR TECHNICAL DATA  
The MC10E/100E196 is a programmable delay chip (PDC) designed  
primarily for very accurate differential ECL input edge placement  
applications.  
The delay section consists of a chain of gates and a linear ramp delay  
adjust organized as shown in the logic symbol. The first two delay  
elements feature gates that have been modified to have delays 1.25 and  
1.5 times the basic gate delay of approximately 80 ps. These two  
elements provide the E196 with a digitally-selectable resolution of  
approximately 20 ps. The required device delay is selected by the seven  
address inputs D[0:6], which are latched on chip by a high signal on the  
latch enable (LEN) control.  
PROGRAMMABLE  
DELAY CHIP  
The FTUNE input takes an analog voltage and applies it to an internal  
linear ramp for reducing the 20 ps resolution still further. The FTUNE input  
is what differentiates the E196 from the E195.  
An eighth latched input, D7, is provided for cascading multiple PDC’s  
for increased programmable range. The cascade logic allows full control  
of multiple PDC’s, at the expense of only a single added line to the data  
bus for each additional PDC, without the need for any external gating.  
2.0ns Worst Case Delay Range  
20ps/Delay Step Resolution  
Linear Input for Tighter Resolution  
>1.0GHz Bandwidth  
FN SUFFIX  
PLASTIC PACKAGE  
CASE 776-02  
On Chip Cascade Circuitry  
Extended 100E V  
Range of –4.2 to –5.46V  
EE  
75KInput Pulldown Resistors  
PIN NAMES  
Pin  
Function  
IN/IN  
Signal Input  
EN  
Input Enable  
D[0:7]  
Q/Q  
LEN  
Mux Select Inputs  
Signal Output  
Latch Enable  
SET MIN  
SET MAX  
CASCADE  
FTUNE  
Min Delay Set  
Max Delay Set  
Cascade Signal  
Linear Voltage Input  
LOGIC DIAGRAM – SIMPLIFIED  
V
BB  
FTUNE  
1
0
0
0
0
0
0
0
IN  
IN  
4 GATES  
8 GATES  
16 GATES  
1
1
1
1
1
1
1
1
1
1
0
Q
Q
EN  
* 1.25  
* 1.5  
1
1
LINEAR  
RAMP  
CASCADE  
LEN  
LATCH  
Q
LEN  
SET MIN  
SET MAX  
7 BIT LATCH  
D
CASCADE  
CASCADE  
D0  
* DELAYS ARE 25% OR 50% LONGER THAN  
* STANDARD (STANDARD 80 PS)  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
12/93  
Motorola, Inc. 1996  
REV 2  
MC10E196 MC100E196  
Pinout: 28-Lead PLCC (Top View)  
D2 D3  
25 24  
D4  
23  
D5  
22  
D6  
21  
D7  
20  
NC  
19  
FTUNE  
NC  
D1  
D0  
26  
27  
28  
1
18  
17  
V
LEN  
16  
15  
CC  
V
V
CCO  
EE  
IN  
Q
Q
2
14  
13  
IN  
3
V
V
4
BB  
12  
CCO  
5
NC  
6
7
8
9
10  
11  
NC EN  
DC CHARACTERISTICS (V  
= V (min) to V (max); V  
= V  
= GND)  
CCO  
EE  
EE  
EE  
0°C  
Typ  
CC  
25°C  
85°C  
Symbol  
Characteristic  
Min  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
µA  
Condition  
I
I
Input HIGH Current  
150  
150  
150  
IH  
Power Supply Current  
10E  
100E  
mA  
EE  
130  
130  
156  
156  
130  
130  
156  
156  
130  
150  
156  
179  
AC CHARACTERISTICS (V  
= V (min) to V (max); V  
= V  
= GND)  
CCO  
EE  
EE  
EE  
CC  
0°C  
25°C  
85°C  
Symbol  
Characteristic  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Notes  
t
t
Propagation Delay  
IN to Q; Tap = 0  
IN to Q; Tap = 127  
EN to Q; Tap = 0  
D7 to CASCADE  
ps  
PLH  
PHL  
1210 1360 1510 1240 1390  
3320 3570 3820 3380 3630  
1250 1450 1650 1275 1475  
1540  
3880  
1675  
700  
1440  
3920  
1350  
300  
1590  
4270  
1650  
450  
1765  
4720  
1950  
700  
300  
450  
700  
300  
450  
t
Programmable Range  
ps  
ps  
RANGE  
t
(max) – t  
(min)  
2000 2175  
2050 2240  
2375  
2580  
PD  
PD  
t  
Step Delay  
D0 High  
D1 High  
D2 High  
D3 High  
D4 High  
D5 High  
D6 High  
6
17  
34  
17.5  
35  
21  
42  
84  
168  
336  
672  
1344  
55  
68  
105  
180  
325  
620  
1190  
55  
115  
250  
515  
1030  
70  
140  
280  
560  
1120  
105  
180  
325  
620  
1220  
65  
140  
305  
620  
1240  
120  
205  
380  
740  
1450  
115  
250  
505  
136  
272  
544  
1000 1088  
Lin  
Linearity  
D1  
D0  
D1  
D0  
D1  
D0  
7
1
t
Duty Cycle Skew  
–t  
ps  
SKEW  
t
±30  
±30  
±30  
PHL PLH  
MOTOROLA  
2–2  
MC10E196 MC100E196  
AC CHARACTERISTICS (continued) (V  
EE  
= V (min) to V (max); V  
= V  
= GND)  
CCO  
EE  
EE  
CC  
0°C  
25°C  
85°C  
Symbol  
Characteristic  
Setup Time  
D to LEN  
D to IN  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Notes  
t
s
ps  
200  
800  
200  
0
200  
800  
200  
0
200  
800  
200  
0
2
3
EN to IN  
t
t
Hold Time  
LEN to D  
IN to EN  
ps  
ps  
h
500  
0
250  
500  
0
250  
500  
0
250  
4
5
Release Time  
EN to IN  
SET MAX to LEN  
SET MIN to LEN  
R
300  
800  
800  
300  
800  
800  
300  
800  
800  
t
Jitter  
<5.0  
<5.0  
<5.0  
ps  
ps  
8
jit  
t
r
t
f
Output Rise/Fall Time  
20–80% (Q)  
20–80% (CASCADE)  
125  
300  
225  
450  
325  
650  
125  
300  
225  
450  
325  
650  
125  
300  
225  
450  
325  
650  
1. Duty cycle skew guaranteed only for differential operation measured from the cross point of the input to the cross point of the output.  
2. This setup time defines the amount of time prior to the input signal the delay tap of the device must be set.  
3. This setup time is the minimum time that EN must be asserted prior to the next transition of IN/IN to prevent an output response greater than  
±75 mV to that IN/IN transition.  
4. This hold time is the minimum time that EN must remain asserted after a negative going IN or positive going IN to prevent an output response  
greater than ±75 mV to that IN/IN transition.  
5. This release time is the minimum time that EN must be deasserted prior to the next IN/IN transition to ensure an output response that meets  
the specified IN to Q propagation delay and transition times.  
6. Specification limits represent the amount of delay added with the assertion of each individual delay control pin. The various combinations of  
asserted delay control inputs will typically realize D0 resolution steps across the specified programmable range.  
7. The linearity specification guarantees to which delay control input the programmable steps will be monotonic (i.e. increasing delay steps for  
increasing binary counts on the control inputs Dn). Typically the device will be monotonic to the D0 input, however under worst case conditions  
and process variation, delays could decrease slightly with increasing binary counts when the D0 input is the LSB. With the D1 input as the LSB  
the device is guaranteed to be monotonic over all specified environmental conditions and process variation.  
8. The jitter of the device is less than what can be measured without resorting to very tedious and specialized measurement techniques.  
ANALOG INPUT CHARACTERISTICS  
Ftune = V  
to V  
CC  
EE  
140  
120  
100  
100  
90  
80  
70  
60  
80  
60  
50  
40  
30  
20  
40  
20  
0
10  
0
–5  
–4.5  
–3.5  
–2.5  
–1.5  
–0.5  
–4  
–3  
–2  
–1  
0
FTUNE VOLTAGE (V)  
FTUNE VOLTAGE (V)  
Propagation Delay versus Ftune Voltage  
(100E196)  
Propagation Delay versus Ftune Voltage  
(10E196)  
2–3  
MOTOROLA  
MC10E196 MC100E196  
USING THE FTUNE ANALOG INPUT  
The analog FTUNE pin on the E196 device is intended to  
enhance the 20 ps resolution capabilities of the fully digital  
E195. The level of resolution obtained is dependent on the  
number of increments applied to the appropriate range on the  
FTUNE pin.  
expanded for larger E195 chains. The D7 input of the E195 is  
the cascade control pin. With the interconnect scheme of  
Figure 1 when D7 is asserted it signals the need for a larger  
programmable range than is achievable with a single device.  
An expansion of the latch section of the block diagram is  
pictured below. Use of this diagram will simplify the  
explanation of how the cascade circuitry works. When D7 of  
chip #1 above is low the cascade output will also be low while  
the cascade bar output will be a logical high. In this condition  
the SET MIN pin of chip #2 will be asserted and thus all of the  
latches of chip #2 will be reset and the device will be set at its  
minimum delay. Since the RESET and SET inputs of the  
latches are overriding any changes on the A0–A6 address bus  
will not affect the operation of chip #2.  
To provide another level of resolution the FTUNE pin must  
be capable of adjusting the delay by greater than the 20 ps  
digital resolution. From the provided graphs one sees that this  
requirement is easily achieved as over the entire FTUNE  
voltage range a 100 ps delay can be achieved. This extra  
analograngeensuresthattheFTUNEpinwillbecapableeven  
under worst case conditions of covering the digital  
resolution.Typically the analog input will be driven by an  
external DAC to provide a digital control with very fine analog  
output steps. The final resolution of the device will be  
dependent on the width of the DAC chosen.  
Chip #1 on the other hand will have both SET MIN and SET  
MAX de-asserted so that its delay will be controlled entirely by  
the address bus A0–A6. If the delay needed is greater than  
can be achieved with 31.75 gate delays (1111111 on the  
A0–A6 address bus) D7 will be asserted to signal the need to  
cascade the delay to the next E195 device. When D7 is  
asserted the SET MIN pin of chip #2 will be de-asserted and  
the delay will be controlled by the A0–A6 address bus. Chip #1  
on the other hand will have its SET MAX pin asserted  
resulting in the device delay to be independent of the A0–A6  
address bus.  
To determine the voltage range necessary for the FTUNE  
input, the graphs provided should be used. As an example if a  
range of 40 ps is selected to cover worst case conditions and  
ensure coverage of the digital range, from the 100E196 graph  
avoltagerangeof3.25Vto4.0Vwouldbenecessaryonthe  
FTUNE pin. Obviously there are numerous voltage ranges  
which can be used to cover a given delay range, users are  
given the flexibility to determine which one best fits their  
designs.  
Whenthe SET MAX pin of chip #1 is asserted the D0 and D1  
latches will be reset while the rest of the latches will be set. In  
addition, to maintain monotonicity an additional gate delay is  
selected in the cascade circuitry. As a result when D7 of chip  
#1 is asserted the delay increases from 31.75 gates to 32  
gates. A 32 gate delay is the maximum delay setting for  
the E195.  
Cascading Multiple E196’s  
To increase the programmable range of the E195 internal  
cascade circuitry has been included. This circuitry allows for  
the cascading of multiple E195’s without the need for any  
external gating. Furthermore this capability requires only one  
more address line per added E195. Obviously cascading  
multiple PDC’s will result in a larger programmable range,  
however, this increase is at the expense of a longer minimum  
delay.  
When cascading multiple PDC’s it will prove more cost  
effective to use a single E196 for the MSB of the chain while  
using E195 for the lower order bits. This is due to the fact that  
only one fine tune input is needed to further reduce the delay  
step resolution.  
Figure 1 illustrates the interconnect scheme for cascading  
two E195’s. As can be seen, this scheme can easily be  
ADDRESS BUS (A0–A6)  
LINEAR  
INPUT  
A7  
D1  
FTUNE  
D1  
FTUNE  
D0  
D0  
E196  
Chip #1  
E196  
Chip #2  
V
V
LEN  
LEN  
CC  
CC  
V
V
V
CC0  
V
CC0  
EE  
EE  
IN  
IN  
IN  
IN  
Q
Q
Q
Q
INPUT  
OUTPUT  
V
V
V
CC0  
V
CC0  
BB  
BB  
Figure 1. Cascading Interconnect Architecture  
MOTOROLA  
2–4  
MC10E196 MC100E196  
TO SELECT MULTIPLEXERS  
BIT 0  
BIT 1  
D1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
CASCADE  
CASCADE  
D0  
Q0  
Q1  
D2  
Q2  
D3  
Q3  
D4  
Q4  
D5  
Q5  
D6  
Q6  
D7  
Q7  
LEN  
Reset Reset  
LEN  
Reset Reset  
LEN  
Reset Reset  
LEN  
LEN  
Reset Reset  
LEN  
Reset Reset  
LEN  
LEN  
Reset Reset  
Reset Reset  
Reset Reset  
SET MIN  
SET MAX  
Figure 2. Expansion of the Latch Section of the E195 Block Diagram  
2–5  
MOTOROLA  
MC10E196 MC100E196  
OUTLINE DIMENSIONS  
FN SUFFIX  
PLASTIC PLCC PACKAGE  
CASE 776–02  
ISSUE D  
M
S
S
0.007 (0.180)  
T
L –M  
N
B
Z
Y BRK  
D
-N-  
M
S
S
0.007 (0.180)  
T
L –M  
N
U
-L-  
-M-  
D
W
X
G1  
S
S
S
0.010 (0.250)  
0.007 (0.180)  
T
L –M  
L –M  
N
V
28  
1
VIEW D-D  
M
M
S
S
S
0.007 (0.180)  
0.007 (0.180)  
T
T
L –M  
L –M  
N
A
R
H
M
S
S
T
N
Z
S
N
K1  
C
E
0.004 (0.100)  
SEATING  
PLANE  
G
K
-T-  
VIEW S  
J
M
S
S
0.007 (0.180)  
T
L –M  
N
F
G1  
VIEW S  
S
S
S
0.010 (0.250)  
T
L –M  
N
NOTES:  
1. DATUMS -L-, -M-, AND -N- DETERMINED  
WHERE TOP OF LEAD SHOULDER EXITS  
PLASTIC BODY AT MOLD PARTING LINE.  
2. DIM G1, TRUE POSITION TO BE MEASURED  
AT DATUM -T-, SEATING PLANE.  
INCHES  
MAX  
MILLIMETERS  
3. DIM R AND U DO NOT INCLUDE MOLD FLASH.  
ALLOWABLE MOLD FLASH IS 0.010 (0.250)  
PER SIDE.  
4. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
DIM  
A
B
C
E
F
G
H
J
K
R
U
V
W
X
Y
Z
G1  
K1  
MIN  
MIN  
12.32  
12.32  
4.20  
MAX  
12.57  
12.57  
4.57  
0.485  
0.495  
0.495  
0.180  
0.110  
0.019  
0.485  
0.165  
0.090  
0.013  
2.29  
2.79  
5. CONTROLLING DIMENSION: INCH.  
6. THE PACKAGE TOP MAY BE SMALLER THAN  
THE PACKAGE BOTTOM BY UP TO 0.012  
(0.300). DIMENSIONS R AND U ARE  
DETERMINED AT THE OUTERMOST  
EXTREMES OF THE PLASTIC BODY  
EXCLUSIVE OF MOLD FLASH, TIE BAR  
BURRS, GATE BURRS AND INTERLEAD  
FLASH, BUT INCLUDING ANY MISMATCH  
BETWEEN THE TOP AND BOTTOM OF THE  
PLASTIC BODY.  
7. DIMENSION H DOES NOT INCLUDE DAMBAR  
PROTRUSION OR INTRUSION. THE DAMBAR  
PROTRUSION(S) SHALL NOT CAUSE THE H  
DIMENSION TO BE GREATER THAN 0.037  
(0.940). THE DAMBAR INTRUSION(S) SHALL  
NOT CAUSE THE H DIMENSION TO BE  
SMALLER THAN 0.025 (0.635).  
0.33  
0.48  
0.050 BSC  
1.27 BSC  
0.026  
0.032  
0.456  
0.456  
0.048  
0.048  
0.056  
0.020  
0.66  
0.51  
0.64  
11.43  
11.43  
1.07  
1.07  
1.07  
0.81  
11.58  
11.58  
1.21  
1.21  
1.42  
0.50  
0.020  
0.025  
0.450  
0.450  
0.042  
0.042  
0.042  
2
°
10°  
2°  
10°  
0.410  
0.040  
0.430  
10.42  
1.02  
10.92  
MOTOROLA  
2–6  
MC10E196 MC100E196  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MC10E196/D  

相关型号:

MC10E196FNG

5V ECL Programmable Delay Chip
ONSEMI

MC10E196FNR2

5V ECL Programmable Delay Chip
ONSEMI

MC10E196FNR2

Active Delay Line, Programmable, 1-Func, 127-Tap, Complementary Output, ECL, PQCC28, PLASTIC, LCC-28
MOTOROLA

MC10E196FNR2G

5V ECL Programmable Delay Chip
ONSEMI

MC10E196_06

5V ECL Programmable Delay Chip
ONSEMI

MC10E197

DATA SEPARATOR
ONSEMI

MC10E197FN

DATA SEPARATOR
MOTOROLA

MC10E197FN

5V ECL Data Separator
ONSEMI

MC10E197FNR2

5V ECL Data Separator
ONSEMI

MC10E197_06

5V ECL Data Separator
ONSEMI

MC10E211

1:6 DIFFERENTIAL CLOCK DISTRIBUTION CHIP
ONSEMI

MC10E211FN

1:6 DIFFERENTIAL CLOCK DISTRIBUTION CHIP
MOTOROLA