MC145027DWR2 [MOTOROLA]

SPECIALTY CONSUMER CIRCUIT, PDSO16, SOG-16;
MC145027DWR2
型号: MC145027DWR2
厂家: MOTOROLA    MOTOROLA
描述:

SPECIALTY CONSUMER CIRCUIT, PDSO16, SOG-16

光电二极管 商用集成电路
文件: 总17页 (文件大小:124K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SEMICONDUCTOR TECHNICAL DATA  
CMOS  
These devices are designed to be used as encoder/decoder pairs in remote  
control applications.  
The MC145026 encodes nine lines of information and serially sends this  
information upon receipt of a transmit enable (TE) signal. The nine lines may be  
encoded with trinary data (low, high, or open) or binary data (low or high). The  
words are transmitted twice per encoding sequence to increase security.  
The MC145027 decoder receives the serial stream and interprets five of the  
trinary digits as an address code. Thus, 243 addresses are possible. If binary  
data is used at the encoder, 32 addresses are possible. The remaining serial  
information is interpreted as four bits of binary data. The valid transmission (VT)  
output goes high on the MC145027 when two conditions are met. First, two  
addresses must be consecutively received (in one encoding sequence) which  
both match the local address. Second, the 4 bits of data must match the last  
valid data received. The active VT indicates that the information at the Data  
output pins has been updated.  
P SUFFIX  
PLASTIC DIP  
CASE 648  
16  
1
D SUFFIX  
SOG PACKAGE  
CASE 751B  
16  
The MC145028 decoder treats all nine trinary digits as an address which  
allows 19,683 codes. If binary data is encoded, 512 codes are possible. The VT  
output goes high on the MC145028 when two addresses are consecutively  
received (in one encoding sequence) which both match the local address.  
1
DW SUFFIX  
SOG PACKAGE  
CASE 751G  
16  
Operating Temperature Range: – 40 to + 85°C  
Very–Low Standby Current for the Encoder: 300 nA Maximum @ 25°C  
Interfaces with RF, Ultrasonic, or Infrared Modulators and Demodulators  
RC Oscillator, No Crystal Required  
High External Component Tolerance; Can Use ± 5% Components  
Internal Power–On Reset Forces All Decoder Outputs Low  
1
ORDERING INFORMATION  
MC145026P  
MC145026D  
Plastic DIP  
SOG Package  
Operating Voltage Range: MC145026 = 2.5 to 18 V*  
MC145027, MC145028 = 4.5 to 18 V  
MC145027P  
MC145027DW  
Plastic DIP  
SOG Package  
For Infrared Applications, See Application Note AN1016/D  
MC145028P  
Plastic DIP  
MC145028DW  
SOG Package  
PIN ASSIGNMENTS  
MC145026  
ENCODER  
MC145027  
DECODERS  
MC145028  
DECODERS  
A1  
A2  
1
2
16  
15  
V
A1  
A2  
1
2
16  
V
A1  
A2  
1
2
16  
V
DD  
DD  
DD  
D
out  
15 D6  
15 A6  
A3  
A4  
3
4
14 TE  
A3  
A4  
3
4
14 D7  
13 D8  
A3  
A4  
3
4
14 A7  
13 A8  
13  
12  
11  
R
TC  
A5  
A6/D6  
A7/D7  
5
6
7
8
C
TC  
A5  
5
6
7
8
12 D9  
11 VT  
A5  
5
6
7
8
12 A9  
11 VT  
R
S
R
1
R
1
10 A9/D9  
C
1
10 R /C  
C
1
10 R /C  
2 2  
2
2
V
SS  
9
V
SS  
9
V
SS  
9
A8/D8  
D
in  
D
in  
MOTOROLA WIRELESS RF, IF AND TRANSMITTER DEVICE DATA  
MC145026 MC145027 MC145028  
3.2–263  
R
S
R
TC  
C
TC  
11  
14  
12  
3–PIN  
OSCILLATOR  
AND  
13  
TE  
DATA SELECT  
AND  
BUFFER  
÷ 4  
DIVIDER  
15  
D
out  
ENABLE  
RING COUNTER AND 1–OF–9 DECODER  
9
8
7
6
5
4
3
2
1
1
2
A1  
A2  
A3  
A4  
A5  
3
4
5
TRINARY  
DETECTOR  
6
A6/D6  
A7/D7  
A8/D8  
A9/D9  
7
9
V
V
SS  
= PIN 16  
= PIN 8  
DD  
10  
Figure 1. MC145026 Encoder Block Diagram  
11  
15  
VT  
D6  
D7  
CONTROL  
LOGIC  
14  
13  
D8  
D9  
12  
SEQUENCER CIRCUIT  
5
4
3
2
1
1
2
3
4
5
A1  
A2  
A3  
A4  
A5  
DATA  
EXTRACTOR  
9
D
in  
C
1
C
2
V
= PIN 16  
= PIN 8  
DD  
7
6
10  
V
SS  
R
1
R
2
Figure 2. MC145027 Decoder Block Diagram  
MC145026 MC145027 MC145028  
3.2–264  
MOTOROLA WIRELESS RF, IF AND TRANSMITTER DEVICE DATA  
11  
CONTROL  
LOGIC  
VT  
SEQUENCER CIRCUIT  
9
8
7
6
5
4
3
2
1
1
2
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
9–BIT  
SHIFT  
REGISTER  
3
4
DATA  
EXTRACTOR  
5
9
D
in  
15  
14  
13  
12  
C
1
C
2
7
6
V
= PIN 16  
= PIN 8  
10  
DD  
V
R
1
SS  
R
2
Figure 3. MC145028 Decoder Block Diagram  
MAXIMUM RATINGS* (Voltages Referenced to V  
)
SS  
This device contains protection circuitry to  
guard against damage due to high static  
voltages or electric fields. However, precau-  
tionsmustbetakentoavoidapplicationsofany  
voltage higher than maximum rated voltages  
to this high–impedance circuit. For proper  
Rating  
Symbol  
Value  
Unit  
V
DD  
DC Supply Voltage (except SC41343,  
SC41344)  
– 0.5 to + 18  
V
V
DD  
DC Supply Voltage (SC41343, SC41344  
only)  
– 0.5 to + 10  
V
operation, V and V  
should be constrained  
in out  
to the range V  
(V or V ) V  
.
V
in  
DC Input Voltage  
– 0.5 to V  
+ 0.5  
V
V
SS in out DD  
DD  
V
out  
DC Output Voltage  
– 0.5 to V  
+ 0.5  
DD  
I
DC Input Current, per Pin  
DC Output Current, per Pin  
Power Dissipation, per Package  
Storage Temperature  
± 10  
mA  
mA  
mW  
°C  
in  
I
± 10  
out  
P
500  
D
T
stg  
– 65 to + 150  
260  
T
Lead Temperature, 1 mm from Case for  
10 Seconds  
°C  
L
* MaximumRatingsarethosevaluesbeyondwhichdamagetothedevicemayoccur. Func-  
tional operation should be restricted to the limits in the Electrical Characteristics tables or  
Pin Descriptions section.  
MOTOROLA WIRELESS RF, IF AND TRANSMITTER DEVICE DATA  
MC145026 MC145027 MC145028  
3.2–265  
ELECTRICAL CHARACTERISTICS — MC145026*, MC145027, and MC145028 (Voltage Referenced to V  
)
SS  
Guaranteed Limit  
– 40°C  
25°C  
85°C  
V
DD  
V
Symbol  
Characteristic  
Low–Level Output Voltage  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
V
OL  
(V = V  
in  
or 0)  
DD  
5.0  
10  
15  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
V
V
High–Level Output Voltage  
Low–Level Input Voltage  
(V = 0 or V  
in  
)
DD  
5.0  
10  
15  
4.95  
9.95  
14.95  
4.95  
9.95  
14.95  
4.95  
9.95  
14.95  
V
V
OH  
V
IL  
(V  
(V  
= 4.5 or 0.5 V)  
= 9.0 or 1.0 V)  
= 13.5 or 1.5 V)  
5.0  
10  
15  
1.5  
3.0  
4.0  
1.5  
3.0  
4.0  
1.5  
3.0  
4.0  
out  
out  
(V  
out  
V
High–Level Input Voltage  
High–Level Output Current  
V
IH  
(V  
= 0.5 or 4.5 V)  
= 1.0 or 9.0 V)  
= 1.5 or 13.5 V)  
5.0  
10  
15  
3.5  
7.0  
11  
3.5  
7.0  
11  
3.5  
7.0  
11  
out  
(V  
out  
(V  
out  
I
mA  
OH  
(V  
out  
out  
= 2.5 V)  
= 4.6 V)  
= 9.5 V)  
5.0  
5.0  
10  
– 2.5  
– 0.52  
– 1.3  
– 3.6  
– 2.1  
– 0.44  
– 1.1  
– 3.0  
– 1.7  
– 0.36  
– 0.9  
– 2.4  
(V  
(V  
(V  
out  
out  
= 13.5 V)  
15  
I
Low–Level Output Current  
mA  
OL  
(V  
out  
out  
(V  
out  
= 0.4 V)  
= 0.5 V)  
= 1.5 V)  
5.0  
10  
15  
0.52  
1.3  
3.6  
0.44  
1.1  
3.0  
0.36  
0.9  
2.4  
(V  
I
in  
Input Current — TE  
(MC145026, Pull–Up Device)  
5.0  
10  
15  
3.0  
16  
35  
11  
60  
120  
µA  
I
I
Input Current  
15  
± 0.3  
± 0.3  
± 1.0  
µA  
µA  
in  
R
(MC145026), D (MC145027, MC145028)  
in  
S
Input Current  
in  
A1 – A5, A6/D6 – A9/D9 (MC145026),  
A1 – A5 (MC145027),  
A1 – A9 (MC145028)  
5.0  
10  
15  
± 110  
± 500  
± 1000  
C
Input Capacitance (V = 0)  
in  
7.5  
pF  
in  
I
Quiescent Current — MC145026  
5.0  
10  
15  
0.1  
0.2  
0.3  
µA  
DD  
I
Quiescent Current — MC145027, MC145028  
Dynamic Supply Current — MC145026  
5.0  
10  
15  
50  
100  
150  
µA  
µA  
µA  
DD  
I
5.0  
10  
15  
200  
400  
600  
dd  
(f = 20 kHz)  
c
I
Dynamic Supply Current — MC145027, MC145028  
(f = 20 kHz)  
c
5.0  
10  
15  
400  
800  
1200  
dd  
* Also see next Electrical Characteristics table for 2.5 V specifications.  
MC145026 MC145027 MC145028  
3.2–266  
MOTOROLA WIRELESS RF, IF AND TRANSMITTER DEVICE DATA  
ELECTRICAL CHARACTERISTICS — MC145026 (Voltage Referenced to V  
)
SS  
Guaranteed Limit  
– 40°C  
Min  
25°C  
85°C  
V
DD  
V
Symbol  
Characteristic  
Low–Level Output Voltage (V = 0 V or V  
Unit  
V
Max  
0.05  
Min  
Max  
0.05  
Min  
Max  
0.05  
V
OL  
)
)
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.45  
in  
(V = 0 V or V  
DD  
DD  
V
OH  
High–Level Output Voltage  
Low–Level Input Voltage  
High–Level Input Voltage  
High–Level Output Current  
Low–Level Output Current  
2.45  
2.45  
V
in  
V
(V  
out  
= 0.5 V or 2.0 V)  
= 0.5 V or 2.0 V)  
0.3  
0.3  
0.3  
V
IL  
IH  
V
(V  
out  
2.2  
0.28  
0.22  
2.2  
0.25  
0.2  
0.09  
2.2  
0.2  
0.16  
V
I
(V  
out  
= 1.25 V)  
= 0.4 V)  
mA  
mA  
µA  
µA  
µA  
µA  
OH  
I
(V  
out  
OL  
I
Input Current (TE — Pull–Up Device)  
Input Current (A1–A5, A6/D6–A9/D9)  
Quiescent Current  
1.8  
± 25  
0.05  
40  
in  
in  
I
I
DD  
I
dd  
Dynamic Supply Current (f = 20 kHz)  
c
SWITCHING CHARACTERISTICS — MC145026*, MC145027, and MC145028 (C = 50 pF, T = 25°C)  
L
A
Guaranteed Limit  
Figure  
No.  
Symbol  
, t  
Characteristic  
Output Transition Time  
V
DD  
Unit  
Min  
Max  
t
4,8  
5.0  
10  
15  
200  
100  
80  
ns  
TLH THL  
t
D
D
Rise Time — Decoders  
5
5.0  
10  
15  
15  
15  
15  
µs  
µs  
r
in  
in  
t
Fall Time — Decoders  
5
5.0  
10  
15  
15  
5.0  
4.0  
f
f
Encoder Clock Frequency  
6
5.0  
10  
15  
0.001  
0.001  
0.001  
2.0  
5.0  
10  
MHz  
kHz  
ns  
osc  
f
Decoder Frequency — Referenced to Encoder Clock  
TE Pulse Width — Encoders  
12  
7
5.0  
10  
15  
1.0  
1.0  
1.0  
240  
410  
450  
t
w
5.0  
10  
15  
65  
30  
20  
* Also see next Switching Characteristics table for 2.5 V specifications.  
SWITCHING CHARACTERISTICS — MC145026 (C = 50 pF, T = 25°C)  
L
A
Guaranteed Limit  
Figure  
No.  
Symbol  
, t  
Characteristic  
Output Transition Time  
V
Unit  
ns  
Min  
Max  
450  
250  
DD  
t
4, 8  
6
2.5  
TLH THL  
f
Encoder Clock Frequency  
TE Pulse Width  
2.5  
2.5  
1.0  
1.5  
kHz  
µs  
osc  
t
w
7
MOTOROLA WIRELESS RF, IF AND TRANSMITTER DEVICE DATA  
MC145026 MC145027 MC145028  
3.2–267  
90%  
10%  
t
f
t
r
ANY OUTPUT  
V
DD  
90%  
D
in  
t
t
TLH  
THL  
10%  
V
SS  
Figure 4.  
Figure 5.  
1/f  
osc  
V
DD  
TE  
50%  
50%  
R
TC  
V
SS  
t
w
Figure 6.  
Figure 7.  
TEST POINT  
OUTPUT  
DEVICE  
UNDER  
TEST  
C *  
L
* Includes all probe and fixture capacitance.  
Figure 8. Test Circuit  
MC145026 MC145027 MC145028  
3.2–268  
MOTOROLA WIRELESS RF, IF AND TRANSMITTER DEVICE DATA  
MC145028  
OPERATING CHARACTERISTICS  
This decoder operates in the same manner as the  
MC145027 except that nine address lines are used and no  
data output is available. The VT output is used to indicate  
that a valid address has been received. For transmission  
security, two identical transmitted words must be con-  
secutively received before a VT output signal is issued.  
The MC145028 allows 19,683 addresses when trinary lev-  
els are used. 512 addresses are possible when binary levels  
are used.  
MC145026  
The encoder serially transmits trinary data as defined by  
the state of the A1 – A5 and A6/D6 – A9/D9 input pins. These  
pins may be in either of three states (low, high, or open)  
allowing 19,683 possible codes. The transmit sequence is  
initiated by a low level on the TE input pin. Upon power–up,  
the MC145026 can continuously transmit as long as TE  
remains low (also, the device can transmit two–word  
sequences by pulsing TE low). However, no MC145026  
application should be designed to rely upon the first data  
word transmitted immediately after power–up because this  
word may be invalid. Between the two data words, no signal  
is sent for three data periods (see Figure 10).  
PIN DESCRIPTIONS  
MC145026 ENCODER  
A1 – A5, A6/D6 – A9/D9  
Address, Address/Data Inputs (Pins 1 – 7, 9, and 10)  
These address/data inputs are encoded and the data is  
Each transmitted trinary digit is encoded into pulses (see  
Figure 11). A logic 0 (low) is encoded as two consecutive  
short pulses, a logic 1 (high) as two consecutive long pulses,  
and an open (high impedance) as a long pulse followed by a  
short pulse. The input state is determined by using a weak  
“output” device to try to force each input high then low. If only  
a high state results from the two tests, the input is assumed  
sent serially from the encoder via the D  
pin.  
out  
R , C , R  
S
TC TC  
(Pins 11, 12, and 13)  
These pins are part of the oscillator section of the encoder  
(see Figure 9).  
to be hardwired to V . If only a low state is obtained, the  
If an external signal source is used instead of the internal  
DD  
input is assumed to be hardwired to V . If both a high and a  
oscillator, it should be connected to the R input and the R  
SS  
S TC  
low can be forced at an input, an open is assumed and is  
encoded as such. The “high” and “low” levels are 70% and  
30% of the supply voltage as shown in the Electrical Charac-  
teristics table. The weak “output” device sinks/sources up to  
110 µA at a 5 V supply level, 500 µA at 10 V, and 1 mA at  
15 V.  
and C  
pins should be left open.  
TC  
TE  
Transmit Enable (Pin 14)  
This active–low transmit enable input initiates transmis-  
sion when forced low. An internal pull–up device keeps this  
input normally high. The pull–up current is specified in the  
Electrical Characteristics table.  
The TE input has an internal pull–up device so that a sim-  
ple switch may be used to force the input low. While TE is  
high and the second–word transmission has timed out, the  
encoder is completely disabled, the oscillator is inhibited,  
and the current drain is reduced to quiescent current. When  
TE is brought low, the oscillator is started and the transmit  
sequence begins. The inputs are then sequentially selected,  
and determinations are made as to the input logic states.  
D
out  
Data Out (Pin 15)  
This is the output of the encoder that serially presents the  
encoded data word.  
This information is serially transmitted via the D  
pin.  
V
SS  
out  
Negative Power Supply (Pin 8)  
The most–negative supply potential. This pin is usually  
ground.  
MC145027  
This decoder receives the serial data from the encoder  
and outputs the data, if it is valid. The transmitted data, con-  
sisting of two identical words, is examined bit by bit during  
reception. The first five trinary digits are assumed to be the  
address. If the received address matches the local address,  
the next four (data) bits are internally stored, but are not  
transferred to the output data latch. As the second encoded  
word is received, the address must again match. If a match  
occurs, the new data bits are checked against the previously  
stored data bits. If the two nibbles of data (four bits each)  
match, the data is transferred to the output data latch by VT  
and remains until new data replaces it. At the same time, the  
VT output pin is brought high and remains high until an error  
is received or until no input signal is received for four data  
periods (see Figure 10).  
V
DD  
Positive Power Supply (Pin 16)  
The most–positive power supply pin.  
MC145027 AND MC145028 DECODERS  
A1 – A5, A1 – A9  
Address Inputs (Pins 1 – 5) — MC145027,  
Address Inputs (Pins 1 – 5, 15, 14, 13, 12) — MC145028  
These are the local address inputs. The states of these  
pins must match the appropriate encoder inputs for the VT  
pin to go high. The local address may be encoded with tri-  
nary or binary data.  
D6 – D9  
Data Outputs (Pins 15, 14, 13, 12) — MC145027 Only  
Although the address information may be encoded in tri-  
nary, the data information must be either a 1 or 0. A trinary  
(open) data line is decoded as a logic 1.  
These outputs present the binary information that is on  
encoder inputs A6/D6 through A9/D9. Only binary data is  
MOTOROLA WIRELESS RF, IF AND TRANSMITTER DEVICE DATA  
MC145026 MC145027 MC145028  
3.2–269  
acknowledged; a trinary open at the MC145026 encoder is  
decoded as a high level (logic 1).  
constant is used to determine whether the D pin has  
in  
remained low for four data periods (end of transmission). A  
separate on–chip comparator looks at the voltage–equiva-  
lent two data periods (0.4 R C ) to detect the dead time be-  
D
in  
2
2
Data In (Pin 9)  
tween received words within a transmission.  
This pin is the serial data input to the decoder. The input  
voltage must be at CMOS logic levels. The signal source  
driving this pin must be dc coupled.  
VT  
Valid Transmission Output (Pin 11)  
This valid transmission output goes high after the second  
word of an encoding sequence when the following conditions  
are satisfied:  
R , C  
1
1
Resistor 1, Capacitor 1 (Pins 6, 7)  
1. thereceivedaddressesofbothwordsmatchthelocalde-  
coder address, and  
2. the received data bits of both words match.  
As shown in Figures 2 and 3, these pins accept a resistor  
and capacitor that are used to determine whether a narrow  
pulse or wide pulse has been received. The time constant  
VT remains high until either a mismatch is received or no  
input signal is received for four data periods.  
R x C should be set to 1.72 encoder clock periods:  
1
1
R C = 3.95 R  
C
1
1
TC TC  
V
SS  
Negative Power Supply (Pin 8)  
R /C  
2
2
Resistor 2/Capacitor 2 (Pin 10)  
The most–negative supply potential. This pin is usually  
ground.  
As shown in Figures 2 and 3, this pin accepts a resistor  
and capacitor that are used to detect both the end of a  
received word and the end of a transmission. The time  
V
DD  
Positive Power Supply (Pin 16)  
constant R x C should be 33.5 encoder clock periods (four  
2
2
data periods per Figure 11): R C = 77 R  
C
. This time  
The most–positive power supply pin.  
2
2
TC TC  
MC145026 MC145027 MC145028  
3.2–270  
MOTOROLA WIRELESS RF, IF AND TRANSMITTER DEVICE DATA  
R
S
C
TC  
R
TC  
11  
12  
13  
INTERNAL  
ENABLE  
This oscillator operates at a frequency determined by the  
external RC network; i.e.,  
1
f ≈  
(Hz)  
ThevalueforR shouldbechosentobe2timesR .Thisrangeensures  
S TC  
2.3 R ′  
C
TC TC  
thatcurrentthroughR isinsignificantcomparedtocurrentthroughR . The  
S
TC  
upperlimitforR mustensurethatR x5pF(inputcapacitance)issmallcom-  
S
S
for 1 kHz f 400 kHz  
where: C = C + C + 12 pF  
pared to R  
TC  
x C  
.
TC  
TC  
TC  
layout  
For frequencies outside the indicated range, the formula is less accurate.  
Theminimumrecommendedoscillationfrequencyofthiscircuitis1kHz. Sus-  
ceptibilitytoexternallyinducednoisesignalsmayoccurforfrequenciesbelow  
1 kHz and/or when resistors utilized are greater than 1 M.  
R
R
R
2 R  
S
S
TC  
20 k  
10 k  
TC  
400 pF < C  
< 15 µF  
TC  
Figure 9. Encoder Oscillator Information  
ENCODER  
PW  
min  
2 WORD TRANSMISSION  
TE  
CONTINUOUS TRANSMISSION  
ENCODER  
OSCILLATOR  
(PIN 12)  
1ST  
DIGIT  
9TH  
DIGIT  
1ST  
DIGIT  
9TH  
DIGIT  
D
out  
(PIN 15)  
OPEN  
LOW  
HIGH  
1ST WORD  
2ND WORD  
ENCODING SEQUENCE  
1.1 (R C )  
2 2  
DECODER  
VT  
(PIN 11)  
DATA OUTPUTS  
Figure 10. Timing Diagram  
MOTOROLA WIRELESS RF, IF AND TRANSMITTER DEVICE DATA  
MC145026 MC145027 MC145028  
3.2–271  
ENCODER  
OSCILLATOR  
(PIN 12)  
ENCODED  
“ONE”  
D
ENCODED  
“ZERO”  
out  
(PIN 15)  
ENCODED  
“OPEN”  
DATA PERIOD  
Figure 11. Encoder Data Waveforms  
500  
400  
300  
V
= 15 V  
DD  
V
= 10 V  
DD  
200  
100  
V
DD  
= 5 V  
10  
20  
30  
40  
50  
C
layout  
(pF) ON PINS 1 – 5 (MC145027); PINS 1 – 5 AND 12 – 15 (MC145028)  
Figure 12. f  
max  
vs C — Decoders Only  
layout  
MC145026 MC145027 MC145028  
3.2–272  
MOTOROLA WIRELESS RF, IF AND TRANSMITTER DEVICE DATA  
HAS  
NO  
THE TRANSMISSION  
BEGUN?  
YES  
DOES  
THE 5–BIT  
ADDRESS MATCH  
THE ADDRESS  
PINS?  
DISABLE VT  
ON THE 1ST  
ADDRESS MISMATCH  
NO  
YES  
STORE  
THE  
4–BIT  
DATA  
DOES  
THIS DATA  
MATCH THE PREVIOUSLY  
STORED  
DISABLE VT  
ON THE 1ST  
DATA MISMATCH  
NO  
NO  
DATA?  
YES  
IS THIS  
AT LEAST THE  
2ND CONSECUTIVE  
MATCH SINCE VT  
DISABLE?  
YES  
LATCH DATA  
ONTO OUTPUT  
PINS AND  
ACTIVATE VT  
HAVE  
4–BIT TIMES  
PASSED?  
YES  
DISABLE  
VT  
NO  
HAS  
A NEW  
NO  
TRANSMISSION  
BEGUN?  
YES  
Figure 13. MC145027 Flowchart  
MOTOROLA WIRELESS RF, IF AND TRANSMITTER DEVICE DATA  
MC145026 MC145027 MC145028  
3.2–273  
HAS  
NO  
THE TRANSMISSION  
BEGUN?  
YES  
DOES  
THE ADDRESS  
MATCH THE  
ADDRESS  
PINS?  
DISABLE VT ON THE 1ST  
ADDRESS MISMATCH  
AND IGNORE THE REST  
OF THIS WORD  
NO  
YES  
IS  
THIS AT LEAST  
THE 2ND CONSECUTIVE  
MATCH SINCE VT  
DISABLE?  
NO  
YES  
ACTIVATE VT  
HAVE  
4–BIT TIMES  
PASSED?  
YES  
DISABLE VT  
NO  
HAS A  
NEW TRANSMISSION  
BEGUN?  
NO  
YES  
Figure 14. MC145028 Flowchart  
MC145026 MC145027 MC145028  
3.2–274  
MOTOROLA WIRELESS RF, IF AND TRANSMITTER DEVICE DATA  
V
DD  
MC145027 AND MC145028 TIMING  
D
in  
To verify the MC145027 or MC145028 timing, check the  
waveforms on C1 (Pin 7) and R2/C2 (Pin 10) as compared to  
0 V  
the incoming data waveform on D (Pin 9).  
The R–C decay seen on C1 discharges down to 1/3 V  
in  
DD  
V
DD  
2/3  
1/3  
0 V  
before being reset to V . This point of reset (labelled “DOS”  
DD  
in Figure 15) is the point in time where the decision is made  
C1  
whether the data seen on D is a 1 or 0. DOS should not be  
in  
too close to the D data edges or intermittent operation may  
in  
DOS  
DOS  
occur.  
The other timing to be checked on the MC145027 and  
MC145028 is on R2/C2 (see Figure 16). The R–C decay is  
Figure 15. R–C Decay on Pin 7 (C1)  
continually reset to V  
as data is being transmitted. Only  
between words and after the end–of–transmission (EOT)  
DD  
does R2/C2 decay significantly from V . R2/C2 can be  
DD  
used to identify the internal end–of–word (EOW) timing edge  
which is generated when R2/C2 decays to 2/3 V . The in-  
ternal EOT timing edge occurs when R2/C2 decays to 1/3  
DD  
EOW  
V
DD  
V
. When the waveform is being observed, the R–C decay  
DD  
should go down between the 2/3 and 1/3 V  
2/3  
1/3  
0 V  
levels, but not  
DD  
R2/C2  
too close to either level before data transmission on D re-  
sumes.  
in  
Verification of the timing described above should ensure a  
good match between the MC145026 transmitter and the  
MC145027 and MC145028 receivers.  
EOT  
Figure 16. R–C Decay on Pin 10 (R2/C2)  
MOTOROLA WIRELESS RF, IF AND TRANSMITTER DEVICE DATA  
MC145026 MC145027 MC145028  
3.2–275  
V
DD  
V
DD  
V
DD  
TE  
V
DD  
0.1 µF  
0.1 µF  
A1  
A1  
14  
16  
16  
A2  
A3  
A4  
A5  
D6  
D7  
D8  
D9  
5
A2  
A3  
15  
D
D
in  
9
6
1
2
3
out  
1
2
TRINARY  
ADDRESSES  
5
TRINARY  
ADDRESSES  
3
4
A4  
A5  
4
R1  
7
5
6
7
9
5
15  
14  
MC145026  
MC145027  
R
TC  
13  
12  
C
1
D6  
D7  
D8  
D9  
C
TC  
4–BIT  
BINARY  
DATA  
13  
12  
11  
10  
11  
10  
R
S
VT  
C
2
8
R2  
8
C
= C  
+ C  
+ 12 pF  
layout  
TC  
TC  
100 pF C  
1
15 µF  
TC  
10 k; R 2 R  
TC  
REPEAT OF ABOVE  
REPEAT OF ABOVE  
f
=
osc  
R
R
C
R
C
2.3 R ′  
C
TC  
S
TC TC  
10 kΩ  
1
1
2
2
400 pF  
100 kΩ  
700 pF  
R C = 3.95 R  
1 1  
C
TC TC  
C
TC TC  
R C = 77 R  
2 2  
Example R/C Values (All Resistors and Capacitors are ± 5%)  
(C = C  
TC  
+ 20 pF)  
TC  
(kHz)  
f
R
C
R
R
C
R
C
2
osc  
362  
TC  
TC′  
S
1
1
2
10 k  
10 k  
10 k  
10 k  
10 k  
10 k  
50 k  
120 pF  
240 pF  
490 pF  
1020 pF  
2020 pF  
5100 pF  
5100 pF  
20 k  
20 k  
20 k  
20 k  
20 k  
20 k  
100 k  
10 k  
10 k  
10 k  
10 k  
10 k  
10 k  
50 k  
470 pF  
910 pF  
100 k  
100 k  
100 k  
100 k  
100 k  
200 k  
200 k  
910 pF  
1800 pF  
3900 pF  
7500 pF  
0.015 µF  
0.02 µF  
0.1 µF  
181  
88.7  
42.6  
21.5  
8.53  
1.71  
2000 pF  
3900 pF  
8200 pF  
0.02 µF  
0.02 µF  
Figure 17. Typical Application  
MC145026 MC145027 MC145028  
3.2–276  
MOTOROLA WIRELESS RF, IF AND TRANSMITTER DEVICE DATA  
detected and filtered by a diode/RC network to extract the  
data envelope from the burst. Comparator A5 boosts the sig-  
nal to logic levels compatible with the MC145027/28 data  
APPLICATIONS INFORMATION  
INFRARED TRANSMITTER  
input. The D pin of these decoders is a standard CMOS  
in  
In Figure 18, the MC145026 encoder is set to run at an os-  
cillator frequency of about 4 to 9 kHz. Thus, the time required  
for a complete two–word encoding sequence is about 20 to  
40 ms. The data output from the encoder gates an RC oscil-  
lator running at 50 kHz; the oscillator shown starts rapidly  
enough to be used in this application. When the “send” but-  
ton is not depressed, both the MC145026 and oscillator are  
in a low–power standby state. The RC oscillator has to be  
trimmed for 50 kHz and has some drawbacks for frequency  
stability. A superior system uses a ceramic resonator oscilla-  
tor running at 400 kHz. This oscillator feeds a divider as  
shown in Figure 19. The unused inputs of the MC14011UB  
must be grounded.  
The MLED81 IRED is driven with the 50 kHz square wave  
at about 200 to 300 mA to generate the carrier. If desired, two  
IREDs wired in series can be used (see Application Note  
AN1016 for more information). The bipolar IRED switch,  
shown in Figure 18, offers two advantages over a FET. First,  
a logic FET has too much gate capacitance for the  
MC14011UB to drive without waveform distortion. Second,  
the bipolar drive permits lower supply voltages, which are an  
advantage in portable battery–powered applications.  
The configuration shown in Figure 18 operates over a  
supply range of 4.5 to 18 V. A low–voltage system which  
operates down to 2.5 V could be realized if the oscillator sec-  
tion of a MC74HC4060 is used in place of the MC14011UB.  
The data output of the MC145026 is inverted and fed to the  
RESET pin of the MC74HC4060. Alternately, the  
MC74HCU04 could be used for the oscillator.  
high–impedance input which must not be allowed to float.  
Therefore, direct coupling from A5 to the decoder input is  
utilized.  
Shielding should be used on at least A1 and A2, with good  
ground and high–sensitivity circuit layout techniques applied.  
For operation with supplies higher than + 5 V, limiter A4’s  
positive output swing needs to be limited to 3 to 5 V. This is  
accomplished via adding a zener diode in the negative feed-  
back path, thus avoiding excessive system noise. The bias-  
ing resistor stack should be adjusted such that V3 is 1.25 to  
1.5 V.  
This system works up to a range of about 10 meters. The  
gains of the system may be adjusted to suit the individual  
design needs. The 100 resistor in the emitter of the first  
2N5088 and the 1 kresistor feeding A2 may be altered if  
different gain is required. In general, more gain does not nec-  
essarily result in increased range. This is due to noise floor  
limitations. The designer should increase transmitter power  
and/or increase receiver aperature with Fresnal lensing to  
greatly improve range. See Application Note AN1016 for  
additional information.  
Information on the MC34074 is in data book DL128/D.  
TRINARY SWITCH MANUFACTURERS  
Midland Ross–Electronic Connector Div.  
Greyhill  
Augat/Alcoswitch  
Aries Electronics  
Information on the MC14011UB is in book number  
DL131/D. The MC74HCU04 and MC74HC4060 are found in  
book number DL129/D.  
The above companies may not have the switches in a DIP.  
For more information, call them or consult eem Electronic  
Engineers Master Catalog or the Gold Book. Ask for SPDT  
with center OFF.  
INFRARED RECEIVER  
The receiver in Figure 20 couples an IR–sensitive diode to  
input preamp A1, followed by band–pass amplifier A2 with a  
gain of about 10. Limiting stage A3 follows, with an output of  
about 800 mV p–p. The limited 50 kHz burst is detected by  
comparator A4 that passes only positive pulses, and peak–  
Alternative: An SPST can be placed in series between a  
SPDT and the Encoder or Decoder to achieve trinary action.  
Motorola cannot recommend one supplier over another  
and in no way suggests that this is a complete listing of tri-  
nary switch manufacturers.  
MOTOROLA WIRELESS RF, IF AND TRANSMITTER DEVICE DATA  
MC145026 MC145027 MC145028  
3.2–277  
V+  
SELECT FOR  
200 mA TO 300 mA  
USE OF 2 MLED81s  
IS OPTIONAL  
MLED81  
MC14011UB  
10 kΩ  
MPSA13  
OR  
SEND  
MPSW13  
MC14011UB  
TE  
D
out  
MC145026  
R
S
C
TC  
R
TC  
0.01 µF  
220 kΩ  
1000 pF  
9
ADJUST/SELECT FOR  
f = 50 kHz (APPROX. 100 k)  
SWITCHES  
220 kΩ  
100 kFOR APPROX. 4 kHz  
47 kFOR APPROX. 9 kHz  
Figure 18. IRED Transmitter Using RC Oscillator to Generate Carrier Frequency  
V+  
MC14011UB  
MC14024  
50 kHZ TO  
CLK  
Q3  
DRIVER  
TRANSISTOR  
RESET  
1MΩ  
X1 = 400 kHz CERAMIC RESONATOR  
PANASONIC EFD–A400K04B  
OR EQUIVALENT  
V+  
MC14011UB  
X1  
D
out  
FROM MC145026  
470 pF  
470 pF  
Figure 19. Using a Ceramic Resonator to Generate Carrier Frequency  
MC145026 MC145027 MC145028  
3.2–278  
MOTOROLA WIRELESS RF, IF AND TRANSMITTER DEVICE DATA  
+5 V  
10 kΩ  
A1  
1 mH — TOKO TYPE 7PA OR 10PA  
OR EQUIVALENT  
10 µF  
10 kΩ  
10 µF  
22 kΩ  
0.01 µF  
2N5088  
2N5086  
2N5088  
10 kΩ  
0.01 µF  
1 kΩ  
A2  
+
V1  
100 Ω  
1 µF  
6.8 kΩ  
2.2 kΩ  
OPTICAL  
FILTER  
1/4 MC34074  
1N914  
1N914  
4.7 kΩ  
0.01 µF  
1 MΩ  
100 kΩ  
1 MΩ  
10 kΩ  
1N914  
A3  
+
+
1 kΩ  
22 kΩ  
V1  
+
A4  
V2  
A5  
1/4 MC34074  
V3  
1/4 MC34074  
1000 pF  
47 kΩ  
1/4 MC34074  
+5 V  
390 kFOR APPROX. 4 kHz  
180 kFOR APPROX. 9 kHz  
1000 pF  
750 kFOR APPROX. 4 kHz  
360 kFOR APPROX. 9 kHz  
0.01 µF  
4.7 kΩ  
390 Ω  
V2 2.7 V  
V1 2.5 V  
R1  
R2/C2  
VT  
C1  
MC145027/28  
D
in  
2.2 kΩ  
2.7 kΩ  
DATA OUT  
MC145027 ONLY  
V
DD  
V
SS  
4
10 µF  
V3 1.3 V  
10 µF  
9 FOR MC145027  
5 FOR MC145028  
10 µF  
+5 V  
ADDRESS  
SWITCHES  
Figure 20. Infrared Receiver  
MOTOROLA WIRELESS RF, IF AND TRANSMITTER DEVICE DATA  
MC145026 MC145027 MC145028  
3.2–279  

相关型号:

MC145027P

Encoder and Decoder Pairs
MOTOROLA

MC145027P

Encoder and Decoder Pairs
LANSDALE

MC145027P

Encoder and Decoder Pairs CMOS
FREESCALE

MC145027P

INFRARED, RECEIVER IC, PDIP16, PLASTIC, DIP-16
NXP

MC145028

Encoder and Decoder Pairs
MOTOROLA

MC145028

Encoder and Decoder Pairs CMOS
FREESCALE

MC145028D

Encoder and Decoder Pairs CMOS
MOTOROLA

MC145028DW

Encoder and Decoder Pairs
MOTOROLA

MC145028DW

Encoder and Decoder Pairs
LANSDALE

MC145028DW

Encoder and Decoder Pairs CMOS
FREESCALE

MC145028DW

INFRARED, RECEIVER IC, PDSO16, SOG-16
NXP

MC145028DWR2

SPECIALTY CONSUMER CIRCUIT, PDSO16, SOG-16
NXP