MC145151 [MOTOROLA]

Parallel-Input PLL Frequency Synthesizer; 并行输入锁相环频率合成器
MC145151
型号: MC145151
厂家: MOTOROLA    MOTOROLA
描述:

Parallel-Input PLL Frequency Synthesizer
并行输入锁相环频率合成器

文件: 总36页 (文件大小:718K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MC145151–2/D  
SEMICONDUCTOR TECHNICAL DATA  
CMOS  
The devices described in this document are typically used as low–power,  
phase–locked loop frequency synthesizers. When combined with an external  
low–pass filter and voltage–controlled oscillator, these devices can provide all  
the remaining functions for a PLL frequency synthesizer operating up to the  
device’s frequency limit. For higher VCO frequency operation, a down mixer or  
a prescaler can be used between the VCO and the synthesizer IC.  
These frequency synthesizer chips can be found in the following and other  
applications:  
CATV  
TV Tuning  
AM/FM Radios  
Two–Way Radios  
Scanning Receivers  
Amateur Radio  
÷
R
OSC  
φ
CONTROL LOGIC  
÷
A
÷
N
÷
P/P + 1  
VCO  
OUTPUT  
FREQUENCY  
CONTENTS  
Page  
DEVICE DETAIL SHEETS  
MC145151–2 Parallel–Input, Single–Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
MC145152–2 Parallel–Input, Dual–Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
MC145155–2 Serial–Input, Single–Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
MC145156–2 Serial–Input, Dual–Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
MC145157–2 Serial–Input, Single–Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
MC145158–2 Serial–Input, Dual–Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
FAMILY CHARACTERISTICS  
Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Frequency Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Phase Detector/Lock Detector Output Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DESIGN CONSIDERATIONS  
Phase–Locked Loop — Low–Pass Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Crystal Oscillator Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Dual–Modulus Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
REV 1  
8/95  
Motorola, Inc. 1995  
SEMICONDUCTOR TECHNICAL DATA  
P SUFFIX  
PLASTIC DIP  
CASE 710  
Interfaces with Single–Modulus Prescalers  
28  
28  
1
The MC145151–2 is programmed by 14 parallel–input data lines for the  
N counter and three input lines for the R counter. The device features consist of  
a reference oscillator, selectable–reference divider, digital–phase detector, and  
14–bit programmable divide–by–N counter.  
The MC145151–2 is an improved–performance drop–in replacement for the  
MC145151–1. The power consumption has decreased and ESD and latch–up  
performance have improved.  
DW SUFFIX  
SOG PACKAGE  
CASE 751F  
1
ORDERING INFORMATION  
Operating Temperature Range: – 40 to 85°C  
Low Power Consumption Through Use of CMOS Technology  
3.0 to 9.0 V Supply Range  
On– or Off–Chip Reference Oscillator Operation  
Lock Detect Signal  
MC145151P2  
Plastic DIP  
MC145151DW2 SOG Package  
PIN ASSIGNMENT  
÷ N Counter Output Available  
Single Modulus/Parallel Programming  
f
1
2
28  
27  
LD  
in  
8 User–Selectable ÷ R Values: 8, 128, 256, 512, 1024, 2048, 2410, 8192  
÷ N Range = 3 to 16383  
“Linearized” Digital Phase Detector Enhances Transfer Function Linearity  
Two Error Signal Options: Single–Ended (Three–State) or Double–Ended  
Chip Complexity: 8000 FETs or 2000 Equivalent Gates  
V
OSC  
SS  
DD  
out  
in  
V
3
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
OSC  
N11  
N10  
N13  
N12  
T/R  
N9  
out  
PD  
4
RA0  
RA1  
RA2  
5
6
7
φ
8
R
φ
9
V
f
10  
N8  
V
N0 11  
N1 12  
N7  
N6  
N2 13  
N3 14  
16  
15  
N5  
N4  
REV 1  
8/95  
Motorola, Inc. 1995  
MC145151–2 BLOCK DIAGRAM  
RA2  
RA1  
RA0  
14 x 8 ROM REFERENCE DECODER  
14  
OSC  
out  
LOCK  
LD  
PD  
DETECT  
OSC  
14–BIT  
÷
R COUNTER  
in  
PHASE  
DETECTOR  
A
out  
f
in  
14–BIT  
÷
N COUNTER  
14  
V
PHASE  
DETECTOR  
B
DD  
φ
V
φ
R
TRANSMIT OFFSET ADDER  
T/R  
f
V
N13  
N11  
N9  
N7 N6  
N4  
N2  
N0  
NOTE: N0 – N13 inputs and inputs RA0, RA1, and RA2 have pull–up resistors that are not shown.  
sure that inputs left open remain at a logic 1 and require only  
an SPST switch to alter data to the zero state.  
PIN DESCRIPTIONS  
INPUT PINS  
T/R  
f
in  
Frequency Input (Pin 1)  
Transmit/Receive Offset Adder Input (Pin 21)  
This input controls the offset added to the data provided at  
the N inputs. This is normally used for offsetting the VCO  
frequency by an amount equal to the IF frequency of the  
transceiver. This offset is fixed at 856 when T/R is low and  
gives no offset when T/R is high. A pull–up resistor ensures  
that no connection will appear as a logic 1 causing no offset  
addition.  
Input to the ÷ N portion of the synthesizer. f is typically  
in  
derived from loop VCO and is ac coupled into the device. For  
larger amplitude signals (standard CMOS logic levels) dc  
coupling may be used.  
RA0 – RA2  
Reference Address Inputs (Pins 5, 6, 7)  
These three inputs establish a code defining one of eight  
possible divide values for the total reference divider, as  
defined by the table below.  
Pull–up resistors ensure that inputs left open remain at a  
logic 1 and require only a SPST switch to alter data to the  
zero state.  
OSC , OSC  
in  
out  
Reference Oscillator Input/Output (Pins 27, 26)  
These pins form an on–chip reference oscillator when con-  
nected to terminals of an external parallel resonant crystal.  
Frequency setting capacitors of appropriate value must be  
connected from OSC to ground and OSC  
to ground.  
in  
out  
Total  
Divide  
Value  
OSC may also serve as the input for an externally–gener-  
Reference Address Code  
in  
ated reference signal. This signal is typically ac coupled to  
RA2  
RA1  
RA0  
OSC , but for larger amplitude signals (standard CMOS  
logic levels) dc coupling may also be used. In the external  
in  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8
128  
256  
512  
1024  
2048  
2410  
8192  
reference mode, no connection is required to OSC  
.
out  
OUTPUT PINS  
PD  
out  
Phase Detector A Output (Pin 4)  
Three–state output of phase detector for use as loop–error  
signal. Double–ended outputs are also available for this pur-  
N0 – N11  
pose (see φ and φ ).  
V
R
N Counter Programming Inputs (Pins 11 – 20, 22 – 25)  
Frequency f > f or f Leading: Negative Pulses  
V
R
V
These inputs provide the data that is preset into the ÷ N  
counter when it reaches the count of zero. N0 is the least sig-  
nificant and N13 is the most significant. Pull–up resistors en-  
Frequency f < f or f Lagging: Positive Pulses  
V R V  
Frequency f = f and Phase Coincidence: High–Imped-  
V
R
ance State  
MOTOROLA  
MC145151–2 through MC145158–2  
3
φ , φ  
nally connected to the phase detector input. With this output  
available, the ÷ N counter can be used independently.  
R
V
Phase Detector B Outputs (Pins 8, 9)  
These phase detector outputs can be combined externally  
for a loop–error signal. A single–ended output is also avail-  
LD  
Lock Detector Output (Pin 28)  
able for this purpose (see PD  
).  
out  
If frequency f is greater than f or if the phase of f is  
Essentially a high level when loop is locked (f , f of same  
R V  
phase and frequency). Pulses low when loop is out of lock.  
V
R
V
leading, then error information is provided by φ pulsing low.  
V
φ
R
remains essentially high.  
POWER SUPPLY  
If the frequency f is less than f or if the phase of f is  
V
R
V
V
lagging, then error information is provided by φ pulsing low.  
DD  
R
Positive Power Supply (Pin 3)  
φ
V
remains essentially high.  
If the frequency of f = f and both are in phase, then both  
The positive power supply potential. This pin may range  
from + 3 to + 9 V with respect to V  
V
R
φ
V
and φ remain high except for a small minimum time  
.
R
SS  
period when both pulse low in phase.  
V
SS  
Negative Power Supply (Pin 2)  
f
V
N Counter Output (Pin 10)  
The most negative supply potential. This pin is usually  
ground.  
This is the buffered output of the ÷ N counter that is inter-  
TYPICAL APPLICATIONS  
2.048 MHz  
NC  
NC  
OSC  
in  
OSC  
out  
f
RA2 RA1  
RA0  
PD  
in  
VOLTAGE  
CONTROLLED  
OSCILLATOR  
MC145151–2  
out  
N13 N12 N11 N10 N9 N8 N7 N6 N5 N4 N3 N2 N1 N0  
5 – 5.5 MHz  
0 1 1 1 0 0 0 1 0 0 0 = 5 MHz  
1 0 1 0 1 1 1 1 1 0 0 = 5.5 MHz  
Figure 1. 5 MHz to 5.5 MHz Local Oscillator Channel Spacing = 1 kHz  
LOCK DETECT SIGNAL  
TRANSMIT: 440.0 – 470.0 MHz  
RECEIVE: 418.6 – 448.6 MHz  
(25 kHz STEPS)  
“1”  
“1”  
“0”  
CHOICE OF  
DETECTOR  
ERROR  
OSC  
RA2  
RA1  
RA0  
LD  
f
V
out  
SIGNALS  
PD  
out  
OSC  
in  
LOOP  
FILTER  
φ
VCO  
X6  
+ V  
R
V
V
DD  
SS  
MC145151–2  
f
V
REF. OSC.  
10.0417 MHz  
(ON–CHIP OSC.  
OPTIONAL)  
f
in  
T: 73.3333 – 78.3333 MHz  
R: 69.7667 – 74.7667 MHz  
T/R  
T: 13.0833 – 18.0833 MHz  
R: 9.5167 – 14.5167 MHz  
DOWN  
MIXER  
“0” “0” “1”  
CHANNEL PROGRAMMING  
N = 2284 TO 3484  
RECEIVE  
÷
TRANSMIT  
(ADDS 856 TO  
N VALUE)  
÷
X6  
60.2500 MHz  
NOTES:  
1. f = 4.1667 kHz; ÷ R = 2410; 21.4 MHz low side injection during receive.  
R
2. Frequency values shown are for the 440 – 470 MHz band. Similar implementation applies to the 406 – 440 MHz band.  
For 470 – 512 MHz, consider reference oscillator frequency X9 for mixer injection signal (90.3750 MHz).  
Figure 2. Synthesizer for Land Mobile Radio UHF Bands  
MC145151–2 Data Sheet Continued on Page 23  
MC145151–2 through MC145158–2  
4
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
P SUFFIX  
PLASTIC DIP  
CASE 710  
Interfaces with Dual–Modulus Prescalers  
28  
28  
1
The MC145152–2 is programmed by sixteen parallel inputs for the N and A  
counters and three input lines for the R counter. The device features consist of  
a reference oscillator, selectable–reference divider, two–output phase detector,  
10–bit programmable divide–by–N counter, and 6–bit programmable ÷ A  
counter.  
The MC145152–2 is an improved–performance drop–in replacement for the  
MC145152–1. Power consumption has decreased and ESD and latch–up  
performance have improved.  
DW SUFFIX  
SOG PACKAGE  
CASE 751F  
1
ORDERING INFORMATION  
MC145152P2  
MC145152DW2 SOG Package  
Plastic DIP  
Operating Temperature Range: – 40 to 85°C  
Low Power Consumption Through Use of CMOS Technology  
3.0 to 9.0 V Supply Range  
On– or Off–Chip Reference Oscillator Operation  
Lock Detect Signal  
PIN ASSIGNMENT  
Dual Modulus/Parallel Programming  
f
1
2
28  
27  
LD  
in  
8 User–Selectable ÷ R Values: 8, 64, 128, 256, 512, 1024, 1160, 2048  
÷ N Range = 3 to 1023, ÷ A Range = 0 to 63  
Chip Complexity: 8000 FETs or 2000 Equivalent Gates  
See Application Note AN980  
V
OSC  
SS  
DD  
in  
V
3
4
5
6
7
8
9
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
OSC  
A4  
A3  
A0  
A2  
A1  
N9  
N8  
N7  
N6  
out  
RA0  
RA1  
RA2  
φ
R
φ
V
MC  
A5 10  
N0 11  
N1 12  
N2 13  
N3 14  
16  
15  
N5  
N4  
REV 1  
8/95  
Motorola, Inc. 1995  
MC145152–2 BLOCK DIAGRAM  
RA2  
RA1  
RA0  
12 x 8 ROM REFERENCE DECODER  
12  
OSC  
out  
LOCK  
DETECT  
LD  
OSC  
in  
12–BIT  
÷
R COUNTER  
MC  
φ
V
CONTROL  
LOGIC  
PHASE  
DETECTOR  
φ
R
f
in  
6–BIT  
A5  
÷
A COUNTER  
10–BIT  
N2  
÷
N COUNTER  
A3 A2  
A0  
N0  
N4 N5  
N7  
N9  
NOTE: N0 – N9, A0 – A5, and RA0 – RA2 have pull–up resistors that are not shown.  
Prescaling section). The A inputs all have internal pull–up  
resistors that ensure that inputs left open will remain at a  
logic 1.  
PIN DESCRIPTIONS  
INPUT PINS  
f
in  
OSC , OSC  
in  
out  
Frequency Input (Pin 1)  
Reference Oscillator Input/Output (Pins 27, 26)  
Input to the positive edge triggered ÷ N and ÷ A counters.  
These pins form an on–chip reference oscillator when con-  
nected to terminals of an external parallel resonant crystal.  
Frequency setting capacitors of appropriate value must be  
f
is typically derived from a dual–modulus prescaler and is  
ac coupled into the device. For larger amplitude signals  
(standard CMOS logic levels) dc coupling may be used.  
in  
connected from OSC to ground and OSC  
to ground.  
in  
out  
OSC may also serve as the input for an externally–gener-  
in  
RA0, RA1, RA2  
Reference Address Inputs (Pins 4, 5, 6)  
ated reference signal. This signal is typically ac coupled to  
OSC , but for larger amplitude signals (standard CMOS  
in  
These three inputs establish a code defining one of eight  
possible divide values for the total reference divider. The  
total reference divide values are as follows:  
logic levels) dc coupling may also be used. In the external  
reference mode, no connection is required to OSC  
.
out  
OUTPUT PINS  
Total  
Divide  
Value  
Reference Address Code  
φ , φ  
R
V
RA2  
RA1  
RA0  
Phase Detector B Outputs (Pins 7, 8)  
These phase detector outputs can be combined externally  
for a loop–error signal.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8
64  
If the frequency f is greater than f or if the phase of f is  
128  
256  
512  
1024  
1160  
2048  
V
R
V
leading, then error information is provided by φ pulsing low.  
φ
R
V
remains essentially high.  
If the frequency f is less than f or if the phase of f is  
V
R
V
lagging, then error information is provided by φ pulsing low.  
R
φ
V
remains essentially high.  
If the frequency of f = f and both are in phase, then both  
and φ remain high except for a small minimum time  
R
period when both pulse low in phase.  
V
R
N0 – N9  
φ
V
N Counter Programming Inputs (Pins 11 – 20)  
The N inputs provide the data that is preset into the ÷ N  
counter when it reaches the count of 0. N0 is the least signifi-  
cant digit and N9 is the most significant. Pull–up resistors en-  
sure that inputs left open remain at a logic 1 and require only  
a SPST switch to alter data to the zero state.  
MC  
Dual–Modulus Prescale Control Output (Pin 9)  
Signal generated by the on–chip control logic circuitry for  
controlling an external dual–modulus prescaler. The MC  
level will be low at the beginning of a count cycle and will  
remain low until the ÷ A counter has counted down from its  
programmed value. At this time, MC goes high and remains  
high until the ÷ N counter has counted the rest of the way  
down from its programmed value (N – A additional counts  
since both ÷ N and ÷ A are counting down during the first  
A0 – A5  
A Counter Programming Inputs  
(Pins 23, 21, 22, 24, 25, 10)  
The A inputs define the number of clock cycles of f that  
in  
require a logic 0 on the MC output (see Dual–Modulus  
MC145151–2 through MC145158–2  
6
MOTOROLA  
portion of the cycle). MC is then set back low, the counters  
preset to their respective programmed values, and the above  
sequence repeated. This provides for a total programmable  
POWER SUPPLY  
V
DD  
Positive Power Supply (Pin 3)  
divide value (N ) = N P + A where P and P + 1 represent the  
T
dual–modulus prescaler divide values respectively for high  
and low MC levels, N the number programmed into the ÷ N  
counter, and A the number programmed into the ÷ A counter.  
The positive power supply potential. This pin may range  
from + 3 to + 9 V with respect to V  
.
SS  
V
SS  
Negative Power Supply (Pin 2)  
LD  
Lock Detector Output (Pin 28)  
Essentially a high level when loop is locked (f , f of same  
R V  
phase and frequency). Pulses low when loop is out of lock.  
The most negative supply potential. This pin is usually  
ground.  
TYPICAL APPLICATIONS  
NO CONNECTS  
“1”  
“1”  
“1”  
150 – 175 MHz  
5 kHz STEPS  
LOCK DETECT SIGNAL  
R2  
10.24 MHz  
NOTE 1  
C
OSC  
out  
RA2  
RA1  
RA0  
LD  
R1  
R1  
φ
+
R
OSC  
in  
VCO  
φ
V
MC33171  
NOTE 2  
MC145152–2  
R2  
C
MC  
V
V
+ V  
DD  
f
in  
SS  
N9  
N0 A5  
A0  
MC12017  
CHANNEL PROGRAMMING  
÷
64/65 PRESCALER  
NOTES:  
1. Off–chip oscillator optional.  
2. The φ and φ outputs are fed to an external combiner/loop filter. See the Phase–Locked Loop — Low–Pass Filter  
R
V
Design page for additional information. The φ and φ outputs swing rail–to–rail. Therefore, the user should be careful  
R
V
not to exceed the common mode input range of the op amp used in the combiner/loop filter.  
Figure 1. Synthesizer for Land Mobile Radio VHF Bands  
MOTOROLA  
MC145151–2 through MC145158–2  
7
RECEIVER 2ND L.O.  
30.720 MHz  
REF. OSC.  
15.360 MHz  
NO CONNECTS  
(ON–CHIP OSC.  
OPTIONAL)  
RECEIVER FIRST L.O.  
825.030 844.980 MHz  
X2  
“1”  
“1”  
“1”  
LOCK DETECT SIGNAL  
R2  
C
(30 kHz STEPS)  
OSC  
RA2  
RA1  
RA0  
LD  
R1  
R1  
out  
φ
+
R
OSC  
in  
X4  
NOTE 6  
VCO  
φ
V
MC145152–2  
NOTE 5  
NOTE 7  
V
V
+ V  
DD  
R2  
C
MC  
SS  
f
X4  
NOTE 6  
TRANSMITTER  
MODULATION  
in  
N9  
N0 A5  
A0  
MC12017  
TRANSMITTER SIGNAL  
825.030 844.980 MHz  
(30 kHz STEPS)  
÷
64/65 PRESCALER  
NOTE 6  
CHANNEL PROGRAMMING  
NOTES:  
1. Receiver 1st I.F. = 45 MHz, low side injection; Receiver 2nd I.F. = 11.7 MHz, low side injection.  
2. Duplex operation with 45 MHz receiver/transmit separation.  
3. f = 7.5 kHz; ÷ R = 2048.  
R
4. N  
= N 64 + A = 27501 to 28166; N = 429 to 440; A = 0 to 63.  
total  
5. MC145158–2 may be used where serial data entry is desired.  
6. High frequency prescalers (e.g., MC12018 [520 MHz] and MC12022 [1 GHz]) may be used for higher frequency VCO and f  
implementations.  
ref  
7. The φ and φ outputs are fed to an external combiner/loop filter. See the Phase–Locked Loop — Low–Pass Filter Design page for  
R
V
additionalinformation. The φ and φ outputs swing rail–to–rail. Therefore, the user should be careful not to exceed the common mode  
R
V
input range of the op amp used in the combiner/loop filter.  
Figure 2. 666–Channel, Computer–Controlled, Mobile Radiotelephone Synthesizer  
for 800 MHz Cellular Radio Systems  
MC145152–2 Data Sheet Continued on Page 23  
MC145151–2 through MC145158–2  
8
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
P SUFFIX  
PLASTIC DIP  
CASE 707  
Interfaces with Single–Modulus Prescalers  
18  
The MC145155–2 is programmed by a clocked, serial input, 16–bit data  
stream. The device features consist of a reference oscillator, selectable–refer-  
ence divider, digital–phase detector, 14–bit programmable divide–by–N  
counter, and the necessary shift register and latch circuitry for accepting serial  
input data.  
The MC145155–2 is an improved–performance drop–in replacement for the  
MC145155–1. Power consumption has decreased and ESD and latch–up  
performance have improved.  
1
DW SUFFIX  
SOG PACKAGE  
CASE 751D  
20  
1
ORDERING INFORMATION  
MC145155P2  
MC145155DW2 SOG Package  
Plastic DIP  
Operating Temperature Range: – 40 to 85°C  
Low Power Consumption Through Use of CMOS Technology  
3.0 to 9.0 V Supply Range  
On– or Off–Chip Reference Oscillator Operation with Buffered Output  
Compatible with the Serial Peripheral Interface (SPI) on CMOS MCUs  
Lock Detect Signal  
Two Open–Drain Switch Outputs  
8 User–Selectable ÷ R Values: 16, 512, 1024, 2048, 3668, 4096, 6144,  
8192  
Single Modulus/Serial Programming  
÷ N Range = 3 to 16383  
“Linearized” Digital Phase Detector Enhances Transfer Function Linearity  
Two Error Signal Options: Single–Ended (Three–State) or Double–Ended  
Chip Complexity: 6504 FETs or 1626 Equivalent Gates  
PIN ASSIGNMENTS  
PLASTIC DIP  
RA1  
RA2  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
RA0  
OSC  
OSC  
in  
φ
V
out  
out  
φ
REF  
R
V
SW2  
SW1  
ENB  
DATA  
CLK  
DD  
out  
PD  
V
7
8
9
12  
11  
10  
SS  
LD  
f
in  
SOG PACKAGE  
RA1  
RA2  
1
2
20  
19  
RA0  
OSC  
OSC  
in  
φ
3
4
18  
17  
V
out  
out  
φ
REF  
NC  
R
V
5
6
16  
15  
DD  
PD  
V
SW2  
SW1  
ENB  
DATA  
CLK  
out  
SS  
7
14  
13  
12  
11  
NC  
LD  
8
9
f
10  
in  
NC = NO CONNECTION  
REV 1  
8/95  
Motorola, Inc. 1995  
MC145155–2 BLOCK DIAGRAM  
RA2  
RA1  
RA0  
14 x 8 ROM REFERENCE DECODER  
LOCK  
DETECT  
14  
OSC  
REF  
out  
LD  
PD  
OSC  
14–BIT  
14–BIT  
÷
÷
R COUNTER  
in  
f
PHASE  
DETECTOR  
A
R
out  
f
V
out  
f
in  
N COUNTER  
14  
PHASE  
DETECTOR  
B
φ
V
φ
R
V
DD  
SW2  
SW1  
ENB  
LATCH  
LATCH  
14  
14–BIT SHIFT REGISTER  
DATA  
CLK  
2–BIT SHIFT  
REGISTER  
information for the 14–bit ÷ N counter and the two switch sig-  
nals SW1 and SW2. The entry format is as follows:  
PIN DESCRIPTIONS  
INPUT PINS  
÷
N COUNTER BITS  
f
in  
Frequency Input (PDIP – Pin 9, SOG – Pin 10)  
Input to the ÷ N portion of the synthesizer. f is typically  
in  
derived from loop VCO and is ac coupled into the device. For  
larger amplitude signals (standard CMOS logic levels) dc  
coupling may be used.  
LAST DATA BIT IN (BIT NO. 16)  
FIRST DATA BIT IN (BIT NO. 1)  
RA0, RA1, RA2  
Reference Address Inputs (PDIP – Pins 18, 1, 2;  
SOG – Pins 20, 1, 2)  
ENB  
Latch Enable Input (PDIP – Pin 12, SOG – Pin 13)  
When high (1), ENB transfers the contents of the shift reg-  
ister into the latches, and to the programmable counter in-  
puts, and the switch outputs SW1 and SW2. When low (0),  
ENB inhibits the above action and thus allows changes to be  
made in the shift register data without affecting the counter  
programming and switch outputs. An on–chip pull–up esta-  
blishes a continuously high level for ENB when no external  
signal is applied. ENB is normally low and is pulsed high to  
transfer data to the latches.  
These three inputs establish a code defining one of eight  
possible divide values for the total reference divider, as  
defined by the table below:  
Total  
Divide  
Value  
Reference Address Code  
RA2  
RA1  
RA0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
16  
512  
OSC , OSC  
1024  
2048  
3668  
4096  
6144  
8192  
in  
out  
Reference Oscillator Input/Output (PDIP – Pins 17, 16;  
SOG – Pins 19, 18)  
These pins form an on–chip reference oscillator when con-  
nected to terminals of an external parallel resonant crystal.  
Frequency setting capacitors of appropriate value must be  
connected from OSC to ground and OSC  
to ground.  
in  
out  
CLK, DATA  
Shift Register Clock, Serial Data Inputs  
(PDIP – Pins 10, 11; SOG – Pins 11, 12)  
OSC may also serve as the input for an externally–gener-  
in  
ated reference signal. This signal is typically ac coupled to  
OSC , but for larger amplitude signals (standard CMOS  
in  
Each low–to–high transition clocks one bit into the on–chip  
16–bit shift register. The Data input provides programming  
logic levels) dc coupling may also be used. In the external  
reference mode, no connection is required to OSC  
.
out  
MC145151–2 through MC145158–2  
10  
MOTOROLA  
OUTPUT PINS  
PD  
SW1, SW2  
Band Switch Outputs (PDIP – Pins 13, 14;  
SOG – Pins 14, 15)  
out  
Phase Detector A Output (PDIP, SOG – Pin 6)  
SW1 and SW2 provide latched open–drain outputs corre-  
sponding to data bits numbers one and two. These outputs  
can be tied through external resistors to voltages as high as  
Three–state output of phase detector for use as loop error  
signal. Double–ended outputs are also available for this pur-  
pose (see φ and φ ).  
V
R
15 V, independent of the V  
supply voltage. These are  
DD  
Frequency f > f or f Leading: Negative Pulses  
V
R
V
typically used for band switch functions. A logic 1 causes the  
output to assume a high–impedance state, while a logic 0  
causes the output to be low.  
Frequency f < f or f Lagging: Positive Pulses  
V
R
V
Frequency f = f and Phase Coincidence: High–Imped-  
V
R
ance State  
φ , φ  
R
V
REF  
out  
Phase Detector B Outputs (PDIP, SOG – Pins 4, 3)  
Buffered Reference Oscillator Output (PDIP, SOG –  
Pin 15)  
These phase detector outputs can be combined externally  
for a loop–error signal. A single–ended output is also avail-  
Buffered output of on–chip reference oscillator or exter-  
nally provided reference–input signal.  
able for this purpose (see PD  
).  
out  
If frequency f is greater than f or if the phase of f is  
V
R
V
leading, then error information is provided by φ pulsing low.  
V
φ
R
remains essentially high.  
POWER SUPPLY  
If the frequency f is less than f or if the phase of f is  
V
R
V
lagging, then error information is provided by φ pulsing low.  
R
V
DD  
φ
V
remains essentially high.  
Positive Power Supply (PDIP, SOG – Pin 5)  
If the frequency of f = f and both are in phase, then both  
V
R
φ
V
and φ remain high except for a small minimum time  
The positive power supply potential. This pin may range  
R
period when both pulse low in phase.  
from + 3 to + 9 V with respect to V  
.
SS  
LD  
V
SS  
Lock Detector Output (PDIP – Pin 8, SOG – Pin 9)  
Negative Power Supply (PDIP, SOG – Pin 7)  
Essentially a high level when loop is locked (f , f of same  
R V  
phase and frequency). LD pulses low when loop is out of  
lock.  
The most negative supply potential. This pin is usually  
ground.  
TYPICAL APPLICATIONS  
4.0 MHz  
UHF/VHF  
TUNER OR  
CATV  
φ
FRONT END  
+
R
f
in  
MC12073/74  
PRESCALER  
MC145155–2  
φ
V
1/2 MC1458*  
DATA  
CLK  
ENB  
CMOS  
MPU/MCU  
3
MC14489  
KEYBOARD  
LED DISPLAY  
* The φ and φ outputs are fed to an external combiner/loop filter. See the Phase–Locked Loop — Low–Pass Filter Design page  
R
V
foradditionalinformation.Theφ andφ outputsswingrail–to–rail. Therefore, theusershouldbecarefulnottoexceedthecommon  
R
V
mode input range of the op amp used in the combiner/loop filter.  
Figure 1. Microprocessor–Controlled TV/CATV Tuning System with Serial Interface  
MOTOROLA  
MC145151–2 through MC145158–2  
11  
2.56 MHz  
φ
TO  
AM/FM  
OSCILLATORS  
+
f
R
in  
MC12019  
20 PRESCALER  
FM  
OSC  
MC145155–2  
φ
V
÷
1/2 MC1458*  
AM  
OSC  
DATA  
CLK  
ENB  
CMOS  
MPU/MCU  
KEYBOARD  
TO DISPLAY  
* The φ and φ outputs are fed to an external combiner/loop filter. See the Phase–Locked Loop — Low–Pass Filter Design page  
R
V
foradditionalinformation.Theφ andφ outputsswingrail–to–rail. Therefore, theusershouldbecarefulnottoexceedthecommon  
R
V
mode input range of the op amp used in the combiner/loop filter.  
Figure 2. AM/FM Radio Synthesizer  
MC145155–2 Data Sheet Continued on Page 23  
MC145151–2 through MC145158–2  
12  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
P SUFFIX  
PLASTIC DIP  
CASE 738  
Interfaces with Dual–Modulus Prescalers  
20  
1
The MC145156–2 is programmed by a clocked, serial input, 19–bit data  
stream. The device features consist of a reference oscillator, selectable–refer-  
ence divider, digital–phase detector, 10–bit programmable divide–by–N  
counter, 7–bit programmable divide–by–A counter, and the necessary shift  
register and latch circuitry for accepting serial input data.  
The MC145156–2 is an improved–performance drop–in replacement for the  
MC145156–1. Power consumption has decreased and ESD and latch–up  
performance have improved.  
DW SUFFIX  
SOG PACKAGE  
CASE 751D  
20  
1
ORDERING INFORMATION  
MC145156P2  
MC145156DW2 SOG Package  
Plastic DIP  
Operating Temperature Range: – 40 to 85°C  
Low Power Consumption Through Use of CMOS Technology  
3.0 to 9.0 V Supply Range  
On– or Off–Chip Reference Oscillator Operation with Buffered Output  
Compatible with the Serial Peripheral Interface (SPI) on CMOS MCUs  
Lock Detect Signal  
PIN ASSIGNMENT  
RA1  
RA2  
1
2
20  
19  
RA0  
Two Open–Drain Switch Outputs  
Dual Modulus/Serial Programming  
OSC  
in  
φ
3
4
18  
17  
OSC  
V
out  
8 User–Selectable ÷ R Values: 8, 64, 128, 256, 640, 1000, 1024, 2048  
÷ N Range = 3 to 1023, ÷ A Range = 0 to 127  
“Linearized” Digital Phase Detector Enhances Transfer Function Linearity  
Two Error Signal Options: Single–Ended (Three–State) or Double–Ended  
Chip Complexity: 6504 FETs or 1626 Equivalent Gates  
φ
REF  
R
out  
V
5
6
16  
15  
TEST  
DD  
PD  
V
SW2  
SW1  
ENB  
DATA  
CLK  
out  
SS  
7
14  
13  
12  
11  
MC  
LD  
8
9
f
10  
in  
REV 1  
8/95  
Motorola, Inc. 1995  
MC145156–2 BLOCK DIAGRAM  
RA2  
RA1  
RA0  
12 x 8 ROM REFERENCE DECODER  
12  
LOCK  
DETECT  
12–BIT  
÷
R COUNTER  
OSC  
in  
LD  
PD  
OSC  
REF  
out  
f
PHASE  
DETECTOR  
A
CONTROL LOGIC  
R
out  
out  
f
V
MC  
PHASE  
DETECTOR  
B
7–BIT  
÷
A COUNTER  
10–BIT  
÷
N COUNTER  
10  
f
φ
in  
V
φ
R
7
V
SW2  
SW1  
DD  
ENB  
LATCH  
÷
A COUNTER LATCH  
7
÷
N COUNTER LATCH  
10  
DATA  
CLK  
2–BIT SHIFT  
REGISTER  
7–BIT SHIFT REGISTER  
10–BIT SHIFT REGISTER  
PIN DESCRIPTIONS  
÷
A COUNTER BITS  
÷
N COUNTER BITS  
INPUT PINS  
f
in  
Frequency Input (Pin 10)  
Input to the positive edge triggered ÷ N and ÷ A counters.  
LAST DATA BIT IN (BIT NO. 19)  
FIRST DATA BIT IN (BIT NO. 1)  
f
is typically derived from a dual–modulus prescaler and is  
ac coupled into the device. For larger amplitude signals  
(standard CMOS logic levels), dc coupling may be used.  
in  
ENB  
Latch Enable Input (Pin 13)  
RA0, RA1, RA2  
When high (1), ENB transfers the contents of the shift reg-  
ister into the latches, and to the programmable counter in-  
puts, and the switch outputs SW1 and SW2. When low (0),  
ENB inhibits the above action and thus allows changes to be  
made in the shift register data without affecting the counter  
programming and switch outputs. An on–chip pull–up esta-  
blishes a continuously high level for ENB when no external  
signal is applied. ENB is normally low and is pulsed high to  
transfer data to the latches.  
Reference Address Inputs (Pins 20, 1, 2)  
These three inputs establish a code defining one of eight  
possible divide values for the total reference divider, as  
defined by the table below:  
Total  
Divide  
Value  
Reference Address Code  
RA2  
RA1  
RA0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8
64  
OSC , OSC  
in  
out  
Reference Oscillator Input/Output (Pins 19, 18)  
128  
256  
640  
1000  
1024  
2048  
These pins form an on–chip reference oscillator when con-  
nected to terminals of an external parallel resonant crystal.  
Frequency setting capacitors of appropriate value must be  
connected from OSC to ground and OSC  
to ground.  
in  
out  
OSC may also serve as the input for an externally–gener-  
in  
ated reference signal. This signal is typically ac coupled to  
CLK, DATA  
OSC , but for larger amplitude signals (standard CMOS  
in  
Shift Register Clock, Serial Data Inputs (Pins 11, 12)  
logic levels) dc coupling may also be used. In the external  
Each low–to–high transition clocks one bit into the on–chip  
19–bit shift register. The data input provides programming in-  
formation for the 10–bit ÷ N counter, the 7–bit ÷ A counter,  
and the two switch signals SW1 and SW2. The entry format  
is as follows:  
reference mode, no connection is required to OSC  
.
out  
TEST  
Factory Test Input (Pin 16)  
Used in manufacturing. Must be left open or tied to V  
SS  
.
MC145151–2 through MC145158–2  
14  
MOTOROLA  
OUTPUT PINS  
PD  
preset to their respective programmed values, and the above  
sequence repeated. This provides for a total programmable  
out  
divide value (N ) = N P + A where P and P + 1 represent the  
T
Phase Detector A Output (Pin 6)  
dual–modulus prescaler divide values respectively for high  
and low MC levels, N the number programmed into the ÷ N  
counter, and A the number programmed into the ÷ A counter.  
Three–state output of phase detector for use as loop–error  
signal. Double–ended outputs are also available for this pur-  
pose (see φ and φ ).  
V
R
LD  
Frequency f > f or f Leading: Negative Pulses  
V
R
V
V
Lock Detector Output (Pin 9)  
Frequency f < f or f Lagging: Positive Pulses  
V
R
Essentially a high level when loop is locked (f , f of same  
R V  
phase and frequency). LD pulses low when loop is out of  
lock.  
Frequency f = f and Phase Coincidence: High–Imped-  
V
R
ance State  
φ , φ  
R
V
SW1, SW2  
Band Switch Outputs (Pins 14, 15)  
Phase Detector B Outputs (Pins 4, 3)  
These phase detector outputs can be combined externally  
for a loop–error signal. A single–ended output is also avail-  
SW1 and SW2 provide latched open–drain outputs corre-  
sponding to data bits numbers one and two. These outputs  
can be tied through external resistors to voltages as high as  
able for this purpose (see PD  
).  
out  
If frequency f is greater than f or if the phase of f is  
V
R
V
15 V, independent of the V  
supply voltage. These are  
DD  
leading, then error information is provided by φ pulsing low.  
V
typically used for band switch functions. A logic 1 causes the  
output to assume a high–impedance state, while a logic 0  
causes the output to be low.  
φ
R
remains essentially high.  
If the frequency f is less than f or if the phase of f is  
V
R
V
lagging, then error information is provided by φ pulsing low.  
R
φ
V
remains essentially high.  
REF  
out  
If the frequency of f = f and both are in phase, then both  
V
R
Buffered Reference Oscillator Output (Pin 17)  
φ
V
and φ remain high except for a small minimum time  
R
Buffered output of on–chip reference oscillator or exter-  
nally provided reference–input signal.  
period when both pulse low in phase.  
MC  
POWER SUPPLY  
Dual–Modulus Prescale Control Output (Pin 8)  
V
DD  
Signal generated by the on–chip control logic circuitry for  
controlling an external dual–modulus prescaler. The MC  
level will be low at the beginning of a count cycle and will  
remain low until the ÷ A counter has counted down from its  
programmed value. At this time, MC goes high and remains  
high until the ÷ N counter has counted the rest of the way  
down from its programmed value (N – A additional counts  
since both ÷ N and ÷ A are counting down during the first por-  
tion of the cycle). MC is then set back low, the counters  
Positive Power Supply (Pin 5)  
The positive power supply potential. This pin may range  
from + 3 to + 9 V with respect to V  
.
SS  
V
SS  
Negative Power Supply (Pin 7)  
The most negative supply potential. This pin is usually  
ground.  
MOTOROLA  
MC145151–2 through MC145158–2  
15  
TYPICAL APPLICATIONS  
+ 12 V  
LOCK DETECT SIGNAL  
3.2 MHz  
NOTES 1  
AND 2  
FM B +  
+ 12 V  
AM B +  
+ V  
OSC  
OSC  
RA2 RA1 RA0 LD SW1 SW2  
in  
out  
OPTIONAL  
LOOP  
ERROR SIGNAL  
PD  
out  
V
V
DD  
+
φ
MC145156–2  
R
SS  
VCO  
REF  
φ
V
out  
1/2 MC1458  
NOTE 3  
f
CLK  
DATA  
ENB  
in  
MC  
KEY–  
BOARD  
CMOS MPU/MCU  
MC12019  
20/21 DUAL MODULUS PRESCALER  
÷
TO DISPLAY DRIVER (e.g., MC14489)  
NOTES:  
1. For AM: channel spacing = 5 kHz, ÷ R = ÷ 640 (code 100).  
2. For FM: channel spacing = 25 kHz, ÷ R = ÷ 128 (code 010).  
3. Theφ andφ outputsarefedtoanexternalcombiner/loopfilter. SeethePhase–LockedLoopLow–PassFilterDesignpage  
R
V
for additional information. The φ and φ outputs swing rail–to–rail. Therefore, the user should be careful not to exceed the  
R
V
common mode input range of the op amp used in the combiner/loop filter.  
Figure 1. AM/FM Radio Broadcast Synthesizer  
3.2 MHz (NOTE 3)  
VCO RANGE  
NAV = 01  
COM = 10  
NAV: 97.300 – 107.250 MHz  
COM–T: 118.000 – 135.975 MHz  
COM–R: 139.400 – 157.375 MHz  
LOCK DETECT SIGNAL  
+ V  
OSC  
OSC  
out  
RA2 RA1 RA0 LD SW1 SW2  
in  
PD  
out  
V
V
DD  
+
MC145156–2  
φ
R
SS  
VCO  
REF  
φ
V
out  
MC33171  
NOTE 5  
f
CLK  
DATA  
ENB  
in  
MC  
CMOS MPU/MCU  
R/T  
MC12016 (NOTES 2 AND 4)  
40/41 DUAL MODULUS PRESCALER  
÷
CHANNEL  
SELECTION  
TO DISPLAY DRIVER  
(e.g., MC14489)  
NOTES:  
1. For NAV: f = 50 kHz, ÷ R = 64 using 10.7 MHz lowside injection, N  
= 1946 – 2145.  
total  
R
For COM–T: f = 25 kHz, ÷ R = 128, N  
For COM–R: f = 25 kHz, ÷ R = 128, using 21.4 MHz highside injection, N  
= 4720 – 5439.  
R
total  
= 5576 – 6295.  
R
total  
2. A ÷ 32/33 dual modulus approach is provided by substituting an MC12015 for the MC12016. The devices are pin equivalent.  
3. A 6.4 MHz oscillator crystal can be used by selecting ÷ R = 128 (code 010) for NAV and ÷ R = 256 (code 011) for COM.  
4. MC12013 + MC10131 combination may also be used to form the ÷ 40/41 prescaler.  
5. The φ and φ outputs are fed to an external combiner/loop filter. See the Phase–Locked Loop — Low–Pass Filter Design  
R
V
page for additional information. The φ and φ outputs swing rail–to–rail. Therefore, the user should be careful not to exceed  
R
V
the common mode input range of the op amp used in the combiner/loop filter.  
Figure 2. Avionics Navigation or Communication Synthesizer  
MC145156–2 Data Sheet Continued on Page 23  
MC145151–2 through MC145158–2  
16  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
P SUFFIX  
PLASTIC DIP  
CASE 648  
Interfaces with Single–Modulus Prescalers  
16  
1
The MC145157–2 has a fully programmable 14–bit reference counter, as well  
as a fully programmable ÷ N counter. The counters are programmed serially  
through a common data input and latched into the appropriate counter latch,  
according to the last data bit (control bit) entered.  
The MC145157–2 is an improved–performance drop–in replacement for the  
MC145157–1. Power consumption has decreased and ESD and latch–up  
performance have improved.  
DW SUFFIX  
SOG PACKAGE  
CASE 751G  
16  
1
ORDERING INFORMATION  
Operating Temperature Range: – 40 to 85°C  
Low Power Consumption Through Use of CMOS Technology  
3.0 to 9.0 V Supply Range  
Fully Programmable Reference and ÷ N Counters  
÷ R Range = 3 to 16383  
MC145157P2  
Plastic DIP  
MC145157DW2 SOG Package  
PIN ASSIGNMENT  
÷ N Range = 3 to 16383  
f
V
and f Outputs  
R
OSC  
in  
1
2
16  
15  
φ
R
Lock Detect Signal  
Compatible with the Serial Peripheral Interface (SPI) on CMOS MCUs  
“Linearized” Digital Phase Detector  
Single–Ended (Three–State) or Double–Ended Phase Detector Outputs  
Chip Complexity: 6504 FETs or 1626 Equivalent Gates  
OSC  
φ
V
out  
f
3
4
14  
13  
REF  
V
out  
V
f
R
DD  
out  
PD  
5
6
12  
11  
S/R  
out  
V
ENB  
DATA  
CLK  
SS  
LD  
7
8
10  
9
f
in  
REV 1  
8/95  
Motorola, Inc. 1995  
MC145157–2 BLOCK DIAGRAM  
14–BIT SHIFT REGISTER  
14  
f
R
ENB  
REFERENCE COUNTER LATCH  
14  
LOCK  
DETECT  
LD  
PD  
OSC  
14–BIT  
÷
R COUNTER  
in  
out  
out  
PHASE  
DETECTOR  
A
OSC  
REF  
out  
PHASE  
DETECTOR  
B
φ
V
14–BIT  
÷
N COUNTER  
14  
f
in  
φ
R
÷
N COUNTER LATCH  
14  
f
V
1–BIT  
CONTROL  
S/R  
DATA  
CLK  
S/R  
out  
14–BIT SHIFT REGISTER  
if the control bit is at a logic low. A logic low on this pin allows  
the user to change the data in the shift registers without  
affecting the counters. ENB is normally low and is pulsed  
high to transfer data to the latches.  
PIN DESCRIPTIONS  
INPUT PINS  
f
in  
Frequency Input (Pin 8)  
OSC , OSC  
in  
out  
Reference Oscillator Input/Output (Pins 1, 2)  
Input frequency from VCO output. A rising edge signal on  
this input decrements the ÷ N counter. This input has an  
inverter biased in the linear region to allow use with ac  
coupled signals as low as 500 mV p–p. For larger amplitude  
signals (standard CMOS logic levels), dc coupling may be  
used.  
These pins form an on–chip reference oscillator when con-  
nected to terminals of an external parallel resonant crystal.  
Frequency setting capacitors of appropriate value must be  
connected from OSC to ground and OSC  
to ground.  
in  
out  
OSC may also serve as the input for an externally–gener-  
in  
ated reference signal. This signal is typically ac coupled to  
CLK, DATA  
OSC , but for larger amplitude signals (standard CMOS  
in  
Shift Clock, Serial Data Inputs (Pins 9, 10)  
logic levels) dc coupling may also be used. In the external  
reference mode, no connection is required to OSC  
.
Each low–to–high transition of the clock shifts one bit of  
data into the on–chip shift registers. The last data bit entered  
determines which counter storage latch is activated; a logic 1  
selects the reference counter latch and a logic 0 selects the  
÷ N counter latch. The entry format is as follows:  
out  
OUTPUT PINS  
PD  
out  
Single–Ended Phase Detector A Output (Pin 5)  
This single–ended (three–state) phase detector output  
produces a loop–error signal that is used with a loop filter to  
control a VCO.  
Frequency f > f or f Leading: Negative Pulses  
V
R
V
Frequency f < f or f Lagging: Positive Pulses  
V
R
V
FIRST DATA BIT INTO SHIFT REGISTER  
Frequency f = f and Phase Coincidence: High–Imped-  
V
R
ance State  
ENB  
Latch Enable Input (Pin 11)  
φ , φ  
R
V
Double–Ended Phase Detector B Outputs (Pins 16, 15)  
A logic high on this pin latches the data from the shift regis-  
ter into the reference divider or ÷ N latches depending on the  
control bit. The reference divider latches are activated if the  
control bit is at a logic high and the ÷ N latches are activated  
These outputs can be combined externally for a loop–error  
signal. A single–ended output is also available for this pur-  
pose (see PD  
).  
out  
MC145151–2 through MC145158–2  
18  
MOTOROLA  
If frequency f is greater than f or if the phase of f is  
REF  
out  
V
R
V
leading, then error information is provided by φ pulsing low.  
Buffered Reference Oscillator Output (Pin 14)  
V
φ
remains essentially high.  
R
This output can be used as a second local oscillator, refer-  
ence oscillator to another frequency synthesizer, or as the  
system clock to a microprocessor controller.  
If the frequency f is less than f or if the phase of f is  
V
R
V
lagging, then error information is provided by φ pulsing low.  
R
φ
remains essentially high.  
V
If the frequency of f = f and both are in phase, then both  
S/R  
out  
V
R
φ
and φ remain high except for a small minimum time  
Shift Register Output (Pin 12)  
V
R
period when both pulse low in phase.  
This output can be connected to an external shift register  
to provide band switching, control information, and counter  
programming code checking.  
f , f  
R
V
R Counter Output, N Counter Output (Pins 13, 3)  
Buffered, divided reference and f frequency outputs. The  
in  
R
counter outputs respectively, allowing the counters to be  
used independently, as well as monitoring the phase detector  
inputs.  
POWER SUPPLY  
f
and f outputs are connected internally to the ÷ R and ÷ N  
V
V
DD  
Positive Power Supply (Pin 4)  
The positive power supply potential. This pin may range  
from +3 to +9 V with respect to V  
.
SS  
LD  
V
Lock Detector Output (Pin 7)  
SS  
Negative Power Supply (Pin 6)  
This output is essentially at a high level when the loop is  
locked (f , f of same phase and frequency), and pulses low  
when loop is out of lock.  
The most negative supply potential. This pin is usually  
ground.  
R V  
MC145157–2 Data Sheet Continued on Page 23  
MOTOROLA  
MC145151–2 through MC145158–2  
19  
SEMICONDUCTOR TECHNICAL DATA  
P SUFFIX  
PLASTIC DIP  
CASE 648  
Interfaces with Dual–Modulus Prescalers  
16  
1
The MC145158–2 has a fully programmable 14–bit reference counter, as well  
as fully programmable ÷ N and ÷ A counters. The counters are programmed  
serially through a common data input and latched into the appropriate counter  
latch, according to the last data bit (control bit) entered.  
The MC145158–2 is an improved–performance drop–in replacement for the  
MC145158–1. Power consumption has decreased and ESD and latch–up  
performance have improved.  
DW SUFFIX  
SOG PACKAGE  
CASE 751G  
16  
1
ORDERING INFORMATION  
Operating Temperature Range: – 40 to 85°C  
Low Power Consumption Through Use of CMOS Technology  
3.0 to 9.0 V Supply Range  
Fully Programmable Reference and ÷ N Counters  
÷ R Range = 3 to 16383  
MC145158P2  
Plastic DIP  
MC145158DW2 SOG Package  
PIN ASSIGNMENT  
÷ N Range = 3 to 1023  
Dual Modulus Capability; ÷ A Range = 0 to 127  
OSC  
in  
1
2
16  
15  
φ
R
f
V
and f Outputs  
R
OSC  
φ
V
out  
Lock Detect Signal  
Compatible with the Serial Peripheral Interface (SPI) on CMOS MCUs  
“Linearized” Digital Phase Detector  
Single–Ended (Three–State) or Double–Ended Phase Detector Outputs  
Chip Complexity: 6504 FETs or 1626 Equivalent Gates  
f
3
4
14  
13  
REF  
out  
V
V
f
R
DD  
out  
PD  
5
6
12  
11  
MC  
V
ENB  
SS  
LD  
7
8
10  
9
DATA  
CLK  
f
in  
REV 1  
8/95  
Motorola, Inc. 1995  
MC145158–2 BLOCK DIAGRAM  
14–BIT SHIFT REGISTER  
14  
f
R
ENB  
REFERENCE COUNTER LATCH  
14  
LOCK  
DETECT  
LD  
PD  
OSC  
14–BIT  
÷
R COUNTER  
in  
out  
out  
PHASE  
DETECTOR  
A
OSC  
REF  
out  
CONTROL LOGIC  
7–BIT  
÷
A
10–BIT  
÷
N
PHASE  
DETECTOR  
B
φ
V
f
in  
COUNTER  
COUNTER  
φ
R
7
10  
÷
A COUNTER  
LATCH  
÷
N COUNTER  
LATCH  
f
V
7
10  
1–BIT  
CONTROL  
S/R  
DATA  
CLK  
MC  
7–BIT S/R  
10–BIT S/R  
PIN DESCRIPTIONS  
÷
A
÷
N
INPUT PINS  
f
in  
Frequency Input (Pin 8)  
Input frequency from VCO output. A rising edge signal on  
this input decrements the ÷ A and ÷ N counters. This input  
has an inverter biased in the linear region to allow use with  
ac coupled signals as low as 500 mV p–p. For larger ampli-  
tude signals (standard CMOS logic levels), dc coupling may  
be used.  
FIRST DATA BIT INTO SHIFT REGISTER  
ENB  
Latch Enable Input (Pin 11)  
A logic high on this pin latches the data from the shift regis-  
ter into the reference divider or ÷ N, ÷ A latches depending on  
the control bit. The reference divider latches are activated if  
the control bit is at a logic high and the ÷ N, ÷ A latches are  
activated if the control bit is at a logic low. A logic low on this  
pin allows the user to change the data in the shift registers  
without affecting the counters. ENB is normally low and is  
pulsed high to transfer data to the latches.  
CLK, DATA  
Shift Clock, Serial Data Inputs (Pins 9, 10)  
Each low–to–high transition of the CLK shifts one bit of  
data into the on–chip shift registers. The last data bit entered  
determines which counter storage latch is activated; a logic 1  
selects the reference counter latch and a logic 0 selects the  
÷ A, ÷ N counter latch. The data entry format is as follows:  
OSC , OSC  
in  
out  
Reference Oscillator Input/Output (Pins 1, 2)  
These pins form an on–chip reference oscillator when con-  
nected to terminals of an external parallel resonant crystal.  
Frequency setting capacitors of appropriate value must be  
÷
R
connected from OSC to ground and OSC  
to ground.  
in  
out  
OSC may also serve as the input for an externally–gener-  
in  
ated reference signal. This signal is typically ac coupled to  
OSC , but for larger amplitude signals (standard CMOS log-  
in  
ic levels) dc coupling may also be used. In the external refer-  
FIRST DATA BIT INTO SHIFT REGISTER  
ence mode, no connection is required to OSC  
.
out  
MOTOROLA  
MC145151–2 through MC145158–2  
21  
OUTPUT PINS  
PD  
dual–modulus prescaler divide values respectively for high  
and low modulus control levels, N the number programmed  
into the ÷ N counter, and A the number programmed into the  
÷ A counter. Note that when a prescaler is needed, the dual–  
modulus version offers a distinct advantage. The dual–  
modulus prescaler allows a higher reference frequency at  
the phase detector input, increasing system performance ca-  
pability, and simplifying the loop filter design.  
out  
Phase Detector A Output (Pin 5)  
This single–ended (three–state) phase detector output  
produces a loop–error signal that is used with a loop filter to  
control a VCO.  
Frequency f > f or f Leading: Negative Pulses  
V
R
R
R
V
V
Frequency f < f or f Lagging: Positive Pulses  
V
f , f  
R
V
Frequency f = f and Phase Coincidence: High–Imped-  
V
R Counter Output, N Counter Output (Pins 13, 3)  
ance State  
Buffered, divided reference and f frequency outputs. The  
in  
and f outputs are connected internally to the ÷ R and  
f
R
V
φ , φ  
R
V
÷ N counter outputs respectively, allowing the counters to be  
used independently, as well as monitoring the phase detector  
inputs.  
Phase Detector B Outputs (Pins 16, 15)  
Double–ended phase detector outputs. These outputs can  
be combined externally for a loop–error signal. A single–  
ended output is also available for this purpose (see PD  
).  
out  
If frequency f is greater than f or if the phase of f is  
LD  
V
R
V
Lock Detector Output (Pin 7)  
leading, then error information is provided by φ pulsing low.  
V
This output is essentially at a high level when the loop is  
locked (f , f of same phase and frequency), and pulses low  
when loop is out of lock.  
φ
remains essentially high.  
R
R V  
If the frequency f is less than f or if the phase of f is  
V
R
V
lagging, then error information is provided by φ pulsing low.  
R
φ
V
remains essentially high.  
REF  
out  
If the frequency of f = f and both are in phase, then both  
and φ remain high except for a small minimum time  
R
V
R
Buffered Reference Oscillator Output (Pin 14)  
φ
V
period when both pulse low in phase.  
This output can be used as a second local oscillator, refer-  
ence oscillator to another frequency synthesizer, or as the  
system clock to a microprocessor controller.  
MC  
Dual–Modulus Prescale Control Output (Pin 12)  
POWER SUPPLY  
This output generates a signal by the on–chip control logic  
circuitry for controlling an external dual–modulus prescaler.  
The MC level is low at the beginning of a count cycle and  
remains low until the ÷ A counter has counted down from its  
programmed value. At this time, MC goes high and remains  
high until the ÷ N counter has counted the rest of the way  
down from its programmed value (N – A additional counts  
since both ÷ N and ÷ A are counting down during the first por-  
tion of the cycle). MC is then set back low, the counters pre-  
set to their respective programmed values, and the above  
sequence repeated. This provides for a total programmable  
V
DD  
Positive Power Supply (Pin 4)  
The positive power supply potential. This pin may range  
from + 3 to + 9 V with respect to V  
.
SS  
V
SS  
Negative Power Supply (Pin 6)  
The most negative supply potential. This pin is usually  
ground.  
divide value (N ) = N P + A where P and P + 1 represent the  
T
MC145151–2 through MC145158–2  
22  
MOTOROLA  
MC14515X–2 FAMILY CHARACTERISTICS AND DESCRIPTIONS  
MAXIMUM RATINGS* (Voltages Referenced to V  
)
SS  
These devices contain protection circuitry to  
protect against damage due to high static  
voltages or electric fields. However, precau-  
tionsmustbetakentoavoidapplicationsofany  
voltage higher than maximum rated voltages  
to these high–impedance circuits. For proper  
Symbol  
Parameter  
DC Supply Voltage  
Value  
Unit  
V
V
DD  
– 0.5 to + 10.0  
V , V  
in out  
Input or Output Voltage (DC or Transient)  
except SW1, SW2  
– 0.5 to V  
DD  
+ 0.5  
V
operation, V and V  
to the range V  
SS  
except for SW1 and SW2.  
SW1 and SW2 can be tied through external  
resistors to voltages as high as 15 V, indepen-  
dent of the supply voltage.  
should be constrained  
(V or V ) V  
in out DD  
V
Output Voltage (DC or Transient),  
– 0.5 to + 15  
V
in  
out  
out  
SW1, SW2 (R  
pull–up  
= 4.7 k)  
I , I  
in out  
Input or Output Current (DC or Transient),  
per Pin  
± 10  
mA  
I
, I  
Supply Current, V  
DD  
or V  
SS  
Pins  
± 30  
500  
mA  
mW  
°C  
DD SS  
Unused inputs must always be tied to an  
P
Power Dissipation, per Package†  
Storage Temperature  
D
appropriatelogicvoltagelevel(e.g.,eitherV  
SS  
orV ),exceptforinputswithpull–updevices.  
DD  
T
stg  
– 65 to + 150  
260  
Unused outputs must be left open.  
T
Lead Temperature, 1 mm from Case for  
10 seconds  
°C  
L
* Maximum Ratings are those values beyond which damage to the device may occur.  
Functional operation should be restricted to the limits in the Electrical Characteristics  
tables or Pin Descriptions section.  
†Power Dissipation Temperature Derating:  
Plastic DIP: – 12 mW/°C from 65 to 85°C  
SOG Package: – 7 mW/°C from 65 to 85°C  
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V  
)
SS  
– 40°C  
25°C  
Max  
85°C  
Max  
V
DD  
V
Symbol  
Parameter  
Test Condition  
Unit  
Min  
Max  
Min  
Min  
V
Power Supply Voltage  
Range  
3
9
3
9
3
9
V
DD  
ss  
I
Dynamic Supply Current  
f
= OSC = 10 MHz,  
in  
3
5
9
3.5  
10  
30  
3
7.5  
24  
3
7.5  
24  
mA  
in  
1 V p–p ac coupled sine  
wave  
R = 128, A = 32, N = 128  
I
Quiescent Supply Current  
(not including pull–up  
current component)  
V
= V  
DD  
= 0 µA  
or V  
SS  
3
5
9
800  
1200  
1600  
800  
1200  
1600  
1600  
2400  
3200  
µA  
SS  
in  
I
out  
V
Input Voltage — f , OSC  
in  
Input ac coupled sine wave  
500  
500  
500  
mV p–p  
V
in  
in  
V
IL  
Low–Level Input Voltage  
— f , OSC  
in in  
V
V
out  
V
2.1 V  
3.5 V  
6.3 V square wave  
Input dc  
coupled  
3
5
9
0
0
0
0
0
0
0
0
0
out  
out  
V
High–Level Input Voltage  
V
0.9 V  
1.5 V  
2.7 V square wave  
Input dc  
coupled  
3
5
9
3.0  
5.0  
9.0  
3.0  
5.0  
9.0  
3.0  
5.0  
9.0  
V
V
V
IH  
out  
— f , OSC  
V
out  
in in  
V
out  
V
Low–Level Input Voltage  
3
5
9
0.9  
1.5  
2.7  
0.9  
1.5  
2.7  
0.9  
1.5  
2.7  
IL  
— except f , OSC  
in in  
V
IH  
High–Level Input Voltage  
3
5
9
2.1  
3.5  
6.3  
2.1  
3.5  
6.3  
2.1  
3.5  
6.3  
— except f , OSC  
in in  
I
Input Current (f , OSC )  
V
V
= V  
= V  
or V  
SS  
9
9
± 2  
± 50  
± 2  
± 25  
± 2  
± 22  
µA  
µA  
in  
in  
in  
in  
DD  
I
IL  
Input Leakage Current  
(Data, CLK, ENB —  
without pull–ups)  
– 0.3  
– 0.1  
– 1.0  
in  
SS  
I
IH  
Input Leakage Current (all  
V
in  
= V  
9
0.3  
0.1  
1.0  
µA  
DD  
inputs except f , OSC )  
in in  
(continued)  
MOTOROLA  
MC145151–2 through MC145158–2  
23  
DC ELECTRICAL CHARACTERISTICS (continued)  
– 40°C  
25°C  
85°C  
V
DD  
V
Symbol  
Parameter  
Test Condition  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
I
IL  
Pull–up Current (all inputs  
with pull–ups)  
V
in  
= V  
9
– 20  
– 400  
– 20  
– 200  
– 20  
– 170  
µA  
SS  
C
Input Capacitance  
Low–Level Output  
Voltage — OSC  
out  
10  
10  
10  
pF  
V
in  
V
OL  
I
V
0 µA  
= V  
DD  
3
5
9
0.9  
1.5  
2.7  
0.9  
1.5  
2.7  
0.9  
1.5  
2.7  
out  
in  
V
OH  
High–Level Output  
Voltage — OSC  
I
V
0 µA  
= V  
SS  
3
5
9
2.1  
3.5  
6.3  
2.1  
3.5  
6.3  
2.1  
3.5  
6.3  
V
out  
in  
out  
V
Low–Level Output  
Voltage — Other Outputs  
I
0 µA  
0 µA  
3
5
9
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
V
OL  
out  
V
OH  
High–Level Output  
Voltage — Other Outputs  
I
3
5
9
2.95  
4.95  
8.95  
2.95  
4.95  
8.95  
2.95  
4.95  
8.95  
V
out  
V
Drain–to–Source  
Breakdown Voltage —  
SW1, SW2  
R
= 4.7 kΩ  
pull–up  
15  
15  
15  
V
(BR)DSS  
I
Low–Level Sinking  
Current — MC  
V
= 0.3 V  
= 0.4 V  
= 0.5 V  
3
5
9
1.30  
1.90  
3.80  
1.10  
1.70  
3.30  
0.66  
1.08  
2.10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
OL  
out  
V
out  
V
out  
I
High–Level Sourcing  
Current — MC  
V
= 2.7 V  
= 4.6 V  
= 8.5 V  
3
5
9
– 0.60  
– 0.90  
– 1.50  
– 0.50  
– 0.75  
– 1.25  
– 0.30  
– 0.50  
– 0.80  
OH  
out  
V
V
out  
out  
I
Low–Level Sinking  
Current — LD  
V
= 0.3 V  
= 0.4 V  
= 0.5 V  
3
5
9
0.25  
0.64  
1.30  
0.20  
0.51  
1.00  
0.15  
0.36  
0.70  
OL  
out  
V
V
out  
out  
I
High–Level Sourcing  
Current — LD  
V
= 2.7 V  
= 4.6 V  
= 8.5 V  
3
5
9
– 0.25  
– 0.64  
– 1.30  
– 0.20  
– 0.51  
– 1.00  
– 0.15  
– 0.36  
– 0.70  
OH  
out  
V
V
out  
out  
I
Low–Level Sinking  
Current — SW1, SW2  
V
= 0.3 V  
= 0.4 V  
= 0.5 V  
3
5
9
0.80  
1.50  
3.50  
0.48  
0.90  
2.10  
0.24  
0.45  
1.05  
OL  
OL  
OH  
out  
V
out  
V
out  
I
Low–Level Sinking  
Current — Other Outputs  
V
= 0.3 V  
= 0.4 V  
= 0.5 V  
3
5
9
0.44  
0.64  
1.30  
0.35  
0.51  
1.00  
0.22  
0.36  
0.70  
out  
V
out  
V
out  
I
High–Level Sourcing  
Current — Other Outputs  
V
= 2.7 V  
= 4.6 V  
= 8.5 V  
3
5
9
– 0.44  
– 0.64  
– 1.30  
– 0.35  
– 0.51  
– 1.00  
– 0.22  
– 0.36  
– 0.70  
out  
V
out  
V
out  
I
I
Output Leakage Current —  
PD  
out  
V
= V  
or V  
SS  
9
± 0.3  
± 0.3  
10  
± 0.1  
± 0.1  
10  
± 1.0  
± 3.0  
10  
µA  
µA  
pF  
OZ  
out DD  
Output in Off State  
Output Leakage Current —  
SW1, SW2  
V
out  
= V or V  
9
OZ  
DD SS  
Output in Off State  
C
Output Capacitance —  
PD  
out  
PD — Three–State  
out  
out  
MC145151–2 through MC145158–2  
24  
MOTOROLA  
AC ELECTRICAL CHARACTERISTICS (C = 50 pF, Input t = t = 10 ns)  
L
r
f
V
DD  
V
Guaranteed Limit  
Guaranteed Limit  
25°C  
– 40 to 85°C  
Symbol  
, t  
Parameter  
Unit  
t
Maximum Propagation Delay, f to MC  
in  
3
5
9
110  
60  
35  
120  
70  
40  
ns  
PLH PHL  
(Figures 1 and 4)  
t
Maximum Propagation Delay, ENB to SW1, SW2  
(Figures 1 and 5)  
3
5
9
160  
80  
50  
180  
95  
60  
ns  
ns  
ns  
ns  
ns  
ns  
PHL  
t
w
Output Pulse Width, φ , φ , and LD with f in Phase with f  
V
3
5
9
25 to 200  
20 to 100  
10 to 70  
25 to 260  
20 to 125  
10 to 80  
R
V
R
(Figures 2 and 4)  
t
t
Maximum Output Transition Time, MC  
(Figures 3 and 4)  
3
5
9
115  
60  
40  
115  
75  
60  
TLH  
Maximum Output Transition Time, MC  
(Figures 3 and 4)  
3
5
9
60  
34  
30  
70  
45  
38  
THL  
t
, t  
TLH THL  
Maximum Output Transition Time, LD  
(Figures 3 and 4)  
3
5
9
180  
90  
70  
200  
120  
90  
t
, t  
TLH THL  
Maximum Output Transition Time, Other Outputs  
(Figures 3 and 4)  
3
5
9
160  
80  
60  
175  
100  
65  
SWITCHING WAVEFORMS  
V
DD  
INPUT  
50%  
— V  
SS  
t
w
t
t
PHL  
PLH  
50%  
φ , φ , LD*  
R V  
OUTPUT  
50%  
* f in phase with f .  
R
V
Figure 1.  
Figure 2.  
t
t
THL  
TLH  
ANY  
OUTPUT  
90%  
10%  
Figure 3.  
V
DD  
TEST POINT  
15 k  
TEST POINT  
OUTPUT  
OUTPUT  
DEVICE  
UNDER  
TEST  
DEVICE  
UNDER  
TEST  
C *  
C *  
L
L
* Includes all probe and fixture capacitance.  
* Includes all probe and fixture capacitance.  
Figure 4. Test Circuit  
Figure 5. Test Circuit  
MOTOROLA  
MC145151–2 through MC145158–2  
25  
TIMING REQUIREMENTS (Input t = t = 10 ns unless otherwise indicated)  
r
f
V
DD  
V
Guaranteed Limit  
Guaranteed Limit  
25°C  
– 40 to 85°C  
Symbol  
Parameter  
Unit  
f
Serial Data Clock Frequency, Assuming 25% Duty Cycle  
3
5
9
dc to 5.0  
dc to 7.1  
dc to 10  
dc to 3.5  
dc to 7.1  
dc to 10  
MHz  
clk  
NOTE: Refer to CLK t  
(Figure 6)  
below  
w(H)  
t
Minimum Setup Time, Data to CLK  
(Figure 7)  
3
5
9
30  
20  
18  
30  
20  
18  
ns  
ns  
ns  
ns  
ns  
µs  
su  
t
Minimum Hold Time, CLK to Data  
(Figure 7)  
3
5
9
40  
20  
15  
40  
20  
15  
h
t
su  
Minimum Setup Time, CLK to ENB  
(Figure 7)  
3
5
9
70  
32  
25  
70  
32  
25  
t
Minimum Recovery Time, ENB to CLK  
(Figure 7)  
3
5
9
5
10  
20  
5
10  
20  
rec  
t
Minimum Pulse Width, CLK and ENB  
(Figure 6)  
3
5
9
50  
35  
25  
70  
35  
25  
w(H)  
t , t  
r f  
Maximum Input Rise and Fall Times — Any Input  
(Figure 8)  
3
5
9
5
4
2
5
4
2
SWITCHING WAVEFORMS  
— V  
DD  
t
DATA  
w(H)  
50%  
— V  
DD  
V
SS  
CLK,  
ENB  
t
su  
50%  
t
h
V
*
SS  
1
— V  
V
DD  
4 f  
clk  
LAST  
CLK  
FIRST  
CLK  
CLK  
ENB  
50%  
SS  
*Assumes 25% Duty Cycle.  
t
t
su  
rec  
— V  
V
DD  
Figure 6.  
50%  
SS  
PREVIOUS  
DATA  
LATCHED  
t
t
f
t
ANY  
OUTPUT  
— V  
DD  
90%  
10%  
Figure 7.  
V
SS  
Figure 8.  
MC145151–2 through MC145158–2  
26  
MOTOROLA  
FREQUENCY CHARACTERISTICS (Voltages References to V , C = 50 pF, Input t = t =10 ns unless otherwise indicated)  
SS  
L
r
f
– 40°C  
25°C  
Max  
85°C  
Max  
V
DD  
V
Symbol  
Parameter  
Input Frequency  
(f , OSC )  
in in  
Test Condition  
Min  
Max  
Min  
Min  
Unit  
f
i
R 8, A 0, N 8  
= 500 mV p–p  
ac coupled sine wave  
3
5
9
6
15  
15  
6
15  
15  
6
15  
15  
MHz  
V
in  
R 8, A 0, N 8  
3
5
9
12  
22  
25  
12  
20  
22  
7
20  
22  
MHz  
MHz  
V
= 1 V p–p ac coupled  
in  
sine wave  
R 8, A 0, N 8  
3
5
9
13  
25  
25  
12  
22  
25  
8
22  
25  
V
= V  
DD  
to V  
SS  
in  
dc coupled square wave  
NOTE: Usually, the PLL’s propagation delay from f to MC plus the setup time of the prescaler determines the upper frequency limit of the system.  
in  
The upper frequency limit is found with the following formula: f = P/(t + t ) where f is the upper frequency in Hz, P is the lower of the dual  
P
set  
modulus prescaler ratios, t is the f to MC propagation delay in seconds, and t  
in  
is the prescaler setup time in seconds.  
P
set  
For example, with a 5 V supply, the f to MC delay is 70 ns. If the MC12028A prescaler is used, the setup time is 16 ns. Thus, if the 64/65  
ratio is utilized, the upper frequency limit is f = P/(t + t ) = 64/(70 + 16) = 744 MHz.  
in  
P
set  
f
V
R
H
REFERENCE  
OSC  
÷
R
V
V
L
f
H
V
FEEDBACK  
(f  
÷
N)  
V
V
in  
L
H
*
HIGH IMPEDANCE  
PD  
out  
V
V
L
H
φ
R
V
V
L
H
φ
V
V
V
L
H
LD  
V
L
V
H
V
L
= High Voltage Level.  
= Low Voltage Level.  
* At this point, when both f and f are in phase, the output is forced to near mid–supply.  
R
V
NOTE: The PD  
generates error pulses during out–of–lock conditions. When locked in phase and frequency the output is high  
and the voltage at this pin is determined by the low–pass filter capacitor.  
out  
Figure 9. Phase Detector/Lock Detector Output Waveforms  
MOTOROLA  
MC145151–2 through MC145158–2  
27  
DESIGN CONSIDERATIONS  
PHASE–LOCKED LOOP — LOW–PASS FILTER DESIGN  
K K  
VCO  
φ
A)  
PD  
out  
VCO  
ω
=
=
n
NR C  
R
1
1
φ
R
C
Nω  
n
ζ
φ
2K K  
VCO  
V
φ
1
F(s) =  
R sC + 1  
1
PD  
B)  
VCO  
out  
K K  
VCO  
φ
R
ω
ζ
=
1
n
NC(R + R )  
1
2
φ
R
R
2
N
φ
=
0.5  
ω
R C +  
2
C
V
n
K K  
VCO  
φ
R sC + 1  
2
F(s) =  
(R + R )sC + 1  
1
2
R
2
K K  
PD  
C)  
φ
VCO  
out  
ω
ζ
=
n
NCR  
C
1
R
R
1
_
+
φ
R
ω
R C  
n 2  
A
VCO  
φ
V
=
2
1
ASSUMING GAIN A IS VERY LARGE, THEN:  
R sC + 1  
R
2
2
C
F(s) =  
R sC  
1
NOTE: Sometimes R is split into two series resistors, each R ÷ 2. A capacitor C is then placed from the midpoint to ground to further  
1
1
C
filter φ and φ . The value of C should be such that the corner frequency of this network does not significantly affect ω .  
V
R
R
V
C
n
The φ and φ outputs swing rail–to–rail. Therefore, the user should be careful not to exceed the common mode input range of the  
op amp used in the combiner/loop filter.  
DEFINITIONS:  
N = Total Division Ratio in feedback loop  
K
φ
K
φ
(Phase Detector Gain) = V /4π for PD  
DD out  
(Phase Detector Gain) = V /2π for φ and φ  
DD  
V
R
2π∆f  
V  
VCO  
VCO  
K
VCO  
(VCO Gain) =  
2πfr  
10  
for a typical design w (Natural Frequency) ≈  
(at phase detector input).  
n
Damping Factor: ζ  
1
RECOMMENDED READING:  
Gardner, Floyd M., Phaselock Techniques (second edition). New York, Wiley–Interscience, 1979.  
Manassewitsch, Vadim, Frequency Synthesizers: Theory and Design (second edition). New York, Wiley–Interscience, 1980.  
Blanchard, Alain, Phase–Locked Loops: Application to Coherent Receiver Design. New York, Wiley–Interscience, 1976.  
Egan, William F., Frequency Synthesis by Phase Lock. New York, Wiley–Interscience, 1981.  
Rohde, Ulrich L., Digital PLL Frequency Synthesizers Theory and Design. Englewood Cliffs, NJ, Prentice–Hall, 1983.  
Berlin, Howard M., Design of Phase–Locked Loop Circuits, with Experiments. Indianapolis, Howard W. Sams and Co., 1978.  
Kinley, Harold, The PLL Synthesizer Cookbook. Blue Ridge Summit, PA, Tab Books, 1980.  
AN535, Phase–Locked Loop Design Fundamentals, Motorola Semiconductor Products, Inc., 1970.  
AR254, Phase–Locked Loop Design Articles, Motorola Semiconductor Products, Inc., Reprinted with permission from Electronic Design,  
1987.  
MC145151–2 through MC145158–2  
28  
MOTOROLA  
CRYSTAL OSCILLATOR CONSIDERATIONS  
C
values. The shunt load capacitance, C , presented  
L L  
across the crystal can be estimated to be:  
The following options may be considered to provide a ref-  
erence frequency to Motorola’s CMOS frequency synthe-  
sizers.  
C C  
C1 C2  
in out  
C =  
L
+ C + C +  
a o  
C
+ C  
C1 + C2  
in  
out  
where  
Use of a Hybrid Crystal Oscillator  
C
= 5 pF (see Figure 11)  
= 6 pF (see Figure 11)  
C = 1 pF (see Figure 11)  
in  
out  
a
O
C
Commercially available temperature–compensated crystal  
oscillators (TCXOs) or crystal–controlled data clock oscilla-  
tors provide very stable reference frequencies. An oscillator  
capable of sinking and sourcing 50 µA at CMOS logic levels  
C
= the crystal’s holder capacitance  
(see Figure 12)  
C1 and C2 = external capacitors (see Figure 10)  
may be direct or dc coupled to OSC . In general, the highest  
frequency capability is obtained utilizing a direct–coupled  
in  
C
a
square wave having a rail–to–rail (V  
swing. If the oscillator does not have CMOS logic levels on  
the outputs, capacitive or ac coupling to OSC may be used.  
to V ) voltage  
DD  
SS  
in  
C
C
out  
in  
OSC , an unbuffered output, should be left floating.  
out  
For additional information about TCXOs and data clock  
oscillators, please consult the latest version of the eem Elec-  
tronic Engineers Master Catalog, the Gold Book, or similar  
publications.  
Figure 11. Parasitic Capacitances of the Amplifier  
R
L
C
S
S
S
Design an Off–Chip Reference  
1
2
1
2
The user may design an off–chip crystal oscillator using  
ICs specifically developed for crystal oscillator applications,  
such as the MC12061 MECL device. The reference signal  
C
O
from the MECL device is ac coupled to OSC . For large am-  
plitude signals (standard CMOS logic levels), dc coupling is  
in  
R
X
e
e
2
1
used. OSC , an unbuffered output, should be left floating.  
out  
In general, the highest frequency capability is obtained with a  
direct–coupled square wave having rail–to–rail voltage  
swing.  
NOTE: Values are supplied by crystal manufacturer  
(parallel resonant crystal).  
Figure 12. Equivalent Crystal Networks  
Use of the On–Chip Oscillator Circuitry  
The on–chip amplifier (a digital inverter) along with an ap-  
propriate crystal may be used to provide a reference source  
frequency. A fundamental mode crystal, parallel resonant at  
the desired operating frequency, should be connected as  
shown in Figure 10.  
The oscillator can be “trimmed” on–frequency by making a  
portion or all of C1 variable. The crystal and associated com-  
ponents must be located as close as possible to the OSC  
in  
and OSC  
out  
pins to minimize distortion, stray capacitance,  
stray inductance, and startup stabilization time. In some  
cases, stray capacitance should be added to the value for C  
in  
and C  
.
out  
Power is dissipated in the effective series resistance of the  
FREQUENCY  
R
f
SYNTHESIZER  
crystal, R , in Figure 12. The drive level specified by the crys-  
e
tal manufacturer is the maximum stress that a crystal can  
withstand without damage or excessive shift in frequency. R1  
in Figure 10 limits the drive level. The use of R1 may not be  
necessary in some cases (i.e., R1 = 0 ).  
To verify that the maximum dc supply voltage does not  
overdrive the crystal, monitor the output frequency as a func-  
OSC  
C1  
OSC  
out  
in  
R1*  
C2  
tion of voltage at OSC . (Care should be taken to minimize  
out  
loading.) The frequency should increase very slightly as the  
dc supply voltage is increased. An overdriven crystal will de-  
crease in frequency or become unstable with an increase in  
supply voltage. The operating supply voltage must be re-  
duced or R1 must be increased in value if the overdriven  
condition exists. The user should note that the oscillator  
start–up time is proportional to the value of R1.  
* May be deleted in certain cases. See text.  
Figure 10. Pierce Crystal Oscillator Circuit  
For V  
DD  
= 5.0 V, the crystal should be specified for a load-  
ing capacitance, C , which does not exceed 32 pF for fre-  
L
quencies to approximately 8.0 MHz, 20 pF for frequencies in  
the area of 8.0 to 15 MHz, and 10 pF for higher frequencies.  
These are guidelines that provide a reasonable compromise  
between IC capacitance, drive capability, swamping varia-  
tions in stray and IC input/output capacitance, and realistic  
Through the process of supplying crystals for use with  
CMOS inverters, many crystal manufacturers have devel-  
oped expertise in CMOS oscillator design with crystals. Dis-  
cussions with such manufacturers can prove very helpful  
(see Table 1).  
MOTOROLA  
MC145151–2 through MC145158–2  
29  
Table 1. Partial List of Crystal Manufacturers  
Address  
Name  
Phone  
United States Crystal Corp.  
Crystek Crystal  
Statek Corp.  
3605 McCart Ave., Ft. Worth, TX 76110  
2351 Crystal Dr., Ft. Myers, FL 33907  
512 N. Main St., Orange, CA 92668  
(817) 921–3013  
(813) 936–2109  
(714) 639–7810  
NOTE: Motorolacannotrecommendonesupplieroveranotherandinnowaysuggeststhatthisisacomplete  
listing of crystal manufacturers.  
N is the number programmed into the ÷ N counter, A is the  
number programmed into the ÷ A counter, P and P + 1 are  
the two selectable divide ratios available in the dual–modu-  
RECOMMENDED READING  
Technical Note TN–24, Statek Corp.  
Technical Note TN–7, Statek Corp.  
E. Hafner, The Piezoelectric Crystal Unit – Definitions and  
Method of Measurement”, Proc. IEEE, Vol. 57, No. 2 Feb.,  
1969.  
D. Kemper, L. Rosine, “Quartz Crystals for Frequency  
Control”, Electro–Technology, June, 1969.  
P. J. Ottowitz, “A Guide to Crystal Selection”, Electronic  
Design, May, 1966.  
lus prescalers. To have a range of N values in sequence,  
T
the ÷ A counter is programmed from zero through P – 1 for a  
particular value N in the ÷ N counter. N is then incremented to  
N + 1 and the ÷ A is sequenced from 0 through P – 1 again.  
There are minimum and maximum values that can be  
achieved for N . These values are a function of P and the  
T
size of the ÷ N and ÷ A counters.  
The constraint N A always applies. If A  
= P – 1, then  
max  
= (P – 1) P + A or (P – 1) P since A  
N
P – 1. Then N  
min  
Tmin  
DUAL–MODULUS PRESCALING  
OVERVIEW  
is free to assume the value of 0.  
N
= N  
P+ A  
max  
Tmax  
max  
The technique of dual–modulus prescaling is well estab-  
lished as a method of achieving high performance frequency  
synthesizer operation at high frequencies. Basically, the  
approach allows relatively low–frequency programmable  
counters to be used as high–frequency programmable  
counters with speed capability of several hundred MHz. This  
is possible without the sacrifice in system resolution and per-  
formance that results if a fixed (single–modulus) divider is  
used for the prescaler.  
In dual–modulus prescaling, the lower speed counters  
must be uniquely configured. Special control logic is neces-  
sary to select the divide value P or P + 1 in the prescaler for  
the required amount of time (see modulus control definition).  
Motorola’s dual–modulus frequency synthesizers contain  
this feature and can be used with a variety of dual–modulus  
prescalers to allow speed, complexity and cost to be tailored  
to the system requirements. Prescalers having P, P + 1 di-  
vide values in the range of ÷ 3/÷ 4 to ÷ 128/÷ 129 can be con-  
trolled by most Motorola frequency synthesizers.  
To maximize system frequency capability, the dual–modu-  
lus prescaler output must go from low to high after each  
group of P or P + 1 input cycles. The prescaler should divide  
by P when its modulus control line is high and by P + 1 when  
its MC is low.  
For the maximum frequency into the prescaler (f  
VCOmax  
the value used for P must be large enough such that:  
),  
1. f  
divided by P may not exceed the frequency  
VCOmax  
capability of f (input to the ÷ N and ÷ A counters).  
in  
2. The period of f  
divided by P must be greater than  
VCO  
the sum of the times:  
a. Propagation delay through the dual–modulus pre-  
scaler.  
b. Prescaler setup or release time relative to its MC  
signal.  
c. Propagation time from f to the MC output for the  
in  
frequency synthesizer device.  
Several dual–modulus prescaler approaches suitable for  
use with the MC145152–2, MC145156–2, or MC145158–2  
are:  
A sometimes useful simplification in the programming  
code can be achieved by choosing the values for P of 8, 16,  
32, or 64. For these cases, the desired value of N results  
T
when N in binary is used as the program code to the ÷ N and  
T
MC12009  
MC12011  
MC12013  
MC12015  
MC12016  
MC12017  
MC12018  
MC12022A  
MC12032A  
÷ 5/÷ 6  
÷ 8/÷ 9  
440 MHz  
500 MHz  
500 MHz  
225 MHz  
225 MHz  
225 MHz  
520 MHz  
1.1 GHz  
2.0 GHz  
÷ A counters treated in the following manner:  
a
1. Assume the ÷ A counter contains “a” bits where 2 P.  
÷ 10/÷ 11  
÷ 32/÷ 33  
2. Always program all higher order ÷ A counter bits above  
“a” to 0.  
÷ 40/÷ 41  
÷ 64/÷ 65  
3. Assume the ÷ N counter and the ÷ A counter (with all the  
higher order bits above “a” ignored) combined into a  
single binary counter of n + a bits in length (n = number  
of divider stages in the ÷ N counter). The MSB of this “hy-  
potheticalcounter is to correspond to the MSB of ÷ Nand  
the LSB is to correspond to the LSB of ÷ A. The system  
divide value, N , now results when the value of N in  
÷ 128/÷ 129  
÷ 64/65 or ÷ 128/129  
÷ 64/65 or ÷ 128/129  
DESIGN GUIDELINES  
The system total divide value, N  
the application:  
(N ) will be dictated by  
T
total  
T
T
binary is used to program the “new” n + a bit counter.  
frequency into the prescaler  
By using the two devices, several dual–modulus values  
are achievable (shown in Figure 13).  
N
=
= N P + A  
T
frequency into the phase detector  
MC145151–2 through MC145158–2  
30  
MOTOROLA  
MC  
DEVICE A  
DEVICE  
DEVICE B  
B
DEVICE A  
MC10131  
MC12009  
MC12011  
MC12013  
÷
÷
20/  
÷
÷
21  
51  
÷
÷
32/  
÷
÷
33  
81  
÷
40/  
100/  
80/  
÷
÷
÷
41  
MC10138  
50/  
80/  
÷
101  
81  
÷
÷
÷
40/  
÷
41  
81  
÷
64/÷  
65  
MC10154  
OR  
80/  
OR  
128/  
÷
÷
÷
129  
NOTE: MC12009, MC12011, and MC12013 are pin equivalent.  
MC12015, MC12016, and MC12017 are pin equivalent.  
Figure 13. Dual–Modulus Values  
MOTOROLA  
MC145151–2 through MC145158–2  
31  
PACKAGE DIMENSIONS  
P SUFFIX  
PLASTIC DIP  
CASE 648–08  
(MC145157–2, MC145158–D)  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
16  
1
9
8
B
S
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
MIN  
MAX  
0.770  
0.270  
0.175  
0.021  
0.70  
MIN  
18.80  
6.35  
3.69  
0.39  
1.02  
MAX  
19.55  
6.85  
4.44  
0.53  
1.77  
F
0.740  
0.250  
0.145  
0.015  
0.040  
C
L
SEATING  
PLANE  
–T–  
G
H
J
K
L
0.100 BSC  
0.050 BSC  
2.54 BSC  
1.27 BSC  
K
M
0.008  
0.015  
0.130  
0.305  
10  
0.21  
0.38  
3.30  
7.74  
10  
H
J
0.110  
0.295  
0
2.80  
7.50  
0
G
D 16 PL  
M
S
0.020  
0.040  
0.51  
1.01  
M
M
0.25 (0.010)  
T A  
P SUFFIX  
PLASTIC DIP  
CASE 707–02  
(MC145155–2)  
NOTES:  
1. POSITIONAL TOLERANCE OF LEADS (D),  
SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM  
MATERIAL CONDITION, IN RELATION TO  
SEATING PLANE AND EACH OTHER.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
18  
10  
9
B
3. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
1
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
MIN  
22.22  
6.10  
3.56  
0.36  
1.27  
MAX  
23.24  
6.60  
4.57  
0.56  
1.78  
MIN  
MAX  
A
0.875  
0.240  
0.140  
0.014  
0.050  
0.915  
0.260  
0.180  
0.022  
0.070  
L
C
G
H
J
K
L
2.54 BSC  
0.100 BSC  
1.02  
0.20  
2.92  
1.52  
0.30  
3.43  
0.040  
0.008  
0.115  
0.060  
0.012  
0.135  
K
N
J
F
D
M
SEATING  
PLANE  
7.62 BSC  
15  
1.02  
0.300 BSC  
15  
0.020 0.040  
H
G
M
N
0°  
°
0°  
°
0.51  
MC145151–2 through MC145158–2  
32  
MOTOROLA  
P SUFFIX  
PLASTIC DIP  
CASE 710–02  
(MC145151–2, MC145152–2)  
NOTES:  
1. POSITIONAL TOLERANCE OF LEADS (D),  
SHALL BE WITHIN 0.25mm (0.010) AT  
MAXIMUM MATERIAL CONDITION, IN  
RELATION TO SEATING PLANE AND  
EACH OTHER.  
2. DIMENSION L TO CENTER OF LEADS  
WHEN FORMED PARALLEL.  
3. DIMENSION B DOES NOT INCLUDE  
MOLD FLASH.  
28  
1
15  
14  
B
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
MIN  
36.45  
13.72  
3.94  
0.36  
1.02  
MAX  
37.21  
14.22  
5.08  
0.56  
1.52  
MIN  
MAX  
1.435  
0.540  
0.155  
0.014  
0.040  
1.465  
0.560  
0.200  
0.022  
0.060  
L
A
C
N
G
H
J
K
L
2.54 BSC  
0.100 BSC  
1.65  
0.20  
2.92  
2.16  
0.38  
3.43  
0.065  
0.008  
0.115  
0.085  
0.015  
0.135  
J
H
G
M
K
SEATING  
PLANE  
15.24 BSC  
15  
1.02  
0.600 BSC  
15  
0.020 0.040  
F
D
0°  
°
0°  
°
M
N
0.51  
P SUFFIX  
PLASTIC DIP  
CASE 738–03  
(MC145156–2)  
-A-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
20  
11  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
B
1
10  
4. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
C
L
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
E
F
G
J
K
L
M
N
MIN  
MAX  
1.070  
0.260  
0.180  
0.022  
MIN  
25.66  
6.10  
3.81  
0.39  
1.27 BSC  
1.27  
2.54 BSC  
0.21  
MAX  
27.17  
6.60  
4.57  
0.55  
1.010  
0.240  
0.150  
0.015  
0.050 BSC  
0.050  
0.100 BSC  
0.008  
0.110  
-T-  
SEATING  
PLANE  
K
M
0.070  
1.77  
E
N
0.015  
0.140  
0.38  
3.55  
G
F
J 20 PL  
2.80  
0.300 BSC  
15  
0.040  
7.62 BSC  
15  
0.51 1.01  
D 20 PL  
0.25 (0.010)  
M
M
0.25 (0.010)  
T
B
0°  
°
0°  
°
0.020  
M
M
T
A
MOTOROLA  
MC145151–2 through MC145158–2  
33  
DW SUFFIX  
SOG PACKAGE  
CASE 751D–04  
(MC145155–2, MC145156–2)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
–A–  
ANSI Y14.5M, 1982.  
20  
11  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.150  
(0.006) PER SIDE.  
10X P  
–B–  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
M
M
0.010 (0.25)  
B
1
10  
MILLIMETERS  
INCHES  
20X D  
DIM  
A
B
C
D
MIN  
12.65  
7.40  
2.35  
0.35  
0.50  
MAX  
12.95  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.510  
0.299  
0.104  
0.019  
0.035  
J
0.499  
0.292  
0.093  
0.014  
0.020  
M
S
S
0.010 (0.25)  
T
A
B
F
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
R X 45  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
C
SEATING  
PLANE  
–T–  
M
18X G  
K
DW SUFFIX  
SOG PACKAGE  
CASE 751F–04  
(MC145151–2, MC145152–2)  
-A-  
NOTES:  
28  
1
15  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
14X P  
M
M
-B-  
0.010 (0.25)  
B
4. MAXIMUM MOLD PROTRUSION 0.15  
(0.006) PER SIDE.  
14  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
28X D  
M
M
S
S
0.010 (0.25)  
T
A
B
R X 45°  
MILLIMETERS  
INCHES  
C
DIM  
A
B
C
D
F
G
J
K
M
P
R
MIN  
17.80  
7.40  
2.35  
0.35  
0.41  
1.27 BSC  
0.23  
0.13  
MAX  
18.05  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.711  
0.299  
0.104  
0.019  
0.035  
-T-  
0.701  
0.292  
0.093  
0.014  
0.016  
0.050 BSC  
0.009  
0.005  
-T-  
SEATING  
PLANE  
26X G  
K
F
0.32  
0.29  
0.013  
0.011  
8°  
0.415  
0.029  
J
0°  
8°  
0°  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
MC145151–2 through MC145158–2  
34  
MOTOROLA  
DW SUFFIX  
SOG PACKAGE  
CASE 751G–02  
(MC145157–2, MC145158–2)  
–A–  
16  
9
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
–B–  
8X P  
0.010 (0.25)  
M
M
B
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
1
8
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN  
EXCESS OF D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
J
16X D  
M
S
S
0.010 (0.25)  
T
A
B
F
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
10.15  
7.40  
2.35  
0.35  
0.50  
MAX  
10.45  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.411  
0.299  
0.104  
0.019  
0.035  
0.400  
0.292  
0.093  
0.014  
0.020  
R X 45  
C
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
–T–  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
M
SEATING  
14X G  
K
PLANE  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
MOTOROLA  
MC145151–2 through MC145158–2  
35  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MC145151–2/D  

相关型号:

MC145151-2

Parallel-Input PLL Frequency Synthesizer
MOTOROLA

MC145151-2

PLL Frequency Synthesizers (CMOS)
FREESCALE

MC145151DW2

Parallel-Input PLL Frequency Synthesizer
MOTOROLA

MC145151DW2

Parallel-Input PLL Frequency Synthesizer Interfaces with Single-Modulus Prescalers
LANSDALE

MC145151DW2

PLL Frequency Synthesizers (CMOS)
FREESCALE

MC145151DW2R2

PLL FREQUENCY SYNTHESIZER, 22MHz, PDSO28, SOG-28
NXP

MC145151FN1

IC,FREQUENCY SYNTHESIZER,CMOS,LDCC,28PIN,PLASTIC
MOTOROLA

MC145151FN2

Parallel-Input PLL Frequency Synthesizer
MOTOROLA

MC145151FN2R2

PLL Frequency Synthesizer, CMOS, PQCC28, PLASTIC, LCC-28
MOTOROLA

MC145151L

IC,FREQUENCY SYNTHESIZER,CMOS,DIP,28PIN,CERAMIC
MOTOROLA

MC145151L1DS

PLL/Frequency Synthesis Circuit, CMOS, CDIP28
MOTOROLA

MC145151LDS

IC,FREQUENCY SYNTHESIZER,CMOS,DIP,28PIN,CERAMIC
MOTOROLA