MC14555 [MOTOROLA]

PCM Codec-Filter; PCM编码解码滤波器
MC14555
型号: MC14555
厂家: MOTOROLA    MOTOROLA
描述:

PCM Codec-Filter
PCM编码解码滤波器

PC
文件: 总20页 (文件大小:345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MC145554/D  
SEMICONDUCTOR TECHNICAL DATA  
The MC145554, MC145557, MC145564, and MC145567 are all per channel  
PCM Codec–Filters. These devices perform the voice digitization and  
reconstruction as well as the band limiting and smoothing required for PCM  
systems. They are designed to operate in both synchronous and asynchronous  
applications and contain an on–chip precision voltage reference. The  
MC145554 (Mu–Law) and MC145557 (A–Law) are general purpose devices  
that are offered in 16–pin packages. The MC145564 (Mu–Law) and MC145567  
(A–Law), offered in 20–pin packages, add the capability of analog loopback and  
push–pull power amplifiers with adjustable gain.  
L SUFFIX  
CERAMIC PACKAGE  
CASE 620  
These devices have an input operational amplifier whose output is the input  
to the encoder section. The encoder section immediately low–pass filters the  
analog signal with an active R–C filter to eliminate very–high–frequency noise  
from being modulated down to the pass band by the switched capacitor filter.  
From the active R–C filter, the analog signal is converted to a differential signal.  
From this point, all analog signal processing is done differentially. This allows  
processing of an analog signal that is twice the amplitude allowed by a  
single–ended design, which reduces the significance of noise to both the  
inverted and non–inverted signal paths. Another advantage of this differential  
design is that noise injected via the power supplies is a common–mode signal  
that is cancelled when the inverted and non–inverted signals are recombined.  
This dramatically improves the power supply rejection ratio.  
MC145554/57  
16  
1
P SUFFIX  
PLASTIC DIP  
CASE 648  
16  
MC145554/57  
1
DW SUFFIX  
SOG PACKAGE  
CASE 751G  
16  
1
MC145554/57  
After the differential converter, a differential switched capacitor filter band  
passes the analog signal from 200 Hz to 3400 Hz before the signal is digitized  
by the differential compressing A/D converter.  
The decoder accepts PCM data and expands it using a differential D/A  
converter. The output of the D/A is low–pass filtered at 3400 Hz and sinX/X  
compensated by a differential switched capacitor filter. The signal is then filtered  
by an active R–C filter to eliminate the out–of–band energy of the switched  
capacitor filter.  
L SUFFIX  
CERAMIC PACKAGE  
CASE 732  
20  
1
MC145564/67  
These PCM Codec–Filters accept both long–frame and short–frame industry  
standard clock formats. They also maintain compatibility with Motorola’s family  
of TSACs and MC3419/MC34120 SLIC products.  
The MC145554/57/64/67 family of PCM Codec–Filters utilizes CMOS due to  
its reliable low–power performance and proven capability for complex  
analog/digital VLSI functions.  
P SUFFIX  
PLASTIC DIP  
CASE 738  
20  
1
MC145564/67  
DW SUFFIX  
SOG PACKAGE  
CASE 751D  
MC145554/57 (16–Pin Package)  
20  
Fully Differential Analog Circuit Design for Lowest Noise  
Performance Specified for Extended Temperature Range of – 40 to + 85°C  
Transmit Band–Pass and Receive Low–Pass Filters On–Chip  
Active R–C Pre–Filtering and Post–Filtering  
Mu–Law Companding MC145554  
A–Law Companding MC145557  
1
MC145564/67  
On–Chip Precision Voltage Reference (2.5 V)  
Typical Power Dissipation of 40 mW, Power Down of 1.0 mW at ± 5 V  
MC145564/67 (20–Pin Package) — All of the Features of the MC145554/57 Plus:  
Mu–Law Companding MC145564  
A–Law Companding MC145567  
Push–Pull Power Drivers with External Gain Adjust  
Analog Loopback  
REV 1  
9/95 (Replaces ADI1517)  
Motorola, Inc. 1995  
PIN ASSIGNMENTS  
MC145554, MC145557  
MC145564, MC145567  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VF I +  
X
VPO+  
GNDA  
VPO –  
VPI  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
BB  
BB  
GNDA  
VF I –  
X
VF I +  
X
VF  
O
VF I –  
X
GS  
X
R
GS  
X
V
TS  
X
CC  
VF  
O
ANLB  
FS  
FS  
X
R
R
R
V
TS  
X
D
D
X
CC  
FS  
D
FS  
X
BCLK / CLKSEL  
R
BCLK  
R
R
X
MCLK / PDN  
R
D
X
MCLK  
X
BCLK /CLKSEL  
BCLK  
X
R
MCLK /PDN  
MCLK  
X
R
FUNCTIONAL BLOCK DIAGRAM  
MCLK  
PDN  
/
BCLK /  
R
CLKSEL  
R
GS  
ANLB*  
V
GNDA  
V
FS  
FS  
MCLK  
BCLK  
X
X
CC  
BB  
X
R
X
INTERNAL SEQUENCING  
AND CONTROL  
+
TS  
X
VF I–  
X
RC ACTIVE  
LOW–PASS  
FILTER  
5–POLE SC  
LOW–PASS  
FILTER  
3–POLE  
HIGH–PASS  
AND S/H  
VF I+  
X
COMP  
TRANSMIT  
SHIFT  
REG  
SAR  
REG  
VPO+  
–1  
D
X
4
8
BAND–GAP  
VOLTAGE  
REF  
*
RDAC  
CDAC  
+
VPO–  
4
MUX  
*
RECEIVE  
SHIFT  
REG  
VPI*  
RECEIVE  
LATCH  
8
D
R
RC ACTIVE  
LOW–PASS  
FILTER  
5–POLE SC  
LOW–PASS  
FILTER  
S/H  
VF  
O
R
* MC145564 and MC145567 only.  
MC145554MC145557MC145564MC145567  
MOTOROLA  
2
DEVICE DESCRIPTION  
PIN DESCRIPTION  
DIGITAL  
FS  
A codec–filter is used for digitizing and reconstructing the  
human voice. These devices were developed primarily for  
the telephone network to facilitate voice switching and trans-  
mission. Once the voice is digitized, it may be switched by  
digital switching methods or transmitted long distance (T1,  
microwave, satellites, etc.) without degradation. The name  
codec is an acronym from “COder” (for the A/D used to digi-  
tize voice) and “DECoder” (for the D/A used for reconstruct-  
ing voice). A codec is a single device that does both the A/D  
and D/A conversions.  
R
Receive Frame Sync  
This is an 8 kHz enable that must be synchronous with  
BCLK . Following a rising FS edge, a serial PCM word at  
R
R
D
is clocked by BCLK into the receive data register. FS  
R R  
R
also initiates a decode on the previous PCM word. In the ab-  
sence of FS , the length of the FS pulse is used to deter-  
X
R
mine whether the I/O conforms to the Short Frame Sync or  
Long Frame Sync convention.  
To digitize intelligible voice requires a signal–to–distortion  
ratio of about 30 dB over a dynamic range of about 40 dB.  
This can be accomplished with a linear 13–bit A/D and D/A,  
but will far exceed the required signal–to–distortion ratio at  
amplitudes greater than 40 dB below the peak amplitude.  
This excess performance is at the expense of data per sam-  
ple. Methods of data reduction are implemented by com-  
pressing the 13–bit linear scheme to companded 8–bit  
schemes. There are two companding schemes used:  
Mu–255 Law specifically in North America, and A–Law  
specifically in Europe. These companding schemes are  
accepted world wide. These companding schemes follow a  
segmented or “piecewise–linear” curve formatted as sign bit,  
three chord bits, and four step bits. For a given chord, all six-  
teen of the steps have the same voltage weighting. As the  
voltage of the analog input increases, the four step bits incre-  
ment and carry to the three chord bits which increment.  
When the chord bits increment, the step bits double their  
voltage weighting. This results in an effective resolution of six  
bits (sign + chord + four step bits) across a 42 dB dynamic  
range (seven chords above zero, by 6 dB per chord).  
Tables 3 and 4 show the linear quantization levels to PCM  
words for the two companding schemes.  
In a sampling environment, Nyquist theory says that to  
properly sample a continuous signal, it must be sampled at a  
frequency higher than twice the signal’s highest frequency  
component. Voice contains spectral energy above 3 kHz, but  
its absence is not detrimental to intelligibility. To reduce the  
digital data rate, which is proportional to the sampling rate, a  
sample rate of 8 kHz was adopted, consistent with a band-  
width of 3 kHz. This sampling requires a low–pass filter to  
limit the high frequency energy above 3 kHz from distorting  
the in–band signal. The telephone line is also subject to  
50/60 Hz power line coupling, which must be attenuated from  
the signal by a high–pass filter before the A/D converter.  
The D/A process reconstructs a staircase version of the  
desired in–band signal, which has spectral images of the in–  
band signal modulated about the sample frequency and its  
harmonics. These spectral images, called aliasing compo-  
nents, need to be attenuated to obtain the desired signal.  
The low–pass filter used to attenuate these aliasing compo-  
nents is typically called a reconstruction or smoothing filter.  
The MC145554/57/64/67 PCM Codec–Filters have the  
codec, both presampling and reconstruction filters, and a  
precision voltage reference on–chip, and require no external  
components.  
D
R
Receive Digital Data Input  
BCLK /CLKSEL  
R
Receive Data Clock and Master Clock Frequency  
Selector  
If this input is a clock, it must be between 128 kHz and  
4.096 MHz, and synchronous with FS . In synchronous  
applications this pin may be held at a constant level; then  
BCLK is used as the data clock for both the transmit and  
receive sides, and this pin selects the assumed frequency of  
R
X
the master clock (see Table 1 in Functional Description).  
MCLK /PDN  
R
Receive Master Clock and Power–Down Control  
Because of the shared DAC architecture used on these  
devices, only one master clock is needed. Whenever FS is  
clocking, MCLK is used to derive all internal clocks, and the  
MCLK /PDN pin merely serves as a power–down control. If  
MCLK /PDN pin is held low or is clocked (and at least one  
of the frame syncs is present), the part is powered up. If this  
pin is held high, the part is powered down. If FS is absent  
but FS is still clocking, the device goes into receive half–  
channel mode, and MCLK (if clocking) generates the  
X
X
R
R
X
R
R
internal clocks.  
MCLK  
Transmit Master Clock  
X
This clock is used to derive the internal sequencing clocks;  
it must be 1.536 MHz, 1.544 MHz, or 2.048 MHz.  
BCLK  
Transmit Data Clock  
X
BCLK may be any frequency between 128 kHz and  
X
4.096 MHz, but it should be synchronous with MCLK .  
X
D
X
Transmit Digital Data Output  
This output is controlled by FS and BCLK to output the  
X
X
PCM data word; otherwise this pin is in a high–impedance  
state.  
FS  
X
Transmit Frame Sync  
This is an 8 kHz enable that must be synchronous with  
BCLK . A rising FS edge initiates the transmission of a  
X
X
MOTOROLA  
MC145554MC145557MC145564MC145567  
3
serial PCM word, clocked by BCLK , out of D . If the FS  
X
VPO+  
X
X
pulse is high for more than eight BCLK periods, the D and  
Voltage Power Output (Non–Inverted)  
(MC145554/67 Only)  
X
X
TS outputs will remain in a low–impedance state until FS  
is brought low. The length of the FS pulse is used to deter-  
X
X
X
This non–inverted output of the receive push–pull power  
amplifier pair can drive 300 to 3.3 V peak.  
mine whether the transmit and receive digital I/O conforms to  
the Short Frame Sync or to the Long Frame Sync conven-  
tion.  
POWER SUPPLY  
GNDA  
Analog Ground  
TS  
X
Transmit Time Slot Indicator  
This terminal is the reference level for all signals, both ana-  
log and digital. It is 0 V.  
This is an open–drain output that goes low whenever the  
D
output is in a low–impedance state (i.e., during the trans-  
X
V
mit time slot when the PCM word is being output) for en-  
abling a PCM bus driver.  
CC  
Positive Power Supply  
V
is typically 5 V.  
CC  
ANLB  
V
BB  
Negative Power Supply  
Analog Loopback Control Input (MC145564/67 Only)  
When held high, this pin causes the input of the transmit  
V
is typically – 5 V.  
BB  
RC active filter to be disconnected from GS and connected  
X
to VPO+ for analog loopback testing. This pin is held low in  
normal operation.  
FUNCTIONAL DESCRIPTION  
ANALOG INTERFACE AND SIGNAL PATH  
The transmit portion of these codec–filters includes a low–  
noise gain setting amplifier capable of driving a 600 load.  
Its output is fed to a three–pole anti–aliasing pre–filter. This  
pre–filter incorporates a two–pole Butterworth active low–  
pass filter, and a single passive pole. This pre–filter is fol-  
lowed by a single ended–to–differential converter that is  
clocked at 256 kHz. All subsequent analog processing uti-  
lizes fully differential circuitry. The next section is a fully–dif-  
ferential, five–pole switched capacitor low–pass filter with a  
3.4 kHz passband. After this filter is a 3–pole switched–ca-  
pacitor high–pass filter having a cutoff frequency of about  
200 Hz. This high–pass stage has a transmission zero at dc  
that eliminates any dc coming from the analog input or from  
accumulated operational amplifier offsets in the preceding fil-  
ter stages. The last stage of the high–pass filter is an auto-  
zeroed sample and hold amplifier.  
ANALOG  
GS  
X
Gain–Setting Transmit  
This output of the transmit gain–adjust operational amplifi-  
er is internally connected to the encoder section of the  
device. It must be used in conjunction with VF Iand VF I+  
to set the transmit gain for a maximum signal amplitude of  
2.5 V peak. This output can drive a 600 load to 2.5 V peak.  
X
X
VF I–  
X
Voice–Frequency Transmit Input (Inverting)  
This is the inverting input of the transmit gain–adjust  
operational amplifier.  
One bandgap voltage reference generator and digital–to–  
analog converter (DAC) are shared by the transmit and  
receive sections. The autozeroed, switched–capacitor band-  
gap reference generates precise positive and negative refer-  
ence voltages that are independent of temperature and  
power supply voltage. A binary–weighted capacitor array  
(CDAC) forms the chords of the companding structure, while  
a resistor string (RDAC) implements the linear steps within  
each chord. The encode process uses the DAC, the voltage  
reference, and a frame–by–frame autozeroed comparator to  
implement a successive–approximation conversion algo-  
rithm. All of the analog circuitry involved in the data con-  
version — the voltage reference, RDAC, CDAC, and  
comparator — are implemented with a differential architec-  
ture.  
VF I+  
X
Voice–Frequency Transmit Input  
(Non–Inverting)  
This is the non–inverting input of the transmit gain–adjust  
operational amplifier.  
VF O  
R
Voice–Frequency Receive Output  
This receive analog output is capable of driving a 600 Ω  
load to 2.5 V peak.  
VPI  
Voltage Power Input (MC145564/67 Only)  
The receive section includes the DAC described above, a  
sample and hold amplifier, a five–pole 3400 Hz switched  
capacitor low–pass filter with sinX/X correction, and a two–  
pole active smoothing filter to reduce the spectral com-  
ponents of the switched capacitor filter. The output of the  
smoothing filter is a power amplifier that is capable of driving  
a 600 load. The MC145564 and MC145567 add a pair of  
power amplifiers that are connected in a push–pull configu-  
ration; two external resistors set the gain of both of the  
This is the inverting input to the first receive power ampli-  
fier. Both of the receive power amplifiers can be powered  
down by connecting this input to V  
.
BB  
VPO–  
Voltage Power Output (Inverted) (MC145564/67 Only)  
This inverted output of the receive push–pull power ampli-  
fiers can drive 300 to 3.3 V peak.  
MC145554MC145557MC145564MC145567  
MOTOROLA  
4
complementary outputs. The output of the second amplifier  
may be internally connected to the input of the transmit anti–  
aliasing filter by bringing the ANLB pin high. The power am-  
plifiers can drive unbalanced 300 loads or a balanced  
600 load; they may be powered down independent of the  
remaining seven bits of the PCM word. The D and TS out-  
X X  
puts return to a high impedance state on the falling edge of  
the eighth bit clock or the falling edge of FS , whichever  
X
comes later. The receive PCM word is clocked into D on the  
R
eight falling BCLK edges following an FS rising edge.  
R
R
rest of the chip by tying the VPI pin to V  
.
For Short Frame Sync operation, the frame sync pulses  
must be one bit clock period long. On the first BCLK rising  
BB  
X
MASTER CLOCKS  
edge after the falling edge of BCLK has latched FS high,  
X
X
the D and TS outputs are enabled and the sign bit is pres-  
X
X
Since the codec–filter design has a single DAC architec-  
ture, only one master clock is used. In normal operation (both  
ented on D . The next seven rising edges of BCLK clock  
X
X
out the remaining seven bits of the PCM word; on the eighth  
BCLK falling edge, the D and TS outputs return to a high  
frame syncs clocking), the MCLK is used as the master  
X
X
X
X
clock, regardless of whether the MCLK /PDN pin is clocking  
R
impedance state. On the second falling BCLK edge follow-  
R
or low. The same is true if the part is in transmit half–channel  
ing an FS rising edge, the receive sign bit is clocked into  
D . The next seven BCLK falling edges clock in the re-  
R
mode (FS clocking, FS held low). But if the codec–filter is  
X
R
R
R
in the receive half–channel mode, with FS clocking and FS  
R
X
maining seven bits of the receive PCM word.  
Table 2 shows the coding format of the transmit and re-  
ceive PCM words.  
held low, MCLK is used for the internal master clock if it is  
R
clocking; if MCLKR is low, then MCLK is still used for the  
X
internal master clock. Since only one of the master clocks is  
used at any given time, they need not be synchronous.  
The master clock frequency must be 1.536 MHz,  
1.544 MHz, or 2.048 MHz. The frequency that the codec–  
filter expects depends upon whether the part is a Mu–Law or  
HALF–CHANNEL MODES  
In addition to the normal full–duplex operating mode, these  
codec–filters can operate in both transmit and receive half–  
channel modes. Transmit half–channel mode is entered by  
an A–Law part, and on the state of the BCLK /CLKSEL pin.  
R
The allowable options are shown In Table 1. When a level  
holding FS low. The VF O output goes to analog ground  
R R  
(rather than a clock) is provided for BCLK /CLKSEL, BCLK  
is used as the bit clock for both transmit and receive.  
but remains in a low impedance state (to facilitate a hybrid  
interface); PCM data at D is ignored. Holding FS low while  
R
X
R
X
clocking FS puts these devices in the receive half–channel  
R
Table 1. Master Clock Frequency Determination  
Master Clock Frequency Expected  
mode. In this state, the transmit input operational amplifier  
continues to operate, but the rest of the transmit circuitry is  
disabled; the D and TS outputs remain in a high imped-  
X
X
BCLK /CLKSEL  
R
MC145554/64  
MC145557/67  
ance state. MCLK is used as the internal master clock if it is  
R
Clocked, 1, or Open  
1.536 MHz  
1.544 MHz  
2.048 MHz  
clocking. If MCLK is not clocking, then MCLK is used for  
R
X
the internal master clock, but in that case it should be syn-  
chronous with FS . If BCLK is not clocking, BCLK will be  
0
2.048 MHz  
1.536 MHz  
1.544 MHz  
R
R
X
used for the receive data, just as in the full–channel operat-  
ing mode. In receive half–channel mode only, the length of  
FRAME SYNCS AND DIGITAL I/O  
the FS pulse is used to determine whether Short Frame  
R
Sync or Long Frame Sync timing is used at D .  
R
These codec–filters can accommodate both of the industry  
standard timing formats. The Long Frame Sync mode is  
used byMotorola’s MC145500 family of codec–filters and the  
UDLT family of digital loop transceivers. The Short Frame  
Sync mode is compatible with the IDL (Interchip Digital Link)  
serial format used in Motorola’s ISDN family and by other  
companies in their telecommunication devices. These  
POWER–DOWN  
Holding both FS and FS low causes the part to go into  
X
R
the power–down state. Power–down occurs approximately  
2 ms after the last frame sync pulse is received. An alterna-  
tive way to put these devices in power–down is to hold the  
codec–filters use the length of the transmit frame sync (FS )  
MCLK /PDN pin high. When the chip is powered down, the  
D , TS , and GS outputs are high impedance, the VF O,  
X X X R  
VPO, and VPO+ operational amplifiers are biased with a  
trickle current so that their respective outputs remain stable  
at analog ground. To return the chip to the power–up state,  
X
R
to determine the timing format for both transmit and receive  
unless the part is operating in the receive half–channel  
mode.  
In the Long Frame Sync mode, the frame sync pulses  
must be at least three bit clock periods long. The D and TS  
MCLK /PDN must be low or clocking and at least one of the  
X
X
R
outputs are enabled by the logical ANDing of FS and  
frame sync pulses must be present. The D and TS outputs  
X X  
X
BCLK ; when both are high, the sign bit appears at the D  
will remain in a high–impedance state until the second FS  
pulse after power–up.  
X
X
X
output. The next seven rising edges of BCLK clock out the  
X
Table 2. PCM Data Format  
Mu–Law (MC145554/64)  
A–Law (MC145557/67)  
Level  
+ Full Scale  
+ Zero  
Sign Bit  
Chord Bits  
0 0 0  
Step Bits  
0 0 0 0  
1 1 1 1  
1 1 1 1  
0 0 0 0  
Sign Bit  
Chord Bits  
0 1 0  
Step Bits  
1 0 1 0  
0 1 0 1  
0 1 0 1  
1 0 1 0  
1
1
0
0
1
1
0
0
1 1 1  
1 0 1  
– Zero  
1 1 1  
1 0 1  
– Full Scale  
0 0 0  
0 1 0  
MOTOROLA  
MC145554MC145557MC145564MC145567  
5
MAXIMUM RATINGS (Voltage Referenced to GNDA)  
Rating Symbol  
This device contains circuitry to protect  
against damage due to high static voltages or  
electric fields; however, it is advised that  
normal precautions be taken to avoid appli-  
cation of any voltage higher than maximum  
rated voltages to this high impedance circuit.  
For proper operation it is recommended that  
Value  
Unit  
DC Supply Voltage  
V
to V  
BB  
– 0.5 to + 13  
– 0.3 to + 7.0  
– 7.0 to + 0.3  
V
CC  
V
V
to GNDA  
to GNDA  
CC  
BB  
Voltage on Any Analog Input or Output Pin  
Voltage on Any Digital Input or Output Pin  
V
V
– 0.3 to  
V
V
BB  
+ 0.3  
CC  
GNDA – 0.3 to  
+ 0.3  
V
and V  
out  
in out DD  
be constrained to the range V  
SS  
in  
(V or V ) V  
.
Unused inputs must always be tied to an  
appropriate logic voltage level (e.g., V  
V
CC  
,
BB  
Operating Temperature Range  
Storage Temperature Range  
T
– 40 to + 85  
°C  
°C  
A
GNDA, or V ).  
CC  
T
stg  
– 85 to + 150  
POWER SUPPLY (T = – 40 to + 85°C)  
A
Characteristic  
Min  
Typ  
Max  
Unit  
DC Supply Voltage  
V
V
4.75  
– 4.75  
5.0  
– 5.0  
5.25  
– 5.25  
V
CC  
BB  
Active Power Dissipation (No Load)  
MC145554/57  
MC145564/67  
40  
45  
40  
60  
70  
60  
mW  
MC145564/67, VPI = V  
BB  
Power–Down Dissipation (No Load)  
MC145554/57  
MC145564/67  
1.0  
2.0  
1.0  
3.0  
5.0  
3.0  
mW  
MC145564/67, VPI = V  
BB  
DIGITAL LEVELS (V  
= 5 V ± 5%, V = – 5 V ± 5%, GNDA = 0 V, T = – 40 to + 85°C)  
BB A  
CC  
Characteristic  
Symbol  
Min  
Max  
0.6  
Unit  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
V
IL  
V
IH  
2.2  
V
D
or TS , I  
OL  
= 3.2 mA  
V
OL  
0.4  
V
X
X
D , I  
X
= – 3.2 mA  
= – 1.6 mA  
V
OH  
2.4  
V
OH  
OH  
I
V
– 0.5  
CC  
Input Low Current  
Input High Current  
GNDA V V  
in  
I
– 10  
– 10  
– 10  
+ 10  
+ 10  
+ 10  
µA  
µA  
µA  
CC  
CC  
CC  
IL  
GNDA V V  
in  
I
IH  
Output Current in High Impedance State  
GNDA D V  
I
OZ  
X
MC145554MC145557MC145564MC145567  
MOTOROLA  
6
ANALOG ELECTRICAL CHARACTERISTICS  
(V  
CC  
= + 5 V ± 5%, V  
= – 5 V ± 5%, VF I – Connected to GS , T = – 40 to + 85°C)  
BB  
X
X
A
Characteristic  
Min  
Typ  
± 0.05  
20  
Max  
± 0.2  
Unit  
µA  
Input Current (– 2.5 V + 2.5 V)  
in  
VF I+, VF I–  
X X  
AC Input Impedance to GNDA (1 kHz)  
Input Capacitance  
VF I+, VF I–  
10  
MΩ  
pF  
X
X
VF I+, VF I–  
10  
X
X
Input Offset Voltage of GS Op Amp  
X
VF I+, VF I–  
± 25  
2.5  
mV  
V
X
X
Input Common Mode Voltage Range  
Input Common Mode Rejection Ratio  
VF I+, VF I–  
– 2.5  
X
X
VF I+, VF I–  
65  
dB  
X
X
Unity Gain Bandwidth of GS Op Amp (R  
10 k)  
10 k)  
1000  
kHz  
dB  
X
load  
DC Open Loop Gain of GS Op Amp (R  
load  
75  
X
Equivalent Input Noise (C–Message) Between VF I+ and VF I– at GS  
X
20  
dBrnC0  
pF  
X
X
Output Load Capacitance for GS Op Amp  
0
100  
X
Output Voltage Range for GS  
R
R
= 10 kto GNDA  
= 600 to GNDA  
– 3.5  
– 2.8  
+ 3.5  
+ 2.8  
V
X
load  
load  
Output Current (– 2.8 V V  
+ 2.8 V)  
Output Impedance VF O (0 to 3.4 kHz)  
GS , VF O  
± 5.0  
1
mA  
out  
X
R
R
Output Load Capacitance for VF O  
0
500  
± 100  
pF  
R
VF O Output DC Offset Voltage Referenced to GNDA  
mV  
dBC  
R
Transmit Power Supply Rejection  
Positive, 0 to 100 kHz, C–Message  
Negative, 0 to 100 kHz, C–Message  
45  
45  
Receive Power Supply Rejection  
Positive, 0 to 100 kHz, C–Message  
Positive, 4 kHz to 25 kHz  
Positive, 25 kHz to 50 kHz  
Negative, 0 to 100 kHz, C–Message  
Negative, 4 kHz to 25 kHz  
50  
50  
43  
50  
45  
38  
dBC  
dB  
dB  
dBC  
dB  
dB  
Negative, 25 kHz to 50 kHz  
MC145564/67 Power Drivers  
Input Current (– 1 V VPI + 1 V)  
Input Resistance (– 1 V VPI + 1 V)  
Input Offset Voltage (VPI Connected to VPO–)  
Output Resistance, Inverted Unity Gain  
Unity Gain Bandwidth, Open Loop  
VPI  
5
±0.05  
10  
±0.5  
µA  
MΩ  
mV  
VPI  
VPI  
0
±50  
VPO+ or VPO–  
VPO–  
1
400  
kHz  
pF  
Load Capacitance (R  
load  
300 )  
VPO+ or VPO– to GNDA  
1000  
Gain from VPO– to VPO+ (R  
= 1.77 Vrms, +3 dBm0)  
= 300 , VPO+ to GNDA Level at VPO–  
–1  
V/V  
load  
Maximum 0 dBm0 Level for Better than ± 0.1 dB Linearity Over the  
R
= 600 Ω  
3.3  
3.5  
4.0  
Vrms  
load  
R = 1200 Ω  
load  
Range – 10 dBm0 to + 3 dBm0 (For R  
and VPO–)  
between VPO+  
load  
R
= 10 kΩ  
load  
Power Supply Rejection of V  
VPO+ or VPOto GNDA  
or V  
BB  
(VPO– Connected to VPI)  
0 to 4 kHz  
4 to 50 kHz  
55  
35  
dB  
dB  
CC  
Differential Power Supply Rejection of V  
or V  
BB  
(VPO– Connected to VPI)  
VPO+ to VPO–, 0 to 50 kHz  
CC  
50  
MOTOROLA  
MC145554MC145557MC145564MC145567  
7
ANALOG TRANSMISSION PERFORMANCE  
(V  
CC  
= + 5 V ± 5%, V = – 5 V ± 5%, GNDA = 0 V, 0 dBm0 = 1.2276 Vrms = + 4 dBm @ 600 , FS = FS = 8 kHz,  
BB X R  
BCLK = MCLK = 2.048 MHz Synchronous Operation, VF I – Connected to GS , T = – 40 to + 85°C Unless Otherwise Noted)  
X
X
X
X
A
End–to–End  
A/D  
D/A  
Characteristic  
Unit  
dB  
Min  
Max  
Min  
Max  
Min  
Max  
Absolute Gain (0 dBm0 @ 1.02 kHz, T = 25°C, V  
= 5 V, V = – 5 V)  
BB  
0.25 – 0.25 – 0.25 + 0.25  
A
CC  
Absolute Gain Variation with Temperature  
0 to 70°C  
– 40 to + 85°C  
± 0.03  
± 0.06  
± 0.03  
± 0.06  
dB  
Absolute Gain Variation with Power Supply (V  
CC  
= 5 V, ± 5%,  
± 0.02  
± 0.02  
dB  
dB  
V
= – 5 V, ± 5%)  
BB  
Gain vs Level Tone (Relative to – 10 dBm0, 1.02 kHz)  
+ 3 to – 40 dBm0 – 0.4  
– 40 to – 50 dBm0 – 0.8  
– 50 to – 55 dBm0 – 1.6  
+ 0.4  
+ 0.8  
+ 1.6  
– 0.2  
– 0.4  
– 0.8  
+ 0.2  
+ 0.4  
+ 0.8  
– 0.2  
– 0.4  
– 0.8  
+ 0.2  
+ 0.4  
+ 0.8  
Gain vs Level Pseudo Noise CCITT G.712  
(MC145557/67 A–Law Relative to – 10 dBm0)  
– 10 to – 40 dBm0  
– 40 to – 50 dBm0  
– 50 to – 55 dBm0  
– 0.25 + 0.25 – 0.25 + 0.25  
– 0.30 + 0.30 – 0.30 + 0.30  
– 0.45 + 0.45 – 0.45 + 0.45  
dB  
Total Distortion, 1.02 kHz Tone (C–Message)  
+ 3 dBm0  
0 to – 30 dBm0  
– 40 dBm0  
33  
35  
29  
24  
15  
33  
36  
30  
25  
15  
33  
36  
30  
25  
15  
dBC  
– 45 dBm0  
– 55 dBm0  
Total Distortion With Pseudo Noise CCITT G.714  
(MC145557/67 A–Law)  
– 3 dBm0  
– 6 to – 27 dBm0  
– 34 dBm0  
27.5  
35  
33.1  
28.2  
13.2  
28  
28.5  
36  
34.2  
30  
dB  
35.5  
33.5  
28.5  
13.5  
– 40 dBm0  
– 55 dBm0  
15  
Idle Channel Noise (For End–End and A/D, Note 1)  
(MC145554/64 Mu–Law, C–Message Weighted)  
(MC145557/67 A–Law, Psophometric Weighted)  
15  
70  
15  
– 70  
7
– 83  
dBrnC0  
dBm0p  
Frequency Response (Relative to 1.02 kHz @ 0 dBm0)  
15 Hz  
50 Hz  
60 Hz  
– 40  
– 30  
– 26  
– 40  
– 30  
– 26  
– 0.4  
– 0.15  
– 0.15  
– 0.15  
– 0.15  
0
0
0
0
dB  
200 Hz  
– 1.0  
300 to 3000 Hz – 0.3  
0.3  
– 0.15 + 0.15 – 0.15 + 0.15  
3300 Hz – 0.70 + 0.3 – 0.35 + 0.15 – 0.35 + 0.15  
3400 Hz – 1.6  
0
– 28  
– 60  
– 0.8  
0
– 14  
– 32  
– 0.8  
0
– 14  
– 30  
4000 Hz  
4600 Hz  
In–Band Spurious  
(1.02 kHz @ 0 dBm0, Transmit and Receive)  
300 to 3000 Hz  
48  
– 48  
– 48  
dBm0  
dB  
Out–of–Band Spurious at VF O (300 – 3400 Hz @ 0 dBm0 In)  
R
4600 to 7600 Hz  
7600 to 8400 Hz  
8400 to 100,000 Hz  
– 30  
– 40  
– 30  
– 30  
– 40  
– 30  
Idle Channel Noise Selective (8 kHz, Input = GNDA, 30 Hz Bandwidth)  
Absolute Delay (1600 Hz)  
70  
– 70  
215  
dBm0  
µs  
315  
Group Delay Referenced to 1600 Hz  
500 to 600 Hz  
600 to 800 Hz  
220  
145  
75  
40  
75  
– 40  
– 40  
– 40  
– 30  
90  
µs  
800 to 1000 Hz  
1000 to 1600 Hz  
1600 to 2600 Hz  
2600 to 2800 Hz  
2800 to 3000 Hz  
105  
155  
125  
175  
Crosstalk of 1020 Hz @ 0 dBm0 from A/D or D/A (Note 2)  
– 75  
– 41  
– 75  
– 41  
dB  
dB  
Intermodulation Distortion of Two Frequencies of Amplitudes  
– 4 to – 21 dBm0 from the Range 300 to 3400 Hz  
– 41  
NOTES:  
1. Extrapolated from a 1020 Hz @ – 50 dBm0 distortion measurement to correct for encoder enhancement.  
2. Selectively measured while the A/D is stimulated with 2667 Hz @ – 50 dBm0.  
MC145554MC145557MC145564MC145567  
MOTOROLA  
8
DIGITAL SWITCHING CHARACTERISTICS  
(V  
CC  
= 5 V ± 5%, V  
= – 5 V ± 5%, GNDA = 0 V, All Signals Referenced to GNDA; T = – 40 to + 85°C, C = 150 pF Unless Otherwise  
BB  
A
load  
Noted)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Master Clock Frequency  
MCLK or MCLK  
f
M
1.536  
1.544  
2.048  
MHz  
X
R
Minimum Pulse Width High or Low  
Minimum Pulse Width High or Low  
Minimum Pulse WIdth Low  
MCLK or MCLK  
t
w(M)  
100  
50  
50  
60  
50  
70  
60  
ns  
ns  
ns  
ns  
ns  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
X
R
R
R
BCLK or BCLK  
t
w(B)  
X
FS or FS  
t
X
w(FL)  
Rise Time for all Digital Signals  
Fall Time for all Digital Signals  
Bit Clock Data Rate  
t
r
50  
t
f
50  
BCLK or BCLK  
f
B
128  
50  
20  
20  
80  
20  
20  
50  
20  
0
4096  
X
R
Setup Time from BCLK Low to MCLK High  
t
su(BRM)  
X
R
Setup Time from MCLK High to BCLK Low  
t
su(MFB)  
X
X
Hold Time from BCLK (BCLK ) Low to FS (FS ) High  
t
h(BF)  
X
R
X
R
Setup Time for FS (FS ) High to BCLK (BCLK ) Low for Long Frame  
t
su(FB)  
X
R
X
R
Delay Time from BCLK High to D Data Valid  
t
140  
140  
140  
140  
X
X
d(BD)  
Delay Time from BCLK High to TS Low  
t
X
X
d(BTS)  
Delay Time from the 8th BCLK Low of FS Low to D Output Disabled  
t
d(ZC)  
X
X
X
Delay Time to Valid Data from FS or BCLK , Whichever is Later  
t
X
X
d(ZF)  
su(DB)  
Setup Time from D Valid to BCLK Low  
t
R
X
Hold Time from BCLK Low to D Invalid  
t
h(BD)  
50  
50  
50  
50  
R
R
Setup Time from FS (FS ) High to BCLK (BCLK ) Low in Short Frame  
t
su(F)  
X
R
X
R
Hold Time from BCLK (BCLK ) Low to FS (FS ) Low in Short Frame  
t
h(F)  
X
R
X
R
Hold Time from 2nd Period of BCLK (BCLK ) Low to FS (FS ) Low in  
Long Frame  
t
h(BFI)  
X
R
X
R
MOTOROLA  
MC145554MC145557MC145564MC145567  
9
TS  
X
t
t
t
t
d(ZC)  
d(BTS)  
w(M)  
w(M)  
MCLK  
X
R
MCLK  
t
t
su(MFB)  
w(B)  
t
t
w(B)  
su(BRM)  
BCLK  
1
2
3
4
5
6
7
8
9
X
t
h(BF)  
t
h(F)  
t
su(F)  
FS  
X
t
t
d(BD)  
d(ZC)  
MSB  
CH1  
CH2  
CH3  
ST1  
ST2  
ST3  
LSB  
D
X
BCLK  
FS  
1
2
3
4
5
6
7
8
9
R
t
h(BF)  
t
h(F)  
t
su(F)  
R
t
h(BD)  
t
t
h(BD)  
su(DB)  
D
MSB  
CH1  
CH2  
CH3  
ST1  
ST2  
ST3  
LSB  
R
Figure 1. Short Frame Sync Timing  
MC145554MC145557MC145564MC145567  
MOTOROLA  
10  
MCLK  
X
R
MCLK  
t
su(MFB)  
t
su(BRM)  
BCLK  
2
3
4
8
9
X
X
1
5
6
7
t
su(FB)  
t
h(BFI)  
t
h(BF)  
FS  
t
d(ZF)  
t
t
d(BD)  
d(ZC)  
t
t
d(ZC)  
d(ZF)  
D
MSB  
CH1  
CH2  
CH3  
ST1  
ST3  
LSB  
X
ST2  
1
2
3
4
5
6
7
8
9
BCLK  
R
t
t
h(BFI)  
h(BF)  
t
su(FB)  
FS  
D
R
t
h(BD)  
t
t
h(BD)  
su(DB)  
MSB  
CH1  
CH2  
CH3  
ST1  
ST2  
ST3  
LSB  
R
Figure 2. Long Frame Sync Timing  
MOTOROLA  
MC145554MC145557MC145564MC145567  
11  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
– 5 V  
V
VF I +  
X
BB  
GNDA  
ANALOG IN  
VF I –  
X
ANALOG OUT  
+ 5 V  
GS  
VF  
V
O
X
R
TX TIME SLOT  
TS  
X
FS  
X
CC  
MC145554/57  
FS  
R
D
D
BCLK  
MCLK  
R
X
X
X
BCLK / CLKSEL  
R
MCLK / PDN  
R
8 kHz  
1
16  
MODE  
DDO  
V
+ 5 V  
DD  
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
10  
9
ADPCM OUT  
EDO  
EOE  
DDE  
1.544 MHz/  
2.048 MHz  
DDC  
DDI  
DIE  
EDC  
EDI  
EIE  
MC145532  
ADCPM IN  
POWER–DOWN  
SPC  
ADP  
20.48 MHz  
PD/RESET  
V
SS  
Figure 3. ADPCM Transcoder Application  
MC145554MC145557MC145564MC145567  
MOTOROLA  
12  
MC33120  
15  
12  
13  
14  
20  
19  
+ 5 V  
V
V
DD  
CC  
EP  
PDI/ST2  
ST1  
HOOK STATUS/  
FAULT INDICATION  
+
18  
BP  
5 µF, 16 V  
MJD253  
1N4002  
V
DG  
1N4002  
– 48 V  
9
+ 5 V  
V
AG  
100  
1/4 W  
MC145554/7  
0.01  
µF  
1 k  
9.1 k  
9.1 k  
1 k  
4
17  
50 V  
V
CP  
CC  
48.5 k  
10  
8
3
12  
16  
5
8 kHz SYNC  
V
RXI  
FS  
FS  
FRO  
X
TIP  
RING  
TSI  
RSI  
CN  
5
R
4.7 k  
20.6 k  
47.4 k  
10  
7
BCLK  
DATA CLOCK  
MC145554 =  
1.544 MHZ  
MC145557 =  
2.048 MHz  
X
R
R
4
RFO  
BCLK  
MCLK  
8
100  
1/4 W  
1 µF  
9
1
µF  
MCLK  
D
X
X
11  
7
15  
14  
11  
6
TXO  
CF  
VF I–  
X
0.01  
µF  
TO PCM HWY  
10 k  
3
GS  
X
D
50 V  
R
MJD243  
BN  
EN  
49.0 k  
16  
2
13  
1
300  
VF I+  
X
TS  
X
1N4002  
6
2
1
1.0 µF, 50 V  
VQB  
GNDA  
V
BB  
+
1N4002  
– 48 V  
V
20  
EE  
10 µF, 50 V  
– 5 V  
+
NOTE: Six resistors and two capacitors on the two–wire side can be 5% tolerance.  
Figure 4. A Complete Single Party Channel Unit Using MC145554/57 PCM Codec–Filter and MC33120 SLIC  
MOTOROLA  
MC145554MC145557MC145564MC145567  
13  
“S” TRANSCEIVER  
LAP–D/LAP–B CONTROLLER  
+ 5 V  
MC145474P  
+ 5 V + 5 V  
MC145488  
17  
2
4
52, 2, 9  
V
V
D0 10  
D1 11  
D2 12  
D3 13  
D4 14  
D5 15  
D6 16  
D7 17  
D8 18  
D9 19  
D10 20  
D11 22  
D12 23  
D13 24  
D14 25  
D15 26  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
TE/NT  
DD  
DD  
33 k  
+ 5 V  
ISET  
8
9
60, 44  
59, 45  
S INTERFACE  
SYNC  
CLK  
RX  
SYNC 0, 1  
CLK 0, 1  
TX 0, 1  
7
7
7
21  
20  
TX+  
TX–  
10  
11  
7
55, 49  
56, 48  
47  
+ 5 V  
RX 0, 1  
TX  
7
DREQ 1  
DREQ  
5
46  
+ 5 V  
DGNT 1  
DGRT  
50 SCPE 1  
15  
14  
13  
12  
53  
1 kΩ  
1 kΩ  
2
SCPE 0  
SEL  
CLK  
RX  
RX+  
RX–  
57  
SCP CLK  
+ 5 V  
54  
MPU  
BUS  
SCP TXD  
8
7
6
5
4
3
1
58  
1 kΩ  
1 kΩ  
3
6
SCP RXD  
TX  
IRQ  
V
SS  
XTAL  
RESET  
EXTAL  
19  
15.36 MHz  
A8 68  
A9 67  
A10 66  
A11 65  
A12 64  
A13 63  
A14 62  
A15 61  
OWN0 42  
OWN1 43  
MCLK 27  
CS 28  
30 pF  
+ 5 V  
30 pF  
HANDSET  
MC145554P  
RJ–1  
1
500  
3
4
+ RCVR  
(WHITE)  
V
VF  
O
CC  
R
+ 5 V  
12, 5  
FS , FS  
X
R
10, 7, 8, 9  
500  
0.1  
MCLK, BCLK  
10 kΩ  
15  
14  
16  
11  
6
+ MIC (RED)  
– RCVR  
VF I–  
D
X
X
R/W 29  
AS 30  
µF  
GS  
D
R
X
(WHITE)  
13  
1
VF I+  
X
TS  
– MIC (BLK)  
X
LDS 31  
UDS 32  
RST 33  
IACK 34  
IRQ 36  
DTACK 37  
BERR 38  
BR 39  
2
V
GNDA  
BB  
CODEC–FILTER  
– 5 V  
51, 36, 21  
V
SS  
BG 40  
BGACK 41  
Figure 5. ISDN Voice/Data Terminal  
MC145554MC145557MC145564MC145567  
MOTOROLA  
14  
Table 3. Mu–Law Encode–Decode Characteristics  
Normalized  
Digital Code  
Encode  
Decision  
Levels  
Normalized  
Decode  
Levels  
1
2
3
4
5
6
7
8
Chord  
Number  
Number  
of Steps  
Step  
Size  
Sign  
Chord Chord Chord Step  
Step Step  
Step  
8159  
7903  
4319  
4063  
2143  
2015  
1055  
991  
511  
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
0
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
8031  
4191  
2079  
1023  
495  
231  
99  
8
16  
256  
7
6
5
4
3
2
1
16  
16  
16  
16  
16  
16  
128  
64  
32  
16  
8
479  
239  
223  
103  
95  
4
35  
33  
31  
15  
1
2
1
3
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
2
0
NOTES:  
1. Characteristics are symmetrical about analog zero with sign bit = 0 for negative analog values.  
2. Digital code includes inversion of all magnitude bits.  
MOTOROLA  
MC145554MC145557MC145564MC145567  
15  
Table 4. A–Law Encode–Decode Characteristics  
Normalized  
Digital Code  
Encode  
Decision  
Levels  
Normalized  
Decode  
Levels  
1
2
3
4
5
6
7
8
Chord  
Number  
Number  
of Steps  
Step  
Size  
Sign  
Chord Chord Chord Step  
Step Step  
Step  
4096  
3968  
2176  
2048  
1088  
1024  
544  
512  
272  
256  
136  
128  
68  
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
0
1
0
1
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
4032  
2112  
1056  
528  
264  
132  
66  
7
16  
128  
6
5
4
3
2
16  
16  
16  
16  
16  
32  
64  
32  
16  
8
4
64  
1
2
2
1
0
NOTES:  
1. Characteristics are symmetrical about analog zero with sign bit = 0 for negative analog values.  
2. Digital code includes alternate bit inversion, as specified by CCITT.  
MC145554MC145557MC145564MC145567  
MOTOROLA  
16  
PACKAGE DIMENSIONS  
L SUFFIX  
CERAMIC PACKAGE  
CASE 620–09  
(MC145554/57)  
-A-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
16  
1
9
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
4. DIMENSION F MAY NARROW TO 0.76 (0.030)  
WHERE THE LEAD ENTERS THE CERAMIC  
BODY.  
-B-  
8
L
C
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
E
MIN  
MAX  
0.770  
0.290  
0.165  
0.021  
MIN  
19.05  
6.10  
0.39  
1.27 BSC  
MAX  
19.55  
7.36  
4.19  
0.53  
0.750  
0.240  
0.015  
0.050 BSC  
-T-  
SEATING  
PLANE  
K
0.055  
0.070  
1.40  
1.77  
F
G
J
K
L
M
N
0.100 BSC  
2.54 BSC  
M
N
E
0.009  
0.011  
0.23  
0.27  
0.200  
5.08  
J 16 PL  
G
F
0.300 BSC  
15  
0.035  
7.62 BSC  
15  
0.39 0.88  
D 16 PL  
0°  
°
0°  
°
M
S
0.25 (0.010)  
T
B
0.015  
M
S
0.25 (0.010)  
T
A
P SUFFIX  
PLASTIC DIP  
CASE 648–08  
(MC145554/57)  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
16  
1
9
B
8
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
M
S
MIN  
MAX  
0.770  
0.270  
0.175  
0.021  
0.70  
MIN  
18.80  
6.35  
3.69  
0.39  
1.02  
2.54 BSC  
1.27 BSC  
0.21  
MAX  
19.55  
6.85  
4.44  
0.53  
1.77  
F
0.740  
0.250  
0.145  
0.015  
0.040  
0.100 BSC  
0.050 BSC  
0.008  
C
L
S
SEATING  
PLANE  
–T–  
K
M
0.015  
0.130  
0.305  
10  
0.38  
3.30  
7.74  
10  
H
J
0.110  
0.295  
0
2.80  
7.50  
0
G
D 16 PL  
0.25 (0.010)  
0.020  
0.040  
0.51  
1.01  
M
M
T
A
MOTOROLA  
MC145554MC145557MC145564MC145567  
17  
DW SUFFIX  
SOG PACKAGE  
CASE 751G–02  
(MC145554/57)  
–A–  
16  
9
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
–B–  
8X P  
0.010 (0.25)  
M
M
B
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
1
8
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN  
EXCESS OF D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
J
16X D  
M
S
S
0.010 (0.25)  
T
A
B
F
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
10.15  
7.40  
2.35  
0.35  
0.50  
MAX  
10.45  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.411  
0.299  
0.104  
0.019  
0.035  
0.400  
0.292  
0.093  
0.014  
0.020  
R X 45  
C
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
–T–  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
M
SEATING  
14X G  
K
PLANE  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
L SUFFIX  
CERAMIC PACKAGE  
CASE 732–03  
(MC145564/67)  
NOTES:  
1. LEADS WITHIN 0.25 (0.010) DIAMETER, TRUE  
POSITION AT SEATING PLANE, AT MAXIMUM  
MATERIAL CONDITION.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
20  
1
11  
10  
3. DIMENSIONS A AND B INCLUDE MENISCUS.  
B
MILLIMETERS  
INCHES  
A
DIM  
A
B
C
D
F
MIN  
23.88  
6.60  
3.81  
0.38  
1.40  
MAX  
25.15  
7.49  
5.08  
0.56  
1.65  
MIN  
MAX  
0.990  
0.295  
0.200  
0.022  
0.065  
0.940  
0.260  
0.150  
0.015  
0.055  
L
C
F
G
H
J
K
L
2.54 BSC  
0.100 BSC  
0.51  
0.20  
3.18  
1.27  
0.30  
4.06  
0.020  
0.008  
0.125  
0.050  
0.012  
0.160  
N
J
7.62 BSC  
0.300 BSC  
H
K
M
G
M
N
0
15  
0
15  
D
0.25  
1.02  
0.010  
0.040  
SEATING  
PLANE  
MC145554MC145557MC145564MC145567  
MOTOROLA  
18  
P SUFFIX  
PLASTIC DIP  
CASE 738–03  
(MC145564/67)  
-A-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
20  
1
11  
10  
B
4. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
C
L
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
E
F
G
J
K
L
M
N
MIN  
MAX  
1.070  
0.260  
0.180  
0.022  
MIN  
25.66  
6.10  
3.81  
0.39  
1.27 BSC  
1.27  
2.54 BSC  
0.21  
MAX  
27.17  
6.60  
4.57  
0.55  
1.010  
0.240  
0.150  
0.015  
0.050 BSC  
0.050  
0.100 BSC  
0.008  
0.110  
-T-  
SEATING  
PLANE  
K
M
0.070  
1.77  
E
N
0.015  
0.140  
0.38  
3.55  
G
F
J 20 PL  
2.80  
0.300 BSC  
15  
0.040  
7.62 BSC  
15  
0.51 1.01  
D 20 PL  
M
M
0.25 (0.010)  
T
B
0°  
°
0°  
°
0.020  
M
M
0.25 (0.010)  
T
A
DW SUFFIX  
SOG PACKAGE  
CASE 751D–04  
(MC145564/67)  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
20  
11  
4. MAXIMUM MOLD PROTRUSION 0.150  
(0.006) PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
10X P  
–B–  
M
M
0.010 (0.25)  
B
1
10  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
MILLIMETERS  
INCHES  
20X D  
DIM  
A
B
C
D
MIN  
12.65  
7.40  
2.35  
0.35  
0.50  
MAX  
12.95  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.510  
0.299  
0.104  
0.019  
0.035  
J
0.499  
0.292  
0.093  
0.014  
0.020  
M
S
S
0.010 (0.25)  
T
A
B
F
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
R X 45  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
C
SEATING  
PLANE  
–T–  
M
18X G  
K
MOTOROLA  
MC145554MC145557MC145564MC145567  
19  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MC145554/D  

相关型号:

MC145554

PCM Codec-Filter
MOTOROLA

MC145554DW

PCM Codec-Filter
LANSDALE

MC145554DW

PCM Codec, MU-Law, 1-Func, CMOS, PDSO16, PLASTIC, SOP-16
MOTOROLA

MC145554DWR2

MU-LAW, PCM CODEC, PDSO16, PLASTIC, SOP-16
MOTOROLA

MC145554L

暂无描述
MOTOROLA

MC145554P

PCM Codec-Filter
LANSDALE

MC145557

PCM Codec-Filter
MOTOROLA

MC145557DW

PCM Codec-Filter
LANSDALE

MC145557DW

PCM Codec, A-Law, 1-Func, CMOS, PDSO16, PLASTIC, SOP-16
MOTOROLA

MC145557DWR2

PCM Codec, A-Law, 1-Func, CMOS, PDSO16, PLASTIC, SOP-16
MOTOROLA

MC145557L

A-LAW, PCM CODEC, CDIP16, CERAMIC, DIP-16
MOTOROLA

MC145557P

PCM Codec-Filter
MOTOROLA