MC3456P [MOTOROLA]

DUAL TIMING CIRCUIT; 双定时电路
MC3456P
型号: MC3456P
厂家: MOTOROLA    MOTOROLA
描述:

DUAL TIMING CIRCUIT
双定时电路

模拟波形发生功能 信号电路 光电二极管
文件: 总10页 (文件大小:204K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by MC3456/D  
The MC3456 dual timing circuit is a highly stable controller capable of  
producing accurate time delays, or oscillation. Additional terminals are  
provided for triggering or resetting if desired. In the time delay mode of  
operation, the time is precisely controlled by one external resistor and  
capacitor per timer. For astable operation as an oscillator, the free running  
frequency and the duty cycle are both accurately controlled with two external  
resistors and one capacitor per timer. The circuit may be triggered and reset  
on falling waveforms, and the output structure can source or sink up to  
200 mA or drive MTTL circuits.  
DUAL TIMING CIRCUIT  
SEMICONDUCTOR  
TECHNICAL DATA  
Direct Replacement for NE556/SE556 Timers  
Timing from Microseconds through Hours  
Operates in Both Astable and Monostable Modes  
Adjustable Duty Cycle  
P SUFFIX  
PLASTIC PACKAGE  
CASE 646  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751  
(SO–14)  
High Current Output can Source or Sink 200 mA  
Output can Drive MTTL  
Temperature Stability of 0.005% per °C  
Normally “On” or Normally “Off” Output  
Dual Version of the Popular MC1455 Timer  
PIN CONNECTIONS  
1
2
3
14  
Discharge A  
Threshold A  
V
CC  
13  
12  
Discharge B  
Figure 1. 22 Second Solid State Time Delay Relay Circuit  
Control A  
Reset A  
Output A  
Trigger A  
Gnd  
Threshold B  
Control B  
Reset B  
4
5
6
7
11  
10  
9
1.0 k  
Load  
MT2  
3
8
Output B  
Trigger B  
MT1  
6
G
4
2
10 k  
R
20 M  
C
1/2  
MC3456  
8
7
5
F
(Top View)  
1.0 µF  
0.1 µF  
0.01  
µ
1
1N4003  
–10 V  
ORDERING INFORMATION  
Operating  
3.5 k  
250 V  
t = 1.1; R and C = 22 sec  
Time delay (t) is variable by  
changing R and C (see Figure 16).  
1N4740  
10  
+
µF  
Temperature Range  
Device  
MC3456P  
NE556D  
Package  
Plastic DIP  
SO–14  
0° to +70°C  
Figure 3. General Test Circuit  
V
CC  
I
CC  
V
R
Figure 2. Block Diagram (1/2 Shown)  
Reset  
4
8
700  
V
CC  
14  
7
5
V
CC  
+
F
Control  
Voltage  
0.01  
µ
Discharge  
1/2  
5 k  
MC3456  
1 (13)  
2 (12)  
Threshold  
3
Threshold  
6
Discharge  
Output  
+
V
Comp  
S
Flip  
Flop  
2.0 k  
Output  
3 (11)  
Control Voltage  
I
A
th  
R
S
Gnd  
1
Trigger  
I
I
V
Sink  
O
Q
2
5 k  
5 k  
Source  
5 (9)  
Inhibit/  
Reset  
+
Comp  
B
6 (8)  
Trigger  
Test circuit for measuring DC parameters (to set output and measure parameters):  
a) When V  
b) When V  
2/3 V , V is low.  
S
S
CC O  
1/3 V , V is high.  
CC  
O
7
4 (10)  
Reset  
c) When V is low, Pin 7 sinks current. To test for Reset, set V high,  
O
O
Gnd  
c) apply Reset voltage, and test for current flowing into Pin 7. When Reset  
c) is not in use, it should be tied to V  
.
CC  
Motorola, Inc. 1996  
Rev 2  
MC3456  
MAXIMUM RATINGS (T = +25°C, unless otherwise noted.)  
A
Rating  
Symbol  
Value  
Unit  
Power Supply Voltage  
V
+18  
200  
Vdc  
mA  
CC  
Discharge Current  
I
dis  
Power Dissipation (Package Limitation)  
P Suffix, Plastic Package, Case 646  
P
D
625  
5.0  
1.0  
8.0  
mW  
mW/°C  
W
Derate above T = +25°C  
A
D Suffix, Plastic Package, Case 751  
Derate above T = +25°C  
mW/°C  
A
Operating Ambient Temperature Range  
Storage Temperature Range  
T
A
°C  
°C  
0 to +70  
T
–65 to +150  
stg  
ELECTRICAL CHARACTERISTICS (T = +25°C, V  
= +15 V, unless otherwise noted.)  
CC  
A
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Supply Voltage  
Supply Current  
V
4.5  
16  
V
CC  
I
mA  
CC  
V
V
= 5.0 V, R = ∞  
= 15 V, R = Low State, (Note 1)  
6.0  
20  
12  
30  
CC  
CC  
L
L
Timing Error (Note 2)  
Monostable Mode (R = 2.0 k; C = 0.1 µF)  
A
Initial Accuracy  
0.75  
50  
0.1  
%
PPM/°C  
%/V  
Drift with Temperature  
Drift with Supply Voltage  
Astable Mode (R = R = 2.0 kto 100 k; C = 0.01 µF)  
A
B
Initial Accuracy  
2.25  
150  
0.3  
%
PPM/°C  
%/V  
Drift with Temperature  
Drift with Supply Voltage  
Threshold Voltage  
Trigger Voltage  
V
2/3  
xV  
th  
CC  
V
T
V
V
V
= 15 V  
= 5.0 V  
5.0  
1.67  
CC  
CC  
Trigger Current  
I
0.4  
0.5  
0.7  
µA  
V
T
Reset Voltage  
V
R
1.0  
Reset Current  
I
0.1  
mA  
µA  
V
R
Threshold Current (Note 3)  
Control Voltage Level  
I
0.03  
0.1  
th  
V
CL  
V
V
= 15 V  
= 5.0 V  
9.0  
2.6  
10  
3.33  
11  
4.0  
CC  
CC  
Output Voltage Low  
V
OL  
(V  
= 15 V)  
V
V
CC  
I
I
I
I
= 10 mA  
= 50 mA  
= 100 mA  
= 200 mA  
= 5.0 V)  
= 5.0 mA  
0.1  
0.4  
2.0  
2.5  
0.25  
0.75  
2.75  
Sink  
Sink  
Sink  
Sink  
(V  
CC  
I
0.25  
0.35  
Sink  
Output Voltage High  
V
OH  
(I  
= 200 mA)  
= 15 V  
= 100 mA)  
= 15 V  
Source  
V
12.5  
CC  
(I  
Source  
V
V
12.75  
2.75  
13.3  
3.3  
CC  
CC  
= 5.0 V  
Toggle Rate R = 3.3 k, R = 6.8 k, C = 0.003 µF (Figure 17, 19)  
100  
20  
100  
kHz  
nA  
ns  
A
B
Discharge Leakage Current  
I
dis  
Rise Time of Output  
Fall Time of Output  
t
100  
100  
OLH  
t
ns  
OHL  
Matching Characteristics Between Sections  
Monostable Mode  
Initial Timing Accuracy  
Timing Drift with Temperature  
Drift with Supply Voltage  
1.0  
±10  
0.2  
2.0  
0.5  
%
ppm/°C  
%/V  
NOTES: 1. Supply current is typically 1.0 mA less for each output which is high.  
2. Tested at V  
= 5.0 V and V  
= 15 V.  
CC  
CC  
3. This will determine the maximum value of R + R for 15 V operation. The maximum total R = 20 m.  
A
B
2
MOTOROLA ANALOG IC DEVICE DATA  
MC3456  
Figure 4. Trigger Pulse Width  
Figure 5. Supply Current  
150  
125  
10  
25°C  
8.0  
6.0  
100  
75  
50  
0°C  
4.0  
25°C  
70  
°
C
2.0  
0
25  
0
0
0.1  
0.2  
0.3  
0.4  
5.0  
10  
, SUPPLY VOLTAGE (Vdc)  
15  
V
, MINIMUM TRIGGER VOLTAGE (X V  
= Vdc)  
V
CC  
T (min)  
CC  
Figure 7. Low Output Voltage  
Figure 6. High Output Voltage  
(@ V  
= 5.0 Vdc)  
CC  
2.0  
1.8  
1.6  
10  
25°C  
25°C  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.1  
5.0 V  
20  
V
15 V  
50  
CC  
0.01  
1.0  
2.0  
5.0  
10  
(mA)  
100  
1.0  
2.0  
5.0  
10  
(mA)  
20  
50  
100  
I
I
Sink  
Source  
Figure 8. Low Output Voltage  
Figure 9. Low Output Voltage  
(@ V  
= 10 Vdc)  
(@ V  
= 15 Vdc)  
CC  
CC  
10  
10  
1.0  
1.0  
0.1  
25°C  
25°C  
0.1  
0.01  
0.01  
1.0  
1.0  
2.0  
5.0  
10  
(mA)  
20  
50  
100  
2.0  
5.0  
10  
(mA)  
20  
50  
100  
I
I
Sink  
Sink  
3
MOTOROLA ANALOG IC DEVICE DATA  
MC3456  
Figure 10. Delay Time versus Supply Voltage  
Figure 11. Delay Time versus Temperature  
1.015  
1.010  
1.015  
1.010  
1.005  
1.005  
1.000  
0.995  
0.990  
1.000  
0.995  
0.990  
0.985  
0.985  
0
5.0  
10  
15  
20  
75  
50  
25  
0
25  
50  
75  
C)  
100  
125  
V
, SUPPLY VOLTAGE (Vdc)  
T , AMBIENT TEMPERATURE (°  
A
CC  
Figure 12. Propagation Delay  
versus Trigger Voltage  
300  
250  
200  
150  
100  
50  
0
°
C
25°C  
70  
°C  
0
0
0.1  
0.2  
0.3  
CC  
0.4  
V
, MINIMUM TRIGGER VOLTAGE (x V  
= Vdc)  
T (min)  
4
MOTOROLA ANALOG IC DEVICE DATA  
MC3456  
Figure 13. 1/2 Representative Circuit Schematic  
Control Voltage  
Threshold  
Comparator  
Trigger  
Comparator  
Flip–Flop  
Output  
V
CC  
4.7 k  
830  
4.7 k  
1.0 k  
6.8 k  
5.0 k  
Threshold  
7.0 k  
4.7 k  
3.9 k  
b
Output  
10 k  
c
c b  
e
5.0 k  
5.0 k  
Trigger  
Reset  
220  
Reset  
4.7 k  
100 k  
Discharge  
Gnd  
Discharge  
100  
GENERAL OPERATION  
The MC3456 is a dual timing circuit which uses as its  
timing elements an external resistor/capacitor network. It can  
be used in both the monostable (one shot) and astable  
modes with frequency and duty cycle, controlled by the  
capacitor and resistor values. While the timing is dependent  
upon the external passive components, the monolithic circuit  
provides the starting circuit, voltage comparison and other  
functions needed for a complete timing circuit. Internal to the  
integrated circuit are two comparators, one for the input  
signal and the other for capacitor voltage; also a flip–flop and  
digital output are included. The comparator reference  
voltages are always a fixed ratio of the supply voltage thus  
providing output timing independent of supply voltage.  
that the output is high is given by the equation t = 1.1 R C.  
A
Various combinations of R and C and their associated times  
are shown in Figure 14. The trigger pulse width must be less  
than the timing period.  
A reset pin is provided to discharge the capacitor thus  
interrupting the timing cycle. As long as the reset pin is low,  
the capacitor discharge transistor is turned “on” and prevents  
the capacitor from charging. While the reset voltage is  
applied the digital output will remain the same. The reset pin  
should be tied to the supply voltage when not in use.  
Figure 14. Time Delay  
100  
Monostable Mode  
In the monostable mode, a capacitor and a single resistor  
are used for the timing network. Both the threshold terminal  
and the discharge transistor terminal are connected together  
in this mode (refer to circuit Figure 15). When the input  
10  
1.0  
voltage to the trigger comparator falls below 1/3 V  
the  
CC  
comparator output triggers the flip–flop so that it’s output sets  
low. This turns the capacitor discharge transistor “off” and  
drives the digital output to the high state. This condition  
allows the capacitor to charge at an exponential rate which is  
set by the RC time constant. When the capacitor voltage  
0.1  
0.01  
reaches 2/3 V  
the threshold comparator resets the  
CC  
0.001  
flip–flop. This action discharges the timing capacitor and  
returns the digital output to the low state. Once the flip–flop  
has been triggered by an input signal, it cannot be retriggered  
until the present timing period has been completed. The time  
10  
µs  
100  
µs  
1.0 ms 10 ms  
100 ms  
1.0  
10  
100  
t , TIME DELAY (s)  
d
5
MOTOROLA ANALOG IC DEVICE DATA  
MC3456  
Figure 15. Monostable Circuit  
Figure 16. Monostable Waveforms  
+V  
CC  
(5.0 V to 15 V)  
R
C
R
R
A
L
Reset  
4 (10)  
V
CC  
14  
Discharge  
1 (13)  
5 (9)  
2 (12)  
Output  
1/2  
Threshold  
MC3456  
6 (8)  
3 (11)  
L
Trigger  
Control  
Voltage  
7
Gnd  
0.01 µF  
t = 50  
µs/cm  
(R = 10 k  
, C = 0.01 F, R = 1.0 k  
µ
, V  
= 15 V)  
CC  
Pin numbers in parenthesis ( ) indicate B–Channel  
A
L
Figure 17. Astable Circuit  
Figure 18. Astable Waveforms  
+V  
CC  
(5.0 to 15 V)  
R
R
R
A
L
Reset  
4 (10)  
V
CC  
14  
Output  
5 (9)  
1 (13)  
Discharge  
Threshold  
1/2  
2 (12)  
3 (11)  
R
C
B
MC3456  
Trigger  
6 (8)  
L
Control  
Voltage  
0.01 µF  
7
Gnd  
t = 20  
µs/cm  
(R = 5.1 k  
, C = 0.0 1  
µ
F, R = 1.0 k  
, R = 3.9 k  
, V  
= 15 V)  
CC  
A
L
B
Astable Mode  
In the astable mode the timer is connected so that it will  
retrigger itself and cause the capacitor voltage to oscillate  
discharge current (Pin 7 current) within the maximum rating  
of the discharge transistor (200 mA).  
between 1/3 V  
and 2/3 V  
(see Figure 17).  
The minimum value of R is given by:  
CC  
CC  
A
The external capacitor charges to 2/3 V  
through R and  
CC  
through R . By varying the  
A
V
(Vdc)  
V
(Vdc)  
CC  
0.2  
CC  
I (A)  
R
R
and discharges to 1/3 V  
A
B
CC  
B
7
ratio of these resistors the duty cycle can be varied. The  
charge and discharge times are independent of the supply  
voltage.  
Figure 19. Free Running Frequency  
The charge time (output high) is given by:  
100  
10  
t = 0.695 (R +R ) C  
1
A
B
The discharge time (output low) by:  
t = 0.695 (R ) C  
2
B
Thus the total period is given by:  
T = t + t = 0.695 (R + 2R ) C  
1.0  
0.1  
1
2
A
B
1.44  
(R +2R ) C  
1
T
The frequency of oscillation is then: f =  
=
A
B
and may be easily found as shown in Figure 19.  
0.01  
R
A
B
+2R  
(R + 2 R  
)
B
The duty cycle is given by: DC =  
A
R
B
0.001  
0.1  
1.0  
10  
100  
1.0 k  
10 k  
100 k  
To obtain the maximum duty cycle, R must be as small as  
A
possible; but it must also be large enough to limit the  
f, FREE RUNNING FREQUENCY (Hz)  
6
MOTOROLA ANALOG IC DEVICE DATA  
MC3456  
APPLICATIONS INFORMATION  
Tone Burst Generator  
Dual Astable Multivibrator  
For a tone burst generator, the first timer is used as a  
monostable and determines the tone duration when triggered  
by a positive pulse at Pin 6. The second timer is enabled by  
the high output of the monostable. It is connected as an  
astable and determines the frequency of the tone.  
This dual astable multivibrator provides versatility not  
available with single timer circuits. The duty cycle can be  
adjusted from 5% to 95%. The two outputs provide two phase  
clock signals often required in digital systems. It can also be  
inhibited by use of either reset terminal.  
Figure 20. Tone Burst Generator  
+ 15 V  
Reset  
4
14  
V
CC  
14  
V
CC  
R
R
A
T
13 Discharge  
12 Threshold  
10  
6
5
Trigger  
Trigger  
1
R
Output  
B
Reset  
1/2  
MC3456  
1/2  
MC3456  
Discharge  
2
8
Trigger  
Control  
3
9
11  
Control  
Output  
Threshold  
0.01 µF  
0.01 mF  
7
Gnd  
C2  
7
Gnd  
C1–  
Gnd  
1.44  
f =  
t = 1.1 R C1  
T
(R + 2R ) C  
A
B
Figure 21. Dual Astable Multivibrator  
+15 V  
10 k  
Reset  
4
10 k  
1N914  
1N914  
14  
10  
Reset  
R2  
R1  
2
5
9
12  
Output  
Threshold  
Output  
Threshold  
1/2  
MC3456  
1/2  
MC3456  
0.001  
0.001  
13  
1
6
8
Discharge  
Trigger  
Discharge  
Trigger  
Control  
Voltage  
Control  
Voltage  
11  
3
7
Gnd  
C1  
Output  
C2  
Gnd  
0.91  
(R1 + R2) C  
R2  
f =  
for C1 = C2  
Duty Cycle  
R1 + R2  
7
MOTOROLA ANALOG IC DEVICE DATA  
MC3456  
Pulse Width Modulation  
Test Sequences  
If the timer is triggered with a continuous pulse train in the  
monostable mode of operation, the charge time of the  
capacitor can be varied by changing the control voltage at  
Pin 3. In this manner, the output pulse width can be  
modulated by applying a modulating signal that controls the  
threshold voltage.  
Several timers can be connected to drive each other for  
sequential timing. An example is shown in Figure 24 where  
the sequence is started by triggering the first timer which runs  
for 10 ms. The output then switches low momentarily and  
starts the second timer which runs for 50 ms and so forth.  
Figure 22. Pulse Width Modulation Waveforms  
Figure 23. Pulse Width Modulation Circuit  
+V  
CC  
(5.0 V to 15 V)  
Modulation Input Voltage 5.0 V/cm  
R
R
L
A
4 (10)  
Reset  
V
14  
CC  
Clock Input Voltage  
5.0 V/cm  
Discharge  
Output  
1 (13)  
Output  
5 (9)  
Threshold  
1/2  
MC3456  
C
Output Voltage  
5.0 V/cm  
2 (12)  
Trigger  
6 (8)  
Control  
Capacitor Voltage  
5.0 V/cm  
3 (11)  
Clock  
Input  
Modulation  
Input  
Gnd  
7
t = 0.5 ms/cm  
(R = 10 kW, C = 0.02 mF, V  
= 15 V)  
A
CC  
Figure 24. Sequential Timing Circuit  
V
(5.0 V to 15 V)  
CC  
9.1 k  
27 k  
9.1 k  
27 k  
50 k  
Reset  
V
Reset  
V
Reset  
V
CC  
CC  
CC  
0.01 µF  
0.01  
µF  
0.01  
µF  
Threshold  
Threshold  
Threshold  
Discharge  
Control  
Control  
Control  
Discharge  
Trigger  
Discharge  
Trigger  
1/2  
MC3456  
1/2  
MC3456  
1/2  
MC3456  
Output  
Output  
Output  
0.001  
µF  
0.001 µF  
Trigger  
Gnd  
Gnd  
Gnd  
1.0 µF  
5.0  
µF  
5.0 µF  
Load  
Load  
Load  
8
MOTOROLA ANALOG IC DEVICE DATA  
MC3456  
OUTLINE DIMENSIONS  
P SUFFIX  
PLASTIC PACKAGE  
CASE 646–06  
ISSUE L  
NOTES:  
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE  
POSITION AT SEATING PLANE AT MAXIMUM  
MATERIAL CONDITION.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
3. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
4. ROUNDED CORNERS OPTIONAL.  
14  
1
8
7
B
INCHES  
MILLIMETERS  
A
F
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
MIN  
MAX  
0.770  
0.260  
0.185  
0.021  
0.070  
MIN  
18.16  
6.10  
3.69  
0.38  
1.02  
MAX  
19.56  
6.60  
4.69  
0.53  
1.78  
0.715  
0.240  
0.145  
0.015  
0.040  
L
C
0.100 BSC  
2.54 BSC  
0.052  
0.008  
0.115  
0.095  
0.015  
0.135  
1.32  
0.20  
2.92  
2.41  
0.38  
3.43  
J
N
0.300 BSC  
7.62 BSC  
SEATING  
PLANE  
K
0
10  
0
10  
0.015  
0.039  
0.39  
1.01  
H
G
D
M
D SUFFIX  
PLASTIC PACKAGE  
CASE 751–05  
(SO–14)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
–A–  
ISSUE N  
8
1
5
4
4X P  
–B–  
M
M
0.25 (0.010)  
B
MILLIMETERS  
INCHES  
G
DIM  
A
B
C
D
MIN  
4.80  
3.80  
1.35  
0.35  
0.40  
MAX  
5.00  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.196  
0.157  
0.068  
0.019  
0.049  
0.189  
0.150  
0.054  
0.014  
0.016  
R X 45  
F
C
F
SEATING  
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
–T–  
PLANE  
0.18  
0.10  
0
0.25  
0.25  
7
0.007  
0.004  
0
0.009  
0.009  
7
K
J
M
8X D  
0.25 (0.010)  
M
S
S
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
T
B
A
9
MOTOROLA ANALOG IC DEVICE DATA  
MC3456  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MC3456/D  

相关型号:

MC3456PD

Analog Waveform Generation Function, BIPolar, PDIP14
MOTOROLA

MC3456PDS

Analog Waveform Generation Function, BIPolar, PDIP14
MOTOROLA

MC3456PS

Analog Waveform Generation Function, BIPolar, PDIP14
MOTOROLA

MC3458

Amplifiers and Comparators
MOTOROLA

MC3458

DUAL DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS
ONSEMI

MC3458D

DUAL DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS
ONSEMI

MC3458D

DUAL DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS
MOTOROLA

MC3458DR2

Dual, Low Power Operational Amplifiers
ONSEMI

MC3458P1

DUAL DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS
MOTOROLA

MC3458P1

DUAL DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS
ONSEMI

MC3458U

Dual, Low Power Operational Amplifiers
MOTOROLA

MC3458_07

Dual, Low Power Operational Amplifiers
ONSEMI