MC68HC908JK1MP [MOTOROLA]

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDIP20, PLASTIC, DIP-20;
MC68HC908JK1MP
型号: MC68HC908JK1MP
厂家: MOTOROLA    MOTOROLA
描述:

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDIP20, PLASTIC, DIP-20

光电二极管
文件: 总215页 (文件大小:2324K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC08JL3/H  
Rev. 4  
MC68HC08JK1  
MC68HRC08JK1  
MC68HC08JK3  
MC68HRC08JK3  
MC68HC08JL3  
MC68HRC08JL3  
HCMOS Mic roc ontrolle r Unit  
TECHNICAL DATA  
Te c hnic a l Da ta — MC68H(R)C08JL3  
List of Se c tions  
Section 1. General Description . . . . . . . . . . . . . . . . . . . .21  
Section 2. Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Section 3. Random-Access Memory (RAM) . . . . . . . . . .37  
Section 4. Read-Only Memory (ROM) . . . . . . . . . . . . . . .39  
Section 5. Configuration Register (CONFIG) . . . . . . . . .41  
Section 6. Central Processor Unit (CPU) . . . . . . . . . . . .45  
Section 7. System Integration Module (SIM) . . . . . . . . .65  
Section 8. Oscillator (OSC) . . . . . . . . . . . . . . . . . . . . . . .89  
Section 9. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . . .95  
Section 10. Timer Interface Module (TIM) . . . . . . . . . . .105  
Section 11. Analog-to-Digital Converter (ADC) . . . . . .127  
Section 12. I/O Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
Section 13. External Interrupt (IRQ) . . . . . . . . . . . . . . .149  
Section 14. Keyboard Interrupt Module (KBI). . . . . . . .155  
Section 15. Computer Operating Properly (COP) . . . .163  
Section 16. Low Voltage Inhibit (LVI) . . . . . . . . . . . . . .169  
Section 17. Break Module (BREAK) . . . . . . . . . . . . . . .173  
Section 18. Electrical Specifications. . . . . . . . . . . . . . .181  
Section 19. Mechanical Specifications . . . . . . . . . . . . .193  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
List of Sections  
3
List of Se c tions  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
4
List of Sections  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Ta b le of Conte nts  
Section 1. General Description  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Section 2. Memory  
2.1  
2.2  
2.3  
2.4  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Section 3. Random-Access Memory (RAM)  
3.1  
3.2  
3.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Section 4. Read-Only Memory (ROM)  
4.1  
4.2  
4.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Table of Contents  
5
Ta b le of Conte nts  
Section 5. Configuration Register (CONFIG)  
5.1  
5.2  
5.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Section 6. Central Processor Unit (CPU)  
6.1  
6.2  
6.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
6.4  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.5  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
6.7  
6.8  
6.9  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Section 7. System Integration Module (SIM)  
7.1  
7.2  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
7.3  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . .69  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Clock Start-Up from POR. . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . .69  
7.3.1  
7.3.2  
7.3.3  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
6
Table of Contents  
MOTOROLA  
Table of Contents  
7.4  
7.4.1  
7.4.2  
7.4.2.1  
7.4.2.2  
7.4.2.3  
7.4.2.4  
7.4.2.5  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . .70  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . .71  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Computer Operating Properly (COP) Reset . . . . . . . . . .73  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Illegal Address Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
LVI Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
7.5  
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . .74  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . .74  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . .75  
7.5.1  
7.5.2  
7.5.3  
7.6  
7.6.1  
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . .80  
Interrupt Status Register 2. . . . . . . . . . . . . . . . . . . . . . . .80  
Interrupt Status Register 3. . . . . . . . . . . . . . . . . . . . . . . .81  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . .81  
7.6.1.1  
7.6.1.2  
7.6.2  
7.6.2.1  
7.6.2.2  
7.6.2.3  
7.6.3  
7.6.4  
7.6.5  
7.7  
7.7.1  
7.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
7.8  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . .85  
Reset Status Register (RSR) . . . . . . . . . . . . . . . . . . . . . . . .86  
Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . .88  
7.8.1  
7.8.2  
7.8.3  
Section 8. Oscillator (OSC)  
8.1  
8.2  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Table of Contents  
7
Ta b le of Conte nts  
8.3  
8.4  
X-tal Oscillator (MC68HC08xxx). . . . . . . . . . . . . . . . . . . . . . . .90  
RC Oscillator (MC68HRC08xxx) . . . . . . . . . . . . . . . . . . . . . . .91  
8.5  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . .92  
Crystal Amplifier Output Pin (OSC2/PTA6/RCCLK). . . . . . .92  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . .92  
X-tal Oscillator Clock (XTALCLK). . . . . . . . . . . . . . . . . . . . .92  
RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . . .93  
Oscillator Out 2 (2OSCOUT) . . . . . . . . . . . . . . . . . . . . . . . .93  
Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . . .93  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.5.6  
8.5.7  
8.6  
8.6.1  
8.6.2  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
8.7  
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . .94  
Section 9. Monitor ROM (MON)  
9.1  
9.2  
9.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
9.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Entering Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
9.4.1  
9.4.2  
9.4.3  
9.4.4  
9.4.5  
9.4.6  
Section 10. Timer Interface Module (TIM)  
10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
10.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
8
Table of Contents  
MOTOROLA  
Table of Contents  
10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
10.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
10.5.3.1  
10.5.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .110  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .110  
10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .111  
10.5.4.1  
10.5.4.2  
10.5.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .112  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .113  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
10.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
10.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
10.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .116  
10.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
10.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
10.10.1 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . .117  
10.10.2 TIM Counter Registers (TCNTH:TCNTL). . . . . . . . . . . . . .119  
10.10.3 TIM Counter Modulo Registers (TMODH:TMODL) . . . . . .120  
10.10.4 TIM Channel Status and Control Registers (TSC0:TSC1).121  
10.10.5 TIM Channel Registers (TCH0H/L:TCH1H/L) . . . . . . . . . .125  
Section 11. Analog-to-Digital Converter (ADC)  
11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128  
11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128  
11.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
11.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
11.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
11.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
11.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
11.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Table of Contents  
9
Ta b le of Conte nts  
11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
11.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
11.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
11.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
11.7.1 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . .132  
11.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132  
11.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .132  
11.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134  
11.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . .135  
Section 12. I/O Ports  
12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
12.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138  
12.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . .139  
12.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . .140  
12.3.3 Port A Input Pull-up Enable Register (PTAPUE) . . . . . . . .141  
12.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
12.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . .143  
12.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . .143  
12.5 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
12.5.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . .145  
12.5.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . .146  
12.5.3 Port D Control Register (PDCR). . . . . . . . . . . . . . . . . . . . .147  
Section 13. External Interrupt (IRQ)  
13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
13.4.1 IRQ1 Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
13.5 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .153  
13.6 IRQ Status and Control Register (ISCR) . . . . . . . . . . . . . . . .153  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
10  
Table of Contents  
MOTOROLA  
Table of Contents  
Section 14. Keyboard Interrupt Module (KBI)  
14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
14.4.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
14.4.2 Keyboard Status and Control Register. . . . . . . . . . . . . . . .159  
14.4.3 Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . .160  
14.5 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
14.6 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
14.7 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .161  
Section 15. Computer Operating Properly (COP)  
15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
15.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
15.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
15.4.1 2OSCOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
15.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
15.4.3 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
15.4.4 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
15.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
15.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
15.4.7 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . .166  
15.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
15.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
15.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
15.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
15.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
15.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
15.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .168  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Table of Contents  
11  
Ta b le of Conte nts  
Section 16. Low Voltage Inhibit (LVI)  
16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
16.5 LVI Control Register (CONFIG2/CONFIG1). . . . . . . . . . . . . .170  
16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
Section 17. Break Module (BREAK)  
17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
17.4.1 Flag Protection During Break Interrupts. . . . . . . . . . . . . . .176  
17.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .176  
17.4.3 TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . .176  
17.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .176  
17.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176  
17.5.1 Break Status and Control Register (BRKSCR) . . . . . . . . .177  
17.5.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .178  
17.5.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .178  
17.5.4 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . .180  
17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
17.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
17.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
Section 18. Electrical Specifications  
18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
12  
Table of Contents  
MOTOROLA  
Table of Contents  
18.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .182  
18.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .183  
18.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
18.6 5V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . .184  
18.7 5V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
18.8 5V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . .186  
18.9 3V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . .187  
18.10 3V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
18.11 3V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . .189  
18.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
18.13 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
Section 19. Mechanical Specifications  
19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
19.3 20-Pin PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
19.4 20-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
19.5 28-Pin PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
19.6 28-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Table of Contents  
13  
Ta b le of Conte nts  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
14  
Table of Contents  
Te c hnic a l Da ta — MC68H(R)C08JL3  
List of Fig ure s  
Figure  
Title  
Page  
1-1  
1-2  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
MCU Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
2-1  
2-2  
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . .30  
5-1  
5-2  
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . .42  
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . .43  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . .50  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
7-9  
SIM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
SIM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
Interrupt Entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
7-10 Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
7-11 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . .78  
7-12 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . .80  
7-13 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . . .80  
7-14 Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . . .81  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
List of Figures  
15  
List of Fig ure s  
Figure  
Title  
Page  
7-15 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
7-16 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . .83  
7-17 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . .83  
7-18 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
7-19 Stop Mode Recovery from Interrupt or Break. . . . . . . . . . . . . .85  
7-20 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . .85  
7-21 Reset Status Register (RSR) . . . . . . . . . . . . . . . . . . . . . . . . . .87  
7-22 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . . .88  
8-1  
8-2  
X-tal Oscillator External Connections . . . . . . . . . . . . . . . . . . . .90  
RC Oscillator External Connections . . . . . . . . . . . . . . . . . . . . .91  
9-1  
9-2  
9-3  
9-4  
9-5  
Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Sample Monitor Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
10-1 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
10-2 TIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .108  
10-3 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . .112  
10-4 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . .117  
10-5 TIM Counter Registers (TCNTH:TCNTL) . . . . . . . . . . . . . . . .120  
10-6 TIM Counter Modulo Registers (TMODH:TMODL). . . . . . . . .121  
10-7 TIM Channel Status and Control Registers (TSC0:TSC1) . . .122  
10-8 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
10-9 TIM Channel Registers (TCH0H/L:TCH1H/L). . . . . . . . . . . . .126  
11-1 ADC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . .128  
11-2 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
11-3 ADC Status and Control Register (ADSCR). . . . . . . . . . . . . .132  
11-4 ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . . .135  
11-5 ADC Input Clock Register (ADICLK) . . . . . . . . . . . . . . . . . . .135  
12-1 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .138  
12-2 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . .139  
12-3 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . .140  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
16  
List of Figures  
MOTOROLA  
List of Figures  
Figure  
Title  
Page  
12-4 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
12-5 Port A Input Pull-up Enable Register (PTAPUE) . . . . . . . . . .142  
12-6 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . .143  
12-7 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . .143  
12-8 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144  
12-9 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . .145  
12-10 Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . .146  
12-11 Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
12-12 Port D Control Register (PDCR). . . . . . . . . . . . . . . . . . . . . . .147  
13-1 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . .151  
13-2 IRQ I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .151  
13-3 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . .153  
13-4 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . .154  
14-1 KBI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
14-2 Keyboard Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . .156  
14-3 Keyboard Status and Control Register (KBSCR) . . . . . . . . . .159  
14-4 Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . .160  
15-1 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
15-2 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . .166  
15-3 COP Control Register (COPCTL). . . . . . . . . . . . . . . . . . . . . .167  
16-1 LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
16-2 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . .170  
16-3 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . .171  
17-1 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . .175  
17-2 Break I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . .175  
17-3 Break Status and Control Register (BRKSCR). . . . . . . . . . . .177  
17-4 Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . .178  
17-5 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . .178  
17-6 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . .178  
17-7 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . .180  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
List of Figures  
17  
List of Fig ure s  
Figure  
Title  
Page  
18-1 RC vs. Frequency (5V @25°C) . . . . . . . . . . . . . . . . . . . . . . .186  
18-2 RC vs. Frequency (3V @25°C) . . . . . . . . . . . . . . . . . . . . . . .189  
18-3 Typical Operating I , with all Modules Turned On (25 °C) . .190  
DD  
18-4 Typical Wait Mode I , with ADC Turned On (25 °C) . . . . . .190  
DD  
18-5 Typical Stop Mode I , with all Modules Disabled (25 °C). . .190  
DD  
19-1 20-Pin PDIP (Case #738) . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
19-2 20-Pin SOIC (Case #751D) . . . . . . . . . . . . . . . . . . . . . . . . . .194  
19-3 28-Pin PDIP (Case #710) . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
19-4 28-Pin SOIC (Case #751F). . . . . . . . . . . . . . . . . . . . . . . . . . .195  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
18  
List of Figures  
MOTOROLA  
Te c hnic a l Da ta — MC68H(R)C08JL3  
List of Ta b le s  
Table  
Title  
Page  
1-1  
1-2  
Summary of Device Variations . . . . . . . . . . . . . . . . . . . . . . . . .21  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
2-1  
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
6-1  
6-2  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
7-1  
7-2  
7-3  
7-4  
Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
9-8  
9-9  
Monitor Mode Entry Requirements and Options. . . . . . . . . . . .98  
Monitor Mode Vector Differences . . . . . . . . . . . . . . . . . . . . . . .99  
Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . .100  
READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . .102  
WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . .102  
IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . .103  
IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . .103  
READSP (Read Stack Pointer) Command. . . . . . . . . . . . . . .104  
RUN (Run User Program) Command. . . . . . . . . . . . . . . . . . .104  
10-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
10-2 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
10-3 Mode, Edge, and Level Selection. . . . . . . . . . . . . . . . . . . . . .124  
11-1 MUX Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134  
11-2 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
List of Tables  
19  
List of Ta b le s  
Table  
Title  
Page  
12-1 Port A Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142  
12-2 Port B Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144  
12-3 Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
18-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .182  
18-2 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
18-3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
18-4 DC Electrical Characteristics (5V) . . . . . . . . . . . . . . . . . . . . .184  
18-5 Control Timing (5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
18-6 Oscillator Component Specifications (5V) . . . . . . . . . . . . . . .186  
18-7 DC Electrical Characteristics (3V) . . . . . . . . . . . . . . . . . . . . .187  
18-8 Control Timing (3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
18-9 Oscillator Component Specifications (3V) . . . . . . . . . . . . . . .189  
18-10 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
20  
List of Tables  
MOTOROLA  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 1. Ge ne ra l De sc rip tion  
1.1 Conte nts  
1.2  
1.3  
1.4  
1.5  
1.6  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
1.2 Introd uc tion  
The MC68H(R)C08JL3 is a member of the low-cost, high-performance  
M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08  
Family is based on the customer-specified integrated circuit (CSIC)  
design strategy. All MCUs in the family use the enhanced M68HC08  
central processor unit (CPU08) and are available with a variety of  
modules, memory sizes and types, and package types.  
Table 1-1. Summary of Device Variations  
Device  
ROM Size  
4096 bytes  
4096 bytes  
1536 bytes  
Pin Count  
28 pins  
MC68H(R)C08JL3  
MC68H(R)C08JK3  
MC68H(R)C08JK1  
20 pins  
20 pins  
All references to the MC68H(R)C08JL3 in this data book apply equally  
to the MC68H(R)C08JK3 and MC68H(R)C08JK1, unless otherwise  
stated.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
General Description  
21  
Ge ne ra l De sc rip tion  
1.3 Fe a ture s  
Features of the MC68H(R)C08JL3 include the following:  
• High-performance M68HC08 architecture  
• Fully upward-compatible object code with M6805, M146805, and  
M68HC05 Families  
• Low-power design; fully static with stop and wait modes  
• 5V and 3V operating voltages  
• 8MHz internal bus operation  
• RC-oscillator circuit or crystal-oscillator options  
1
• ROM security  
• User read-only memory (ROM)  
– 4096 bytes for MC68H(R)C08JL3/JK3  
– 1536 bytes for MC68H(R)C08JK1  
• 128 bytes of on-chip random-access memory (RAM)  
• 2-channel, 16-bit timer interface module (TIM)  
• 12-channel, 8-bit analog-to-digital converter (ADC)  
• 23 general purpose I/O ports for MC68H(R)C08JL3:  
– 7 keyboard interrupt with internal pull-up  
– 10 LED drivers  
– 2 × 25mA open-drain I/O with pull-up  
– 2 ICAP/OCAP/PWM  
• 15 general purpose I/O ports for MC68H(R)C08JK3/JK1:  
– 1 keyboard interrupt with internal pull-up  
(with RC oscillator option selected)  
– 4 LED drivers  
– 2 × 25mA open-drain I/O with pull-up  
– 2 ICAP/OCAP/PWM  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or  
copying the ROM difficult for unauthorized users.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
22  
General Description  
MOTOROLA  
General Description  
MCU Block Diagram  
• System protection features:  
– Optional computer operating properly (COP) reset  
– Optional low-voltage detection with reset and selectable trip  
points for 3V and 5V operation.  
– Illegal opcode detection with reset  
– Illegal address detection with reset  
• Master reset pin with internal pull-up and power-on reset  
• IRQ1 with programmable pull-up and schmitt-trigger input  
• 28-pin PDIP and 28-pin SOIC packages for MC68H(R)C08JL3  
• 20-pin PDIP and 20-pin SOIC packages for  
MC68H(R)C08JK3/JK1  
Features of the CPU08 include the following:  
• Enhanced HC05 programming model  
• Extensive loop control functions  
• 16 addressing modes (eight more than the HC05)  
• 16-bit index register and stack pointer  
• Memory-to-memory data transfers  
• Fast 8 × 8 multiply instruction  
• Fast 16/8 divide instruction  
• Binary-coded decimal (BCD) instructions  
• Optimization for controller applications  
• Efficient C language support  
1.4 MCU Bloc k Dia g ra m  
Figure 1-1 shows the structure of the MC68H(R)C08JL3.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
General Description  
23  
PTD[0:7]  
PTB[0:7]  
VDD  
VSS  
POWER SUPPLY  
AND  
VOLTAGE REGULATOR  
PTD  
PTB  
DDRD  
DDRB  
OSC2/RCCLK/PTA6  
OSC1  
X-TAL OSCILLATOR  
OR  
RC-OSCILLATOR  
CPU CONTROL  
ALU  
68HC08 CPU  
SYSTEM INTEGRATION  
MODULE  
ACCUM  
RST  
CPU REGISTERS  
INDEX REG  
MODE SELECT  
MODULE  
IRQ1  
STK PNTR  
ADC[0:7]/  
PTB[0:7]  
BREAK  
MODULE  
PROGRAM COUNTER  
COND CODE REG 1 1 H I N Z C  
ADC[11:8]/  
PTD[0:3]  
POWER-ON RESET  
MODULE  
V
TCH0/PTD4  
TCH1/PTD5  
16-BIT  
TIMER MODULE  
MC68H(R)C08JL3/JK3: 4096 BYTES  
MC68H(R)C08JK1: 1536 BYTES  
USER ROM  
128 BYTES RAM  
COP  
MODULE  
MONITOR ROM  
960 BYTES  
RST, IRQ1: PIN HAS INTERNAL 30K PULL-UP  
PTD[6:7]: PINS HAVE 25mA OPEN-DRAIN OUTPUT & PROGRAMMABLE 5K PULL-UP  
PTA[0:5], PTD[2:3], PTD[6:7]: PIN HAS LED DRIVE  
PTA[0:6]: PINS HAVE PROGRAMMABLE KEYBOARD INTERRUPT AND PULL-UP  
PTA[0:5] and PTD[0:1]: NOT AVAILABLE ON 20-PIN DEVICES – MC68H(R)C08JK3/JK1  
Figure 1-1. MCU Block Diagram  
General Description  
Pin Assignments  
1.5 Pin Assig nm e nts  
The MC68H(R)C08JL3 is available in 28-pin packages and the  
MC68H(R)C08JK3/JK1 in 20-pin packages. Figure 1-2 shows the pin  
assignment for the two packages.  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
IRQ1  
PTA0  
RST  
2
PTA5  
PTD4  
PTD5  
PTD2  
PTA4  
PTD3  
PTB0  
PTB1  
PTD1  
PTB2  
PTB3  
PTD0  
PTB4  
3
VSS  
4
OSC1  
OSC2/PTA6  
PTA1  
5
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
10  
IRQ1  
VSS  
RST  
6
PTD4  
PTD5  
PTD2  
PTD3  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
7
VDD  
OSC1  
8
PTA2  
OSC2/PTA6  
VDD  
9
PTA3  
10  
11  
12  
13  
14  
PTB7  
PTB7  
PTB6  
PTB6  
PTB5  
PTB5  
PTD7  
PTD7  
PTD6  
PTD6  
28-PIN ASSIGNMENT  
MC68H(R)C08JL3  
20-PIN ASSIGNMENT  
MC68H(R)C08JK3/JK1  
Pins not bonded out on 20-pin package:  
PTA0, PTA1, PTA2, PTA3, PTA4, PTA5,  
PTD0, PTD1.  
Figure 1-2. MCU Pin Assignments  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
General Description  
25  
Ge ne ra l De sc rip tion  
1.6 Pin Func tions  
Description of the pin functions are provided in Table 1-2.  
Table 1-2. Pin Functions  
PIN NAME  
VDD  
PIN DESCRIPTION  
IN/OUT  
In  
VOLTAGE LEVEL  
5V or 3V  
Power supply.  
VSS  
Power supply ground  
Out  
0V  
RESET input, active low.  
With Internal pull-up and schmitt trigger input.  
RST  
Input  
VDD  
External IRQ pin.  
With software programmable internal pull-up and  
schmitt trigger input.  
VDD to VDD+V  
IRQ1  
Input  
HI  
This pin is also used for mode entry selection.  
OSC1  
X-tal or RC oscillator input.  
In  
Analog  
Analog  
For X-tal oscillator option:  
X-tal oscillator output, this is the inverting OSC1  
signal.  
Out  
OSC2  
For RC oscillator option:  
Default is RCCLK output.  
In/Out  
VDD  
Shared with PTA6/KBI6, with programmable pull-up.  
7-bit general purpose I/O port.  
In/Out  
In  
VDD  
VDD  
PTA[0:6]  
PTB[0:7]  
Shared with 7 keyboard interrupts KBI[0:6].  
Each pin has programmable internal pull-up device.  
8-bit general purpose I/O port.  
In  
VDD  
In/Out  
In  
VDD  
Shared with 8 ADC inputs, ADC[0:7].  
8-bit general purpose I/O port.  
Analog  
VDD  
In/Out  
Input  
In/Out  
PTD[3:0] shared with 4 ADC inputs, ADC[8:11].  
PTD[4:5] shared with TIM channels, TCH0 and TCH1.  
Analog  
VDD  
PTD[0:7]  
PTD[6:7] can be configured as 25mA open-drain  
output with pull-up.  
In/Out  
VDD  
NOTE: On the 20-pin package, the following pins are not available:  
PTA0, PTA1, PTA2, PTA3, PTA4, PTA5, PTD0, and PTD1.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
26  
General Description  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 2. Me m ory  
2.1 Conte nts  
2.2  
2.3  
2.4  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
2.2 Introd uc tion  
The CPU08 can address 64 Kbytes of memory space. The memory  
map, shown in Figure 2-1, includes:  
• 4096 bytes of user ROM for MC68H(R)C08JL3/JK3  
1536 bytes of user ROM for MC68H(R)C08JK1  
• 128 bytes of RAM  
• 48 bytes of user-defined vectors  
• 960 bytes of Monitor ROM  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Memory  
27  
Me m ory  
$0000  
$003F  
I/O REGISTERS  
64 BYTES  
$0040  
$007F  
RESERVED  
64 BYTES  
$0080  
$00FF  
RAM  
128 BYTES  
$0100  
$EBFF  
UNIMPLEMENTED  
60160 BYTES  
$0100  
$F5FF  
UNIMPLEMENTED  
62720 BYTES  
$EC00  
$FBFF  
USER ROM  
MC68H(R)C08JL3/JK3  
4096 BYTES  
USER ROM  
MC68H(R)C08JK1  
1536 BYTES  
$F600  
$FBFF  
$FC00  
$FDFF  
MONITOR ROM  
512 BYTES  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
BREAK STATUS REGISTER (BSR)  
RESET STATUS REGISTER (RSR)  
RESERVED (UBAR)  
BREAK FLAG CONTROL REGISTER (BFCR)  
INTERRUPT STATUS REGISTER 1 (INT1)  
INTERRUPT STATUS REGISTER 2 (INT2)  
INTERRUPT STATUS REGISTER 3 (INT3)  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
BREAK ADDRESS HIGH REGISTER (BRKH)  
BREAK ADDRESS LOW REGISTER (BRKL)  
BREAK STATUS AND CONTROL REGISTER (BRKSCR)  
RESERVED  
$FE10  
$FFCF  
MONITOR ROM  
448 BYTES  
$FFD0  
$FFFF  
USER VECTORS  
48 BYTES  
Figure 2-1. Memory Map  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
28  
Memory  
Memory  
I/O Section  
2.3 I/ O Se c tion  
Addresses $0000–$003F, shown in Figure 2-2, contain most of the  
control, status, and data registers. Additional I/O registers have the  
following addresses:  
• $FE00 (Break Status Register, BSR)  
• $FE01 (Reset Status Register, RSR)  
• $FE02 (Reserved, SUBAR)  
• $FE03 (Break Flag Control Register, BFCR)  
• $FE04 (Interrupt Status Register 1, INT1)  
• $FE05 (Interrupt Status Register 2, INT2)  
• $FE06 (Interrupt Status Register 3, INT3)  
• $FE07 (Reserved)  
• $FE08 (Reserved)  
• $FE09 (Reserved)  
• $FE0A (Reserved)  
• $FE0B (Reserved)  
• $FE0C (Break Address Register High, BRKH)  
• $FE0D (Break Address Register Low, BRKL)  
• $FE0E (Break Status and Control Register, BRKSCR)  
• $FE0F (Reserved)  
• $FFFF (COP Control Register, COPCTL)  
2.4 Monitor ROM  
The 960 bytes at addresses $FC00–$FDFF and $FE10–$FFCF are  
reserved ROM addresses that contain the instructions for the monitor  
functions. (See Section 9. Monitor ROM (MON).)  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Memory  
29  
Me m ory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Port A Data Register  
(PTA)  
$0000  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTB7  
PTB6  
PTB5  
PTB2  
PTB1  
PTB0  
Port B Data Register  
(PTB)  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
Unimplemented Write:  
Read:  
PTD7  
0
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
Port D Data Register  
Write:  
(PTD)  
Reset:  
Read:  
Unaffected by reset  
DDRA6  
DDRA5  
DDRA4  
DDRA3  
DDRA2  
DDRA1  
DDRA0  
Data Direction Register A  
Write:  
(DDRA)  
Reset:  
Read:  
0
DDRB7  
0
0
DDRB6  
0
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Data Direction Register B  
Write:  
(DDRB)  
Reset:  
Read:  
Unimplemented Write:  
Read:  
DDRD7  
0
DDRD6  
0
DDRD5  
0
DDRD4  
0
DDRD3  
0
DDRD2  
0
DDRD1  
0
DDRD0  
0
Data Direction Register D  
Write:  
(DDRD)  
Reset:  
Read:  
$0008  
Unimplemented Write:  
$0009  
Read:  
0
0
0
0
0
0
0
0
SLOWD7 SLOWD6 PTDPU7 PTDPU6  
Port D Control Register  
$000A  
Write:  
(PDCR)  
Reset:  
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 5)  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
30  
Memory  
Memory  
Monitor ROM  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
$000B  
Unimplemented Write:  
$000C  
Read:  
Port A Input Pull-up  
PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
$000D  
Enable Register Write:  
(PTAPUE)  
Reset:  
0
0
0
0
0
0
0
0
$000E  
$0019  
Read:  
Write:  
Unimplemented  
Read:  
0
0
0
0
KEYF  
0
ACKK  
0
Keyboard Status and  
MODEK  
IMASKK  
$001A  
Control Register Write:  
(KBSCR)  
Reset:  
0
0
0
KBIE6  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
0
KBIE1  
0
0
KBIE0  
0
Read:  
Keyboard Interrupt  
KBIE2  
0
$001B  
$001C  
Enable Register Write:  
(KBIER)  
Reset:  
0
Read:  
Unimplemented Write:  
Read:  
0
0
0
0
IRQF1  
0
ACK1  
0
IRQ Status and Control  
IMASK1  
MODE1  
$001D  
$001E  
$001F  
Register Write:  
(INTSCR)  
Reset:  
0
0
R
0
0
R
0
0
LVIT1  
0*  
0
LVIT0  
0*  
0
0
Read:  
IRQPUD  
R
R
R
Configuration Register 2  
Write:  
Reset:  
Read:  
Write:  
Reset:  
(CONFIG2)  
0
COPRS  
0
0
SSREC  
0
0
STOP  
0
0
COPD  
0
R
R
LVID  
R
Configuration Register 1  
(CONFIG1)  
0
0
0
0
† One-time writable register after each reset. * LVIT1 and LVIT0 reset to logic 0 by a power-on reset (POR) only.  
Read:  
TOF  
0
0
TRST  
0
0
TIM Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
0
PS0  
0
$0020  
Register Write:  
(TSC)  
Reset:  
0
0
1
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 5)  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Memory  
31  
Me m ory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
TIM Counter Register  
High Write:  
$0021  
(TCNTH)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
TIM Counter Register  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
Low Write:  
(TCNTL)  
Reset:  
Read:  
0
Bit15  
1
0
Bit14  
1
0
Bit13  
1
0
Bit12  
1
0
Bit11  
1
0
Bit10  
1
0
Bit9  
1
0
TIM Counter Modulo  
Bit8  
Register High Write:  
(TMODH)  
Reset:  
1
Read:  
TIM Counter Modulo  
Bit7  
Bit6  
1
Bit5  
1
Bit4  
1
Bit3  
1
Bit2  
1
Bit1  
1
Bit0  
Register Low Write:  
(TMODL)  
Reset:  
1
CH0F  
0
1
CH0MAX  
0
Read:  
TIM Channel 0 Status and  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
Control Register Write:  
(TSC0)  
Reset:  
0
Read:  
TIM Channel 0  
Bit15  
Bit7  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Register High Write:  
(TCH0H)  
Reset:  
Indeterminate after reset  
Bit4 Bit3  
Indeterminate after reset  
Read:  
TIM Channel 0  
Bit6  
Bit5  
0
Bit2  
Bit1  
Bit0  
Register Low Write:  
(TCH0L)  
Reset:  
Read:  
CH1F  
TIM Channel 1 Status and  
CH1MAX  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
Control Register Write:  
0
0
(TSC1)  
Reset:  
0
0
Read:  
TIM Channel 1  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Register High Write:  
(TCH1H)  
Reset:  
Indeterminate after reset  
Bit4 Bit3  
Read:  
TIM Channel 1  
Bit7  
Bit6  
Bit5  
Bit2  
Bit1  
Bit0  
Register Low Write:  
(TCH1L)  
Reset:  
Indeterminate after reset  
R
= Unimplemented  
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 5)  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
32  
Memory  
Memory  
Monitor ROM  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
$002B  
$003B  
Read:  
Write:  
Unimplemented  
Read: COCO  
ADC Status and Control  
Register Write:  
AIEN  
ADCO  
CH4  
CH3  
CH2  
CH1  
CH0  
$003C  
$003D  
(ADSCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
1
1
1
1
1
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
ADC Data Register  
(ADR)  
Indeterminate after reset  
0
0
0
0
0
0
0
0
ADIV2  
0
ADIV1  
0
ADIV0  
0
ADC Input Clock Register  
(ADICLK)  
$003E  
$003F  
0
0
Unimplemented Write:  
Read:  
SBSW  
See note  
0
R
R
R
R
R
R
R
0
Break Status Register  
$FE00  
Write:  
(BSR)  
Reset:  
Note: Writing a logic 0 clears SBSW.  
Read:  
Write:  
POR:  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
Reset Status Register  
$FE01  
(RSR)  
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
$FE02  
$FE03  
$FE04  
Reserved Write:  
Read:  
Break Flag Control  
BCFE  
R
R
R
R
R
R
R
Register Write:  
(BFCR)  
Reset:  
0
0
Read:  
IF5  
R
IF4  
R
IF3  
R
0
R
0
IF1  
0
R
0
0
R
0
Interrupt Status Register 1  
Write:  
R
0
R
(INT1)  
Reset:  
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 5)  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Memory  
33  
Me m ory  
Addr.  
Register Name  
Bit 7  
IF14  
R
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Interrupt Status Register 2  
(INT2)  
$FE05  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
0
0
0
0
0
0
0
0
IF15  
R
Interrupt Status Register 3  
(INT3)  
$FE06  
R
R
0
R
0
R
0
R
0
R
0
R
0
0
0
$FE07  
R
R
R
R
R
R
R
R
Reserved Write:  
$FE0B  
Read:  
Break Address High  
Bit15  
0
Bit14  
0
Bit13  
0
Bit12  
0
Bit11  
0
Bit10  
0
Bit9  
0
Bit8  
0
$FE0C  
$FE0D  
$FE0E  
Register Write:  
(BRKH)  
Reset:  
Read:  
Break Address low  
Bit7  
0
Bit6  
0
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Register Write:  
(BRKL)  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
BRKE  
0
BRKA  
0
Register Write:  
(BRKSCR)  
Reset:  
0
0
0
0
0
0
Read:  
Low byte of reset vector  
COP Control Register  
$FFFF  
Write:  
Writing clears COP counter (any value)  
Unaffected by reset  
(COPCTL)  
Reset:  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 5)  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
34  
Memory  
Memory  
Monitor ROM  
.
Table 2-1. Vector Addresses  
Vector Priority Vector Address  
Vector  
Lowest  
$FFDE  
ADC Conversion Complete Vector (High)  
ADC Conversion Complete Vector (Low)  
Keyboard Vector (High)  
IF15  
IF14  
$FFDF  
$FFE0  
$FFE1  
Keyboard Vector (Low)  
IF13  
to  
Not Used  
IF6  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
TIM Overflow Vector (High)  
TIM Overflow Vector (Low)  
TIM Channel 1 Vector (High)  
TIM Channel 1 Vector (Low)  
TIM Channel 0 Vector (High)  
TIM Channel 0 Vector (Low)  
Not Used  
IF5  
IF4  
IF3  
IF2  
IF1  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
IRQ Vector (High)  
IRQ Vector (Low)  
SWI Vector (High)  
SWI Vector (Low)  
Reset Vector (High)  
Highest  
Reset Vector (Low)  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Memory  
35  
Me m ory  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
36  
Memory  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 3. Ra nd om -Ac c e ss Me m ory (RAM)  
3.1 Conte nts  
3.2  
3.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
3.2 Introd uc tion  
This section describes the 128 bytes of RAM.  
3.3 Func tiona l De sc rip tion  
Addresses $0080 through $00FF are RAM locations. The location of the  
stack RAM is programmable. The 16-bit stack pointer allows the stack to  
be anywhere in the 64-Kbyte memory space.  
NOTE: For correct operation, the stack pointer must point only to RAM  
locations.  
Within page zero are 128 bytes of RAM. Because the location of the  
stack RAM is programmable, all page zero RAM locations can be used  
for I/O control and user data or code. When the stack pointer is moved  
from its reset location at $00FF, direct addressing mode instructions can  
access efficiently all page zero RAM locations. Page zero RAM,  
therefore, provides ideal locations for frequently accessed global  
variables.  
Before processing an interrupt, the CPU uses five bytes of the stack to  
save the contents of the CPU registers.  
NOTE: For M6805 compatibility, the H register is not stacked.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Random-Access Memory (RAM)  
37  
Ra nd om -Ac c e ss Me m ory (RAM)  
During a subroutine call, the CPU uses two bytes of the stack to store  
the return address. The stack pointer decrements during pushes and  
increments during pulls.  
NOTE: Be careful when using nested subroutines. The CPU may overwrite data  
in the RAM during a subroutine or during the interrupt stacking  
operation.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
38  
Random-Access Memory (RAM)  
MOTOROLA  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 4. Re a d -Only Me m ory (ROM)  
4.1 Conte nts  
4.2  
4.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
4.2 Introd uc tion  
This section describes the 4096 or 1536 bytes of read-only memory  
(ROM) and 48 bytes of user vectors.  
4.3 Func tiona l De sc rip tion  
These addresses are user ROM locations:  
$EC00–$FBFF; user memory, 4096 bytes on MC68H(R)C08JL3/JK3.  
$F600–$FBFF; user memory, 1536 bytes on MC68H(R)C08JK1.  
$FFD0–$FFFF (These locations are reserved for user-defined interrupt  
and reset vectors.)  
1
NOTE: A security feature prevents viewing of the ROM contents.  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or  
copying the ROM contents difficult for unauthorized users.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Read-Only Memory (ROM)  
39  
Re a d -Only Me m ory (ROM)  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
40  
Read-Only Memory (ROM)  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 5. Config ura tion Re g iste r (CONFIG)  
5.1 Conte nts  
5.2  
5.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
5.2 Introd uc tion  
This section describes the configuration registers (CONFIG1 and  
CONFIG2). The configuration registers enables or disables the following  
options:  
• Stop mode recovery time (32 × 2OSCOUT cycles or  
4096 × 2OSCOUT cycles)  
• STOP instruction  
• Computer operating properly module (COP)  
13  
4
• COP reset period (COPRS), (2 –2 ) × 2OSCOUT or  
18  
4
(2 –2 ) × 2OSCOUT  
• Enable LVI circuit  
• Select LVI trip voltage  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Configuration Register (CONFIG)  
41  
Cong ura tion Re g iste r (CONFIG)  
5.3 Func tiona l De sc rip tion  
The configuration register is used in the initialization of various options.  
The configuration register can be written once after each reset. All of the  
configuration register bits are cleared during reset. Since the various  
options affect the operation of the MCU it is recommended that this  
register be written immediately after reset. The configuration register is  
located at $001E and $001F, and may be read at anytime.  
NOTE: The CONFIG registers are one-time writable by the user after each  
reset. Upon a reset, the CONFIG registers default to predetermined  
settings as shown in Figure 5-1 and Figure 5-2.  
Address:  
$001E  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
POR:  
IRQPUD  
R
R
LVIT1  
LVIT0  
R
R
Not affected Not affected  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 5-1. Configuration Register 2 (CONFIG2)  
IRQPUD — IRQ1 Pin Pull-up control bit  
1 = Internal Pull-up is disconnected  
0 = Internal Pull-up is connected between IRQ1 pin and V  
DD  
LVIT1, LVIT0 — Low Voltage Inhibit trip voltage selection bits  
Detail description of the LVI control signals is given in Section 16.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
42  
Configuration Register (CONFIG)  
MOTOROLA  
Configuration Register (CONFIG)  
Functional Description  
Address:  
$001F  
Bit 7  
6
5
R
0
4
LVID  
0
3
R
0
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS  
R
0
0
R
= Reserved  
Figure 5-2. Configuration Register 1 (CONFIG1)  
COPRS — COP reset period selection bit  
13  
4
1 = COP reset cycle = (2 – 2 ) × 2OSCOUT  
18  
4
0 = COP reset cycle = (2 – 2 ) × 2OSCOUT  
LVID — Low Voltage Inhibit Disable Bit  
1 = Low Voltage Inhibit disabled  
0 = Low Voltage Inhibit enabled  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of  
32 × OSCXCLK cycles instead of a 4096 × 2OSCOUT cycle delay.  
1 = Stop mode recovery after 32 × 2OSCOUT cycles  
0 = Stop mode recovery after 4096 × 2OSCOUT cycles  
NOTE: Exiting stop mode by pulling reset will result in the long stop recovery.  
If using an external crystal, do not set the SSREC bit.  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module. (See Section 15. Computer  
Operating Properly (COP).)  
1 = COP module disabled  
0 = COP module enabled  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Configuration Register (CONFIG)  
43  
Cong ura tion Re g iste r (CONFIG)  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
44  
Configuration Register (CONFIG)  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 6. Ce ntra l Proc e ssor Unit (CPU)  
6.1 Conte nts  
6.2  
6.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
6.4  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.5  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
6.7  
6.8  
6.9  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
6.2 Introd uc tion  
The M68HC08 CPU (central processor unit) is an enhanced and fully  
object-code-compatible version of the M68HC05 CPU. The CPU08  
Reference Manual (Motorola document order number CPU08RM/AD)  
contains a description of the CPU instruction set, addressing modes,  
and architecture.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
45  
Ce ntra l Proc e ssor Unit (CPU)  
6.3 Fe a ture s  
• Object code fully upward-compatible with M68HC05 Family  
• 16-bit stack pointer with stack manipulation instructions  
• 16-bit index register with x-register manipulation instructions  
• 8-MHz CPU internal bus frequency  
• 64-Kbyte program/data memory space  
• 16 addressing modes  
• Memory-to-memory data moves without using accumulator  
• Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
• Enhanced binary-coded decimal (BCD) data handling  
• Modular architecture with expandable internal bus definition for  
extension of addressing range beyond 64 Kbytes  
• Low-power stop and wait modes  
6.4 CPU Re g iste rs  
Figure 6-1 shows the five CPU registers. CPU registers are not part of  
the memory map.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
46  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
0
V
1
1
H
I
N
Z
C
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 6-1. CPU Registers  
6.4.1 Ac c um ula tor  
The accumulator is a general-purpose 8-bit register. The CPU uses the  
accumulator to hold operands and the results of arithmetic/logic  
operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 6-2. Accumulator (A)  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
47  
Ce ntra l Proc e ssor Unit (CPU)  
6.4.2 Ind e x Re g iste r  
The 16-bit index register allows indexed addressing of a 64-Kbyte  
memory space. H is the upper byte of the index register, and X is the  
lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the  
index register to determine the conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 6-3. Index Register (H:X)  
6.4.3 Sta c k Pointe r  
The stack pointer is a 16-bit register that contains the address of the next  
location on the stack. During a reset, the stack pointer is preset to  
$00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The  
stack pointer decrements as data is pushed onto the stack and  
increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the  
stack pointer can function as an index register to access data on the  
stack. The CPU uses the contents of the stack pointer to determine the  
conditional address of the operand.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
48  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 6-4. Stack Pointer (SP)  
NOTE: The location of the stack is arbitrary and may be relocated anywhere in  
RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct  
address (page 0) space. For correct operation, the stack pointer must  
point only to RAM locations.  
6.4.4 Prog ra m Counte r  
The program counter is a 16-bit register that contains the address of the  
next instruction or operand to be fetched.  
Normally, the program counter automatically increments to the next  
sequential memory location every time an instruction or operand is  
fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector  
address located at $FFFE and $FFFF. The vector address is the  
address of the first instruction to be executed after exiting the reset state.  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with Vector from $FFFE and $FFFF  
Figure 6-5. Program Counter (PC)  
6.4.5 Cond ition Cod e Re g iste r  
The 8-bit condition code register contains the interrupt mask and five  
flags that indicate the results of the instruction just executed. Bits 6 and  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
49  
Ce ntra l Proc e ssor Unit (CPU)  
5 are set permanently to logic 1. The following paragraphs describe the  
functions of the condition code register.  
Bit 7  
6
1
1
5
1
1
4
H
X
3
I
2
N
X
1
Z
X
Bit 0  
Read:  
Write:  
Reset:  
V
C
X
X
1
X = Indeterminate  
Figure 6-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow  
occurs. The signed branch instructions BGT, BGE, BLE, and BLT use  
the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between  
accumulator bits 3 and 4 during an add-without-carry (ADD) or add-  
with-carry (ADC) operation. The half-carry flag is required for binary-  
coded decimal (BCD) arithmetic operations. The DAA instruction uses  
the states of the H and C flags to determine the appropriate correction  
factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
50  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are  
disabled. CPU interrupts are enabled when the interrupt mask is  
cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but  
before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE: To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is  
serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from  
the stack and restores the interrupt mask from the stack. After any  
reset, the interrupt mask is set and can be cleared only by the clear  
interrupt mask software instruction (CLI).  
N — Negative flag  
The CPU sets the negative flag when an arithmetic operation, logic  
operation, or data manipulation produces a negative result, setting bit  
7 of the result.  
1 = Negative result  
0 = Non-negative result  
Z — Zero flag  
The CPU sets the zero flag when an arithmetic operation, logic  
operation, or data manipulation produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
51  
Ce ntra l Proc e ssor Unit (CPU)  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation  
produces a carry out of bit 7 of the accumulator or when a subtraction  
operation requires a borrow. Some instructions — such as bit test and  
branch, shift, and rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
6.5 Arithm e tic / Log ic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the  
instruction set.  
Refer to the CPU08 Reference Manual (Motorola document order  
number CPU08RM/AD) for a description of the instructions and  
addressing modes and more detail about the architecture of the CPU.  
6.6 Low-Powe r Mod e s  
The WAIT and STOP instructions put the MCU in low power-consumption  
standby modes.  
6.6.1 Wa it Mod e  
The WAIT instruction:  
• Clears the interrupt mask (I bit) in the condition code register,  
enabling interrupts. After exit from wait mode by interrupt, the I bit  
remains clear. After exit by reset, the I bit is set.  
• Disables the CPU clock  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
52  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU During Break Interrupts  
6.6.2 Stop Mod e  
The STOP instruction:  
• Clears the interrupt mask (I bit) in the condition code register,  
enabling external interrupts. After exit from stop mode by external  
interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
• Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator  
stabilization delay.  
6.7 CPU During Bre a k Inte rrup ts  
If a break module is present on the MCU, the CPU starts a break  
interrupt by:  
• Loading the instruction register with the SWI instruction  
• Loading the program counter with $FFFC:$FFFD or with  
$FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the  
break interrupt and returns the MCU to normal operation if the break  
interrupt has been deasserted.  
6.8 Instruc tion Se t Sum m a ry  
6.9 Op c od e Ma p  
See Table 6-2.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
53  
Ce ntra l Proc e ssor Unit (CPU)  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Operation  
Form  
Description  
V H  
I N Z C  
ADC #opr  
ADC opr  
ADC opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A9  
B9  
C9  
D9  
E9  
F9  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
ADC opr,X  
Add with Carry  
ADC opr,X  
A (A) + (M) + (C)  
↕ ↕ ↕ ↕ ↕  
ADC ,X  
ADC opr,SP  
ADC opr,SP  
SP1  
SP2  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AB  
BB  
CB  
DB  
EB  
FB  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
ADD opr,X  
Add without Carry  
ADD opr,X  
A (A) + (M)  
↕ ↕ ↕ ↕ ↕  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
SP1  
SP2  
9EEB ff  
9EDB ee ff  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
– IMM  
– IMM  
A7  
AF  
ii  
ii  
2
2
AND #opr  
AND opr  
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A4  
B4  
C4  
D4  
E4  
F4  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Logical AND  
A (A) & (M)  
0
↕ ↕ –  
SP1  
SP2  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
ASLX  
ASL opr,X  
ASL ,X  
ASL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38  
48  
58  
68  
78  
dd  
ff  
4
1
1
4
3
5
Arithmetic Shift Left  
(Same as LSL)  
–  
↕ ↕ ↕  
C
0
b7  
b7  
b0  
b0  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
37  
47  
57  
67  
77  
dd  
4
1
1
4
3
5
C
Arithmetic Shift Right  
–  
↕ ↕ ↕  
ff  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
DIR (b0)  
24  
rr  
3
11  
13  
15  
17  
19  
1B  
1D  
1F  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
4
4
4
4
4
4
4
4
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BCLR n, opr  
Clear Bit n in M  
Mn 0  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
54  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
BCS rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25  
27  
rr  
rr  
3
3
BEQ rel  
BGE opr  
Branch if Greater Than or Equal To  
(Signed Operands)  
PC (PC) + 2 + rel ? (N V) = 0  
– REL  
– REL  
90  
92  
rr  
rr  
3
Branch if Greater Than (Signed  
Operands)  
PC (PC) + 2 + rel ? (Z) | (N V) =  
BGT opr  
3
3
0
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28  
29  
22  
rr  
rr  
rr  
3
3
3
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24  
rr  
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F  
2E  
rr  
rr  
3
3
BIT #opr  
BIT opr  
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A5  
B5  
C5  
D5  
E5  
F5  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Bit Test  
(A) & (M)  
0
↕ ↕ –  
SP1  
SP2  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
PC (PC) + 2 + rel ? (Z) | (N V) =  
BLE opr  
– REL  
93  
rr  
3
1
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
PC (PC) + 2 + rel ? (C) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25  
23  
91  
2C  
2B  
2D  
26  
2A  
20  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (C) | (Z) = 1  
Branch if Less Than (Signed Operands) PC (PC) + 2 + rel ? (N V) =1  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
55  
Ce ntra l Proc e ssor Unit (CPU)  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Operation  
Form  
Description  
V H  
I
N Z C  
DIR (b0)  
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
01  
03  
05  
07  
09  
0B  
0D  
0F  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
BRN rel  
Branch Never  
PC (PC) + 2  
– REL  
DIR (b0)  
21  
rr  
3
00  
02  
04  
06  
08  
0A  
0C  
0E  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
5
5
5
5
5
5
5
5
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0)  
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
10  
12  
14  
16  
18  
1A  
1C  
1E  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
4
4
4
4
4
4
4
4
BSET n,opr  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
BSR rel  
Branch to Subroutine  
– REL  
AD  
rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
IMM  
31  
41  
51  
61  
71  
dd rr  
ii rr  
ii rr  
ff rr  
rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IX1+  
Compare and Branch if Equal  
IX+  
SP1  
CBEQ opr,SP,rel  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
CLR opr  
CLRA  
CLRX  
CLRH  
CLR opr,X  
CLR ,X  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
INH  
– INH  
IX1  
IX  
3F  
4F  
5F  
8C  
6F  
7F  
dd  
ff  
3
1
1
1
3
2
4
Clear  
0
0
1
CLR opr,SP  
SP1  
9E6F ff  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
56  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A1  
B1  
C1  
D1  
E1  
F1  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Compare A with M  
(A) – (M)  
–  
↕ ↕ ↕  
SP1  
SP2  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
COMX  
COM opr,X  
COM ,X  
COM opr,SP  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
INH  
IX1  
IX  
33  
43  
53  
63  
73  
dd  
ff  
4
1
1
4
3
5
Complement (One’s Complement)  
Compare H:X with M  
0
↕ ↕ 1  
SP1  
9E63 ff  
CPHX #opr  
CPHX opr  
IMM  
DIR  
65  
75  
ii ii+1  
dd  
3
4
(H:X) – (M:M + 1)  
–  
↕ ↕ ↕  
CPX #opr  
CPX opr  
CPX opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A3  
B3  
C3  
D3  
E3  
F3  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
CPX ,X  
Compare X with M  
(X) – (M)  
–  
↕ ↕ ↕  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
SP1  
SP2  
9EE3 ff  
9ED3 ee ff  
DAA  
Decimal Adjust A  
(A)  
U –  
↕ ↕ ↕ INH  
72  
2
10  
A (A) – 1 or M (M) – 1 or X (X) –  
1
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DBNZX rel  
DBNZ opr,X,rel  
DBNZ X,rel  
DBNZ opr,SP,rel  
DIR  
INH  
– INH  
IX1  
IX  
SP1  
3B  
4B  
5B  
6B  
7B  
dd rr  
rr  
rr  
ff rr  
rr  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
Decrement and Branch if Not Zero  
9E6B ff rr  
DEC opr  
DECA  
DECX  
DEC opr,X  
DEC ,X  
DEC opr,SP  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
INH  
IX1  
IX  
3A  
4A  
5A  
6A  
7A  
dd  
ff  
4
1
1
4
3
5
Decrement  
Divide  
–  
↕ ↕ –  
SP1  
9E6A ff  
A (H:A)/(X)  
H Remainder  
DIV  
↕ ↕ INH  
52  
7
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
57  
Ce ntra l Proc e ssor Unit (CPU)  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Operation  
Form  
Description  
V H  
I
N Z C  
EOR #opr  
EOR opr  
EOR opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A8  
B8  
C8  
D8  
E8  
F8  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
EOR opr,X  
Exclusive OR M with A  
EOR opr,X  
A (A M)  
0
↕ ↕ –  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
SP1  
SP2  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
INH  
IX1  
IX  
3C  
4C  
5C  
6C  
7C  
dd  
ff  
4
1
1
4
3
5
INCX  
Increment  
INC opr,X  
–  
↕ ↕ –  
INC ,X  
INC opr,SP  
SP1  
9E6C ff  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
EXT  
– IX2  
IX1  
IX  
BC  
CC  
DC  
EC  
FC  
dd  
2
3
4
3
2
hh ll  
ee ff  
ff  
Jump  
PC Jump Address  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD  
CD  
DD  
ED  
FD  
dd  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
hh ll  
ee ff  
ff  
Jump to Subroutine  
IX  
LDA #opr  
LDA opr  
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A6  
B6  
C6  
D6  
E6  
F6  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X ← (M:M + 1)  
X (M)  
0
0
0
↕ ↕ –  
↕ ↕ –  
↕ ↕ –  
SP1  
SP2  
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
DIR  
45  
55  
ii jj  
dd  
3
4
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AE  
BE  
CE  
DE  
EE  
FE  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
SP1  
SP2  
9EEE ff  
9EDE ee ff  
LSL opr  
LSLA  
LSLX  
LSL opr,X  
LSL ,X  
LSL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38  
48  
58  
68  
78  
dd  
ff  
4
1
1
4
3
5
Logical Shift Left  
(Same as ASL)  
C
0
–  
↕ ↕ ↕  
b7  
b0  
SP1  
9E68 ff  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
58  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
LSR opr  
LSRA  
LSRX  
LSR opr,X  
LSR ,X  
DIR  
INH  
INH  
IX1  
IX  
34  
44  
54  
64  
74  
dd  
ff  
4
1
1
4
3
5
0
C
Logical Shift Right  
–  
0 ↕ ↕  
b7  
b0  
LSR opr,SP  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E  
5E  
6E  
7E  
dd dd  
dd  
ii dd  
dd  
5
4
4
4
(M)  
(M)  
Source  
Destination  
DIX+  
IMD  
IX+D  
Move  
0
0
↕ ↕ –  
H:X (H:X) + 1 (IX+D, DIX+)  
X:A (X) × (A)  
MUL  
Unsigned multiply  
0 INH  
42  
5
NEG opr  
NEGA  
NEGX  
NEG opr,X  
NEG ,X  
NEG opr,SP  
DIR  
INH  
INH  
IX1  
IX  
30  
40  
50  
60  
70  
dd  
ff  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
Negate (Two’s Complement)  
–  
↕ ↕ ↕  
SP1  
9E60 ff  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
1
3
A (A[3:0]:A[7:4])  
62  
ORA #opr  
ORA opr  
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AA  
BA  
CA  
DA  
EA  
FA  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Inclusive OR A and M  
A (A) | (M)  
0
↕ ↕ –  
SP1  
SP2  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
PULA  
PULH  
PULX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
– INH  
– INH  
– INH  
87  
8B  
89  
86  
8A  
88  
2
2
2
2
2
2
ROL opr  
ROLA  
ROLX  
ROL opr,X  
ROL ,X  
ROL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
39  
49  
59  
69  
79  
dd  
ff  
4
1
1
4
3
5
C
Rotate Left through Carry  
–  
↕ ↕ ↕  
b7  
b0  
SP1  
9E69 ff  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
59  
Ce ntra l Proc e ssor Unit (CPU)  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Operation  
Form  
Description  
V H  
I
N Z C  
ROR opr  
RORA  
DIR  
INH  
INH  
IX1  
IX  
36  
46  
56  
66  
76  
dd  
ff  
4
1
1
4
3
5
RORX  
C
Rotate Right through Carry  
ROR opr,X  
–  
↕ ↕ ↕  
b7  
b0  
ROR ,X  
ROR opr,SP  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
↕ ↕ ↕ ↕ ↕ ↕ INH  
80  
81  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– INH  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A2  
B2  
C2  
D2  
E2  
F2  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
A (A) – (M) – (C)  
–  
↕ ↕ ↕  
SP1  
SP2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
STA opr  
DIR  
EXT  
IX2  
B7  
C7  
D7  
E7  
F7  
dd  
3
4
4
3
2
4
5
hh ll  
ee ff  
ff  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
↕ ↕ – IX1  
IX  
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
STOP  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
↕ ↕ – DIR  
35  
8E  
dd  
4
1
Enable IRQ Pin; Stop Oscillator  
I 0; Stop Oscillator  
– INH  
STX opr  
STX opr  
DIR  
EXT  
IX2  
BF  
CF  
DF  
EF  
FF  
dd  
3
4
4
3
2
4
5
hh ll  
ee ff  
ff  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
↕ ↕ – IX1  
IX  
SP1  
SP2  
9EEF ff  
9EDF ee ff  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
60  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A0  
B0  
C0  
D0  
E0  
F0  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Subtract  
A (A) – (M)  
–  
↕ ↕ ↕  
SP1  
SP2  
9EE0 ff  
9ED0 ee ff  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
SWI  
Software Interrupt  
1
– INH  
83  
9
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
↕ ↕ ↕ ↕ ↕ ↕ INH  
84  
97  
85  
2
1
1
– INH  
– INH  
Transfer CCR to A  
A (CCR)  
TST opr  
TSTA  
TSTX  
TST opr,X  
TST ,X  
TST opr,SP  
DIR  
INH  
INH  
IX1  
IX  
3D  
4D  
5D  
6D  
7D  
dd  
ff  
3
1
1
3
2
4
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
↕ ↕ –  
SP1  
9E6D ff  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
(SP) (H:X) – 1  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
61  
Ce ntra l Proc e ssor Unit (CPU)  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Operation  
Form  
Description  
V H  
Any bit  
opr Operand (one or two bytes)  
PC Program counter  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
I N Z C  
A
C
Accumulator  
Carry/borrow bit  
n
CCR Condition code register  
dd Direct address of operand  
dd rr Direct address of operand and relative offset of branch instruction  
DD Direct to direct addressing mode  
DIR Direct addressing mode  
rel  
rr  
Relative program counter offset byte  
Relative program counter offset byte  
DIX+ Direct to indexed with post increment addressing mode  
ee ff High and low bytes of offset in indexed, 16-bit offset addressing  
EXT Extended addressing mode  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
&
|
ff  
H
H
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
Logical AND  
Logical OR  
Logical EXCLUSIVE OR  
Contents of  
hh ll High and low bytes of operand address in extended addressing  
I
Interrupt mask  
ii  
Immediate operand byte  
IMD Immediate source to direct destination addressing mode  
IMM Immediate addressing mode  
INH Inherent addressing mode  
( )  
IX  
Indexed, no offset addressing mode  
–( ) Negation (two’s complement)  
IX+  
Indexed, no offset, post increment addressing mode  
#
Immediate value  
Sign extend  
Loaded with  
If  
IX+D Indexed with post increment to direct addressing mode  
IX1 Indexed, 8-bit offset addressing mode  
IX1+ Indexed, 8-bit offset, post increment addressing mode  
«
?
IX2  
M
N
Indexed, 16-bit offset addressing mode  
Memory location  
Negative bit  
:
Concatenated with  
Set or cleared  
Not affected  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
62  
Central Processor Unit (CPU)  
Table 6-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
IX  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
IX  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
1
1
2
IX1 3 SP1  
5
1
2
1
1
1
2
1
1
1
1
1
2
1
1
2
1
1
1
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
4
4
4
4
4
4
4
4
4
4
4
SP2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
BRN  
REL 3 DIR  
3
BHI  
REL  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
3
BEQ  
REL 2 DIR  
3
5
4
4
6
4
CBEQ  
IX+  
2
DAA  
INH  
3
COM  
IX  
3
LSR  
IX  
4
CPHX  
DIR  
3
ROR  
IX  
3
ASR  
IX  
3
LSL  
IX  
3
ROL  
IX  
3
DEC  
IX  
4
DBNZ  
IX  
3
INC  
IX  
4
3
BLT  
2
CMP  
3
CMP  
4
CMP  
EXT 3 IX2  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
CMP  
5
3
4
2
CMP  
IX  
2
SBC  
IX  
2
CPX  
IX  
2
AND  
IX  
2
BIT  
IX  
2
LDA  
IX  
2
STA  
IX  
2
EOR  
IX  
2
ADC  
IX  
2
ORA  
IX  
2
ADD  
IX  
2
JMP  
IX  
4
JSR  
IX  
2
LDX  
IX  
2
STX  
IX  
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
RTS  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
1
IMM 3 IMM 3 IX1+  
4
SP1  
INH  
REL 2 IMM 2 DIR  
SP2  
IX1  
SP1  
5
7
3
3
BGT  
2
SBC  
3
SBC  
4
SBC  
5
3
4
BRSET1 BSET1  
MUL  
DIV  
INH  
NSA  
SBC  
SBC  
SBC  
3
DIR  
5
2
DIR  
4
INH  
1
1
2
2
3
2
2
2
2
2
INH  
REL 2 IMM 2 DIR  
SP2  
IX1  
SP1  
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
3
BLE  
2
CPX  
3
CPX  
4
CPX  
5
3
4
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
SWI  
CPX  
CPX  
CPX  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
SP2  
IX1  
SP1  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
2
2
2
AND  
IMM 2 DIR  
3
AND  
4
AND  
5
3
4
4
BRSET2 BSET2  
LSR  
TAP  
TXS  
AND  
AND  
AND  
3
DIR  
5
2
DIR  
4
1
3
1
SP1  
INH  
INH  
2
2
2
2
2
2
2
2
SP2  
IX1  
SP1  
4
3
4
1
2
2
BIT  
3
BIT  
4
BIT  
5
BIT  
SP2  
3
4
BIT  
SP1  
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
TPA  
TSX  
BIT  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
INH  
INH  
IMM 2 DIR  
IX1  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
LDA  
4
LDA  
5
3
4
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
LDA  
LDA  
LDA  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
SP1  
5
SP2  
IX1  
SP1  
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
1
3
STA  
4
STA  
5
3
4
7
BRCLR3 BCLR3  
ASR  
TAX  
STA  
STA  
STA  
3
DIR  
5
2
DIR  
4
1
1
1
1
1
1
1
1
SP1  
5
1
1
1
1
1
1
1
INH  
SP2  
IX1  
SP1  
4
LSL  
1
3
EOR  
4
EOR  
5
3
4
8
BRSET4 BSET4 BHCC  
LSL  
CLC  
EOR  
EOR  
EOR  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
SP1  
5
INH  
SP2  
IX1  
SP1  
4
ROL  
1
3
ADC  
4
ADC  
5
3
4
9
BRCLR4 BCLR4 BHCS  
ROL  
SEC  
ADC  
ADC  
ADC  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
SP1  
5
INH  
SP2  
IX1  
SP1  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
3
BMC  
REL 2 DIR  
3
BMS  
REL 2 DIR  
3
BIL  
4
DEC  
2
CLI  
INH  
2
SEI  
INH  
3
ORA  
4
ORA  
5
3
4
A
B
C
D
E
F
BRSET5 BSET5  
DEC  
ORA  
ORA  
ORA  
3
DIR  
5
2
DIR  
4
SP1  
6
SP2  
IX1  
SP1  
5
3
3
5
3
ADD  
4
ADD  
5
3
4
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
ADD  
ADD  
ADD  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
INC  
IX1  
3
TST  
IX1  
4
MOV  
IMD  
3
CLR  
IX1  
SP1  
5
SP2  
IX1  
SP1  
4
INC  
1
2
JMP  
4
JMP  
3
BRSET6 BSET6  
INCA  
INCX  
INC  
RSP  
JMP  
3
DIR  
5
2
DIR  
4
INH  
1
TSTA  
INH  
5
MOV  
DD  
1
CLRA  
INH  
INH  
1
TSTX  
INH  
4
MOV  
DIX+  
1
CLRX  
INH  
SP1  
4
INH  
2
DIR  
4
IX1  
3
TST  
2
TST  
IX  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
5
BRCLR6 BCLR6  
TST  
SP1  
NOP  
JSR  
JSR  
3
DIR  
5
2
DIR  
4
INH  
2
2
2
IX1  
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
3
4
BRSET7 BSET7  
MOV  
IX+D  
LDX  
LDX  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
BIH  
1
1
4
4
SP2  
IX1  
3
3
SP1  
3
CLR  
4
2
CLR  
IX  
3
STX  
4
STX  
5
3
4
BRCLR7 BCLR7  
DIR DIR  
CLR  
SP1  
STX  
STX  
STX  
3
2
REL 2 DIR  
3
1
SP2  
IX1  
SP1  
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Ce ntra l Proc e ssor Unit (CPU)  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
64  
Central Processor Unit (CPU)  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 7. Syste m Inte g ra tion Mod ule (SIM)  
7.1 Conte nts  
7.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
7.3  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . .69  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Clock Start-Up from POR. . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . .69  
7.3.1  
7.3.2  
7.3.3  
7.4  
7.4.1  
7.4.2  
7.4.2.1  
7.4.2.2  
7.4.2.3  
7.4.2.4  
7.4.2.5  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . .70  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . .71  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Computer Operating Properly (COP) Reset . . . . . . . . . .73  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Illegal Address Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
LVI Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
7.5  
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . .74  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . .74  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . .75  
7.5.1  
7.5.2  
7.5.3  
7.6  
7.6.1  
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . .80  
Interrupt Status Register 2. . . . . . . . . . . . . . . . . . . . . . . .80  
Interrupt Status Register 3. . . . . . . . . . . . . . . . . . . . . . . .81  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . .81  
7.6.1.1  
7.6.1.2  
7.6.2  
7.6.2.1  
7.6.2.2  
7.6.2.3  
7.6.3  
7.6.4  
7.6.5  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
65  
Syste m Inte g ra tion Mod ule (SIM)  
7.7  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
7.7.1  
7.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
7.8  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . .85  
Reset Status Register (RSR) . . . . . . . . . . . . . . . . . . . . . . . .86  
Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . .88  
7.8.1  
7.8.2  
7.8.3  
7.2 Introd uc tion  
This section describes the system integration module (SIM), which  
supports up to 24 external and/or internal interrupts. Together with the  
CPU, the SIM controls all MCU activities. A block diagram of the SIM is  
shown in Figure 7-1. Figure 7-2 is a summary of the SIM I/O registers.  
The SIM is a system state controller that coordinates CPU and exception  
timing. The SIM is responsible for:  
• Bus clock generation and control for CPU and peripherals  
– Stop/wait/reset/break entry and recovery  
– Internal clock control  
• Master reset control, including power-on reset (POR) and COP  
timeout  
• Interrupt control:  
– Acknowledge timing  
– Arbitration control timing  
– Vector address generation  
• CPU enable/disable timing  
• Modular architecture expandable to 128 interrupt sources  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
66  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Introduction  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO OSCILLATOR)  
SIM  
COUNTER  
COP CLOCK  
2OSCOUT (FROM OSCILLATOR)  
OSCOUT (FROM OSCILLATOR)  
÷2  
VDD  
CLOCK  
CONTROL  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULL-UP  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
RESET  
PIN LOGIC  
POR CONTROL  
RESET PIN CONTROL  
MASTER  
RESET  
CONTROL  
COP TIMEOUT (FROM COP MODULE)  
USB RESET (FROM USB MODULE)  
SIM RESET STATUS REGISTER  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 7-1. SIM Block Diagram  
Table 7-1. Signal Name Conventions  
Signal Name  
Description  
2OSCOUT  
Buffered clock from the X-tal oscillator circuit or the RC oscillator circuit.  
The 2OSCOUT frequency divided by two. This signal is again divided by two in the  
SIM to generate the internal bus clocks. (Bus clock = 2OSCOUT ÷ 4)  
OSCOUT  
IAB  
IDB  
Internal address bus  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
67  
Syste m Inte g ra tion Mod ule (SIM)  
Addr.  
Register Name  
Bit 7  
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
Read:  
Write:  
Reset:  
SBSW  
NOTE  
0
R
0
R
0
Break Status Register  
(BSR)  
$FE00  
Note: Writing a logic 0 clears SBSW.  
Read:  
Write:  
POR:  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
0
Reset Status Register  
$FE01  
(RSR)  
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
Reserved Write:  
Reset:  
Read:  
Break Flag Control  
BCFE  
R
R
R
R
R
R
R
Register Write:  
(BFCR)  
Reset:  
0
0
Read:  
IF5  
R
0
IF4  
R
0
IF3  
R
0
0
R
0
IF1  
0
R
0
0
R
Interrupt Status Register 1  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
R
R
(INT1)  
0
0
0
IF14  
R
0
0
0
0
0
0
0
Interrupt Status Register 2  
(INT2)  
R
0
R
0
R
0
R
0
R
R
0
R
0
0
0
0
0
0
0
0
0
0
IF15  
R
Interrupt Status Register 3  
(INT3)  
R
R
0
R
0
R
0
R
0
R
R
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 7-2. SIM I/O Register Summary  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
68  
System Integration Module (SIM)  
System Integration Module (SIM)  
SIM Bus Clock Control and Generation  
7.3 SIM Bus Cloc k Control a nd Ge ne ra tion  
The bus clock generator provides system clock signals for the CPU and  
peripherals on the MCU. The system clocks are generated from an  
incoming clock, OSCOUT, as shown in Figure 7-3.  
From  
OSCILLATOR  
2OSCOUT  
OSCOUT  
SIM COUNTER  
From  
OSCILLATOR  
BUS CLOCK  
GENERATORS  
÷ 2  
SIM  
Figure 7-3. SIM Clock Signals  
7.3.1 Bus Tim ing  
In user mode, the internal bus frequency is the oscillator frequency  
(2OSCOUT) divided by four.  
7.3.2 Cloc k Sta rt-Up from POR  
When the power-on reset module generates a reset, the clocks to the  
CPU and peripherals are inactive and held in an inactive phase until after  
the 4096 2OSCOUT cycle POR time-out has completed. The RST pin is  
driven low by the SIM during this entire period. The IBUS clocks start  
upon completion of the time-out.  
7.3.3 Cloc ks in Stop Mod e a nd Wa it Mod e  
Upon exit from stop mode by an interrupt, break, or reset, the SIM allows  
2OSCOUT to clock the SIM counter. The CPU and peripheral clocks do  
not become active until after the stop delay time-out. This time-out is  
selectable as 4096 or 32 2OSCOUT cycles. (See 7.7.2 Stop Mode.)  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
69  
Syste m Inte g ra tion Mod ule (SIM)  
In wait mode, the CPU clocks are inactive. The SIM also produces two  
sets of clocks for other modules. Refer to the wait mode subsection of  
each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
7.4 Re se t a nd Syste m Initia liza tion  
The MCU has these reset sources:  
• Power-on reset module (POR)  
• External reset pin (RST)  
• Computer operating properly module (COP)  
• Low-voltage inhibit module (LVI)  
• Illegal opcode  
• Illegal address  
All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in  
Monitor mode) and assert the internal reset signal (IRST). IRST causes  
all registers to be returned to their default values and all modules to be  
returned to their reset states.  
An internal reset clears the SIM counter (see 7.5 SIM Counter), but an  
external reset does not. Each of the resets sets a corresponding bit in  
the reset status register (RSR). (See 7.8 SIM Registers.)  
7.4.1 Exte rna l Pin Re se t  
The RST pin circuits include an internal pull-up device. Pulling the  
asynchronous RST pin low halts all processing. The PIN bit of the reset  
status register (RSR) is set as long as RST is held low for a minimum of  
67 2OSCCLK cycles, assuming that the POR was not the source of the  
reset. See Table 7-2 for details. Figure 7-4 shows the relative timing.  
Table 7-2. PIN Bit Set Timing  
Reset Type  
POR  
Number of Cycles Required to Set PIN  
4163 (4096 + 64 + 3)  
All others  
67 (64 + 3)  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
70  
System Integration Module (SIM)  
System Integration Module (SIM)  
Reset and System Initialization  
OSCOUT  
RST  
VECT H VECT L  
IAB  
PC  
Figure 7-4. External Reset Timing  
7.4.2 Ac tive Re se ts from Inte rna l Sourc e s  
All internal reset sources actively pull the RST pin low for 32 2OSCOUT  
cycles to allow resetting of external peripherals. The internal reset signal  
IRST continues to be asserted for an additional 32 cycles (Figure 7-5).  
An internal reset can be caused by an illegal address, illegal opcode,  
COP time-out, or POR. (See Figure 7-6 . Sources of Internal Reset.)  
Note that for POR resets, the SIM cycles through 4096 2OSCOUT  
cycles during which the SIM forces the RST pin low. The internal reset  
signal then follows the sequence from the falling edge of RST shown in  
Figure 7-5.  
IRST  
RSTPULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
2OSCOUT  
IAB  
VECTOR HIGH  
Figure 7-5. Internal Reset Timing  
The COP reset is asynchronous to the bus clock.  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
POR  
INTERNAL RESET  
LVI  
Figure 7-6. Sources of Internal Reset  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
71  
Syste m Inte g ra tion Mod ule (SIM)  
The active reset feature allows the part to issue a reset to peripherals  
and other chips within a system built around the MCU.  
7.4.2.1 Po we r-On Re se t  
When power is first applied to the MCU, the power-on reset module  
(POR) generates a pulse to indicate that power-on has occurred. The  
external reset pin (RST) is held low while the SIM counter counts out  
4096 2OSCOUT cycles. Sixty-four 2OSCOUT cycles later, the CPU and  
memories are released from reset to allow the reset vector sequence to  
occur.  
At power-on, the following events occur:  
• A POR pulse is generated.  
• The internal reset signal is asserted.  
• The SIM enables the oscillator to drive 2OSCOUT.  
• Internal clocks to the CPU and modules are held inactive for 4096  
2OSCOUT cycles to allow stabilization of the oscillator.  
• The RST pin is driven low during the oscillator stabilization time.  
• The POR bit of the reset status register (RSR) is set and all other  
bits in the register are cleared.  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
2OSCOUT  
OSCOUT  
RST  
IAB  
$FFFE  
$FFFF  
Figure 7-7. POR Recovery  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
72  
System Integration Module (SIM)  
System Integration Module (SIM)  
Reset and System Initialization  
7.4.2.2 Co m p ute r Op e ra ting Pro p e rly (COP) Re se t  
An input to the SIM is reserved for the COP reset signal. The overflow of  
the COP counter causes an internal reset and sets the COP bit in the  
reset status register (RSR). The SIM actively pulls down the RST pin for  
all internal reset sources.  
To prevent a COP module time-out, write any value to location $FFFF.  
Writing to location $FFFF clears the COP counter and stages 12 through  
5 of the SIM counter. The SIM counter output, which occurs at least  
12  
4
every (2 – 2 ) 2OSCOUT cycles, drives the COP counter. The COP  
should be serviced as soon as possible out of reset to guarantee the  
maximum amount of time before the first time-out.  
The COP module is disabled if the RST pin or the IRQ1 pin is held at  
VDD + VHI while the MCU is in monitor mode. The COP module can be  
disabled only through combinational logic conditioned with the high  
voltage signal on the RST or the IRQ1 pin. This prevents the COP from  
becoming disabled as a result of external noise. During a break state,  
V
DD + VHI on the RST pin disables the COP module.  
7.4.2.3 Ille g a l Op c o d e Re se t  
The SIM decodes signals from the CPU to detect illegal instructions. An  
illegal instruction sets the ILOP bit in the reset status register (RSR) and  
causes a reset.  
If the stop enable bit, STOP, in the mask option register is logic zero, the  
SIM treats the STOP instruction as an illegal opcode and causes an  
illegal opcode reset. The SIM actively pulls down the RST pin for all  
internal reset sources.  
7.4.2.4 Ille g a l Ad d re ss Re se t  
An opcode fetch from an unmapped address generates an illegal  
address reset. The SIM verifies that the CPU is fetching an opcode prior  
to asserting the ILAD bit in the reset status register (RSR) and resetting  
the MCU. A data fetch from an unmapped address does not generate a  
reset. The SIM actively pulls down the RST pin for all internal reset  
sources.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
73  
Syste m Inte g ra tion Mod ule (SIM)  
7.4.2.5 LVI Re se t  
The low-voltage inhibit module (LVI) asserts its output to the SIM when  
the V voltage falls to the LVI trip voltage V . The LVI bit in the SIM  
DD  
TRIP  
reset status register (SRSR) is set, and the external reset pin (RSTB) is  
held low while the SIM counter counts out 4096 2OSCCLK cycles. Sixty-  
four 2OSCOUT cycles later, the CPU and memories are released from  
reset to allow the reset vector sequence to occur. The SIM actively pulls  
down the (RSTB) pin for all internal reset sources.  
7.5 SIM Counte r  
The SIM counter is used by the power-on reset module (POR) and in  
stop mode recovery to allow the oscillator time to stabilize before  
enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM  
counter uses 12 stages for counting, followed by a 13th stage that  
triggers a reset of SIM counters and supplies the clock for the COP  
module. The SIM counter is clocked by the falling edge of 2OSCOUT.  
7.5.1 SIM Counte r During Powe r-On Re se t  
The power-on reset module (POR) detects power applied to the MCU.  
At power-on, the POR circuit asserts the signal PORRST. Once the SIM  
is initialized, it enables the oscillator to drive the bus clock state machine.  
7.5.2 SIM Counte r During Stop Mod e Re c ove ry  
The SIM counter also is used for stop mode recovery. The STOP  
instruction clears the SIM counter. After an interrupt, break, or reset, the  
SIM senses the state of the short stop recovery bit, SSREC, in the mask  
option register. If the SSREC bit is a logic one, then the stop recovery is  
reduced from the normal delay of 4096 2OSCOUT cycles down to 32  
2OSCOUT cycles. This is ideal for applications using canned oscillators  
that do not require long start-up times from stop mode. External crystal  
applications should use the full stop recovery time, that is, with SSREC  
cleared in the configuration register (CONFIG).  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
74  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Exception Control  
7.5.3 SIM Counte r a nd Re se t Sta te s  
External reset has no effect on the SIM counter. (See 7.7.2 Stop Mode  
for details.) The SIM counter is free-running after all reset states. (See  
7.4.2 Active Resets from Internal Sources for counter control and  
internal reset recovery sequences.)  
7.6 Exc e p tion Control  
Normal, sequential program execution can be changed in three different  
ways:  
• Interrupts  
– Maskable hardware CPU interrupts  
– Non-maskable software interrupt instruction (SWI)  
• Reset  
• Break interrupts  
7.6.1 Inte rrup ts  
An interrupt temporarily changes the sequence of program execution to  
respond to a particular event. Figure 7-8 flow charts the handling of  
system interrupts.  
Interrupts are latched, and arbitration is performed in the SIM at the start  
of interrupt processing. The arbitration result is a constant that the CPU  
uses to determine which vector to fetch. Once an interrupt is latched by  
the SIM, no other interrupt can take precedence, regardless of priority,  
until the latched interrupt is serviced (or the I bit is cleared).  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
75  
Syste m Inte g ra tion Mod ule (SIM)  
FROM RESET  
YES  
BREAK INTERRUPT?  
NO  
YES  
I BIT SET?  
NO  
YES  
YES  
IRQ  
INTERRUPT?  
NO  
TIMER  
INTERRUPT?  
NO  
STACK CPU REGISTERS.  
SET I BIT.  
LOAD PC WITH INTERRUPT VECTOR.  
(As many interrupts as exist on chip)  
FETCH NEXT  
INSTRUCTION  
SWI  
YES  
YES  
INSTRUCTION?  
NO  
RTI  
UNSTACK CPU REGISTERS.  
EXECUTE INSTRUCTION.  
INSTRUCTION?  
NO  
Figure 7-8. Interrupt Processing  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
76  
System Integration Module (SIM)  
System Integration Module (SIM)  
Exception Control  
At the beginning of an interrupt, the CPU saves the CPU register  
contents on the stack and sets the interrupt mask (I bit) to prevent  
additional interrupts. At the end of an interrupt, the RTI instruction  
recovers the CPU register contents from the stack so that normal  
processing can resume. Figure 7-9 shows interrupt entry timing. Figure  
7-10 shows interrupt recovery timing.  
MODULE  
INTERRUPT  
I BIT  
IAB  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L  
START ADDR  
IDB  
R/W  
DUMMY  
PC – 1[7:0] PC – 1[15:8]  
X
A
CCR  
V DATA H  
V DATA L  
OPCODE  
Figure 7-9. Interrupt Entry  
MODULE  
INTERRUPT  
I BIT  
IAB  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
IDB  
R/W  
CCR  
A
X
PC – 1[7:0] PC – 1[15:8] OPCODE  
OPERAND  
Figure 7-10. Interrupt Recovery  
7.6.1.1 Ha rd wa re Inte rrup ts  
A hardware interrupt does not stop the current instruction. Processing of  
a hardware interrupt begins after completion of the current instruction.  
When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the  
condition code register), and if the corresponding interrupt enable bit is  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
77  
Syste m Inte g ra tion Mod ule (SIM)  
set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction  
execution, the highest priority interrupt is serviced first. Figure 7-11  
demonstrates what happens when two interrupts are pending. If an  
interrupt is pending upon exit from the original interrupt service routine,  
the pending interrupt is serviced before the LDA instruction is executed.  
CLI  
LDA #$FF  
PSHH  
BACKGROUND ROUTINE  
INT1  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 7-11. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI  
instructions. However, in the case of the INT1 RTI prefetch, this is a  
redundant operation.  
NOTE: To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
78  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Exception Control  
7.6.1.2 SWI Instruc tio n  
The SWI instruction is a non-maskable instruction that causes an  
interrupt regardless of the state of the interrupt mask (I bit) in the  
condition code register.  
NOTE: A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
7.6.2 Inte rrup t Sta tus Re g iste rs  
The flags in the interrupt status registers identify maskable interrupt  
sources. Table 7-3 summarizes the interrupt sources and the interrupt  
status register flags that they set. The interrupt status registers can be  
useful for debugging.  
Table 7-3. Interrupt Sources  
INT  
Register  
Flag  
1
Source  
Flag  
Vector Address  
Priority  
Mask  
Highest  
Reset  
$FFFE–$FFFF  
$FFFC–$FFFD  
$FFFA–$FFFB  
$FFF6–$FFF7  
$FFF4–$FFF5  
$FFF2–$FFF3  
$FFE0–$FFE1  
$FFDE–$FFDF  
SWI Instruction  
IRQ1 Pin  
IRQF1  
CH0F  
CH1F  
TOF  
IMASK1  
CH0IE  
CH1IE  
TOIE  
IF1  
IF3  
IF4  
IF5  
IF14  
IF15  
Timer Channel 0 Interrupt  
Timer Channel 1 Interrupt  
Timer Overflow Interrupt  
Keyboard Interrupt  
KEYF  
COCO  
IMASKK  
AIEN  
Lowest  
ADC Conversion Complete Interrupt  
Note:  
1. The I bit in the condition code register is a global mask for all interrupts sources except the SWI  
instruction.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
79  
Syste m Inte g ra tion Mod ule (SIM)  
7.6.2.1 Inte rrup t Sta tus Re g iste r 1  
Address:  
$FE04  
Bit 7  
0
6
5
IF4  
R
4
IF3  
R
3
0
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IF5  
R
R
R
0
R
0
R
0
0
0
0
0
0
R
= Reserved  
Figure 7-12. Interrupt Status Register 1 (INT1)  
IF1, IF3 to IF5 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 7-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0, 1, 3 and 7 — Always read 0  
7.6.2.2 Inte rrup t Sta tus Re g iste r 2  
Address:  
$FE05  
Bit 7  
IF14  
R
6
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
R
R
0
R
0
R
0
R
0
R
0
R
0
0
0
R
= Reserved  
Figure 7-13. Interrupt Status Register 2 (INT2)  
IF14 — Interrupt Flags  
This flag indicates the presence of interrupt requests from the sources  
shown in Table 7-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0 to 6 — Always read 0  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
80  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Exception Control  
7.6.2.3 Inte rrup t Sta tus Re g iste r 3  
Address:  
$FE06  
Bit 7  
0
6
5
0
4
0
3
0
2
0
1
0
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
0
R
R
R
0
R
0
R
0
R
0
R
0
0
0
0
R
= Reserved  
Figure 7-14. Interrupt Status Register 3 (INT3)  
IF15 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 7-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 1 to 7 — Always read 0  
7.6.3 Re se t  
All reset sources always have equal and highest priority and cannot be  
arbitrated.  
7.6.4 Bre a k Inte rrup ts  
The break module can stop normal program flow at a software-  
programmable break point by asserting its break interrupt output. (See  
Section 17. Break Module (BREAK).) The SIM puts the CPU into the  
break state by forcing it to the SWI vector location. Refer to the break  
interrupt subsection of each module to see how each module is affected  
by the break state.  
7.6.5 Sta tus Fla g Prote c tion in Bre a k Mod e  
The SIM controls whether status flags contained in other modules can  
be cleared during break mode. The user can select whether flags are  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
81  
Syste m Inte g ra tion Mod ule (SIM)  
protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the break flag control register (BFCR).  
Protecting flags in break mode ensures that set flags will not be cleared  
while in break mode. This protection allows registers to be freely read  
and written during break mode without losing status flag information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in  
break mode, a flag remains cleared even when break mode is exited.  
Status flags with a two-step clearing mechanism — for example, a read  
of one register followed by the read or write of another — are protected,  
even when the first step is accomplished prior to entering break mode.  
Upon leaving break mode, execution of the second step will clear the  
flag as normal.  
7.7 Low-Powe r Mod e s  
Executing the WAIT or STOP instruction puts the MCU in a low-power-  
consumption mode for standby situations. The SIM holds the CPU in a  
non-clocked state. The operation of each of these modes is described  
below. Both STOP and WAIT clear the interrupt mask (I) in the condition  
code register, allowing interrupts to occur.  
7.7.1 Wa it Mod e  
In wait mode, the CPU clocks are inactive while the peripheral clocks  
continue to run. Figure 7-15 shows the timing for wait mode entry.  
A module that is active during wait mode can wake up the CPU with an  
interrupt if the interrupt is enabled. Stacking for the interrupt begins one  
cycle after the WAIT instruction during which the interrupt occurred. In  
wait mode, the CPU clocks are inactive. Refer to the wait mode  
subsection of each module to see if the module is active or inactive in  
wait mode. Some modules can be programmed to be active in wait  
mode.  
Wait mode can also be exited by a reset or break. A break interrupt  
during wait mode sets the SIM break stop/wait bit, SBSW, in the break  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
82  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Low-Power Modes  
status register (BSR). If the COP disable bit, COPD, in the mask option  
register is logic zero, then the computer operating properly module  
(COP) is enabled and remains active in wait mode.  
IAB  
IDB  
R/W  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the WAIT opcode, depending on the  
last instruction.  
Figure 7-15. Wait Mode Entry Timing  
Figure 7-16 and Figure 7-17 show the timing for WAIT recovery.  
IAB  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
IDB $A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt  
Figure 7-16. Wait Recovery from Interrupt or Break  
32  
Cycles  
32  
Cycles  
IAB  
IDB  
RST  
$6E0B  
$A6  
RSTVCTH  
RSTVCTL  
$A6  
$A6  
2OSCOUT  
Figure 7-17. Wait Recovery from Internal Reset  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
83  
Syste m Inte g ra tion Mod ule (SIM)  
7.7.2 Stop Mod e  
In stop mode, the SIM counter is reset and the system clocks are  
disabled. An interrupt request from a module can cause an exit from stop  
mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset or break also causes an exit from stop mode.  
The SIM disables the oscillator signals (OSCOUT and 2OSCOUT) in  
stop mode, stopping the CPU and peripherals. Stop recovery time is  
selectable using the SSREC bit in the configuration register (CONFIG).  
If SSREC is set, stop recovery is reduced from the normal delay of 4096  
2OSCOUT cycles down to 32. This is ideal for applications using canned  
oscillators that do not require long start-up times from stop mode.  
NOTE: External crystal applications should use the full stop recovery time by  
clearing the SSREC bit.  
A break interrupt during stop mode sets the SIM break stop/wait bit  
(SBSW) in the break status register (BSR).  
The SIM counter is held in reset from the execution of the STOP  
instruction until the beginning of stop recovery. It is then used to time the  
recovery period. Figure 7-18 shows stop mode entry timing.  
NOTE: To minimize stop current, all pins configured as inputs should be driven  
to a logic 1 or logic 0.  
CPUSTOP  
IAB  
IDB  
R/W  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the STOP opcode, depending on the last  
instruction.  
Figure 7-18. Stop Mode Entry Timing  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
84  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
SIM Registers  
STOP RECOVERY PERIOD  
2OSCOUT  
INT/BREAK  
IAB  
STOP + 2  
STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 7-19. Stop Mode Recovery from Interrupt or Break  
7.8 SIM Re g iste rs  
The SIM has three memory mapped registers. Table 7-4 shows the  
mapping of these registers.  
Table 7-4. SIM Registers  
Address  
$FE00  
$FE01  
$FE03  
Register  
BSR  
Access Mode  
User  
RSR  
User  
BFCR  
User  
7.8.1 Bre a k Sta tus Re g iste r (BSR)  
The break status register contains a flag to indicate that a break caused  
an exit from stop or wait mode.  
Address:  
$FE00  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
R
R
R
R
R
R
(1)  
Note  
0
R
= Reserved  
1. Writing a logic zero clears SBSW.  
Figure 7-20. Break Status Register (BSR)  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
85  
Syste m Inte g ra tion Mod ule (SIM)  
SBSW — SIM Break Stop/Wait  
This status bit is useful in applications requiring a return to wait or stop  
mode after exiting from a break interrupt. Clear SBSW by writing a  
logic zero to it. Reset clears SBSW.  
1 = Stop mode or wait mode was exited by break interrupt  
0 = Stop mode or wait mode was not exited by break interrupt  
SBSW can be read within the break state SWI routine. The user can  
modify the return address on the stack by subtracting one from it. The  
following code is an example of this. Writing zero to the SBSW bit clears  
it.  
; This code works if the H register has been pushed onto the stack in the break  
; service routine software. This code should be executed at the end of the  
; break service routine software.  
HIBYTE EQU  
LOBYTE EQU  
5
6
;
If not SBSW, do RTI  
BRCLR SBSW,BSR, RETURN ; See if wait mode or stop mode was exited  
; by break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
; If RETURNLO is not zero,  
; then just decrement low byte.  
; Else deal with high byte, too.  
; Point to WAIT/STOP opcode.  
; Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN PULH  
RTI  
7.8.2 Re se t Sta tus Re g iste r (RSR)  
This register contains six flags that show the source of the last reset.  
Clear the SIM reset status register by reading it. A power-on reset sets  
the POR bit and clears all other bits in the register.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
86  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
SIM Registers  
Address:  
$FE01  
Bit 7  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
POR:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 7-21. Reset Status Register (RSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
MODRST — Monitor Mode Entry Module Reset bit  
1 = Last reset caused by monitor mode entry when vector locations  
$FFFE and $FFFF are $00 after POR while IRQB = V  
0 = POR or read of SRSR  
DD  
LVI — Low Voltage Inhibit Reset bit  
1 = Last reset caused by LVI circuit  
0 = POR or read of SRSR  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
87  
Syste m Inte g ra tion Mod ule (SIM)  
7.8.3 Bre a k Fla g Control Re g iste r (BFCR)  
The break control register contains a bit that enables software to clear  
status bits while the MCU is in a break state.  
Address:  
Bit 7  
$FE03  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 7-22. Break Flag Control Register (BFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
88  
System Integration Module (SIM)  
MOTOROLA  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 8. Osc illa tor (OSC)  
8.1 Conte nts  
8.2  
8.3  
8.4  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
X-tal Oscillator (MC68HC08xxx). . . . . . . . . . . . . . . . . . . . . . . .90  
RC Oscillator (MC68HRC08xxx) . . . . . . . . . . . . . . . . . . . . . . .91  
8.5  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . .92  
Crystal Amplifier Output Pin (OSC2/PTA6/RCCLK). . . . . . .92  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . .92  
X-tal Oscillator Clock (XTALCLK). . . . . . . . . . . . . . . . . . . . .92  
RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . . .93  
Oscillator Out 2 (2OSCOUT) . . . . . . . . . . . . . . . . . . . . . . . .93  
Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . . .93  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.5.6  
8.5.7  
8.6  
8.6.1  
8.6.2  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
8.7  
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . .94  
8.2 Introd uc tion  
The oscillator module provides the reference clock for the MCU system  
and bus. Two types of oscillator modules are available:  
• MC68HC08xxx— built-in oscillator module (X-tal oscillator) that  
requires an external crystal or ceramic-resonator. This option also  
allows an external clock that can be driven directly into OSC1.  
• MC68HRC08xxx — built-in oscillator module (RC oscillator) that  
requires an external RC connection only.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Oscillator (OSC)  
89  
Osc illa tor (OSC)  
8.3 X-ta l Osc illa tor (MC68HC08xxx)  
The X-tal oscillator circuit is designed for use with an external crystal or  
ceramic resonator to provide accurate clock source.  
In its typical configuration, the X-tal oscillator is connected in a Pierce  
oscillator configuration, as shown in Figure 8-1. This figure shows only  
the logical representation of the internal components and may not  
represent actual circuitry. The oscillator configuration uses five  
components:  
• Crystal, X  
1
• Fixed capacitor, C  
1
• Tuning capacitor, C (can also be a fixed capacitor)  
2
• Feedback resistor, RB  
• Series resistor, RS (optional)  
From SIM  
To SIM  
2OSCOUT  
To SIM  
OSCOUT  
XTALCLK  
÷ 2  
SIMOSCEN  
MCU  
OSC1  
OSC2  
RS*  
R
B
*RS can be zero (shorted) when used with higher-frequency crystals.  
Refer to manufacturer’s data.  
X
1
See Section 18. for component value requirements.  
C
C
2
1
Figure 8-1. X-tal Oscillator External Connections  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
90  
Oscillator (OSC)  
Oscillator (OSC)  
RC Oscillator (MC68HRC08xxx)  
The series resistor (RS) is included in the diagram to follow strict Pierce  
oscillator guidelines and may not be required for all ranges of operation,  
especially with high frequency crystals. Refer to the crystal  
manufacturer’s data for more information.  
8.4 RC Osc illa tor (MC68HRC08xxx)  
The RC oscillator circuit is designed for use with external R and C to  
provide a clock source with tolerance less than 10%.  
In its typical configuration, the RC oscillator requires two external  
components, one R and one C. Component values should have a  
tolerance of 1% or less, to obtain a clock source with less than 10%  
tolerance. The oscillator configuration uses two components:  
• C  
• R  
EXT  
EXT  
From SIM  
To SIM  
2OSCOUT  
To SIM  
OSCOUT  
SIMOSCEN  
Ext-RC  
Oscillator  
RCCLK  
EN  
÷ 2  
0
1
PTA6  
I/O  
PTA6  
PTA6EN  
MCU  
OSC1  
PTA6/RCCLK (OSC2)  
V
DD  
See Section 18. for component value requirements.  
R
C
EXT  
EXT  
Figure 8-2. RC Oscillator External Connections  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Oscillator (OSC)  
91  
Osc illa tor (OSC)  
8.5 I/ O Sig na ls  
The following paragraphs describe the oscillator I/O signals.  
8.5.1 Crysta l Am p lifie r Inp ut Pin (OSC1)  
OSC1 pin is an input to the crystal oscillator amplifier or the input to the  
RC oscillator circuit.  
8.5.2 Crysta l Am p lifie r Outp ut Pin (OSC2/ PTA6/ RCCLK)  
For the X-tal oscillator device, OSC2 pin is the output of the crystal  
oscillator inverting amplifier.  
For the RC oscillator device, OSC2 pin can be configured as a general  
purpose I/O pin PTA6, or the output of the internal RC oscillator clock,  
RCCLK.  
Option  
OSC2 pin function  
X-tal oscillator  
Inverting OSC1  
Controlled by PTAEN bit in PTAPUER ($0D)  
PTA6EN = 0: RCCLK output  
RC oscillator  
PTA6EN = 1: PTA6 I/O  
8.5.3 Osc illa tor Ena b le Sig na l (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM)  
and enables/disables the X-tal oscillator circuit or the RC-oscillator.  
8.5.4 X-ta l Osc illa tor Cloc k (XTALCLK)  
XTALCLK is the X-tal oscillator output signal. It runs at the full speed of  
the crystal (f ) and comes directly from the crystal oscillator circuit.  
XCLK  
Figure 8-1 shows only the logical relation of XTALCLK to OSC1 and  
OSC2 and may not represent the actual circuitry. The duty cycle of  
XTALCLK is unknown and may depend on the crystal and other external  
factors. Also, the frequency and amplitude of XTALCLK can be unstable  
at start-up.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
92  
Oscillator (OSC)  
MOTOROLA  
Oscillator (OSC)  
Low Power Modes  
8.5.5 RC Osc illa tor Cloc k (RCCLK)  
RCCLK is the RC oscillator output signal. Its frequency is directly  
proportional to the time constant of the external R and C. Figure 8-2  
shows only the logical relation of RCCLK to OSC1 and may not  
represent the actual circuitry.  
8.5.6 Osc illa tor Out 2 (2OSCOUT)  
2OSCOUT is same as the input clock (XTALCLK or RCCLK). This signal  
is driven to the SIM module and is used to determine the COP cycles.  
8.5.7 Osc illa tor Out (OSCOUT)  
The frequency of this signal is equal to half of the 2OSCOUT, this signal  
is driven to the SIM for generation of the bus clocks used by the CPU  
and other modules on the MCU. OSCOUT will be divided again in the  
SIM and results in the internal bus frequency being one fourth of the  
XTALCLK or RCCLK frequency.  
8.6 Low Powe r Mod e s  
The WAIT and STOP instructions put the MCU in low-power  
consumption standby modes.  
8.6.1 Wa it Mod e  
8.6.2 Stop Mod e  
The WAIT instruction has no effect on the oscillator logic. OSCOUT and  
2OSCOUT continues to drive to the SIM module.  
The STOP instruction disables the XTALCLK or the RCCLK output,  
hence OSCOUT and 2OSCOUT.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Oscillator (OSC)  
93  
Osc illa tor (OSC)  
8.7 Osc illa tor During Bre a k Mod e  
The oscillator continues to drive OSCOUT and 2OSCOUT when the  
device enters the break state.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
94  
Oscillator (OSC)  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 9. Monitor ROM (MON)  
9.1 Conte nts  
9.2  
9.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
9.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Entering Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
9.4.1  
9.4.2  
9.4.3  
9.4.4  
9.4.5  
9.4.6  
9.2 Introd uc tion  
This section describes the monitor ROM (MON). The monitor ROM  
allows complete testing of the MCU through a single-wire interface with  
a host computer.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Monitor ROM (MON)  
95  
Monitor ROM (MON)  
9.3 Fe a ture s  
Features of the monitor ROM include the following:  
• Normal user-mode pin functionality  
• One pin dedicated to serial communication between monitor ROM  
and host computer  
• Standard mark/space non-return-to-zero (NRZ) communication  
with host computer  
• 4800 Baud to 28.8 k-Baud communication with host computer  
• Execution of code in RAM or ROM  
9.4 Func tiona l De sc rip tion  
The monitor ROM receives and executes commands from a host  
computer. Figure 9-1 shows a example circuit used to enter monitor  
mode and communicate with a host computer via a standard RS-232  
interface.  
While simple monitor commands can access any memory address, the  
MCU has a ROM security feature that requires proper procedures to be  
followed before the ROM can be accessed. Access to the ROM is denied  
to unauthorized users of customer-specified software.  
In monitor mode, the MCU can execute host-computer code in RAM  
while all MCU pins except PTB0 retain normal operating mode functions.  
All communication between the host computer and the MCU is through  
the PTB0 pin. A level-shifting and multiplexing interface is required  
between PTB0 and the host computer. PTB0 is used in a wired-OR  
configuration and requires a pull-up resistor.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
96  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Functional Description  
RST  
0.1 µF  
VDD + V  
HI  
(SEE NOTE 2)  
H(R)C08JL3  
H(R)C08JK3  
H(R)C08JK1  
10k Ω  
IRQ1  
V
DD  
VDD  
V
V
DD  
SS  
9.8304 MHz  
0.1 µF  
(SEE NOTE 3)  
9.8304MHz  
C
1
20  
MC145407  
OSC1  
OSC2  
+
+
+
+
10 µF  
10 µF  
10 µF  
10 µF  
D
C
SW2  
3
4
18  
17  
20 pF  
D
VDD  
VDD  
20 pF  
2
19  
10 kΩ  
X-TAL CIRCUIT  
SW1  
A
DB-25  
2
5
6
16  
15  
PTB3  
(SEE NOTE 1)  
B
3
7
10 kΩ  
VDD  
14  
VDD  
1
MC74HC125  
2
6
4
3
5
10 kΩ  
PTB0  
VDD  
10 kΩ  
7
PTB1  
PTB2  
10 kΩ  
NOTES:  
1. SW1: Position A — Bus clock = OSC1 clock ÷ 4  
SW1: Position B — Bus clock = OSC1 clock ÷ 2  
2. See Table 18-4 for IRQ1 voltage level requirements.  
3. SW2: Position C— External oscillator clock input  
SW2: Position D— Crystal oscillator clock input  
External oscillator must have a 50% duty cycle  
Figure 9-1. Monitor Mode Circuit  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Monitor ROM (MON)  
97  
Monitor ROM (MON)  
9.4.1 Ente ring Monitor Mod e  
Table 9-1 shows the pin conditions for entering monitor mode. As  
specified in the table, monitor mode may be entered after a POR and will  
allow communication at 9600 baud provided one of the following sets of  
conditions is met:  
1. If IRQ1 = V + V :  
DD  
HI  
– OSC1 is 4.9125MHz  
– PTB3 = low  
2. If IRQ1 = V + V :  
DD  
HI  
– OSC1 is 9.8304MHz  
– PTB3 = high  
Table 9-1. Monitor Mode Entry Requirements and Options  
Clock Source  
Bus  
and  
Comments  
Frequency  
Frequency  
OSC1 at  
4.9152MHz  
Bypasses RC oscillator (in  
HRC08xxx); OSC1 input  
must be x-tal oscillator or  
external oscillator clock.  
9600 baud communication  
on PTB0. COP disabled.  
VDD + VHI  
VDD + VHI  
0
1
0
0
1
1
1
1
2.4576MHz  
OSC1 at  
9.8304MHz  
2.4576MHz  
X-tal or RC  
oscillator at  
XTALCLK ÷ 4  
or  
V
X
X
X
X
Enters User mode  
DD  
desired frequency  
RCCLK ÷ 4  
Notes:  
1. PTB3 = 0: Bypasses the divide-by-two prescaler to SIM.  
The OSC1 clock must be 50% duty cycle for this condition.  
2. XTALCLK is the X-tal oscillator output, for MC68HC08xxx. See Figure 8-1.  
4. RCCLK is the RC oscillator output, for MC68HRC08xxx. See Figure 8-2.  
5. See Table 18-4 for V + V voltage level requirements.  
DD  
HI  
If V +V is applied to IRQ1 and PTB3 is low upon monitor mode entry  
DD  
HI  
(Table 9-1 condition set 1), the bus frequency is a divide-by-two of the  
clock input to OSC1. If PTB3 is high with V +V applied to IRQ1 upon  
DD  
HI  
monitor mode entry (Table 9-1 condition set 2), the bus frequency is a  
divide-by-four of the clock input to OSC1. Holding the PTB3 pin low  
when entering monitor mode causes a bypass of a divide-by-two stage  
at the internal clock circuit. In this event, the OSCOUT frequency is  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
98  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Functional Description  
equal to the 2OSCOUT frequency, and OSC1 input directly generates  
internal bus clocks. In this case, the OSC1 signal must have a 50% duty  
cycle at maximum bus frequency.  
In monitor mode, the COP is disabled as long as V + V is applied to  
DD  
HI  
either the IRQ1 or the RST pin. (See Section 7. System Integration  
Module (SIM) for more information on modes of operation.)  
Enter monitor mode with the pin configuration shown above by pulling  
RST low and then high. The rising edge of RST latches monitor mode.  
Once monitor mode is latched, the values on the specified pins can  
change.  
Once out of reset, the MCU sends a break signal (10 consecutive logic  
zeros) to the host computer, indicating that it is ready to receive a  
command. The break signal also provides a timing reference to allow the  
host to determine the necessary baud rate.  
In monitor mode, the MCU uses different vectors for reset, SWI, and  
break interrupt. The alternate vectors are in the $FE page instead of the  
$FF page and allow code execution from the internal monitor firmware  
instead of user code.  
Table 9-2 is a summary of the vector differences between user mode  
and monitor mode.  
Table 9-2. Monitor Mode Vector Differences  
Functions  
Reset  
Vector Vector Vector Vector Vector Vector  
High Low High Low High Low  
Reset  
Break  
Break  
SWI  
SWI  
Modes  
COP  
User  
Enabled  
$FFFE $FFFF $FFFC $FFFD $FFFC $FFFD  
$FEFE $FEFF $FEFC $FEFD $FEFC $FEFD  
(1)  
Monitor Disabled  
Notes:  
1. If the high voltage (V + V ) is removed from the IRQ1 pin or the RST pin, the SIM  
DD  
HI  
asserts its COP enable output. The COP is a mask option enabled or disabled by the  
COPD bit in the configuration register.  
When the host computer has completed downloading code into the MCU  
RAM, the host then sends a RUN command, which executes an RTI,  
which sends control to the address on the stack pointer.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Monitor ROM (MON)  
99  
Monitor ROM (MON)  
9.4.2 Ba ud Ra te  
The communication baud rate is dependant on oscillator frequency and  
the state of PTB3 upon monitor mode entry. When PTB3 is high, the  
divide by ratio is 1024. If the PTB3 pin is at logic zero upon entry into  
monitor mode, the divide by ratio is 512.  
Table 9-3. Monitor Baud Rate Selection  
Oscillator Input Frequency  
4.9152 MHz  
PTB3  
Baud Rate  
9600 bps  
9600 bps  
4800 bps  
0
1
1
9.8304 MHz  
4.9152 MHz  
9.4.3 Da ta Form a t  
Communication with the monitor ROM is in standard non-return-to-zero  
(NRZ) mark/space data format. (See Figure 9-2 and Figure 9-3.)  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
Figure 9-2. Monitor Data Format  
NEXT  
START  
BIT  
START  
STOP  
$A5  
BIT 0  
BIT 0  
BIT 1  
BIT 1  
BIT 2  
BIT 2  
BIT 3  
BIT 3  
BIT 4  
BIT 4  
BIT 5  
BIT 5  
BIT 6  
BIT 6  
BIT 7  
BIT 7  
BIT  
BIT  
STOP  
BIT  
START  
BIT  
NEXT  
START  
BIT  
BREAK  
Figure 9-3. Sample Monitor Waveforms  
The data transmit and receive rate can be anywhere from 4800 baud to  
28.8k-baud. Transmit and receive baud rates must be identical.  
9.4.4 Ec hoing  
As shown in Figure 9-4, the monitor ROM immediately echoes each  
received byte back to the PTB0 pin for error checking.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
100  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Functional Description  
SENT TO  
MONITOR  
READ  
READ  
ADDR. HIGH ADDR. HIGH ADDR. LOW ADDR. LOW  
DATA  
ECHO  
RESULT  
Figure 9-4. Read Transaction  
Any result of a command appears after the echo of the last byte of the  
command.  
9.4.5 Bre a k Sig na l  
A start bit followed by nine low bits is a break signal. (See Figure 9-5.)  
When the monitor receives a break signal, it drives the PTB0 pin high for  
the duration of two bits before echoing the break signal.  
MISSING STOP BIT  
TWO-STOP-BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 9-5. Break Transaction  
9.4.6 Com m a nd s  
The monitor ROM uses the following commands:  
• READ (read memory)  
• WRITE (write memory)  
• IREAD (indexed read)  
• IWRITE (indexed write)  
• READSP (read stack pointer)  
• RUN (run user program)  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Monitor ROM (MON)  
101  
Monitor ROM (MON)  
Table 9-4. READ (Read Memory) Command  
Description  
Read byte from memory  
Operand  
Specifies 2-byte address in high byte:low byte order  
Returns contents of specified address  
$4A  
Data Returned  
Opcode  
Command Sequence  
SENT TO  
MONITOR  
READ  
READ  
ADDR. HIGH  
ADDR. HIGH  
ADDR. LOW  
ADDR. LOW  
DATA  
ECHO  
RESULT  
Table 9-5. WRITE (Write Memory) Command  
Description  
Write byte to memory  
Operand  
Specifies 2-byte address in high byte:low byte order; low byte followed by data byte  
Data Returned  
Opcode  
None  
$49  
Command Sequence  
SENT TO  
MONITOR  
WRITE  
WRITE  
ADDR. HIGH  
ADDR. HIGH  
ADDR. LOW  
ADDR. LOW  
DATA  
DATA  
ECHO  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
102  
Monitor ROM (MON)  
Monitor ROM (MON)  
Functional Description  
Table 9-6. IREAD (Indexed Read) Command  
Description  
Read next 2 bytes in memory from last address accessed  
Specifies 2-byte address in high byte:low byte order  
Returns contents of next two addresses  
$1A  
Operand  
Data Returned  
Opcode  
Command Sequence  
SENT TO  
MONITOR  
IREAD  
IREAD  
DATA  
DATA  
RESULT  
ECHO  
Table 9-7. IWRITE (Indexed Write) Command  
Description  
Write to last address accessed + 1  
Operand  
Specifies single data byte  
Data Returned  
Opcode  
None  
$19  
Command Sequence  
SENT TO  
MONITOR  
IWRITE  
IWRITE  
DATA  
DATA  
ECHO  
NOTE: A sequence of IREAD or IWRITE commands can sequentially access a  
block of memory over the full 64-Kbyte memory map.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Monitor ROM (MON)  
103  
Monitor ROM (MON)  
Table 9-8. READSP (Read Stack Pointer) Command  
Description  
Reads stack pointer  
Operand  
None  
Data Returned  
Opcode  
Returns stack pointer in high byte:low byte order  
$0C  
Command Sequence  
SENT TO  
MONITOR  
READSP  
READSP  
SP HIGH  
SP LOW  
RESULT  
ECHO  
Table 9-9. RUN (Run User Program) Command  
Description  
Executes RTI instruction  
Operand  
None  
None  
$28  
Data Returned  
Opcode  
Command Sequence  
SENT TO  
MONITOR  
RUN  
RUN  
ECHO  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
104  
Monitor ROM (MON)  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 10. Tim e r Inte rfa c e Mod ule (TIM)  
10.1 Conte nts  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
10.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
10.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
10.5.3.1  
10.5.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .110  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .110  
10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .111  
10.5.4.1  
10.5.4.2  
10.5.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .112  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .113  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
10.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
10.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
10.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .116  
10.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
10.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
10.10.1 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . .117  
10.10.2 TIM Counter Registers (TCNTH:TCNTL). . . . . . . . . . . . . .119  
10.10.3 TIM Counter Modulo Registers (TMODH:TMODL) . . . . . .120  
10.10.4 TIM Channel Status and Control Registers (TSC0:TSC1).121  
10.10.5 TIM Channel Registers (TCH0H/L:TCH1H/L) . . . . . . . . . .125  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
105  
Tim e r Inte rfa c e Mod ule (TIM)  
10.2 Introd uc tion  
This section describes the timer interface module (TIM2, Version B). The  
TIM is a two-channel timer that provides a timing reference with input  
capture, output compare, and pulse-width-modulation functions.  
Figure 10-1 is a block diagram of the TIM.  
10.3 Fe a ture s  
Features of the TIM include the following:  
• Two input capture/output compare channels  
– Rising-edge, falling-edge, or any-edge input capture trigger  
– Set, clear, or toggle output compare action  
• Buffered and unbuffered pulse width modulation (PWM) signal  
generation  
• Programmable TIM clock input with 7-frequency internal bus clock  
prescaler selection  
• Free-running or modulo up-count operation  
• Toggle any channel pin on overflow  
• TIM counter stop and reset bits  
• Modular architecture expandable to eight channels  
10.4 Pin Na m e Conve ntions  
The TIM share two I/O pins with two port D I/O pins. The full name of the  
TIM I/O pins are listed in Table 10-1. The generic pin name appear in the  
text that follows.  
Table 10-1. Pin Name Conventions  
TIM Generic Pin Names:  
Full TIM Pin Names:  
TCH0  
TCH1  
PTD4/TCH0  
PTD5/TCH1  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
106  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
Functional Description  
10.5 Func tiona l De sc rip tion  
Figure 10-1 shows the structure of the TIM. The central component of  
the TIM is the 16-bit TIM counter that can operate as a free-running  
counter or a modulo up-counter. The TIM counter provides the timing  
reference for the input capture and output compare functions. The TIM  
counter modulo registers, TMODH:TMODL, control the modulo value of  
the TIM counter. Software can read the TIM counter value at any time  
without affecting the counting sequence.  
The two TIM channels are programmable independently as input  
capture or output compare channels.  
PRESCALER SELECT  
INTERNAL  
BUS CLOCK  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
ELS0B  
ELS0A  
PORT  
LOGIC  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
CH0MAX  
TCH0  
CH0F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
MS0A  
CH0IE  
MS0B  
CH1F  
TOV1  
ELS1B  
ELS1A  
PORT  
LOGIC  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
CH1MAX  
TCH1  
INTERRUPT  
LOGIC  
16-BIT LATCH  
MS1A  
CH1IE  
Figure 10-1. TIM Block Diagram  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
107  
Tim e r Inte rfa c e Mod ule (TIM)  
Addr.  
Register Name  
Bit 7  
TOF  
0
6
5
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
TIM Status and Control  
Register  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
TRST  
0
(TSC)  
0
0
1
0
0
0
0
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
TIM Counter Register High  
(TCNTH)  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
0
0
0
0
0
0
0
0
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
TIM Counter Register Low  
(TCNTL)  
0
Bit15  
1
0
Bit14  
1
0
Bit13  
1
0
Bit12  
1
0
Bit11  
1
0
Bit10  
1
0
Bit9  
1
0
Bit8  
1
TIM Counter Modulo  
Register High  
(TMODH)  
TIM Counter Modulo  
Register Low  
(TMODL)  
Bit7  
1
Bit6  
1
Bit5  
1
Bit4  
1
Bit3  
1
Bit2  
1
Bit1  
1
Bit0  
1
Read: CH0F  
TIM Channel 0 Status and  
Control Register  
(TSC0)  
CH0MAX  
0
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
TIM Channel 0  
Register High  
(TCH0H)  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Indeterminate after reset  
TIM Channel 0  
Register Low  
(TCH0L)  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Indeterminate after reset  
Read: CH1F  
0
0
TIM Channel 1 Status and  
Control Register  
(TSC1)  
CH1MAX  
0
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
Write:  
0
0
Reset:  
Figure 10-2. TIM I/O Register Summary  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
108  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
Functional Description  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
TIM Channel 1  
Register High  
(TCH1H)  
Bit15  
Bit7  
Bit14  
Bit6  
Bit13  
Bit5  
Bit12  
Bit11  
Bit10  
Bit2  
Bit9  
Bit1  
Bit8  
Bit0  
$0029  
$002A  
Indeterminate after reset  
TIM Channel 1  
Register Low  
(TCH1L)  
Bit4  
Bit3  
Indeterminate after reset  
= Unimplemented  
Figure 10-2. TIM I/O Register Summary  
10.5.1 TIM Counte r Pre sc a le r  
The TIM clock source is one of the seven prescaler outputs. The  
prescaler generates seven clock rates from the internal bus clock. The  
prescaler select bits, PS[2:0], in the TIM status and control register  
(TSC) select the TIM clock source.  
10.5.2 Inp ut Ca p ture  
With the input capture function, the TIM can capture the time at which an  
external event occurs. When an active edge occurs on the pin of an input  
capture channel, the TIM latches the contents of the TIM counter into the  
TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is  
programmable. Input captures can generate TIM CPU interrupt  
requests.  
10.5.3 Outp ut Com p a re  
With the output compare function, the TIM can generate a periodic pulse  
with a programmable polarity, duration, and frequency. When the  
counter reaches the value in the registers of an output compare channel,  
the TIM can set, clear, or toggle the channel pin. Output compares can  
generate TIM CPU interrupt requests.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
109  
Tim e r Inte rfa c e Mod ule (TIM)  
10.5.3.1 Unb uffe re d Outp ut Co m p a re  
Any output compare channel can generate unbuffered output compare  
pulses as described in 10.5.3 Output Compare. The pulses are  
unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an  
output compare value could cause incorrect operation for up to two  
counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new  
value prevents any compare during that counter overflow period. Also,  
using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass  
the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the  
output compare value on channel x:  
• When changing to a smaller value, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current output compare pulse. The interrupt routine has until  
the end of the counter overflow period to write the new value.  
• When changing to a larger output compare value, enable  
channel x TIM overflow interrupts and write the new value in the  
TIM overflow interrupt routine. The TIM overflow interrupt occurs  
at the end of the current counter overflow period. Writing a larger  
value in an output compare interrupt routine (at the end of the  
current pulse) could cause two output compares to occur in the  
same counter overflow period.  
10.5.3.2 Buffe re d Outp ut Co m p a re  
Channels 0 and 1 can be linked to form a buffered output compare  
channel whose output appears on the TCH0 pin. The TIM channel  
registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)  
links channel 0 and channel 1. The output compare value in the TIM  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
110  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Functional Description  
channel 0 registers initially controls the output on the TCH0 pin. Writing  
to the TIM channel 1 registers enables the TIM channel 1 registers to  
synchronously control the output after the TIM overflows. At each  
subsequent overflow, the TIM channel registers (0 or 1) that control the  
output are the ones written to last. TSC0 controls and monitors the  
buffered output compare function, and TIM channel 1 status and control  
register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,  
TCH1, is available as a general-purpose I/O pin.  
NOTE: In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. Writing to the active  
channel registers is the same as generating unbuffered output  
compares.  
10.5.4 Pulse Wid th Mod ula tion (PWM)  
By using the toggle-on-overflow feature with an output compare channel,  
the TIM can generate a PWM signal. The value in the TIM counter  
modulo registers determines the period of the PWM signal. The channel  
pin toggles when the counter reaches the value in the TIM counter  
modulo registers. The time between overflows is the period of the PWM  
signal.  
As Figure 10-3 shows, the output compare value in the TIM channel  
registers determines the pulse width of the PWM signal. The time  
between overflow and output compare is the pulse width. Program the  
TIM to clear the channel pin on output compare if the state of the PWM  
pulse is logic one. Program the TIM to set the pin if the state of the PWM  
pulse is logic zero.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
111  
Tim e r Inte rfa c e Mod ule (TIM)  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 10-3. PWM Period and Pulse Width  
The value in the TIM counter modulo registers and the selected  
prescaler output determines the frequency of the PWM output. The  
frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIM counter modulo registers produces a PWM  
period of 256 times the internal bus clock period if the prescaler select  
value is 000 (see 10.10.1 TIM Status and Control Register (TSC)).  
The value in the TIM channel registers determines the pulse width of the  
PWM output. The pulse width of an 8-bit PWM signal is variable in 256  
increments. Writing $0080 (128) to the TIM channel registers produces  
a duty cycle of 128/256 or 50%.  
10.5.4.1 Unb uffe re d PWM Sig na l Ge ne ra tio n  
Any output compare channel can generate unbuffered PWM pulses as  
described in 10.5.4 Pulse Width Modulation (PWM). The pulses are  
unbuffered because changing the pulse width requires writing the new  
pulse width value over the old value currently in the TIM channel  
registers.  
An unsynchronized write to the TIM channel registers to change a pulse  
width value could cause incorrect operation for up to two PWM periods.  
For example, writing a new value before the counter reaches the old  
value but after the counter reaches the new value prevents any compare  
during that PWM period. Also, using a TIM overflow interrupt routine to  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
112  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Functional Description  
write a new, smaller pulse width value may cause the compare to be  
missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the  
PWM pulse width on channel x:  
• When changing to a shorter pulse width, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the  
PWM period to write the new value.  
• When changing to a longer pulse width, enable channel x TIM  
overflow interrupts and write the new value in the TIM overflow  
interrupt routine. The TIM overflow interrupt occurs at the end of  
the current PWM period. Writing a larger value in an output  
compare interrupt routine (at the end of the current pulse) could  
cause two output compares to occur in the same PWM period.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare also can cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
10.5.4.2 Buffe re d PWM Sig na l Ge ne ra tio n  
Channels 0 and 1 can be linked to form a buffered PWM channel whose  
output appears on the TCH0 pin. The TIM channel registers of the linked  
pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)  
links channel 0 and channel 1. The TIM channel 0 registers initially  
control the pulse width on the TCH0 pin. Writing to the TIM channel 1  
registers enables the TIM channel 1 registers to synchronously control  
the pulse width at the beginning of the next PWM period. At each  
subsequent overflow, the TIM channel registers (0 or 1) that control the  
pulse width are the ones written to last. TSC0 controls and monitors the  
buffered PWM function, and TIM channel 1 status and control register  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
113  
Tim e r Inte rfa c e Mod ule (TIM)  
(TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1,  
is available as a general-purpose I/O pin.  
NOTE: In buffered PWM signal generation, do not write new pulse width values  
to the currently active channel registers. Writing to the active channel  
registers is the same as generating unbuffered PWM signals.  
10.5.4.3 PWM Initia liza tio n  
To ensure correct operation when generating unbuffered or buffered  
PWM signals, use the following initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.  
b. Reset the TIM counter by setting the TIM reset bit, TRST.  
2. In the TIM counter modulo registers (TMODH:TMODL), write the  
value for the required PWM period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for  
the required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or  
1:0 (for buffered output compare or PWM signals) to the mode  
select bits, MSxB:MSxA. (See Table 10-3.)  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on  
compare) to the edge/level select bits, ELSxB:ELSxA. The  
output action on compare must force the output to the  
complement of the pulse width level. (See Table 10-3.)  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare can also cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit,  
TSTOP.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
114  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Interrupts  
Setting MS0B links channels 0 and 1 and configures them for buffered  
PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially  
control the buffered PWM output. TIM status control register 0 (TSCR0)  
controls and monitors the PWM signal from the linked channels. MS0B  
takes priority over MS0A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM  
overflows. Subsequent output compares try to force the output to a state  
it is already in and have no effect. The result is a 0% duty cycle output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and clearing  
the TOVx bit generates a 100% duty cycle output. (See 10.10.4 TIM  
Channel Status and Control Registers (TSC0:TSC1).)  
10.6 Inte rrup ts  
The following TIM sources can generate interrupt requests:  
• TIM overflow flag (TOF) — The TOF bit is set when the TIM  
counter value rolls over to $0000 after matching the value in the  
TIM counter modulo registers. The TIM overflow interrupt enable  
bit, TOIE, enables TIM overflow CPU interrupt requests. TOF and  
TOIE are in the TIM status and control register.  
• TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an  
input capture or output compare occurs on channel x. Channel x  
TIM CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests  
are enabled when CHxIE=1. CHxF and CHxIE are in the TIM  
channel x status and control register.  
10.7 Wa it Mod e  
The WAIT instruction puts the MCU in low-power-consumption standby  
mode.  
The TIM remains active after the execution of a WAIT instruction. In wait  
mode the TIM registers are not accessible by the CPU. Any enabled  
CPU interrupt request from the TIM can bring the MCU out of wait mode.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
115  
Tim e r Inte rfa c e Mod ule (TIM)  
If TIM functions are not required during wait mode, reduce power  
consumption by stopping the TIM before executing the WAIT instruction.  
10.8 TIM During Bre a k Inte rrup ts  
A break interrupt stops the TIM counter.  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the break flag control register (BFCR) enables software to clear status  
bits during the break state. (See 7.8.3 Break Flag Control Register  
(BFCR).)  
To allow software to clear status bits during a break interrupt, write a  
logic one to the BCFE bit. If a status bit is cleared during the break state,  
it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic zero to the  
BCFE bit. With BCFE at logic zero (its default state), software can read  
and write I/O registers during the break state without affecting status  
bits. Some status bits have a two-step read/write clearing procedure. If  
software does the first step on such a bit before the break, the bit cannot  
change during the break state as long as BCFE is at logic zero. After the  
break, doing the second step clears the status bit.  
10.9 I/ O Sig na ls  
Port D shares two of its pins with the TIM. The two TIM channel I/O pins  
are PTD4/TCH0 and PTD5/TCH1.  
Each channel I/O pin is programmable independently as an input  
capture pin or an output compare pin. PTD4/TCH0 can be configured as  
a buffered output compare or buffered PWM pin.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
116  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
I/O Registers  
10.10 I/ O Re g iste rs  
The following I/O registers control and monitor operation of the TIM:  
• TIM status and control register (TSC)  
• TIM control registers (TCNTH:TCNTL)  
• TIM counter modulo registers (TMODH:TMODL)  
• TIM channel status and control registers (TSC0 and TSC1)  
• TIM channel registers (TCH0H:TCH0L and TCH1H:TCH1L)  
10.10.1 TIM Sta tus a nd Control Re g iste r (TSC)  
The TIM status and control register does the following:  
• Enables TIM overflow interrupts  
• Flags TIM overflows  
• Stops the TIM counter  
• Resets the TIM counter  
• Prescales the TIM counter clock  
Address:  
$0020  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
0
0
= Unimplemented  
Figure 10-4. TIM Status and Control Register (TSC)  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the TIM counter resets to $0000 after  
reaching the modulo value programmed in the TIM counter modulo  
registers. Clear TOF by reading the TIM status and control register  
when TOF is set and then writing a logic zero to TOF. If another TIM  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
117  
Tim e r Inte rfa c e Mod ule (TIM)  
overflow occurs before the clearing sequence is complete, then  
writing logic zero to TOF has no effect. Therefore, a TOF interrupt  
request cannot be lost due to inadvertent clearing of TOF. Reset  
clears the TOF bit. Writing a logic one to TOF has no effect.  
1 = TIM counter has reached modulo value  
0 = TIM counter has not reached modulo value  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit  
becomes set. Reset clears the TOIE bit.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
TSTOP — TIM Stop Bit  
This read/write bit stops the TIM counter. Counting resumes when  
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM  
counter until software clears the TSTOP bit.  
1 = TIM counter stopped  
0 = TIM counter active  
NOTE: Do not set the TSTOP bit before entering wait mode if the TIM is required  
to exit wait mode.  
TRST — TIM Reset Bit  
Setting this write-only bit resets the TIM counter and the TIM  
prescaler. Setting TRST has no effect on any other registers.  
Counting resumes from $0000. TRST is cleared automatically after  
the TIM counter is reset and always reads as logic zero. Reset clears  
the TRST bit.  
1 = Prescaler and TIM counter cleared  
0 = No effect  
NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIM counter  
at a value of $0000.  
PS[2:0] — Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the  
input to the TIM counter as Table 10-2 shows. Reset clears the  
PS[2:0] bits.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
118  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
I/O Registers  
Table 10-2. Prescaler Selection  
PS2  
0
PS1  
0
PS0  
0
TIM Clock Source  
Internal Bus Clock ÷ 1  
Internal Bus Clock ÷ 2  
Internal Bus Clock ÷ 4  
Internal Bus Clock ÷ 8  
Internal Bus Clock ÷ 16  
Internal Bus Clock ÷ 32  
Internal Bus Clock ÷ 64  
Not available  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
10.10.2 TIM Counte r Re g iste rs (TCNTH:TCNTL)  
The two read-only TIM counter registers contain the high and low bytes  
of the value in the TIM counter. Reading the high byte (TCNTH) latches  
the contents of the low byte (TCNTL) into a buffer. Subsequent reads of  
TCNTH do not affect the latched TCNTL value until TCNTL is read.  
Reset clears the TIM counter registers. Setting the TIM reset bit (TRST)  
also clears the TIM counter registers.  
NOTE: If you read TCNTH during a break interrupt, be sure to unlatch TCNTL  
by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
119  
Tim e r Inte rfa c e Mod ule (TIM)  
Address:  
$0021  
Bit 7  
TCNTH  
6
5
4
3
2
1
Bit 0  
Bit8  
Read:  
Write:  
Reset:  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
0
0
0
0
0
0
0
0
Address:  
$0022  
Bit 7  
Bit7  
TCNTL  
6
5
4
3
2
1
Bit 0  
Bit0  
Read:  
Write:  
Reset:  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 10-5. TIM Counter Registers (TCNTH:TCNTL)  
10.10.3 TIM Counte r Mod ulo Re g iste rs (TMODH:TMODL)  
The read/write TIM modulo registers contain the modulo value for the  
TIM counter. When the TIM counter reaches the modulo value, the  
overflow flag (TOF) becomes set, and the TIM counter resumes counting  
from $0000 at the next clock. Writing to the high byte (TMODH) inhibits  
the TOF bit and overflow interrupts until the low byte (TMODL) is written.  
Reset sets the TIM counter modulo registers.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
120  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
I/O Registers  
Address:  
$0023  
Bit 7  
TMODH  
6
5
Bit13  
1
4
Bit12  
1
3
Bit11  
1
2
Bit10  
1
1
Bit9  
1
Bit 0  
Bit8  
1
Read:  
Write:  
Reset:  
Bit15  
1
Bit14  
1
Address:  
$0024  
Bit 7  
TMODL  
6
5
Bit5  
1
4
Bit4  
1
3
Bit3  
1
2
Bit2  
1
1
Bit1  
1
Bit 0  
Bit0  
1
Read:  
Write:  
Reset:  
Bit7  
1
Bit6  
1
Figure 10-6. TIM Counter Modulo Registers (TMODH:TMODL)  
NOTE: Reset the TIM counter before writing to the TIM counter modulo registers.  
10.10.4 TIM Cha nne l Sta tus a nd Control Re g iste rs (TSC0:TSC1)  
Each of the TIM channel status and control registers does the following:  
• Flags input captures and output compares  
• Enables input capture and output compare interrupts  
• Selects input capture, output compare, or PWM operation  
• Selects high, low, or toggling output on output compare  
• Selects rising edge, falling edge, or any edge as the active input  
capture trigger  
• Selects output toggling on TIM overflow  
• Selects 100% PWM duty cycle  
• Selects buffered or unbuffered output compare/PWM operation  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
121  
Tim e r Inte rfa c e Mod ule (TIM)  
Address:  
$0025  
Bit 7  
CH0F  
0
TSC0  
6
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
CH0IE  
0
0
Address:  
$0028  
Bit 7  
CH1F  
0
TSC1  
6
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
CH1IE  
0
0
0
= Unimplemented  
Figure 10-7. TIM Channel Status and Control Registers (TSC0:TSC1)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set  
when an active edge occurs on the channel x pin. When channel x is  
an output compare channel, CHxF is set when the value in the TIM  
counter registers matches the value in the TIM channel x registers.  
When TIM CPU interrupt requests are enabled (CHxIE=1), clear  
CHxF by reading the TIM channel x status and control register with  
CHxF set and then writing a logic zero to CHxF. If another interrupt  
request occurs before the clearing sequence is complete, then writing  
logic zero to CHxF has no effect. Therefore, an interrupt request  
cannot be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic one to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM CPU interrupt service requests on  
channel x. Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
122  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
I/O Registers  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation.  
MSxB exists only in the TIM channel 0 status and control register.  
Setting MS0B disables the channel 1 status and control register and  
reverts TCH1 to general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture  
operation or unbuffered output compare/PWM operation.  
See Table 10-3.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level  
of the TCHx pin. (See Table 10-3.) Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE: Before changing a channel function by writing to the MSxB or MSxA bit,  
set the TSTOP and TRST bits in the TIM status and control register  
(TSC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits  
control the active edge-sensing logic on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA  
control the channel x output behavior when an output compare  
occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected  
to an I/O port, and pin TCHx is available as a general-purpose I/O  
pin. Table 10-3 shows how ELSxB and ELSxA work. Reset clears the  
ELSxB and ELSxA bits.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
123  
Tim e r Inte rfa c e Mod ule (TIM)  
Table 10-3. Mode, Edge, and Level Selection  
MSxB MSxA ELSxB ELSxA  
Mode  
Configuration  
Pin under Port Control;  
Initial Output Level High  
X
X
0
1
0
0
0
0
Output  
Preset  
Pin under Port Control;  
Initial Output Level Low  
0
0
0
0
0
0
1
1
0
0
0
1
1
1
X
X
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
Capture on Rising Edge Only  
Capture on Falling Edge Only  
Capture on Rising or Falling Edge  
Toggle Output on Compare  
Input  
Capture  
Output  
Compare Clear Output on Compare  
or PWM  
Set Output on Compare  
Buffered  
Output  
Compareor  
Buffered  
PWM  
Toggle Output on Compare  
Clear Output on Compare  
1
X
1
1
Set Output on Compare  
NOTE: Before enabling a TIM channel register for input capture operation, make  
sure that the TCHx pin is stable for at least two bus clocks.  
TOVx — Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit  
controls the behavior of the channel x output when the TIM counter  
overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIM counter overflow.  
0 = Channel x pin does not toggle on TIM counter overflow.  
NOTE: When TOVx is set, a TIM counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic zero, setting the CHxMAX bit forces the  
duty cycle of buffered and unbuffered PWM signals to 100%. As  
Figure 10-8 shows, the CHxMAX bit takes effect in the cycle after it  
is set or cleared. The output stays at the 100% duty cycle level until  
the cycle after CHxMAX is cleared.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
124  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
I/O Registers  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
OUTPUT  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
COMPARE  
CHxMAX  
Figure 10-8. CHxMAX Latency  
10.10.5 TIM Cha nne l Re g iste rs (TCH0H/ L:TCH1H/ L)  
These read/write registers contain the captured TIM counter value of the  
input capture function or the output compare value of the output  
compare function. The state of the TIM channel registers after reset is  
unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the  
TIM channel x registers (TCHxH) inhibits input captures until the low  
byte (TCHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of  
the TIM channel x registers (TCHxH) inhibits output compares until the  
low byte (TCHxL) is written.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
125  
Tim e r Inte rfa c e Mod ule (TIM)  
Address:  
$0026  
Bit 7  
TCH0H  
6
5
4
3
2
1
Bit 0  
Bit8  
Read:  
Write:  
Reset:  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Indeterminate after reset  
Address:  
$0027  
Bit 7  
TCH0L  
6
5
4
3
2
1
Bit 0  
Bit0  
Read:  
Write:  
Reset:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Indeterminate after reset  
Address:  
$0029  
Bit 7  
TCH1H  
6
5
4
3
2
1
Bit 0  
Bit8  
Read:  
Write:  
Reset:  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Indeterminate after reset  
Address:  
$02A  
Bit 7  
TCH1L  
6
5
4
3
2
1
Bit 0  
Bit0  
Read:  
Write:  
Reset:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Indeterminate after reset  
Figure 10-9. TIM Channel Registers (TCH0H/L:TCH1H/L)  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
126  
Timer Interface Module (TIM)  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 11. Ana log -to-Dig ita l Conve rte r (ADC)  
11.1 Conte nts  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128  
11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128  
11.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
11.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
11.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
11.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
11.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
11.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
11.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
11.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
11.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
11.7.1 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . .132  
11.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132  
11.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .132  
11.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134  
11.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . .135  
11.2 Introd uc tion  
This section describes the analog-to-digital converter (ADC). The ADC  
is an 8-bit, 12-channels analog-to-digital converter.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Analog-to-Digital Converter (ADC)  
127  
Ana log -to-Dig ita l Conve rte r (ADC)  
11.3 Fe a ture s  
Features of the ADC module include:  
• 12 channels with multiplexed input  
• Linear successive approximation with monotonicity  
• 8-bit resolution  
• Single or continuous conversion  
• Conversion complete flag or conversion complete interrupt  
• Selectable ADC clock  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: COCO  
ADC Status and Control  
AIEN  
ADCO  
CH4  
CH3  
CH2  
CH1  
CH0  
$003C  
Register Write:  
(ADSCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
1
1
1
1
1
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
ADC Data Register  
(ADR)  
$003D  
$003E  
Indeterminate after reset  
0
0
0
0
0
0
0
0
ADIV2  
0
ADIV1  
0
ADIV0  
0
ADC Input Clock Register  
(ADICLK)  
0
0
Figure 11-1. ADC I/O Register Summary  
11.4 Func tiona l De sc rip tion  
Twelve ADC channels are available for sampling external sources at  
pins PTB0–PTB7 and PTD0–PTD3. An analog multiplexer allows the  
single ADC converter to select one of the 12 ADC channels as ADC  
voltage input (ADCVIN). ADCVIN is converted by the successive  
approximation register-based counters. The ADC resolution is 8 bits.  
When the conversion is completed, ADC puts the result in the ADC data  
register and sets a flag or generates an interrupt. Figure 11-2 shows a  
block diagram of the ADC.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
128  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Functional Description  
INTERNAL  
DATA BUS  
READ DDRB/DDRD  
WRITE DDRB/DDRD  
DISABLE  
DDRBx/DDRDx  
PTBx/PTDx  
RESET  
WRITE PTB/PTD  
READ PTB/PTD  
ADCx  
DISABLE  
ADC CHANNEL x  
ADC DATA REGISTER  
ADC VOLTAGE IN  
ADCVIN  
CONVERSION  
COMPLETE  
CHANNEL  
SELECT  
(1 OF 12 CHANNELS)  
INTERRUPT  
LOGIC  
CH[4:0]  
ADC  
ADC CLOCK  
AIEN  
COCO  
CLOCK  
GENERATOR  
BUS CLOCK  
ADIV[2:0]  
ADICLK  
Figure 11-2. ADC Block Diagram  
11.4.1 ADC Port I/ O Pins  
PTB0–PTB7 and PTD0–PTD3 are general-purpose I/O pins that are  
shared with the ADC channels. The channel select bits (ADC Status and  
Control register, $003C), define which ADC channel/port pin will be used  
as the input signal. The ADC overrides the port I/O logic by forcing that  
pin as input to the ADC. The remaining ADC channels/port pins are  
controlled by the port I/O logic and can be used as general-purpose I/O.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Analog-to-Digital Converter (ADC)  
129  
Ana log -to-Dig ita l Conve rte r (ADC)  
Writes to the port register or DDR will not have any affect on the port pin  
that is selected by the ADC. Read of a port pin which is in use by the  
ADC will return a logic 0 if the corresponding DDR bit is at logic 0. If the  
DDR bit is at logic 1, the value in the port data latch is read.  
11.4.2 Volta g e Conve rsion  
When the input voltage to the ADC equals V , the ADC converts the  
DD  
signal to $FF (full scale). If the input voltage equals V  
the ADC  
SS,  
converts it to $00. Input voltages between V and V are a  
DD  
SS  
straight-line linear conversion. All other input voltages will result in $FF  
if greater than V and $00 if less than V .  
DD  
SS  
NOTE: Input voltage should not exceed the analog supply voltages.  
11.4.3 Conve rsion Tim e  
Sixteen ADC internal clocks are required to perform one conversion. The  
ADC starts a conversion on the first rising edge of the ADC internal clock  
immediately following a write to the ADSCR. If the ADC internal clock is  
selected to run at 1MHz, then one conversion will take 16µs to complete.  
With a 1MHz ADC internal clock the maximum sample rate is 62.5kHz.  
16 ADC Clock Cycles  
Conversion Time =  
ADC Clock Frequency  
Number of Bus Cycles = Conversion Time × Bus Frequency  
11.4.4 Continuous Conve rsion  
In the continuous conversion mode, the ADC continuously converts the  
selected channel filling the ADC data register with new data after each  
conversion. Data from the previous conversion will be overwritten  
whether that data has been read or not. Conversions will continue until  
the ADCO bit is cleared. The COCO bit (ADC Status & Control register,  
$003C) is set after each conversion and can be cleared by writing the  
ADC status and control register or reading of the ADC data register.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
130  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Interrupts  
11.4.5 Ac c ura c y a nd Pre c ision  
The conversion process is monotonic and has no missing codes.  
11.5 Inte rrup ts  
When the AIEN bit is set, the ADC module is capable of generating a  
CPU interrupt after each ADC conversion. A CPU interrupt is generated  
if the COCO bit is at logic 0. The COCO bit is not used as a conversion  
complete flag when interrupts are enabled.  
11.6 Low-Powe r Mod e s  
The following subsections describe the ADC in low-power modes.  
11.6.1 Wa it Mod e  
The ADC continues normal operation during wait mode. Any enabled  
CPU interrupt request from the ADC can bring the MCU out of wait  
mode. If the ADC is not required to bring the MCU out of wait mode,  
power down the ADC by setting the CH[4:0] bits in the ADC Status and  
Control register to logic 1’s before executing the WAIT instruction.  
11.6.2 Stop Mod e  
The ADC module is inactive after the execution of a STOP instruction.  
Any pending conversion is aborted. ADC conversions resume when the  
MCU exits stop mode. Allow one conversion cycle to stabilize the analog  
circuitry before attempting a new ADC conversion after exiting stop  
mode.  
11.7 I/ O Sig na ls  
The ADC module has 12 channels that are shared with I/O port B and  
port D.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Analog-to-Digital Converter (ADC)  
131  
Ana log -to-Dig ita l Conve rte r (ADC)  
11.7.1 ADC Volta g e In (ADCVIN)  
ADCVIN is the input voltage signal from one of the 12 ADC channels to  
the ADC module.  
11.8 I/ O Re g iste rs  
These I/O registers control and monitor ADC operation:  
• ADC Status and Control register (ADSCR)  
• ADC data register (ADR)  
• ADC clock register (ADICLK)  
11.8.1 ADC Sta tus a nd Control Re g iste r  
The following paragraphs describe the function of the ADC Status and  
Control register.  
Address:  
$003C  
Bit 7  
6
AIEN  
0
5
ADCO  
0
4
CH4  
1
3
CH3  
1
2
CH2  
1
1
CH1  
1
Bit 0  
CH0  
1
Read:  
Write:  
Reset:  
COCO  
0
= Unimplemented  
Figure 11-3. ADC Status and Control Register (ADSCR)  
COCO — Conversions Complete Bit  
When the AIEN bit is a logic 0, the COCO is a read-only bit which is  
set each time a conversion is completed. This bit is cleared whenever  
the ADC status and control register is written or whenever the ADC  
data register is read. Reset clears this bit.  
1 = conversion completed (AIEN = 0)  
0 = conversion not completed (AIEN = 0)  
When the AIEN bit is a logic 1 (CPU interrupt enabled), the COCO is  
a read-only bit, and will always be logic 0 when read.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
132  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
I/O Registers  
AIEN — ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC  
conversion. The interrupt signal is cleared when the data register is  
read or the status/control register is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
ADCO — ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the  
ADR register at the end of each conversion. Only one conversion is  
allowed when this bit is cleared. Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
ADCH[4:0] — ADC Channel Select Bits  
ADCH4, ADCH3, ADCH2, ADCH1, and ADCH0 form a 5-bit field  
which is used to select one of the ADC channels. The five channel  
select bits are detailed in the following table. Care should be taken  
when using a port pin as both an analog and a digital input  
simultaneously to prevent switching noise from corrupting the analog  
signal. (See Table 11-1.)  
The ADC subsystem is turned off when the channel select bits are all  
set to one. This feature allows for reduced power consumption for the  
MCU when the ADC is not used. Reset sets all of these bits to a  
logic 1.  
NOTE: Recovery from the disabled state requires one conversion cycle to  
stabilize.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Analog-to-Digital Converter (ADC)  
133  
Ana log -to-Dig ita l Conve rte r (ADC)  
Table 11-1. MUX Channel Select  
CH4  
CH3  
CH2  
CH1  
CH0  
ADC Channel  
Input Select  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
:
0
0
0
0
1
1
1
1
0
0
0
0
1
:
0
0
1
1
0
0
1
1
0
0
1
1
0
:
0
1
0
1
0
1
0
1
0
1
0
1
0
:
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC8  
ADC9  
ADC10  
ADC11  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
PTD3  
PTD2  
PTD1  
PTD0  
0
0
0
0
0
0
0
0
0
0
0
0
Unused  
(see Note 1)  
:
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
1
Reserved  
Unused  
1
1
V
V
(see Note 2)  
(see Note 2)  
DDA  
SSA  
1
1
ADC power off  
NOTES:  
1. If any unused channels are selected, the resulting ADC conversion will be unknown.  
2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the  
operation of the ADC converter both in production test and for user applications.  
11.8.2 ADC Da ta Re g iste r  
One 8-bit result register is provided. This register is updated each time  
an ADC conversion completes.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
134  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
I/O Registers  
Address:  
$003D  
Bit 7  
6
5
4
3
2
1
Bit 0  
AD0  
Read:  
Write:  
Reset:  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
Indeterminate after reset  
= Unimplemented  
Figure 11-4. ADC Data Register (ADR)  
11.8.3 ADC Inp ut Cloc k Re g iste r  
This register selects the clock frequency for the ADC.  
Address:  
$003E  
Bit 7  
6
ADIV1  
0
5
ADIV0  
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
ADIV2  
0
0
0
0
0
0
= Unimplemented  
Figure 11-5. ADC Input Clock Register (ADICLK)  
ADIV2:ADIV0 — ADC Clock Prescaler Bits  
ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide  
ratio used by the ADC to generate the internal ADC clock. Table 11-2  
shows the available clock configurations. The ADC clock should be  
set to approximately 1MHz.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Analog-to-Digital Converter (ADC)  
135  
Ana log -to-Dig ita l Conve rte r (ADC)  
Table 11-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
ADC Input Clock ÷ 1  
ADC Input Clock ÷ 2  
ADC Input Clock ÷ 4  
ADC Input Clock ÷ 8  
ADC Input Clock ÷ 16  
0
0
0
1
1
X
0
1
0
1
X
0
0
0
1
X = don’t care  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
136  
Analog-to-Digital Converter (ADC)  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 12. I/ O Ports  
12.1 Conte nts  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
12.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138  
12.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . .139  
12.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . .140  
12.3.3 Port A Input Pull-up Enable Register (PTAPUE) . . . . . . . .141  
12.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
12.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . .143  
12.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . .143  
12.5 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
12.5.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . .145  
12.5.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . .146  
12.5.3 Port D Control Register (PDCR). . . . . . . . . . . . . . . . . . . . .147  
12.2 Introd uc tion  
Twenty three bidirectional input-output (I/O) pins form three parallel  
ports. All I/O pins are programmable as inputs or outputs.  
NOTE: Connect any unused I/O pins to an appropriate logic level, either VDD or  
VSS. Although the I/O ports do not require termination for proper  
operation, termination reduces excess current consumption and the  
possibility of electrostatic damage.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
I/O Ports  
137  
I/ O Ports  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Port A Data Register  
(PTA)  
$0000  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
PTB7  
PTB6  
PTD6  
PTB5  
PTD5  
PTB2  
PTD2  
PTB1  
PTD1  
PTB0  
PTD0  
Port B Data Register  
(PTB)  
$0001  
$0003  
$0004  
$0005  
$0007  
$000A  
$000D  
PTD7  
0
Port D Data Register  
(PTD)  
DDRA6  
0
DDRA5  
0
DDRA4  
0
DDRA3  
DDRA2  
DDRA1  
DDRA0  
Data Direction Register A  
(DDRA)  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
DDRB7  
0
DDRB6  
0
DDRB5  
0
DDRB4  
0
Data Direction Register B  
(DDRB)  
DDRD7  
DDRD6  
DDRD5  
DDRD4  
DDRD3  
0
DDRD2  
0
DDRD1  
0
DDRD0  
0
Data Direction Register D  
(DDRD)  
0
0
0
0
0
0
0
0
SLOWD7 SLOWD6 PTDPU7 PTDPU6  
Port D Control Register  
(PDCR)  
0
0
0
0
0
0
0
0
Port A Input Pull-up  
PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
Enable Register Write:  
(PTAPUE)  
Reset:  
0
0
0
0
0
0
0
0
Figure 12-1. I/O Port Register Summary  
12.3 Port A  
Port A is an 7-bit special function port that shares all seven of its pins  
with the Keyboard Interrupt (KBI) Module, See Section 14. Each port A  
pin also has software configurable pull-up device if the corresponding  
port pin is configured as input port. PTA0 to PTA5 has direct LED drive  
capability.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
138  
I/O Ports  
MOTOROLA  
I/O Ports  
Port A  
12.3.1 Port A Da ta Re g iste r (PTA)  
The port A data register (PTA) contains a data latch for each of the seven  
port A pins.  
Address:  
$0000  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Unaffected by Reset  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
Additional Functions:  
30k pull-up 30k pull-up 30k pull-up 30k pull-up 30k pull-up 30k pull-up 30k pull-up  
Keyboard Keyboard Keyboard Keyboard Keyboard Keyboard Keyboard  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Figure 12-2. Port A Data Register (PTA)  
PTA[6:0] — Port A Data Bits  
These read/write bits are software programmable. Data direction of  
each port A pin is under the control of the corresponding bit in data  
direction register A. Reset has no effect on port A data.  
KBI[6:0] — Port A Keyboard Interrupts  
The keyboard interrupt enable bits, KBIE6-KBIE0, in the keyboard  
interrupt control register (KBAIER) enable the port A pins as external  
interrupt pins, (see Section 14. Keyboard Interrupt Module (KBI)).  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
I/O Ports  
139  
I/ O Ports  
12.3.2 Da ta Dire c tion Re g iste r A (DDRA)  
Data direction register A determines whether each port A pin is an input  
or an output. Writing a logic one to a DDRA bit enables the output buffer  
for the corresponding port A pin; a logic zero disables the output buffer.  
Address:  
$0004  
Bit 7  
0
6
DDRA6  
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
DDRA2  
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
0
Figure 12-3. Data Direction Register A (DDRA)  
DDRA[6:0] — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears  
DDRA[6:0], configuring all port A pins as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE: Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
Figure 12-4 shows the port A I/O logic.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
140  
I/O Ports  
MOTOROLA  
I/O Ports  
Port A  
READ DDRA ($0004)  
WRITE DDRA ($0004)  
PTAPUEx  
DDRAx  
PTAx  
RESET  
30k  
WRITE PTA ($0000)  
READ PTA ($0000)  
PTAx  
To Keyboard Interrupt Circuit  
Figure 12-4. Port A I/O Circuit  
When DDRAx is a logic 1, reading address $0000 reads the PTAx data  
latch. When DDRAx is a logic 0, reading address $0000 reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit.  
12.3.3 Port A Inp ut Pull-up Ena b le Re g iste r (PTAPUE)  
The Port A Input Pull-up Enable Register (PTAPUE) contains a software  
configurable pull-up device for each if the seven port A pins. Each bit is  
individually configurable and requires the corresponding data direction  
register, DDRAx be configured as input. Each pull-up device is  
automatically and dynamically disabled when its corresponding DDRAx  
bit is configured as output.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
I/O Ports  
141  
I/ O Ports  
Address:  
$000D  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE2 PTAPUE0  
0
0
0
0
0
0
0
0
Figure 12-5. Port A Input Pull-up Enable Register (PTAPUE)  
PTA6EN — Enable PTA6 on OSC2  
This read/write bit configures the OSC2 pin function when RC  
oscillator option is selected. This bit has no effect for X-tal oscillator  
option.  
1 = OSC2 pin configured for PTA6 I/O, and has all the interrupt and  
pull-up functions.  
0 = OSC2 pin outputs the RC oscillator clock (RCCLK)  
PTAPUE[6:0] — Port A Input Pull-up Enable bits  
These read/write bits are software programmable to enable pull-up  
devices on port A pins  
1 = Corresponding port A pin configured to have internal pull if its  
DDRA bit is set to 0  
0 = Pull-up device is disconnected on the corresponding port A pin  
regardless of the state of its DDRA bit.  
Table 12-1 summarizes the operation of the port B pins.  
Table 12-1. Port A Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
DDRA  
Bit  
PTAPUE Bit  
PTA Bit  
I/O Pin Mode  
Read  
Write  
(1)  
(2)  
(3)  
(3)  
1
0
X
0
0
1
X
Input, V  
DDRA6-DDRA0  
DDRA6-DDRA0  
DDRA6-DDRA0  
Pin  
Pin  
PTA6-PTA0  
PTA6-PTA0  
DD  
(4)  
X
X
Input, Hi-Z  
Output  
PTA6-PTA0  
PTA6-PTA0  
1. X = Don’t care.  
2. I/O pin pulled to V by internal pull-up.  
DD  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = High Impedence  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
142  
I/O Ports  
I/O Ports  
Port B  
12.4 Port B  
Port B is an 8-bit special function port that shares all eight of its port pins  
with the Analog-to-Digital converter (ADC) module, See Section 11.  
12.4.1 Port B Da ta Re g iste r (PTB)  
The port B data register contains a data latch for each of the eight port B  
pins.  
Address:  
$0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Reset:  
Unaffected by reset  
ADC4 ADC3  
Alternative Function:  
ADC7  
ADC6  
ADC5  
ADC2  
ADC2  
ADC0  
Figure 12-6. Port B Data Register (PTB)  
PTB[7:0] — Port B Data Bits  
These read/write bits are software programmable. Data direction of  
each port B pin is under the control of the corresponding bit in data  
direction register B. Reset has no effect on port B data.  
12.4.2 Da ta Dire c tion Re g iste r B (DDRB)  
Data direction register B determines whether each port B pin is an input  
or an output. Writing a logic one to a DDRB bit enables the output buffer  
for the corresponding port B pin; a logic zero disables the output buffer.  
Address:  
$0005  
Bit 7  
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
DDRB7  
0
Figure 12-7. Data Direction Register B (DDRB)  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
I/O Ports  
143  
I/ O Ports  
DDRB[7:0] — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears  
DDRB[7:0], configuring all port B pins as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE: Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1. Figure 12-8 shows  
the port B I/O logic.  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
RESET  
WRITE PTB ($0001)  
PTBx  
PTBx  
READ PTB ($0001)  
To Analog-To-Digital Converter  
Figure 12-8. Port B I/O Circuit  
When DDRBx is a logic 1, reading address $0001 reads the PTBx data  
latch. When DDRBx is a logic 0, reading address $0001 reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit. Table 12-2summarizes the operation  
of the port B pins.  
Table 12-2. Port B Pin Functions  
Accesses to DDRB Accesses to PTB  
DDRB Bit PTB Bit I/O Pin Mode  
Read/Write  
Read  
Write  
(1)  
(2)  
(3)  
0
X
Input, Hi-Z  
Output  
DDRB7-DDRB0  
DDRB7-DDRB0  
Pin  
PTB[7:0]  
1
X
Pin  
PTB[7:0]  
1. X = don’t care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect the input.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
144  
I/O Ports  
I/O Ports  
Port D  
12.5 Port D  
Port D is an 8-bit special function port that shares two of its pins with  
Timer Interface Module, (see Section 10.) and shares four of its pins  
with Analog to Digital Conversion Module (see Section 11.). PTD6 and  
PTD7 each has high current drive (25mA sink) and programmable pull-  
up. PTD2, PTD3, PTD6 and PTD7 each has LED driving capability.  
12.5.1 Port D Da ta Re g iste r (PTD)  
The port D data register contains a data latch for each of the eight port D  
pins.  
Address:  
$0003  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
PTD7  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
Reset:  
Additional Functions  
LED  
LED  
LED  
LED  
ADC8  
ADC9  
ADC10  
ADC11  
TCH1  
TCH0  
25mA sink 25mA sink  
(Slow Edge) (Slow Edge)  
5k pull-up 5k pull-up  
Figure 12-9. Port D Data Register (PTD)  
PTD[7:0] — Port D Data Bits  
These read/write bits are software programmable. Data direction of  
each port D pin is under the control of the corresponding bit in data  
direction register D. Reset has no effect on port D data.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
I/O Ports  
145  
I/ O Ports  
12.5.2 Da ta Dire c tion Re g iste r D (DDRD)  
Data direction register D determines whether each port D pin is an input  
or an output. Writing a logic one to a DDRD bit enables the output buffer  
for the corresponding port D pin; a logic zero disables the output buffer.  
Address:  
$0007  
Bit 7  
6
DDRD6  
0
5
DDRD5  
0
4
DDRD4  
0
3
DDRD3  
0
2
DDRD2  
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
DDRD7  
0
Figure 12-10. Data Direction Register D (DDRD)  
DDRD[7:0] — Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears  
DDRD[7:0], configuring all port D pins as inputs.  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE: Avoid glitches on port D pins by writing to the port D data register before  
changing data direction register D bits from 0 to 1. Figure 12-11 shows  
the port D I/O logic.  
READ DDRD ($0007)  
PTDPU[6:7]  
WRITE DDRD ($0007)  
DDRDx  
RESET  
5k  
WRITE PTD ($0003)  
READ PTD ($0003)  
PTDx  
PTDx  
PTD[0:3] To Analog-To-Digital Converter  
PTD[4:5] To Timer  
Figure 12-11. Port D I/O Circuit  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
146  
I/O Ports  
I/O Ports  
Port D  
When DDRDx is a logic 1, reading address $0003 reads the PTDx data  
latch. When DDRDx is a logic 0, reading address $0003 reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit. Table 12-3 summarizes the operation  
of the port D pins.  
Table 12-3. Port D Pin Functions  
Accesses  
Accesses to PTD  
DDRD  
Bit  
I/O Pin  
Mode  
to DDRA  
Read/Write  
DDRD[7:0]  
DDRD[7:0]  
PTD Bit  
Read  
Pin  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
Output  
PTD[7:0]  
X
Pin  
PTD[7:0]  
1. X = don’t care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect the input.  
12.5.3 Port D Control Re g iste r (PDCR)  
The Port D Control Register enables/disables the pull-up resistor and  
slow-edge high current capability of pins PTD6 and PTD7.  
Address:  
$000A  
Bit 7  
0
6
5
4
3
SLOWD7  
0
2
SLOWD6  
0
1
PTDPU7  
0
Bit 0  
PTDPU6  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
Figure 12-12. Port D Control Register (PDCR)  
SLOWDx — Slow Edge Enable  
The SLOWD6 and SLOWD7 bits enable the Slow-edge, open-drain,  
high current output (25mA sink) of port pins PTD6 and PTD7  
respectively. DDRx bit is not affected by SLOWDx.  
1 = Slow edge enabled; pin is open-drain output  
0 = Slow edge disabled; pin is push-pull  
PTDPUx — Pull-up Enable  
The PTDPU6 and PTDPU7 bits enable the 5k pull-up on PTD6 and  
PTD7 respectively, regardless the status of DDRDx bit.  
1 = Enable 5k pull-up  
0 = Disable 5k pull-up  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
I/O Ports  
147  
I/ O Ports  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
148  
I/O Ports  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 13. Exte rna l Inte rrup t (IRQ)  
13.1 Conte nts  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
13.4.1 IRQ1 Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
13.5 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .153  
13.6 IRQ Status and Control Register (ISCR) . . . . . . . . . . . . . . . .153  
13.2 Introd uc tion  
13.3 Fe a ture s  
The IRQ (external interrupt) module provides a maskable interrupt input.  
Features of the IRQ module include the following:  
• A dedicated external interrupt pin, IRQ1  
• IRQ1 interrupt control bits  
• Hysteresis buffer  
• Programmable edge-only or edge and level interrupt sensitivity  
• Automatic interrupt acknowledge  
• Selectable internal pullup resistor  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
External Interrupt (IRQ)  
149  
Exte rna l Inte rrup t (IRQ)  
13.4 Func tiona l De sc rip tion  
A logic zero applied to the external interrupt pin can latch a CPU interrupt  
request. Figure 13-1 shows the structure of the IRQ module.  
Interrupt signals on the IRQ1 pin are latched into the IRQ1 latch. An  
interrupt latch remains set until one of the following actions occurs:  
• Vector fetch — A vector fetch automatically generates an interrupt  
acknowledge signal that clears the IRQ latch.  
• Software clear — Software can clear the interrupt latch by writing  
to the acknowledge bit in the interrupt status and control register  
(ISCR). Writing a logic one to the ACK1 bit clears the IRQ1 latch.  
• Reset — A reset automatically clears the interrupt latch.  
The external interrupt pin is falling-edge-triggered and is software-  
configurable to be either falling-edge or falling-edge and low-level-  
triggered. The MODE1 bit in the ISCR controls the triggering sensitivity  
of the IRQ1 pin.  
When the interrupt pin is edge-triggered only, the CPU interrupt request  
remains set until a vector fetch, software clear, or reset occurs.  
When the interrupt pin is both falling-edge and low-level-triggered, the  
CPU interrupt request remains set until both of the following occur:  
• Vector fetch or software clear  
• Return of the interrupt pin to logic one  
The vector fetch or software clear may occur before or after the interrupt  
pin returns to logic one. As long as the pin is low, the interrupt request  
remains pending. A reset will clear the latch and the MODE1 control bit,  
thereby clearing the interrupt even if the pin stays low.  
When set, the IMASK1 bit in the ISCR mask all external interrupt  
requests. A latched interrupt request is not presented to the interrupt  
priority logic unless the IMASK1 bit is clear.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
150  
External Interrupt (IRQ)  
MOTOROLA  
External Interrupt (IRQ)  
Functional Description  
NOTE: The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including external interrupt requests.(See 7.6  
Exception Control.)  
ACK1  
RESET  
TO CPU FOR  
BIL/BIH  
INSTRUCTIONS  
VECTOR  
FETCH  
DECODER  
VDD  
IRQPUD  
VDD  
I
NTERNAL  
IRQF1  
PULLUP  
DEVICE  
CLR  
D
Q
SYNCHRO-  
NIZER  
IRQ1  
INTERRUPT  
REQUEST  
CK  
IRQ1  
IRQ1  
FF  
IMASK1  
MODE1  
HIGH  
VOLTAGE  
DETECT  
TO MODE  
SELECT  
LOGIC  
Figure 13-1. IRQ Module Block Diagram  
Addr.  
Register Name  
IRQ Status and Control  
Bit 7  
6
5
4
3
2
0
1
IMASK1  
0
Bit 0  
MODE1  
0
Read:  
0
0
0
0
IRQF1  
$001D  
Register Write:  
(INTSCR)  
ACK1  
0
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 13-2. IRQ I/O Register Summary  
13.4.1 IRQ1 Pin  
A logic zero on the IRQ1 pin can latch an interrupt request into the IRQ1  
latch. A vector fetch, software clear, or reset clears the IRQ1 latch.  
If the MODE1 bit is set, the IRQ1 pin is both falling-edge-sensitive and  
low-level-sensitive. With MODE1 set, both of the following actions must  
occur to clear IRQ1:  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
External Interrupt (IRQ)  
151  
Exte rna l Inte rrup t (IRQ)  
• Vector fetch or software clear — A vector fetch generates an  
interrupt acknowledge signal to clear the latch. Software may  
generate the interrupt acknowledge signal by writing a logic one to  
the ACK1 bit in the interrupt status and control register (ISCR).  
The ACK1 bit is useful in applications that poll the IRQ1 pin and  
require software to clear the IRQ1 latch. Writing to the ACK1 bit  
prior to leaving an interrupt service routine can also prevent  
spurious interrupts due to noise. Setting ACK1 does not affect  
subsequent transitions on the IRQ1 pin. A falling edge that occurs  
after writing to the ACK1 bit latches another interrupt request. If  
the IRQ1 mask bit, IMASK1, is clear, the CPU loads the program  
counter with the vector address at locations $FFFA and $FFFB.  
• Return of the IRQ1 pin to logic one — As long as the IRQ1 pin is  
at logic zero, IRQ1 remains active.  
The vector fetch or software clear and the return of the IRQ1 pin to logic  
one may occur in any order. The interrupt request remains pending as  
long as the IRQ1 pin is at logic zero. A reset will clear the latch and the  
MODE1 control bit, thereby clearing the interrupt even if the pin stays  
low.  
If the MODE1 bit is clear, the IRQ1 pin is falling-edge-sensitive only.  
With MODE1 clear, a vector fetch or software clear immediately clears  
the IRQ1 latch.  
The IRQF1 bit in the ISCR register can be used to check for pending  
interrupts. The IRQF1 bit is not affected by the IMASK1 bit, which makes  
it useful in applications where polling is preferred.  
Use the BIH or BIL instruction to read the logic level on the IRQ1 pin.  
NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine.  
NOTE: An internal pull-up resistor to V is connected to the IRQ1 pin; this can  
DD  
be disabled by setting the IRQPUD bit in the CONFIG2 register ($001E).  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
152  
External Interrupt (IRQ)  
MOTOROLA  
External Interrupt (IRQ)  
IRQ Module During Break Interrupts  
13.5 IRQ Mod ule During Bre a k Inte rrup ts  
The system integration module (SIM) controls whether the IRQ1 latch  
can be cleared during the break state. The BCFE bit in the break flag  
control register (BFCR) enables software to clear the latches during the  
break state. (See Section 7. System Integration Module (SIM).)  
To allow software to clear the IRQ1 latch during a break interrupt, write  
a logic one to the BCFE bit. If a latch is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect the latches during the break state, write a logic zero to the  
BCFE bit. With BCFE at logic zero (its default state), writing to the ACK1  
bit in the IRQ status and control register during the break state has no  
effect on the IRQ latch.  
13.6 IRQ Sta tus a nd Control Re g iste r (ISCR)  
The IRQ Status and Control Register (ISCR) controls and monitors  
operation of the IRQ module. The ISCR has the following functions:  
• Shows the state of the IRQ1 flag  
• Clears the IRQ1 latch  
• Masks IRQ1 and interrupt request  
• Controls triggering sensitivity of the IRQ1 interrupt pin  
Address:  
$001D  
Bit 7  
0
6
0
5
0
4
0
3
2
1
IMASK1  
0
Bit 0  
MODE1  
0
Read:  
Write:  
Reset:  
IRQF1  
ACK1  
0
0
0
0
0
0
= Unimplemented  
Figure 13-3. IRQ Status and Control Register (INTSCR)  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
External Interrupt (IRQ)  
153  
Exte rna l Inte rrup t (IRQ)  
IRQF1 — IRQ1 Flag  
This read-only status bit is high when the IRQ1 interrupt is pending.  
1 = IRQ1 interrupt pending  
0 = IRQ1 interrupt not pending  
ACK1 — IRQ1 Interrupt Request Acknowledge Bit  
Writing a logic one to this write-only bit clears the IRQ1 latch. ACK1  
always reads as logic zero. Reset clears ACK1.  
IMASK1 — IRQ1 Interrupt Mask Bit  
Writing a logic one to this read/write bit disables IRQ1 interrupt  
requests. Reset clears IMASK1.  
1 = IRQ1 interrupt requests disabled  
0 = IRQ1 interrupt requests enabled  
MODE1 — IRQ1 Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ1 pin.  
Reset clears MODE1.  
1 = IRQ1 interrupt requests on falling edges and low levels  
0 = IRQ1 interrupt requests on falling edges only  
Address:  
$001E  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
POR:  
IRQPUD  
R
R
LVIT1  
LVIT0  
R
R
Not affected Not affected  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 13-4. Configuration Register 2 (CONFIG2)  
IRQPUD — IRQ1 Pin Pull-up control bit  
1 = Internal pull-up is disconnected  
0 = Internal pull-up is connected between IRQ1 pin and V  
DD  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
154  
External Interrupt (IRQ)  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 14. Ke yb oa rd Inte rrup t Mod ule (KBI)  
14.1 Conte nts  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
14.4.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
14.4.2 Keyboard Status and Control Register. . . . . . . . . . . . . . . .159  
14.4.3 Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . .160  
14.5 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
14.6 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
14.7 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .161  
14.2 Introd uc tion  
14.3 Fe a ture s  
The keyboard interrupt module (KBI) provides seven independently  
maskable external interrupts which are accessible via PTA0–PTA6 pins.  
Features of the keyboard interrupt module include the following:  
• Seven keyboard interrupt pins with separate keyboard interrupt  
enable bits and one keyboard interrupt mask  
• Software configurable pull-up device if input pin is configured as  
input port bit  
• Programmable edge-only or edge- and level- interrupt sensitivity  
• Exit from low-power modes  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Keyboard Interrupt Module (KBI)  
155  
Ke yb oa rd Inte rrup t Mod ule (KBI)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
0
0
0
0
KEYF  
0
ACKK  
0
Keyboard Status  
and Control Register Write:  
$001A  
(KBSCR)  
Reset:  
0
0
0
KBIE6  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
Read:  
KBIE2  
0
KBIE1  
0
KBIE0  
0
Keyboard Interrupt Enable  
Write:  
$001B  
Register (KBIER)  
Reset:  
0
= Unimplemented  
Figure 14-1. KBI I/O Register Summary  
14.4 Func tiona l De sc rip tion  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
KBI0  
ACKK  
V
DD  
KEYF  
RESET  
CLR  
.
D
Q
SYNCHRONIZER  
Keyboard  
Interrupt  
Request  
KBIE0  
.
TO PULLUP ENABLE  
.
CK  
KEYBOARD  
INTERRUPT FF  
IMASKK  
KBI6  
MODEK  
KBIE6  
TO PULLUP ENABLE  
Figure 14-2. Keyboard Interrupt Block Diagram  
Writing to the KBIE6–KBIE0 bits in the keyboard interrupt enable register  
independently enables or disables each port A pin as a keyboard  
interrupt pin. Enabling a keyboard interrupt pin in port A also enables its  
internal pull-up device irrespective of PTAPUEx bits in the port A input  
pull-up enable register (see 12.3.3). A logic 0 applied to an enabled  
keyboard interrupt pin latches a keyboard interrupt request.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
156  
Keyboard Interrupt Module (KBI)  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
Functional Description  
A keyboard interrupt is latched when one or more keyboard pins goes  
low after all were high. The MODEK bit in the keyboard status and  
control register controls the triggering mode of the keyboard interrupt.  
• If the keyboard interrupt is edge-sensitive only, a falling edge on a  
keyboard pin does not latch an interrupt request if another  
keyboard pin is already low. To prevent losing an interrupt request  
on one pin because another pin is still low, software can disable  
the latter pin while it is low.  
• If the keyboard interrupt is falling edge- and low level-sensitive, an  
interrupt request is present as long as any keyboard pin is low.  
If the MODEK bit is set, the keyboard interrupt pins are both falling edge-  
and low level-sensitive, and both of the following actions must occur to  
clear a keyboard interrupt request:  
• Vector fetch or software clear — A vector fetch generates an  
interrupt acknowledge signal to clear the interrupt request.  
Software may generate the interrupt acknowledge signal by  
writing a logic 1 to the ACKK bit in the keyboard status and control  
register KBSCR. The ACKK bit is useful in applications that poll  
the keyboard interrupt pins and require software to clear the  
keyboard interrupt request. Writing to the ACKK bit prior to leaving  
an interrupt service routine can also prevent spurious interrupts  
due to noise. Setting ACKK does not affect subsequent transitions  
on the keyboard interrupt pins. A falling edge that occurs after  
writing to the ACKK bit latches another interrupt request. If the  
keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the  
program counter with the vector address at locations $FFE0 and  
$FFE1.  
• Return of all enabled keyboard interrupt pins to logic 1 — As long  
as any enabled keyboard interrupt pin is at logic 0, the keyboard  
interrupt remains set.  
The vector fetch or software clear and the return of all enabled keyboard  
interrupt pins to logic 1 may occur in any order.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Keyboard Interrupt Module (KBI)  
157  
Ke yb oa rd Inte rrup t Mod ule (KBI)  
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge-  
sensitive only. With MODEK clear, a vector fetch or software clear  
immediately clears the keyboard interrupt request.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing  
the interrupt request even if a keyboard interrupt pin stays at logic 0.  
The keyboard flag bit (KEYF) in the keyboard status and control register  
can be used to see if a pending interrupt exists. The KEYF bit is not  
affected by the keyboard interrupt mask bit (IMASKK) which makes it  
useful in applications where polling is preferred.  
To determine the logic level on a keyboard interrupt pin, disable the pull-  
up device, use the data direction register to configure the pin as an input  
and then read the data register.  
NOTE: Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction  
register. However, the data direction register bit must be a logic 0 for  
software to read the pin.  
14.4.1 Ke yb oa rd Initia liza tion  
When a keyboard interrupt pin is enabled, it takes time for the internal  
pull-up to reach a logic 1. Therefore a false interrupt can occur as soon  
as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting the IMASKK bit in the  
keyboard status and control register.  
2. Enable the KBI pins by setting the appropriate KBIEx bits in the  
keyboard interrupt enable register.  
3. Write to the ACKK bit in the keyboard status and control register  
to clear any false interrupts.  
4. Clear the IMASKK bit.  
An interrupt signal on an edge-triggered pin can be acknowledged  
immediately after enabling the pin. An interrupt signal on an edge- and  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
158  
Keyboard Interrupt Module (KBI)  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
Functional Description  
level-triggered interrupt pin must be acknowledged after a delay that  
depends on the external load.  
Another way to avoid a false interrupt:  
1. Configure the keyboard pins as outputs by setting the appropriate  
DDRA bits in the data direction register A.  
2. Write logic 1s to the appropriate port A data register bits.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in the  
keyboard interrupt enable register.  
14.4.2 Ke yb oa rd Sta tus a nd Control Re g iste r  
• Flags keyboard interrupt requests.  
• Acknowledges keyboard interrupt requests.  
• Masks keyboard interrupt requests.  
• Controls keyboard interrupt triggering sensitivity.  
Address:  
$001A  
Bit 7  
0
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 14-3. Keyboard Status and Control Register (KBSCR)  
Bits 7–4 — Not used  
These read-only bits always read as logic 0s.  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending on port-  
A. Reset clears the KEYF bit.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Keyboard Interrupt Module (KBI)  
159  
Ke yb oa rd Inte rrup t Mod ule (KBI)  
ACKK — Keyboard Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the keyboard interrupt  
request on port-A. ACKK always reads as logic 0. Reset clears ACKK.  
IMASKK— Keyboard Interrupt Mask Bit  
Writing a logic 1 to this read/write bit prevents the output of the  
keyboard interrupt mask from generating interrupt requests on port-A.  
Reset clears the IMASKK bit.  
1 = Keyboard interrupt requests masked  
0 = Keyboard interrupt requests not masked  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard  
interrupt pins on port-A. Reset clears MODEK.  
1 = Keyboard interrupt requests on falling edges and low levels  
0 = Keyboard interrupt requests on falling edges only  
14.4.3 Ke yb oa rd Inte rrup t Ena b le Re g iste r  
The port-A keyboard interrupt enable register enables or disables each  
port-A pin to operate as a keyboard interrupt pin.  
Address:  
$001B  
Bit 7  
0
6
KBIE6  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
0
Figure 14-4. Keyboard Interrupt Enable Register (KBIER)  
KBIE6–KBIE0 — Port-A Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard  
interrupt pin on port-A to latch interrupt requests. Reset clears the  
keyboard interrupt enable register.  
1 = KBIx pin enabled as keyboard interrupt pin  
0 = KBIx pin not enabled as keyboard interrupt pin  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
160  
Keyboard Interrupt Module (KBI)  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
Wait Mode  
14.5 Wa it Mod e  
The keyboard modules remain active in wait mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of wait mode.  
14.6 Stop Mod e  
The keyboard module remains active in stop mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of stop mode.  
14.7 Ke yb oa rd Mod ule During Bre a k Inte rrup ts  
The system integration module (SIM) controls whether the keyboard  
interrupt latch can be cleared during the break state. The BCFE bit in the  
break flag control register (BFCR) enables software to clear status bits  
during the break state.  
To allow software to clear the keyboard interrupt latch during a break  
interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the  
break state, it remains cleared when the MCU exits the break state.  
To protect the latch during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), writing to the keyboard  
acknowledge bit (ACKK) in the keyboard status and control register  
during the break state has no effect.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Keyboard Interrupt Module (KBI)  
161  
Ke yb oa rd Inte rrup t Mod ule (KBI)  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
162  
Keyboard Interrupt Module (KBI)  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 15. Com p ute r Op e ra ting Prop e rly (COP)  
15.1 Conte nts  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
15.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
15.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
15.4.1 2OSCOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
15.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
15.4.3 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
15.4.4 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
15.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
15.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
15.4.7 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . .166  
15.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
15.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
15.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
15.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
15.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
15.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
15.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .168  
15.2 Introd uc tion  
The computer operating properly (COP) module contains a free-running  
counter that generates a reset if allowed to overflow. The COP module  
helps software recover from runaway code. Prevent a COP reset by  
clearing the COP counter periodically. The COP module can be disabled  
through the COPD bit in the CONFIG1 register.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Computer Operating Properly (COP)  
163  
Com p ute r Op e ra ting Prop e rly (COP)  
15.3 Func tiona l De sc rip tion  
Figure 15-1 shows the structure of the COP module.  
SIM  
2OSCOUT  
SIM RESET CIRCUIT  
12-BIT SIM COUNTER  
RESET STATUS REGISTER  
(1)  
INTERNAL RESET SOURCES  
RESET VECTOR FETCH  
COPCTL WRITE  
COP CLOCK  
COP MODULE  
6-BIT COP COUNTER  
CLEAR  
COPEN (FROM SIM)  
COPD (FROM CONFIG1)  
RESET  
COP COUNTER  
COPCTL WRITE  
COP RATE SEL  
(COPRS FROM CONFIG1)  
NOTE:  
1. See SIM section for more details.  
Figure 15-1. COP Block Diagram  
The COP counter is a free-running 6-bit counter preceded by the 12-bit  
system integration module (SIM) counter. If not cleared by software, the  
COP counter overflows and generates an asynchronous reset after  
18  
4
13  
4
2 – 2 or 2 – 2 2OSCOUT cycles; depending on the state of the  
18  
4
COP rate select bit, COPRS, in configuration register 1. With a 2 – 2  
2OSCOUT cycle overflow option, a 8MHz crystal gives a COP timeout  
period of 32.766 ms. Writing any value to location $FFFF before an  
overflow occurs prevents a COP reset by clearing the COP counter and  
stages 12 through 5 of the SIM counter.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
164  
Computer Operating Properly (COP)  
MOTOROLA  
Computer Operating Properly (COP)  
I/O Signals  
NOTE: Service the COP immediately after reset and before entering or after  
exiting stop mode to guarantee the maximum time before the first COP  
counter overflow.  
A COP reset pulls the RST pin low for 32 × 2OSCOUT cycles and sets  
the COP bit in the reset status register (RSR). (See 7.8.2 Reset Status  
Register (RSR).).  
NOTE: Place COP clearing instructions in the main program and not in an  
interrupt subroutine. Such an interrupt subroutine could keep the COP  
from generating a reset even while the main program is not working  
properly.  
15.4 I/ O Sig na ls  
The following paragraphs describe the signals shown in Figure 15-1.  
15.4.1 2OSCOUT  
2OSCOUT is the oscillator output signal. 2OSCOUT frequency is equal  
to the crystal frequency or the RC-oscillator frequency.  
15.4.2 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 15.5 COP  
Control Register) clears the COP counter and clears bits 12 through 5  
of the SIM counter. Reading the COP control register returns the low  
byte of the reset vector.  
15.4.3 Powe r-On Re se t  
The power-on reset (POR) circuit in the SIM clears the SIM counter  
4096 × 2OSCOUT cycles after power-up.  
15.4.4 Inte rna l Re se t  
An internal reset clears the SIM counter and the COP counter.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Computer Operating Properly (COP)  
165  
Com p ute r Op e ra ting Prop e rly (COP)  
15.4.5 Re se t Ve c tor Fe tc h  
A reset vector fetch occurs when the vector address appears on the data  
bus. A reset vector fetch clears the SIM counter.  
15.4.6 COPD (COP Disa b le )  
The COPD signal reflects the state of the COP disable bit (COPD) in the  
configuration register (CONFIG). (See Section 5. Configuration  
Register (CONFIG).)  
15.4.7 COPRS (COP Ra te Se le c t)  
The COPRS signal reflects the state of the COP rate select bit (COPRS)  
in the configuration register 1.  
Address:  
$001F  
Bit 7  
6
5
R
0
4
LVID  
0
3
R
0
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS  
R
0
0
R
= Reserved  
Figure 15-2. Configuration Register 1 (CONFIG1)  
COPRS — COP Rate Select Bit  
COPRS selects the COP timeout period. Reset clears COPRS.  
13  
4
1 = COP timeout period is (2 – 2 ) × 2OSCOUT cycles  
18  
4
0 = COP timeout period is (2 – 2 ) × 2OSCOUT cycles  
COPD — COP Disable Bit  
COPD disables the COP module.  
1 = COP module disabled  
0 = COP module enabled  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
166  
Computer Operating Properly (COP)  
Computer Operating Properly (COP)  
COP Control Register  
15.5 COP Control Re g iste r  
The COP control register is located at address $FFFF and overlaps the  
reset vector. Writing any value to $FFFF clears the COP counter and  
starts a new timeout period. Reading location $FFFF returns the low  
byte of the reset vector.  
Address:  
$FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 15-3. COP Control Register (COPCTL)  
15.6 Inte rrup ts  
The COP does not generate CPU interrupt requests.  
15.7 Monitor Mod e  
The COP is disabled in monitor mode when V + V is present on the  
DD  
HI  
IRQ1 pin or on the RST pin.  
15.8 Low-Powe r Mod e s  
The WAIT and STOP instructions put the MCU in low-power  
consumption standby modes.  
15.8.1 Wa it Mod e  
The COP continues to operate during wait mode. To prevent a COP  
reset during wait mode, periodically clear the COP counter in a CPU  
interrupt routine.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Computer Operating Properly (COP)  
167  
Com p ute r Op e ra ting Prop e rly (COP)  
15.8.2 Stop Mod e  
Stop mode turns off the 2OSCOUT input to the COP and clears the SIM  
counter. Service the COP immediately before entering or after exiting  
stop mode to ensure a full COP timeout period after entering or exiting  
stop mode.  
15.9 COP Mod ule During Bre a k Mod e  
The COP is disabled during a break interrupt when V + V is present  
DD  
HI  
on the RST pin.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
168  
Computer Operating Properly (COP)  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 16. Low Volta g e Inhib it (LVI)  
16.1 Conte nts  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
16.5 LVI Control Register (CONFIG2/CONFIG1). . . . . . . . . . . . . .170  
16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
16.2 Introd uc tion  
This section describes the low-voltage inhibit module (LVI), which  
monitors the voltage on the V pin and generates a reset when the V  
DD  
DD  
voltage falls to the LVI trip (LVI  
) voltage.  
TRIP  
16.3 Fe a ture s  
Features of the LVI module include the following:  
• Selectable LVI trip voltage  
• Selectable LVI circuit disable  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Low Voltage Inhibit (LVI)  
169  
Low Volta g e Inhib it (LVI)  
16.4 Func tiona l De sc rip tion  
Figure 16-1 shows the structure of the LVI module. The LVI is enabled  
after a reset. The LVI module contains a bandgap reference circuit and  
comparator. Setting LVI disable bit (LVID) disables the LVI to monitor  
V
voltage. The LVI trip voltage selection bits (LVIT1, LVIT0)  
DD  
determines at which V level the LVI module should take actions.  
DD  
The LVI module generates one output signal:  
LVI Reset — an reset signal will be generated to reset the CPU when  
V
drops to below the set trip point.  
DD  
V
DD  
LVID  
VDD > LVI  
VDD < LVI  
= 0  
= 1  
TRIP  
TRIP  
LVI RESET  
LOW V  
DD  
DETECTOR  
LVT1  
LVT0  
Figure 16-1. LVI Module Block Diagram  
16.5 LVI Control Re g iste r (CONFIG2/ CONFIG1)  
Address:  
$001E  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
POR:  
IRQPUD  
R
R
LVIT1  
LVIT0  
R
R
Not affected Not affected  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 16-2. Configuration Register 2 (CONFIG2)  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
170  
Low Voltage Inhibit (LVI)  
Low Voltage Inhibit (LVI)  
Low-Power Modes  
Address:  
$001F  
Bit 7  
6
5
R
0
4
LVID  
0
3
R
0
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS  
R
0
0
R
= Reserved  
Figure 16-3. Configuration Register 1 (CONFIG1)  
LVID — Low Voltage Inhibit Disable Bit  
1 = Low voltage inhibit disabled  
0 = Low voltage inhibit enabled  
LVIT1, LVIT0 — LVI Trip Voltage Selection  
These two bits determine at which level of V the LVI module will  
DD  
come into action. LVIT1 and LVIT0 are cleared by a Power-On Reset  
only.  
(1)  
LVIT1  
LVIT0  
Comments  
For V =3V operation  
Trip Voltage  
0
0
1
1
0
1
0
1
V
(2.4V)  
(2.4V)  
(4.0V)  
LVR3  
DD  
V
For V =3V operation  
DD  
LVR3  
LVR5  
V
For V =5V operation  
DD  
Reserved  
1. See Section 18. Electrical Specifications for full parameters.  
16.6 Low-Powe r Mod e s  
The STOP and WAIT instructions put the MCU in low-power-  
consumption standby modes.  
16.6.1 Wa it Mod e  
16.6.2 Stop Mod e  
The LVI module, when enabled, will continue to operate in WAIT Mode.  
The LVI module, when enabled, will continue to operate in STOP Mode.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Low Voltage Inhibit (LVI)  
171  
Low Volta g e Inhib it (LVI)  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
172  
Low Voltage Inhibit (LVI)  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 17. Bre a k Mod ule (BREAK)  
17.1 Conte nts  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
17.4.1 Flag Protection During Break Interrupts. . . . . . . . . . . . . . .176  
17.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .176  
17.4.3 TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . .176  
17.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .176  
17.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176  
17.5.1 Break Status and Control Register (BRKSCR) . . . . . . . . .177  
17.5.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .178  
17.5.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .178  
17.5.4 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . .180  
17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
17.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
17.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
17.2 Introd uc tion  
This section describes the break module. The break module can  
generate a break interrupt that stops normal program flow at a defined  
address to enter a background program.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Break Module (BREAK)  
173  
Bre a k Mod ule (BREAK)  
17.3 Fe a ture s  
Features of the break module include the following:  
• Accessible I/O registers during the break Interrupt  
• CPU-generated break interrupts  
• Software-generated break interrupts  
• COP disabling during break interrupts  
17.4 Func tiona l De sc rip tion  
When the internal address bus matches the value written in the break  
address registers, the break module issues a breakpoint signal (BKPT)  
to the SIM. The SIM then causes the CPU to load the instruction register  
with a software interrupt instruction (SWI) after completion of the current  
CPU instruction. The program counter vectors to $FFFC and $FFFD  
($FEFC and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
• A CPU-generated address (the address in the program counter)  
matches the contents of the break address registers.  
• Software writes a logic one to the BRKA bit in the break status and  
control register.  
When a CPU generated address matches the contents of the break  
address registers, the break interrupt begins after the CPU completes its  
current instruction. A return from interrupt instruction (RTI) in the break  
routine ends the break interrupt and returns the MCU to normal  
operation. Figure 17-1 shows the structure of the break module.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
174  
Break Module (BREAK)  
MOTOROLA  
Break Module (BREAK)  
Functional Description  
IAB[15:8]  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
IAB[15:0]  
CONTROL  
BKPT  
(TO SIM)  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
IAB[7:0]  
Figure 17-1. Break Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
SBSW  
See note  
0
R
R
R
R
R
R
R
Break Status Register  
(BSR)  
$FE00  
Break Flag Control  
BCFE  
0
R
R
R
R
R
R
R
$FE03  
$FE0C  
$FE0D  
$FE0E  
Register Write:  
(BFCR)  
Reset:  
Read:  
Break Address High  
Bit15  
0
Bit14  
0
Bit13  
0
Bit12  
0
Bit11  
0
Bit10  
0
Bit9  
0
Bit8  
0
Register Write:  
(BRKH)  
Reset:  
Read:  
Break Address low  
Bit7  
0
Bit6  
0
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Register Write:  
(BRKL)  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
BRKE  
0
BRKA  
Register Write:  
(BRKSCR)  
Reset:  
0
0
0
0
0
0
0
Note: Writing a logic 0 clears SBSW.  
= Unimplemented  
R
= Reserved  
Figure 17-2. Break I/O Register Summary  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Break Module (BREAK)  
175  
Bre a k Mod ule (BREAK)  
17.4.1 Fla g Prote c tion During Bre a k Inte rrup ts  
The system integration module (SIM) controls whether or not module  
status bits can be cleared during the break state. The BCFE bit in the  
break flag control register (BFCR) enables software to clear status bits  
during the break state. (See 7.8.3 Break Flag Control Register (BFCR)  
and see the Break Interrupts subsection for each module.)  
17.4.2 CPU During Bre a k Inte rrup ts  
The CPU starts a break interrupt by:  
• Loading the instruction register with the SWI instruction  
• Loading the program counter with $FFFC:$FFFD ($FEFC:$FEFD  
in monitor mode)  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
17.4.3 TIM During Bre a k Inte rrup ts  
A break interrupt stops the timer counter.  
17.4.4 COP During Bre a k Inte rrup ts  
The COP is disabled during a break interrupt when VDD + VHI is present  
on the RST pin.  
17.5 Bre a k Mod ule Re g iste rs  
These registers control and monitor operation of the break module:  
• Break status and control register (BRKSCR)  
• Break address register high (BRKH)  
• Break address register low (BRKL)  
• Break status register (BSR)  
• Break flag control register (BFCR)  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
176  
Break Module (BREAK)  
MOTOROLA  
Break Module (BREAK)  
Break Module Registers  
17.5.1 Bre a k Sta tus a nd Control Re g iste r (BRKSCR)  
The break status and control register contains break module enable and  
status bits.  
Address: $FE0E  
Bit 7  
BRKE  
0
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 17-3. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches.  
Clear BRKE by writing a logic zero to bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address  
match occurs. Writing a logic one to BRKA generates a break  
interrupt. Clear BRKA by writing a logic zero to it before exiting the  
break routine. Reset clears the BRKA bit.  
1 = Break address match  
0 = No break address match  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Break Module (BREAK)  
177  
Bre a k Mod ule (BREAK)  
17.5.2 Bre a k Ad d re ss Re g iste rs  
The break address registers contain the high and low bytes of the  
desired breakpoint address. Reset clears the break address registers.  
Address: $FE0C  
Bit 7  
Bit 15  
0
6
14  
0
5
13  
0
4
12  
0
3
11  
0
2
10  
0
1
9
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Figure 17-4. Break Address Register High (BRKH)  
Address: $FE0D  
Bit 7  
6
6
0
5
5
0
4
4
0
3
3
0
2
2
0
1
1
0
Bit 0  
Bit 0  
0
Read:  
Bit 7  
Write:  
Reset:  
0
Figure 17-5. Break Address Register Low (BRKL)  
17.5.3 Bre a k Sta tus Re g iste r  
The break status register contains a flag to indicate that a break caused  
an exit from stop or wait mode.  
Address:  
$FE00  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
R
R
R
R
R
R
(1)  
Note  
0
R
= Reserved  
1. Writing a logic zero clears SBSW.  
Figure 17-6. Break Status Register (BSR)  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
178  
Break Module (BREAK)  
Break Module (BREAK)  
Break Module Registers  
SBSW — SIM Break Stop/Wait  
This status bit is useful in applications requiring a return to wait or stop  
mode after exiting from a break interrupt. Clear SBSW by writing a  
logic zero to it. Reset clears SBSW.  
1 = Stop mode or wait mode was exited by break interrupt  
0 = Stop mode or wait mode was not exited by break interrupt  
SBSW can be read within the break state SWI routine. The user can  
modify the return address on the stack by subtracting one from it. The  
following code is an example of this. Writing zero to the SBSW bit clears  
it.  
; This code works if the H register has been pushed onto the stack in the break  
; service routine software. This code should be executed at the end of the  
; break service routine software.  
HIBYTE EQU  
LOBYTE EQU  
5
6
;
If not SBSW, do RTI  
BRCLR SBSW,BSR, RETURN ; See if wait mode or stop mode was exited  
; by break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
; If RETURNLO is not zero,  
; then just decrement low byte.  
; Else deal with high byte, too.  
; Point to WAIT/STOP opcode.  
; Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN PULH  
RTI  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Break Module (BREAK)  
179  
Bre a k Mod ule (BREAK)  
17.5.4 Bre a k Fla g Control Re g iste r (BFCR)  
The break control register contains a bit that enables software to clear  
status bits while the MCU is in a break state.  
Address:  
Bit 7  
$FE03  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 17-7. Break Flag Control Register (BFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
17.6 Low-Powe r Mod e s  
The WAIT and STOP instructions put the MCU in low-power-  
consumption standby modes.  
17.6.1 Wa it Mod e  
If enabled, the break module is active in wait mode. In the break routine,  
the user can subtract one from the return address on the stack if SBSW  
is set (see 7.7 Low-Power Modes). Clear the SBSW bit by writing logic  
zero to it.  
17.6.2 Stop Mod e  
A break interrupt causes exit from stop mode and sets the SBSW bit in  
the break status register. See 7.8 SIM Registers.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
180  
Break Module (BREAK)  
MOTOROLA  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 18. Ele c tric a l Sp e c ific a tions  
18.1 Conte nts  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
18.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .182  
18.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .183  
18.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
18.6 5V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . .184  
18.7 5V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
18.8 5V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . .186  
18.9 3V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . .187  
18.10 3V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
18.11 3V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . .189  
18.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
18.13 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
18.2 Introd uc tion  
This section contains electrical and timing specifications.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Electrical Specifications  
181  
Ele c tric a l Sp e c ific a tions  
18.3 Ab solute Ma xim um Ra ting s  
Maximum ratings are the extreme limits to which the MCU can be  
exposed without permanently damaging it.  
NOTE: This device is not guaranteed to operate properly at the maximum  
ratings. Refer to Sections 18.6 and 18.9 for guaranteed operating  
conditions.  
Table 18-1. Absolute Maximum Ratings(1)  
Characteristic  
Supply voltage  
Symbol  
Value  
Unit  
V
V
–0.3 to +6.0  
DD  
V
V
–0.3 to V +0.3  
Input voltage  
V
IN  
SS  
DD  
V
+V  
I
V
–0.3 to +8.5  
Mode entry voltage, IRQ1 pin  
Maximum current per pin  
V
DD  
HI  
SS  
±25  
mA  
excluding V and V  
DD  
SS  
T
Storage temperature  
–55 to +150  
100  
°C  
mA  
mA  
STG  
MVSS  
MVDD  
Maximum current out of V  
Maximum current into V  
I
SS  
I
100  
DD  
NOTE:  
1. Voltages referenced to V  
.
SS  
NOTE: This device contains circuitry to protect the inputs against damage due  
to high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that V and V  
be constrained to the  
IN  
OUT  
range V (V or V  
) V . Reliability of operation is enhanced if  
DD  
SS  
IN  
OUT  
unused inputs are connected to an appropriate logic voltage level (for  
example, either V or V .)  
SS  
DD  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
182  
Electrical Specifications  
Electrical Specifications  
Functional Operating Range  
18.4 Func tiona l Op e ra ting Ra ng e  
Table 18-2. Operating Range  
Characteristic  
Symbol  
Value  
– 40 to +125  
Unit  
°C  
T
Operating temperature range  
Operating voltage range  
– 40 to +85  
A
V
5V ± 10%  
3V ± 10%  
V
DD  
18.5 The rm a l Cha ra c te ristic s  
Table 18-3.Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance  
20-Pin PDIP  
20-Pin SOIC  
28-Pin PDIP  
28-Pin SOIC  
70  
70  
70  
70  
°C/W  
°C/W  
°C/W  
°C/W  
θ
JA  
P
I/O pin power dissipation  
User determined  
W
W
I/O  
P = (I ×V ) + P =  
I/O  
D
DD  
DD  
(1)  
P
Power dissipation  
D
K/(T + 273 °C)  
J
P x (T + 273 °C)  
D
A
(2)  
K
W/°C  
Constant  
2
+ P × θJA  
D
T
T + (P × θJA)  
Average junction temperature  
°C  
°C  
J
A
D
T
Maximum junction temperature  
NOTES:  
100  
JM  
1. Power dissipation is a function of temperature.  
2. K constant unique to the device. K can be determined for a known T and measured  
A
P
With this value of K, P and T can be determined for any value of T .  
D.  
D J A  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Electrical Specifications  
183  
Ele c tric a l Sp e c ific a tions  
18.6 5V DC Ele c tric a l Cha ra c te ristic s  
Table 18-4. DC Electrical Characteristics (5V)  
(1)  
(2)  
Symbol  
Min  
–0.8  
Max  
Unit  
Characteristic  
Typ  
Output high voltage (I = –2.0mA)  
LOAD  
V
V
19  
V
OH  
DD  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7  
Output low voltage (I = 1.6mA)  
LOAD  
V
10  
0.4  
0.5  
25  
V
V
OL  
PTA6, PTB0–PTB7, PTD0, PTD1, PTD4, PTD5  
Output low voltage (I  
PTD6, PTD7  
= 25mA)  
LOAD  
V
OL  
LED drives (V = 3V)  
OL  
I
mA  
OL  
PTA0–PTA5, PTD2, PTD3, PTD6, PTD7  
Input high voltage  
V
0.7 ×V  
V
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7,  
RST, IRQ1, OSC1  
V
V
IH  
DD  
DD  
Input low voltage  
V
V
0.3 ×V  
DD  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7,  
RST, IRQ1, OSC1  
IL  
SS  
V
supply current  
DD  
(3)  
Run, f = 4MHz  
10  
1
5
12  
1.5  
5.5  
5
mA  
mA  
mA  
µA  
OP  
(4)  
I
Wait (MC68HRC08xxx)  
DD  
(4)  
Wait (MC68HC08xxx)  
(5)  
Stop  
–40°C to 85°C  
1
I
Digital I/O ports Hi-Z leakage current  
Input current  
± 10  
± 1  
µA  
µA  
IL  
I
IN  
C
Capacitance  
12  
8
OUT  
pF  
Ports (as input or output)  
C
IN  
(6)  
V
R
0
100  
mV  
V/ms  
V
POR rearm voltage  
POR  
(7)  
0.035  
POR rise time ramp rate  
POR  
V
+V  
1.5 ×V  
DD  
8.5  
Monitor mode entry voltage  
DD  
HI  
(8)  
Pullup resistors  
R
1.8  
16  
3.3  
26  
4.8  
36  
kΩ  
kΩ  
PU1  
PTD6, PTD7  
RST, IRQ1, PTA0–PTA6  
R
PU2  
V
LVI reset voltage  
3.6  
4.0  
4.4  
V
LVR5  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
184  
Electrical Specifications  
Electrical Specifications  
5V Control Timing  
Table 18-4. DC Electrical Characteristics (5V)  
(1)  
(2)  
Symbol  
Min  
Max  
Unit  
Characteristic  
Typ  
NOTES:  
1. V = 4.5 to 5.5 Vdc, V = 0 Vdc, T = T to T , unless otherwise noted.  
DD  
SS  
A
L
H
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) I measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less  
DD  
than 100 pF on all outputs. C = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects  
L
run I . Measured with all modules enabled.  
DD  
4. Wait I measured using external square wave clock source (f = 4MHz); all inputs 0.2 V from rail; no dc loads;  
DD  
OP  
less than 100 pF on all outputs. C = 20 pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly af-  
L
fects wait I  
.
DD  
5. STOP I measured with OSC1 grounded, no port pins sourcing current. LVI is disabled.  
DD  
6. Maximum is highest voltage that POR is guaranteed.  
7. If minimum V is not reached before the internal POR reset is released, RST must be driven low externally until  
DD  
minimum V is reached.  
DD  
8. R  
and R  
are measured at V = 5.0V  
PU1  
PU2 DD  
18.7 5V Control Tim ing  
Table 18-5. Control Timing (5V)  
(1)  
Symbol  
Min  
Max  
8
Unit  
MHz  
ns  
Characteristic  
(2)  
f
Internal operating frequency  
OP  
(3)  
t
750  
RST input pulse width low  
IRL  
NOTES:  
1. V = 4.5 to 5.5 Vdc, V = 0 Vdc, T = T to T ; timing shown with respect to 20% V and 70% V , unless otherwise  
DD  
SS  
A
L
H
DD  
SS  
noted.  
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this in-  
formation.  
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Electrical Specifications  
185  
Ele c tric a l Sp e c ific a tions  
18.8 5V Osc illa tor Cha ra c te ristic s  
Table 18-6. Oscillator Component Specifications (5V)  
Characteristic  
Crystal frequency, XTALCLK  
RC oscillator frequency, RCCLK  
External clock  
Symbol  
Min  
2
Typ  
10  
Max  
32  
Unit  
MHz  
MHz  
f
OSCXCLK  
f
10  
12  
RCCLK  
f
dc  
32  
MHz  
OSCXCLK  
(1)  
reference frequency  
(2)  
C
Crystal load capacitance  
L
(2)  
C
2 × C  
Crystal fixed capacitance  
1
L
L
(2)  
C
2 × C  
Crystal tuning capacitance  
2
R
Feedback bias resistor  
10 MΩ  
B
(2), (3)  
R
Series resistor  
S
R
RC oscillator external R  
See Figure 18-1  
EXT  
C
RC oscillator external C  
NOTES:  
10  
pF  
EXT  
1. No more than 10% duty cycle deviation from 50%  
2. Consult crystal vendor data sheet  
3. Not Required for high frequency crystals  
14  
12  
10  
8
C
= 10 pF  
EXT  
MCU  
5V @ 25°C  
OSC1  
6
V
DD  
4
R
C
EXT  
EXT  
2
0
0
10  
20  
30  
(k)  
40  
50  
Resistor, R  
EXT  
Figure 18-1. RC vs. Frequency (5V @25°C)  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
186  
Electrical Specifications  
Electrical Specifications  
3V DC Electrical Characteristics  
18.9 3V DC Ele c tric a l Cha ra c te ristic s  
Table 18-7. DC Electrical Characteristics (3V)  
(1)  
(2)  
Symbol  
Min  
– 0.4  
Max  
Unit  
Characteristic  
Typ  
Output high voltage (I  
= –1.0mA)  
LOAD  
V
V
9
V
OH  
DD  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7  
Output low voltage (I = 0.8mA)  
LOAD  
V
4
0.4  
0.5  
12  
V
V
OL  
PTA6, PTB0–PTB7, PTD0, PTD1, PTD4, PTD5  
Output low voltage (I  
PTD6, PTD7  
= 20mA)  
LOAD  
V
OL  
LED drives (V = 1.8V)  
OL  
I
mA  
OL  
PTA0–PTA5, PTD2, PTD3, PTD6, PTD7  
Input high voltage  
V
0.7 ×V  
V
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7,  
RST, IRQ1, OSC1  
V
V
IH  
DD  
DD  
Input low voltage  
V
V
0.3 ×V  
DD  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7,  
RST, IRQ1, OSC1  
IL  
SS  
V
supply current  
DD  
(3)  
5
1
4
1
8
mA  
mA  
mA  
µA  
Run, f = 2MHz  
OP  
(4)  
I
1.3  
4.5  
5
Wait (MC68HRC08xxx)  
DD  
(4)  
Wait (MC68HC08xxx)  
(5)  
Stop  
–40°C to 85°C  
I
Digital I/O ports Hi-Z leakage current  
Input current  
± 10  
± 1  
µA  
µA  
IL  
I
IN  
C
Capacitance  
12  
8
OUT  
pF  
Ports (as input or output)  
C
IN  
(6)  
V
R
0
100  
mV  
V/ms  
V
POR rearm voltage  
POR  
(7)  
0.035  
POR rise time ramp rate  
POR  
V
+V  
1.5 ×V  
DD  
8.5  
Monitor mode entry voltage  
DD  
HI  
(8)  
Pullup resistors  
R
1.8  
16  
3.3  
26  
4.8  
36  
kΩ  
kΩ  
PU1  
PTD6, PTD7  
RST, IRQ1, PTA0–PTA6  
R
PU2  
V
LVI reset voltage  
2.0  
2.4  
2.69  
V
LVR3  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Electrical Specifications  
187  
Ele c tric a l Sp e c ific a tions  
Table 18-7. DC Electrical Characteristics (3V)  
(1)  
(2)  
Symbol  
Min  
Max  
Unit  
Characteristic  
Typ  
NOTES:  
1. V = 2.7 to 3.3 Vdc, V = 0 Vdc, T = T to T , unless otherwise noted.  
DD  
SS  
A
L
H
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) I measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less  
DD  
than 100 pF on all outputs. C = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects  
L
run I . Measured with all modules enabled.  
DD  
4. Wait I measured using external square wave clock source (f = 4MHz); all inputs 0.2 V from rail; no dc loads;  
DD  
OP  
less than 100 pF on all outputs. C = 20 pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly af-  
L
fects wait I  
.
DD  
5. STOP I measured with OSC1 grounded, no port pins sourcing current. LVI is disabled.  
DD  
6. Maximum is highest voltage that POR is guaranteed.  
7. If minimum V is not reached before the internal POR reset is released, RST must be driven low externally until  
DD  
minimum V is reached.  
DD  
8. R  
and R  
are measured at V = 5.0V  
PU1  
PU2 DD  
18.10 3V Control Tim ing  
Table 18-8. Control Timing (3V)  
(1)  
Symbol  
Min  
Max  
4
Unit  
MHz  
µs  
Characteristic  
(2)  
f
Internal operating frequency  
OP  
(3)  
t
1.5  
RST input pulse width low  
IRL  
NOTES:  
1. V = 2.7 to 3.3 Vdc, V = 0 Vdc, T = T to T ; timing shown with respect to 20% V and 70% V , unless otherwise  
DD  
SS  
A
L
H
DD  
DD  
noted.  
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this in-  
formation.  
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
188  
Electrical Specifications  
Electrical Specifications  
3V Oscillator Characteristics  
18.11 3V Osc illa tor Cha ra c te ristic s  
Table 18-9. Oscillator Component Specifications (3V)  
Characteristic  
Crystal frequency, XTALCLK  
RC oscillator frequency, RCCLK  
External clock  
Symbol  
Min  
2
Typ  
8
Max  
16  
Unit  
MHz  
MHz  
f
OSCXCLK  
f
8
12  
RCCLK  
f
dc  
16  
MHz  
OSCXCLK  
(1)  
reference frequency  
(2)  
C
Crystal load capacitance  
L
(2)  
C
2 × C  
Crystal fixed capacitance  
1
L
L
(2)  
C
2 × C  
Crystal tuning capacitance  
2
R
Feedback bias resistor  
10 MΩ  
B
(2), (3)  
R
Series resistor  
S
R
RC oscillator external R  
See Figure 18-2  
EXT  
C
RC oscillator external C  
NOTES:  
10  
pF  
EXT  
1. No more than 10% duty cycle deviation from 50%  
2. Consult crystal vendor data sheet  
3. Not Required for high frequency crystals  
14  
12  
10  
8
C
= 10 pF  
EXT  
MCU  
3V @ 25°C  
OSC1  
6
V
DD  
4
R
C
EXT  
EXT  
2
0
0
10  
20  
30  
(k)  
40  
50  
Resistor, R  
EXT  
Figure 18-2. RC vs. Frequency (3V @25°C)  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Electrical Specifications  
189  
Ele c tric a l Sp e c ific a tions  
18.12 Typ ic a l Sup p ly Curre nts  
14  
12  
10  
8
6
MC68HRC08xxx  
4
5.5 V  
3.3 V  
2
0
0
1
2
3
4
5
6
7
8
9
f
or f  
(MHz)  
BUS  
OP  
Figure 18-3. Typical Operating I , with all Modules Turned On (25 °C)  
DD  
2
1.75  
1.50  
1.25  
1
MC68HRC08xxx  
0.75  
0.5  
0.25  
0
5.5 V  
3.3 V  
0
1
2
3
4
5
6
7
8
f
or f  
(MHz)  
OP  
BUS  
Figure 18-4. Typical Wait Mode I , with ADC Turned On (25 °C)  
DD  
0.5  
0.4  
0.3  
0.2  
MC68HRC08xxx  
5.5 V  
3.3 V  
0.1  
0
0
1
2
3
4
5
6
7
8
9
f
or f  
(MHz)  
BUS  
OP  
Figure 18-5. Typical Stop Mode I , with all Modules Disabled (25 °C)  
DD  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
190  
Electrical Specifications  
Electrical Specifications  
ADC Characteristics  
18.13 ADC Cha ra c te ristic s  
Table 18-10. ADC Characteristics  
Characteristic  
Supply voltage  
Symbol  
Min  
Max  
Unit  
Comments  
2.7  
5.5  
V
V
DDAD  
(V min)  
(V max)  
DD  
DD  
V
V
V
Input voltages  
Resolution  
V
ADIN  
SS  
DD  
B
8
8
Bits  
LSB  
AD  
A
Absolute accuracy  
± 0.5  
± 1.5  
Includes quantization  
AD  
t
= 1/f  
, tested  
AIC  
ADIC  
f
ADC internal clock  
0.5  
1.048  
MHz  
V
ADIC  
only at 1 MHz  
R
V
V
Conversion range  
Power-up time  
AD  
SS  
DD  
t
t
t
t
cycles  
16  
16  
5
ADPU  
AIC  
AIC  
AIC  
t
cycles  
cycles  
Conversion time  
17  
ADC  
(1)  
t
Sample time  
ADS  
(2)  
Z
V
V
= V  
= V  
Zero input reading  
00  
FE  
01  
Hex  
Hex  
pF  
ADI  
IN  
IN  
SS  
(3)  
F
Full-scale reading  
Input capacitance  
FF  
ADI  
DD  
C
(20) 8  
Not tested  
ADI  
(3)  
Input leakage  
± 1  
µA  
Port B/port D  
NOTES:  
1. Source impedances greater than 10 kadversely affect internal RC charging time during input sampling.  
2. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.  
3. The external system error caused by input leakage current is approximately equal to the product of R source and input  
current.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Electrical Specifications  
191  
Ele c tric a l Sp e c ific a tions  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
192  
Electrical Specifications  
Te c hnic a l Da ta — MC68H(R)C08JL3  
Se c tion 19. Me c ha nic a l Sp e c ific a tions  
19.1 Conte nts  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
19.3 20-Pin PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
19.4 20-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
19.5 28-Pin PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
19.6 28-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
19.2 Introd uc tion  
This section gives the dimensions for:  
• 20-pin plastic dual in-line package (case #738)  
• 20-pin small outline integrated circuit package (case #751D)  
• 28-pin plastic dual in-line package (case #710)  
• 28-pin small outline integrated circuit package (case #751F)  
The following figures show the latest package drawings at the time of  
this publication. To make sure that you have the latest package  
specifications, contact one of the following:  
• Local Motorola Sales Office  
• Motorola Mfax  
– Phone 602-244-6609  
– EMAIL rmfax0@email.sps.mot.com  
• Worldwide Web (wwweb) at http://motorola.com/sps  
Follow Mfax or Worldwide Web on-line instructions to retrieve the current  
mechanical specifications.  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Mechanical Specifications  
193  
Me c ha nic a l Sp e c ific a tions  
19.3 20-Pin PDIP  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
20  
1
11  
10  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
B
L
C
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
MIN  
MAX  
1.070  
0.260  
0.180  
0.022  
MIN  
25.66  
6.10  
3.81  
0.39  
MAX  
27.17  
6.60  
4.57  
0.55  
1.010  
0.240  
0.150  
0.015  
–T–  
SEATING  
PLANE  
K
E
0.050 BSC  
1.27 BSC  
M
0.050  
0.070  
1.27  
1.77  
F
G
J
K
L
N
E
0.100 BSC  
2.54 BSC  
0.008  
0.110  
0.015  
0.140  
0.21  
2.80  
0.38  
3.55  
G
F
J 20 PL  
0.300 BSC  
7.62 BSC  
D 20 PL  
0.25 (0.010)  
M
M
0.25 (0.010)  
T B  
M
N
0
15  
0
15  
0.020  
0.040  
0.51  
1.01  
M
M
T
A
Figure 19-1. 20-Pin PDIP (Case #738)  
19.4 20-Pin SOIC  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
20  
11  
4. MAXIMUM MOLD PROTRUSION 0.150  
(0.006) PER SIDE.  
10X P  
–B–  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
M
M
0.010 (0.25)  
B
1
10  
MILLIMETERS  
INCHES  
20X D  
DIM  
A
B
C
D
MIN  
12.65  
7.40  
2.35  
0.35  
0.50  
MAX  
12.95  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.510  
0.299  
0.104  
0.019  
0.035  
J
0.499  
0.292  
0.093  
0.014  
0.020  
M
S
S
0.010 (0.25)  
T
A
B
F
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
R X 45  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
C
SEATING  
PLANE  
–T–  
M
18X G  
K
Figure 19-2. 20-Pin SOIC (Case #751D)  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
194  
Mechanical Specifications  
Mechanical Specifications  
28-Pin PDIP  
19.5 28-Pin PDIP  
NOTES:  
1. POSITIONAL TOLERANCE OF LEADS (D), SHALL  
BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL  
CONDITION, IN RELATION TO SEATING PLANE  
AND EACH OTHER.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
28  
1
15  
14  
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
B
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
MIN  
36.45  
13.72  
3.94  
0.36  
1.02  
MAX  
37.21  
14.22  
5.08  
0.56  
1.52  
MIN  
MAX  
1.465  
0.560  
0.200  
0.022  
0.060  
1.435  
0.540  
0.155  
0.014  
0.040  
L
C
A
N
G
H
J
K
L
2.54 BSC  
0.100 BSC  
1.65  
0.20  
2.92  
2.16  
0.38  
3.43  
0.065  
0.008  
0.115  
0.085  
0.015  
0.135  
J
G
H
F
M
K
15.24 BSC  
0.600 BSC  
D
SEATING  
PLANE  
M
N
0°  
0.51  
15°  
1.02  
0°  
0.020  
15°  
0.040  
Figure 19-3. 28-Pin PDIP (Case #710)  
19.6 28-Pin SOIC  
NOTES:  
-A-  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
15  
28  
1
14X P  
M
M
0.010 (0.25)  
B
-B-  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE  
14  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
28X D  
0.010 (0.25)  
M
MILLIMETERS  
INCHES  
M
S
S
T
A
B
DIM  
A
B
C
D
MIN  
17.80  
7.40  
2.35  
0.35  
0.41  
MAX  
18.05  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.711  
0.299  
0.104  
0.019  
0.035  
R
X 45  
0.701  
0.292  
0.093  
0.014  
0.016  
C
-T-  
SEATING  
PLANE  
F
26X G  
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.23  
0.13  
0°  
0.32  
0.29  
8°  
0.009  
0.005  
0°  
0.013  
0.011  
8°  
K
F
10.01  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
J
Figure 19-4. 28-Pin SOIC (Case #751F)  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
Technical Data  
Mechanical Specifications  
195  
Me c ha nic a l Sp e c ific a tions  
Technical Data  
MC68H(R)C08JL3 Rev. 4  
MOTOROLA  
196  
Mechanical Specifications  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for  
each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not  
designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or  
for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use  
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or  
death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-800-441-2447 or 1-303-675-2140  
JAPAN: Nippon Motorola Ltd. SPD, Strategic Planning Office 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 03-5487-8488  
TM  
Mfax , Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/; TOUCHTONE 1-602-244-6609;  
US and Canada ONLY 1-800-774-1848  
HOME PAGE: http://motorola.com/sps/  
Mfax is a trademark of Motorola, Inc.  
© Motorola, Inc., 2000  
Search  
Advanced | Parametric | Part Number | FAQ  
Select Country  
Motorola Home | Semiconductors Home | Contact Us  
Products | Design Support | Register | Login  
Semiconductors  
Motorola > Semiconductors >  
68HC908JK3 : Microcontroller  
Page Contents:  
The MC68HC08JK3 is a member of the low-cost, high-performance M68HC08 Family of 8-bit  
microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit  
(CPU08) and are available with a variety of modules, memory sizes and types, and package types.  
Features  
Documentation  
Reference Designs  
Tools  
Rich Media  
Block Diagram  
Orderable Parts  
Related Links  
68HC908JK3 Features  
Other Info:  
High-Performance M68HC08 Architecture  
Fully Upward-Compatible Object Code with M6805, M146805, and M68HC05 Families  
Low-Power Design (Fully Static with Stop and Wait Modes)  
5V Nominal Operating Voltage  
3V Low-power Operating Voltage  
Up to 8MHz Internal Bus Operation  
RC-oscillator circuit or Crystal-oscillator options  
4096 Bytes of User FLASH or ROM  
960 Bytes of Monitor or Self-Check ROM  
128 Bytes of On-Chip Random Access Memory (RAM)  
10 Channel 8-bit ADC  
FAQs  
3rd Party Design Help  
Training  
3rd Party Tool  
Vendors  
Rate this Page  
--  
-
0
+
++  
Submit  
Return to Top  
Care to Comment?  
68HC908JK3 Documentation  
Documentation  
Application Note  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
In-Circuit Programming of FLASH Memory in the  
MC68HC908JL3  
MOTOROLA  
pdf  
AN-HK-33  
AN1050_D  
AN1218/D  
AN1219/D  
AN1219SW  
AN1221/D  
AN1221SW  
0
1
3/27/2000  
Designing for Electromagnetic Compatibility (EMC) with  
HCMOS Microcontrollers  
MOTOROLA  
pdf  
82  
347  
177  
77  
0
2
1
0
0
0
1/01/2000  
1/01/1993  
1/01/1997  
1/01/1995  
1/01/1993  
1/01/1995  
-
MOTOROLA  
pdf  
HC05 to HC08 Optimization  
MOTOROLA  
pdf  
M68HC08 Integer Math Routines  
Software Files for AN1219 zipped  
MOTOROLA  
zip  
-
-
Hamming Error Control Coding Techniques with the HC08 MOTOROLA  
MCU  
pdf  
zip  
63  
MOTOROLA  
Software Files for AN1221 zipped  
55  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
AN1222/D  
AN1222SW  
AN1259/D  
AN1263/D  
AN1516/D  
AN1705/D  
AN1744/D  
AN1752/D  
AN1771/D  
AN1775/D  
AN1783/D  
AN1818/D  
AN1820/D  
AN1820SW  
Arithmetic Waveform Synthesis with the HC05/08 MCUs  
Software Files for AN1222 zipped  
pdf  
zip  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
zip  
24  
20  
78  
104  
77  
67  
80  
213  
250  
86  
48  
84  
55  
2
0
0
0
0
2
0
0
1
0
1
1
0
0
0
1/01/1993  
1/01/1995  
1/01/1995  
1/01/1995  
1/24/2003  
1/01/1999  
1/01/1998  
5/07/2001  
1/01/1998  
1/01/1998  
1/01/1999  
1/01/1999  
1/01/1999  
1/01/1998  
-
System Design and Layout Techniques for Noise  
Reduction in MCU-Based Systems  
Designing for Electromagnetic Compatibility with Single-  
Chip Microcontrollers  
Liquid Level Control Using a Motorola Pressure Sensor  
Noise Reduction Techniques for Microcontroller-Based  
Systems  
Resetting Microcontrollers During Power Transitions  
Data Structures for 8-Bit Microcontrollers  
Precision Sine-Wave Tone Synthesis Using 8-Bit MCUs  
Expanding Digital Input with an A/D Converter  
Determining MCU Oscillator Start-Up Parameters  
Software SCI Routines with the 16-Bit Timer Module  
Software I2C Communications  
Software files for AN1820 zipped  
-
Using MC68HC908 On-Chip FLASH Programming  
Routines ROM-Resident Routines in the MC68HC908GR8, MOTOROLA  
MC68HC908KX8, MC68HC908JL3, MC68HC908JK3, and  
the MC68HC908JB8  
AN1831/D  
pdf  
314  
2
9/27/2001  
MOTOROLA  
AN1837/D  
AN1853/D  
AN2093/D  
AN2103/D  
Non-Volatile Memory Technology Overview  
pdf  
pdf  
pdf  
pdf  
116  
221  
36  
0
0
0
0
3/27/2000  
6/22/2000  
Embedding Microcontrollers in Domestic Refrigeration  
Appliances  
MOTOROLA  
MOTOROLA  
MOTOROLA  
Creating Efficient C Code for the MC68HC08  
Local Interconnect Network (LIN) Demonstration  
1/01/2000  
12/01/2000  
953  
Connecting an M68HC08 Family Microcontroller to an  
Internet Service Provider (ISP) Using the Point-to-Point  
Protocol (PPP)  
MOTOROLA  
MOTOROLA  
AN2120/D  
pdf  
741  
0
5/20/2001  
AN2120SW  
AN2149/D  
AN2158/D  
AN2159/D  
AN2159SW  
AN2295  
Software for AN2120, zip format  
zip  
pdf  
pdf  
pdf  
zip  
pdf  
zip  
31 1.0 7/31/2002  
-
Compressor Induction Motor Stall and Rotation Detection MOTOROLA  
using Microcontrollers  
127  
374  
129  
182  
738  
0
0
0
1
4
5/30/2001  
Designing with the MC68HC908JL/JK Microcontroller  
Family  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
11/20/2001  
Digital Direct Current Ignition System Using HC08  
Microcontrollers  
11/20/2001  
AN2159SW  
3/08/2002  
-
-
10/29/2003  
Developer's Serial Bootloader for M68HC08  
Software for AN2295  
10/21/2003  
AN2295SW  
725 4.0  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
1628  
AN2321/D  
AN2342  
Designing for Board Level Electromagnetic Compatibility  
pdf  
pdf  
pdf  
pdf  
zip  
0
0
0
0
0
8/15/2002  
9/25/2002  
Opto Isolation Circuits For In Circuit Debugging of  
68HC9(S)12 and 68HC908 Microcontrollers  
155  
297  
530  
59  
AN2438/D  
AN2504  
ADC Definitions and Specifications  
2/21/2003  
10/15/2003  
On-Chip FLASH Programming API for CodeWarrior  
Software files for application note AN2504  
10/21/2003  
AN2504SW  
-
Brochure  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
118  
8/06/2001  
BR1785/D  
BR1822  
68HC908JL/JK Family Brochure  
Embedded Flash MCU Overview  
0
MOTOROLA  
pdf  
174  
-
-
MOTOROLA  
pdf  
5/21/2003  
BR68HC08FAMAM/D  
FLYREMBEDFLASH/D  
68HC08 Family: High Performance and Flexibility  
57  
68  
2
2
Embedded Flash: Changing the Technology World for MOTOROLA  
the Better  
5/21/2003  
pdf  
Data Sheets  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
68HC08JL3, 68HRC08JL3, 68HC08JK3, 68HRC08JK3,  
68HC08JK1, 68HRC08JK1 Advance Information  
MOTOROLA  
pdf  
2007  
MC68HC08JL3/D  
4
3/27/2000  
-
MC68H(R)C908JK1/MC68H(R)C908JK3/MC68H(R)C908JL3 MOTOROLA  
Technical Data  
MC68HC908JL3/H  
MC68HC908JL3E/D  
pdf  
pdf  
580  
1
2
1/10/1999  
MC68H(R)C908JL3E/ MC68H(R)C908JK3E/  
MC68H(R)C908JK1E Technical Data  
MOTOROLA  
1549  
12/02/2002  
Engineering Bulletin  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
RAM Data Retention Considerations for Motorola  
Microcontrollers  
MOTOROLA  
pdf  
EB349/D  
EB367/D  
EB389/D  
EB390/D  
EB396/D  
EB398  
45  
1
6/22/2000  
In-Circuit Programming of FLASH Memory Using the  
Monitor Mode for the MC68HC908JL/JK  
MOTOROLA  
pdf  
10/13/2000  
316  
0
1
0
0
0
0
TOF Consideration when Measuring a Long Input Capture MOTOROLA  
Event  
pdf  
pdf  
pdf  
pdf  
pdf  
55  
4/15/2002  
5/09/2002  
6/19/2002  
8/13/2002  
8/14/2002  
Porting the AN2120/D UDP/IP Code to the Avnet  
Evaluation Board  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
1501  
Use of OSC2/XTAL as a Clock Output on Motorola  
Microcontrollers  
49  
0
Techniques to Protect MCU Applications Against  
Malfunction Due to Code Run-Away  
Interrupt Handling Considerations When Modifying  
EEPROM on HC08 Microcontrollers  
EB608/D  
96  
Errata - Click here for important errata information  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
12/13/2002  
-
MSE908JK3_2J88Y/D  
Mask Set Errata for MC68HC908JK3 Mask 2J88Y  
60  
0
Fact Sheets  
ID  
Date Last  
Modified  
Name  
Vendor ID  
Format Size K Rev #  
Order Availability  
68HC908JK-JLPB/D  
8-bit Microcontroller  
Development Studio  
MOTOROLA  
MOTOROLA  
pdf  
pdf  
62  
48  
1
2
4/03/2002  
5/13/2002  
CWDEVSTUDFACTHC08  
-
Product Change Notices  
Size  
K
Date Last  
Modified  
Order  
Availability  
ID  
Name  
Vendor ID Format  
Rev #  
PCN8299  
ADD FAB SITE FOR 908JL3E/JK3E/JK1E MOTOROLA  
htm  
6
0
12/04/2002  
-
Reference Manual  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
1/01/1996  
ADCRM/AD  
Analog-to-Digital Reference Manual  
CPU08RM Central Processor Unit Reference Manual  
231  
2666  
0
MOTOROLA  
pdf  
4/03/2002  
2/20/2001  
CPU08RM/AD  
3
0
Passive Infrared (PIR) Intruder Detection Using the  
MC68HC908JK1/3, Incorporating Remote Control  
Adjustment Using the MC68HC908GP32  
MOTOROLA  
pdf  
2504  
1845  
379  
DRM001/D  
USB08 Universal Serial Bus Evaluation Board Using the  
MC68HC908JB8 Designer Reference Manual  
MOTOROLA  
pdf  
4/12/2001  
5/30/2003  
1/10/1996  
DRM002/D  
DRM011/D  
TIM08RM/AD  
0
0
Direct Current Ignition Reference Design Designer  
Reference Manual  
MOTOROLA  
pdf  
MOTOROLA  
pdf  
TIM08 Timer Interface Module Reference Manual  
771 1.0  
Selector Guide  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
579  
10/24/2003  
SG1002  
SG1006  
SG1010  
SG1011  
SG2000CR  
Analog Selector Guide - Quarter 4, 2003  
Microcontrollers Selector Guide - Quarter 4, 2003  
Sensors Selector Guide - Quarter 4, 2003  
0
MOTOROLA  
pdf  
826  
219  
287  
10/24/2003  
10/24/2003  
10/24/2003  
11/11/2003  
0
0
0
3
MOTOROLA  
pdf  
Software and Development Tools Selector Guide - Quarter MOTOROLA  
4, 2003  
pdf  
pdf  
MOTOROLA  
Application Selector Guide Index and Cross-Reference.  
95  
0
Application Summary Home Appliances - Cooking  
Products. Microcontrollers provide intelligent management MOTOROLA  
programs delivering high precision control over the cooking  
process.  
12/16/2002  
SG2036  
SG2037  
SG2038  
pdf  
pdf  
pdf  
1
2
1
Application Selector Guide - Home Appliances  
DISHWASHERS  
MOTOROLA  
MOTOROLA  
MOTOROLA  
0
6/17/2003  
Application Summary - Home Appliances - Refrigerators  
and Freezers. Microcontrollers maximize appliance  
efficiency while supporting a variety of features in  
refrigerators and freezers.  
12/16/2002  
0
Application Selector Guide - Vacuum Cleaners Vacuum  
Cleaners  
SG2039  
SG2040  
pdf  
pdf  
0
0
0
2
6/17/2003  
6/17/2003  
Application Selector Guide - Home Applicances WASHING MOTOROLA  
MACHINES  
Application Summary - Home Appliances. Dryers. New  
dryer features make this application more energy efficient MOTOROLA  
and better able to meet consumer demands for improved  
control.  
12/16/2002  
SG2044  
pdf  
0
1
Users Guide  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
CodeWarrior™ Development Studio for 68HC08 Quick  
Start Guide  
MOTOROLA  
pdf  
2847  
9/20/2002  
-
CDSWHC08QS  
2.1  
Return to Top  
68HC908JK3 Reference Designs  
Reference Designs  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
Passive Infra Red (PIR) for Security Peripherals and Other Remote  
Networks  
MOTOROLA  
-
RD68HC08PIR  
Return to Top  
-
-
-
68HC908JK3 Tools  
Hardware Tools  
Emulators/Probes/Wigglers  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
IC10000  
IC20000  
IC40000  
ISYS  
ISYS  
ISYS  
iC1000 PowerEmulator  
iC2000 PowerEmulator  
iC4000 ActiveEmulator  
-
-
-
-
-
-
-
-
-
-
-
-
In-Circuit, Real-Time Debugger/Programmer for Motorola 68HC08  
Family (USB)  
INDART-HC08/D  
SOFTEC  
-
-
-
-
Evaluation/Development Boards and Systems  
ID  
Name  
Vendor ID  
Format Size K Rev # Order Availability  
KITMMDS08JL  
Modular Development System (MMDS) Kits  
MOTOROLA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
KITMMEVS08JL  
M68CBL05C  
Modular Evaluation System (MMEVS)  
Low-noise Flex Cable  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
METROWERKS  
M68ICS08JLJK  
M68EML08JLJK  
M68CYCLONE08  
M68ICS08JLJK Development Tool Kit  
Emulation Module  
MON08 Cyclone  
M68MULTILINK08  
METROWERKS  
OZTECH  
MON08 Multilink  
-
-
-
-
-
-
OZTEC-08 STARTER KIT  
OZTEC-08 Starter Kit  
-
Programmers  
ID  
Name  
Vendor ID Format Size K Rev # Order Availability  
MP8011A  
SOFTEC  
SYSGEN  
SYSGEN  
SYSGEN  
Gang Programmer Base Unit  
Automated Programming System  
Universal Programmer  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AP520  
POWERLAB  
T9600  
High-speed universal gang programmer  
Software  
Application Software  
Code Examples  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
HC08 Software Example: Subroutine that delays for a whole  
number of milliseconds  
MOTOROLA  
zip  
HC08DELAYSW  
HC08EXSW  
2
-
-
HC08 Software Example: Library containing software  
examples in assembly for 68HC08  
MOTOROLA  
zip  
14  
-
-
Operating Systems  
ID  
Name  
Vendor ID  
Format  
Size K  
Rev #  
Order Availability  
CMX-TINY+  
CMX  
CMX-Tiny+  
-
-
-
-
Software Tools  
Assemblers  
Size Rev  
Order  
Availability  
ID  
Name  
ADX-08 Macro Assembler-Linker and IDE  
Vendor ID Format  
K
#
ADX-08  
AX6808  
AVOCET  
COSMIC  
-
-
-
-
-
AX6808 relocatable and absolute macro assembler for HC08 and  
HCS08  
-
-
-
Compilers  
ID  
Name  
Vendor ID Format Size K Rev # Order Availability  
CX6808S  
COSMIC  
IMAGE  
CX6808 C Cross Compiler for HC08 and HCS08  
ICC08 V6 STD  
-
-
-
-
-
-
-
-
ICC08  
Debuggers  
ID  
Size Rev  
Order  
Availability  
Name  
ZAP 6808 MON08 Debugger and Flash Programmer  
Vendor ID Format  
K
#
ZAP 6808 MON08 debugger uses the 68HC08’s on-chip monitor  
interface to provide a real-time ANSI C and assembly source level  
debugger including FLASH programming, FLASH security and  
hardware breakpoint support.  
ZAP 6808 MON08  
MOTOROLA  
-
-
-
-
ZAP 6808 MMDS  
COSMIC  
ZAP 6808 MMDS Debugger  
-
-
-
-
ZAP 6808 SIM  
NOICE08  
COSMIC  
IMAGE  
ZAP 6808 Simulator Debugger  
NoICE08  
-
-
-
-
-
-
-
-
IDE (Integrated Development Environment)  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID  
Format  
K
#
CDCWSEHC08  
CWHC08PRO  
METROWERKS  
METROWERKS  
CodeWarrior Development Studio™ for HC(S)08 Special Edition  
-
-
-
-
-
CodeWarrior Development Studio for Motorola HC08  
Microcontrollers Professional Edition  
-
-
CodeWarrior Development Studio for Motorola HC08  
Microcontrollers Standard Edition  
CWHC08STD  
CX6808LT4  
IDEA08  
METROWERKS  
COSMIC  
COSMIC  
ISYS  
-
-
-
-
-
-
-
-
-
-
-
-
HC08 Development Tool Suite 4K Lite (FREE)  
-
-
-
IDEA08 integrated development environment for HC08 and HCS08  
IC-SW-OPR  
winIDEA  
Return to Top  
Rich Media  
Rich Media  
Webcast  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
CodeWarrior Development Tools for 68HC08 and HCS12  
Microcontrollers.  
Listen to our webcast for an overview of some of the challenges  
that developers face and an explanation of the CodeWarrior  
tools that help to address these challenges.  
RMWC_CODEWARRIOR  
RMWC_QFAMILY  
MOTOROLA  
html  
4
0.0  
-
-
8-bit Microcontroller Overview and Q-Family of Flash  
Microcontrollers  
Listen to our companion webcasts to learn about Motorola's  
recent 8-bit products and services-especially the HC08 Q-  
Family-that offer maximum design flexibility while helping you  
get to market fast.  
MOTOROLA  
htm  
5
1.1  
Return to Top  
Orderable Parts Information  
Budgetary  
Tape  
and  
Reel  
Price  
QTY 1000+  
($US)  
Package  
Info  
Additional  
Info  
Order  
Availability  
Life Cycle Description (code)  
PartNumber  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
more  
more  
more  
more  
more  
KMC908JK3CDW  
KMC908JK3CP  
No  
No  
No  
No  
No  
$1.65  
$1.65  
$2.47  
$2.47  
$1.65  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
KMC908JK3ECDW  
KMC908JK3ECP  
KMCR908JK3CDW  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PRODUCT STABLE  
PDIP 20  
SOIC 20W  
PDIP 20  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
KMCR908JK3CP  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
$1.40  
$2.47  
$2.47  
$1.65  
$1.65  
$1.65  
$1.65  
$1.81  
$1.25  
$1.81  
$1.81  
$1.65  
$1.65  
$1.65  
$1.65  
$1.81  
$1.81  
$1.65  
$1.65  
$1.81  
$1.81  
$1.73  
$1.90  
$1.73  
$1.90  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
KMCR98JK3ECDW  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
KMCR98JK3ECP  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
MC68HC908JK3CDW  
MC68HC908JK3CP  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
MC68HC908JK3ECDW  
MC68HC908JK3ECP  
MC68HC908JK3EMDW  
MC68HC908JK3EMP  
MC68HC908JK3MDW  
MC68HC908JK3MP  
MC68HLC908JK3CDW  
MC68HLC908JK3CP  
MC68HRC908JK3CDW  
MC68HRC908JK3CP  
MC68HRC908JK3MDW  
MC68HRC908JK3MP  
MC68HRC98JK3ECDW  
MC68HRC98JK3ECP  
MC68HRC98JK3EMDW  
MC68HRC98JK3EMP  
MCHC908JK3CDWR2  
MCHC908JK3MDWR2  
MCHRC908JK3CDWR2  
MCHRC908JK3MDWR2  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
SOIC 20W  
SOIC 20W  
SOIC 20W  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
NOTE: Are you looking for an obsolete orderable part? Click HERE to check our distributors' inventory.  
Return to Top  
Related Links  
Microcontrollers  
Motor Control  
Sensors  
Return to Top  
http://www.motorola.com/ | Site Map | Contact Motorola | Terms of Use | Privacy Practices  
© Copyright 1994-2003 Motorola, Inc. All Rights Reserved.  
Search  
Advanced | Parametric | Part Number | FAQ  
Select Country  
Motorola Home | Semiconductors Home | Contact Us  
Products | Design Support | Register | Login  
Semiconductors  
Motorola > Semiconductors >  
68HC908JK1 : Microcontroller  
Page Contents:  
The MC68HC908JK1 is a member of the low-cost, high-performance M68HC08 Family of 8-bit  
microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit  
(CPU08) and are available with a variety of modules, memory sizes and types, and package types.  
Features  
Documentation  
Reference Designs  
Tools  
Rich Media  
Block Diagram  
Orderable Parts  
Related Links  
68HC908JK1 Features  
Other Info:  
High-Performance M68HC08 Architecture  
Fully Upward-Compatible Object Code with M6805, M146805, and M68HC05 Families  
Low-Power Design (Fully Static with Stop and Wait Modes)  
5V Nominal Operating Voltage  
3V Low-power Operating Voltage  
Up to 8MHz Internal Bus Operation  
RC-oscillator circuit or Crystal-oscillator options  
1.5 KBytes of User FLASH  
960 Bytes of Monitor or Self-Check ROM  
128 Bytes of On-Chip Random Access Memory (RAM)  
10 Channel 8-bit ADC  
FAQs  
3rd Party Design Help  
Training  
3rd Party Tool  
Vendors  
Rate this Page  
--  
-
0
+
++  
Submit  
Return to Top  
Care to Comment?  
68HC908JK1 Documentation  
Documentation  
Application Note  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
Designing for Electromagnetic Compatibility (EMC) with  
HCMOS Microcontrollers  
MOTOROLA  
pdf  
AN1050_D  
AN1218/D  
AN1219/D  
AN1219SW  
AN1221/D  
AN1221SW  
AN1222/D  
82  
0
1/01/2000  
1/01/1993  
1/01/1997  
1/01/1995  
1/01/1993  
1/01/1995  
1/01/1993  
-
MOTOROLA  
pdf  
HC05 to HC08 Optimization  
347  
177  
77  
2
1
0
0
0
0
MOTOROLA  
pdf  
M68HC08 Integer Math Routines  
Software Files for AN1219 zipped  
MOTOROLA  
zip  
-
-
Hamming Error Control Coding Techniques with the HC08 MOTOROLA  
MCU  
pdf  
zip  
pdf  
63  
MOTOROLA  
Software Files for AN1221 zipped  
55  
MOTOROLA  
Arithmetic Waveform Synthesis with the HC05/08 MCUs  
24  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
AN1222SW  
AN1259/D  
AN1263/D  
AN1516/D  
AN1705/D  
AN1744/D  
AN1752/D  
AN1771/D  
AN1775/D  
AN1783/D  
AN1818/D  
AN1820/D  
AN1820SW  
AN1837/D  
AN1853/D  
AN2093/D  
AN2103/D  
Software Files for AN1222 zipped  
zip  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
zip  
pdf  
pdf  
pdf  
pdf  
20  
78  
0
0
0
2
0
0
1
0
1
1
0
0
0
0
0
0
0
1/01/1995  
1/01/1995  
1/01/1995  
1/24/2003  
1/01/1999  
1/01/1998  
5/07/2001  
1/01/1998  
1/01/1998  
1/01/1999  
1/01/1999  
1/01/1999  
1/01/1998  
3/27/2000  
6/22/2000  
-
System Design and Layout Techniques for Noise  
Reduction in MCU-Based Systems  
Designing for Electromagnetic Compatibility with Single-  
Chip Microcontrollers  
104  
77  
Liquid Level Control Using a Motorola Pressure Sensor  
Noise Reduction Techniques for Microcontroller-Based  
Systems  
67  
Resetting Microcontrollers During Power Transitions  
Data Structures for 8-Bit Microcontrollers  
Precision Sine-Wave Tone Synthesis Using 8-Bit MCUs  
Expanding Digital Input with an A/D Converter  
Determining MCU Oscillator Start-Up Parameters  
Software SCI Routines with the 16-Bit Timer Module  
Software I2C Communications  
80  
213  
250  
86  
48  
84  
55  
Software files for AN1820 zipped  
2
-
Non-Volatile Memory Technology Overview  
116  
221  
36  
Embedding Microcontrollers in Domestic Refrigeration  
Appliances  
Creating Efficient C Code for the MC68HC08  
Local Interconnect Network (LIN) Demonstration  
1/01/2000  
12/01/2000  
953  
Connecting an M68HC08 Family Microcontroller to an  
Internet Service Provider (ISP) Using the Point-to-Point  
Protocol (PPP)  
MOTOROLA  
MOTOROLA  
AN2120/D  
pdf  
741  
0
5/20/2001  
AN2120SW  
AN2149/D  
AN2158/D  
AN2159/D  
AN2159SW  
AN2295  
Software for AN2120, zip format  
zip  
pdf  
pdf  
pdf  
zip  
pdf  
zip  
pdf  
pdf  
pdf  
31 1.0 7/31/2002  
-
Compressor Induction Motor Stall and Rotation Detection MOTOROLA  
using Microcontrollers  
127  
374  
129  
182  
738  
0
0
0
1
4
5/30/2001  
Designing with the MC68HC908JL/JK Microcontroller  
Family  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
11/20/2001  
Digital Direct Current Ignition System Using HC08  
Microcontrollers  
11/20/2001  
AN2159SW  
3/08/2002  
-
-
10/29/2003  
Developer's Serial Bootloader for M68HC08  
Software for AN2295  
10/21/2003  
AN2295SW  
AN2321/D  
AN2342  
725 4.0  
1628  
0
Designing for Board Level Electromagnetic Compatibility  
8/15/2002  
9/25/2002  
2/21/2003  
Opto Isolation Circuits For In Circuit Debugging of  
68HC9(S)12 and 68HC908 Microcontrollers  
155  
297  
0
0
AN2438/D  
ADC Definitions and Specifications  
MOTOROLA  
MOTOROLA  
10/15/2003  
10/21/2003  
AN2504  
On-Chip FLASH Programming API for CodeWarrior  
Software files for application note AN2504  
pdf  
zip  
530  
59  
0
0
AN2504SW  
-
Brochure  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
118  
8/06/2001  
BR1785/D  
BR1822  
68HC908JL/JK Family Brochure  
Embedded Flash MCU Overview  
0
MOTOROLA  
pdf  
174  
-
-
MOTOROLA  
pdf  
5/21/2003  
BR68HC08FAMAM/D  
FLYREMBEDFLASH/D  
68HC08 Family: High Performance and Flexibility  
57  
68  
2
2
Embedded Flash: Changing the Technology World for MOTOROLA  
the Better  
5/21/2003  
pdf  
Data Sheets  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
68HC08JL3, 68HRC08JL3, 68HC08JK3, 68HRC08JK3,  
68HC08JK1, 68HRC08JK1 Advance Information  
MOTOROLA  
pdf  
2007  
MC68HC08JL3/D  
4
3/27/2000  
-
MC68H(R)C908JK1/MC68H(R)C908JK3/MC68H(R)C908JL3 MOTOROLA  
Technical Data  
MC68HC908JL3/H  
MC68HC908JL3E/D  
pdf  
pdf  
580  
1
2
1/10/1999  
MC68H(R)C908JL3E/ MC68H(R)C908JK3E/  
MC68H(R)C908JK1E Technical Data  
MOTOROLA  
1549  
12/02/2002  
Engineering Bulletin  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
RAM Data Retention Considerations for Motorola  
Microcontrollers  
MOTOROLA  
pdf  
EB349/D  
EB367/D  
EB389/D  
EB390/D  
EB396/D  
EB398  
45  
1
6/22/2000  
In-Circuit Programming of FLASH Memory Using the  
Monitor Mode for the MC68HC908JL/JK  
MOTOROLA  
pdf  
10/13/2000  
316  
0
1
0
0
0
0
TOF Consideration when Measuring a Long Input Capture MOTOROLA  
Event  
pdf  
pdf  
pdf  
pdf  
pdf  
55  
4/15/2002  
5/09/2002  
6/19/2002  
8/13/2002  
8/14/2002  
Porting the AN2120/D UDP/IP Code to the Avnet  
Evaluation Board  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
1501  
Use of OSC2/XTAL as a Clock Output on Motorola  
Microcontrollers  
49  
0
Techniques to Protect MCU Applications Against  
Malfunction Due to Code Run-Away  
Interrupt Handling Considerations When Modifying  
EEPROM on HC08 Microcontrollers  
EB608/D  
96  
Errata - Click here for important errata information  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
12/13/2002  
-
MSE908JK1_2J88Y/D  
Mask Set Errata for MC68HC908JK1 Mask 2J88Y  
60  
0
Fact Sheets  
ID  
Date Last  
Modified  
Name  
Vendor ID  
Format Size K Rev #  
Order Availability  
68HC908JK-JLPB/D  
8-bit Microcontroller  
Development Studio  
MOTOROLA  
MOTOROLA  
pdf  
pdf  
62  
48  
1
2
4/03/2002  
5/13/2002  
CWDEVSTUDFACTHC08  
-
Product Change Notices  
Size  
K
Date Last  
Modified  
Order  
Availability  
ID  
Name  
Vendor ID Format  
Rev #  
PCN8299  
ADD FAB SITE FOR 908JL3E/JK3E/JK1E MOTOROLA  
htm  
6
0
12/04/2002  
-
Reference Manual  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
1/01/1996  
ADCRM/AD  
Analog-to-Digital Reference Manual  
CPU08RM Central Processor Unit Reference Manual  
231  
2666  
0
MOTOROLA  
pdf  
4/03/2002  
2/20/2001  
CPU08RM/AD  
3
0
0
Passive Infrared (PIR) Intruder Detection Using the  
MC68HC908JK1/3, Incorporating Remote Control  
Adjustment Using the MC68HC908GP32  
MOTOROLA  
pdf  
2504  
1845  
DRM001/D  
USB08 Universal Serial Bus Evaluation Board Using the  
MC68HC908JB8 Designer Reference Manual  
MOTOROLA  
pdf  
4/12/2001  
1/10/1996  
DRM002/D  
MOTOROLA  
pdf  
TIM08RM/AD  
TIM08 Timer Interface Module Reference Manual  
771 1.0  
Roadmap  
ID  
Name  
Vendor ID Format Size K Rev # Date Last Modified Order Availability  
MOTOROLA pdf 30 9/01/2002  
8BITMCURD  
8-Bit MCU Family Roadmap  
0
-
Selector Guide  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
579  
10/24/2003  
SG1002  
SG1006  
SG1010  
SG1011  
SG2000CR  
Analog Selector Guide - Quarter 4, 2003  
Microcontrollers Selector Guide - Quarter 4, 2003  
Sensors Selector Guide - Quarter 4, 2003  
0
MOTOROLA  
pdf  
826  
219  
287  
10/24/2003  
10/24/2003  
10/24/2003  
11/11/2003  
0
0
0
3
MOTOROLA  
pdf  
Software and Development Tools Selector Guide - Quarter MOTOROLA  
4, 2003  
pdf  
pdf  
MOTOROLA  
Application Selector Guide Index and Cross-Reference.  
95  
0
Application Summary Home Appliances - Cooking  
Products. Microcontrollers provide intelligent management MOTOROLA  
programs delivering high precision control over the cooking  
process.  
12/16/2002  
SG2036  
SG2037  
SG2038  
pdf  
pdf  
pdf  
1
2
1
Application Selector Guide - Home Appliances  
DISHWASHERS  
MOTOROLA  
MOTOROLA  
MOTOROLA  
0
6/17/2003  
Application Summary - Home Appliances - Refrigerators  
and Freezers. Microcontrollers maximize appliance  
efficiency while supporting a variety of features in  
refrigerators and freezers.  
12/16/2002  
0
Application Selector Guide - Vacuum Cleaners Vacuum  
Cleaners  
SG2039  
SG2040  
pdf  
pdf  
0
0
0
2
6/17/2003  
6/17/2003  
Application Selector Guide - Home Applicances WASHING MOTOROLA  
MACHINES  
Application Summary - Home Appliances. Dryers. New  
dryer features make this application more energy efficient MOTOROLA  
and better able to meet consumer demands for improved  
control.  
12/16/2002  
SG2044  
pdf  
0
1
Users Guide  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
CodeWarrior™ Development Studio for 68HC08 Quick  
Start Guide  
MOTOROLA  
pdf  
2847  
9/20/2002  
-
CDSWHC08QS  
2.1  
Return to Top  
68HC908JK1 Reference Designs  
Reference Designs  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
Passive Infra Red (PIR) for Security Peripherals and Other Remote  
Networks  
MOTOROLA  
-
RD68HC08PIR  
Return to Top  
-
-
-
68HC908JK1 Tools  
Hardware Tools  
Emulators/Probes/Wigglers  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
IC10000  
IC20000  
IC40000  
ISYS  
ISYS  
ISYS  
iC1000 PowerEmulator  
iC2000 PowerEmulator  
iC4000 ActiveEmulator  
-
-
-
-
-
-
-
-
-
-
-
-
In-Circuit, Real-Time Debugger/Programmer for Motorola 68HC08  
Family (USB)  
INDART-HC08/D  
SOFTEC  
-
-
-
-
Evaluation/Development Boards and Systems  
ID  
Name  
Vendor ID  
Format Size K Rev # Order Availability  
KITMMDS08JL  
Modular Development System (MMDS) Kits  
MOTOROLA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
KITMMEVS08JL  
M68CBL05C  
Modular Evaluation System (MMEVS)  
Low-noise Flex Cable  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
METROWERKS  
M68ICS08JLJK  
M68EML08JLJK  
M68CYCLONE08  
M68ICS08JLJK Development Tool Kit  
Emulation Module  
MON08 Cyclone  
M68MULTILINK08  
METROWERKS  
OZTECH  
MON08 Multilink  
-
-
-
-
-
-
OZTEC-08 STARTER KIT  
OZTEC-08 Starter Kit  
-
Programmers  
ID  
Name  
Vendor ID  
Format Size K Rev #  
Order Availability  
MP8011A  
POWERLAB  
SOFTEC  
SYSGEN  
Gang Programmer Base Unit  
Universal Programmer  
-
-
-
-
-
-
-
-
Software  
Application Software  
Code Examples  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
HC08 Software Example: Subroutine that delays for a whole  
number of milliseconds  
MOTOROLA  
zip  
HC08DELAYSW  
HC08EXSW  
2
-
-
-
HC08 Software Example: Library containing software  
examples in assembly for 68HC08  
MOTOROLA  
zip  
14  
-
Operating Systems  
ID  
Name  
Vendor ID  
Format  
Size K  
Rev #  
Order Availability  
CMX-TINY+  
CMX  
CMX-Tiny+  
-
-
-
-
Software Tools  
Assemblers  
Size Rev  
Order  
Availability  
ID  
Name  
ADX-08 Macro Assembler-Linker and IDE  
Vendor ID Format  
K
#
ADX-08  
AX6808  
AVOCET  
COSMIC  
-
-
-
-
-
AX6808 relocatable and absolute macro assembler for HC08 and  
HCS08  
-
-
-
Compilers  
ID  
Name  
Vendor ID Format Size K Rev # Order Availability  
CX6808S  
COSMIC  
IMAGE  
CX6808 C Cross Compiler for HC08 and HCS08  
ICC08 V6 STD  
-
-
-
-
-
-
-
-
ICC08  
Debuggers  
ID  
Size Rev  
Order  
Availability  
Name  
ZAP 6808 MON08 Debugger and Flash Programmer  
Vendor ID Format  
K
#
ZAP 6808 MON08 debugger uses the 68HC08’s on-chip monitor  
interface to provide a real-time ANSI C and assembly source level  
debugger including FLASH programming, FLASH security and  
hardware breakpoint support.  
ZAP 6808 MON08  
MOTOROLA  
-
-
-
-
ZAP 6808 MMDS  
COSMIC  
ZAP 6808 MMDS Debugger  
-
-
-
-
ZAP 6808 SIM  
NOICE08  
COSMIC  
IMAGE  
ZAP 6808 Simulator Debugger  
NoICE08  
-
-
-
-
-
-
-
-
IDE (Integrated Development Environment)  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID  
Format  
K
#
CDCWSEHC08  
CWHC08PRO  
METROWERKS  
METROWERKS  
CodeWarrior Development Studio™ for HC(S)08 Special Edition  
-
-
-
-
-
CodeWarrior Development Studio for Motorola HC08  
Microcontrollers Professional Edition  
-
-
CodeWarrior Development Studio for Motorola HC08  
Microcontrollers Standard Edition  
CWHC08STD  
CX6808LT4  
IDEA08  
METROWERKS  
COSMIC  
COSMIC  
ISYS  
-
-
-
-
-
-
-
-
-
-
-
-
HC08 Development Tool Suite 4K Lite (FREE)  
-
-
-
IDEA08 integrated development environment for HC08 and HCS08  
IC-SW-OPR  
winIDEA  
Return to Top  
Rich Media  
Rich Media  
Webcast  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
CodeWarrior Development Tools for 68HC08 and HCS12  
Microcontrollers.  
Listen to our webcast for an overview of some of the challenges  
that developers face and an explanation of the CodeWarrior  
tools that help to address these challenges.  
RMWC_CODEWARRIOR  
MOTOROLA  
html  
4
0.0  
-
-
8-bit Microcontroller Overview and Q-Family of Flash  
Microcontrollers  
Listen to our companion webcasts to learn about Motorola's  
recent 8-bit products and services-especially the HC08 Q-  
Family-that offer maximum design flexibility while helping you  
get to market fast.  
MOTOROLA  
htm  
RMWC_QFAMILY  
5
1.1  
Return to Top  
Orderable Parts Information  
Budgetary  
Tape  
and  
Reel  
Price  
QTY 1000+  
($US)  
Package  
Info  
Additional  
Info  
Order  
Availability  
Life Cycle Description (code)  
PartNumber  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
MC68HC908JK1CDW  
MC68HC908JK1CP  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
$1.25  
$1.25  
$1.25  
$1.25  
$1.38  
$1.38  
$1.38  
$1.36  
$1.25  
$1.25  
$1.25  
$1.25  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
MC68HC908JK1ECDW  
MC68HC908JK1ECP  
MC68HC908JK1EMDW  
MC68HC908JK1EMP  
MC68HC908JK1MDW  
MC68HC908JK1MP  
MC68HLC908JK1CDW  
MC68HLC908JK1CP  
MC68HRC908JK1CDW  
MC68HRC908JK1CP  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
MC68HRC908JK1MDW  
MC68HRC908JK1MP  
MC68HRC98JK1ECDW  
MC68HRC98JK1ECP  
MC68HRC98JK1EMDW  
MC68HRC98JK1EMP  
MCHC908JK1CDWR2  
MCHC908JK1MDWR2  
MCHRC908JK1CDWR2  
MCHRC908JK1MDWR2  
No  
No  
$1.38  
$1.38  
$1.25  
$1.25  
$1.38  
$1.38  
$1.33  
$1.46  
$1.33  
$1.46  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
No  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
No  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
PDIP 20  
No  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
No  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 20W  
SOIC 20W  
SOIC 20W  
SOIC 20W  
Yes  
Yes  
Yes  
Yes  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
NOTE: Are you looking for an obsolete orderable part? Click HERE to check our distributors' inventory.  
Return to Top  
Related Links  
Microcontrollers  
Motor Control  
Sensors  
Return to Top  
http://www.motorola.com/ | Site Map | Contact Motorola | Terms of Use | Privacy Practices  
© Copyright 1994-2003 Motorola, Inc. All Rights Reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY