MC74HC390 [MOTOROLA]

Dual 4-Stage Binary Ripple Counter with ±2and ±5 Sections; 双4级二进制纹波计数器具有± 2AND ± 5节
MC74HC390
型号: MC74HC390
厂家: MOTOROLA    MOTOROLA
描述:

Dual 4-Stage Binary Ripple Counter with ±2and ±5 Sections
双4级二进制纹波计数器具有± 2AND ± 5节

计数器
文件: 总8页 (文件大小:219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SEMICONDUCTOR TECHNICAL DATA  
÷
÷
J SUFFIX  
CERAMIC PACKAGE  
CASE 620–10  
High–Performance Silicon–Gate CMOS  
16  
1
The MC54/74HC390 is identical in pinout to the LS390. The device inputs  
are compatible with standard CMOS outputs; with pullup resistors, they are  
compatible with LSTTL outputs.  
N SUFFIX  
PLASTIC PACKAGE  
CASE 648–08  
This device consists of two independent 4–bit counters, each composed  
of a divide–by–two and a divide–by–five section. The divide–by–two and  
divide–by–five counters have separate clock inputs, and can be cascaded to  
implement various combinations of ÷ 2 and/or ÷ 5 up to a ÷ 100 counter.  
Flip–flops internal to the counters are triggered by high–to–low transitions  
of the clock input. A separate, asynchronous reset is provided for each 4–bit  
counter. State changes of the Q outputs do not occur simultaneously  
because of internal ripple delays. Therefore, decoded output signals are  
subject to decoding spikes and should not be used as clocks or strobes  
except when gated with the Clock of the HC390.  
16  
1
D SUFFIX  
SOIC PACKAGE  
CASE 751B–05  
16  
1
ORDERING INFORMATION  
Output Drive Capability: 10 LSTTL Loads  
Outputs Directly Interface to CMOS, NMOS, and TTL  
Operating Voltage Range: 2 to 6 V  
MC54HCXXXJ  
MC74HCXXXN  
MC74HCXXXD  
Ceramic  
Plastic  
SOIC  
Low Input Current: 1 µA  
High Noise Immunity Characteristic of CMOS Devices  
In Compliance with the Requirements Defined by JEDEC Standard  
No 7A  
PIN ASSIGNMENT  
Chip Complexity: 244 FETs or 61 Equivalent Gates  
CLOCK A  
1
2
16  
15  
V
CC  
a
CLOCK A  
RESET a  
b
b
Q
3
4
5
6
7
8
14  
13  
12  
11  
10  
9
RESET b  
Aa  
LOGIC DIAGRAM  
CLOCK B  
Q
Ab  
a
Q
Q
CLOCK B  
Ba  
Q
÷
2
Ca  
Da  
Bb  
3, 13  
5, 11  
1, 15  
Q
Q
A
CLOCK A  
COUNTER  
Q
Q
Cb  
Db  
GND  
Q
B
÷
5
6, 10  
7, 9  
4, 12  
2, 14  
FUNCTION TABLE  
Q
Q
CLOCK B  
RESET  
C
D
COUNTER  
Clock  
A
B
Reset  
Action  
X
X
H
Reset  
÷ 2 and ÷ 5  
X
L
L
Increment  
÷ 2  
PIN 16 = V  
CC  
PIN 8 = GND  
X
Increment  
÷ 5  
10/95  
REV 6  
Motorola, Inc. 1995  
MC54/74HC390  
MAXIMUM RATINGS*  
Symbol  
Parameter  
Value  
Unit  
V
This device contains protection  
circuitry to guard against damage  
due to high static voltages or electric  
fields. However, precautions must  
be taken to avoid applications of any  
voltage higher than maximum rated  
voltages to this high–impedance cir-  
V
DC Supply Voltage (Referenced to GND)  
DC Input Voltage (Referenced to GND)  
DC Output Voltage (Referenced to GND)  
DC Input Current, per Pin  
– 0.5 to + 7.0  
CC  
V
– 1.5 to V  
+ 1.5  
V
in  
CC  
V
out  
– 0.5 to V  
+ 0.5  
V
CC  
I
± 20  
mA  
mA  
mA  
mW  
in  
cuit. For proper operation, V and  
in  
I
DC Output Current, per Pin  
± 25  
± 50  
out  
V
should be constrained to the  
out  
I
DC Supply Current, V and GND Pins  
CC  
CC  
range GND (V or V  
)
V
CC  
.
in out  
P
D
Power Dissipation in Still Air, Plastic or Ceramic DIP†  
SOIC Package†  
750  
500  
Unused inputs must always be  
tied to an appropriate logic voltage  
level (e.g., either GND or V ).  
Unused outputs must be left open.  
CC  
T
Storage Temperature  
– 65 to + 150  
C
C
stg  
T
Lead Temperature, 1 mm from Case for 10 Seconds  
(Plastic or SOIC DIP)  
L
260  
300  
(Ceramic DIP)  
* Maximum Ratings are those values beyond which damage to the device may occur.  
Functional operation should be restricted to the Recommended Operating Conditions.  
†Derating — Plastic DIP: – 10 mW/ C from 65 to 125 C  
Ceramic DIP: – 10 mW/ C from 100 to 125 C  
SOIC Package: – 7 mW/ C from 65 to 125 C  
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
2.0  
0
Max  
Unit  
V
V
CC  
DC Supply Voltage (Referenced to GND)  
DC Input Voltage, Output Voltage (Referenced to GND)  
Operating Temperature, All Package Types  
6.0  
V , V  
in out  
V
CC  
V
T
A
– 55 + 125  
C
t , t  
r f  
Input Rise and Fall Time  
(Figure 1)  
V
CC  
V
CC  
V
CC  
= 2.0 V  
= 4.5 V  
= 6.0 V  
0
0
0
1000  
500  
400  
ns  
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)  
Guaranteed Limit  
– 55 to  
V
CC  
V
Symbol  
Parameter  
Test Conditions  
25 C  
Unit  
85 C  
125 C  
V
IH  
Minimum High–Level Input  
Voltage  
V
= 0.1 V or V  
– 0.1 V  
2.0  
4.5  
6.0  
1.5  
3.15  
4.2  
1.5  
3.15  
4.2  
1.5  
3.15  
4.2  
V
out  
CC  
|I  
|
20 µA  
out  
V
Maximum Low–Level Input  
Voltage  
V
= 0.1 V or V  
– 0.1 V  
2.0  
4.5  
6.0  
0.3  
0.9  
1.2  
0.3  
0.9  
1.2  
0.3  
0.9  
1.2  
V
V
IL  
out  
CC  
|I  
|
20 µA  
out  
V
|I  
= V or V  
IH IL  
2.0  
4.5  
6.0  
1.9  
4.4  
5.9  
1.9  
4.4  
5.9  
1.9  
4.4  
5.9  
V
OH  
Minimum High–Level Output  
Voltage  
in  
out  
|
20 µA  
V
in  
= V or V  
|I  
|I  
|
|
4.0 mA  
5.2 mA  
4.5  
6.0  
3.98  
5.48  
3.84  
5.34  
3.70  
5.20  
IH  
IL out  
out  
V
|I  
= V or V  
IH  
out  
2.0  
4.5  
6.0  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
V
OL  
Maximum Low–Level Output  
Voltage  
V
in  
IL  
|
20 µA  
V
= V or V  
|I  
|I  
|
|
4.0 mA  
5.2 mA  
4.5  
6.0  
0.26  
0.26  
0.33  
0.33  
0.40  
0.40  
in  
in  
IH IL out  
out  
I
Maximum Input Leakage Current  
V
V
= V  
= V  
or GND  
6.0  
6.0  
± 0.1  
± 1.0  
± 1.0  
µA  
µA  
in  
CC  
I
Maximum Quiescent Supply  
Current (per Package)  
or GND  
8
80  
160  
CC  
in  
CC  
I
= 0 µA  
out  
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).  
MOTOROLA  
2
MC54/74HC390  
AC ELECTRICAL CHARACTERISTICS (C = 50 pF, Input t = t = 6 ns)  
L
f
f
Guaranteed Limit  
– 55 to  
V
CC  
V
25 C  
Symbol  
Parameter  
Unit  
85 C  
125 C  
f
Maximum Clock Frequency (50% Duty Cycle)  
(Figures 1 and 3)  
2.0  
4.5  
6.0  
5.4  
27  
32  
4.4  
22  
26  
3.6  
18  
21  
MHz  
max  
t
t
t
t
t
,
Maximum Propagation Delay, Clock A to QA  
(Figures 1 and 3)  
2.0  
4.5  
6.0  
120  
24  
20  
150  
30  
26  
180  
36  
31  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
PLH  
t
PHL  
,
Maximum Propagation Delay, Clock A to QC  
(QA connected to Clock B)  
(Figures 1 and 3)  
2.0  
4.5  
6.0  
290  
58  
49  
365  
73  
62  
435  
87  
74  
PLH  
t
PHL  
,
Maximum Propagation Delay, Clock B to QB  
(Figures 1 and 3)  
2.0  
4.5  
6.0  
130  
26  
22  
165  
33  
28  
195  
39  
33  
PLH  
t
PHL  
,
Maximum Propagation Delay, Clock B to QC  
(Figures 1 and 3)  
2.0  
4.5  
6.0  
185  
37  
31  
230  
46  
39  
280  
56  
48  
PLH  
t
PHL  
,
Maximum Propagation Delay, Clock B to QD  
(Figures 1 and 3)  
2.0  
4.5  
6.0  
130  
26  
22  
165  
33  
28  
195  
39  
33  
PLH  
t
PHL  
t
Maximum Propagation Delay, Reset to any Q  
(Figures 2 and 3)  
2.0  
4.5  
6.0  
165  
33  
28  
205  
41  
35  
250  
50  
43  
PHL  
t
t
,
Maximum Output Transition Time, Any Output  
(Figures 1 and 3)  
2.0  
4.5  
6.0  
75  
15  
13  
95  
19  
16  
110  
22  
19  
TLH  
THL  
C
Maximum Input Capacitance  
10  
10  
10  
in  
NOTES:  
1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).  
2. Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).  
Typical @ 25°C, V  
= 5.0 V  
CC  
C
Power Dissipation Capacitance (Per Counter)*  
pF  
35  
PD  
2
* Used to determine the no–load dynamic power consumption: P = C  
D
Motorola High–Speed CMOS Data Book (DL129/D).  
V
f + I  
V
. For load considerations, see Chapter 2 of the  
PD CC  
CC CC  
TIMING REQUIREMENTS (Input t = t = 6 ns)  
r
f
Guaranteed Limit  
– 55 to  
V
CC  
V
25 C  
Symbol  
Parameter  
Unit  
85 C  
125 C  
t
Minimum Recovery Time, Reset Inactive to Clock A or Clock B  
(Figure 2)  
2.0  
4.5  
6.0  
50  
10  
9
65  
13  
11  
75  
15  
13  
ns  
rec  
t
t
Minimum Pulse Width, Clock A, Clock B  
(Figure 1)  
2.0  
4.5  
6.0  
80  
16  
14  
100  
20  
17  
120  
24  
20  
ns  
ns  
ns  
w
Minimum Pulse Width, Reset  
(Figure 2)  
2.0  
4.5  
6.0  
125  
25  
21  
155  
31  
26  
190  
38  
32  
w
t , t  
f
Maximum Input Rise and Fall Times  
(Figure 1)  
2.0  
4.5  
6.0  
1000  
500  
400  
1000  
500  
400  
1000  
500  
400  
f
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).  
3
MOTOROLA  
MC54/74HC390  
PIN DESCRIPTIONS  
OUTPUTS  
INPUTS  
Clock A (Pins 1, 15) and Clock B (Pins 4, 15)  
Q
(Pins 3, 13)  
A
Clock A is the clock input to the ÷ 2 counter; Clock B is the  
clock input to the ÷ 5 counter. The internal flip–flops are  
toggled by high–to–low transitions of the clock input.  
Output of the ÷ 2 counter.  
Q , Q , Q (Pins 5, 6, 7, 9, 10, 11)  
B
C
D
CONTROL INPUTS  
Outputs of the ÷ 5 counter. Q is the most significant bit.  
D
Reset (Pins 2, 14)  
Q
is the least significant bit when the counter is connected  
A
Asynchronous reset. A high at the Reset input prevents  
counting, resets the internal flip–flops, and forces Q through  
for BCD output as in Figure 4. Q is the least significant bit  
B
when the counter is operating in the bi–quinary mode as in  
Figure 5.  
A
Q
low.  
D
SWITCHING WAVEFORMS  
t
t
f
r
t
w
V
90%  
50%  
10%  
CC  
V
CLOCK  
CC  
50%  
RESET  
10%  
GND  
GND  
t
w
t
PHL  
1/f  
max  
t
t
50%  
PLH  
PHL  
Q
90%  
50%  
10%  
Q
t
rec  
V
CC  
t
t
50%  
TLH  
THL  
CLOCK  
GND  
Figure 1.  
Figure 2.  
TEST CIRCUIT  
TEST POINT  
OUTPUT  
DEVICE  
UNDER  
TEST  
C *  
L
* Includes all probe and jig capacitance  
Figure 3.  
MOTOROLA  
4
MC54/74HC390  
EXPANDED LOGIC DIAGRAM  
1, 15  
Q
C
CLOCK A  
CLOCK B  
3, 13  
5, 11  
D
Q
Q
Q
A
R
4, 12  
Q
Q
C
D
B
R
Q
Q
C
6, 10  
Q
Q
2
D
C
R
C
7, 9  
D
Q
D
R
2, 14  
RESET  
TIMING DIAGRAM  
(Q Connected to Clock B)  
A
0
1
2
3
4
5
6
7
8
9
0
1
3
4
5
6
CLOCK A  
RESET  
Q
A
Q
Q
B
C
Q
D
5
MOTOROLA  
MC54/74HC390  
APPLICATIONS INFORMATION  
Each half of the MC54/74HC390 has independent ÷ 2 and  
÷ 5 sections (except for the Reset function). The ÷ 2 and ÷ 5  
counters can be connected to give BCD or bi–quinary (2–5)  
To obtain a bi–quinary count sequence, the input signals  
connected to the Clock B input, and output Q is connected  
D
to the Clock A input (Figure 5). Q provides a 50% duty cycle  
A
count sequences. If Output Q is connected to the Clock B  
output. The bi–quinary count sequence function table is  
given in Table 2.  
A
input (Figure 4), a decade divider with BCD output is  
obtained. The function table for the BCD count sequence is  
given in Table 1.  
Table 1. BCD Count Sequence*  
Output  
Table 2. Bi–Quinary Count Sequence**  
Output  
Count  
Count  
Q
Q
Q
Q
Q
Q
Q
Q
B
D
C
B
A
A
D
C
0
1
2
3
4
5
6
7
8
9
L
L
L
L
L
L
H
L
H
L
H
L
H
L
H
0
1
2
3
4
8
9
10  
11  
12  
L
L
L
L
L
H
H
H
H
H
L
L
L
H
L
H
L
L
H
L
H
L
L
L
L
L
L
L
L
H
H
L
H
H
L
L
L
L
H
L
L
L
L
H
L
H
H
L
L
L
H
H
L
L
H
H
H
H
L
L
H
H
L
L
L
* Q connected to Clock B input.  
A
**Q connected to Clock A input.  
D
CONNECTION DIAGRAMS  
1, 15  
3, 13  
1, 15  
3, 13  
5, 11  
Q
Q
÷ 2  
COUNTER  
A
÷
2
A
CLOCK A  
CLOCK A  
COUNTER  
5, 11  
6, 10  
7, 9  
Q
Q
4, 12  
2, 14  
B
4, 12  
2, 14  
B
÷
5
CLOCK B  
RESET  
CLOCK B  
RESET  
6, 10  
7, 9  
÷
5
Q
Q
COUNTER  
Q
Q
C
D
C
D
COUNTER  
Figure 4. BCD Count  
Figure 5. Bi-Quinary Count  
MOTOROLA  
6
MC54/74HC390  
OUTLINE DIMENSIONS  
J SUFFIX  
CERAMIC PACKAGE  
CASE 620–10  
ISSUE V  
–A  
NOTES:  
16  
1
9
8
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
–B  
4. DIM F MAY NARROW TO 0.76 (0.030) WHERE  
THE LEAD ENTERS THE CERAMIC BODY.  
L
C
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
E
MIN  
MAX  
0.785  
0.295  
0.200  
0.020  
MIN  
19.05  
6.10  
0.39  
1.27 BSC  
MAX  
19.93  
7.49  
5.08  
0.50  
0.750  
0.240  
0.015  
0.050 BSC  
–T  
SEAT  
ING  
N
K
PLANE  
F
G
J
K
L
M
N
0.055  
0.100 BSC  
0.008  
0.125  
0.065  
1.40  
2.54 BSC  
0.21  
3.18  
1.65  
E
M
0.015  
0.170  
0.38  
4.31  
J 16 PL  
F
G
0.300 BSC  
15  
0.040  
7.62 BSC  
15  
1.01  
0.51  
M
S
0.25 (0.010)  
T
B
D 16 PL  
°
°
0°  
0°  
M
S
0.25 (0.010)  
T
A
0.020  
N SUFFIX  
PLASTIC PACKAGE  
CASE 648–08  
ISSUE R  
NOTES:  
–A  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
16  
9
B
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
1
8
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
MIN  
MAX  
0.770  
0.270  
0.175  
0.021  
MIN  
18.80  
6.35  
3.69  
0.39  
1.02  
MAX  
19.55  
6.85  
4.44  
0.53  
F
C
L
0.740  
0.250  
0.145  
0.015  
0.040  
S
0.070  
1.77  
SEATING  
PLANE  
–T  
0.100 BSC  
0.050 BSC  
0.015  
0.130  
0.305  
2.54 BSC  
1.27 BSC  
0.38  
3.30  
7.74  
M
K
0.008  
0.110  
0.295  
0.21  
2.80  
7.50  
H
J
G
D 16 PL  
M
S
0°  
10°  
0°  
10°  
M
M
0.25 (0.010)  
T
A
0.020  
0.040  
0.51  
1.01  
D SUFFIX  
PLASTIC SOIC PACKAGE  
CASE 751B–05  
ISSUE J  
–A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
16  
9
8
–B  
P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
M
0.25 (0.010)  
B
1
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
G
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
G
J
MIN  
9.80  
3.80  
1.35  
0.35  
0.40  
MAX  
10.00  
4.00  
1.75  
0.49  
MIN  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
0.386  
0.150  
0.054  
0.014  
0.016  
0.050 BSC  
0.008  
0.004  
F
K
R X 45°  
C
1.25  
1.27 BSC  
–T  
0.19  
0.10  
0.25  
0.25  
0.009  
0.009  
J
SEAT  
ING  
M
K
PLANE  
D 16 PL  
M
P
R
0
5.80  
0.25  
°
7
6.20  
0.50  
°
0
°
7°  
0.244  
0.019  
0.229  
0.010  
M
S
S
0.25 (0.010)  
T
B
A
7
MOTOROLA  
MC54/74HC390  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
CODELINE  
MC54/74HC390/D  

相关型号:

MC74HC390A

Dual 4-Stage Binary Ripple Counter with ±2 and ±5 Sections
ONSEMI

MC74HC390AD

Dual 4-Stage Binary Ripple Counter with ±2 and ±5 Sections
MOTOROLA

MC74HC390AD

Dual 4-Stage Binary Ripple Counter with ±2 and ±5 Sections
ONSEMI

MC74HC390ADG

Dual 4−Stage Binary Ripple Counter with /2and /5 Sections High−Performance Silicon−Gate CMOS
ONSEMI

MC74HC390ADR2

Dual 4-Stage Binary Ripple Counter with ±2 and ±5 Sections
ONSEMI

MC74HC390ADR2G

Dual 4−Stage Binary Ripple Counter with /2and /5 Sections High−Performance Silicon−Gate CMOS
ONSEMI

MC74HC390ADT

Dual 4-Stage Binary Ripple Counter with ±2 and ±5 Sections
MOTOROLA

MC74HC390ADT

Dual 4-Stage Binary Ripple Counter with ±2 and ±5 Sections
ONSEMI

MC74HC390ADTEL

IC,COUNTER,UP,BI-QUINARY,HC-CMOS,TSSOP,16PIN,PLASTIC
ONSEMI

MC74HC390ADTR2

Dual 4-Stage Binary Ripple Counter with ±2 and ±5 Sections
ONSEMI

MC74HC390ADTR2G

Dual 4−Stage Binary Ripple Counter with /2and /5 Sections High−Performance Silicon−Gate CMOS
ONSEMI

MC74HC390AF

Dual 4−Stage Binary Ripple Counter with /2and /5 Sections High−Performance Silicon−Gate CMOS
ONSEMI