MC908MR8VDWR2 [MOTOROLA]

Microcontroller, 8-Bit, FLASH, 8.2MHz, HCMOS, PDSO28, SOIC-28;
MC908MR8VDWR2
型号: MC908MR8VDWR2
厂家: MOTOROLA    MOTOROLA
描述:

Microcontroller, 8-Bit, FLASH, 8.2MHz, HCMOS, PDSO28, SOIC-28

微控制器 光电二极管
文件: 总381页 (文件大小:2352K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC908MR8  
Technical Data  
M68HC08  
Microcontrollers  
MC68HC908MR8/D  
Rev. 4, 8/2002  
WWW.MOTOROLA.COM/SEMICONDUCTORS  
MC68HC908MR8  
Technical Data — Rev 4.0  
Motorola reserves the right to make changes without further notice to any products  
herein. Motorola makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Motorola assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. "Typical" parameters which may be provided in Motorola data sheets and/or  
specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including "Typicals" must be validated for  
each customer application by customer’s technical experts. Motorola does not convey  
any license under its patent rights nor the rights of others. Motorola products are not  
designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Motorola product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use  
Motorola products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal  
injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
Motorola and  
are registered trademarks of Motorola, Inc.  
DigitalDNA is a trademark of Motorola, Inc.  
© Motorola, Inc., 2002  
MC68HC908MR8 — Rev 4.0  
MOTOROLA  
Technical Data  
3
Technical Data  
4
MC68HC908MR8 Rev 4.0  
MOTOROLA  
Technical Data MC68HC908MR8  
List of Paragraphs  
Section 1. General Description . . . . . . . . . . . . . . . . . . . .29  
Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Section 3. Random-Access Memory (RAM) . . . . . . . . . .53  
Section 4. FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . .55  
Section 5. Configuration Register (CONFIG) . . . . . . . . .67  
Section 6. Central Processor Unit (CPU) . . . . . . . . . . . .71  
Section 7. System Integration Module (SIM) . . . . . . . . .89  
Section 8. Clock Generator Module (CGM). . . . . . . . . .111  
Section 9. Pulse-Width Modulator for Motor Control  
(PWMMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
Section 10. Monitor ROM (MON) . . . . . . . . . . . . . . . . . .187  
Section 11. Timer Interface A (TIMA). . . . . . . . . . . . . . .199  
Section 12. Timer Interface B (TIMB). . . . . . . . . . . . . . .223  
Section 13. Serial Communications Interface (SCI). . .247  
Section 14. Input/Output (I/O) Ports . . . . . . . . . . . . . . .279  
Section 15. Computer Operating Properly (COP) . . . .291  
Section 16. External Interrupt (IRQ) . . . . . . . . . . . . . . .297  
Section 17. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . .305  
Section 18. Analog-to-Digital Converter (ADC). . . . . .311  
Section 19. Power-On Reset (POR) . . . . . . . . . . . . . . .327  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
List of Paragraphs  
5
List of Paragraphs  
Section 20. Break (BRK). . . . . . . . . . . . . . . . . . . . . . . . .329  
Section 21. Electrical Specifications. . . . . . . . . . . . . . .339  
Section 22. Mechanical Specifications . . . . . . . . . . . . .351  
Section 23. Ordering Information . . . . . . . . . . . . . . . . .355  
Technical Data Revision History. . . . . . . . . . . . . . . .357  
Technical Data  
6
MC68HC908MR8 Rev 4.0  
List of Paragraphs  
MOTOROLA  
Technical Data MC68HC908MR8  
Table of Contents  
Section 1. General Description  
1.1  
1.2  
1.3  
1.4  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
1.5  
1.5.1  
1.5.2  
1.5.3  
1.5.4  
1.5.5  
1.5.6  
1.5.7  
1.5.8  
1.5.9  
Power Supply Pins (V and V ). . . . . . . . . . . . . . . . . . . .34  
DD SS  
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . .34  
External Reset Pin (RST). . . . . . . . . . . . . . . . . . . . . . . . . . .34  
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . .35  
CGM Power Supply Pins (V  
and V  
) . . . . . . . . . . . . .35  
SSA  
DDA  
ADC Reference Voltage Input Pin (V  
) . . . . . . . . . . . . .35  
REFH  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . .35  
Port A Input/Output (I/O) Pins (PTA6/ATD6PTA0/ATD0). .35  
Port B I/O Pins (PTB6/TCHB1PTB0/RxD) . . . . . . . . . . . . .36  
1.5.10 Port C I/O Pins (PTC1/FAULT1PTC0/FAULT4). . . . . . . . .36  
1.5.11 PWM Pins (PWM6PWM1) . . . . . . . . . . . . . . . . . . . . . . . . .36  
Section 2. Memory Map  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . .38  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . .38  
I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
Technical Data  
Table of Contents  
7
Table of Contents  
Section 3. Random-Access Memory (RAM)  
3.1  
3.2  
3.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Section 4. FLASH Memory  
4.1  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
4.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
FLASH Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . .58  
FLASH Mass Erase Operation. . . . . . . . . . . . . . . . . . . . . . .59  
FLASH Program/Read Operation. . . . . . . . . . . . . . . . . . . . .59  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
4.3  
FLASH Programming Algorithm . . . . . . . . . . . . . . . . . . . . . . . .60  
FLASH Block Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . .63  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
4.3.1  
4.3.2  
4.3.3  
4.3.3.1  
4.3.3.2  
Section 5. Configuration Register (CONFIG)  
5.1  
5.2  
5.3  
5.4  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
CONFIG Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Section 6. Central Processor Unit (CPU)  
6.1  
6.2  
6.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
6.4  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
6.4.1  
6.4.2  
6.4.3  
Technical Data  
8
MC68HC908MR8 Rev 4.0  
Table of Contents  
MOTOROLA  
Table of Contents  
6.4.4  
6.4.5  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
6.5  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
6.7  
6.8  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Section 7. System Integration Module (SIM)  
7.1  
7.2  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
7.3  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . .93  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . .93  
Clocks in Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
7.3.1  
7.3.2  
7.3.3  
7.4  
7.4.1  
7.4.2  
7.4.2.1  
7.4.2.2  
7.4.2.3  
7.4.2.4  
7.4.2.5  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . .94  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . .95  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Computer Operating Properly (COP) Reset. . . . . . . . . . .97  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . .98  
7.5  
7.5.1  
7.5.2  
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . .99  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . .99  
7.6  
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . .103  
7.6.1  
7.6.1.1  
7.6.1.2  
7.6.2  
7.6.3  
7.7  
7.7.1  
Low-Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
Table of Contents  
9
Table of Contents  
7.7.2  
7.7.3  
7.7.4  
7.7.5  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . .106  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . .108  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . .109  
Section 8. Clock Generator Module (CGM)  
8.1  
8.2  
8.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
8.4  
8.4.1  
8.4.2  
8.4.2.1  
8.4.2.2  
8.4.2.3  
8.4.2.4  
8.4.2.5  
8.4.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Crystal Oscillator Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . .115  
PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . .118  
Manual and Automatic PLL Bandwidth Modes . . . . . . .118  
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . .120  
Special Programming Exceptions . . . . . . . . . . . . . . . . .121  
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . .121  
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . .122  
8.4.4  
8.5  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . .123  
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . .123  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . .123  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.5.6  
8.5.7  
8.5.8  
PLL Analog Power Pin (V  
) . . . . . . . . . . . . . . . . . . . . . .124  
DDA  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . .124  
Crystal Output Frequency Signal (CGMXCLK) . . . . . . . . .124  
CGM Base Clock Output (CGMOUT). . . . . . . . . . . . . . . . .124  
CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . .124  
8.6  
CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . .129  
PLL Programming Register . . . . . . . . . . . . . . . . . . . . . . . .131  
8.6.1  
8.6.2  
8.6.3  
8.7  
8.8  
8.9  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
Technical Data  
10  
MC68HC908MR8 Rev 4.0  
Table of Contents  
MOTOROLA  
Table of Contents  
8.10 CGM During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
8.11 Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . .134  
8.11.1 Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . .134  
8.11.2 Parametric Influences on Reaction Time . . . . . . . . . . . . . .135  
8.11.3 Choosing a Filter Capacitor . . . . . . . . . . . . . . . . . . . . . . . .136  
8.11.4 Reaction Time Calculation . . . . . . . . . . . . . . . . . . . . . . . . .137  
Section 9. Pulse-Width Modulator for Motor Control  
(PWMMC)  
9.1  
9.2  
9.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
9.4  
9.4.1  
9.4.2  
Timebase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
9.5  
9.5.1  
9.5.2  
PWM Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Load Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
PWM Data Overflow and Underflow Conditions. . . . . . . . .152  
9.6  
9.6.1  
Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
Selecting Six Independent PWMs or Three Complementary  
PWM Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
Dead-Time Insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
Output Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
Output Port Control Register . . . . . . . . . . . . . . . . . . . . . . .159  
9.6.2  
9.6.3  
9.6.4  
9.7  
9.7.1  
9.7.1.1  
9.7.1.2  
9.7.1.3  
9.7.2  
Fault Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
Fault Condition Input Pins . . . . . . . . . . . . . . . . . . . . . . . . .164  
Fault Pin Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
Automatic Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
Manual Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
Software Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . .168  
Output Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
9.7.3  
9.8  
9.9  
Initialization and the PWMEN Bit . . . . . . . . . . . . . . . . . . . . . .169  
PWM Operation in Wait Mode . . . . . . . . . . . . . . . . . . . . . . . .170  
9.10 PWM Operation in Stop Mode . . . . . . . . . . . . . . . . . . . . . . . .170  
9.11 PWM Operation in Break Mode . . . . . . . . . . . . . . . . . . . . . . .171  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Table of Contents  
11  
Table of Contents  
9.12 Control Logic Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
9.12.1 PWM Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .172  
9.12.2 PWM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . .173  
9.12.3 PWMx Value Registers . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
9.12.4 PWM Control Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . .175  
9.12.5 PWM Control Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . .177  
9.12.6 Dead-Time Write-Once Register . . . . . . . . . . . . . . . . . . . .179  
9.12.7 PWM Disable Mapping Write-Once Register . . . . . . . . . . .179  
9.12.8 Fault Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
9.12.9 Fault Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
9.12.10 Fault Acknowledge Register. . . . . . . . . . . . . . . . . . . . . . . .182  
9.12.11 PWM Output Control Register . . . . . . . . . . . . . . . . . . . . . .184  
9.13 PWM Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
Section 10. Monitor ROM (MON)  
10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
10.4.1 Entering Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
10.4.2 Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
10.4.3 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
10.4.4 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
10.4.5 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
10.4.6 Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
10.4.7 Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
10.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
Section 11. Timer Interface A (TIMA)  
11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
11.4.1 TIMA Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . .204  
11.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
Technical Data  
12  
MC68HC908MR8 Rev 4.0  
Table of Contents  
MOTOROLA  
Table of Contents  
11.4.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
11.4.3.1  
11.4.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .206  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .206  
11.4.4 Pulse-Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .207  
11.4.4.1  
11.4.4.2  
11.4.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .208  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .209  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210  
11.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
11.6 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
11.7 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
11.8 TIMA During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . .212  
11.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
11.9.1 TIMA Clock Pin (PTB2/TCLKA) . . . . . . . . . . . . . . . . . . . . .213  
11.9.2 TIMA Channel I/O Pins (PTB3/TCH0APTB4/TCH1A) . . .213  
11.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
11.10.1 TIMA Status and Control Register . . . . . . . . . . . . . . . . . . .214  
11.10.2 TIMA Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .216  
11.10.3 TIMA Counter Modulo Registers . . . . . . . . . . . . . . . . . . . .217  
11.10.4 TIMA Channel Status and Control Registers . . . . . . . . . . .218  
11.10.5 TIMA Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . .222  
Section 12. Timer Interface B (TIMB)  
12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224  
12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224  
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
12.4.1 TIMB Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . .228  
12.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228  
12.4.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230  
12.4.3.1  
12.4.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .230  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .231  
12.4.4 Pulse-Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .231  
12.4.4.1  
12.4.4.2  
12.4.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .232  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .233  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
Table of Contents  
13  
Table of Contents  
12.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
12.6 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
12.7 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
12.8 TIMB During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . .236  
12.9 TIMB Channel I/O Pins (PTB5/TCH0BPTB6/TCH1B) . . . . .237  
12.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237  
12.10.1 TIMB Status and Control Register . . . . . . . . . . . . . . . . . . .237  
12.10.2 TIMB Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .240  
12.10.3 TIMB Counter Modulo Registers . . . . . . . . . . . . . . . . . . . .241  
12.10.4 TIMB Channel Status and Control Registers . . . . . . . . . . .242  
12.10.5 TIMB Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . .245  
Section 13. Serial Communications Interface (SCI)  
13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248  
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
13.4.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
13.4.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
13.4.2.1  
13.4.2.2  
13.4.2.3  
13.4.2.4  
13.4.2.5  
13.4.2.6  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
Character Transmission. . . . . . . . . . . . . . . . . . . . . . . . .252  
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253  
Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255  
Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . .255  
Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .255  
13.4.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256  
13.4.3.1  
13.4.3.2  
13.4.3.3  
13.4.3.4  
13.4.3.5  
13.4.3.6  
13.4.3.7  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
Error Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
13.5 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
13.6 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
Technical Data  
14  
MC68HC908MR8 Rev 4.0  
Table of Contents  
MOTOROLA  
Table of Contents  
13.7 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .262  
13.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263  
13.8.1 PTE2/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . .263  
13.8.2 PTB0/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . .263  
13.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263  
13.9.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
13.9.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
13.9.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
13.9.4 SCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
13.9.5 SCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .275  
13.9.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276  
13.9.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . .276  
Section 14. Input/Output (I/O) Ports  
14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279  
14.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281  
14.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281  
14.3.2 Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . .282  
14.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284  
14.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284  
14.4.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . .285  
14.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286  
14.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287  
14.5.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . .288  
Section 15. Computer Operating Properly (COP)  
15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
15.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
15.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
15.4.1 CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
15.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
15.4.3 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
15.4.4 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Table of Contents  
15  
Table of Contents  
15.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294  
15.4.6 COP Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294  
15.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294  
15.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294  
15.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
15.8 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
15.9 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
15.10 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .295  
Section 16. External Interrupt (IRQ)  
16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297  
16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297  
16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298  
16.5 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301  
16.6 IRQ Module During Wait Mode. . . . . . . . . . . . . . . . . . . . . . . .302  
16.7 IRQ Module During Stop Mode. . . . . . . . . . . . . . . . . . . . . . . .302  
16.8 IRQ Module During Break Mode. . . . . . . . . . . . . . . . . . . . . . .302  
16.9 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . .303  
Section 17. Low-Voltage Inhibit (LVI)  
17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305  
17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305  
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306  
17.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307  
17.4.2 Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . .307  
17.4.3 False Reset Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . .307  
17.4.4 LVI Trip Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308  
17.5 LVI Status and Control Register . . . . . . . . . . . . . . . . . . . . . . .308  
17.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
17.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
Technical Data  
16  
MC68HC908MR8 Rev 4.0  
Table of Contents  
MOTOROLA  
Table of Contents  
17.8 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
Section 18. Analog-to-Digital Converter (ADC)  
18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312  
18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312  
18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312  
18.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
18.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
18.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
18.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
18.4.5 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
18.4.6 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316  
18.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316  
18.6 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
18.7 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
18.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
18.8.1 ADC Voltage Reference Pin (V  
) . . . . . . . . . . . . . . . . .317  
REFH  
18.8.2 ADC Voltage In (ADVIN) . . . . . . . . . . . . . . . . . . . . . . . . . .318  
18.8.3 ADC External Connection . . . . . . . . . . . . . . . . . . . . . . . . .318  
18.8.3.1  
18.8.3.2  
18.8.3.3  
V
REFH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318  
ANx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318  
Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318  
18.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319  
18.9.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .319  
18.9.2 ADC Data Register High . . . . . . . . . . . . . . . . . . . . . . . . . .322  
18.9.3 ADC Data Register Low . . . . . . . . . . . . . . . . . . . . . . . . . . .323  
18.9.4 ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324  
Section 19. Power-On Reset (POR)  
19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
19.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Table of Contents  
17  
Table of Contents  
Section 20. Break (BRK)  
20.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330  
20.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330  
20.4.1 Flag Protection During Break Interrupts. . . . . . . . . . . . . . .330  
20.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .332  
20.4.3 TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . .332  
20.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .332  
20.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
20.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
20.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
20.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
20.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . .333  
20.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .334  
20.6.3 SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . .336  
20.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . .337  
Section 21. Electrical Specifications  
21.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339  
21.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339  
21.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .340  
21.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .341  
21.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342  
21.6 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .343  
21.7 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345  
21.8 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346  
21.9 TImer Interface Module Characteristics . . . . . . . . . . . . . . . . .346  
21.10 Clock Generation Module Component Specifications . . . . . .347  
21.11 CGM Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . .347  
21.12 CGM Acquisition/Lock Time Specifications  
. . . . . . . . . . . .348  
21.13 Analog-to-Digital Converter (ADC) Characteristics. . . . . . . . .349  
Technical Data  
18  
MC68HC908MR8 Rev 4.0  
Table of Contents  
MOTOROLA  
Table of Contents  
Section 22. Mechanical Specifications  
22.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
22.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
22.3 32-Pin LQFP (Case #873A) . . . . . . . . . . . . . . . . . . . . . . . . . .352  
22.4 28-Pin PDIP (Case #710) . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
22.5 28-Pin SOIC (Case #751F). . . . . . . . . . . . . . . . . . . . . . . . . . .353  
Section 23. Ordering Information  
23.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
23.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
23.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
Technical Data Revision History  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
Changes from Rev 3.0 published in April 2002 to Rev 4.0 pub-  
lished in July 2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Table of Contents  
19  
Table of Contents  
Technical Data  
20  
MC68HC908MR8 Rev 4.0  
Table of Contents  
MOTOROLA  
Technical Data MC68HC908MR8  
List of Figures  
Figure  
Title  
Page  
1-1  
1-2  
MCU Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
QFP and DIP/SOIC Pin Assignments . . . . . . . . . . . . . . . . .33  
1-3  
2-1  
Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
2-2  
Control, Status, and Data Registers. . . . . . . . . . . . . . . . . . .41  
4-1  
4-2  
FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . .57  
FLASH Programming Algorithm. . . . . . . . . . . . . . . . . . . . . .61  
4-3  
4-4  
5-1  
6-1  
6-2  
6-3  
6-4  
6-5  
FLASH Block Protect Register (FLBPR) . . . . . . . . . . . . . . .63  
FLASH Block Protect Address . . . . . . . . . . . . . . . . . . . . . . .64  
CONFIG Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Index Register (H:X). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
6-6  
7-1  
7-2  
7-3  
7-4  
7-5  
Condition Code Register (CCR). . . . . . . . . . . . . . . . . . . . . .76  
SIM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
SIM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . .92  
CGM Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
7-6  
7-7  
7-8  
7-9  
7-10  
Sources of Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . .96  
POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Interrupt Entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
7-11  
Interrupt Recognition Example. . . . . . . . . . . . . . . . . . . . . .103  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
Technical Data  
List of Figures  
21  
List of Figures  
7-12  
7-13  
7-14  
7-15  
7-16  
Wait Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Wait Recovery from Interrupt or Break. . . . . . . . . . . . . . . .105  
Wait Recovery from Internal Reset . . . . . . . . . . . . . . . . . .105  
SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . .106  
SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . .108  
7-17  
8-1  
8-2  
SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . .109  
CGM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
CGM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . .115  
8-3  
8-4  
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . .123  
CGM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . .125  
8-5  
8-6  
8-7  
PLL Control Register (PCTL) . . . . . . . . . . . . . . . . . . . . . . .126  
PLL Bandwidth Control Register (PBWC) . . . . . . . . . . . . .129  
PLL Programming Register (PPG). . . . . . . . . . . . . . . . . . .131  
9-1  
9-2  
PWM Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . .141  
Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142  
9-3  
9-4  
9-5  
9-6  
9-7  
9-8  
9-9  
Center-Aligned PWM (Positive Polarity). . . . . . . . . . . . . . .147  
Edge-Aligned PWM (Positive Polarity). . . . . . . . . . . . . . . .147  
Reload Frequency Change . . . . . . . . . . . . . . . . . . . . . . . .149  
PWM Interrupt Requests . . . . . . . . . . . . . . . . . . . . . . . . . .150  
Center-Aligned PWM Value Loading . . . . . . . . . . . . . . . . .150  
Center-Aligned Loading of Modulus. . . . . . . . . . . . . . . . . .151  
Edge-Aligned PWM Value Loading . . . . . . . . . . . . . . . . . .151  
9-10  
9-11  
9-12  
9-13  
9-14  
9-15  
9-16  
9-17  
Edge-Aligned Modulus Loading . . . . . . . . . . . . . . . . . . . . .151  
Complementary Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
Typical AC Motor Drive . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
Dead-Time Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
Effects of Dead-Time Insertion. . . . . . . . . . . . . . . . . . . . . .156  
Dead-Time at Duty Cycle Boundaries . . . . . . . . . . . . . . . .156  
Dead-Time and Small Pulse Widths. . . . . . . . . . . . . . . . . .157  
PWM Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
9-18  
9-19  
9-20  
9-21  
PWM Output Control Register (PWMOUT) . . . . . . . . . . . .159  
Dead-Time Insertion During OUTCTL = 1 . . . . . . . . . . . . .160  
Dead-Time Insertion During OUTCTL = 1 . . . . . . . . . . . . .161  
PWM Disabling Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . .162  
9-22  
PWM Disable Mapping Write-Once Register (DISMAP) . .163  
Technical Data  
22  
MC68HC908MR8 Rev 4.0  
List of Figures  
MOTOROLA  
List of Figures  
9-23  
9-24  
9-25  
9-26  
PWM Disabling Decode Scheme . . . . . . . . . . . . . . . . . . . .164  
PWM Disabling in Automatic Mode . . . . . . . . . . . . . . . . . .166  
PWM Disabling in Manual Mode (Example 1) . . . . . . . . . .167  
PWM Disabling in Manual Mode (Example 2) . . . . . . . . . .167  
9-27  
9-28  
PWM Software Disable . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
PWMEN and PWM Pins. . . . . . . . . . . . . . . . . . . . . . . . . . .169  
9-29  
9-30  
9-31  
9-32  
9-33  
9-34  
9-35  
9-36  
9-37  
9-38  
9-39  
9-40  
9-41  
9-42  
9-43  
PWM Counter Register High (PCNTH) . . . . . . . . . . . . . . .172  
PWM Counter Register Low (PCNTH). . . . . . . . . . . . . . . .172  
PWM Counter Modulo Register High (PDMODH) . . . . . . .173  
PWM Counter Modulo Register Low (PDMODL) . . . . . . . .173  
PWMx Value Registers High (PVALxH). . . . . . . . . . . . . . .174  
PWMx Value Registers Low (PVALxL) . . . . . . . . . . . . . . .174  
PWM Control Register 1 (PCTL1) . . . . . . . . . . . . . . . . . . .175  
PWM Control Register 2 (PCTL2) . . . . . . . . . . . . . . . . . . .177  
Dead-Time Write-Once Register (DEADTM) . . . . . . . . . . .179  
PWM Disable Mapping Write-Once Register (DISMAP) . .179  
Fault Control Register (FCR) . . . . . . . . . . . . . . . . . . . . . . .180  
Fault Status Register (FSR) . . . . . . . . . . . . . . . . . . . . . . . .181  
Fault Acknowledge Register (FTACK) . . . . . . . . . . . . . . . .182  
PWM Output Control Register (PWMOUT) . . . . . . . . . . . .184  
PWM Clock Cycle and PWM Cycle Definitions . . . . . . . . .186  
9-44  
10-1  
PWM Load Cycle/Frequency Definition . . . . . . . . . . . . . . .186  
Monitor Mode Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
10-2  
10-3  
10-4  
10-5  
Monitor Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
Sample Monitor Waveforms. . . . . . . . . . . . . . . . . . . . . . . .191  
Read Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
Break Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
10-6  
11-1  
11-2  
Monitor Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . .196  
TIMA Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201  
TIMA I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . .201  
11-3  
11-4  
11-5  
11-6  
PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . .208  
TIMA Status and Control Register (TASC). . . . . . . . . . . . .214  
TIMA Counter Registers (TACNTH and TACNTL). . . . . . .216  
TIMA Counter Modulo Registers (TMODH and TMODL). .217  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
List of Figures  
23  
List of Figures  
11-7  
218  
TIMA Channel Status and Control Registers (TASC0TASC1)  
11-8  
CHxMAX Latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
11-9  
12-1  
12-2  
TIMA Channel Registers (TACH0H/LTACH1H/L) . . . . . .222  
TIMB Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
TIMB I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . .225  
12-3  
12-4  
12-5  
12-6  
12-7  
PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . .232  
TIMB Status and Control Register (TBSC). . . . . . . . . . . . .238  
TIMB Counter Registers (TBCNTH and TBCNTL). . . . . . .240  
TIMB Counter Modulo Registers (TMODH and TMODL). .241  
TIMB Channel Status and Control Registers (TBSC0TBSC1)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242  
12-8  
CHxMAX Latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245  
12-9  
13-1  
13-2  
13-3  
13-4  
13-5  
13-6  
TIMB Channel Registers (TBCH0H/LTBCH1H/L) . . . . . .246  
SCI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . .250  
SCI I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . .251  
SCI Data Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
SCI Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
SCI Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . .256  
Receiver Data Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . .258  
13-7  
13-8  
13-9  
SCI Control Register 1 (SCC1) . . . . . . . . . . . . . . . . . . . . .264  
SCI Control Register 2 (SCC2) . . . . . . . . . . . . . . . . . . . . .267  
SCI Control Register 3 (SCC3) . . . . . . . . . . . . . . . . . . . . .270  
13-10  
13-11  
SCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . .271  
Flag Clearing Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . .274  
13-12  
13-13  
SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . .275  
SCI Data Register (SCDR). . . . . . . . . . . . . . . . . . . . . . . . .276  
13-14  
14-1  
SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . .276  
I/O Port Register Summary . . . . . . . . . . . . . . . . . . . . . . . .280  
14-2  
14-3  
14-4  
14-5  
14-6  
14-7  
Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . .281  
Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . .282  
Port A I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . .284  
Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . .285  
Port B I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286  
Technical Data  
24  
MC68HC908MR8 Rev 4.0  
List of Figures  
MOTOROLA  
List of Figures  
14-8  
14-9  
Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . .287  
Data Direction Register C (DDRC). . . . . . . . . . . . . . . . . . .288  
14-10  
15-1  
15-2  
Port C I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289  
COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
COP I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . .292  
15-3  
16-1  
16-2  
COP Control Register (COPCTL). . . . . . . . . . . . . . . . . . . .294  
IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . .298  
IRQ I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . .298  
16-3  
IRQ Interrupt Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . .300  
16-4  
17-1  
17-2  
IRQ Status and Control Register (ISCR) . . . . . . . . . . . . . .303  
LVI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . .306  
LVI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . .307  
17-3  
18-1  
LVI Status and Control Register (LVISCR) . . . . . . . . . . . .308  
ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
18-2  
18-3  
18-4  
18-5  
18-6  
18-7  
18-8  
8-Bit Truncation Mode Error. . . . . . . . . . . . . . . . . . . . . . . .316  
ADC Status and Control Register (ADSCR). . . . . . . . . . . .319  
ADC Data Register High (ADRH) Left Justified Mode . . . .322  
ADC Data Register High (ADRH) Right Justified Mode . . .322  
ADC Data Register Low (ADRL) Left Justified Mode. . . . .323  
ADC Data Register Low (ADRL) Right Justified Mode. . . .323  
ADC Data Register Low (ADRL) 8-Bit Mode . . . . . . . . . . .324  
18-9  
20-1  
20-2  
ADC Clock Register (ADCLK) . . . . . . . . . . . . . . . . . . . . . .324  
Break Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . .331  
I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .331  
20-3  
20-4  
20-5  
20-6  
20-7  
20-8  
Break Status and Control Register (BRKSCR) . . . . . . . . .333  
Break Address Register High (BRKH) . . . . . . . . . . . . . . . .334  
Break Address Register Low (BRKL). . . . . . . . . . . . . . . . .335  
SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . .336  
Example Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . .337  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
List of Figures  
25  
List of Figures  
Technical Data  
26  
MC68HC908MR8 Rev 4.0  
List of Figures  
MOTOROLA  
Technical Data MC68HC908MR8  
List of Tables  
Table  
Title  
Page  
2-1  
6-1  
6-2  
7-1  
7-2  
8-1  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Opcode Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
VCO Frequency Multiplier (N) Selection. . . . . . . . . . . . . . . .131  
PWM Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
PWM Reload Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
PWM Data Overflow and Underflow Conditions. . . . . . . . . .152  
OUTx Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
PWM Reload Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
PWM Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178  
OUTx Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
Mode Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
Mode Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . .193  
WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . .193  
IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . .194  
IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . .194  
READSP (Read Stack Pointer) Command. . . . . . . . . . . . . .195  
RUN (Run User Program) Command. . . . . . . . . . . . . . . . . .195  
Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
Mode, Edge, and Level Selection. . . . . . . . . . . . . . . . . . . . .220  
Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
Mode, Edge, and Level Selection. . . . . . . . . . . . . . . . . . . . .244  
Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258  
Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
Stop Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . .266  
9-7  
10-1  
10-2  
10-3  
10-4  
10-5  
10-6  
10-7  
10-8  
11-1  
11-2  
12-1  
12-2  
13-1  
13-2  
13-3  
13-4  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
Technical Data  
List of Tables  
27  
List of Tables  
13-5  
13-6  
13-7  
14-1  
14-2  
14-3  
17-1  
18-1  
18-2  
23-1  
SCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . .277  
SCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . .277  
SCI Baud Rate Selection Examples. . . . . . . . . . . . . . . . . . .278  
Port A Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
Port B Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286  
Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289  
LVIOUT Bit Indication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308  
Mux Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321  
ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . .325  
MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
Technical Data  
28  
MC68HC908MR8 Rev 4.0  
List of Tables  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 1. General Description  
1.1 Contents  
1.2  
1.3  
1.4  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
1.5  
1.5.1  
1.5.2  
1.5.3  
1.5.4  
1.5.5  
1.5.6  
1.5.7  
1.5.8  
Power Supply Pins (V and V ) . . . . . . . . . . . . . . . . . .34  
DD SS  
Oscillator Pins (OSC1 and OSC2). . . . . . . . . . . . . . . . . . .34  
External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . .34  
External Interrupt Pin (IRQ). . . . . . . . . . . . . . . . . . . . . . . .35  
CGM Power Supply Pins (V  
and V  
). . . . . . . . . . . .35  
SSA  
DDA  
ADC Reference Voltage Input Pin (V  
) . . . . . . . . . . . .35  
REFH  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . .35  
Port A Input/Output (I/O) Pins (PTA6/ATD6PTA0/ATD0)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Port B I/O Pins (PTB6/TCHB1PTB0/RxD) . . . . . . . . . . . .36  
1.5.9  
1.5.10 Port C I/O Pins (PTC1/FAULT1PTC0/FAULT4). . . . . . . .36  
1.5.11 PWM Pins (PWM6PWM1). . . . . . . . . . . . . . . . . . . . . . . . .36  
1.2 Introduction  
The MC68HC908MR8 is a member of the low-cost, high-performance  
M68HC08 Family of 8-bit microcontroller units (MCU). The M68HC08  
Family is based on the customer-specified integrated circuit (CSIC)  
design strategy. All MCUs in the family use the enhanced M68HC08  
central processor unit (CPU08) and are available with a variety of  
modules, memory sizes and types, and package types.  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
General Description  
29  
General Description  
1.3 Features  
Features of the MC68HC908MR8 include:  
High-performance M68HC08 architecture  
Fully upward-compatible object code with M6805, M146805, and  
M68HC05 Families  
8-MHz internal bus frequency  
8 Kbytes of on-chip FLASH  
On-chip programming firmware for use with host personal  
computer  
256 bytes of on-chip random-access memory (RAM):  
12-bit, 6-channel center-aligned or edge-aligned pulse-width  
modulator (PWMMC)  
Serial communications interface module (SCI)  
Two 16-bit, 2-channel timer interface modules (TIMA and TIMB)  
Eight high current sink and source pins (PTA1/ATD1, PTA0/ATD0,  
PTB6/TCH1B, PTB5/TCH0B, PTB4/TCH1A, PTB3/TCH0A,  
PTB2/TCLKA, and PTB1/TxD)  
Clock generator module (CGM)  
Digitally filtered low-voltage inhibit (LVI), software selectable for  
±5 percent or ±10 percent tolerance  
10-bit, 4 to 7-channel analog-to-digital converter (ADC)  
System protection features:  
Optional computer operating properly (COP) reset  
Low-voltage detection with optional reset  
Illegal opcode detection with optional reset  
Illegal address detection with optional reset  
Fault detection with optional PWM disabling  
Technical Data  
30  
MC68HC908MR8 Rev 4.0  
General Description  
MOTOROLA  
General Description  
MCU Block Diagram  
Available packages:  
32-pin low-profile quad flat pack (LQFP)  
28-pin dual in-line package (PDIP)  
28-pin small outline package (SOIC)  
Low-power design, fully static with stop and wait modes  
Break (BRK) module allows single breakpoint setting during  
in-circuit debugging  
Master reset pin and power-on reset (POR)  
Features of the CPU08 include:  
Enhanced HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the M68HC05)  
16-bit index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16 ÷ 8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
C language support  
1.4 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908MR8.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
31  
MOTOROLA  
General Description  
INTERNAL BUS  
M68HC08 CPU  
PTA6/ATD6  
PTA5/ATD5  
PTA4/ATD4  
PTA3/ATD3  
PTA2/ATD2  
PTA1/ATD1  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
LOW-VOLTAGE INHIBIT  
MODULE  
COMPUTER OPERATING PROPERLY  
MODULE  
CONTROL AND STATUS REGISTERS — 112 BYTES  
USER FLASH — 7680 BYTES  
PTA0/ATD0  
BREAK  
MODULE  
PTB6/TCH1B  
PTB5/TCH0B  
PTB4/TCH1A  
PTB3/TCH0A  
PTB2/TCLKA  
PTB1/TxD  
USER RAM — 256 BYTES  
TIMER A AND TIMER B INTERFACE  
MODULES  
MONITOR ROM — 313 BYTES  
PTB0/RxD  
SERIAL COMMUNICATIONS INTERFACE  
MODULE  
USER VECTOR SPACE — 46 BYTES  
PWM6  
PWM5  
PWM4  
PWM3  
PWM2  
PWM1  
OSC1  
CLOCK GENERATOR  
MODULE  
OSC2  
CGMXFC  
PTC1/FAULT4  
PTC0/FAULT1  
POWER-ON RESET  
MODULE  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
IRQ  
MODULE  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
V
REFH  
PULSE-WIDTH MODULATOR  
MODULE  
V
DD  
V
DDA  
POWER  
V
SSA  
V
SS  
Figure 1-1. MCU Block Diagram  
General Description  
Pin Assignments  
1.5 Pin Assignments  
Figure 1-2 shows 32-pin QFP and 28-pin DIP/SOIC pin assignments.  
O
V
1
24  
PTA1/ATD1  
PTA0/ATD0  
PTB6/TCH1B  
PTB5/TCH0B  
SSA  
OSC2  
OSC1  
2
3
4
23  
22  
21  
20  
19  
18  
CGMXFC  
IRQ  
32-PIN QFP  
V
5
6
7
SS  
PWM1  
PWM2  
V
DD  
PTB4/TCH1A  
PTB3/TCH0A  
PWM3 8  
17  
*
V
O
PTA3/ATD3  
PTA2/ATD2  
REFH  
1
2
3
4
28  
27  
26  
RST  
V
DDA  
PTA1/ATD1  
PTA0/ATD0  
PTB6/TCH1B  
PTB5/TCH0B  
V
25  
24  
23  
22  
SSA  
*
*
OSC2  
5
6
7
8
9
28-PIN  
DIP/SOIC  
OSC1  
CGMXFC  
IRQ  
V
SS  
V
21  
20  
19  
18  
DD  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
PTB4/TCH1A  
PTB3/TCH0A  
PTB2/TCLKA  
PTB1/TxD  
10  
11  
12  
13  
14  
17  
16  
15  
PTB0/RxD  
PTC0/FAULT1  
* High current pins  
** These pins are not bonded on the 28-pin package.  
Figure 1-2. QFP and DIP/SOIC Pin Assignments  
MC68HC908MR8 Rev 4.0  
TechnicalData  
33  
MOTOROLA  
General Description  
General Description  
1.5.1 Power Supply Pins (V and V )  
DD  
SS  
V
and V are the power supply and ground pins. The MCU operates  
SS  
DD  
from a single power supply.  
Fast signal transitions on MCU pins place high, short-duration current  
demands on the power supply. To prevent noise problems, take special  
care to provide power supply bypassing at the MCU as Figure 1-3  
shows. Place the C1 bypass capacitor as close to the MCU as possible.  
Use a high-frequency-response ceramic capacitor for C1. C2 is an  
optional bulk current bypass capacitor for use in applications that require  
the port pins to source high current levels.  
MCU  
V
V
SS  
DD  
C1  
0.1 µF  
+
C2  
V
DD  
Note: Component values shown represent typical applications.  
Figure 1-3. Power Supply Bypassing  
1.5.2 Oscillator Pins (OSC1 and OSC2)  
The OSC1 and OSC2 pins are the connections for the on-chip oscillator  
circuit. See Section 8. Clock Generator Module (CGM).  
1.5.3 External Reset Pin (RST)  
A logic 0 on the RST pin forces the MCU to a known startup state. RST  
is bidirectional, allowing a reset of the entire system. It is driven low when  
any internal reset source is asserted. See Section 7. System  
Integration Module (SIM).  
Technical Data  
34  
MC68HC908MR8 Rev 4.0  
General Description  
MOTOROLA  
General Description  
Pin Assignments  
1.5.4 External Interrupt Pin (IRQ)  
IRQ is an asynchronous external interrupt pin. See Section 16. External  
Interrupt (IRQ).  
1.5.5 CGM Power Supply Pins (V  
and V  
)
DDA  
SSA  
V
and V  
are the power supply pins for the analog portion of the  
DDA  
SSA  
clock generator module (CGM) and the analog-to-digital converter  
(ADC). Decoupling of these pins should be per the digital supply. See  
Section 8. Clock Generator Module (CGM) and Section 18.  
Analog-to-Digital Converter (ADC).  
1.5.6 ADC Reference Voltage Input Pin (V  
)
REFH  
V
is the power supply input for setting the reference voltage. See  
REFH  
Section 18. Analog-to-Digital Converter (ADC).  
1.5.7 External Filter Capacitor Pin (CGMXFC)  
CGMXFC is an external filter capacitor connection for the CGM. See  
Section 8. Clock Generator Module (CGM).  
1.5.8 Port A Input/Output (I/O) Pins (PTA6/ATD6PTA0/ATD0)  
Port A is a 7-bit special function port, sharing all of its pins with the  
analog-to-digital converter (ADC). On the 32-pin QFP package, all seven  
bits (PTA6/ATD6PTA0/ATD0) of the port are available. On the 28-pin  
package, four bits (PTA3/ATD3PTA0/ATD0) are available.  
PTA3PTA0 have high current source and sink capability. See  
Section 14. Input/Output (I/O) Ports.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
General Description  
35  
General Description  
1.5.9 Port B I/O Pins (PTB6/TCHB1PTB0/RxD)  
Port B is a 7-bit special function port, sharing five of its pins with the timer  
interface modules (TIMA and TIMB) and two of its pins with the serial  
communications interface (SCI). See Section 11. Timer Interface A  
(TIMA), Section 12. Timer Interface B (TIMB), Section 14.  
Input/Output (I/O) Ports, and Section 13. Serial Communications  
Interface (SCI).  
1.5.10 Port C I/O Pins (PTC1/FAULT1PTC0/FAULT4)  
Port C is a 2-bit special function port, sharing its pins with pulse-width  
modulator fault inputs. See Section 9. Pulse-Width Modulator for  
Motor Control (PWMMC) and Section 14. Input/Output (I/O) Ports.  
1.5.11 PWM Pins (PWM6PWM1)  
PWM6PWM1 are dedicated pins used for the outputs of the pulse-  
width modulator module (PWMMC). See Section 9. Pulse-Width  
Modulator for Motor Control (PWMMC).  
Technical Data  
36  
MC68HC908MR8 Rev 4.0  
General Description  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 2. Memory Map  
2.1 Contents  
2.2  
2.3  
2.4  
2.5  
2.6  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . .38  
Reserved Memory Locations. . . . . . . . . . . . . . . . . . . . . . . . .38  
I/O Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
2.2 Introduction  
The central processor unit (CPU08) can address 64 Kbytes of memory  
space.  
The memory map, shown in Figure 2-1, includes these features:  
8 Kbytes of FLASH  
256 bytes of RAM  
313 bytes of monitor ROM  
46 bytes of user-defined vectors  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
Memory Map  
37  
Memory Map  
2.3 Unimplemented Memory Locations  
Some addresses are unimplemented. Accessing an unimplemented  
address will cause an illegal address reset. In the memory map and in  
the input/output (I/O) register summary, unimplemented addresses are  
shaded.  
Some I/O bits are read-only; the write function is unimplemented. Writing  
to a read-only I/O bit has no effect on MCU operation. In register figures,  
the write function of read-only bits is shaded. Similarly, some I/O bits are  
write-only; the read function is unimplemented. Reading of write-only I/O  
bits has no effect on microcontroller unit (MCU) operation. In register  
figures, the read function of write-only bits is shaded.  
2.4 Reserved Memory Locations  
Some addresses are reserved. Writing to a reserved address can have  
unpredictable effects on MCU operation. In the memory map and in the  
I/O register summary, reserved addresses are marked with the word  
reserved.  
Some I/O bits are reserved. Writing to a reserved bit can have  
unpredictable effects on MCU operation. In register figures, reserved  
bits are marked with the letter R.  
Technical Data  
38  
MC68HC908MR8 Rev 4.0  
Memory Map  
MOTOROLA  
Memory Map  
I/O Section  
2.5 I/O Section  
Addresses $0000$005F, shown in Figure 2-2, contain most of the  
control, status, and data registers. Additional I/O registers have these  
addresses:  
$FE00, system integration module (SIM) break status register  
(SBSR)  
$FE01, SIM reset status register (SRSR)  
$FE03, SIM break flag control register (SBFCR)  
$FE08, FLASH control register (FLCR)  
$FF57, FLASH test control register (FLTCR)  
$FE0C, break address register high (BRKH)  
$FE0D, break flag control register low (BRKL)  
$FE0E, break status and control register (BRKSCR)  
$FE0F, low-voltage inhibit (LVI) status and control register  
(LVISCR)  
$FF7E, FLASH block protect register (FLBPR)  
$FFFF, computer operating properly (COP) control register  
(COPCTL)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Memory Map  
39  
Memory Map  
MC68HC908MR8  
$0000  
$0000  
I/O REGISTERS 96 BYTES  
$005F  
$0060  
$005F  
$0060  
RAM 256 BYTES  
$011F  
$0120  
$015F  
$0160  
UNIMPLEMENTED 56,992 BYTES  
FLASH MEMORY 7,680 BYTES  
$DFFF  
$E000  
$EDFF  
$EE00  
$FDFF  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE07  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
$FE10  
$FDFF  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
$FE10  
SIM BREAK STATUS REGISTER (SBSR)  
SIM RESET STATUS REGISTER (SRSR)  
RESERVED  
SIM BREAK FLAG CONTROL REGISTER (SBFCR)  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
FLASH CONTROL REGISTER (FLCR)  
UNIMPLEMENTED  
RESERVED  
UNIMPLEMENTED  
BREAK ADDRESS REGISTER HIGH (BRKH)  
BREAK ADDRESS REGISTER LOW (BRKL)  
BREAK STATUS AND CONTROL REGISTER (BRKSCR)  
LVI STATUS AND CONTROL REGISTER (LVISCR)  
MONITOR ROM 313 BYTES  
$FF48  
$FF49  
$FF48  
$FF49  
UNIMPLEMENTED 53 BYTES  
$FF7D  
$FF7D  
Figure 2-1. Memory Map  
Technical Data  
40  
MC68HC908MR8 Rev 4.0  
Memory Map  
MOTOROLA  
Memory Map  
I/O Section  
$FF7E  
$FF7F  
FLASH BLOCK PROTECT REGISTER (FLBPR)  
$FF7E  
$FF7F  
UNIMPLEMENTED 83 BYTES  
$FFD1  
$FFD2  
$FFD1  
$FFD2  
VECTORS 45 BYTES (46 including $FFFF)  
$FFFE  
$FFFE  
Low byte of reset vector when read  
COP Control Register (COPCTL)  
$FFFF  
$FFFF  
Figure 2-1. Memory Map  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read  
Port A Data Register  
(PTA) Write:  
U
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000  
See page 281.  
Reset  
Read:  
Unaffected by reset  
U
U
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
PTC0  
Port B Data Register  
(PTB) Write:  
$0001  
See page 284.  
Reset:  
Unaffected by reset  
Read:  
U
U
U
U
U
PTC1  
Port C Data Register  
(PTC) Write:  
$0002  
$0003  
See page 287.  
Reset:  
Unaffected by reset  
Unimplemented  
Read:  
Data Direction Register  
U
DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0  
A
(DDRA)  
$0004  
Write:  
See page 282.  
Reset:  
U
0
0
0
0
0
0
0
U = Unaffected  
nate  
X = Indetermi-  
= Reserved  
= Buff-  
ered  
= Unimplemented  
R
Bold  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 10)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
41  
MOTOROLA  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Data Direction Register  
U
DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0  
B
(DDRB)  
$0005  
Write:  
See page 284.  
Reset:  
U
U
0
0
0
0
0
0
0
Read:  
Data Direction Register  
DDRC1 DDRC0  
C
(DDRC)  
See page 288.  
$0006  
Write:  
Reset:  
U
U
U
U
U
0
0
$0007  
Unimplemented  
Unimplemented  
$000D  
Read: TOF  
0
TRST  
0
0
R
TIMA Status/Control  
TOIE TSTOP  
PS2  
PS1  
PS0  
$000E  
$000F  
$0010  
$0011  
Register (TASC) Write:  
0
0
See page 214.  
Reset:  
0
1
Bit 13  
R
0
0
Bit 10  
R
0
Bit 9  
R
0
Bit 8  
R
Read: Bit 15 Bit 14  
Bit 12  
R
Bit 11  
R
TIMA Counter Register  
High  
Write:  
R
0
R
0
(TACNTH)  
See page 216.  
Reset:  
0
0
0
0
0
0
Read: Bit 7  
Bit 6  
R
Bit 5  
R
Bit 4  
R
Bit 3  
R
Bit 2  
R
Bit 1  
R
Bit 0  
R
TIMA Counter Register  
Low  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
R
0
(TACNTL)  
See page 216.  
0
0
0
0
0
0
0
TIMA Counter Modulo  
Register High  
Bit 15  
1
14  
1
13  
1
12  
11  
10  
9
Bit 8  
1
(TAMODH)  
See page 217.  
1
1
1
1
TIMA Counter Modulo  
Bit 7  
1
6
5
4
1
3
2
1
1
Bit 0  
1
$0012 Register Low (TAMODL) Write:  
See page 217.  
Reset:  
1
1
1
ELS0B  
0
1
ELS0A  
0
Read: CH0F  
TIMA Channel 0 Sta-  
tus/Control Register  
(TASC0)  
CH0MA  
X
CH0IE MS0B  
MS0A  
TOV0  
$0013  
Write:  
0
0
See page 218.  
Reset:  
0
0
0
0
0
U = Unaffected  
nate  
X = Indetermi-  
= Reserved  
= Buff-  
ered  
= Unimplemented  
R
Bold  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 10)  
Technical Data  
42  
MC68HC908MR8 Rev 4.0  
Memory Map  
MOTOROLA  
Memory Map  
I/O Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
TIMA Channel 0 Regis-  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
$0014  
ter High (TACH0H) Write:  
See page 222.  
Reset:  
Indeterminate after reset  
Read:  
TIMA Channel 0 Regis-  
Bit 7  
6
5
4
3
2
1
Bit 0  
$0015  
$0016  
$0017  
$0018  
ter Low (TACH0L) Write:  
See page 218.  
Reset:  
Indeterminate after reset  
Read: CH1F  
0
R
0
TIMA Channel 1 Sta-  
tus/Control  
CH1MA  
X
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
Write:  
Reset:  
Read:  
0
0
Register (TASC1)  
See page 222.  
0
0
0
0
9
0
TIMA Channel 1 Regis-  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
ter High (TACH1H) Write:  
See page 222.  
Reset:  
Indeterminate after reset  
Read:  
TIMA Channel 1 Regis-  
Bit 7  
6
5
4
3
2
1
Bit 0  
ter Low (TACH1L) Write:  
See page 222.  
Reset:  
Indeterminate after reset  
Unimplemented  
$0019  
$001E  
Unimplemented  
$001F  
Read:  
BOT-  
NEG  
TOP-  
NEG  
Configuration Register  
EDGE  
INDEP  
0
LVIRST LVIPWR STOPE COPD  
(CONFIG) Write:  
See page 68.  
Reset:  
0
DISX  
0
0
DISY  
0
0
1
1
0
LDOK  
0
0
Read:  
PW-  
MINT  
PW-  
MEN  
PWM Control Register 1  
PWMF  
0
$0020  
$0021  
(PCTL1) Write:  
See page 175.  
Reset:  
0
0
0
0
0
Read:  
PWM Control Register 2  
LDFQ1 LDFQ0  
SEL12  
SEL34 SEL56 PRSC1 PRSC0  
(PCTL2) Write:  
See page 177.  
Reset:  
0
0
0
0
0
0
0
0
U = Unaffected  
nate  
X = Indetermi-  
= Reserved  
= Buff-  
ered  
= Unimplemented  
R
Bold  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 10)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
43  
MOTOROLA  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
FINT4  
0
6
5
4
3
2
1
Bit 0  
Read:  
FMODE  
4
FMODE  
1
Fault Control Register  
(FCR) Write:  
See page 180.  
FINT1  
$0022  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
FFLAG  
4
FFLAG  
1
Read: FPIN4  
Write:  
FPIN1  
Fault Status Register  
(FSR)  
$0023  
$0024  
See page 181.  
Reset:  
Read:  
U
0
0
0
U
0
0
0
U
0
0
0
U
0
0
0
Fault Acknowledge Reg-  
ister (FTACK)  
FTACK  
4
FTACK  
1
Write:  
See page 182.  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
0
OUT-  
CTL  
PWM Output Control  
(PWMOUT)  
OUT6  
OUT5  
OUT4  
OUT3  
OUT2  
OUT1  
$0025  
$0026  
$0027  
See page 159.  
0
0
0
0
0
0
0
0
0
0
0
0
Bit 11  
Bit 10  
Bit 9  
Bit 8  
PWM Counter Register  
High (PCNTH)  
See page 172.  
0
0
0
0
0
0
0
0
Read: Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWM Counter Register  
Low (PCNTL) Write:  
See page 172.  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
Bit 11  
X
0
Bit 10  
X
0
Bit 9  
X
0
Bit 8  
X
PWM Counter Modulo  
$0028 Register High (PMODH)  
See page 173.  
0
Bit 7  
X
0
Bit 6  
X
0
Bit 5  
X
0
Bit 4  
X
PWM Counter Modulo  
$0029 Register Low (PMODL) Write:  
Bit 3  
X
Bit 2  
X
Bit 1  
X
Bit 0  
X
See page 173.  
Reset:  
Read:  
PWM 1 Value Register  
Bit 15 Bit 14  
Bit 13  
0
Bit 12  
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
$002A  
High (PVAL1H) Write:  
See page 174.  
Reset:  
0
0
0
U = Unaffected  
nate  
X = Indetermi-  
= Reserved  
= Buff-  
ered  
= Unimplemented  
R
Bold  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 10)  
Technical Data  
44  
MC68HC908MR8 Rev 4.0  
Memory Map  
MOTOROLA  
Memory Map  
I/O Section  
Addr.  
Register Name  
Bit 7  
Bit 7  
0
6
Bit 6  
0
5
Bit 5  
0
4
Bit 4  
0
3
Bit 3  
0
2
Bit 2  
0
1
Bit 0  
Bit 0  
0
Read:  
PWM 1 Value Register  
Bit 1  
0
$002B  
Low (PVAL1L) Write:  
See page 174.  
Reset:  
Read:  
PWM 2 Value Register  
Bit 15 Bit 14  
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
$002C  
$002D  
$002E  
$002F  
$0030  
$0031  
$0032  
$0033  
$0034  
High (PVAL2H) Write:  
See page 174.  
Reset:  
0
Bit 7  
0
0
Bit 6  
0
Read:  
PWM 2 Value Register  
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Low (PVAL2L) Write:  
See page 174.  
Reset:  
Read:  
PWM 3 Value Register  
Bit 15 Bit 14  
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
High (PVAL3H) Write:  
See page 174.  
Reset:  
0
Bit 7  
0
0
Bit 6  
0
Read:  
PWM 3 Value Register  
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Low (PVAL3L) Write:  
See page 174.  
Reset:  
Read:  
PWM 4 Value Register  
Bit 15 Bit 14  
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
High (PVAL4H) Write:  
See page 174.  
Reset:  
0
Bit 7  
0
0
Bit 6  
0
Read:  
PWM 4 Value Register  
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Low (PVAL4L) Write:  
See page 174.  
Reset:  
Read:  
PWM 5 Value Register  
Bit 15 Bit 14  
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
High (PMVAL5H) Write:  
See page 174.  
Reset:  
0
Bit 7  
0
0
Bit 6  
0
Read:  
PWM 5 Value Register  
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Low (PVAL5L) Write:  
See page 174.  
Reset:  
Read:  
PWM 6 Value Register  
Bit 15 Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
0
Bit 9  
Bit 8  
High (PVAL6H) Write:  
See page 174.  
Reset:  
0
0
0
0
0
0
0
U = Unaffected  
nate  
X = Indetermi-  
= Reserved  
= Buff-  
ered  
= Unimplemented  
R
Bold  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 10)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
45  
MOTOROLA  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
Bit 7  
0
6
Bit 6  
0
5
Bit 5  
0
4
Bit 4  
0
3
Bit 3  
0
2
Bit 2  
0
1
Bit 1  
0
Bit 0  
Bit 0  
0
Read:  
PWM 6 Value Register  
$0035  
Low (PMVAL6L) Write:  
See page 174.  
Reset:  
Read:  
Dead-Time Write-Once  
Bit 7  
1
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
1
Bit 2  
1
Bit 1  
1
Bit 0  
1
$0036  
$0037  
$0038  
$0039  
$003A  
$003B  
$003C  
$003D  
$003E  
Register (DEADTM) Write:  
See page 179.  
Reset:  
Read:  
Write:  
Reset:  
Read:  
PWM Disable Mapping  
Write-Once Register  
(DISMAP)  
Bit 7  
1
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
1
Bit 2  
1
Bit 1  
1
Bit 0  
1
See page 179.  
LOOP  
S
SCI Control Register 1  
ENSCI TXINV  
M
WAKE  
0
ILTY  
0
PEN  
0
PTY  
0
(SCC1) Write:  
See page 264.  
Reset:  
Read:  
0
0
0
0
SCI Control Register 2  
SCTIE TCIE  
SCRIE  
ILIE  
TE  
RE  
0
RWU  
0
SBK  
0
(SCC2) Write:  
See page 267.  
Reset:  
0
0
0
0
0
0
0
Read: R8  
SCI Control Register 3  
T8  
ORIE  
NEIE  
FEIE  
PEIE  
(SCC3) Write:  
R
U
R
R
See page 270.  
Reset:  
U
TC  
R
0
0
0
OR  
R
0
NF  
R
0
FE  
R
0
PE  
R
Read: SCTE  
SCRF  
R
IDLE  
R
SCI Status Register 1  
(SCS1) Write:  
R
1
See page 271.  
Reset:  
Read:  
1
0
0
0
0
0
0
0
0
0
0
0
0
BKF  
R
RPF  
R
SCI Status Register 2  
(SCS2) Write:  
See page 275.  
R
0
R
R
R
R
R
Reset:  
0
0
0
0
0
0
0
Read: R7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR) Write:  
T7  
See page 276.  
Reset:  
Read:  
Unaffected by reset  
0
R
0
0
R
0
0
SCI Baud Rate Register  
SCP1  
0
SCP0  
R
SCR2  
0
SCR1  
0
SCR0  
0
(SCBR) Write:  
See page 276.  
Reset:  
0
0
U = Unaffected  
nate  
X = Indetermi-  
= Reserved  
= Buff-  
ered  
= Unimplemented  
R
Bold  
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 10)  
Technical Data  
46  
MC68HC908MR8 Rev 4.0  
Memory Map  
MOTOROLA  
Memory Map  
I/O Section  
Addr.  
Register Name  
Bit 7  
6
0
5
0
4
0
3
IRQF  
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
0
R
0
IRQ Status/Control Reg-  
ister  
IMASK1 MODE1  
$003F  
R
0
R
0
R
0
ACK1  
0
(ISCR)  
See page 303.  
0
0
ADC Status and Control  
COCO AIEN  
ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0  
$0040  
$0041  
$0042  
$0043  
Register (ADSCR) Write:  
See page 319.  
Reset:  
0
0
0
0
0
0
1
0
1
0
1
0
1
AD9  
R
1
AD8  
R
Read:  
ADC Data Register High  
(ADRH) Write:  
See page 322.  
R
R
R
R
R
R
Reset:  
Unaffected by reset  
Read: AD7  
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
AD1  
R
AD0  
R
ADC Data Register Low  
(ADRL) Write:  
See page 323.  
R
Reset:  
Read:  
Unaffected by reset  
0
R
0
ADC Clock Register  
ADIV2 ADIV1 ADIV0 ADICLK MODE1 MODE0  
0
0
(ADCLK) Write:  
See page 324.  
Reset:  
0
0
0
0
0
1
$0044  
Unimplemented  
$0050  
Unimplemented  
Read: TOF  
0
TRST  
0
0
R
TIMB Status/Control  
TOIE TSTOP  
PS2  
PS1  
PS0  
$0051  
$0052  
$0053  
$0054  
Register (TBSC) Write:  
0
0
See page 238.  
Reset:  
0
1
Bit 13  
R
0
0
Bit 10  
R
0
Bit 9  
R
0
Bit 8  
R
Read: Bit 15 Bit 14  
Bit 12  
R
Bit 11  
R
TIMB Counter Register  
High  
Write:  
R
0
R
0
(TBCNTH)  
See page 240.  
Reset:  
0
0
0
0
0
0
Read; Bit 7  
Bit 6  
R
Bit 5  
R
Bit 4  
R
Bit 3  
R
Bit 2  
R
Bit 1  
R
Bit 0  
R
TIMB Counter Register  
Low  
Write:  
Reset:  
Read:  
Write:  
Reset:  
R
0
(TBCNTL)  
See page 240.  
0
0
0
0
0
0
0
TIMB Counter Modulo  
Register High (TB-  
MODH)  
Bit 15 Bit 14  
Bit 13  
1
Bit 12  
Bit 11  
1
Bit 10  
1
Bit 9  
1
Bit 8  
1
See page 241.  
1
1
1
U = Unaffected  
nate  
X = Indetermi-  
= Reserved  
= Buff-  
ered  
= Unimplemented  
R
Bold  
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 10)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
47  
MOTOROLA  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
Bit 7  
1
6
Bit 6  
1
5
Bit 5  
1
4
Bit 4  
1
3
Bit 3  
1
2
Bit 2  
1
1
Bit 1  
1
Bit 0  
Bit 0  
1
Read:  
TIMB Counter Modulo  
$0055 Register Low (TBMODL) Write:  
See page 241.  
Reset:  
Read: CH0F  
TIMB Channel 0 Sta-  
tus/Control Register  
(TBSC0)  
CH0MA  
X
CH0IE MS0B  
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
$0056  
$0057  
$0058  
$0059  
$005A  
$005B  
$005C  
$005D  
$005E  
Write:  
Reset:  
Read:  
0
0
See page 242.  
0
0
0
TIMB Channel 0 Regis-  
Bit 15 Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
ter High (TBCH0H) Write:  
See page 246.  
Reset:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
Read:  
TIMB Channel 0 Regis-  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
ter Low (TBCH0L) Write:  
See page 246.  
Reset:  
Read: CH1F  
0
R
0
TIMB Channel 1 Sta-  
tus/Control Register  
(TBSC1)  
CH1MA  
X
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
Write:  
Reset:  
Read:  
0
0
See page 242.  
0
TIMB Channel 1 Regis-  
Bit 15 Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
ter High (TBCH1H) Write:  
See page 246.  
Reset:  
Indeterminate after reset  
Bit 4 Bit 3  
Read:  
TIMB Channel 1 Regis-  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
ter Low (TBCH1L) Write:  
See page 246.  
Reset:  
Indeterminate after reset  
Read:  
PLLF  
1
1
R
1
1
R
1
1
R
1
PLL Control Register  
PLLIE  
PLLON  
BCS  
R
(PCTL) Write:  
See page 126.  
R
Reset:  
0
AUTO  
0
0
LOCK  
R
1
ACQ  
0
0
XLD  
0
1
0
Read:  
0
0
0
PLL Bandwidth Control  
Register (PBWC) Write:  
R
0
R
0
R
0
R
0
See page 129.  
Reset:  
0
Read:  
Write:  
Reset:  
PLL Programming Reg-  
ister  
MUL7 MUL6  
MUL5  
MUL4  
VRS7  
VRS6  
1
VRS5  
VRS4  
(PPG)  
See page 131.  
0
1
1
0
0
1
0
U = Unaffected  
nate  
X = Indetermi-  
= Reserved  
= Buff-  
ered  
= Unimplemented  
R
Bold  
Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 10)  
Technical Data  
48  
MC68HC908MR8 Rev 4.0  
Memory Map  
MOTOROLA  
Memory Map  
I/O Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
$005F  
Reserved  
R
R
R
R
R
R
R
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
SIM Break Status Regis-  
R
R
R
R
R
R
R
ter  
(SBSR)  
See page 336.  
$FE00  
Note 1. Writing a logic 0 clears SBSW.  
Read: POR  
PIN  
R
COP  
R
ILOP  
ILAD  
R
0
R
0
LVI  
R
0
R
0
SIM Reset Status Regis-  
ter  
(SRSR)  
See page 108.  
$FE01  
$FE03  
Write:  
Reset:  
Read:  
R
1
R
0
0
0
0
0
SIM Break Flag Control  
BCFE  
R
R
R
R
R
R
R
Register (SBFCR) Write:  
See page 109.  
Reset:  
0
0
Read:  
0
0
0
FLASH Control Register  
HVEN  
MASS ERASE PGM  
$FE08  
$FE0A  
$FE0B  
(FLCR)  
See page 57.  
Write:  
Reset:  
0
0
0
0
0
0
0
0
Reserved  
R
R
R
R
R
R
R
R
Unimplemented  
Read:  
Break Address Register  
Bit 15 Bit 14  
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
$FE0C  
$FE0D  
High (BRKH) Write:  
See page 334.  
Reset:  
0
Bit 7  
0
0
Bit 6  
0
Read:  
Break Address Register  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Low (BRKL) Write:  
See page 334.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Con-  
BRKE BRKA  
$FE0E trol Register (BRKSCR) Write:  
See page 333.  
Reset:  
0
0
0
0
0
0
0
0
U = Unaffected  
nate  
X = Indetermi-  
= Reserved  
= Buff-  
ered  
= Unimplemented  
R
Bold  
Figure 2-2. Control, Status, and Data Registers (Sheet 9 of 10)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
49  
MOTOROLA  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
LVI-  
OUT  
Read:  
0
0
0
0
0
0
TRPS-  
EL  
LVI Status and Control  
Register (LVISCR)  
See page 308.  
$FE0F  
Write:  
Reset:  
Read:  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
0
FLASH Block Protect  
BPR7 BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
$FF7E  
$FFFF  
Register (FLBPR) Write:  
See page 63.  
Reset:  
Unaffected by reset  
Low byte of reset vector  
Clear COP counter  
Read:  
COP Control Register  
(COPCTL) Write:  
See page 294.  
Reset:  
Unaffected by reset  
U = Unaffected  
nate  
X = Indetermi-  
= Reserved  
= Buff-  
Bold  
= Unimplemented  
R
ered  
Figure 2-2. Control, Status, and Data Registers (Sheet 10 of 10)  
Technical Data  
50  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
Memory Map  
Memory Map  
I/O Section  
Table 2-1 is a list of vector locations.  
Table 2-1. Vector Addresses  
Address  
$FFD2  
$FFD3  
$FFD4  
$FFD5  
$FFD6  
$FFD7  
$FFD8  
$FFD9  
$FFDA  
$FFDB  
$FFDC  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
$FFEB  
$FFEC  
Vector  
SCI transmit vector (high)  
SCI transmit vector (low)  
SCI receive vector (high)  
SCI receive vector (low)  
SCI error vector (high)  
SCI error vector (low)  
Reserved  
Reserved  
Reserved  
Reserved  
A/D vector (high)  
A/D vector (low)  
TIMB overflow vector (high)  
TIMB overflow vector (low)  
TIMB channel 1 vector (high)  
TIMB channel 1 vector (low)  
TIMB channel 0 vector (high)  
TIMB channel 0 vector (low)  
TIMA overflow vector (high)  
TIMA overflow vector (low)  
Reserved  
Reserved  
Reserved  
Reserved  
TIMA channel 1 vector (high)  
TIMA channel 1 vector (low)  
TIMA channel 0 vector (high)  
$FFED  
TIMA channel 0 vector (low)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
51  
MOTOROLA  
Memory Map  
Memory Map  
Table 2-1. Vector Addresses (Continued)  
Address  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
Vector  
PWMMC vector (high)  
PWMMC vector (low)  
FAULT 4 (high)  
FAULT 4 (low)  
Reserved  
Reserved  
Reserved  
Reserved  
FAULT 1 (high)  
FAULT 1 (low)  
PLL vector (high)  
PLL vector (low)  
IRQ vector (high)  
IRQ vector (low)  
SWI vector (high)  
SWI vector (low)  
Reset vector (high)  
Reset vector (low)  
2.6 Monitor ROM  
313 bytes at addresses $FE10$FF48 are reserved ROM addresses  
that contain the instructions for the monitor functions.  
See Section 10. Monitor ROM (MON).  
Technical Data  
52  
MC68HC908MR8 Rev 4.0  
Memory Map  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 3. Random-Access Memory (RAM)  
3.1 Contents  
3.2  
3.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
3.2 Introduction  
This section describes the 256 bytes of random-access memory (RAM)  
on the MC68HC908MR8.  
3.3 Functional Description  
Addresses $0060$015F are RAM locations. The location of the stack  
RAM is programmable. The 16-bit stack pointer allows the stack to be  
anywhere in the 64-Kbyte memory space.  
NOTE: For correct operation, the stack pointer must point only to RAM  
locations.  
Within page zero are 160 bytes of RAM. Because the location of the  
stack RAM is programmable, all page zero RAM locations can be used  
for input/output (I/O) control and user data or code. When the stack  
pointer is moved from its reset location at $00FF, direct addressing  
mode instructions can access efficiently all page zero RAM locations.  
Page zero RAM, therefore, provides ideal locations for frequently  
accessed global variables.  
Before processing an interrupt, the CPU uses five bytes of the stack to  
save the contents of the central processor unit (CPU) registers.  
NOTE: For M6805 compatibility, the H register is not stacked.  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
Technical Data  
53  
Random-Access Memory (RAM)  
Random-Access Memory (RAM)  
During a subroutine call, the CPU uses two bytes of the stack to store  
the return address. The stack pointer decrements during pushes and  
increments during pulls.  
NOTE: Be careful when using nested subroutines. The CPU may overwrite data  
in the RAM during a subroutine or during the interrupt stacking  
operation.  
Technical Data  
54  
MC68HC908MR8 Rev 4.0  
Random-Access Memory (RAM)  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 4. FLASH Memory  
4.1 Contents  
4.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . .57  
FLASH Page Erase Operation. . . . . . . . . . . . . . . . . . . . . .58  
FLASH Mass Erase Operation. . . . . . . . . . . . . . . . . . . . . .59  
FLASH Program/Read Operation . . . . . . . . . . . . . . . . . . .59  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
4.3  
FLASH Programming Algorithm . . . . . . . . . . . . . . . . . . . . . .60  
FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . .62  
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . .63  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
4.3.1  
4.3.2  
4.3.3  
4.2 Introduction  
This section describes the operation of the MC68HC908MR8 embedded  
FLASH memory. This memory can be read, programmed, and erased  
from a single external supply. The program and erase operations are  
enabled through the use of an internal charge pump.  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
FLASH Memory  
55  
FLASH Memory  
4.2.1 Functional Description  
The FLASH memory physically consists of an array of 7680 bytes with  
an additional 46 bytes of user vectors and one byte of block protection.  
An erased bit reads as a logic 1 and a programmed bit reads as a logic 0.  
Program and erase operations are facilitated through control bits in a  
memory mapped register. Details for these operations appear later in  
this section.  
Memory in the FLASH array is organized into two rows per page base.  
For the 8-K word by 8-bit embedded FLASH memory, the page size is  
64 bytes per page. The minimum erase page size is 64 bytes. Program  
and erase operations are performed through control bits in the FLASH  
control register (FLCR).  
The address ranges for the user memory, control register, and vectors  
are:  
$E000$FDFF, user memory  
$FF7E, block protect register (FLBPR)  
$FE08, FLASH control register (FLCR)  
$FFD2$FFFF, locations reserved for user-defined interrupt and  
reset vectors  
Programming tools are available from Motorola. Contact a local Motorola  
representative for more information.  
1
NOTE: A security feature prevents viewing of the FLASH contents.  
1. No security feature is absolutely secure. However, Motorolas strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Technical Data  
56  
MC68HC908MR8 Rev 4.0  
FLASH Memory  
MOTOROLA  
FLASH Memory  
Introduction  
4.2.2 FLASH Control Register  
The FLASH control register (FLCR) controls the FLASH program, erase,  
and read operations.  
Ad- $FE08  
dress:  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
1
Bit 0  
Read:  
Write:  
Reset:  
MASS ERASE PGM  
0
0
0
0
0
0
0
= Unimplemented  
Figure 4-1. FLASH Control Register (FLCR)  
HVEN High-Voltage Enable Bit  
This read/write bit enables the charge pump to drive high voltages for  
program and erase operations in the array. HVEN can be set only if  
either PGM = 1 or ERASE = 1 and the proper sequence for  
program/margin read or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS Mass Erase Control Bit  
This read/write bit configures the memory for mass erase operation.  
1 = Mass erase operation selected  
0 = Mass erase operation unselected  
ERASE Erase Control Bit  
This read/write bit configures the memory for erase operation.  
ERASE is interlocked with the PGM bit such that both bits cannot be  
set at the same time.  
1 = Erase operation selected  
0 = Erase operation unselected  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
FLASH Memory  
57  
FLASH Memory  
PGM Program Control Bit  
This read/write bit configures the memory for program operation.  
PGM is interlocked with the ERASE bit such that both bits cannot be  
set at the same time.  
1 = Program operation selected  
0 = Program operation unselected  
4.2.3 FLASH Page Erase Operation  
Use this step-by-step procedure to erase a page (64 bytes) of FLASH  
memory to read as logic 1:  
1. Set the ERASE bit and clear the MASS bit in the FLASH control  
register.  
2. Read the FLASH block protect register.  
3. Write to any FLASH address with any data within the page  
address range desired.  
4. Wait for a time, t  
(minimum of 10 µs).  
NVS  
5. Set the HVEN bit.  
6. Wait for a time, t  
(minimum of 1 ms).  
Erase  
7. Clear the ERASE bit.  
8. Wait for a time, t  
(minimum of 5 µs).  
NVH  
9. Clear the HVEN bit.  
10. After a time, t (typically 1 µs), the memory can be accessed in  
RCV  
read mode again.  
NOTE: While these operations must be performed in the order shown, other  
unrelated operations may occur between the steps. Do not exceed t  
NVH  
maximum. See 21.7 Memory Characteristics.  
Technical Data  
58  
MC68HC908MR8 Rev 4.0  
FLASH Memory  
MOTOROLA  
FLASH Memory  
Introduction  
4.2.4 FLASH Mass Erase Operation  
Use this step-by-step procedure to erase the entire FLASH memory to  
read as logic 1:  
1. Set the ERASE bit and the MASS bit in the FLASH control register.  
2. Read the block protect register.  
3. Write to any FLASH address with any data within the page  
address range desired.  
4. Wait for a time, t  
(minimum of 10 µs).  
NVS  
5. Set the HVEN bit.  
6. Wait for a time, t  
(minimum of 4 ms).  
Erase  
7. Clear the ERASE bit.  
8. Wait for a time, t  
(minimum of 100 µs).  
NVHL  
9. Clear the HVEN bit.  
10. After a time, t (typically 1 µs), the memory can be accessed in  
RCV  
read mode again.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps. Do not exceed t  
maximum. See 21.7  
NVH  
Memory Characteristics.  
4.2.5 FLASH Program/Read Operation  
Programming of the FLASH memory is done on a row basis. A row  
consists of 32 consecutive bytes starting from address $XX00, $XX20,  
$XX40, and $XX80.  
Use this step-by-step procedure to program a row of FLASH memory:  
1. Set the PGM bit in the FLASH control register. This configures the  
memory for program operation and enables the latching of  
address and data programming.  
2. Read the block protect register.  
3. Write to any FLASH address with any data within the page  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
FLASH Memory  
59  
FLASH Memory  
address range desired.  
4. Wait for a time, t  
(minimum of 10 µs).  
NVS  
5. Set the HVEN bit.  
6. Wait for a time, t  
(minimum of 5 µs).  
PGS  
7. Write data to the FLASH address to be programmed.  
8. Wait for a time, t (minimum of 30 µs).  
PROG  
9. Repeat step 7 and step 8 until all the bytes within the row are  
programmed.  
10. Clear the PGM bit.  
11. Wait for a time, t  
(minimum of 5 µs).  
NVH  
12. Clear the HVEN bit.  
13. After a time, t (typically 1 µs), the memory can be accessed in  
RCV  
read mode again.  
NOTE: The time between each FLASH address change, or the time between  
the last FLASH address programmed to clear the PGM bit, must not  
exceed the maximum programming time, t  
.
PROG  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps. Do not exceed t  
maximum. See 21.7  
PROG  
Memory Characteristics.  
4.3 FLASH Programming Algorithm  
Refer to Figure 4-2 for an algorithm for programming a row (32 bytes) of  
FLASH memory.  
Technical Data  
60  
MC68HC908MR8 Rev 4.0  
FLASH Memory  
MOTOROLA  
FLASH Memory  
FLASH Programming Algorithm  
Note:  
This page program algorithm assumes the rows to be  
programmed are initially erased.  
PROGRAM FLASH  
SET PGM BIT  
READ FLASH BLOCK  
PROTECT REGISTER  
WRITE ANY DATA TO  
SELECTED PAGE  
WAIT FOR A TIME,  
SET HVEN BIT  
t
NVS  
WAIT FOR A TIME, t  
PGS  
WRITE DATA TO THE FLASH  
ADDRESS TO BE PROGRAMMED  
WAIT FOR A TIME,  
t
PROG  
COMPLETED  
PROGRAMMING  
THIS ROW?  
NO  
YES  
CLEAR PGM BIT  
WAIT FOR A TIME,  
t
PROG  
CLEAR HVEN BIT  
Note:  
The time between each address change, or the time  
between the last FLASH address programmed to clear  
the PGM bit, must not exceed the maximum  
WAIT FOR A TIME, TPROG  
programming time, tPROG  
.
PROGRAMMING OPERATION  
COMPLETE  
Figure 4-2. FLASH Programming Algorithm  
MC68HC908MR8 Rev 4.0  
TechnicalData  
61  
MOTOROLA  
FLASH Memory  
FLASH Memory  
4.3.1 FLASH Block Protection  
Due to the ability of the on-board charge pump to erase and program the  
FLASH memory in the target application, provision is made for protecting  
blocks of memory from unintentional erase or program operations due to  
system malfunction. This protection is done by using a FLASH protection  
register (FLBPR).  
The FLBPR determines the range of the FLASH memory which is to be  
protected. The range of the protected area starts from a location defined  
by FLBPR and ends at the bottom of the FLASH memory ($FFFF). When  
the memory is protected, the HVEN bit cannot be set in either erase or  
program operations.  
NOTE: In performing a program erase operation, the FLASH block protect  
register must be read after setting the PGM or ERASE bit and before  
asserting the HVEN bit.  
When the block protect register is erased (all 1s), the entire memory is  
accessible for program and erase. When bits within the register are  
programmed (set to 0), they lock blocks of memory address ranges as  
shown in 4.3.2 FLASH Block Protect Register. Once the block protect  
register is programmed with value other than $FF, any erase or program  
of the block protect register or the protected pages will be prohibited. The  
block protect register itself can be erased or programmed only with an  
external voltage V present on the IRQ pin. The presence of V on the  
HI  
HI  
IRQ pin also allows entry into monitor mode out of reset. Therefore, the  
ability to change the block protect register is voltage dependent and can  
occur in either user or monitor modes.  
Technical Data  
62  
MC68HC908MR8 Rev 4.0  
FLASH Memory  
MOTOROLA  
FLASH Memory  
FLASH Programming Algorithm  
4.3.2 FLASH Block Protect Register  
The block protect register (FLBPR) is implemented as a byte within the  
FLASH memory, and therefore can only be written during a  
programming sequence of the FLASH memory. The value in this register  
determines the starting location of the protected range within the FLASH  
memory.  
Ad- $FF7E  
dress:  
Bit 7  
BPR7  
U
6
BPR6  
U
5
BPR5  
U
4
BPR4  
U
3
BPR3  
U
2
BPR2  
U
1
BPR1  
U
Bit 0  
BPR0  
U
Read:  
Write:  
Reset:  
U= Unaffected by reset. Initial value from factory is 1.  
Write to this register by a programming sequence to the FLASH memory.  
Figure 4-3. FLASH Block Protect Register (FLBPR)  
BPR[7:0] Block Protect Register Bits  
These eight bits represent bits [13:6] of a 16-bit memory address.  
Bits[15:14] are logical 1s and bits [5:0] are logic 0s.  
The resultant 16-bit address is used for specifying the start address  
of the FLASH memory for block protection. The FLASH is protected  
from this start address to the end of FLASH memory at $FFFF. With  
this mechanism, the protect start address can be $XX00, $XX40,  
$XX80, and $XXC0 (64-byte page boundaries) within the FLASH  
memory.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
FLASH Memory  
63  
FLASH Memory  
16-BIT MEMORY ADDRESS  
FLBPR VALUE  
START ADDRESS OF  
FLASH  
1
1
0
0
0
0
0
0
BLOCK PROTECT  
Figure 4-4. FLASH Block Protect Address  
$80 = The entire FLASH memory is protected.  
$81 = Protected range: $E040$FFFF  
$82 = Protected range: $E080$FFFF  
$FE = Protected range: $FF80$FFFF  
$FF = Entire FLASH memory is not protected.  
If all bits are erased, then all of the memory is available for erase and  
program. The presence of a voltage V on the IRQ pin will bypass the  
HI  
block protection so that all of the memory, including the block protect  
register, is open for program and erase operations.  
4.3.3 Low-Power Modes  
The WAIT and STOP instructions will place the MCU in a low power-  
consumption standby mode.  
4.3.3.1 Wait Mode  
Putting the MCU into wait mode while the FLASH is in read mode does  
not affect the operation of the FLASH memory directly, but there will not  
be any memory activity since the CPU is inactive.  
The WAIT instruction should never be executed while performing a  
program or erase operation on the FLASH. When the MCU is put into  
wait mode, the charge pump for the FLASH is disabled so that either a  
program or erase operation will not continue. If the memory is in either  
program mode (PGM = 1, HVEN = 1) or erase mode (ERASE = 1,  
HVEN = 1), then it will remain in that mode during wait.  
NOTE: Exiting from wait must now be done with a reset rather than an interrupt  
because if exiting wait with an interrupt, the memory will not be in read  
mode and the interrupt vector cannot be read from the memory.  
Technical Data  
64  
MC68HC908MR8 Rev 4.0  
FLASH Memory  
MOTOROLA  
FLASH Memory  
FLASH Programming Algorithm  
4.3.3.2 Stop Mode  
If the FLASH is in read mode, when the MCU is put into stop mode, the  
FLASH will be put into low-power standby mode.  
The STOP instruction should never be executed while performing a  
program or erase operation on the FLASH. Otherwise the operation will  
be discontinued and the FLASH will be in standby mode.  
NOTE: Standby mode is the power-saving mode of the FLASH module, in which  
all internal control signals to the FLASH are inactive and the current  
consumption of the FLASH is minimum.  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
65  
FLASH Memory  
FLASH Memory  
Technical Data  
66  
MC68HC908MR8 Rev 4.0  
FLASH Memory  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 5. Configuration Register (CONFIG)  
5.1 Contents  
5.2  
5.3  
5.4  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
CONFIG Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
5.2 Introduction  
This section describes the configuration register (CONFIG).  
The CONFIG registers contain bits that configure these options:  
Resets caused by the low-voltage inhibit (LVI) module  
Power to the LVI module  
Computer operating properly (COP) module  
Top-side pulse-width modulator (PWM) polarity  
Bottom-side PWM polarity  
Edge-aligned versus center-aligned PWMs  
Six independent PWMs versus three complementary PWM pairs  
STOP instruction enable  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
Configuration Register (CONFIG)  
67  
Configuration Register (CONFIG)  
5.3 CONFIG  
The configuration register (CONFIG) is a write-once register. Once the  
register is written, further writes will have no effect until a reset occurs.  
5.4 CONFIG Bits  
NOTE: If the LVI module and the LVI reset signal are enabled, a reset occurs  
when V falls to a voltage, LVI , and remains at or below that level  
DD  
TRIPF  
for at least nine consecutive central processor unit (CPU) cycles. Once  
an LVI reset occurs, the microcontroller unit (MCU) remains in reset until  
V
rises to a voltage, LVI  
.
TRIPR  
DD  
Address: $001F  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
EDGE  
Write:  
BOT-  
NEG  
TOP-  
NEG  
LVIP-  
WR  
INDEP LVIRST  
STOPE COPD  
Reset  
states:  
CONFIG  
0
0
0
0
1
1
0
0
Figure 5-1. CONFIG Register  
EDGE Edge-Align Enable Bit  
EDGE determines if the motor control PWM will operate in  
edge-aligned mode or center-aligned mode. See Section 9.  
Pulse-Width Modulator for Motor Control (PWMMC).  
1 = Edge-aligned mode enabled  
0 = Center-aligned mode enabled  
BOTNEG Bottom-Side PWM Polarity Bit  
BOTNEG determines if the bottom-side PWMs will have positive or  
negative polarity. See Section 9. Pulse-Width Modulator for Motor  
Control (PWMMC).  
1 = Negative polarity  
0 = Positive polarity  
Technical Data  
68  
MC68HC908MR8 Rev 4.0  
Configuration Register (CONFIG)  
MOTOROLA  
Configuration Register (CONFIG)  
CONFIG Bits  
TOPNEG Top-Side PWM Polarity Bit  
TOPNEG determines if the top-side PWMs will have positive or  
negative polarity. See Section 9. Pulse-Width Modulator for Motor  
Control (PWMMC).  
1 = Negative polarity  
0 = Positive polarity  
INDEP Independent Mode Enable Bit  
INDEP determines if the motor control PWMs will be six independent  
PWMs or three complementary PWM pairs. See Section 9.  
Pulse-Width Modulator for Motor Control (PWMMC).  
1 = Six independent PWMs  
0 = Three complementary PWM pairs  
LVIPWR LVI Power Enable Bit  
LVIPWR enables the LVI module. See Section 17. Low-Voltage  
Inhibit (LVI).  
1 = LVI module power enabled  
0 = LVI module power disabled  
LVIRST LVI Reset Enable Bit  
LVIRST enables the reset signal from the LVI module. See  
Section 17. Low-Voltage Inhibit (LVI).  
1 = LVI module resets enabled  
0 = LVI module resets disabled  
STOPE STOP Enable Bit  
STOPE enables the STOP instruction. See Section 6. Central  
Processor Unit (CPU).  
1 = STOP instruction is enabled.  
0 = STOP instruction is disabled and executes as an illegal  
instruction.  
COPD COP Disable Bit  
COPD disables the COP module. See Section 15. Computer  
Operating Properly (COP).  
1 = COP module disabled  
0 = COP module enabled  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Configuration Register (CONFIG)  
69  
Configuration Register (CONFIG)  
Technical Data  
MC68HC908MR8 Rev 4.0  
70  
Configuration Register (CONFIG)  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 6. Central Processor Unit (CPU)  
6.1 Contents  
6.2  
6.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
6.4  
CPU Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Index Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . .76  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.5  
Arithmetic/Logic Unit (ALU). . . . . . . . . . . . . . . . . . . . . . . . . .78  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
6.7  
6.8  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
6.2 Introduction  
This section describes the central processor unit (CPU08, version A).  
The M68HC08 CPU is an enhanced and fully object-code-compatible  
version of the M68HC05 CPU. The CPU08 Reference Manual, Motorola  
document number CPU08RM/AD, contains a description of the CPU  
instruction set, addressing modes, and architecture.  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
Central Processor Unit (CPU)  
71  
Central Processor Unit (CPU)  
6.3 Features  
Features of the CPU include:  
Fully upward, object-code compatibility with M68HC05 family  
16-bit stack pointer with stack manipulation instructions  
16-bit index register with X-register manipulation instructions  
8-MHz CPU internal bus frequency  
64-Kbyte program/data memory space  
Sixteen addressing modes  
Memory-to-memory data moves without using the accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for  
extension of addressing range beyond 64 Kbytes  
Low-power stop and wait modes  
6.4 CPU Registers  
Figure 6-1 shows the five CPU registers. CPU registers are not part of  
the memory map.  
7
0
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
7
V 1 1 H I N Z C CONDITION CODE REGISTER (CCR)  
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWOS COMPLEMENT OVERFLOW FLAG  
Figure 6-1. CPU Registers  
Technical Data  
72  
MC68HC908MR8 Rev 4.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
6.4.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the  
accumulator to hold operands and the results of arithmetic/logic  
operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Re-  
set:  
Unaffected by reset  
Figure 6-2. Accumulator (A)  
6.4.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte  
memory space. H is the upper byte of the index register, and X is the  
lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the  
index register to determine the conditional address of the operand.  
Bit  
Bit  
15 14 13 12 11 10  
9
0
8
0
7
6
5
4
3
2
1
0
Read:  
Write:  
Re-  
set:  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 6-3. Index Register (H:X)  
The index register can serve also as a temporary data storage location.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Central Processor Unit (CPU)  
73  
Central Processor Unit (CPU)  
6.4.3 Stack Pointer  
The stack pointer (SP) is a 16-bit register that contains the address of  
the next location on the stack. During a reset, the stack pointer is preset  
to $00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The  
stack pointer decrements as data is pushed onto the stack and  
increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the  
stack pointer can function as an index register to access data on the  
stack. The CPU uses the contents of the stack pointer to determine the  
conditional address of the operand.  
Bit  
Bit  
0
15 14 13 12 11 10  
9
0
8
0
7
1
6
1
5
1
4
1
3
1
2
1
1
1
Read:  
Write:  
Re-  
set:  
0
0
0
0
0
0
1
Figure 6-4. Stack Pointer (SP)  
NOTE: The location of the stack is arbitrary and may be relocated anywhere in  
RAM. Moving the SP out of page zero ($0000 to $00FF) frees direct  
address (page zero) space. For correct operation, the stack pointer must  
point only to RAM locations.  
Technical Data  
74  
MC68HC908MR8 Rev 4.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
6.4.4 Program Counter  
The program counter (PC) is a 16-bit register that contains the address  
of the next instruction or operand to be fetched.  
Normally, the program counter automatically increments to the next  
sequential memory location every time an instruction or operand is  
fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector  
address located at $FFFE and $FFFF. The vector address is the  
address of the first instruction to be executed after exiting the reset state.  
Bit  
Bit  
0
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Re-  
set:  
Loaded with vector from $FFFE and $FFFF  
Figure 6-5. Program Counter (PC)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
75  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
6.4.5 Condition Code Register  
The 8-bit condition code register (CCR) contains the interrupt mask and  
five flags that indicate the results of the instruction just executed. Bit 6  
and bit 5 are set permanently to logic 1. The functions of the condition  
code register are described here.  
Bit 7  
V
6
1
5
1
4
3
I
2
1
Z
Bit 0  
C
Read  
:
H
N
Write:  
Re-  
set:  
X
1
1
X
1
X
X
X
X = Indeterminate  
Figure 6-6. Condition Code Register (CCR)  
V Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow  
occurs. The signed branch instructions BGT, BGE, BLE, and BLT use  
the overflow flag.  
1 = Overflow  
0 = No overflow  
H Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between  
accumulator bits 3 and 4 during an add without carry (ADD) or add  
with carry (ADC) operation. The half-carry flag is required for  
binary-coded decimal (BCD) arithmetic operations. The DAA  
instruction uses the states of the H and C flags to determine the  
appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are  
disabled. CPU interrupts are enabled when the interrupt mask is  
cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but  
before the interrupt vector is fetched.  
Technical Data  
76  
MC68HC908MR8 Rev 4.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE: To maintain M6805 compatibility, the upper byte of the index register (H)  
is not stacked automatically. If the interrupt service routine modifies H,  
then the user must stack and unstack H using the PSHH and PULH  
instructions.  
After the I bit is cleared, the highest-priority interrupt request is  
serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from  
the stack and restores the interrupt mask from the stack. After any  
reset, the interrupt mask is set and can be cleared only by the clear  
interrupt mask software instruction (CLI).  
N Negative Flag  
The CPU sets the negative flag when an arithmetic operation, logic  
operation, or data manipulation produces a negative result, setting  
bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
Z Zero Flag  
The CPU sets the zero flag when an arithmetic operation, logic  
operation, or data manipulation produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation  
produces a carry out of bit 7 of the accumulator or when a subtraction  
operation requires a borrow. Some instructions such as bit test and  
branch, shift, and rotate also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
77  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
6.5 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the  
instruction set.  
Refer to the CPU08 Reference Manual, Motorola document number  
CPU08RM/AD, for a description of the instructions and addressing  
modes and more detail about CPU architecture.  
6.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption  
standby modes.  
6.6.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register,  
enabling interrupts. After exit from wait mode by interrupt, the I bit  
remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
6.6.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register,  
enabling external interrupts. After exit from stop mode by external  
interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator  
stabilization delay.  
Technical Data  
78  
MC68HC908MR8 Rev 4.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
Instruction Set Summary  
6.7 Instruction Set Summary  
Table 6-1 provides a summary of the M68HC08 instruction set.  
Table 6-1. Instruction Set Summary (Sheet 1 of 8)  
Effect on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
A9 ii  
B9 dd  
C9 hh ll  
D9 ee ff  
E9 ff  
2
3
4
4
3
2
4
5
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
Add with Carry  
A (A) + (M) + (C)  
↕ ↕ ↕ ↕ ↕  
IX1  
IX  
SP1  
SP2  
F9  
ADC opr,SP  
ADC opr,SP  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
IMM  
DIR  
EXT  
IX2  
AB ii  
BB dd  
CB hh ll  
DB ee ff  
EB ff  
2
3
4
4
3
2
4
5
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
Add without Carry  
A (A) + (M)  
↕ ↕ ↕ ↕ ↕  
IX1  
IX  
SP1  
SP2  
FB  
9EEB ff  
9EDB ee ff  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
– – – – – – IMM  
– – – – – – IMM  
A7 ii  
AF ii  
2
2
AND #opr  
AND opr  
IMM  
DIR  
A4 ii  
B4 dd  
C4 hh ll  
D4 ee ff  
E4 ff  
2
3
4
4
3
2
4
5
AND opr  
EXT  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IX2  
0 – – ↕ ↕ –  
IX1  
Logical AND  
A (A) & (M)  
IX  
SP1  
SP2  
F4  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
ASLX  
Arithmetic Shift Left  
(Same as LSL)  
INH  
– – ↕ ↕ ↕  
IX1  
58  
C
0
ASL opr,X  
ASL ,X  
ASL opr,SP  
68 ff  
78  
9E68 ff  
b7  
b7  
b0  
b0  
IX  
SP1  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
37 dd  
47  
4
1
1
4
3
5
INH  
– – ↕ ↕ ↕  
IX1  
57  
C
Arithmetic Shift Right  
67 ff  
77  
IX  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– – – – – – REL  
24 rr  
3
MC68HC908MR8 Rev 4.0  
TechnicalData  
79  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 2 of 8)  
Effect on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
4
4
4
4
4
4
4
4
BCLR n, opr  
Clear Bit n in M  
Mn 0  
– – – – – –  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– – – – – – REL  
– – – – – – REL  
25 rr  
27 rr  
3
3
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
BGT opr  
PC (PC) + 2 + rel ? (N Ý V) = 0  
– – – – – – REL  
90 rr  
92 rr  
3
Branch if Greater Than  
(Signed Operands)  
PC (PC) + 2 + rel ? (Z) | (N Ý V) = 0 – – – – – – REL  
3
3
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– – – – – – REL  
– – – – – – REL  
– – – – – – REL  
28 rr  
29 rr  
22 rr  
3
3
3
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– – – – – – REL  
24 rr  
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– – – – – – REL  
– – – – – – REL  
2F rr  
2E rr  
3
3
BIT #opr  
BIT opr  
IMM  
DIR  
A5 ii  
B5 dd  
C5 hh ll  
D5 ee ff  
E5 ff  
2
3
4
4
3
2
4
5
BIT opr  
EXT  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IX2  
0 – – ↕ ↕ –  
IX1  
Bit Test  
(A) & (M)  
IX  
SP1  
SP2  
F5  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
PC (PC) + 2 + rel ? (Z) | (N Ý V) = 1 – – – – – – REL  
93 rr  
3
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 1  
PC (PC) + 2 + rel ? (N Ý V) =1  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
– – – – – – REL  
– – – – – – REL  
– – – – – – REL  
– – – – – – REL  
– – – – – – REL  
– – – – – – REL  
25 rr  
23 rr  
91 rr  
2C rr  
2B rr  
2D rr  
3
3
3
3
3
3
Branch if Less Than (Signed Operands)  
Branch if Interrupt Mask Clear  
Branch if Minus  
Branch if Interrupt Mask Set  
Technical Data  
80  
MC68HC908MR8 Rev 4.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
Instruction Set Summary  
Table 6-1. Instruction Set Summary (Sheet 3 of 8)  
Effect on CCR  
Source  
Form  
Operation  
Branch if Not Equal  
Description  
V H I N Z C  
BNE rel  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC ¨ (PC) + 2 + rel  
– – – – – – REL  
– – – – – – REL  
– – – – – – REL  
26 rr  
2A rr  
20 rr  
3
3
3
BPL rel  
BRA rel  
Branch if Plus  
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
PC (PC) + 2  
– – – – – ↕  
BRN rel  
Branch Never  
– – – – – – REL  
21 rr  
3
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
– – – – – ↕  
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
4
4
4
4
4
4
4
4
BSET n,opr  
BSR rel  
Set Bit n in M  
Mn 1  
– – – – – –  
PC (PC) + 2; push (PCL)  
SP (SP) 1; push (PCH)  
SP (SP) 1  
Branch to Subroutine  
– – – – – – REL  
AD rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) (M) = $00  
PC (PC) + 3 + rel ? (A) (M) = $00  
PC (PC) + 3 + rel ? (X) (M) = $00  
PC (PC) + 3 + rel ? (A) (M) = $00  
PC (PC) + 2 + rel ? (A) (M) = $00  
PC (PC) + 4 + rel ? (A) (M) = $00  
DIR  
31 dd rr  
41 ii rr  
51 ii rr  
61 ff rr  
71 rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IMM  
– – – – – –  
IX1+  
Compare and Branch if Equal  
IX+  
SP1  
CBEQ opr,SP,rel  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
– – – – – 0 INH  
– – 0 – – – INH  
98  
1
2
Clear Interrupt Mask  
9A  
CLR opr  
CLRA  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
3F dd  
4F  
3
1
1
1
3
2
4
INH  
CLRX  
INH  
5F  
CLRH  
Clear  
0 – – 0 1 INH  
8C  
CLR opr,X  
CLR ,X  
CLR opr,SP  
IX1  
IX  
SP1  
6F ff  
7F  
9E6F ff  
MC68HC908MR8 Rev 4.0  
TechnicalData  
81  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 4 of 8)  
Effect on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
CMP #opr  
IMM  
DIR  
EXT  
IX2  
A1 ii  
B1 dd  
C1 hh ll  
D1 ee ff  
E1 ff  
2
3
4
4
3
2
4
5
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
Compare A with M  
(A) (M)  
– – ↕ ↕ ↕  
IX1  
IX  
SP1  
SP2  
F1  
CMP opr,SP  
CMP opr,SP  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
M (M) = $FF (M)  
A (A) = $FF (M)  
X (X) = $FF (M)  
M (M) = $FF (M)  
M (M) = $FF (M)  
M (M) = $FF (M)  
DIR  
INH  
INH  
IX1  
33 dd  
43  
4
1
1
4
3
5
COMX  
53  
Complement (Ones Complement)  
0 – – ↕ ↕ 1  
– – ↕ ↕ ↕  
COM opr,X  
COM ,X  
COM opr,SP  
63 ff  
73  
9E63 ff  
IX  
SP1  
CPHX #opr  
CPHX opr  
IMM  
DIR  
65 ii ii+1  
75 dd  
3
4
Compare H:X with M  
(H:X) (M:M + 1)  
CPX #opr  
CPX opr  
IMM  
DIR  
EXT  
IX2  
A3 ii  
B3 dd  
C3 hh ll  
D3 ee ff  
E3 ff  
2
3
4
4
3
2
4
5
CPX opr  
CPX ,X  
Compare X with M  
(X) (M)  
– – ↕ ↕ ↕  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
IX1  
IX  
SP1  
SP2  
F3  
9EE3 ff  
9ED3 ee ff  
(A)10  
DAA  
Decimal Adjust A  
U – – ↕ ↕ ↕INH  
72  
2
A (A) 1 or M (M) 1 or X (X) 1  
PC (PC) + 3 + rel ? (result) ¼ 0  
PC (PC) + 2 + rel ? (result) ¼ 0  
PC (PC) + 2 + rel ? (result) ¼ 0  
PC (PC) + 3 + rel ? (result) ¼ 0  
PC (PC) + 2 + rel ? (result) ¼ 0  
PC (PC) + 4 + rel ? (result) ¼ 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DIR  
3B dd rr  
4B rr  
INH  
DBNZX rel  
Decrement and Branch if Not Zero  
– – – – – – INH  
5B rr  
DBNZ opr,X,rel  
DBNZ X,rel  
DBNZ opr,SP,rel  
IX1  
IX  
SP1  
6B ff rr  
7B rr  
9E6B ff rr  
DEC opr  
DECA  
M M) 1  
A A) 1  
X (X) 1  
M (M) 1  
M (M) 1  
M (M) 1  
DIR  
INH  
3A dd  
4A  
4
1
1
4
3
5
DECX  
INH  
– – ↕ ↕ –  
IX1  
5A  
Decrement  
Divide  
DEC opr,X  
DEC ,X  
DEC opr,SP  
6A ff  
7A  
9E6A ff  
IX  
SP1  
A (H:A)/(X)  
H Remainder  
DIV  
– – – – ↕ ↕INH  
52  
7
EOR #opr  
EOR opr  
IMM  
DIR  
A8 ii  
B8 dd  
C8 hh ll  
D8 ee ff  
E8 ff  
2
3
4
4
3
2
4
5
EOR opr  
EXT  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IX2  
0 – – ↕ ↕ –  
IX1  
Exclusive OR M with A  
A (A Ý M)  
IX  
SP1  
SP2  
F8  
9EE8 ff  
9ED8 ee ff  
Technical Data  
82  
MC68HC908MR8 Rev 4.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
Instruction Set Summary  
Table 6-1. Instruction Set Summary (Sheet 5 of 8)  
Effect on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
INC opr  
M M) + 1  
A (A) + 1  
X X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
INH  
IX1  
3C dd  
4C  
4
1
1
4
3
5
INCA  
INCX  
5C  
Increment  
Jump  
– – ↕ ↕ –  
INC opr,X  
INC ,X  
6C ff  
7C  
9E6C ff  
IX  
INC opr,SP  
SP1  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
EXT  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
FC  
2
3
4
3
2
PC Jump Address  
– – – – – – IX2  
IX1  
IX  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
FD  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) 1  
Push (PCH); SP (SP) 1  
PC Unconditional Address  
EXT  
Jump to Subroutine  
– – – – – – IX2  
IX1  
IX  
LDA #opr  
LDA opr  
IMM  
DIR  
A6 ii  
B6 dd  
C6 hh ll  
D6 ee ff  
E6 ff  
2
3
4
4
3
2
4
5
LDA opr  
EXT  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IX2  
0 – – ↕ ↕ –  
IX1  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X (M:M + 1)  
X (M)  
IX  
SP1  
SP2  
F6  
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
0 – – ↕ ↕ –  
DIR  
45 ii jj  
55 dd  
3
4
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
AE ii  
BE dd  
CE hh ll  
DE ee ff  
EE ff  
FE  
9EEE ff  
9EDE ee ff  
2
3
4
4
3
2
4
5
IX2  
0 – – ↕ ↕ –  
IX1  
IX  
SP1  
SP2  
LSL opr  
LSLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
LSLX  
Logical Shift Left  
(Same as ASL)  
INH  
– – ↕ ↕ ↕  
IX1  
58  
C
0
LSL opr,X  
LSL ,X  
LSL opr,SP  
68 ff  
78  
9E68 ff  
b7  
b0  
IX  
SP1  
LSR opr  
LSRA  
DIR  
INH  
34 dd  
44  
4
1
1
4
3
5
LSRX  
INH  
– – 0 ↕ ↕  
IX1  
54  
0
C
Logical Shift Right  
LSR opr,X  
LSR ,X  
LSR opr,SP  
64 ff  
74  
9E64 ff  
b7  
b0  
IX  
SP1  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E dd dd  
5E dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
0 – – ↕ ↕ –  
IMD  
Move  
6E ii dd  
7E dd  
H:X (H:X) + 1 (IX+D, DIX+)  
X:A ¨ (X) ¥ (A)  
IX+D  
MUL  
Unsigned multiply  
0 – – – 0 INH  
42  
5
MC68HC908MR8 Rev 4.0  
TechnicalData  
83  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 6 of 8)  
Effect on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
NEG opr  
DIR  
INH  
INH  
IX1  
30 dd  
40  
4
1
1
4
3
5
M (M) = $00 (M)  
A (A) = $00 (A)  
X (X) = $00 (X)  
M (M) = $00 (M)  
M (M) = $00 (M)  
NEGA  
NEGX  
50  
Negate (Twos Complement)  
– – ↕ ↕ ↕  
NEG opr,X  
NEG ,X  
60 ff  
70  
9E60 ff  
IX  
NEG opr,SP  
SP1  
NOP  
NSA  
No Operation  
None  
– – – – – – INH  
– – – – – – INH  
9D  
62  
1
3
Nibble Swap A  
A (A[3:0]:A[7:4])  
ORA #opr  
ORA opr  
IMM  
DIR  
AA ii  
BA dd  
CA hh ll  
DA ee ff  
EA ff  
2
3
4
4
3
2
4
5
ORA opr  
EXT  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IX2  
0 – – ↕ ↕ –  
IX1  
Inclusive OR A and M  
A (A) | (M)  
IX  
SP1  
SP2  
FA  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
PULA  
PULH  
PULX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
Push (A); SP (SP) 1  
Push (H); SP (SP) 1  
Push (X); SP (SP) 1  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– – – – – – INH  
– – – – – – INH  
– – – – – – INH  
– – – – – – INH  
– – – – – – INH  
– – – – – – INH  
87  
8B  
89  
86  
8A  
88  
2
2
2
2
2
2
ROL opr  
ROLA  
DIR  
INH  
39 dd  
49  
4
1
1
4
3
5
ROLX  
INH  
– – ↕ ↕ ↕  
IX1  
59  
C
Rotate Left through Carry  
Rotate Right through Carry  
ROL opr,X  
ROL ,X  
ROL opr,SP  
69 ff  
79  
9E69 ff  
b7  
b0  
IX  
SP1  
ROR opr  
RORA  
RORX  
ROR opr,X  
ROR ,X  
ROR opr,SP  
DIR  
INH  
36 dd  
46  
4
1
1
4
3
5
INH  
– – ↕ ↕ ↕  
IX1  
56  
C
66 ff  
76  
b7  
b0  
IX  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– – – – – – INH  
↕ ↕ ↕ ↕ ↕ ↕INH  
9C  
1
SP SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
80  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
– – – – – – INH  
81  
4
Technical Data  
84  
MC68HC908MR8 Rev 4.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
Instruction Set Summary  
Table 6-1. Instruction Set Summary (Sheet 7 of 8)  
Effect on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
SBC #opr  
IMM  
DIR  
EXT  
IX2  
A2 ii  
B2 dd  
C2 hh ll  
D2 ee ff  
E2 ff  
2
3
4
4
3
2
4
5
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
Subtract with Carry  
A (A) (M) (C)  
– – ↕ ↕ ↕  
IX1  
IX  
SP1  
SP2  
F2  
SBC opr,SP  
SBC opr,SP  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
– – – – – 1 INH  
– – 1 – – – INH  
99  
1
2
Set Interrupt Mask  
9B  
STA opr  
DIR  
B7 dd  
C7 hh ll  
D7 ee ff  
E7 ff  
3
4
4
3
2
4
5
STA opr  
EXT  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
IX2  
Store A in M  
M (A)  
0 – – ↕ ↕ IX1  
IX  
SP1  
SP2  
F7  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0 – – ↕ ↕ DIR  
– – 0 – – – INH  
35 dd  
8E  
4
1
STOP  
Enable IRQ Pin; Stop Oscillator  
I 0; Stop Oscillator  
STX opr  
DIR  
BF dd  
CF hh ll  
DF ee ff  
EF ff  
3
4
4
3
2
4
5
STX opr  
EXT  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
IX2  
Store X in M  
M (X)  
0 – – ↕ ↕ IX1  
IX  
SP1  
SP2  
FF  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
IMM  
DIR  
A0 ii  
B0 dd  
C0 hh ll  
D0 ee ff  
E0 ff  
2
3
4
4
3
2
4
5
SUB opr  
EXT  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IX2  
– – ↕ ↕ ↕  
IX1  
Subtract  
A (A) (M)  
IX  
SP1  
SP2  
F0  
9EE0 ff  
9ED0 ee ff  
PC (PC) + 1; Push (PCL)  
SP (SP) 1; Push (PCH)  
SP (SP) 1; Push (X)  
SP (SP) 1; Push (A)  
SWI  
Software Interrupt  
– – 1 – – – INH  
83  
9
SP (SP) 1; Push (CCR)  
SP ¨ (SP) 1; I ¨ 1  
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
↕ ↕ ↕ ↕ ↕ ↕INH  
– – – – – – INH  
– – – – – – INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
A (CCR)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
85  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 8 of 8)  
Effect on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
TST opr  
DIR  
INH  
INH  
IX1  
3D dd  
4D  
3
1
1
3
2
4
TSTA  
TSTX  
5D  
Test for Negative or Zero  
(A) $00 or (X) $00 or (M) $00  
0 – – ↕ ↕ –  
TST opr,X  
TST ,X  
6D ff  
7D  
9E6D ff  
IX  
TST opr,SP  
SP1  
TSX  
TXA  
TXS  
Transfer SP to H:X  
H:X (SP) + 1  
A (X)  
– – – – – – INH  
– – – – – – INH  
– – – – – – INH  
– – 0 – – – INH  
95  
9F  
94  
8F  
2
1
2
1
Transfer X to A  
Transfer H:X to SP  
(SP) (H:X) 1  
I bit 0  
WAIT  
Enable Interrupts; Stop Processor  
A
C
Accumulator  
Carry/borrow bit  
n
Any bit  
opr Operand (one or two bytes)  
PC Program counter  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
CCR Condition code register  
dd Direct address of operand  
dd rr Direct address of operand and relative offset of branch instruction  
DD  
DIR  
DIX+ Direct to indexed with post increment addressing mode  
ee ff High and low bytes of offset in indexed, 16-bit offset addressing  
EXT Extended addressing mode  
ff  
H
H
Direct to direct addressing mode  
Direct addressing mode  
rel  
rr  
Relative program counter offset byte  
Relative program counter offset byte  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
&
|
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
Logical AND  
Logical OR  
hh ll High and low bytes of operand address in extended addressing  
I
ii  
Interrupt mask  
Immediate operand byte  
IMD Immediate source to direct destination addressing mode  
IMM Immediate addressing mode  
Logical EXCLUSIVE OR  
Contents of  
( ) Negation (twos complement)  
INH  
IX  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
( )  
IX+  
#
Immediate value  
IX+D Indexed with post increment to direct addressing mode  
IX1 Indexed, 8-bit offset addressing mode  
IX1+ Indexed, 8-bit offset, post increment addressing mode  
«
?
Sign extend  
Loaded with  
If  
IX2  
M
N
Indexed, 16-bit offset addressing mode  
Memory location  
Negative bit  
:
Concatenated with  
Set or cleared  
Not affected  
6.8 Opcode Map  
See Table 6-2.  
Technical Data  
86  
MC68HC908MR8 Rev 4.0  
Central Processor Unit (CPU)  
MOTOROLA  
Table 6-2. Opcode Map  
Bit Manipulation  
Branch  
REL  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
9
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
D
9ED  
LSB  
5
4
BSET0  
DIR  
4
BCLR0  
DIR  
4
BSET1  
DIR  
4
BCLR1  
DIR  
4
BSET2  
DIR  
4
BCLR2  
DIR  
4
BSET3  
DIR  
4
BCLR3  
DIR  
4
BSET4  
DIR  
4
BCLR4  
DIR  
4
BSET5  
DIR  
4
BCLR5  
DIR  
4
BSET6  
DIR  
4
BCLR6  
DIR  
4
BSET7  
DIR  
4
BCLR7  
DIR  
3
BRA  
REL  
3
BRN  
REL  
3
BHI  
REL  
3
BLS  
REL  
3
BCC  
REL  
3
BCS  
REL  
3
BNE  
REL  
3
BEQ  
REL  
3
BHCC  
REL  
3
BHCS  
REL  
3
BPL  
REL  
3
BMI  
REL  
3
BMC  
REL  
3
BMS  
REL  
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
NEG  
IX  
4
CBEQ  
IX+  
2
DAA  
INH  
3
COM  
IX  
3
LSR  
IX  
4
CPHX  
DIR  
3
ROR  
IX  
3
ASR  
IX  
3
LSL  
IX  
3
ROL  
IX  
3
DEC  
IX  
4
DBNZ  
IX  
3
INC  
IX  
2
TST  
IX  
7
3
2
3
4
4
SUB  
IX2  
4
CMP  
IX2  
4
SBC  
IX2  
4
CPX  
IX2  
4
AND  
IX2  
4
BIT  
IX2  
4
LDA  
IX2  
4
STA  
IX2  
4
EOR  
IX2  
4
ADC  
IX2  
4
ORA  
IX2  
4
ADD  
IX2  
4
JMP  
IX2  
6
JSR  
IX2  
4
LDX  
IX2  
4
STX  
IX2  
5
3
SUB  
IX1  
3
CMP  
IX1  
3
SBC  
IX1  
3
CPX  
IX1  
3
AND  
IX1  
3
BIT  
IX1  
3
LDA  
IX1  
3
STA  
IX1  
3
EOR  
IX1  
3
ADC  
IX1  
3
ORA  
IX1  
3
ADD  
IX1  
3
JMP  
IX1  
5
JSR  
IX1  
3
LDX  
IX1  
3
STX  
IX1  
4
2
SUB  
IX  
2
CMP  
IX  
2
SBC  
IX  
2
CPX  
IX  
2
AND  
IX  
2
BIT  
IX  
2
LDA  
IX  
2
STA  
IX  
2
EOR  
IX  
2
ADC  
IX  
2
ORA  
IX  
2
ADD  
IX  
2
JMP  
IX  
4
JSR  
IX  
2
LDX  
IX  
0
BRSET0  
NEG  
NEG  
NEG  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
3
DIR  
5
BRCLR0  
DIR  
5
BRSET1  
DIR  
5
BRCLR1  
DIR  
5
BRSET2  
DIR  
5
BRCLR2  
DIR  
5
BRSET3  
DIR  
5
BRCLR3  
DIR  
5
BRSET4  
DIR  
5
BRCLR4  
DIR  
5
BRSET5  
DIR  
5
BRCLR5  
DIR  
5
BRSET6  
DIR  
5
BRCLR6  
DIR  
5
BRSET7  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
DIR  
1
3
1
1
1
3
1
1
1
1
1
2
1
1
3
1
1
2
3
1
2
2
3
2
2
2
2
2
3
2
2
3
2
IX1  
3
4
SP1  
1
2
1
1
1
2
1
1
1
1
1
2
1
1
2
1
1
1
INH  
4
RTS  
INH  
2
2
2
2
1
1
REL  
3
BLT  
REL  
3
BGT  
REL  
3
BLE  
REL  
2
TXS  
INH  
2
2
2
2
2
2
2
2
2
2
2
2
IMM  
2
CMP  
IMM  
2
SBC  
IMM  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
DIR  
3
CMP  
DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT  
4
CMP  
EXT  
4
SBC  
EXT  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
SP2  
5
CMP  
SP2  
5
SBC  
SP2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
SP1  
4
CMP  
SP1  
4
SBC  
SP1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5
CBEQ  
DIR  
4
4
5
CBEQ  
IX1+  
3
NSA  
INH  
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
DBNZ  
IX1  
4
INC  
IX1  
3
TST  
IX1  
4
MOV  
IMD  
3
CLR  
IX1  
6
CBEQ  
SP1  
1
2
CBEQA CBEQX  
3
IMM  
5
MUL  
INH  
3
1
1
1
2
1
1
1
1
1
2
1
1
2
1
IMM  
7
DIV  
INH  
3
SBC  
3
DIR  
4
COM  
DIR  
4
LSR  
DIR  
4
STHX  
DIR  
4
ROR  
DIR  
4
ASR  
DIR  
4
LSL  
DIR  
4
ROL  
DIR  
4
DEC  
DIR  
1
COMA  
INH  
1
LSRA  
INH  
3
LDHX  
IMM  
1
RORA  
INH  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
3
DBNZA  
INH  
1
INCA  
INH  
1
TSTA  
INH  
5
MOV  
DD  
1
COMX  
INH  
1
LSRX  
INH  
4
LDHX  
DIR  
1
RORX  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
5
COM  
SP1  
5
LSR  
SP1  
9
2
3
4
5
4
3
SWI  
CPX  
CPX  
CPX  
CPX  
CPX  
3
2
2
2
2
2
2
2
2
3
2
2
3
3
1
1
1
1
1
1
1
1
1
1
INH  
IMM  
DIR  
EXT  
SP2  
SP1  
2
TAP  
INH  
1
TPA  
INH  
2
3
4
5
4
4
AND  
AND  
AND  
AND  
AND  
3
IMM  
DIR  
EXT  
SP2  
SP1  
2
2
BIT  
IMM  
3
BIT  
DIR  
4
BIT  
EXT  
5
BIT  
SP2  
4
BIT  
SP1  
5
TSX  
3
INH  
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
2
3
4
5
4
6
ROR  
SP1  
LDA  
LDA  
LDA  
LDA  
LDA  
3
3
3
3
3
3
4
3
3
IMM  
DIR  
EXT  
SP2  
SP1  
5
1
2
AIS  
IMM  
2
EOR  
IMM  
3
4
5
4
7
ASR  
TAX  
STA  
STA  
STA  
STA  
3
SP1  
1
1
1
1
1
1
1
INH  
DIR  
EXT  
SP2  
SP1  
5
LSL  
SP1  
1
CLC  
INH  
3
4
EOR  
EXT  
4
ADC  
EXT  
5
EOR  
SP2  
4
8
EOR  
EOR  
3
DIR  
SP1  
5
1
2
3
5
4
9
ROL  
SEC  
ADC  
ADC  
ADC  
ADC  
3
SP1  
INH  
IMM  
DIR  
SP2  
SP1  
5
2
CLI  
INH  
2
SEI  
INH  
1
2
3
4
5
4
A
B
C
D
E
F
DEC  
ORA  
ORA  
ORA  
ORA  
ORA  
3
SP1  
IMM  
DIR  
EXT  
SP2  
SP1  
5
DBNZ  
DIR  
4
INC  
DIR  
3
TST  
DIR  
3
DBNZX  
INH  
1
INCX  
INH  
1
TSTX  
INH  
6
DBNZ  
SP1  
5
INC  
SP1  
4
TST  
SP1  
2
ADD  
IMM  
3
ADD  
DIR  
2
JMP  
DIR  
4
ADD  
EXT  
3
JMP  
EXT  
5
JSR  
EXT  
4
LDX  
EXT  
5
4
ADD  
ADD  
3
SP2  
SP1  
RSP  
INH  
3
1
4
4
NOP  
BSR  
JSR  
3
INH  
2
2
2
REL  
DIR  
3
4
4
1
STOP  
INH  
1
WAIT  
INH  
2
LDX  
IMM  
2
AIX  
IMM  
3
5
LDX  
SP2  
4
BIL  
REL  
MOV  
DIX+  
MOV  
IX+D  
LDX  
LDX  
*
1
TXA  
INH  
3
DIR  
5
1
1
DIR  
4
4
3
3
SP1  
3
BIH  
REL  
3
CLR  
DIR  
1
CLRA  
INH  
1
CLRX  
INH  
4
CLR  
SP1  
2
CLR  
IX  
3
4
5
4
2
STX  
IX  
BRCLR7  
STX  
STX  
STX  
STX  
3
DIR  
2
3
1
DIR  
EXT  
SP2  
SP1  
INH Inherent  
IMM Immediate  
DIR Direct  
REL Relative  
IX Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
DIX+ Direct-Indexed  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
LSB  
EXT Extended  
5
DD Direct-Direct  
IX+D Indexed-Direct  
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
*Pre-byte for stack pointer indexed instructions  
Central Processor Unit (CPU)  
Technical Data  
88  
MC68HC908MR8 Rev 4.0  
Central Processor Unit (CPU)  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 7. System Integration Module (SIM)  
7.1 Contents  
7.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
7.3  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . .93  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . .93  
Clocks in Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
7.3.1  
7.3.2  
7.3.3  
7.4  
7.4.1  
7.4.2  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . .94  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Active Resets from Internal Sources . . . . . . . . . . . . . . . .95  
7.5  
7.5.1  
7.5.2  
SIM Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
SIM Counter During Power-On Reset. . . . . . . . . . . . . . . .99  
SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . .99  
7.6  
Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Status Flag Protection in Break Mode . . . . . . . . . . . . . .103  
7.6.1  
7.6.2  
7.6.3  
7.7  
Low-Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . .106  
SIM Reset Status Register. . . . . . . . . . . . . . . . . . . . . . . .108  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . .109  
7.7.1  
7.7.2  
7.7.3  
7.7.4  
7.7.5  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
System Integration Module (SIM)  
89  
System Integration Module (SIM)  
7.2 Introduction  
This section describes the system integration module (SIM). Together  
with the central processor unit (CPU), the SIM controls all  
microcontroller unit (MCU) activities. A block diagram of the SIM is  
shown in Figure 7-1. Figure 7-2 is a summary of the SIM inout/output  
(I/O) registers.  
The SIM is a system state controller that coordinates CPU and exception  
timing. The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals:  
Stop, wait, reset, break entry, and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and  
computer operating properly (COP) timeout  
Interrupt control:  
Acknowledge timing  
Arbitration control timing  
Vector address generation  
CPU enable/disable timing  
Modular architecture expandable to 128 interrupt sources  
Technical Data  
90  
MC68HC908MR8 Rev 4.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Introduction  
MODULE WAIT  
MODULE STOP  
CPU WAIT (FROM CPU)  
CPU STOP (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO CGM)  
SIM  
COUNTER  
COP CLOCK  
CGMXCLK (FROM CGM)  
CGMOUT (FROM CGM)  
÷ 2  
CLOCK  
CONTROL  
CLOCK GENERATORS  
INTERNAL CLOCKS  
LVI (FROM LVI MODULE)  
RESET  
PIN LOGIC  
POR CONTROL  
RESET PIN CONTROL  
MASTER  
RESET  
CONTROL  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
SIM RESET STATUS REGISTER  
COP (FROM COP MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 7-1. SIM Block Diagram  
MC68HC908MR8 Rev 4.0  
TechnicalData  
91  
MOTOROLA  
System Integration Module (SIM)  
System Integration Module (SIM)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
SBSW  
Note 1  
R
R
R
R
R
R
R
SIM Break Status Register  
(SBSR)  
$FE00  
See page 106.  
Re-  
set:  
0
Read: POR  
PIN  
R
COP  
R
ILOP  
R
ILAD  
R
0
LVI  
R
0
SIM Reset Status Register  
(SRSR)  
Write:  
R
1
R
R
$FE01  
$FE03  
See page 108.  
Re-  
set:  
0
0
0
0
0
0
0
Read:  
Write:  
BCFE  
R
R
R
R
R
R
R
SIM Break Flag Control  
Register (SBFCR)  
See page 109.  
Re-  
set:  
0
Note 1. Writing a logic 0 clears SB-  
SW.  
= Reserved  
R
Figure 7-2. SIM I/O Register Summary  
Table 7-1 shows the internal signal names used in this section.  
Table 7-1. Signal Name Conventions  
Signal Name  
CGMXCLK  
CGMVCLK  
Description  
Buffered version of OSC1 from clock generator module (CGM)  
PLL output  
PLL-based or OSC1-based clock output from CGM module  
(bus clock = CGMOUT divided by two)  
CGMOUT  
IAB  
IDB  
Internal address bus  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
Technical Data  
92  
MC68HC908MR8 Rev 4.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
SIM Bus Clock Control and Generation  
7.3 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and  
peripherals on the MCU. The system clocks are generated from an  
incoming clock, CGMOUT, as shown in Figure 7-3. This clock can come  
from either an external oscillator or from the on-chip phase-locked loop  
(PLL). See Section 8. Clock Generator Module (CGM).  
CGMXCLK  
OSC1  
SIM COUNTER  
CLOCK  
SELECT  
CIRCUIT  
A
B
CGMOUT  
BUS CLOCK  
GENERATORS  
÷ 2  
÷ 2  
CGMVCLK  
PLL  
S*  
*When S = 1,  
CGMOUT = B  
BCS  
SIM  
MONITOR MODE  
USER MODE  
CGM  
Figure 7-3. CGM Clock Signals  
7.3.1 Bus Timing  
In user mode, the internal bus frequency is either the crystal oscillator  
output (CGMXCLK) divided by four or the PLL output (CGMVCLK)  
divided by four. See Section 8. Clock Generator Module (CGM).  
7.3.2 Clock Startup from POR or LVI Reset  
When the power-on reset (POR) module or the low-voltage inhibit (LVI)  
module generates a reset, the clocks to the CPU and peripherals are  
inactive and held in an inactive phase until after the 4096 CGMXCLK  
cycle POR timeout has completed. The RST pin is driven low by the SIM  
during this entire period. The IBUS clocks start upon completion of the  
timeout.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
System Integration Module (SIM)  
93  
System Integration Module (SIM)  
7.3.3 Clocks in Wait Mode  
In wait mode, the CPU clocks are inactive. The SIM also produces two  
sets of clocks for other modules. Refer to the wait mode subsection of  
each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
7.4 Reset and System Initialization  
The MCU has these reset sources:  
Power-on reset module (POR)  
External reset pin (RST)  
Computer operating properly module (COP)  
Low-voltage inhibit module (LVI)  
Illegal opcode  
Illegal address  
All of these resets produce the vector $FFFEFFFF ($FEFEFEFF in  
monitor mode) and assert the internal reset signal (IRST). IRST causes  
all registers to be returned to their default values and all modules to be  
returned to their reset states.  
An internal reset clears the SIM counter (see 7.5 SIM Counter), but an  
external reset does not. Each of the resets sets a corresponding bit in  
the SIM reset status register (SRSR). See 7.7.4 SIM Reset Status  
Register.  
7.4.1 External Pin Reset  
Pulling the asynchronous RST pin low halts all processing. The PIN bit  
of the SIM reset status register (SRSR) is set as long as RST is held low  
for a minimum of 67 CGMXCLK cycles, assuming that neither the POR  
nor the LVI was the source of the reset. See Table 7-2 for details.  
Figure 7-4 shows the relative timing.  
Technical Data  
94  
MC68HC908MR8 Rev 4.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Reset and System Initialization  
Table 7-2. PIN Bit Set Timing  
Reset Type  
POR/LVI  
Number of Cycles Required to set PIN  
4163 (4096 + 64 + 3)  
67 (64 + 3)  
All Others  
CGMOUT  
RST  
IAB  
VECT H VECT L  
PC  
Figure 7-4. External Reset Timing  
7.4.2 Active Resets from Internal Sources  
All internal reset sources actively pull the RST pin low for 32 CGMXCLK  
cycles to allow resetting of external peripherals. The internal reset signal  
(IRST) continues to be asserted for an additional 32 cycles (see  
Figure 7-5). An internal reset can be caused by an illegal address, illegal  
opcode, COP timeout, LVI, or POR (see Figure 7-6).  
NOTE: For LVI or POR resets, the SIM cycles through 4096 CGMXCLK cycles  
during which the SIM forces the RST pin low. The internal reset signal  
then follows the sequence from the falling edge of RST as shown in  
Figure 7-5.  
IRST  
RST PULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
CGMXCLK  
IAB  
VECTOR HIGH  
Figure 7-5. Internal Reset Timing  
MC68HC908MR8 Rev 4.0  
TechnicalData  
95  
MOTOROLA  
System Integration Module (SIM)  
System Integration Module (SIM)  
The COP reset is asynchronous to the bus clock.  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
LVI  
INTERNAL RESET  
POR  
Figure 7-6. Sources of Internal Reset  
The active reset feature allows the part to issue a reset to peripherals  
and other chips within a system built around the MCU.  
7.4.2.1 Power-On Reset (POR)  
When power is first applied to the MCU, the power-on reset (POR)  
module generates a pulse to indicate that power-on has occurred. The  
external reset pin (RST) is held low while the SIM counter counts out  
4096 CGMXCLK cycles. Sixty-four CGMXCLK cycles later, the CPU and  
memories are released from reset to allow the reset vector sequence to  
occur.  
At power-on, these events occur:  
A POR pulse is generated.  
The internal reset signal is asserted.  
The SIM enables CGMOUT.  
Internal clocks to the CPU and modules are held inactive for 4096  
CGMXCLK cycles to allow stabilization of the oscillator.  
The RST pin is driven low during the oscillator stabilization time.  
The POR bit of the SIM reset status register (SRSR) is set and all  
other bits in the register are cleared.  
Technical Data  
96  
MC68HC908MR8 Rev 4.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Reset and System Initialization  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
CGMXCLK  
CGMOUT  
RST  
IAB  
$FFFE  
$FFFF  
Figure 7-7. POR Recovery  
7.4.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of  
the COP counter causes an internal reset and sets the COP bit in the  
SIM reset status register (SRSR). The SIM actively pulls down the RST  
pin for all internal reset sources.  
To prevent a COP module timeout, write any value to location $FFFF.  
Writing to location $FFFF clears the COP counter and bits 124 of the  
SIM counter. The SIM counter output, which occurs at least every  
13  
4
2 2 CGMXCLK cycles, drives the COP counter. The COP should be  
serviced as soon as possible out of reset to guarantee the maximum  
amount of time before the first timeout.  
The COP module is disabled if the RST pin or the IRQ pin is held at  
V
+ V while the MCU is in monitor mode. The COP module can be  
DD  
HI  
disabled only through combinational logic conditioned with the high  
voltage signal on the RST or the IRQ pin. This prevents the COP from  
becoming disabled as a result of external noise. During a break state,  
V
+ V on the RST pin disables the COP module.  
DD  
HI  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
97  
System Integration Module (SIM)  
System Integration Module (SIM)  
7.4.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An  
illegal instruction sets the ILOP bit in the SIM reset status register  
(SRSR) and causes a reset.  
Because the MC68HC08MR8 has stop mode disabled by bit 1 in the  
CONFIG register, execution of the STOP instruction will cause an illegal  
opcode reset if stop mode has not been enabled by setting CONFIG  
register bit 1.  
7.4.2.4 Illegal Address Reset  
An opcode fetch from addresses other than FLASH, I/O, or RAM  
addresses generates an illegal address reset (unimplemented locations  
within memory map). The SIM verifies that the CPU is fetching an  
opcode prior to asserting the ILAD bit in the SIM reset status register  
(SRSR) and resetting the MCU. A data fetch from an unmapped address  
does not generate a reset.  
7.4.2.5 Low-Voltage Inhibit (LVI) Reset  
The low-voltage inhibit module (LVI) asserts its output to the SIM when  
the V voltage falls to the LVI voltage and remains at or below that  
DD  
LVRX  
level for at least nine consecutive CPU cycles. The LVI bit in the SIM  
reset status register (SRSR) is set, and the external reset pin (RST) is  
held low while the SIM counter counts out 4096 CGMXCLK cycles.  
Sixty-four CGMXCLK cycles later, the CPU is released from reset to  
allow the reset vector sequence to occur. The SIM actively pulls down  
the RST pin for all internal reset sources.  
Technical Data  
98  
MC68HC908MR8 Rev 4.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
SIM Counter  
7.5 SIM Counter  
The SIM counter is used by the POR module to allow the oscillator time  
to stabilize before enabling the internal bus (IBUS) clocks. The SIM  
counter also serves as a prescaler for the COP module. The SIM counter  
overflow supplies the clock for the COP module. The SIM counter is 13  
bits long and is clocked by the falling edge of CGMXCLK.  
7.5.1 SIM Counter During Power-On Reset  
The POR detects power applied to the MCU. At power-on, the POR  
circuit asserts the signal PORRST. Once the SIM is initialized, it enables  
the clock generation module (CGM) to drive the bus clock state machine.  
7.5.2 SIM Counter and Reset States  
External reset has no effect on the SIM counter. The SIM counter is  
free-running after all reset states. See 7.4.2 Active Resets from  
Internal Sources for counter control and internal reset recovery  
sequences.  
7.6 Exception Control  
Normal, sequential program execution can be changed in three different  
ways:  
1. Interrupts:  
a. Maskable hardware CPU interrupts  
b. Non-maskable software interrupt instruction (SWI)  
2. Reset  
3. Break interrupts  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
System Integration Module (SIM)  
99  
System Integration Module (SIM)  
7.6.1 Interrupts  
At the beginning of an interrupt, the CPU saves the CPU register  
contents on the stack and sets the interrupt mask (I bit) to prevent  
additional interrupts. At the end of an interrupt, the return from interrupt  
(RTI) instruction recovers the CPU register contents from the stack so  
that normal processing can resume. Figure 7-8 shows interrupt entry  
timing. Figure 7-10 shows interrupt recovery timing.  
Interrupts are latched, and arbitration is performed in the SIM at the start  
of interrupt processing. The arbitration result is a constant that the CPU  
uses to determine which vector to fetch. Once an interrupt is latched by  
the SIM, no other interrupt can take precedence, regardless of priority,  
until the latched interrupt is serviced (or the I bit is cleared). See  
Figure 7-9.  
MODULE  
INTERRUPT  
I BIT  
IAB  
DUMMY  
SP  
SP 1  
SP 2  
SP 3  
SP 4  
VECT H  
VECT L START ADDR  
IDB  
R/W  
DUMMY PC 1[7:0] PC 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
Figure 7-8. Interrupt Entry  
Technical Data  
100  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
System Integration Module (SIM)  
System Integration Module (SIM)  
Exception Control  
FROM RESET  
YES  
BREAK INTERRUPT?  
NO  
YES  
I BIT SET?  
NO  
INT0  
YES  
YES  
INTERRUPT?  
NO  
INT1  
INTERRUPT?  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
AS MANY INTERRUPTS AS EXIST ON CHIP  
FETCH NEXT  
INSTRUCTION  
SWI  
YES  
YES  
INSTRUCTION?  
NO  
RTI  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
INSTRUCTION?  
NO  
Figure 7-9. Interrupt Processing  
MC68HC908MR8 Rev 4.0  
TechnicalData  
101  
MOTOROLA  
System Integration Module (SIM)  
System Integration Module (SIM)  
MODULE  
INTERRUPT  
I BIT  
IAB  
IDB  
SP 4  
SP 3  
SP 2  
SP 1  
SP  
PC  
PC + 1  
PC 1[7:0]  
PC 1[15:8] OPCODE OPERAND  
CCR  
A
X
R/W  
Figure 7-10. Interrupt Recovery  
7.6.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of  
a hardware interrupt begins after completion of the current instruction.  
When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the  
condition code register), and if the corresponding interrupt enable bit is  
set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction  
execution, the highest priority interrupt is serviced first. Figure 7-11  
demonstrates what happens when two interrupts are pending. If an  
interrupt is pending upon exit from the original interrupt service routine,  
the pending interrupt is serviced before the LDA instruction is executed.  
The LDA opcode is prefetched by both the INT1 and INT2 RTI  
instructions. However, in the case of the INT1 RTI prefetch, this is a  
redundant operation.  
NOTE: To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
Technical Data  
102  
MC68HC908MR8 Rev 4.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Exception Control  
CLI  
LDA #$FF  
BACKGROUND ROUTINE  
INT1  
INT2  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 7-11. Interrupt Recognition Example  
7.6.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an  
interrupt regardless of the state of the interrupt mask (I bit) in the  
condition code register.  
NOTE: A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC 1, as a hardware interrupt does.  
7.6.2 Reset  
All reset sources always have equal and highest priority and cannot be  
arbitrated.  
7.6.3 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can  
be cleared during break mode. The user can select whether flags are  
protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the SIM break flag control register (SBFCR).  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
System Integration Module (SIM)  
103  
System Integration Module (SIM)  
Protecting flags in break mode ensures that set flags will not be cleared  
while in break mode. This protection allows registers to be freely read  
and written during break mode without losing status flag information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in  
break mode, a flag remains cleared even when break mode is exited.  
Status flags with a 2-step clearing mechanism for example, a read of  
one register followed by the read or write of another are protected,  
even when the first step is accomplished prior to entering break mode.  
Upon leaving break mode, execution of the second step will clear the flag  
as normal.  
7.7 Low-Power Mode  
Executing the WAIT or STOP instruction puts the MCU in a low  
power-consumption mode for standby situations. The SIM holds the  
CPU in a non-clocked state. Both STOP and WAIT clear the interrupt  
mask (I) in the condition code register, allowing interrupts to occur.  
7.7.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks  
continue to run. Figure 7-12 shows the timing for wait mode entry.  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
IAB  
IDB  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
Note: Previous data can be operand data or the WAIT opcode, depending on the  
last instruction.  
Figure 7-12. Wait Mode Entry Timing  
A module that is active during wait mode can wake up the CPU with an  
interrupt if the interrupt is enabled. Stacking for the interrupt begins one  
cycle after the WAIT instruction during which the interrupt occurred.  
Refer to the wait mode subsection of each module to see if the module  
Technical Data  
104  
MC68HC908MR8 Rev 4.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Low-Power Mode  
is active or inactive in wait mode. Some modules can be programmed to  
be active in wait mode.  
Wait mode can also be exited by a reset or break. A break interrupt  
during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM  
break status register (SBSR). If the COP disable bit, COPD, in the  
configuration register is logic 0, then the computer operating properly  
module (COP) is enabled and remains active in wait mode.  
Figure 7-13 and Figure 7-14 show the timing for wait recovery.  
IAB  
IDB  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
Note: EXITSTOPWAIT = RST pin or CPU interrupt or break interrupt  
Figure 7-13. Wait Recovery from Interrupt or Break  
32  
CYCLES  
32  
CYCLES  
RST VCT L  
IAB  
$6E0B  
$A6  
RST VCT H  
IDB $A6  
RST  
$A6  
CGMXCLK  
Figure 7-14. Wait Recovery from Internal Reset  
MC68HC908MR8 Rev 4.0  
TechnicalData  
105  
MOTOROLA  
System Integration Module (SIM)  
System Integration Module (SIM)  
7.7.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clock is disabled.  
An external interrupt request will cause an exit from stop mode. Stacking  
for interrupts begins after the stop recovery delay time of 4096  
CGMXCLK cycles has elapsed. Reset or break also cause an exit from  
stop mode.  
The SIM disables the clock generator module outputs in stop mode,  
stopping the CPU and all peripherals.  
NOTE: It is important to note that when using the PWM generator Its outputs will  
stop toggling when stop mode is entered. The PWM module must be  
disabled before entering stop mode to prevent external inverter failure.  
7.7.3 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a  
break caused an exit from wait mode.  
Ad- $FE00  
dress:  
BIt 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
R
R
R
R
R
= Reserved  
1. Writing a logic 0 clears SBSW.  
Figure 7-15. SIM Break Status Register (SBSR)  
SBSW SIM Break Stop/Wait Bit  
This status bit is useful in applications requiring a return to wait mode  
after exiting from a break interrupt. Clear SBSW by writing a logic 0 to  
it. Reset clears SBSW.  
1 = Wait mode was exited by break interrupt.  
0 = Wait mode was not exited by break interrupt.  
Technical Data  
106  
MC68HC908MR8 Rev 4.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Low-Power Mode  
SBSW can be read within the break state SWI routine. The user can  
modify the return address on the stack by subtracting one from it. The  
following code is an example of this. Writing 0 to the SBSW bit  
clears it.  
; This code works if the H register has been pushed onto the stack in the break  
; service routine software. This code should be executed at the end of the break  
; service routine software.  
HIBYTE  
LOBYTE  
EQU  
EQU  
5
6
;
If not SBSW, do RTI  
BRCLR  
SBSW,SBSR, RETURN  
; See if wait mode was exited by break.  
;
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
; If RETURNLO is not zero,  
; then just decrement low byte.  
; Else deal with high byte, too.  
; Point to WAIT opcode.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN  
PULH  
RTI  
; Restore H register.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
107  
MOTOROLA  
System Integration Module (SIM)  
System Integration Module (SIM)  
7.7.4 SIM Reset Status Register  
The SIM reset status register (SRSR) contains six flags that show the  
source of the last reset. Clear the SRSR by reading it. A power-on reset  
sets the POR bit and clears all other bits in the register.  
Ad- $FE01  
dress:  
BIt 7  
6
5
COP  
R
4
ILOP  
R
3
ILAD  
R
2
0
1
LVI  
R
Bit 0  
0
Read: POR  
PIN  
Write:  
R
1
R
R
0
R
Reset:  
0
0
0
0
0
0
R
= Reserved  
Figure 7-16. SIM Reset Status Register (SRSR)  
POR Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
LVI Low-Voltage Inhibit Reset Bit  
1 = Last reset was caused by the LVI circuit  
0 = POR or read of SRSR  
Technical Data  
108  
MC68HC908MR8 Rev 4.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Low-Power Mode  
7.7.5 SIM Break Flag Control Register  
The SIM break control register (SBFCR) contains a bit that enables  
software to clear status bits while the MCU is in a break state.  
Ad- $FE03  
dress:  
BIt 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 7-17. SIM Break Flag Control Register (SBFCR)  
BCFE Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
System Integration Module (SIM)  
109  
System Integration Module (SIM)  
Technical Data  
MC68HC908MR8 Rev 4.0  
110  
System Integration Module (SIM)  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 8. Clock Generator Module (CGM)  
8.1 Contents  
8.2  
8.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
8.4  
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . .113  
Phase-Locked Loop Circuit (PLL). . . . . . . . . . . . . . . . . .115  
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . .121  
CGM External Connections. . . . . . . . . . . . . . . . . . . . . . .122  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.5  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
CGM External Connections. . . . . . . . . . . . . . . . . . . . . . .122  
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . .123  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . .123  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.5.6  
8.5.7  
8.5.8  
PLL Analog Power Pin (V  
). . . . . . . . . . . . . . . . . . . . .124  
DDA  
Oscillator Enable Signal (SIMOSCEN) . . . . . . . . . . . . . .124  
Crystal Output Frequency Signal (CGMXCLK) . . . . . . .124  
CGM Base Clock Output (CGMOUT) . . . . . . . . . . . . . . .124  
CGM CPU Interrupt (CGMINT). . . . . . . . . . . . . . . . . . . . .124  
8.6  
CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . .129  
PLL Programming Register. . . . . . . . . . . . . . . . . . . . . . .131  
8.6.1  
8.6.2  
8.6.3  
8.7  
8.8  
8.9  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
8.10 CGM During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
8.11 Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . .134  
8.11.1 Acquisition/Lock Time Definitions . . . . . . . . . . . . . . . . .134  
8.11.2 Parametric Influences on Reaction Time. . . . . . . . . . . .135  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
Clock Generator Module (CGM)  
111  
Clock Generator Module (CGM)  
8.11.3 Choosing a Filter Capacitor . . . . . . . . . . . . . . . . . . . . . .136  
8.11.4 Reaction Time Calculation . . . . . . . . . . . . . . . . . . . . . . .137  
8.2 Introduction  
This section describes the clock generator module (CGM, version A).  
The CGM generates the crystal clock signal, CGMXCLK, which operates  
at the frequency of the crystal. The CGM also generates the base clock  
signal, CGMOUT, from which the system integration module (SIM)  
derives the system clocks.  
CGMOUT is based on either the crystal clock divided by two or the  
phase-locked loop (PLL) clock, CGMVCLK, divided by two. The PLL is  
a frequency generator designed for use with crystals or ceramic  
resonators. The PLL can generate an 8-MHz bus frequency without  
using a 32-MHz crystal.  
8.3 Features  
Features of the CGM include:  
Phase-locked loop with output frequency in integer multiples of the  
crystal reference  
Programmable hardware voltage-controlled oscillator (VCO) for  
low-jitter operation  
Automatic bandwidth control mode for low-jitter operation  
Automatic frequency lock detector  
Central processor unit (CPU) interrupt on entry or exit from locked  
condition  
Technical Data  
112  
MC68HC908MR8 Rev 4.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
Functional Description  
8.4 Functional Description  
The CGM consists of three major submodules:  
1. Crystal oscillator circuit The crystal oscillator circuit generates  
the constant crystal frequency clock, CGMXCLK.  
2. Phase-locked loop (PLL) The PLL generates the  
programmable VCO frequency clock, CGMVCLK.  
3. Base clock selector circuit This software-controlled circuit  
selects either CGMXCLK divided by two or the VCO clock,  
CGMVCLK, divided by two as the base clock, CGMOUT. The SIM  
derives the system clocks from CGMOUT.  
Figure 8-1 shows the structure of the CGM.  
8.4.1 Crystal Oscillator Circuit  
The crystal oscillator circuit consists of an inverting amplifier and an  
external crystal. The OSC1 pin is the input to the amplifier and the OSC2  
pin is the output. The SIMOSCEN signal from the system integration  
module (SIM) enables the crystal oscillator circuit.  
The CGMXCLK signal is the output of the crystal oscillator circuit and  
runs at a rate equal to the crystal frequency. CGMXCLK is then buffered  
to produce CGMRCLK, the PLL reference clock.  
CGMXCLK can be used by other modules which require precise timing  
for operation. The duty cycle of CGMXCLK is not guaranteed to be  
50 percent and depends on external factors, including the crystal and  
related external components.  
An externally generated clock also can feed the OSC1 pin of the crystal  
oscillator circuit. Connect the external clock to the OSC1 pin and let the  
OSC2 pin float.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Clock Generator Module (CGM)  
113  
Clock Generator Module (CGM)  
CRYSTAL OSCILLATOR  
OSC2  
CGMXCLK  
CGMOUT  
TO SIM  
TO SIM  
CLOCK  
SELECT  
CIRCUIT  
OSC1  
A
B
÷ 2  
S*  
*WHEN S = 1, CGMOUT = B  
SIMOSCEN  
CGMRDV  
CGMRCLK  
BCS  
USER MODE  
V
CGMXFC  
V
SS  
DDA  
MONITOR MODE  
VRS[7:4]  
VOLTAGE  
CONTROLLED  
OSCILLATOR  
PHASE  
DETECTOR  
LOOP  
FILTER  
PLL ANALOG  
CGMINT  
LOCK  
DETECTOR  
BANDWIDTH  
CONTROL  
INTERRUPT  
CONTROL  
LOCK  
AUTO  
ACQ  
PLLIE  
PLLF  
MUL[7:4]  
CGMVDV  
CGMVCLK  
FREQUENCY  
DIVIDER  
Figure 8-1. CGM Block Diagram  
Technical Data  
114  
MC68HC908MR8 Rev 4.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
Functional Description  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read  
:
PLLF  
1
1
1
1
PLLIE  
PLLON BCS  
PLL Control Register  
(PCTL)  
Write  
:
$005C  
R
0
R
1
R
1
R
1
R
1
See page 126.  
Re-  
set:  
0
1
0
Read  
:
LOCK  
0
R
0
0
R
0
0
R
0
0
R
0
AUTO  
0
ACQ  
0
XLD  
0
PLL Bandwidth Control Reg-  
ister (PBWC)  
Write  
:
$005D  
R
0
See page 129.  
Re-  
set:  
Read  
:
MUL7 MUL6 MUL5 MUL4 VRS7 VRS6 VRS5 VRS4  
PLL Programming Register  
(PPG)  
Write  
:
$005E  
See page 131.  
Re-  
set:  
0
1
1
0
0
1
1
0
R
= Reserved  
Figure 8-2. CGM I/O Register Summary  
8.4.2 Phase-Locked Loop Circuit (PLL)  
The PLL is a frequency generator that can operate in either acquisition  
mode or tracking mode, depending on the accuracy of the output  
frequency. The PLL can change between acquisition and tracking  
modes either automatically or manually.  
8.4.2.1 PLL Circuits  
The PLL consists of these circuits:  
Voltage-controlled oscillator (VCO)  
Modulo VCO frequency divider  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Clock Generator Module (CGM)  
115  
Clock Generator Module (CGM)  
Phase detector  
Loop filter  
Lock detector  
Technical Data  
116  
MC68HC908MR8 Rev 4.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
Functional Description  
The operating range of the VCO is programmable for a wide range of  
frequencies and for maximum immunity to external noise, including  
supply and CGMXFC noise. The VCO frequency is bound to a range  
from roughly one-half to twice the center-of-range frequency, f  
.
VRS  
Modulating the voltage on the CGMXFC pin changes the frequency  
within this range. By design, f is equal to the nominal center-of-range  
VRS  
frequency, f  
, (4.9152 MHz) times a linear factor L, or (L) f  
.
NOM  
NOM  
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK.  
CGMRCLK runs at a frequency, f , and is fed to the PLL through a  
RCLK  
buffer. The buffer output is the final reference clock, CGMRDV, running  
at a frequency, f = f  
.
RCLK  
RDV  
The VCOs output clock, CGMVCLK, running at a frequency f  
, is fed  
VCLK  
back through a programmable modulo divider. The modulo divider  
reduces the VCO clock by a factor, N. The dividers output is the VCO  
feedback clock, CGMVDV, running at a frequency, f  
= f  
. See  
VCLK/N  
VDV  
8.4.2.4 Programming the PLL for more information.  
The phase detector then compares the VCO feedback clock, CGMVDV,  
with the final reference clock, CGMRDV. A correction pulse is generated  
based on the phase difference between the two signals. The loop filter  
then slightly alters the dc voltage on the external capacitor connected to  
CGMXFC based on the width and direction of the correction pulse. The  
filter can make fast or slow corrections depending on its mode,  
described in 8.4.2.2 Acquisition and Tracking Modes. The value of the  
external capacitor and the reference frequency determines the speed of  
the corrections and the stability of the PLL.  
The lock detector compares the frequencies of the VCO feedback clock,  
CGMVDV, and the final reference clock, CGMRDV. Therefore, the  
speed of the lock detector is directly proportional to the final reference  
frequency, f  
. The circuit determines the mode of the PLL and the lock  
RDV  
condition based on this comparison.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
117  
MOTOROLA  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
8.4.2.2 Acquisition and Tracking Modes  
The PLL filter is manually or automatically configurable into one of two  
operating modes:  
Acquisition mode In acquisition mode, the filter can make large  
frequency corrections to the VCO. This mode is used at PLL  
startup or when the PLL has suffered a severe noise hit and the  
VCO frequency is far off the desired frequency. When in  
acquisition mode, the ACQ bit is clear in the PLL bandwidth control  
register. See 8.6.2 PLL Bandwidth Control Register.  
Tracking mode In tracking mode, the filter makes only small  
corrections to the frequency of the VCO. PLL jitter is much lower  
in tracking mode, but the response to noise is also slower. The  
PLL enters tracking mode when the VCO frequency is nearly  
correct, such as when the PLL is selected as the base clock  
source. The PLL is automatically in tracking mode when not in  
acquisition mode or when the ACQ bit is set. See 8.4.3 Base  
Clock Selector Circuit.  
8.4.2.3 Manual and Automatic PLL Bandwidth Modes  
The PLL can change the bandwidth or operational mode of the loop filter  
manually or automatically.  
In automatic bandwidth control mode (AUTO = 1), the lock detector  
automatically switches between acquisition and tracking modes.  
Automatic bandwidth control mode also is used to determine when the  
VCO clock, CGMVCLK, is safe to use as the source for the base clock,  
CGMOUT (8.6.2 PLL Bandwidth Control Register). If PLL interrupts  
are enabled, the software can wait for a PLL interrupt request and then  
check the LOCK bit. If interrupts are disabled, software can poll the  
LOCK bit continuously (during PLL startup, usually) or at periodic  
intervals. In either case, when the LOCK bit is set, the VCO clock is safe  
to use as the source for the base clock (see 8.4.3 Base Clock Selector  
Circuit). If the VCO is selected as the source for the base clock and the  
LOCK bit is clear, the PLL has suffered a severe noise hit and the  
software must take appropriate action, depending on the application.  
See 8.7 Interrupts for information and precautions on using interrupts.  
Technical Data  
118  
MC68HC908MR8 Rev 4.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
Functional Description  
These conditions apply when the PLL is in automatic bandwidth control  
mode:  
The ACQ bit (see 8.6.2 PLL Bandwidth Control Register) is a  
read-only indicator of the mode of the filter. See 8.4.2.2  
Acquisition and Tracking Modes.  
The ACQ bit is set when the VCO frequency is within a certain  
tolerance, ∆  
, and is cleared when the VCO frequency is out of  
TRK  
a certain tolerance, ∆  
. See 8.11 Acquisition/Lock Time  
UNT  
Specifications for more information.  
The LOCK bit is a read-only indicator of the locked state of the  
PLL.  
The LOCK bit is set when the VCO frequency is within a certain  
tolerance, ∆  
, and is cleared when the VCO frequency is out of  
Lock  
a certain tolerance, ∆  
. See 8.11 Acquisition/Lock Time  
UNL  
Specifications for more information.  
CPU interrupts can occur if enabled (PLLIE = 1) when the PLLs  
lock condition changes, toggling the LOCK bit. See 8.6.1 PLL  
Control Register.  
The PLL also may operate in manual mode (AUTO = 0). Manual mode  
is used by systems that do not require an indicator of the lock condition  
for proper operation. Such systems typically operate well below f  
and require fast startup.  
BUSMAX  
These conditions apply when in manual mode:  
ACQ is a writable control bit that controls the mode of the filter.  
Before turning on the PLL in manual mode, the ACQ bit must be  
clear.  
Before entering tracking mode (ACQ = 1), software must wait a  
given time, t  
(see 8.11 Acquisition/Lock Time  
ACQ  
Specifications), after turning on the PLL by setting PLLON in the  
PLL control register (PCTL).  
Software must wait a given time, t , after entering tracking mode  
AL  
before selecting the PLL as the clock source to CGMOUT  
(BCS = 1).  
The LOCK bit is disabled.  
CPU interrupts from the CGM are disabled.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Clock Generator Module (CGM)  
119  
Clock Generator Module (CGM)  
8.4.2.4 Programming the PLL  
This procedure shows how to program the PLL.  
NOTE: The round function in the following equations means that the real  
number should be rounded to the nearest integer number.  
1. Choose the desired bus frequency, f  
.
BUSDES  
2. Calculate the desired VCO frequency (four times the desired bus  
frequency).  
f
= 4 × f  
VCLKDES  
BUSDES  
3. Choose a practical PLL reference frequency, f  
4. Select a VCO frequency multiplier, N.  
.
RCLK  
5. Calculate and verify the adequacy of the VCO and bus  
frequencies f  
and f  
.
VCLK  
BUS  
f
= N × f  
VCLK  
RCLK  
f
= (f  
) ⁄ 4  
BUS  
VCLK  
6. Select a VCO linear range multiplier, L.  
where f = 4.9152 MHz  
NOM  
7. Calculate and verify the adequacy of the VCO programmed  
center-of-range frequency, f  
.
VRS  
f
= (L) f  
NOM  
VRS  
8. Verify the choice of N and L by comparing f  
to f  
and  
VRS  
VCLK  
f
. For proper operation, f  
must be within the  
VCLKDES  
VCLK  
applications tolerance of f  
, and f  
must be as close as  
VRS  
VCLKDES  
possible to f  
.
VCLK  
CAUTION: Exceeding the recommended maximum bus frequency or VCO  
frequency can crash the MCU.  
9. Program the PLL registers accordingly:  
a. In the upper four bits of the PLL programming register (PPG),  
program the binary equivalent of N.  
b. In the lower four bits of the PLL programming register (PPG),  
program the binary equivalent of L.  
Technical Data  
120  
MC68HC908MR8 Rev 4.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
Functional Description  
8.4.2.5 Special Programming Exceptions  
The programming method described in 8.4.2.4 Programming the PLL  
does not account for possible exceptions. A value of 0 for N or L is  
meaningless when used in the equations given. To account for these  
exceptions:  
A 0 value for N is interpreted exactly the same as a value of 1.  
A 0 value for L disables the PLL and prevents its selection as the  
source for the base clock. See 8.4.3 Base Clock Selector  
Circuit.  
8.4.3 Base Clock Selector Circuit  
This circuit is used to select either the crystal clock, CGMXCLK, or the  
VCO clock, CGMVCLK, as the source of the base clock, CGMOUT. The  
two input clocks go through a transition control circuit that waits up to  
three CGMXCLK cycles and three CGMVCLK cycles to change from  
one clock source to the other. During this time, CGMOUT is held in state.  
The output of the transition control circuit is then divided by two to correct  
the duty cycle. Therefore, the bus clock frequency, which is one-half of  
the base clock frequency, is one-fourth the frequency of the selected  
clock (CGMXCLK or CGMVCLK).  
The BCS bit in the PLL control register (PCTL) selects which clock drives  
CGMOUT. The VCO clock cannot be selected as the base clock source  
if the PLL is not turned on. The PLL cannot be turned off if the VCO clock  
is selected. The PLL cannot be turned on or off simultaneously with the  
selection or deselection of the VCO clock. The VCO clock also cannot  
be selected as the base clock source if the factor L is programmed to a 0.  
This value would set up a condition inconsistent with the operation of the  
PLL, so that the PLL would be disabled and the crystal clock would be  
forced as the source of the base clock.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Clock Generator Module (CGM)  
121  
Clock Generator Module (CGM)  
8.4.4 CGM External Connections  
In its typical configuration, the CGM requires seven external  
components. Five of these are for the crystal oscillator and two are for  
the PLL.  
The crystal oscillator is normally connected in a Pierce oscillator  
configuration, as shown in Figure 8-3. Figure 8-3 shows only the logical  
representation of the internal components and may not represent actual  
circuitry.  
The oscillator configuration uses five components:  
1. Crystal, X  
1
2. Fixed capacitor, C  
1
3. Tuning capacitor, C (can also be a fixed capacitor)  
2
4. Feedback resistor, R  
B
5. Series resistor, R (optional)  
S
The series resistor (R ) is included in the diagram to follow strict Pierce  
S
oscillator guidelines and may not be required for all ranges of operation,  
especially with high frequency crystals. Refer to the crystal  
manufacturers data for more information.  
Figure 8-3 also shows the external components for the PLL:  
Bypass capacitor, C  
BYP  
Filter capacitor, C  
F
Routing should be done with great care to minimize signal cross talk and  
noise. See 8.11 Acquisition/Lock Time Specifications for routing  
information and more information on the filter capacitors value and its  
effects on PLL performance.  
Technical Data  
122  
MC68HC908MR8 Rev 4.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
I/O Signals  
SIMOSCEN  
CGMXCLK  
OSC1  
OSC2  
V
CGMXFC  
V
DDA  
SS  
V
DD  
C
F
R *  
S
C
BYP  
R
B
X1  
C1  
C2  
*RS can be 0 (shorted) when used with higher-frequency crystals.  
Refer to manufacturers data.  
Figure 8-3. CGM External Connections  
8.5 I/O Signals  
The following paragraphs describe the CGM input/output (I/O) signals.  
8.5.1 Crystal Amplifier Input Pin (OSC1)  
The OSC1 pin is an input to the crystal oscillator amplifier.  
8.5.2 Crystal Amplifier Output Pin (OSC2)  
The OSC2 pin is the output of the crystal oscillator inverting amplifier.  
8.5.3 External Filter Capacitor Pin (CGMXFC)  
The CGMXFC pin is required by the loop filter to filter out phase  
corrections. A small external capacitor is connected to this pin.  
NOTE: To prevent noise problems, C should be placed as close to the  
F
CGMXFC pin as possible, with minimum routing distances and no  
routing of other signals across the C connection.  
F
MC68HC908MR8 Rev 4.0  
TechnicalData  
123  
MOTOROLA  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
8.5.4 PLL Analog Power Pin (V  
)
DDA  
V
V
is a power pin used by the analog portions of the PLL. Connect the  
DDA  
DDA  
pin to the same voltage potential as the V pin.  
DD  
NOTE: Route V  
carefully for maximum noise immunity and place bypass  
DDA  
capacitors as close as possible to the package.  
8.5.5 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM)  
and enables the oscillator and PLL.  
8.5.6 Crystal Output Frequency Signal (CGMXCLK)  
CGMXCLK is the crystal oscillator output signal. It runs at the full speed  
of the crystal (f ) and comes directly from the crystal oscillator circuit.  
XCLK  
Figure 8-3 shows only the logical relation of CGMXCLK to OSC1 and  
OSC2 and may not represent the actual circuitry. The duty cycle of  
CGMXCLK is unknown and may depend on the crystal and other  
external factors. Also, the frequency and amplitude of CGMXCLK can be  
unstable at startup.  
8.5.7 CGM Base Clock Output (CGMOUT)  
CGMOUT is the clock output of the CGM. This signal goes to the SIM,  
which generates the MCU clocks. CGMOUT is a 50 percent duty cycle  
clock running at twice the bus frequency. CGMOUT is software  
programmable to be either the oscillator output, CGMXCLK, divided by  
two or the VCO clock, CGMVCLK, divided by two.  
8.5.8 CGM CPU Interrupt (CGMINT)  
CGMINT is the interrupt signal generated by the PLL lock detector.  
Technical Data  
124  
MC68HC908MR8 Rev 4.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
CGM Registers  
8.6 CGM Registers  
These registers control and monitor operation of the CGM:  
PLL control register (PCTL), see 8.6.1 PLL Control Register  
PLL bandwidth control register (PBWC), see 8.6.2 PLL  
Bandwidth Control Register  
PLL programming register (PPG), see 8.6.3 PLL Programming  
Register  
Figure 8-4 is a summary of the CGM registers.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read  
:
PLLF  
1
1
1
1
PLLIE  
PLLON BCS  
PLL Control Register  
(PCTL)  
Write  
:
$005C  
R
0
R
1
R
1
R
1
R
1
See page 126.  
Re-  
set:  
0
1
0
Read  
:
LOCK  
0
R
0
0
R
0
0
R
0
0
R
0
AUTO  
0
ACQ  
0
XLD  
0
PLL Bandwidth Control Reg-  
ister (PBWC)  
Write  
:
$005D  
R
0
See page 129.  
Re-  
set:  
Figure 8-4. CGM I/O Register Summary  
MC68HC908MR8 Rev 4.0  
TechnicalData  
125  
MOTOROLA  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read  
:
MUL7 MUL6 MUL5 MUL4 VRS7 VRS6 VRS5 VRS4  
PLL Programming Register  
(PPG)  
Write  
:
$005E  
See page 131.  
Re-  
set:  
0
1
1
0
0
1
1
0
R
= Reserved  
Notes:  
1. When AUTO = 0, PLLIE is forced to logic 0 and is read-only.  
2. When AUTO = 0, PLLF and LOCK read as logic 0.  
3. When AUTO = 1, ACQ is read-only.  
4. When PLLON = 0 or VRS[7:4] = $0, BCS is forced to logic 0 and is read-only.  
5. When PLLON = 1, the PLL programming register is read-only.  
6. When BCS = 1, PLLON is forced set and is read-only.  
Figure 8-4. CGM I/O Register Summary  
8.6.1 PLL Control Register  
The PLL control register (PCTL) contains the interrupt enable and flag  
bits, the on/off switch, and the base clock selector bit.  
Ad- $005C  
dress:  
Bit 7  
6
PLLF  
R
5
PLLON  
1
4
BCS  
0
3
1
2
1
1
1
Bit 0  
1
Read:  
Write:  
Reset:  
PLLIE  
R
1
R
1
R
1
R
0
0
1
R
= Reserved  
Figure 8-5. PLL Control Register (PCTL)  
Technical Data  
126  
MC68HC908MR8 Rev 4.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
CGM Registers  
PLLIE PLL Interrupt Enable Bit  
This read/write bit enables the PLL to generate an interrupt request  
when the LOCK bit toggles, setting the PLL flag, PLLF. When the  
AUTO bit in the PLL bandwidth control register (PBWC) is clear,  
PLLIE cannot be written and reads as logic 0. Reset clears the PLLIE  
bit.  
1 = PLL interrupts enabled  
0 = PLL interrupts disabled  
PLLF PLL Interrupt Flag Bit  
This read-only bit is set whenever the LOCK bit toggles. PLLF  
generates an interrupt request if the PLLIE bit also is set. PLLF  
always reads as logic 0 when the AUTO bit in the PLL bandwidth  
control register (PBWC) is clear. Clear the PLLF bit by reading the  
PLL control register. Reset clears the PLLF bit.  
1 = Change in lock condition  
0 = No change in lock condition  
NOTE: Do not inadvertently clear the PLLF bit. Any read or read-modify-write  
operation on the PLL control register clears the PLLF bit.  
PLLON PLL On Bit  
This read/write bit activates the PLL and enables the VCO clock,  
CGMVCLK. PLLON cannot be cleared if the VCO clock is driving the  
base clock, CGMOUT (BCS = 1). Reset sets this bit so that the loop  
can stabilize as the MCU is powering up. See 8.4.3 Base Clock  
Selector Circuit.  
1 = PLL on  
0 = PLL off  
BCS Base Clock Select Bit  
This read/write bit selects either the crystal oscillator output,  
CGMXCLK, or the VCO clock, CGMVCLK, as the source of the CGM  
output, CGMOUT. CGMOUT frequency is one-half the frequency of  
the selected clock. BCS cannot be set while the PLLON bit is clear.  
After toggling BCS, it may take up to three CGMXCLK and three  
CGMVCLK cycles to complete the transition from one source clock to  
the other. During the transition, CGMOUT is held in stasis. Reset  
clears the BCS bit. See 8.4.3 Base Clock Selector Circuit.  
1 = CGMVCLK divided by two drives CGMOUT  
0 = CGMXCLK divided by two drives CGMOUT  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
127  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
NOTE: PLLON and BCS have built-in protection that prevents the base clock  
selector circuit from selecting the VCO clock as the source of the base  
clock if the PLL is off. Therefore, PLLON cannot be cleared when BCS  
is set, and BCS cannot be set when PLLON is clear. If the PLL is off  
(PLLON = 0), selecting CGMVCLK requires two writes to the PLL control  
register. See 8.4.3 Base Clock Selector Circuit.  
PCTL Bits 30 Unimplemented Bits  
These bits provide no function and always read as logic 1s.  
Technical Data  
128  
MC68HC908MR8 Rev 4.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
CGM Registers  
8.6.2 PLL Bandwidth Control Register  
The PLL bandwidth control register:  
Selects automatic or manual (software-controlled) bandwidth  
control mode  
Indicates when the PLL is locked  
In automatic bandwidth control mode, indicates when the PLL is in  
acquisition or tracking mode  
In manual operation, forces the PLL into acquisition or tracking  
mode  
Ad- $005D  
dress:  
Bit 7  
6
5
ACQ  
0
4
XLD  
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
LOCK  
AUTO  
R
R
0
R
0
R
0
R
0
0
0
R
= Reserved  
Figure 8-6. PLL Bandwidth Control Register (PBWC)  
AUTO Automatic Bandwidth Control Bit  
This read/write bit selects automatic or manual bandwidth control.  
When initializing the PLL for manual operation (AUTO = 0), clear the  
ACQ bit before turning on the PLL. Reset clears the AUTO bit.  
1 = Automatic bandwidth control  
0 = Manual bandwidth control  
LOCK Lock Indicator Bit  
When the AUTO bit is set, LOCK is a read-only bit that becomes set  
when the VCO clock, CGMVCLK, is locked (running at the  
programmed frequency). When the AUTO bit is clear, LOCK reads as  
logic 0 and has no meaning. Reset clears the LOCK bit.  
1 = VCO frequency correct or locked  
0 = VCO frequency incorrect or unlocked  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Clock Generator Module (CGM)  
129  
Clock Generator Module (CGM)  
ACQ Acquisition Mode Bit  
When the AUTO bit is set, ACQ is a read-only bit that indicates  
whether the PLL is in acquisition mode or tracking mode. When the  
AUTO bit is clear, ACQ is a read/write bit that controls whether the  
PLL is in acquisition or tracking mode.  
In automatic bandwidth control mode (AUTO = 1), the last-written  
value from manual operation is stored in a temporary location and is  
recovered when manual operation resumes. Reset clears this bit,  
enabling acquisition mode.  
1 = Tracking mode  
0 = Acquisition mode  
XLD Crystal Loss Detect Bit  
When the VCO output, CGMVCLK, is driving CGMOUT, this  
read/write bit can indicate whether the crystal reference frequency is  
active or not. To check the status of the crystal reference, follow these  
steps:  
1. Write a logic 1 to XLD.  
2. Wait N × 4 cycles. (N is the VCO frequency multiplier.)  
3. Read XLD.  
1 = Crystal reference is not active.  
0 = Crystal reference is active.  
The crystal loss detect function works only when the BCS bit is set,  
selecting CGMVCLK to drive CGMOUT. When BCS is clear, XLD  
always reads as logic 0.  
PBWC Bits 30 Reserved for Test  
These bits enable test functions not available in user mode. To ensure  
software portability from development systems to user applications,  
software should write 0s to PBWC[3:0] whenever writing to PBWC.  
Technical Data  
130  
MC68HC908MR8 Rev 4.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
CGM Registers  
8.6.3 PLL Programming Register  
The PLL programming register (PPG) contains the programming  
information for the modulo feedback divider and the programming  
information for the hardware configuration of the VCO.  
Ad- $005E  
dress:  
Bit 7  
MUL7  
0
6
MUL6  
1
5
MUL5  
1
4
MUL4  
0
3
VRS7  
0
2
VRS6  
1
1
VRS5  
1
Bit 0  
VRS4  
0
Read:  
Write:  
Reset:  
Figure 8-7. PLL Programming Register (PPG)  
MUL[7:4] Multiplier Select Bits  
These read/write bits control the modulo feedback divider that selects  
the VCO frequency multiplier, N. See 8.4.2.1 PLL Circuits and  
8.4.2.4 Programming the PLL. A value of $0 in the multiplier select  
bits configures the modulo feedback divider the same as a value of  
$1. Reset initializes these bits to $6 to give a default multiply value  
of 6.  
Table 8-1. VCO Frequency Multiplier (N) Selection  
MUL7:MUL6:MUL5:MUL4  
VCO Frequency Multiplier (N)  
0000  
0001  
0010  
0011  
1
1
2
3
1101  
1110  
1111  
13  
14  
15  
NOTE: The multiplier select bits have built-in protection that prevents them from  
being written when the PLL is on (PLLON = 1).  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
131  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
VRS[7:4] VCO Range Select Bits  
These read/write bits control the hardware center-of-range linear  
multiplier L, which controls the hardware center-of-range frequency  
f
. See 8.4.2.1 PLL Circuits, 8.4.2.4 Programming the PLL, and  
VRS  
8.6.1 PLL Control Register. VRS[7:4] cannot be written when the  
PLLON bit in the PLL control register (PCTL) is set. See 8.4.2.5  
Special Programming Exceptions. A value of $0 in the VCO range  
select bits disables the PLL and clears the BCS bit in the PCTL. See  
8.4.3 Base Clock Selector Circuit and 8.4.2.5 Special  
Programming Exceptions for more information.  
Reset initializes the bits to $6 to give a default range multiply  
value of 6.  
NOTE: The VCO range select bits have built-in protection that prevents them  
from being written when the PLL is on (PLLON = 1) and prevents  
selection of the VCO clock as the source of the base clock (BCS = 1) if  
the VCO range select bits are all clear.  
The VCO range select bits must be programmed correctly. Incorrect  
programming may result in failure of the PLL to achieve lock.  
8.7 Interrupts  
When the AUTO bit is set in the PLL bandwidth control register (PBWC),  
the PLL can generate a CPU interrupt request every time the LOCK bit  
changes state. The PLLIE bit in the PLL control register (PCTL) enables  
CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL,  
becomes set whether interrupts are enabled or not. When the AUTO bit  
is clear, CPU interrupts from the PLL are disabled and PLLF reads as  
logic 0.  
Software should read the LOCK bit after a PLL interrupt request to see  
if the request was due to an entry into lock or an exit from lock. When the  
PLL enters lock, the VCO clock, CGMVCLK, divided by two can be  
selected as the CGMOUT source by setting BCS in the PCTL. When the  
PLL exits lock, the VCO clock frequency is corrupt, and appropriate  
precautions should be taken. If the application is not  
Technical Data  
132  
MC68HC908MR8 Rev 4.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
Wait Mode  
frequency-sensitive, interrupts should be disabled to prevent PLL  
interrupt service routines from impeding software performance or from  
exceeding stack limitations.  
NOTE: Software can select the CGMVCLK divided by two as the CGMOUT  
source even if the PLL is not locked (LOCK = 0). Therefore, software  
should make sure the PLL is locked before setting the BCS bit.  
8.8 Wait Mode  
The WAIT instruction puts the MCU in low power-consumption standby  
mode.  
The WAIT instruction does not affect the CGM. Before entering wait  
mode, software can disengage and turn off the PLL by clearing the BCS  
and PLLON bits in the PLL control register (PCTL). Less power-sensitive  
applications can disengage the PLL without turning it off. Applications  
that require the PLL to wake the MCU from wait mode also can deselect  
the PLL output without turning off the PLL.  
8.9 Stop Mode  
The STOP instruction puts the MCU in low power-consumption standby  
mode.  
The STOP instruction disables the CGMC (oscillator and phase-lock  
loop) and holds the CGM outputs low.  
8.10 CGM During Break Mode  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. See 7.7.5 SIM Break Flag Control  
Register.  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Clock Generator Module (CGM)  
133  
Clock Generator Module (CGM)  
To protect the PLLF bit during the break state, write a logic 0 to the  
BCFE bit. With BCFE at logic 0 (its default state), software can read and  
write the PLL control register during the break state without affecting the  
PLLF bit.  
8.11 Acquisition/Lock Time Specifications  
The acquisition and lock times of the PLL are, in many applications, the  
most critical PLL design parameters. Proper design and use of the PLL  
ensures the highest stability and lowest acquisition/lock times.  
8.11.1 Acquisition/Lock Time Definitions  
Typical control systems refer to the acquisition time or lock time as the  
reaction time, within specified tolerances, of the system to a step input.  
In a PLL, the step input occurs when the PLL is turned on or when it  
suffers a noise hit. The tolerance is usually specified as a percent of the  
step input or when the output settles to the desired value plus or minus  
a percent of the frequency change. Therefore, the reaction time is  
constant in this definition, regardless of the size of the step input. For  
example, consider a system with a 5 percent acquisition time tolerance.  
If a command instructs the system to change from 0 Hz to 1 MHz, the  
acquisition time is the time taken for the frequency to reach  
1 MHz ± 50 kHz. Fifty kHz = 5 percent of the 1-MHz step input. If the  
system is operating at 1 MHz and suffers a 100-kHz noise hit, the  
acquisition time is the time taken to return from 900 kHz to  
1 MHz ± 5 kHz. Five kHz = 5 percent of the 100-kHz step input.  
Other systems refer to acquisition and lock times as the time the system  
takes to reduce the error between the actual output and the desired  
output to within specified tolerances. Therefore, the acquisition or lock  
time varies according to the original error in the output. Minor errors may  
not even be registered. Typical PLL applications prefer to use this  
definition because the system requires the output frequency to be within  
a certain tolerance of the desired frequency regardless of the size of the  
initial error.  
Technical Data  
134  
MC68HC908MR8 Rev 4.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
Acquisition/Lock Time Specifications  
The discrepancy in these definitions makes it difficult to specify an  
acquisition or lock time for a typical PLL. Therefore, the definitions for  
acquisition and lock times for this module are:  
Acquisition time, t  
, is the time the PLL takes to reduce the error  
ACQ  
between the actual output frequency and the desired output  
frequency to less than the tracking mode entry tolerance, ∆  
.
TRK  
Acquisition time is based on an initial frequency error,  
(f  
f  
)/f  
, of not more than ±100 percent. In automatic  
DES ORIG DES  
bandwidth control mode (see 8.4.2.3 Manual and Automatic PLL  
Bandwidth Modes), acquisition time expires when the ACQ bit  
becomes set in the PLL bandwidth control register (PBWC).  
Lock time, t  
, is the time the PLL takes to reduce the error  
Lock  
between the actual output frequency and the desired output  
frequency to less than the lock mode entry tolerance, . Lock  
Lock  
time is based on an initial frequency error, (f  
f  
)/f  
, of  
DES ORIG DES  
not more than ± 100 percent. In automatic bandwidth control  
mode, lock time expires when the LOCK bit becomes set in the  
PLL bandwidth control register (PBWC). See 8.4.2.3 Manual and  
Automatic PLL Bandwidth Modes.  
Obviously, the acquisition and lock times can vary according to how  
large the frequency error is and may be shorter or longer in many cases.  
8.11.2 Parametric Influences on Reaction Time  
Acquisition and lock times are designed to be as short as possible while  
still providing the highest possible stability. These reaction times are not  
constant, however. Many factors directly and indirectly affect the  
acquisition time.  
The most critical parameter which affects the reaction times of the PLL  
is the reference frequency, f  
. This frequency is the input to the phase  
RDV  
detector and controls how often the PLL makes corrections. For stability,  
the corrections must be small compared to the desired frequency, so  
several corrections are required to reduce the frequency error.  
Therefore, the slower the reference the longer it takes to make these  
corrections. This parameter is also under user control via the choice of  
crystal frequency, f  
.
XCLK  
MC68HC908MR8 Rev 4.0  
TechnicalData  
135  
MOTOROLA  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
Another critical parameter is the external filter capacitor. The PLL  
modifies the voltage on the VCO by adding or subtracting charge from  
this capacitor. Therefore, the rate at which the voltage changes for a  
given frequency error (thus change in charge) is proportional to the  
capacitor size. The size of the capacitor also is related to the stability of  
the PLL. If the capacitor is too small, the PLL cannot make small enough  
adjustments to the voltage and the system cannot lock. If the capacitor  
is too large, the PLL may not be able to adjust the voltage in a  
reasonable time. See 8.11.3 Choosing a Filter Capacitor.  
Also important is the operating voltage potential applied to V  
. The  
DDA  
power supply potential alters the characteristics of the PLL. A fixed value  
is best. Variable supplies, such as batteries, are acceptable if they vary  
within a known range at very slow speeds. Noise on the power supply is  
not acceptable, because it causes small frequency errors which  
continually change the acquisition time of the PLL.  
Temperature and processing also can affect acquisition time because  
the electrical characteristics of the PLL change. The part operates as  
specified as long as these influences stay within the specified limits.  
External factors, however, can cause drastic changes in the operation of  
the PLL. These factors include noise injected into the PLL through the  
filter capacitor, filter capacitor leakage, stray impedances on the circuit  
board, and even humidity or circuit board contamination.  
8.11.3 Choosing a Filter Capacitor  
As described in 8.11.2 Parametric Influences on Reaction Time, the  
external filter capacitor, C , is critical to the stability and reaction time of  
F
the PLL. The PLL is also dependent on reference frequency and supply  
voltage. The value of the capacitor must, therefore, be chosen with  
supply potential and reference frequency in mind. For proper operation,  
the external filter capacitor must be chosen according to this equation:  
V
DDA  
----------------  
C
= C  
F
FACT  
f
RDV  
For acceptable values of C  
, see 8.11 Acquisition/Lock Time  
FACT  
Specifications. For the value of V  
, choose the voltage potential at  
DDA  
which the MCU is operating. If the power supply is variable, choose a  
value near the middle of the range of possible supply values.  
Technical Data  
136  
MC68HC908MR8 Rev 4.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
Acquisition/Lock Time Specifications  
This equation does not always yield a commonly available capacitor  
size, so round to the nearest available size. If the value is between two  
different sizes, choose the higher value for better stability. Choosing the  
lower size may seem attractive for acquisition time improvement, but the  
PLL can become unstable. Also, always choose a capacitor with a tight  
tolerance (±20 percent or better) and low dissipation.  
8.11.4 Reaction Time Calculation  
The actual acquisition and lock times can be calculated using the  
equations here. These equations yield nominal values under these  
conditions:  
Correct selection of filter capacitor, C ; see 8.11.3 Choosing a  
F
Filter Capacitor  
Room temperature operation  
Negligible external leakage on CGMXFC  
Negligible noise  
The K factor in the equations is derived from internal PLL parameters.  
K
K
is the K factor when the PLL is configured in acquisition mode, and  
is the K factor when the PLL is configured in tracking mode. See  
ACQ  
TRK  
8.4.2.2 Acquisition and Tracking Modes.  
V
DDA  
8
---------------- -----------------  
t
=
ACQ  
f
K
RDV  
ACQ  
V
DDA  
4
----------------- ----------------  
t
=
AL  
f
K
RDV  
TRK  
t
= t  
+ t  
ACQ AL  
Lock  
NOTE: Inverse proportionality between the lock time and the reference  
frequency  
In automatic bandwidth control mode, the acquisition and lock times are  
quantized into units based on the reference frequency, see 8.4.2.3  
Manual and Automatic PLL Bandwidth Modes. A certain number of  
clock cycles, n  
, is required to ascertain that the PLL is within the  
ACQ  
tracking mode entry tolerance, ∆  
, before exiting acquisition mode. A  
TRK  
MC68HC908MR8 Rev 4.0  
TechnicalData  
137  
MOTOROLA  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
certain number of clock cycles, n  
, is required to ascertain that the  
TRK  
PLL is within the lock mode entry tolerance, ∆  
. Therefore, the  
Lock  
acquisition time, t  
, is an integer multiple of n  
/f  
, and the  
ACQ  
ACQ RDV  
acquisition to lock time, t , is an integer multiple of n  
/f  
. Also,  
AL  
TRK RDV  
since the average frequency over the entire measurement period must  
be within the specified tolerance, the total time usually is longer than  
t
as calculated above.  
Lock  
In manual mode, it is usually necessary to wait considerably longer than  
before selecting the PLL clock (see 8.4.3 Base Clock Selector  
t
Lock  
Circuit) because the factors described in 8.11.2 Parametric Influences  
on Reaction Time may slow the lock time considerably.  
Technical Data  
138  
MC68HC908MR8 Rev 4.0  
Clock Generator Module (CGM)  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 9. Pulse-Width Modulator for Motor Control  
(PWMMC)  
9.1 Contents  
9.2  
9.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
9.4  
9.4.1  
9.4.2  
Timebase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
9.5  
9.5.1  
9.5.2  
PWM Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Load Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
PWM Data Overflow and Underflow Conditions . . . . . .152  
9.6  
9.6.1  
Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
Selecting Six Independent PWMs or Three  
Complementary PWM Pairs. . . . . . . . . . . . . . . . . . . . . . .152  
Dead-Time Insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
Output Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
Output Port Control Register . . . . . . . . . . . . . . . . . . . . .159  
9.6.2  
9.6.3  
9.6.4  
9.7  
Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
Fault Condition Input Pins. . . . . . . . . . . . . . . . . . . . . . . .164  
Software Output Disable . . . . . . . . . . . . . . . . . . . . . . . . .168  
Output Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
9.7.1  
9.7.2  
9.7.3  
9.8  
9.9  
Initialization and the PWMEN Bit. . . . . . . . . . . . . . . . . . . . .169  
PWM Operation in Wait Mode . . . . . . . . . . . . . . . . . . . . . . .170  
9.10 PWM Operation in Stop Mode . . . . . . . . . . . . . . . . . . . . . . .170  
9.11 PWM Operation in Break Mode . . . . . . . . . . . . . . . . . . . . . .171  
9.12 Control Logic Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
9.12.1 PWM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . .172  
9.12.2 PWM Counter Modulo Registers. . . . . . . . . . . . . . . . . . .173  
9.12.3 PWMx Value Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .174  
9.12.4 PWM Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . .175  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
139  
Pulse-Width Modulator for Motor Control  
9.12.5 PWM Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . .177  
9.12.6 Dead-Time Write-Once Register . . . . . . . . . . . . . . . . . . .179  
9.12.7 PWM Disable Mapping Write-Once Register . . . . . . . . .179  
9.12.8 Fault Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
9.12.9 Fault Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
9.12.10 Fault Acknowledge Register . . . . . . . . . . . . . . . . . . . . . .182  
9.12.11 PWM Output Control Register. . . . . . . . . . . . . . . . . . . . .184  
9.13 PWM Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
9.2 Introduction  
This section describes the pulse-width modulator for motor control  
(PWMMC, version A). The MC68HC908MR8 PWM module can  
generate three complementary PWM pairs or six independent PWM  
signals. These PWM signals can be center-aligned or edge-aligned. A  
block diagram of the PWM module is shown in Figure 9-1.  
A 12-bit timer PWM counter is common to all six channels. PWM  
resolution is one clock period for edge-aligned operation and two clock  
periods for center-aligned operation. The clock period is dependent on  
the internal operating frequency (f ) and a programmable prescaler.  
OP  
The highest resolution for edge-aligned operation is 125 ns  
(f = 8 MHz). The highest resolution for center-aligned operation is  
OP  
250 ns (f = 8 MHz).  
OP  
When generating complementary PWM signals, the module features  
automatic dead-time insertion to the PWM output pairs.  
A summary of the PWM registers is shown in Figure 9-2.  
Technical Data  
140  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Features  
9.3 Features  
Features of the PWMMC include:  
Three complimentary PWM pairs or six independent PWM signals  
Edge-aligned PWM signals or center-aligned PWM signals  
PWM signal polarity control  
Manual PWM output control through software  
Programmable fault protection  
Complimentary mode also features:  
Dead-time insertion  
Separate top/bottom pulse width correction via current sensing  
or programmable software bits  
8
CPU BUS  
PWM1 PIN  
PWM CHANNELS 1 & 2  
PWM2 PIN  
PWM3 PIN  
PWM CHANNELS 3 & 4  
PWM4 PIN  
PWM5 PIN  
PWM CHANNELS 5 & 6  
PWM6 PIN  
FAULT  
INTERRUPT  
PINS  
2
12  
TIMEBASE  
Figure 9-1. PWM Module Block Diagram  
MC68HC908MR8 Rev 4.0  
TechnicalData  
141  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Pulse-Width Modulator for Motor Control  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
PWMIN  
T
PWME  
N
DISX  
DISY  
PWMF  
LDOK  
PWM Control Register 1  
(PCTL1)  
$0020  
See page 175.  
Reset  
:
0
0
0
0
0
SEL12  
0
0
0
0
0
Read:  
Write:  
LDFQ1 LDFQ0  
SEL34 SEL56 PRSC1 PRSC0  
PWM Control Register 2  
(PCTL2)  
$0021  
$0022  
See page 177.  
Reset  
:
0
FINT4  
0
0
0
0
0
0
0
Read:  
Write:  
FMODE  
4
FMODE  
1
FINT1  
Fault Control Register  
(FCR)  
See page 180.  
Reset  
:
0
0
0
0
0
0
0
0
0
0
0
FFLAG  
4
FFLAG  
1
Read: FPIN4  
Write:  
FPIN1  
Fault Status Register  
(FSR)  
$0023  
$0024  
See page 181.  
Reset  
U
:
0
0
U
0
0
0
U
0
0
0
U
0
0
0
Read:  
Write:  
0
Fault Acknowledge  
Register (FTACK)  
See page 182.  
FTACK  
4
FTACK  
1
Reset  
:
0
0
0
0
0
0
0
0
0
Read:  
Write:  
OUTCT  
L
OUT6  
OUT5  
OUT4  
OUT3  
OUT2  
OUT1  
PWM Output Control  
(PWMOUT)  
$0025  
$0026  
See page 159.  
Reset  
:
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Write:  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
PWM Counter Register  
High (PCNTH)  
See page 172.  
Reset  
:
0
0
0
0
0
0
0
0
U = Unaffected  
minate  
X = Indeter-  
= Reserved  
= Buff-  
ered  
R
Bold  
Figure 9-2. Register Summary (Sheet 1 of 4)  
Technical Data  
142  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Features  
Addr.  
Register Name  
Bit 7  
Read: Bit 7  
Write:  
6
5
4
3
2
1
Bit 0  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWM Counter Register  
Low (PCNTL)  
$0027  
See page 172.  
Reset  
0
:
0
0
0
0
0
0
0
Bit 11  
X
0
Bit 10  
X
0
Bit 9  
X
0
Bit 8  
X
Read:  
Write:  
0
PWM Counter Modulo  
$0028 Register High (PMODH)  
See page 173.  
Reset  
:
0
Bit 7  
X
0
Bit 6  
X
0
Bit 5  
X
0
Bit 4  
X
Read:  
Write:  
Bit 3  
X
Bit 2  
X
Bit 1  
X
Bit 0  
X
PWM Counter Modulo  
$0029 Register Low (PMODL)  
See page 173.  
Reset  
:
Read:  
Write:  
Bit 15 Bit 14  
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
PWM 1 Value Register  
$002A  
$002B  
$002C  
$002D  
High (PVAL1H)  
See page 174.  
Reset  
:
0
Bit 7  
0
0
Bit 6  
0
Read:  
Write:  
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
PWM 1 Value Register  
Low (PVAL1L)  
See page 174.  
Reset  
:
Read:  
Write:  
Bit 15 Bit 14  
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
PWM 2 Value Register  
High (PVAL2H)  
See page 174.  
Reset  
:
0
0
Bit 6  
0
Read:  
Write:  
Bit 7  
Bit 5  
0
Bit 4  
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
PWM 2 Value Register  
Low (PVAL2L)  
See page 174.  
Reset  
:
0
0
U = Unaffected  
minate  
X = Indeter-  
= Reserved  
= Buff-  
ered  
R
Bold  
Figure 9-2. Register Summary (Sheet 2 of 4)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
143  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Pulse-Width Modulator for Motor Control  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Bit 15 Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
PWM 3 Value Register  
High (PVAL3H)  
$002E  
See page 174.  
Reset  
:
0
Bit 7  
0
0
Bit 6  
0
0
Bit 5  
0
0
Bit 4  
0
0
Bit 3  
0
0
Bit 2  
0
0
Bit 1  
0
0
Bit 0  
0
Read:  
Write:  
PWM 3 Value Register  
Low (PVAL3L)  
$002F  
$0030  
$0031  
$0032  
$0033  
$0034  
See page 174.  
Reset  
:
Read:  
Write:  
Bit 15 Bit 14  
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
PWM 4 Value Register  
High (PVAL4H)  
See page 174.  
Reset  
:
0
Bit 7  
0
0
Bit 6  
0
Read:  
Write:  
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
PWM 4 Value Register  
Low (PVAL4L)  
See page 174.  
Reset  
:
Read:  
Write:  
Bit 15 Bit 14  
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
PWM 5 Value Register  
High (PMVAL5H)  
See page 174.  
Reset  
:
0
Bit 7  
0
0
Bit 6  
0
Read:  
Write:  
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
PWM 5 Value Register  
Low (PVAL5L)  
See page 174.  
Reset  
:
Read:  
Write:  
Bit 15 Bit 14  
Bit 13  
0
Bit 12  
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
PWM 6 Value Register  
High (PVAL6H)  
See page 174.  
Reset  
:
0
0
0
U = Unaffected  
minate  
X = Indeter-  
= Reserved  
= Buff-  
ered  
R
Bold  
Figure 9-2. Register Summary (Sheet 3 of 4)  
Technical Data  
144  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Features  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWM 6 Value Register  
Low (PMVAL6L)  
See page 174.  
$0035  
Reset  
:
0
0
Bit 6  
1
0
Bit 5  
1
0
0
Bit 3  
1
0
Bit 2  
1
0
Bit 1  
1
0
Bit 0  
1
Read:  
Write:  
Bit 7  
1
Bit 4  
1
Dead-Time Write-Once  
Register (DEADTM)  
See page 179.  
$0036  
$0037  
Reset  
:
Read:  
PWM Disable Mapping  
Bit 7  
Bit 6  
1
Bit 5  
1
Bit 4  
Bit 3  
1
Bit 2  
1
Bit 1  
1
Bit 0  
1
Write-Once Register Write:  
(DISMAP)  
Reset  
See page 179.  
1
1
:
U = Unaffected  
minate  
X = Indeter-  
= Reserved  
= Buff-  
ered  
R
Bold  
Figure 9-2. Register Summary (Sheet 4 of 4)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
145  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Pulse-Width Modulator for Motor Control  
9.4 Timebase  
This subsection provides for a discussion of the timebase.  
9.4.1 Resolution  
In center-aligned mode, a 12-bit up/down counter is used to create the  
PWM period. Therefore, the PWM resolution in center-aligned mode is  
two clocks (highest resolution is 250 ns @ f = 8 MHz) as shown in  
OP  
Figure 9-3. The up/down counter uses the value in the timer modulus  
register to determine its maximum count. The PWM period will equal:  
(timer modulus) x (PWM clock period) x 2  
For edge-aligned mode, a 12-bit up-only counter is used to create the  
PWM period. Therefore, the PWM resolution in edge-aligned mode is  
one clock (highest resolution is 125 ns @ f = 8 MHz) as shown in  
OP  
Figure 9-4. Again, the timer modulus register is used to determine the  
maximum count. The PWM period will equal:  
(timer modulus) x (PWM clock period)  
Center-aligned operation versus edge-aligned operation is determined  
by the option EDGE. See 5.4 CONFIG Bits.  
Technical Data  
146  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Timebase  
UP/DOWN COUNTER  
MODULUS = 4  
PERIOD = 8 x (PWM CLOCK PERIOD)  
PWM = 0  
PWM = 1  
PWM = 2  
PWM = 3  
PWM = 4  
Figure 9-3. Center-Aligned PWM (Positive Polarity)  
UP-ONLY COUNTER  
MODULUS = 4  
PERIOD = 4 x (PWM  
CLOCK PERIOD)  
PWM = 0  
PWM = 1  
PWM = 2  
PWM = 3  
PWM = 4  
Figure 9-4. Edge-Aligned PWM (Positive Polarity)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
147  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Pulse-Width Modulator for Motor Control  
9.4.2 Prescaler  
To permit lower PWM frequencies, a prescaler is provided which will  
divide the PWM clock frequency by 1, 2, 4, or 8. Table 9-1 shows how  
setting the prescaler bits in PWM control register 2 affects the PWM  
clock frequency. This prescaler is buffered and will not be used by the  
PWM generator until the LDOK bit is set and a new PWM reload-cycle  
begins.  
Table 9-1. PWM Prescaler  
Prescaler Bits  
PWM Clock Frequency  
PRSC1:PRSC0  
fOP  
00  
01  
10  
11  
f
OP/2  
fOP/4  
fOP/8  
9.5 PWM Generators  
This subsection describes the pulse-width modulator (PWM) generators.  
9.5.1 Load Operation  
To help avoid erroneous pulse widths and PWM periods, the modulus,  
prescaler, and PWM value registers are buffered. New PWM values,  
counter modulus values, and prescalers can be loaded from their buffers  
into the PWM module every one, two, four, or eight PWM cycles.  
LDFQ1:LDFQ0 in PWM control register 2 are used to control this reload  
frequency, as shown in Table 9-2. When a reload cycle arrives,  
regardless of whether an actual reload occurs (as determined by the  
LDOK bit), the PWM reload flag bit in PWM control register 1 will be set.  
If the PWMINT bit in PWM control register 1 is set, a CPU interrupt  
request will be generated when PWMF is set. Software can use this  
interrupt to calculate new PWM parameters in real time for the PWM  
module.  
Technical Data  
148  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
PWM Generators  
Table 9-2. PWM Reload Frequency  
Reload Frequency Bits  
PWM Reload Frequency  
LDFQ1:LDFQ0  
00  
01  
10  
11  
Every PWM cycle  
Every 2 PWM cycles  
Every 4 PWM cycles  
Every 8 PWM cycles  
For ease of software, the LDFQx bits are buffered. When the LDFQx bits  
are changed, the reload frequency will not change until the previous  
reload cycle is completed. See Figure 9-5.  
NOTE: When reading the LDFQx bits, the value is the buffered value (for  
example, not necessarily the value being acted upon).  
RELOAD  
RELOAD  
RELOAD  
RELOAD RELOAD RELOAD RELOAD  
CHANGE RELOAD  
FREQUENCY TO  
EVERY 4 CYCLES  
CHANGE RELOAD  
FREQUENCY TO  
EVERY CYCLE  
Figure 9-5. Reload Frequency Change  
PWMINT enables CPU interrupt requests as shown in Figure 9-6. When  
this bit is set, CPU interrupt requests are generated when the PWMF bit  
is set. When the PWMINT bit is clear, PWM interrupt requests are  
inhibited. PWM reloads will still occur at the reload rate, but no interrupt  
requests will be generated.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
149  
Pulse-Width Modulator for Motor Control  
READ PWMF AS 1,  
WRITE PWMF AS 0  
OR RESET  
V
DD  
RESET  
LATCH  
PWMF  
CPU INTERRUPT  
REQUEST  
D
PWMINT  
PWM RELOAD  
CK  
Figure 9-6. PWM Interrupt Requests  
To prevent a partial reload of PWM parameters from occurring while the  
software is still calculating them, an interlock bit controlled from software  
is provided. This bit informs the PWM module that all the PWM  
parameters have been calculated, and it is okay to use them. A new  
modulus, prescaler, and/or PWM value cannot be loaded into the PWM  
module until the LDOK bit in PWM control register 1 is set. When the  
LDOK bit is set, these new values are loaded into a second set of  
registers and used by the PWM generator at the beginning of the next  
PWM reload cycle as shown in Figure 9-7, Figure 9-8, Figure 9-9, and  
Figure 9-10. After these values are loaded, the LDOK bit is cleared.  
NOTE: When the PWM module is enabled (via the PWMEN bit), a load will occur  
if the LDOK bit is set. Even if it is not set, an interrupt will occur if the  
PWMINT bit is set. To prevent this, the software should clear the  
PWMINT bit before enabling the PWM module.  
LDFQ1:LDFQ0 = 00 (RELOAD EVERY CYCLE)  
UP/DOWN  
COUNTER  
LDOK = 1  
MODULUS = 3  
PWM VALUE= 2  
PWMF SET  
LDOK = 1  
MODULUS = 3  
PWM VALUE= 1  
PWMF SET  
LDOK = 0  
MODULUS = 3  
PWM VALUE= 2  
PWMF SET  
LDOK = 0  
MODULUS = 3  
PWM VALUE= 1  
PWMF SET  
PWM  
Figure 9-7. Center-Aligned PWM Value Loading  
Technical Data  
150  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Pulse-Width Modulator for Motor Control (PWMMC)  
PWM Generators  
LDFQ1:LDFQ0 = 00 (RELOAD EVERY CYCLE)  
UP/DOWN  
COUNTER  
LDOK = 1  
MODULUS = 3  
PWM VALUE= 1  
PWMF SET  
LDOK = 1  
MODULUS = 2  
PWMVALUE= 1  
PWMF SET  
LDOK = 1  
MODULUS = 1  
PWM VALUE= 1  
PWMF SET  
LDOK = 1  
LDOK = 0  
MODULUS = 2  
PWM VALUE= 1  
PWMF SET  
MODULUS = 2  
PWM VALUE = 1  
PWMF SET  
PWM  
Figure 9-8. Center-Aligned Loading of Modulus  
LDFQ1:LDFQ0 = 00 (RELOAD EVERY CYCLE)  
UP-ONLY  
COUNTER  
LDOK = 1  
LDOK = 0  
LDOK = 1  
LDOK = 0  
LDOK = 0  
MODULUS = 3 MODULUS = 3 MODULUS = 3 MODULUS = 3 MODULUS = 3  
PWM VALUE= 1. PWM VALUE= 2. PWM VALUE = 2 PWM VALUE = 1 PWM VALUE = 1  
PWMF SET  
PWMF SET  
PWMF SET  
PWM  
PWMF SET  
PWMF SET  
Figure 9-9. Edge-Aligned PWM Value Loading  
LDFQ1:LDFQ0 = 00 (RELOAD EVERY CYCLE)  
UP-ONLY  
COUNTER  
LDOK = 1  
LDOK = 1  
MODULUS = 4  
PWM VALUE = 2  
PWMF SET  
LDOK = 1  
MODULUS = 2 MODULUS = 1  
PWM VALUE = 2 PWM VALUE= 2  
PWMF SET  
LDOK = 0  
MODULUS = 3  
PWM VALUE= 2  
PWMF SET  
PWMF SET  
PWM  
Figure 9-10. Edge-Aligned Modulus Loading  
MC68HC908MR8 Rev 4.0  
TechnicalData  
151  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Pulse-Width Modulator for Motor Control  
9.5.2 PWM Data Overflow and Underflow Conditions  
The PWM value registers are 16-bit registers. Although the counter is  
only 12 bits, the user may write a 16-bit signed value to a PWM value  
register. As shown in Figure 9-3 and Figure 9-4, if the PWM value is  
less than or equal to 0, the PWM will be inactive for the entire period.  
Conversely, if the PWM value is greater than or equal to the timer  
modulus, the PWM will be active for the entire period. Refer to Table 9-3.  
NOTE: The terms active and inactive refer to the asserted and negated states  
of the PWM signals and should not be confused with the high-  
impedance state of the PWM pins.  
Table 9-3. PWM Data Overflow and Underflow Conditions  
PWMVALxH:PWMVALxL  
$0000$0FFF  
Condition  
Normal  
PWM Value Used  
Per registers contents  
$FFF  
$1000$7FFF  
Overflow  
Underflow  
$8000$FFFF  
$000  
9.6 Output Control  
This subsection discusses output control.  
9.6.1 Selecting Six Independent PWMs or Three Complementary PWM Pairs  
The PWM outputs can be configured as six independent PWM channels  
or three complementary channel pairs. The option INDEP determines  
which mode is used (see 5.4 CONFIG Bits). If complementary operation  
is chosen, the PWM pins are paired as shown in Figure 9-11. Operation  
of one pair is then determined by one PWM value register. This type of  
operation is meant for use in motor drive circuits such as the one in  
Figure 9-12.  
Technical Data  
152  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Output Control  
PWM1  
PWM2  
PWMS 1 & 2  
PWM VALUE REGISTER  
PWM VALUE REGISTER  
PWM VALUE REGISTER  
PWM3  
PWM4  
PWMS 3 & 4  
PWMS 5 & 6  
PWM5  
PWM6  
Figure 9-11. Complementary Pairing  
PWM  
3
PWM  
1
PWM  
5
TO  
AC  
MOTOR  
INPUTS  
PWM  
2
PWM  
4
PWM  
6
Figure 9-12. Typical AC Motor Drive  
When complementary operation is used, two additional features are  
provided:  
Dead-time insertion  
Separate top/bottom pulse width correction to correct for  
distortions caused by the motor drive characteristics.  
If independent operation is chosen, each PWM has its own PWM value  
register.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
153  
Pulse-Width Modulator for Motor Control  
9.6.2 Dead-Time Insertion  
As shown in Figure 9-12, in complementary mode, each PWM pair can  
be used to drive top-side/bottom-side transistors.  
NOTE: When controlling DC-to-AC inverters such as this, the top and bottom  
PWMs in one pair should never be active at the same time.  
In Figure 9-12, if PWM1 and PWM2 were on at the same time, large  
currents would flow through the two transistors as they discharge the  
bus capacitor. The IGBTs could be weakened or destroyed.  
Simply forcing the two PWMs to be inversions of each other is not always  
sufficient. Since a time delay is associated with turning off the transistors  
in the motor drive, there must be a dead-timebetween the deactivation  
of one PWM and the activation of the other.  
A dead-time can be specified in the dead-time write-once register. This  
8-bit value specifies the number of CPU clock cycles to use for the  
dead-time. The dead-time is not affected by changes in the PWM period  
caused by the prescaler.  
Dead-time insertion is achieved by feeding the top PWM outputs of the  
PWM generator into dead-time generators, as shown in Figure 9-13.  
When output control is enabled, the odd OUT bits, rather than the  
PWM generator outputs, are fed into the dead-time generators. See  
9.6.4 Output Port Control Register.  
Technical Data  
154  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Output Control  
OUTPUT CONTROL  
(OUTCTL)  
OUT2  
OUT4  
OUT6  
MUX  
PWMPAIR12  
(TOP)  
TOP  
PWM1  
PWM(TOP)  
(PWM1)  
DEAD-TIME  
POSTDT (TOP)  
PREDT(TOP))  
OUTX  
BOTTOM  
(PWM2)  
PWM2  
SELECT  
MUX  
PWMPAIR34  
(TOP)  
TOP  
(PWM3)  
PWM3  
PWM4  
PWM (TOP)  
6
DEAD-TIME  
POSTDT (TOP)  
PREDT (TOP)  
OUTX  
BOTTOM  
(PWM4)  
SELECT  
MUX  
PWMPAIR56  
(TOP)  
TOP  
(PWM5)  
PWM5  
PWM6  
PWM (TOP)  
DEAD-TIME  
POSTDT (TOP)  
PREDT (TOP)  
OUTX  
BOTTOM  
(PWM6)  
SELECT  
Figure 9-13. Dead-Time Generators  
Whenever an input to a dead-time generator transitions, a dead-time is  
inserted (for example, both PWMs in the pair are forced to their inactive  
state). The BOTTOM PWM signal is generated from the TOP PWM and  
the dead-time. In the case of output control enabled, the odd OUTx bits  
control the top PWMs, the even OUTx bits control the bottom PWMs with  
respect to the odd OUTx bits (see Table 9-4). Figure 9-14 shows the  
effects of the dead-time insertion.  
Examples of dead-time insertion are shown in Figure 9-14 through  
Figure 9-16. Figure 9-15 shows the effects of dead-time insertion at the  
duty cycle boundaries (near 0% and 100% duty cycles). Figure 9-16  
shows the effects of dead-time insertion on pulse widths smaller than the  
dead-time.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
155  
Pulse-Width Modulator for Motor Control  
UP/DOWN COUNTER  
MODULUS = 4  
PWM VALUE = 2  
PWM VALUE = 2  
PWM VALUE = 3  
PWM1 W/  
NO DEAD-TIME  
PWM2 W/  
NO DEAD-TIME  
PWM1 W/  
DEAD-TIME = 2  
2
2
2
2
PWM2 W/  
2
2
DEAD-TIME = 2  
Figure 9-14. Effects of Dead-Time Insertion  
UP/DOWN COUNTER  
MODULUS = 3  
PWM VALUE = 1  
PWM VALUE = 1  
PWM VALUE = 3  
PWM VALUE = 3  
PWM1 W/  
NO DEAD-TIME  
PWM2 W/  
NO DEAD-TIME  
PWM1 W/  
DEAD-TIME = 2  
2
2
PWM2 W/  
DEAD-TIME = 2  
2
2
Figure 9-15. Dead-Time at Duty Cycle Boundaries  
Technical Data  
156  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Output Control  
UP/DOWN COUNTER  
MODULUS = 3  
PWM VALUE = 2  
PWM VALUE = 3  
PWM VALUE = 2  
PWM VALUE= 1  
PWM1 W/  
NO DEAD-TIME  
PWM2 W/  
NO DEAD-TIME  
PWM1 W/  
DEAD-TIME = 3  
3
3
3
PWM2 W/  
DEAD-TIME = 3  
3
3
3
Figure 9-16. Dead-Time and Small Pulse Widths  
9.6.3 Output Polarity  
The output polarity of the PWMs is determined by two options: TOPNEG  
and BOTNEG. The top polarity option, TOPNEG, controls the polarity of  
PWMs 1, 3, and 5. The bottom polarity option, BOTNEG, controls the  
polarity of PWMs 2, 4, and 6. Positive polarity means that when the PWM  
is active, the PWM output is high. Conversely, negative polarity means  
that when the PWM is active, PWM output is low. See Figure 9-17.  
NOTE: Both bits are found in the CONFIG register, which is a write-once  
register. This reduces the chances of the software inadvertently  
changing the polarity of the PWM signals and possibly damaging the  
motor drive hardware.  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
157  
Pulse-Width Modulator for Motor Control (PWMMC)  
Pulse-Width Modulator for Motor Control  
CENTER-ALIGNED POSITIVE POLARITY  
EDGE-ALIGNED POSITIVE POLARITY  
UP-ONLY COUNTER  
UP/DOWN COUNTER  
MODULUS = 4  
MODULUS = 4  
PWM = 0  
PWM = 1  
PWM = 2  
PWM = 3  
PWM = 4  
PWM = 0  
PWM = 1  
PWM = 2  
PWM = 3  
PWM = 4  
CENTER-ALIGNED NEGATIVE POLARITY  
EDGE-ALIGNED NEGATIVE POLARITY  
UP-ONLY COUNTER  
MODULUS = 4  
UP/DOWN COUNTER  
MODULUS = 4  
PWM = 0  
PWM = 1  
PWM = 2  
PWM = 3  
PWM = 4  
PWM = 0  
PWM = 1  
PWM = 2  
PWM = 3  
PWM = 4  
Figure 9-17. PWM Polarity  
Technical Data  
158  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Pulse-Width Modulator for Motor Control (PWMMC)  
Output Control  
9.6.4 Output Port Control Register  
Conditions may arise in which the PWM pins need to be individually  
controlled. This is made possible by the PWM output control register  
(PWMOUT) shown in Figure 9-18.  
Ad-  
$0025  
dress:  
BIt 7  
0
6
5
OUT6  
0
4
OUT5  
0
3
OUT4  
0
2
OUT3  
0
1
OUT2  
0
Bit 0  
OUT1  
0
Read:  
Write:  
Reset:  
OUT-  
CTL  
0
0
= Unimplement-  
ed  
Figure 9-18. PWM Output Control Register (PWMOUT)  
If the OUTCTL bit is set, the PWM pins can be controlled by the OUTx  
bits. These bits behave according to Table 9-4.  
Table 9-4. OUTx Bits  
OUTx Bit  
Complementary Mode  
1 PWM1 is active.  
Independent Mode  
1 PWM1 is active  
0 PWM1 is inactive  
OUT1  
0 PWM1 is inactive.  
1 PWM2 is complement of PWM1.  
0 PWM2 is inactive.  
1 PWM2 is active  
0 PWM2 is inactive  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
1 PWM3 is active.  
0 PWM3 is inactive.  
1 PWM3 is active  
0 PWM3 is inactive  
1 PWM4 is complement of PWM3.  
0 PWM4 is inactive.  
1 PWM4 is active  
0 PWM4 is inactive  
1 PWM5 is active.  
0 PWM5 is inactive.  
1 PWM5 is active  
0 PWM5 is inactive  
1 PWM6 is complement of PWM5.  
0 PWM6 is inactive.  
1 PWM6 is active  
0 PWM6 is inactive  
When OUTCTL is set, the polarity options TOPPOL and BOTPOL will  
still affect the outputs. In addition, if complementary operation is in use,  
the PWM pairs will not be allowed to be active simultaneously, and  
dead-time will still not be violated. When OUTCTL is set and  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
159  
Pulse-Width Modulator for Motor Control  
complimentary operation is in use, the odd OUTx bits are inputs to the  
dead-time generators as shown in Figure 9-14. Dead-time is inserted  
whenever the odd OUTx bit toggles as shown in Figure 9-19. Although  
dead-time is not inserted when the even OUTx bits change, there will be  
no dead-time violation as shown in Figure 9-20.  
Setting the OUTCTL bit does not disable the PWM generator and current  
sensing circuitry. They continue to run, but are no longer controlling the  
output pins. In addition, OUTCTL will control the PWM pins even when  
PWMEN = 0. When OUTCTL is cleared, the outputs of the PWM  
generator become the inputs to the dead-time and output circuitry at the  
beginning of the next PWM cycle.  
NOTE: To avoid an unexpected dead-time occurrence, it is recommended that  
the OUTx bits be cleared prior to entering and prior to exiting individual  
PWM output control mode.  
UP/DOWN COUNTER  
MODULUS=4  
DEAD-TIME = 2  
PWM VALUE = 3  
OUTCTL  
OUT1  
OUT2  
PWM1  
PWM2  
PWM1/PWM2  
DEAD-TIME  
2
2
2
DEAD-TIME INSERTED AS PART OF DEAD-TIME INSERTED DUE  
DEAD-TIME INSERTED  
DUE TO CLEARING OF  
OUT1 BIT  
NORMAL PWM OPERATION AS  
CONTROLLED BY CURRENT  
SENSING AND PWM GENERATOR  
TO SETTING OF OUT1 BIT  
Figure 9-19. Dead-Time Insertion During OUTCTL = 1  
Technical Data  
160  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Pulse-Width Modulator for Motor Control (PWMMC)  
Fault Protection  
UP/DOWN COUNTER  
MODULUS = 4  
DEAD-TIME = 2  
PWM VALUE = 3  
OUTCTL  
OUT1  
OUT2  
PWM1  
PWM2  
2
2
2
2
PWM1/PWM2  
DEAD-TIME  
NO DEAD-TIME INSERTED  
BECAUSE OUT1 IS NOT  
TOGGLING.  
DEAD-TIME INSERTED BECAUSE  
WHEN OUTCTL WAS SET, THE  
STATE OF OUT1 WAS SUCH THAT  
PWM1 WAS DIRECTED TO TOGGLE  
DEAD-TIMES INSERTED  
BECAUSE OUT1 TOGGLES,  
DIRECTING PWM1 TO  
TOGGLE.  
Figure 9-20. Dead-Time Insertion During OUTCTL = 1  
9.7 Fault Protection  
Conditions may arise in the external drive circuitry which require that the  
PWM signals become inactive immediately, such as an overcurrent fault  
condition. Furthermore, it may be desirable to selectively disable  
PWM(s) solely with software.  
One or more PWM pins can be disabled (forced to their inactive state)  
by applying a logic high to either of the two external fault pins or by  
writing a logic high to either of the disable bits (DISX and DISY in PWM  
control register 1). Figure 9-21 shows the structure of the PWM  
disabling scheme. While the PWM pins are disabled, they are forced to  
their inactive state. The PWM generator continues to run only the  
output pins are disabled  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
161  
Pulse-Width Modulator for Motor Control  
DISY  
SOFTWARE X DISABLE  
CYCLE START  
S
Q
R
BANK Y  
DISABLE  
FMODE4  
FAULT PIN 4 DISABLE  
AUTO  
MODE  
FPIN4  
LOGIC HIGH FOR FAULT  
S
Q
TWO  
ONE  
SHOT  
R
SAMPLE  
S
Q
FFLAG4  
FAULT  
FILTER  
MANUAL  
MODE  
PIN4  
R
CLEAR BY WRITING 1 TO FTACK4  
INTERRUPT REQUEST  
FINT4  
The example is of fault pin 4 with DISY.  
Note: In manual mode (FMODE = 0), fault 4 may be cleared only if a logic level low  
at the input of the fault pin is present.  
CYCLE START  
FMODE1  
FAULT PIN 1 DISABLE  
AUTO  
FPIN1  
MODE  
LOGIC HIGH FOR FAULT  
S
Q
BANK X DISABLE  
TWO  
ONE  
SHOT  
FAULT  
PIN1  
R
SAMPLE  
S
Q
FFLAG1  
FILTER  
MANUAL  
MODE  
R
CLEAR BY WRITING 1 TO FTACK1  
INTERRUPT REQUEST  
FINT1  
The example is of fault pin 1.  
Note: In manual mode (FMODE = 0), fault 1 may be cleared regardless of the logic level  
at the input of the fault pin.  
Figure 9-21. PWM Disabling Scheme  
To allow for different motor configurations and the controlling of more  
than one motor, the PWM disabling function is organized as two banks,  
bank X and bank Y. Bank information combines with information from  
the disable mapping register to allow selective PWM disabling. Fault  
Technical Data  
162  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Fault Protection  
pin 1 and PWM disable bit X constitute the disabling function of bank X.  
Fault pin 4 and PWM disable bit Y constitute the disabling function of  
bank Y. Figure 9-22 and Figure 9-23 show the disable mapping  
write-once register and the decoding scheme of the bank which  
selectively disables PWM(s). When all bits of the disable mapping  
register are set, any disable condition will disable all PWMs.  
A fault can also generate a CPU interrupt. Each fault pin has its own  
interrupt vector.  
Ad-  
$0037  
dress:  
Bit 7  
Bit 7  
1
6
Bit 6  
1
5
Bit 5  
1
4
Bit 4  
1
3
Bit 3  
1
2
Bit 2  
1
1
Bit 1  
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Figure 9-22. PWM Disable Mapping Write-Once Register (DISMAP)  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
163  
Pulse-Width Modulator for Motor Control (PWMMC)  
Pulse-Width Modulator for Motor Control  
BIT 7  
DISABLE  
PWM PIN 1  
BIT 6  
BIT 5  
DISABLE  
PWM PIN 2  
DISABLE  
PWM PIN 3  
BIT 4  
BIT 3  
BANK X  
DISABLE  
BANK Y  
DISABLE  
DISABLE  
PWM PIN 4  
BIT 2  
DISABLE  
PWM PIN 5  
BIT 1  
BIT 0  
DISABLE  
PWM PIN 6  
Figure 9-23. PWM Disabling Decode Scheme  
9.7.1 Fault Condition Input Pins  
A logic high level on a fault pin disables the respective PWM(s)  
determined by the bank and the disable mapping register. Each fault pin  
incorporates a filter to assist in rejecting spurious faults. All of the  
external fault pins are software-configurable to re-enable the PWMs  
either with the fault pin (automatic mode) or with software (manual  
mode). Each fault pin has an associated FMODE bit to control the PWM  
re-enabling method. Automatic mode is selected by setting the FMODEx  
bit in the fault control register. Manual mode is selected when FMODEx  
is clear.  
NOTE: PORTC, when used as an input port, mirrors the state of the fault input  
pins, as PORTC has the capability of being used as an output port.  
When either pin of PORTC is set as an output, by setting its respective  
PORTC data direction register bit, the respective fault pin logic is  
disconnected from that pin and the fault input will be defaulted to normal  
Technical Data  
164  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Fault Protection  
non-fault condition to facilitate the use of PORTC as an output pin and  
not interfere with the PWM generator. To regain the fault capability for  
the respective fault input pin, clear the PORTC data direction register bit  
for that pin.  
Additionally, when the device is reset, by default, PORTC is configured  
as an input. If either bit(s) of PORTC is intended to be used as an output,  
the logic state of the driven devices input is indeterminate. The state of  
the driven device, if at a logic one will drive the respective bit of PORTC  
input high, thus causing a fault to be input to the respective PORTC input  
and to the PWM module.  
After setting the PORTC data direction register, clear the respective fault  
bits by writing a 1 to bit(s) 0 and or bit 6 in the FTACK Fault Acknowledge  
Register (FTACK) and Fault Status Registers (FSR), based on which  
PORTC bits that are used as output(s).  
9.7.1.1 Fault Pin Filter  
The two fault pins incorporate a filter to assist in determining a genuine  
fault condition. After a fault pin has been logic low for one CPU cycle, a  
rising edge (logic high) will be synchronously sampled once per CPU  
cycle for two cycles. If both samples are detected logic high, the  
corresponding FPIN bit and FFLAG bit will be set. The FPIN bit will  
remain set until the corresponding fault pin is logic low and  
synchronously sampled once in the following CPU cycle.  
9.7.1.2 Automatic Mode  
In automatic mode, the PWM(s) are disabled immediately once a filtered  
fault condition is detected (logic high). The PWM(s) remain disabled until  
the filtered fault condition is cleared (logic low) and a new PWM cycle  
begins as shown in Figure 9-24. Clearing the corresponding FFLAGx  
event bit will not enable the PWMs in automatic mode.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
165  
Pulse-Width Modulator for Motor Control  
FILTERED FAULT PIN  
PWM(s) ENABLED  
PWM(S) ENABLED  
PWM(S) DISABLED (INACTIVE)  
Figure 9-24. PWM Disabling in Automatic Mode  
The filtered fault pins logic state is reflected in the respective FPINx bit.  
Any write to this bit is overwritten by the pin state. The FFLAGx event bit  
is set with each rising edge of the respective fault pin after filtering has  
been applied. To clear the FFLAGx bit, the user must write a 1 to the  
corresponding FTACKx bit.  
If the FINTx bit is set, a fault condition resulting in setting the  
corresponding FFLAG bit will also latch a CPU interrupt request. The  
interrupt request latch is not cleared until one of these actions occurs:  
The FFLAGx bit is cleared by writing a 1 to the corresponding  
FTACKx bit.  
The FINTx bit is cleared. (This will not clear the FFLAGx bit.)  
Reset A reset automatically clears all four interrupt latches.  
If prior to a vector fetch the interrupt request latch is cleared by one of  
the above actions, a CPU interrupt will no longer be requested. A vector  
fetch does not alter the state of the PWMs, the FFLAGx event flag, or  
FINTx.  
NOTE: If the FFLAGx or FINTx bits are not cleared during the interrupt service  
routine, the interrupt request latch will not be cleared.  
Technical Data  
166  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Fault Protection  
9.7.1.3 Manual Mode  
In manual mode, the PWM(s) are disabled immediately once a filtered  
fault condition is detected (logic high). The PWM(s) remain disabled until  
software clears the corresponding FFLAGx event bit and a new PWM  
cycle begins. In manual mode, the fault pins are grouped in pairs, each  
pair sharing common functionality. A fault condition on fault 1 may be  
cleared, allowing the PWM(s) to enable at the start of a PWM cycle  
regardless of the logic level at the fault pin. See Figure 9-25. A fault  
condition on fault 4 can be cleared, allowing the PWM(s) to enable, only  
if a logic low level at the fault pin is present at the start of a PWM cycle.  
See Figure 9-26.  
FILTERED FAULT PIN 1  
PWM(S) ENABLED  
PWM(S) ENABLED  
PWM(S) DISABLED  
FFLAGx CLEARED  
Figure 9-25. PWM Disabling in Manual Mode (Example 1)  
FILTERED FAULT PIN 4  
PWM(S) ENABLED  
PWM(S) ENABLED  
PWM(S) DISABLED  
FFLAGx CLEARED  
Figure 9-26. PWM Disabling in Manual Mode (Example 2)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
167  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Pulse-Width Modulator for Motor Control  
The function of the fault control and event bits is the same as in  
automatic mode except that the PWMs are not re-enabled until the  
FFLAGx event bit is cleared by writing to the FTACKx bit and the filtered  
fault condition is cleared (logic low).  
9.7.2 Software Output Disable  
Setting PWM disable bit DISX or DISY in PWM control register 1  
immediately disables the corresponding PWM pins as determined by the  
bank and disable mapping register. The PWM pin(s) remain disabled  
until the PWM disable bit is cleared and a new PWM cycle begins as  
shown in Figure 9-27. Setting a PWM disable bit does not latch a CPU  
interrupt request, and there are no event flags associated with the PWM  
disable bits.  
9.7.3 Output Port Control  
When operating the PWMs using the OUTx bits (OUTCTL = 1), fault  
protection applies as described in this section. Due to the absence of  
periodic PWM cycles, fault conditions are cleared upon each CPU cycle  
and the PWM outputs are re-enabled, provided all fault clearing  
conditions are satisfied.  
DISABLE BIT  
PWM(S) DISABLED  
PWM(S) ENABLED  
PWM(S) ENABLED  
Figure 9-27. PWM Software Disable  
Technical Data  
168  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Initialization and the PWMEN Bit  
9.8 Initialization and the PWMEN Bit  
For proper operation, all registers should be initialized and the LDOK bit  
should be set before enabling the PWM via the PWMEN bit. When the  
PWMEN bit is first set, a reload will occur immediately, setting the PWMF  
flag and generating an interrupt if PWMINT is set. In addition, in  
complementary mode, PWM value registers 1, 3, and 5 will be used for  
the first PWM cycle if current sensing is selected.  
NOTE: If the LDOK bit is not set when PWMEN is set after a RESET, the  
prescaler and PWM values will be 0, but the modulus will be unknown.  
If the LDOK bit is not set after the PWMEN bit has been cleared then set  
(without a RESET), the modulus value that was last loaded will be used.  
If the dead-time register (DEADTM) is changed after PWMEN or  
OUTCTL is set, an improper dead-time insertion could occur. However,  
the dead-time can never be shorter than the specified value.  
Because of the equals-comparator architecture of this PWM, the  
modulus = 0 case is considered illegal. Therefore, the modulus register  
is not reset, and a modulus value of 0 will result in waveforms  
inconsistent with the other modulus waveforms. See 9.12.2 PWM  
Counter Modulo Registers.  
When PWMEN is set, the PWM pins change from high impedance to  
outputs. At this time, assuming no fault condition is present, the PWM  
pins will drive according to the PWM values, polarity, and dead-time.  
See the timing diagram in Figure 9-28.  
CPU CLOCK  
PWMEN  
DRIVE ACCORDING TO PWM  
VALUE, POLARITY, AND DEAD-TIME  
HI-Z IF OUTCTL = 0  
PWM PINS  
HI-Z IF OUTCTL = 0  
Figure 9-28. PWMEN and PWM Pins  
MC68HC908MR8 Rev 4.0  
TechnicalData  
169  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Pulse-Width Modulator for Motor Control  
When the PWMEN bit is cleared, the following will occur:  
PWM pins will be three-stated unless OUTCTL = 1.  
PWM counter is cleared and will not be clocked.  
Internally, the PWM generator will force its outputs to 0 to avoid  
glitches when the PWMEN is set again.  
When PWMEN is cleared, these features remain active:  
All fault circuitry  
Manual PWM pin control via the PWMOUT register  
Dead-time insertion when PWM pins change via the PWMOUT  
register  
NOTE: The PWMF flag and pending CPU interrupts are NOT cleared when  
PWMEN = 0.  
9.9 PWM Operation in Wait Mode  
When the microcontroller is put in low-power wait mode via the WAIT  
instruction, all clocks to the PWM module will continue to run. If an  
interrupt is issued from the PWM module (via a reload or a fault), the  
microcontroller will exit wait mode.  
Clearing the PWMEN bit before entering wait mode will reduce power  
consumption in wait mode because the counter, prescaler divider, and  
LDFQ divider will no longer be clocked. In addition, power will be  
reduced because the PWMs will no longer toggle.  
9.10 PWM Operation in Stop Mode  
When the microcontroller is put in low-power wait mode via the STOP  
instruction, all clocks to the PWM module will stop.  
NOTE: It is imperative that the program to clear the PWMEN bit before entering  
stop mode. Leaving the PWM module enabled during stop mode can  
destroy power stages connected to the PWM outputs. The PWM  
generator will no longer be clocked during stop mode and the PWM  
outputs will no longer toggle.  
Technical Data  
170  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
PWM Operation in Break Mode  
9.11 PWM Operation in Break Mode  
If the microcontroller goes into break mode (or background mode), the  
clocks to the PWM generator and output control blocks will freeze. This  
allows the user to set a breakpoint on a development system and  
examine the register contents and PWM outputs at that point. It also  
allows the user to single-step through the code.  
The clocks to the fault block will continue to run. Therefore, if a fault  
occurs while the microcontroller is in break mode, the PWM outputs will  
immediately be driven to their inactive state(s).  
During break mode, the system integration module (SIM) controls  
whether status bits in other modules can be cleared during the break  
state. The BCFE bit in the SIM break flag control register (SBFCR)  
enables software to clear status bits during the break state. Refer to  
7.7.5 SIM Break Flag Control Register.  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect the PWMF and FFLAGx bits during the break state, make  
sure BCFE is a logic 0. With BCFE at logic 0 (its default state), software  
can read and write the status and control registers during the break state  
without affecting the PWMF and FFLAGx bits.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
171  
Pulse-Width Modulator for Motor Control  
9.12 Control Logic Block  
This subsection provides a description of the control logic block.  
9.12.1 PWM Counter Registers  
The PWM counter registers (PCNTH and PCNTL) display the12-bit  
up/down or up-only counter. When the high byte of the counter is read,  
the lower byte is latched. PCNTL will hold this latched value until it is  
read.  
Ad-  
$0026  
dress:  
Bit 7  
0
6
0
5
0
4
0
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit11  
Bit 10  
Bit 9  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 9-29. PWM Counter Register High (PCNTH)  
Ad-  
dress:  
$0027  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read: Bit 7  
Write:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 9-30. PWM Counter Register Low (PCNTH)  
Technical Data  
172  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Control Logic Block  
9.12.2 PWM Counter Modulo Registers  
The PWM counter modulus registers (PDMODH and PDMODL) hold a  
12-bit unsigned number that determines the maximum count for the  
up/down or up-only counter. In center-aligned mode, the PWM period  
will be twice the modulus (assuming no prescaler). In edge-aligned  
mode, the PWM period will equal the modulus.  
Ad-  
$0028  
dress:  
Bit 7  
0
6
0
5
0
4
0
3
Bit 11  
X
2
Bit 10  
X
1
Bit 9  
X
Bit 0  
Bit 8  
X
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented X = Indeterminate  
Figure 9-31. PWM Counter Modulo Register High (PDMODH)  
Ad-  
dress:  
$0029  
Bit 7  
Bit 7  
X
6
Bit 6  
X
5
Bit 5  
X
4
Bit 4  
X
3
Bit 3  
X
2
Bit 2  
X
1
Bit 1  
X
Bit 0  
Bit 0  
X
Read:  
Write:  
Reset:  
= Unimplemented X = Indeterminate  
Figure 9-32. PWM Counter Modulo Register Low (PDMODL)  
To avoid erroneous PWM periods, this value is buffered and will not be  
used by the PWM generator until the LDOK bit has been set and the next  
PWM load cycle begins.  
NOTE: When reading this register, the value read is the buffer (not necessarily  
the value the PWM generator is currently using).  
Because of the equals-comparator architecture of this PWM, the  
modulus = 0 case is considered illegal. Therefore, the modulus register  
is not reset, and a modulus value of 0 will result in waveforms  
inconsistent with the other modulus waveforms. If a modulus of 0 is  
loaded, the counter will continually count down from $FFF. This  
operation will not be tested or guaranteed. (The user should consider it  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
173  
Pulse-Width Modulator for Motor Control (PWMMC)  
Pulse-Width Modulator for Motor Control  
illegal.) However, the dead-time constraints and fault conditions will still  
be guaranteed.  
9.12.3 PWMx Value Registers  
Each of the six PWMs has a 16-bit PWM value register.  
Bit 7  
Bit 15  
0
6
Bit 14  
0
5
Bit 13  
0
4
Bit 12  
0
3
Bit 11  
0
2
Bit 10  
0
1
Bit 9  
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Figure 9-33. PWMx Value Registers High (PVALxH)  
Bit 7  
Bit 7  
0
6
Bit 6  
0
5
Bit 5  
0
4
Bit 4  
0
3
Bit 3  
0
2
Bit 2  
0
1
Bit 1  
0
Bit 0  
Bit 0  
0
Read:  
Write:  
Reset:  
Figure 9-34. PWMx Value Registers Low (PVALxL)  
The 16-bit signed value stored in this register determines the duty cycle  
of the PWM. The duty cycle is defined as: (PWM value/modulus) x 100.  
Writing a number less than or equal to 0 causes the PWM to be off for  
the entire PWM period. Writing a number greater than or equal to the  
12-bit modulus causes the PWM to be on for the entire PWM period.  
If the complementary mode is selected, the PWM pairs share PWM  
value registers.  
To avoid erroneous PWM pulses, this value is buffered and will not be  
used by the PWM generator until the LDOK bit has been set and the next  
PWM load cycle begins.  
NOTE: When reading these registers, the value read is the buffer (not  
necessarily the value the PWM generator is currently using).  
Technical Data  
174  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Control Logic Block  
9.12.4 PWM Control Register 1  
PWM control register 1 controls PWM enabling/disabling, the loading of  
new modulus, prescaler, and PWM values, and the PWM correction  
method. In addition, this register contains the software disable bits to  
force the PWM outputs to their inactive states (according to the disable  
mapping register).  
Ad-  
$0020  
dress:  
Bit 7  
DISX  
0
6
5
4
3
0
2
0
1
LDOK  
0
Bit 0  
Read:  
Write:  
Reset:  
PW-  
MEN  
DISY PWMINT PWMF  
0
0
0
0
= Unimplemented  
Figure 9-35. PWM Control Register 1 (PCTL1)  
DISX Software Disable for Bank X Bit  
This read/write bit allows the user to disable one or more PWM pins  
in bank X. The pins that are disabled are determined by the disable  
mapping write-once register.  
1 = Disable PWM pins in bank X  
0 = Re-enable PWM pins at beginning of next PWM cycle  
DISY Software Disable for Bank Y Bit  
This read/write bit allows the user to disable one or more PWM pins  
in bank Y. The pins that are disabled are determined by the disable  
mapping write-once register.  
1 = Disable PWM pins in Bank Y Bit  
0 = Re-enable PWM pins at beginning of next PWM cycle  
PWMINT PWM Interrupt Enable Bit  
This read/write bit allows the user to enable and disable PWM CPU  
interrupts. If set, a CPU interrupt will be pending when the PWMF flag  
is set.  
1 = Enable PWM CPU interrupts  
0 = Disable PWM CPU interrupts  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
175  
Pulse-Width Modulator for Motor Control  
NOTE: When PWMINT is cleared, pending CPU interrupts are inhibited.  
PWMFPWM Reload Flag  
This read/write bit is set at the beginning of every reload cycle  
regardless of the state of the LDOK bit. This bit is cleared by reading  
PWM control register 1 with the PWMF flag set, then writing a logic 0  
to PWMF. If another reload occurs before the clearing sequence is  
complete, then writing logic 0 to PWMF has no effect.  
1 = New reload cycle began.  
0 = New reload cycle has not begun.  
NOTE: When PWMF is cleared, pending PWM CPU interrupts are cleared  
(excluding fault interrupts).  
CAUTION: Bits 2 and/or 3 of PCTL1 are reserved and must never be set to a 1.  
Setting these bits to a 1 will affect the active PWM value registers.  
Undesirable results will occur.  
LDOKLoad OK Bit  
This read/write bit allows the counter modulus, counter prescaler, and  
PWM values in the buffered registers to be used by the PWM  
generator. These values will not be used until the LDOK bit is set and  
a new PWM load cycle begins. LDOK may be cleared, if it is set, by  
writing a logic 0 to it prior to the beginning of a new PWM load cycle.  
Internally this bit is automatically cleared after the new values are  
loaded.  
1 = Okay to load new modulus, prescaler, and PWM values at  
beginning of next PWM load cycle  
0 = Not okay to load new modulus, prescaler, and PWM values  
NOTE: The user should initialize the PWM registers and set the LDOK bit before  
enabling the PWM.  
PWMEN PWM Module Enable Bit  
This read/write bit enables and disables the PWM generator and the  
PWM pins. When PWMEN is clear, the PWM generator is disabled  
and the PWM pins are in the high-impedance state (unless  
OUTCTL = 1). When the PWMEN bit is set, the PWM generator and  
PWM pins are activated. For more information, see 9.8 Initialization  
and the PWMEN Bit.  
1 = PWM generator and PWM pins enabled  
0 = PWM generator and PWM pins disabled  
Technical Data  
176  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Control Logic Block  
NOTE: A PWM CPU interrupt request can still be generated when LDOK is 0.  
9.12.5 PWM Control Register 2  
PWM control register 2 controls the PWM load frequency, the PWM  
correction method, and the PWM counter prescaler. For ease of  
software and to avoid erroneous PWM periods, some of these register  
bits are buffered. The PWM generator will not use the prescaler value  
until the LDOK bit has been set, and a new PWM cycle is starting. The  
correction bits are used at the beginning of each PWM cycle (if the  
ISENSx bits are configured for software correction). The load frequency  
bits are not used until the current load cycle is complete.  
NOTE: The user should initialize this register before enabling the PWM.  
Ad-  
$0021  
dress:  
Bit 7  
6
5
0
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
LDFQ1 LDFQ0  
SEL12 SEL34 SEL56 PRSC1 PRSC0  
0
0
0
0
0
0
0
0
= Unimplement-  
ed  
= Buffered  
Bold  
Figure 9-36. PWM Control Register 2 (PCTL2)  
LDFQ1 and LDFQ0 PWM Load Frequency Bits  
These buffered read/write bits select the PWM CPU load frequency  
according to Table 9-5.  
NOTE: When reading these bits, the value read is the buffer value (not  
necessarily the value the PWM generator is currently using).  
Table 9-5. PWM Reload Frequency  
Reload Frequency Bits  
PWM Reload Frequency  
LDFQ1:LDFQ0  
00  
01  
10  
11  
Every PWM cycle  
Every 2 PWM cycles  
Every 4 PWM cycles  
Every 8 PWM cycles  
MC68HC908MR8 Rev 4.0  
TechnicalData  
177  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Pulse-Width Modulator for Motor Control  
SEL12 Top/Bottom Correction Bit for PWM Pair 1 (PWMs 1 and 2)  
This buffered read/write bit selects which PWM value register is used  
for PWM pins 1 and 2 in complementary mode.  
1 = Use PWM value register 2.  
0 = Use PWM value register 1.  
NOTE: When reading this bit, the value read is the buffer value (not necessarily  
the value the output control block is currently using).  
SEL34 Top/Bottom Correction Bit for PWM Pair 2 (PWMs 3 and 4)  
This buffered read/write bit selects which PWM value register is used  
for PWM pins 3 and 4 in complementary mode.  
1 = Use PWM value register 4.  
0 = Use PWM value register 3.  
NOTE: When reading this bit, the value read is the buffer value (not necessarily  
the value the output control block is currently using).  
SEL56 Top/Bottom Correction Bit for PWM Pair 3 (PWMs 5 and 6)  
This buffered read/write bit selects which PWM value register is used  
for PWM pins 5 and 6 in complementary mode.  
1 = Use PWM value register 6.  
0 = Use PWM value register 5.  
NOTE: When reading this bit, the value read is the buffer value (not necessarily  
the value the output control block is currently using).  
PRSC1:PRSC0 PWM Prescaler Bits  
These buffered read/write bits allow the PWM clock frequency to be  
modified as shown in Table 9-6.  
NOTE: When reading these bits, the value read is the buffer value (not  
necessarily the value the PWM generator is currently using).  
Table 9-6. PWM Prescaler  
Prescaler Bits  
PWM Clock Frequency  
PRSC1:PRSC0  
fOP  
00  
01  
10  
11  
f
OP/2  
fOP/4  
OP/8  
f
Technical Data  
178  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Pulse-Width Modulator for Motor Control (PWMMC)  
Control Logic Block  
NOTE: If PRSC1 and PRSC2 are set to any value other than 0, there is a one  
PWM cycle latency time before the PWM pins are driven after the  
PWMEN bit is set.  
9.12.6 Dead-Time Write-Once Register  
The dead-time write-once register (DEADTM) holds an 8-bit value which  
specifies the number of CPU clock cycles to use for the dead-time when  
complementary PWM mode is selected. After this register is written for  
the first time, it cannot be rewritten unless a RESET occurs. The  
dead-time is not affected by changes to the prescaler value.  
Ad-  
$0036  
dress:  
Bit 7  
Bit 7  
1
6
Bit 6  
1
5
Bit 5  
1
4
Bit 4  
1
3
Bit 3  
1
2
Bit 2  
1
1
Bit 1  
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Figure 9-37. Dead-Time Write-Once Register (DEADTM)  
9.12.7 PWM Disable Mapping Write-Once Register  
The PWM disable mapping write-once register (DISMAP) holds an 8-bit  
value which determines which PWM pins will be disabled if an external  
fault or software disable occur. For a further description of the disable  
mapping, see 9.7 Fault Protection. After this register is written for the  
first time, it cannot be rewritten unless a reset occurs.  
Ad-  
$0037  
dress:  
Bit 7  
Bit 7  
1
6
Bit 6  
1
5
Bit 5  
1
4
Bit 4  
1
3
Bit 3  
1
2
Bit 2  
1
1
Bit 1  
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Figure 9-38. PWM Disable Mapping Write-Once Register (DISMAP)  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
179  
Pulse-Width Modulator for Motor Control (PWMMC)  
Pulse-Width Modulator for Motor Control  
9.12.8 Fault Control Register  
This register controls the fault protection circuitry.  
Ad-  
dress:  
$0022  
Bit 7  
6
5
0
4
0
3
0
2
0
1
FINT1  
0
Bit 0  
Read:  
Write:  
Reset:  
FMODE  
4
FMODE  
1
FINT4  
0
0
0
= Unimplemented  
Figure 9-39. Fault Control Register (FCR)  
FMODE1 Fault Mode Selection for Fault Pin 1 Bit (Automatic versus  
Manual Mode)  
This read/write bit allows the user to select between automatic and  
manual mode faults. For further description of each mode, see  
9.7 Fault Protection.  
1 = Automatic mode  
0 = Manual mode  
FINT1 Fault 1 Interrupt Enable Bit  
This read/write bit allows the CPU interrupt caused by faults on fault  
pin 1 to be enabled. The fault protection circuitry is independent of this  
bit and will always be active. If a fault is detected, the PWM pins will  
still be disabled according to the disable mapping register.  
1 = Fault pin 1 will cause CPU interrupts.  
0 = Fault pin 1 will not cause CPU interrupts.  
FMODE4 Fault Mode Selection for Fault Pin 4 Bit (Automatic versus  
Manual Mode)  
This read/write bit allows the user to select between automatic and  
manual mode faults. For further description of each mode, see  
9.7 Fault Protection.  
1 = Automatic mode  
0 = Manual mode  
Technical Data  
180  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Control Logic Block  
FINT4 Fault 4 Interrupt Enable Bit  
This read/write bit allows the CPU interrupt caused by faults on fault  
pin 4 to be enabled. The fault protection circuitry is independent of this  
bit and will always be active. If a fault is detected, the PWM pins will  
still be disabled according to the disable mapping register.  
1 = Fault pin 4 will cause CPU interrupts.  
0 = Fault pin 4 will not cause CPU interrupts.  
9.12.9 Fault Status Register  
This read-only register indicates the current fault status.  
Ad-  
$0023  
dress:  
Bit 7  
Read: FPIN4  
Write:  
6
5
0
4
0
3
0
2
0
1
Bit 0  
FFLAG  
4
FFLAG  
1
FPIN1  
Reset:  
U
0
U
0
U
0
U
0
= Unimplement-  
ed  
U = Unaffected  
Figure 9-40. Fault Status Register (FSR)  
FFLAG1 Fault Event Flag 1  
The FFLAG1 event bit is set within two CPU cycles after a rising edge  
on fault pin 1. To clear the FFLAG1 bit, the user must write a 1 to the  
FTACK1 bit in the fault acknowledge register.  
1 = A fault has occurred on fault pin 1  
0 = No new fault on fault pin 1  
FPIN1 State of Fault Pin 1  
This read-only bit allows the user to read the current state of fault  
pin 1.  
1 = Fault pin 1 is at logic 1  
0 = Fault pin 1 is at logic 0  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
181  
Pulse-Width Modulator for Motor Control  
FFLAG4 Fault Event Flag 4  
The FFLAG4 event bit is set within two CPU cycles after a rising edge  
on fault pin 4. To clear the FFLAG4 bit, the user must write a 1 to the  
FTACK4 bit in the fault acknowledge register.  
1 = A fault has occurred on fault pin 4  
0 = No new fault on fault pin 4  
FPIN4 State of Fault Pin 4 Bit  
This read-only bit allows the user to read the current state of fault  
pin 4.  
1 = Fault pin 4 is at logic 1.  
0 = Fault pin 4 is at logic 0.  
9.12.10 Fault Acknowledge Register  
The fault acknowledge register (FTACK) is used to acknowledge and  
clear the FFLAGs. In addition, it is used to monitor the current sensing  
bits to test proper operation.  
Ad-  
$0024  
dress:  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
FTACK  
4
FTACK  
1
0
0
0
0
0
0
0
0
= Unimplement-  
ed  
Figure 9-41. Fault Acknowledge Register (FTACK)  
Technical Data  
182  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Control Logic Block  
FTACK1 Fault Acknowledge 1 Bit  
The FTACK1 bit is used to acknowledge and clear FFLAG1. This bit  
will always read 0. Writing a 1 to this bit will clear FFLAG1. Writing a 0  
will have no effect.  
FTACK4 Fault Acknowledge 4 Bit  
The FTACK4 bit is used to acknowledge and clear FFLAG4. This bit  
will always read 0. Writing a 1 to this bit will clear FFLAG4. Writing a 0  
will have no effect.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
183  
Pulse-Width Modulator for Motor Control  
9.12.11 PWM Output Control Register  
This register is used to manually control the PWM pins.  
Ad-  
dress:  
$0025  
Bit 7  
0
6
5
OUT6  
0
4
OUT5  
0
3
OUT4  
0
2
OUT3  
0
1
OUT2  
0
Bit 0  
OUT1  
0
Read:  
Write:  
Reset:  
OUT-  
CTL  
0
0
= Unimplement-  
ed  
U = Unaffected  
Figure 9-42. PWM Output Control Register (PWMOUT)  
OUTCTLOutput control enable  
This read/write bit allows the user to manually control the PWM pins.  
When set, the PWM generator is no longer the input to the dead-time  
and output circuitry. The OUTx bits determine the state of the PWM  
pins. Setting the OUTCTL bit does not disable the PWM generator.  
The generator continues to run, but is no longer the input to the PWM  
dead-time and output circuitry. When OUTCTL is cleared, the outputs  
of the PWM generator immediately become the inputs to the  
dead-time and output circuitry.  
1 = PWM outputs controlled manually  
0 = PWM outputs determined by PWM generator  
Technical Data  
184  
MC68HC908MR8 Rev 4.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
PWM Glossary  
OUT6:OUT1PWM Pin Output Control Bits  
These read/write bits control the PWM pins according to Table 9-7.  
Table 9-7. OUTx Bits  
OUTx Bit  
Complementary Mode  
1 PWM1 is active  
0 PWM1 is inactive  
1 PWM2 is complement of PWM 1 1 PWM2 is active  
Independent Mode  
1 PWM1 is active  
0 PWM1 is inactive  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
0 PWM2 is inactive  
0 PWM2 is inactive  
1 PWM3 is active  
0 PWM3 is inactive  
1 PWM3 is active  
0 PWM3 is inactive  
1 PWM4 is complement of PWM 3 1 PWM4 is active  
0 PWM4 is inactive  
0 PWM4 is inactive  
1 PWM5 is active  
0 PWM5 is inactive  
1 PWM5 is active  
0 PWM5 is inactive  
1 PWM 6 is complement of PWM 5 1 PWM6 is active  
0 PWM6 is inactive 0 PWM6 is inactive  
9.13 PWM Glossary  
CPU Cycle One internal bus cycle (1/f )  
OP  
PWM Clock Cycle (or Period) One tick of the PWM counter (1/f  
with no prescaler). See Figure 9-43.  
OP  
PWM Cycle (or Period)  
Center-aligned mode: The time it takes the PWM counter to count  
up and count down (modulus * 2/f assuming no prescaler). See  
OP  
Figure 9-43.  
Edge-aligned mode: The time it takes the PWM counter to count  
up (modulus/f ). See Figure 9-43.  
OP  
MC68HC908MR8 Rev 4.0  
TechnicalData  
185  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Pulse-Width Modulator for Motor Control  
CENTER-ALIGNED MODE  
PWM CLOCK CYCLE  
PWM CYCLE (OR PERIOD)  
EDGE-ALIGNED MODE  
PWM  
CLOCK  
CYCLE  
PWM CYCLE (OR PERIOD)  
Figure 9-43. PWM Clock Cycle and PWM Cycle Definitions  
PWM Load Frequency The frequency at which new PWM  
parameters get loaded into the PWM. See Figure 9-44.  
LDFQ1:LDFQ0 = 01 — RELOAD EVERY TWO CYCLES  
PWM LOAD CYCLE  
(1/PWM LOAD FREQUENCY)  
RELOAD NEW  
MODULUS,  
RELOAD NEW  
MODULUS,  
PRESCALER,  
AND PWM VALUES  
IF LDOK = 1  
PRESCALER,  
AND PWM VALUES  
IF LDOK = 1  
Figure 9-44. PWM Load Cycle/Frequency Definition  
Technical Data  
186  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Technical Data MC68HC908MR8  
Section 10. Monitor ROM (MON)  
10.1 Contents  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
10.3 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
10.4 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
10.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . .188  
10.4.2 Forced Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
10.4.3 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
10.4.4 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
10.4.5 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
10.4.6 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
10.4.7 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
10.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
10.2 Introduction  
10.3 Features  
This section describes the monitor read-only memory (ROM). The  
monitor ROM (MON) allows complete testing of the microcontroller unit  
(MCU) through a 2-wire interface with a host computer.  
Features of the monitor ROM include:  
Normal user-mode pin functionality  
Standard mark/space non-return-to-zero (NRZ) communication  
with host computer  
9600 baud communication with host computer  
Execution of code in random-access memory (RAM) or ROM  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
Monitor ROM (MON)  
187  
Monitor ROM (MON)  
10.4 Functional Description  
The monitor ROM receives and executes commands from a host  
computer. Figure 10-1 shows a sample circuit used to enter monitor  
mode and communicate with a host computer via a standard RS-232  
interface.  
Simple monitor commands can access any memory address. In monitor  
mode, the MCU can execute host-computer code in RAM while all MCU  
pins retain normal operating mode functions. All communication  
between the host computer and the MCU is through the serial  
communications interface (SCI). A level-shifting RS-232 interface is  
required between the SCI and the host computer. PTB1 requires a  
pulldown resistor to ensure proper entry into monitor mode.  
10.4.1 Entering Monitor Mode  
Table 10-1 shows the pin conditions for entering monitor mode.  
Table 10-1. Mode Selection  
IRQ  
Pin  
$FFFE/  
$FFFF  
External  
Clock  
Baud  
Rate  
fop  
RESET  
PLL PTB0 PTB1  
CGMOUT  
COP  
Comment  
No operation  
until reset = VDD  
VSS  
VDD  
or  
VHI  
X
X
X
X
X
X
X
0
0
Disabled  
0
PLL configured with  
4.0 MHz 16.0 MHz 8.0 MHz Disabled 9600 BCS set by monitor  
code  
VHI  
VDD VSS  
ON  
PLL configured with  
4.0 MHz 16.0 MHz 8.0 MHz Disabled 9600 BCS set by monitor  
code  
Blank  
(FF)  
VDD VDD  
ON  
X
X
Enters monitor  
mode with any  
fOSC  
Blank  
(FF)  
VSS  
VDD  
fOSC  
fOSC/2  
fOSC/4  
OFF  
X
X
X
X
X
Disabled  
Enabled  
external clock rate  
within operating  
spec  
/1024  
X
VDD VDD  
Non-blank  
X
X
X
Enters user mode  
X = Dont care  
PTB0 = VDD and PTB1 = VSS to enter monitor mode  
PTB0 (RXD) and PTB1 (TXD) used for serial communications (all monitor mode)  
Technical Data  
188  
MC68HC908MR8 Rev 4.0  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Functional Description  
V
DD  
MC68HC908MR8  
10 kΩ  
RST  
0.1 µF  
V
HI  
10 kΩ  
IRQ  
V
DDA  
V
DDA  
0.1 µF  
V
SSA  
V
REFH  
V
REFH  
0.1 µF  
1
20  
CGMXFC  
MC145407  
+
+
+
+
0.02 µF  
10 µF  
10 µF  
10 µF  
10 µF  
3
4
18  
17  
OSC1  
OSC2  
V
20 pF  
X1  
4.00 MHz  
10 MΩ  
DD  
2
19  
20 pF  
DB-25  
2
5
6
16  
15  
V
SS  
3
7
V
DD  
V
DD  
0.1 µF  
PTB0/RXD  
PTB1/TXD  
10 kΩ  
Figure 10-1. Monitor Mode Circuit  
MC68HC908MR8 Rev 4.0  
TechnicalData  
189  
MOTOROLA  
Monitor ROM (MON)  
Monitor ROM (MON)  
Enter monitor mode by applying a logic 0 and then a logic 1 to the RST  
pin (see Table 10-1)  
Once out of reset, the MCU waits for the host to send eight security  
bytes. After receiving the security bytes, the MCU sends a break signal  
(10 consecutive logic 0s) to the host computer, indicating that it is ready  
to receive a command.  
Monitor mode uses alternate vectors for reset and SWI. The alternate  
vectors are in the $FE page instead of the $FF page and allow code  
execution from the internal monitor firmware instead of user code. The  
computer operating properly (COP) module is disabled in monitor mode  
as long as V is applied to either the IRQ pin or the RST pin. Refer to  
HI  
Section 7. System Integration Module (SIM) for more information on  
modes of operation.  
10.4.2 Forced Monitor Mode  
On FLASH parts, if the voltage applied to the IRQ1 is less than V , the  
HI  
MCU will come out of reset in user mode. The memory reset module  
monitors the reset vector fetches and will assert an internal reset if it  
detects that the reset vectors are erased. When the MCU comes out of  
reset with its reset vector erased, it is forced into monitor mode without  
requiring high voltage on the IRQ1 pin.  
The computer operating properly (COP) module is disabled in forced  
monitor mode. Any reset other than a power-on reset (POR) will  
automatically force the MCU to come back to the forced monitor mode.  
Table 10-2 is a summary of the differences between user mode and  
monitor mode.  
Table 10-2. Mode Differences  
Functions  
Reset  
Reset  
SWI  
SWI  
Modes  
COP  
Vector High Vector Low Vector High Vector Low  
User  
Enabled  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Disabled(1)  
Monitor  
1. If the high voltage (VHI) is removed from the IRQ pin or the RST pin, the SIM  
asserts its COP enable output.  
Technical Data  
190  
MC68HC908MR8 Rev 4.0  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Functional Description  
10.4.3 Baud Rate  
With a 4.0-MHz reference clock source, data is transferred between the  
monitor and host at 9600 baud. The communication baud rate is  
achieved by stepping up the internal CPU frequency to 8 MHz, using the  
phase-locked loop (PLL). A 4.0-MHz reference frequency is necessary  
in this mode as the PLL will not lock with any other reference clock.  
As described in Table 10-1, on FLASH parts when V is applied to IRQ  
SS  
with $FFFE and $FFFF = 0, the PLL setup is bypassed and the baud rate  
is equal to the reference frequency divided by 1024. This facilitates a  
faster communication rate in the interest of a first time programmed  
device. This allows selection of other reference frequencies and thus,  
facilities a faster communication rate. The reference frequency, in this  
case while not utilizing the PLL, is limited to the range of f . Refer to  
OP  
21.8 Control Timing.  
10.4.4 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero  
(NRZ) mark/space data format. See Figure 10-2 and Figure 10-3.  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
Figure 10-2. Monitor Data Format  
NEXT  
START  
BIT  
START  
STOP  
$A5  
BIT 0  
BIT 0  
BIT 1  
BIT 1  
BIT 2  
BIT 2  
BIT 3  
BIT 3  
BIT 4  
BIT 4  
BIT 5  
BIT 5  
BIT 6  
BIT 6  
BIT 7  
BIT 7  
BIT  
BIT  
STOP  
BIT  
START  
BIT  
NEXT  
START  
BIT  
BREAK  
Figure 10-3. Sample Monitor Waveforms  
The data transmit and receive rate is 9600 baud. Transmit and receive  
baud rates will be identical.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Monitor ROM (MON)  
191  
Monitor ROM (MON)  
10.4.5 Echoing  
As shown in Figure 10-4, the monitor ROM immediately echoes each  
received byte back to the PTB1/TXD pin for error checking.  
SENT TO  
MONITOR  
READ  
READ  
ADDR. HIGH ADDR. HIGH ADDR. LOW ADDR. LOW  
DATA  
ECHO  
RESULT  
Figure 10-4. Read Transaction  
Any result of a command appears after the echo of the last byte of the  
command.  
10.4.6 Break Signal  
A start bit, followed by nine low bits, is a break signal. See Figure 10-5.  
When the monitor receives a break signal, it delays two bit times before  
echoing the break signal.  
MISSING STOP BIT  
TWO-STOP-BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 10-5. Break Transaction  
Technical Data  
192  
MC68HC908MR8 Rev 4.0  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Functional Description  
10.4.7 Commands  
The monitor ROM uses these commands:  
READ, read memory  
WRITE, write memory  
IREAD, indexed read  
IWRITE, indexed write  
READSP, read stack pointer  
RUN, run user program  
Refer to Table 10-3 through Table 10-8.  
Table 10-3. READ (Read Memory) Command  
Description  
Read byte from memory  
Operand  
Specifies 2-byte address in high byte:low byte order  
Returns contents of specified address  
$4A  
Data returned  
Opcode  
Command sequence  
SENT TO  
MONITOR  
READ  
READ  
ADDR. HIGH  
ADDR. HIGH  
ADDR. LOW  
ADDR. LOW  
DATA  
ECHO  
RESULT  
Table 10-4. WRITE (Write Memory) Command  
Description  
Write byte to memory  
Operand  
Specifies 2-byte address in high byte:low byte order; low byte followed by data byte  
Data returned  
Opcode  
None  
$49  
Command sequence  
SENT TO  
MONITOR  
WRITE  
ECHO  
WRITE  
ADDR. HIGH  
ADDR. HIGH  
ADDR. LOW  
ADDR. LOW  
DATA  
DATA  
MC68HC908MR8 Rev 4.0  
TechnicalData  
193  
MOTOROLA  
Monitor ROM (MON)  
Monitor ROM (MON)  
Table 10-5. IREAD (Indexed Read) Command  
Description  
Read next 2 bytes in memory from last address accessed  
Specifies 2-byte address in high byte:low byte order  
Returns contents of next two addresses  
$1A  
Operand  
Data returned  
Opcode  
Command sequence  
SENT TO  
MONITOR  
IREAD  
IREAD  
DATA  
DATA  
RESULT  
ECHO  
Table 10-6. IWRITE (Indexed Write) Command  
Description  
Write to last address accessed + 1  
Operand  
Specifies single data byte  
Data returned  
Opcode  
None  
$19  
Command sequence  
SENT TO  
MONITOR  
IWRITE  
IWRITE  
DATA  
DATA  
ECHO  
NOTE: A sequence of IREAD or IWRITE commands can sequentially access a  
block of memory over the full 64-Kbyte memory map.  
Technical Data  
194  
MC68HC908MR8 Rev 4.0  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Functional Description  
Table 10-7. READSP (Read Stack Pointer) Command  
Description  
Reads stack pointer  
Operand  
None  
Data returned  
Opcode  
Returns stack pointer in high byte:low byte order  
$0C  
Command sequence  
SENT TO  
MONITOR  
READSP  
READSP  
SP HIGH  
SP LOW  
RESULT  
ECHO  
Table 10-8. RUN (Run User Program) Command  
Description  
Executes RTI instruction  
Operand  
None  
None  
$28  
Data returned  
Opcode  
Command sequence  
SENT TO  
MONITOR  
RUN  
RUN  
ECHO  
MC68HC908MR8 Rev 4.0  
TechnicalData  
195  
MOTOROLA  
Monitor ROM (MON)  
Monitor ROM (MON)  
10.5 Security  
A security feature discourages unauthorized reading of ROM locations  
while in monitor mode. The host can satisfy the security feature at  
monitor mode entry by sending eight security bytes that match the bytes  
at locations $FFF6$FFFD. Locations $FFF6$FFFD contain  
user-defined data.  
NOTE: Do not leave locations $FFF6$FFFD blank. For security reasons,  
program locations $FFF6$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for  
the host to send the eight security bytes on pin PTB0 (R D). If the  
X
received bytes match those at locations $FFF6$FFFD, the host  
satisfies the security feature and can read all ROM locations and  
execute code from ROM. Security remains satisfied until a power-on  
reset occurs. If the reset was not a power-on reset, security remains  
satisfied and security code entry is not required. See Figure 10-6.  
V
DD  
4096 + 32 CGMXCLK CYCLES  
24 BUS CYCLES  
RST  
PA7  
256 BUS CYCLES (MINIMUM)  
FROM HOST  
FROM MCU  
PA0  
1
4
1
2
4
1
1
Notes:  
1 = Echo delay, 2 bit times  
2 = Data return delay, 2 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 10-6. Monitor Mode Entry Timing  
Technical Data  
196  
MC68HC908MR8 Rev 4.0  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Security  
Upon power-on reset, if the received bytes of the security code do not  
match the data at locations $FFF6$FFFD, the host fails to satisfy the  
security feature. The MCU remains in monitor mode, but reading a ROM  
location returns an invalid value and trying to execute code from ROM  
causes an illegal address reset. After receiving the eight security bytes  
from the host, the MCU transmits a break character, signifying that it is  
ready to receive a command.  
NOTE: The MCU does not transmit a break character until after the host sends  
the eight security bytes.  
To determine whether the security code entered is correct, check to see  
if bit 6 of RAM address $60 is set. If it is, then the correct security code  
has been entered and ROM can be accessed.  
If the security sequence fails, the device can be reset (via power-pin  
reset only) and brought up in monitor mode to attempt another entry.  
After failing the security sequence, the FLASH memory can also be bulk  
erased by executing an erase routine that was downloaded into internal  
RAM. The bulk erase operation clears the security code locations so that  
all eight security bytes become $FF.  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
197  
Monitor ROM (MON)  
Monitor ROM (MON)  
Technical Data  
198  
MC68HC908MR8 Rev 4.0  
Monitor ROM (MON)  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 11. Timer Interface A (TIMA)  
11.1 Contents  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
11.3 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
11.4 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
11.4.1 TIMA Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . .204  
11.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
11.4.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
11.4.4 Pulse-Width Modulation (PWM) . . . . . . . . . . . . . . . . . . .207  
11.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
11.6 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
11.7 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
11.8 TIMA During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .212  
11.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
11.9.1 TIMA Clock Pin (PTB2/TCLKA) . . . . . . . . . . . . . . . . . . . .213  
11.9.2 TIMA Channel I/O Pins (PTB3/TCH0APTB4/TCH1A) . .213  
11.10 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
11.10.1 TIMA Status and Control Register . . . . . . . . . . . . . . . . .214  
11.10.2 TIMA Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . .216  
11.10.3 TIMA Counter Modulo Registers. . . . . . . . . . . . . . . . . . .217  
11.10.4 TIMA Channel Status and Control Registers. . . . . . . . .218  
11.10.5 TIMA Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . .222  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
Timer Interface A (TIMA)  
199  
Timer Interface A (TIMA)  
11.2 Introduction  
This section describes the timer interface module (TIMA). The TIMA is a  
2-channel timer that provides:  
Timing reference with input capture  
Output compare  
Pulse-width modulation (PWM) functions  
Refer to Figure 11-1 for a block diagram of the TIMA and to Figure 11-2  
for a summary of the registers.  
For further information regarding timers on M68HC08 family devices,  
please consult the HC08 Timer Reference Manual, TIM08RM/AD.  
11.3 Features  
Features of the TIMA include:  
Two input capture/output compare channels:  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered pulse-width modulation (PWM) signal  
generation  
Programmable TIMA clock input:  
7-frequency internal bus clock prescaler selection  
External TIMA clock input (4-MHz maximum frequency)  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIMA counter stop and reset bits  
Technical Data  
200  
MC68HC908MR8 Rev 4.0  
Timer Interface A (TIMA)  
MOTOROLA  
Timer Interface A (TIMA)  
Features  
TCLK  
PTB2/TCLKA  
PRESCALER SELECT  
INTERNAL BUS CLOCK  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
ELS0B  
ELS0A  
ELS1A  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
TOV0  
CH0MAX  
PTB3  
PTB3/TCH0A  
LOGIC  
CH0F  
MS0B  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH0IE  
MS0A  
ELS1B  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
TOV1  
CH1MAX  
PTB4  
LOGIC  
PTB4/TCH1A  
CH1F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH1IE  
MS1A  
Figure 11-1. TIMA Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read  
:
TOF  
0
0
TOIE TSTOP  
PS2  
PS1  
PS0  
TIMA Status/Control Regis-  
ter (TASC)  
$000  
E
Write  
:
0
0
TRST  
0
R
0
See page 214.  
Re-  
set:  
0
1
0
0
Bit 9  
R
0
Bit 8  
R
Read  
:
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10  
TIMA Counter Register High  
(TACNTH)  
$000  
F
Write  
:
R
R
R
0
R
0
R
0
R
0
See page 216.  
Re-  
set:  
0
0
0
0
R
= Reserved  
Figure 11-2. TIMA I/O Register Summary  
MC68HC908MR8 Rev 4.0  
TechnicalData  
201  
MOTOROLA  
Timer Interface A (TIMA)  
Timer Interface A (TIMA)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read  
:
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TIMA Counter Register Low  
(TACNTL)  
Write  
:
$0010  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
See page 216.  
Re-  
set:  
Read  
:
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10  
Bit 9  
1
Bit 8  
1
TIMA Counter Modulo Reg-  
ister High (TAMODH)  
See page 217.  
Write  
:
$0011  
$0012  
$0013  
$0014  
$0015  
Re-  
set:  
1
1
Bit 6  
1
1
Bit 5  
1
1
Bit 4  
1
1
Bit 3  
1
1
Bit 2  
1
Read  
:
Bit 7  
Bit 1  
1
Bit 0  
1
TIMA Counter Modulo Reg-  
ister Low (TAMODL)  
See page 217.  
Write  
:
Re-  
set:  
1
CH0F  
0
Read  
:
CH0MA  
X
TIMA Channel 0 Sta-  
CH0IE MS0B MS0A ELS0B ELS0A TOV0  
tus/Control Register Write  
(TASC0)  
:
See page 218.  
Re-  
set:  
0
0
0
0
0
0
0
0
Read  
:
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10  
Indeterminate after reset  
Bit 9  
Bit 8  
TIMA Channel 0 Register  
High (TACH0H)  
Write  
:
See page 222.  
Re-  
set:  
Read  
:
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TIMA Channel 0 Register  
Low (TACH0L)  
Write  
:
See page 218.  
Re-  
set:  
Indeterminate after reset  
R
= Reserved  
Figure 11-2. TIMA I/O Register Summary (Continued)  
Technical Data  
202  
MC68HC908MR8 Rev 4.0  
Timer Interface A (TIMA)  
MOTOROLA  
Timer Interface A (TIMA)  
Features  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read  
:
CH1F  
0
CH1MA  
X
TIMA Channel 1 Sta-  
CH1IE  
MS1A ELS1B ELS1A TOV1  
tus/Control Write  
$0016  
0
0
R
0
Register (TASC1)  
:
See page 218.  
Re-  
set:  
0
0
0
0
0
0
Read  
:
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10  
Indeterminate after reset  
Bit 9  
Bit 8  
TIMA Channel 1 Register  
High (TACH1H)  
Write  
:
$0017  
$0018  
See page 222.  
Re-  
set:  
Read  
:
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TIMA Channel 1 Register  
Low (TACH1L)  
Write  
:
See page 222.  
Re-  
set:  
Indeterminate after reset  
R
= Reserved  
Figure 11-2. TIMA I/O Register Summary (Continued)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
203  
MOTOROLA  
Timer Interface A (TIMA)  
Timer Interface A (TIMA)  
11.4 Functional Description  
Figure 11-1 shows the TIMA structure. The central component of the  
TIMA is the 16-bit TIMA counter that can operate as a free-running  
counter or a modulo up-counter. The TIMA counter provides the timing  
reference for the input capture and output compare functions. The TIMA  
counter modulo registers, TAMODHTAMODL, control the modulo  
value of the TIMA counter. Software can read the TIMA counter value at  
any time without affecting the counting sequence.  
The two TIMA channels are programmable independently as input  
capture or output compare channels.  
11.4.1 TIMA Counter Prescaler  
The TIMA clock source can be one of the seven prescaler outputs or the  
TIMA clock pin, PTB2/TCLKA. The prescaler generates seven clock  
rates from the internal bus clock. The prescaler select bits, PS[2:0], in  
the TIMA status and control register select the TIMA clock source.  
11.4.2 Input Capture  
An input capture function has three basic parts:  
1. Edge select logic  
2. Input capture latch  
3. 16-bit counter  
Two 8-bit registers, which make up the 16-bit input capture register, are  
used to latch the value of the free-running counter after the  
corresponding input capture edge detector senses a defined transition.  
The polarity of the active edge is programmable. The level transition  
which triggers the counter transfer is defined by the corresponding input  
edge bits (ELSxB and ELSxA in the TASC0 and TASC1 control registers  
with x referring to the active channel number).  
When an active edge occurs on the pin of an input capture channel, the  
TIMA latches the contents of the TIMA counter into the TIMA channel  
registers, TCHxHTCHxL. Input captures can generate TIMA CPU  
interrupt requests. Software can determine that an input capture event  
Technical Data  
204  
MC68HC908MR8 Rev 4.0  
Timer Interface A (TIMA)  
MOTOROLA  
Timer Interface A (TIMA)  
Functional Description  
has occurred by enabling input capture interrupts or by polling the status  
flag bit.  
The free-running counter contents are transferred to the TIMA channel  
status and control registers TACHxH and TACHxL (see 11.10.5 TIMA  
Channel Registers) on each proper signal transition regardless of  
whether the TIMA channel flag (CH0FCH1F in the TASC0TASC1  
registers) is set or clear. When the status flag is set, a CPU interrupt is  
generated if enabled. The value of the count latched or captured is the  
time of the event. Because this value is stored in the input capture  
register two bus cycles after the actual event occurs, user software can  
respond to this event at a later time and determine the actual time of the  
event. However, this must be done prior to another input capture on the  
same pin; otherwise, the previous time value will be lost.  
By recording the times for successive edges on an incoming signal,  
software can determine the period and/or pulse width of the signal. To  
measure a period, two successive edges of the same polarity are  
captured. To measure a pulse width, two alternate polarity edges are  
captured. Software should track the overflows at the 16-bit module  
counter to extend its range.  
Another use for the input capture function is to establish a time  
reference. In this case, an input capture function is used in conjunction  
with an output compare function. For example, to activate an output  
signal a specified number of clock cycles after detecting an input event  
(edge), use the input capture function to record the time at which the  
edge occurred. A number corresponding to the desired delay is added to  
this captured value and stored to an output compare register (see  
11.10.5 TIMA Channel Registers). Because both input captures and  
output compares are referenced to the same 16-bit modulo counter, the  
delay can be controlled to the resolution of the counter independent of  
software latencies.  
NOTE: Reset does not affect the contents of the input capture channel register  
(TACHxHTACHxL).  
11.4.3 Output Compare  
With the output compare function, the TIMA can generate a periodic  
pulse with a programmable polarity, duration, and frequency. When the  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Timer Interface A (TIMA)  
205  
Timer Interface A (TIMA)  
counter reaches the value in the registers of an output compare channel,  
the TIMA can set, clear, or toggle the channel pin. Output compares can  
generate TIMA CPU interrupt requests.  
11.4.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare  
pulses as described in 11.4.3 Output Compare. The pulses are  
unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIMA channel registers.  
An unsynchronized write to the TIMA channel registers to change an  
output compare value could cause incorrect operation for up to two  
counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new  
value prevents any compare during that counter overflow period. Also,  
using a TIMA overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIMA may  
pass the new value before it is written.  
Use these methods to synchronize unbuffered changes in the output  
compare value on channel x:  
When changing to a smaller value, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current output compare pulse. The interrupt routine has until  
the end of the counter overflow period to write the new value.  
When changing to a larger output compare value, enable TIMA  
overflow interrupts and write the new value in the TIMA overflow  
interrupt routine. The TIMA overflow interrupt occurs at the end of  
the current counter overflow period. Writing a larger value in an  
output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same counter  
overflow period.  
11.4.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare  
channel whose output appears on the PTB3/TCH0A pin. The TIMA  
channel registers of the linked pair alternately control the output.  
Technical Data  
206  
MC68HC908MR8 Rev 4.0  
Timer Interface A (TIMA)  
MOTOROLA  
Timer Interface A (TIMA)  
Functional Description  
Setting the MS0B bit in TIMA channel 0 status and control register  
(TASC0) links channel 0 and channel 1. The output compare value in the  
TIMA channel 0 registers initially controls the output on the  
PTB3/TCH0A pin. Writing to the TIMA channel 1 registers enables the  
TIMA channel 1 registers to synchronously control the output after the  
TIMA overflows. At each subsequent overflow, the TIMA channel  
registers (0 or 1) that control the output are the ones written to last. TSC0  
controls and monitors the buffered output compare function, and TIMA  
channel 1 status and control register (TASC1) is unused. While the  
MS0B bit is set, the channel 1 pin, PTB4/TCH1A, is available as a  
general-purpose input/output (I/O) pin.  
NOTE: In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should  
track the currently active channel to prevent writing a new value to the  
active channel. Writing to the active channel registers is the same as  
generating unbuffered output compares.  
11.4.4 Pulse-Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel,  
the TIMA can generate a PWM signal. The value in the TIMA counter  
modulo registers determines the period of the PWM signal. The channel  
pin toggles when the counter reaches the value in the TIMA counter  
modulo registers. The time between overflows is the period of the PWM  
signal.  
As Figure 11-3 shows, the output compare value in the TIMA channel  
registers determines the pulse width of the PWM signal. The time  
between overflow and output compare is the pulse width. Program the  
TIMA to clear the channel pin on output compare if the state of the PWM  
pulse is logic 1. Program the TIMA to set the pin if the state of the PWM  
pulse is logic 0.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Timer Interface A (TIMA)  
207  
Timer Interface A (TIMA)  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
PTBx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 11-3. PWM Period and Pulse Width  
The value in the TIMA counter modulo registers and the selected  
prescaler output determines the frequency of the PWM output. The  
frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIMA counter modulo registers produces a PWM  
period of 256 times the internal bus clock period if the prescaler select  
value is $000. See 11.10.1 TIMA Status and Control Register.  
The value in the TIMA channel registers determines the pulse width of  
the PWM output. The pulse width of an 8-bit PWM signal is variable in  
256 increments. Writing $0080 (128) to the TIMA channel registers  
produces a duty cycle of 128/256 or 50 percent.  
11.4.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as  
described in 11.4.4 Pulse-Width Modulation (PWM). The pulses are  
unbuffered because changing the pulse width requires writing the new  
pulse width value over the value currently in the TIMA channel registers.  
An unsynchronized write to the TIMA channel registers to change a  
pulse width value could cause incorrect operation for up to two PWM  
periods. For example, writing a new value before the counter reaches  
the old value but after the counter reaches the new value prevents any  
compare during that PWM period. Also, using a TIMA overflow interrupt  
routine to write a new, smaller pulse width value may cause the compare  
to be missed. The TIMA may pass the new value before it is written to  
the TIMA channel registers.  
Technical Data  
208  
MC68HC908MR8 Rev 4.0  
Timer Interface A (TIMA)  
MOTOROLA  
Timer Interface A (TIMA)  
Functional Description  
Use these methods to synchronize unbuffered changes in the PWM  
pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the  
PWM period to write the new value.  
When changing to a longer pulse width, enable TIMA overflow  
interrupts and write the new value in the TIMA overflow interrupt  
routine. The TIMA overflow interrupt occurs at the end of the  
current PWM period. Writing a larger value in an output compare  
interrupt routine (at the end of the current pulse) could cause two  
output compares to occur in the same PWM period.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable  
0 percent duty cycle generation and removes the ability of the channel  
to self-correct in the event of software error or noise. Toggling on output  
compare also can cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
11.4.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose  
output appears on the PTB3/TCH0A pin. The TIMA channel registers of  
the linked pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIMA channel 0 status and control register  
(TASC0) links channel 0 and channel 1. The TIMA channel 0 registers  
initially control the pulse width on the PTB3/TCH0A pin. Writing to the  
TIMA channel 1 registers enables the TIMA channel 1 registers to  
synchronously control the pulse width at the beginning of the next PWM  
period. At each subsequent overflow, the TIMA channel registers (0 or  
1) that control the pulse width are the ones written to last. TASC0  
controls and monitors the buffered PWM function, and TIMA channel 1  
status and control register (TASC1) is unused. While the MS0B bit is set,  
the channel 1 pin, PTB4/TCH1A, is available as a general-purpose I/O  
pin.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Timer Interface A (TIMA)  
209  
Timer Interface A (TIMA)  
NOTE: In buffered PWM signal generation, do not write new pulse width values  
to the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as  
generating unbuffered PWM signals.  
11.4.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered  
PWM signals, use this initialization procedure:  
1. In the TIMA status and control register (TASC):  
a. Stop the TIMA counter by setting the TIMA stop bit, TSTOP.  
b. Reset the TIMA counter and prescaler by setting the TIMA  
reset bit, TRST.  
2. In the TIMA counter modulo registers (TAMODHTAMODL), write  
the value for the required PWM period.  
3. In the TIMA channel x registers (TACHxHTACHxL), write the  
value for the required pulse width.  
4. In TIMA channel x status and control register (TASCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or  
1:0 (for buffered output compare or PWM signals) to the mode  
select bits, MSxBMSxA. See Table 11-2.  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on  
compare) to the edge/level select bits, ELSxBELSxA. The  
output action on compare must force the output to the  
complement of the pulse width level. See Table 11-2.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable  
0 percent duty cycle generation and removes the ability of the channel  
to self-correct in the event of software error or noise. Toggling on output  
compare can also cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
5. In the TIMA status control register (TASC), clear the TIMA stop bit,  
TSTOP.  
Technical Data  
210  
MC68HC908MR8 Rev 4.0  
Timer Interface A (TIMA)  
MOTOROLA  
Timer Interface A (TIMA)  
Interrupts  
Setting MS0B links channels 0 and 1 and configures them for buffered  
PWM operation. The TIMA channel 0 registers (TACH0HTACH0L)  
initially control the buffered PWM output. TIMA status control register 0  
(TASC0) controls and monitors the PWM signal from the linked  
channels. MS0B takes priority over MS0A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on  
TIMA overflows. Subsequent output compares try to force the output to  
a state it is already in and have no effect. The result is a 0 percent duty  
cycle output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the  
TOVx bit generates a 100 percent duty cycle output. See 11.10.4 TIMA  
Channel Status and Control Registers.  
11.5 Interrupts  
These TIMA sources can generate interrupt requests:  
TIMA overflow flag (TOF) The TOF bit is set when the TIMA  
counter reaches the modulo value programmed in the TIMA  
counter modulo registers. The TIMA overflow interrupt enable bit,  
TOIE, enables TIMA overflow CPU interrupt requests. TOF and  
TOIE are in the TIMA status and control register.  
TIMA channel flags (CH1FCH0F) The CHxF bit is set when an  
input capture or output compare occurs on channel x. Channel x  
TIMA CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE.  
11.6 Wait Mode  
The WAIT instruction puts the MCU in low-power standby mode.  
The TIMA remains active after the execution of a WAIT instruction. In  
wait mode, the TIMA registers are not accessible by the CPU. Any  
enabled CPU interrupt request from the TIMA can bring the MCU out of  
wait mode.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Timer Interface A (TIMA)  
211  
Timer Interface A (TIMA)  
If TIMA functions are not required during wait mode, reduce power  
consumption by stopping the TIMA before executing the WAIT  
instruction.  
11.7 Stop Mode  
TIMA is inactive after execution of a STOP instruction. The STOP  
instruction does not affect register conditions or the state of the TIMA  
counter. TIMA operation resumes when the MCU exits stop mode after  
an external interrupt.  
11.8 TIMA During Break Interrupts  
A break interrupt stops the TIMA counter and inhibits input captures.  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. See 7.7.5 SIM Break Flag Control  
Register.  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a 2-step read/write clearing procedure. If software does  
the first step on such a bit before the break, the bit cannot change during  
the break state as long as BCFE is at logic 0. After the break, doing the  
second step clears the status bit.  
11.9 I/O Signals  
Port B shares three of its pins with the TIMA. PTB2/TCLKA is an external  
clock input to the TIMA prescaler. The two TIMA channel I/O pins are  
PTB3/TCH0A and PTB4/TCH1A.  
Technical Data  
212  
MC68HC908MR8 Rev 4.0  
Timer Interface A (TIMA)  
MOTOROLA  
Timer Interface A (TIMA)  
I/O Registers  
11.9.1 TIMA Clock Pin (PTB2/TCLKA)  
PTB2/TCLKA is an external clock input that can be the clock source for  
the TIMA counter instead of the prescaled internal bus clock. Select the  
PTB2/TCLKA input by writing logic 1s to the three prescaler select bits,  
PS[2:0] (see 11.10.1 TIMA Status and Control Register). The  
minimum TCLK pulse width, TCLKLMIN or TCLKHMIN, is:  
1
------------------------------------- + t  
su  
bus frequency  
The maximum TCLK frequency is the least: 4 MHz or bus frequency ÷ 2.  
PTB2/TCLKA is available as a general-purpose I/O pin or ADC channel  
when not used as the TIMA clock input. When the PTB2/TCLKA pin is  
the TIMA clock input, it is an input regardless of the state of the DDRB2  
bit in data direction register B.  
11.9.2 TIMA Channel I/O Pins (PTB3/TCH0APTB4/TCH1A)  
Each channel I/O pin is programmable independently as an input  
capture pin or an output compare pin. PTB3/TCH0A and PTB3/TCH1A  
can be configured as buffered output compare or buffered PWM pins.  
11.10 I/O Registers  
These I/O registers control and monitor TIMA operation:  
TIMA status and control register (TASC)  
TIMA control registers (TACNTHTACNTL)  
TIMA counter modulo registers (TAMODHTAMODL)  
TIMA channel status and control registers (TASC0 and TASC1)  
TIMA channel registers (TACH0HTACH0L and  
TACH1HTACH1L)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Timer Interface A (TIMA)  
213  
Timer Interface A (TIMA)  
11.10.1 TIMA Status and Control Register  
The TIMA status and control register:  
Enables TIMA overflow interrupts  
Flags TIMA overflows  
Stops the TIMA counter  
Resets the TIMA counter  
Prescales the TIMA counter clock  
Address $000E  
:
Bit 7  
Read: TOF  
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Write:  
0
0
TRST  
0
R
0
Reset:  
R
= Reserved  
Figure 11-4. TIMA Status and Control Register (TASC)  
TOF TIMA Overflow Flag Bit  
This read/write flag is set when the TIMA counter reaches the modulo  
value programmed in the TIMA counter modulo registers. Clear TOF  
by reading the TIMA status and control register when TOF is set and  
then writing a logic 0 to TOF. If another TIMA overflow occurs before  
the clearing sequence is complete, then writing logic 0 to TOF has no  
effect. Therefore, a TOF interrupt request cannot be lost due to  
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic  
1 to TOF has no effect.  
1 = TIMA counter has reached modulo value.  
0 = TIMA counter has not reached modulo value.  
TOIE TIMA Overflow Interrupt Enable Bit  
This read/write bit enables TIMA overflow interrupts when the TOF bit  
becomes set. Reset clears the TOIE bit.  
1 = TIMA overflow interrupts enabled  
0 = TIMA overflow interrupts disabled  
Technical Data  
214  
MC68HC908MR8 Rev 4.0  
Timer Interface A (TIMA)  
MOTOROLA  
Timer Interface A (TIMA)  
I/O Registers  
TSTOP TIMA Stop Bit  
This read/write bit stops the TIMA counter. Counting resumes when  
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIMA  
counter until software clears the TSTOP bit.  
1 = TIMA counter stopped  
0 = TIMA counter active  
NOTE: Do not set the TSTOP bit before entering wait mode if the TIMA is  
required to exit wait mode. Also, when the TSTOP bit is set and the timer  
is configured for input capture operation, input captures are inhibited  
until TSTOP is cleared.  
TRST TIMA Reset Bit  
Setting this write-only bit resets the TIMA counter and the TIMA  
prescaler. Setting TRST has no effect on any other registers.  
Counting resumes from $0000. TRST is cleared automatically after  
the TIMA counter is reset and always reads as logic 0. Reset clears  
the TRST bit.  
1 = Prescaler and TIMA counter cleared  
0 = No effect  
NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIMA  
counter at a value of $0000.  
PS[2:0] Prescaler Select Bits  
These read/write bits select either the PTB2/TCLKA pin or one of the  
seven prescaler outputs as the input to the TIMA counter as  
Table 11-1 shows. Reset clears the PS[2:0] bits.  
Table 11-1. Prescaler Selection  
PS[2:0]  
000  
TIMA Clock Source  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
PTB2/TCLKA  
001  
010  
011  
100  
101  
110  
111  
MC68HC908MR8 Rev 4.0  
TechnicalData  
215  
MOTOROLA  
Timer Interface A (TIMA)  
Timer Interface A (TIMA)  
11.10.2 TIMA Counter Registers  
The two read-only TIMA counter registers contain the high and low bytes  
of the value in the TIMA counter. Reading the high byte (TACNTH)  
latches the contents of the low byte (TACNTL) into a buffer. Subsequent  
reads of TACNTH do not affect the latched TACNTL value until TACNTL  
is read. Reset clears the TIMA counter registers. Setting the TIMA reset  
bit (TRST) also clears the TIMA counter registers.  
NOTE: If TACNTH is read during a break interrupt, be sure to unlatch TACNTL  
by reading TACNTL before exiting the break interrupt. Otherwise,  
TACNTL retains the value latched during the break.  
Register Name and Ad-  
dress:  
TACNTH $000F  
Bit 7  
6
5
Bit 13  
R
4
Bit 12  
R
3
Bit 11  
R
2
Bit 10  
R
1
Bit 9  
R
Bit 0  
Bit 8  
R
Read: Bit 15  
Bit 14  
Write:  
R
0
R
0
Reset:  
0
0
0
0
0
0
Register Name and Ad-  
dress:  
TACNTL $0010  
Bit 7  
6
5
Bit 5  
R
4
Bit 4  
R
3
Bit 3  
R
2
Bit 2  
R
1
Bit 1  
R
Bit 0  
Bit 0  
R
Read: Bit 7  
Bit 6  
R
Write:  
R
0
Reset:  
0
0
0
0
0
0
0
R
= Reserved  
Figure 11-5. TIMA Counter Registers (TACNTH and TACNTL)  
Technical Data  
216  
MC68HC908MR8 Rev 4.0  
Timer Interface A (TIMA)  
MOTOROLA  
Timer Interface A (TIMA)  
I/O Registers  
11.10.3 TIMA Counter Modulo Registers  
The read/write TIMA modulo registers contain the modulo value for the  
TIMA counter. When the TIMA counter reaches the modulo value, the  
overflow flag (TOF) becomes set, and the TIMA counter resumes  
counting from $0000 at the next timer clock. Writing to the high byte  
(TMODH) inhibits the TOF bit and overflow interrupts until the low byte  
(TMODL) is written. Reset sets the TIMA counter modulo registers.  
Register Name and Ad-  
dress:  
TAMODH $0011  
Bit 7  
Bit 15  
1
6
5
Bit 13  
1
4
Bit 12  
1
3
Bit 11  
1
2
Bit 10  
1
1
Bit 9  
1
Bit 0  
Bit 8  
1
Read:  
Write:  
Reset:  
Bit 14  
1
Register Name and Ad-  
dress:  
TAMODL $0012  
Bit 7  
Bit 7  
1
6
5
Bit 5  
1
4
Bit 4  
1
3
Bit 3  
1
2
Bit 2  
1
1
Bit 1  
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Bit 6  
1
Figure 11-6. TIMA Counter Modulo Registers (TMODH and TMODL)  
NOTE: Reset the TIMA counter before writing to the TIMA counter modulo  
registers.  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
217  
Timer Interface A (TIMA)  
Timer Interface A (TIMA)  
11.10.4 TIMA Channel Status and Control Registers  
Each of the TIMA channel status and control registers:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input  
capture trigger  
Selects output toggling on TIMA overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Register Name and Ad-  
dress:  
TASC0 $0013  
Bit 7  
6
5
MS0B  
0
4
3
2
1
Bit 0  
Read: CH0F  
CH0MA  
X
CH0IE  
0
MS0A ELS0B ELS0A TOV0  
Write:  
0
0
Reset:  
0
0
3
0
2
0
1
0
Register Name and Ad-  
dress:  
TASC1 $0016  
Bit 7  
6
5
0
4
Bit 0  
Read: CH1F  
CH1MA  
X
CH1IE  
MS1A ELS1B ELS1A TOV1  
Write:  
0
0
R
0
Reset:  
0
0
0
0
0
0
R
= Reserved  
Figure 11-7. TIMA Channel Status and Control Registers  
(TASC0TASC1)  
Technical Data  
218  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
Timer Interface A (TIMA)  
Timer Interface A (TIMA)  
I/O Registers  
CHxF Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set  
when an active edge occurs on the channel x pin. When channel x is  
an output compare channel, CHxF is set when the value in the TIMA  
counter registers matches the value in the TIMA channel x registers.  
When CHxIE = 1, clear CHxF by reading TIMA channel x status and  
control register with CHxF set, and then writing a logic 0 to CHxF. If  
another interrupt request occurs before the clearing sequence is  
complete, then writing logic 0 to CHxF has no effect. Therefore, an  
interrupt request cannot be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE Channel x Interrupt Enable Bit  
This read/write bit enables TIMA CPU interrupts on channel x. Reset  
clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation.  
MSxB exists only in the TIMA channel 0. Setting MS0B disables the  
channel 1 status and control register and reverts TCH1A to  
general-purpose I/O. Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture  
operation or unbuffered output compare/PWM operation. See  
Table 11-2.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level  
of the TCHx pin once PWM, input capture, or output compare  
operation is enabled. Reset clears the MSxA bit. See Table 11-2.  
1 = Initial output level low  
0 = Initial output level high  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Timer Interface A (TIMA)  
219  
Timer Interface A (TIMA)  
NOTE: Before changing a channel function by writing to the MSxB or MSxA bit,  
set the TSTOP and TRST bits in the TIMA status and control register  
(TASC).  
ELSxB and ELSxA Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits  
control the active edge-sensing logic on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA  
control the channel x output behavior when an output compare  
occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected  
to port B, and pin PTBx/TCHxA is available as a general-purpose I/O  
pin. However, channel x is at a state determined by these bits and  
becomes transparent to the respective pin when PWM, input capture,  
or output compare mode is enabled. Table 11-2 shows how ELSxA  
and ELSxA work. Reset clears the ELSxB and ELSxA bits.  
Table 11-2. Mode, Edge, and Level Selection  
MSxB:MSxA ELSxB:ELSxA  
Mode  
Configuration  
X0  
00  
00  
Pin under port control:  
Initialize timer  
Output level high  
Output  
preset  
X1  
Pin under port control:  
Initialize timer  
Output level low  
00  
00  
00  
01  
01  
01  
1X  
1X  
01  
10  
11  
01  
10  
11  
01  
10  
Capture on rising edge only  
Capture on falling edge only  
Capture on rising or falling edge  
Toggle output on compare  
Input  
capture  
Output  
compare Clear output on compare  
or PWM  
Set output on compare  
Buffered Toggle output on compare  
output  
Clear output on compare  
compare  
or  
buffered  
PWM  
1X  
11  
Set output on compare  
Technical Data  
220  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
Timer Interface A (TIMA)  
Timer Interface A (TIMA)  
I/O Registers  
NOTE: Before enabling a TIMA channel register for input capture operation,  
make sure that the PTBx/TACHx pin is stable for at least two bus clocks.  
TOVx Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit  
controls the behavior of the channel x output when the TIMA counter  
overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIMA counter overflow.  
0 = Channel x pin does not toggle on TIMA counter overflow.  
NOTE: When TOVx is set, a TIMA counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic 1, setting the CHxMAX bit forces the  
duty cycle of buffered and unbuffered PWM signals to 100 percent. As  
Figure 11-8 shows, the CHxMAX bit takes effect in the cycle after it  
is set or cleared. The output stays at the 100 percent duty cycle level  
until the cycle after CHxMAX is cleared.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PTBx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
TOVx  
Figure 11-8. CHxMAX Latency  
MC68HC908MR8 Rev 4.0  
TechnicalData  
221  
MOTOROLA  
Timer Interface A (TIMA)  
Timer Interface A (TIMA)  
11.10.5 TIMA Channel Registers  
These read/write registers contain the captured TIMA counter value of  
the input capture function or the output compare value of the output  
compare function. The state of the TIMA channel registers after reset is  
unknown.  
In input capture mode (MSxBMSxA = 0:0), reading the high byte of the  
TIMA channel x registers (TACHxH) inhibits input captures until the low  
byte (TACHxL) is read.  
In output compare mode (MSxBMSxA 0:0), writing to the high byte of  
the TIMA channel x registers (TACHxH) inhibits output compares until  
the low byte (TACHxL) is written.  
Register Name and Address:  
TACH0H $0014  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Indeterminate after reset  
Register Name and Address:  
TACH0L $0015  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Indeterminate after reset  
TACH1H $0017  
Register Name and Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Indeterminate after reset  
Register Name and Address:  
TACH1L $0018  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Indeterminate after reset  
Figure 11-9. TIMA Channel Registers (TACH0H/LTACH1H/L)  
Technical Data  
222  
MC68HC908MR8 Rev 4.0  
Timer Interface A (TIMA)  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 12. Timer Interface B (TIMB)  
12.1 Contents  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224  
12.3 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224  
12.4 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
12.4.1 TIMB Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . .228  
12.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228  
12.4.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230  
12.4.4 Pulse-Width Modulation (PWM) . . . . . . . . . . . . . . . . . . .231  
12.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
12.6 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
12.7 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
12.8 TIMB During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .236  
12.9 TIMB Channel I/O Pins (PTB5/TCH0BPTB6/TCH1B) . . . .237  
12.10 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237  
12.10.1 TIMB Status and Control Register . . . . . . . . . . . . . . . . .237  
12.10.2 TIMB Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . .240  
12.10.3 TIMB Counter Modulo Registers. . . . . . . . . . . . . . . . . . .241  
12.10.4 TIMB Channel Status and Control Registers. . . . . . . . .242  
12.10.5 TIMB Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . .245  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
Timer Interface B (TIMB)  
223  
Timer Interface B (TIMB)  
12.2 Introduction  
This section describes the timer interface module (TIMB). The TIMB is a  
2-channel timer that provides:  
A timing reference with input capture  
Output compare  
Pulse width modulation (PWM) functions  
Refer to Figure 12-1 for a block diagram of the TIMB and to Figure 12-2  
for a summary of the registers.  
For further information regarding timers on M68HC08 family devices,  
please consult the HC08 Timer Reference Manual, TIM08RM/AD.  
12.3 Features  
Features of the TIMB include:  
Two input capture/output compare channels  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered PWM signal generation  
Programmable TIMB clock with 7-frequency internal bus clock  
prescaler selection  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIMB counter stop and reset bits  
Technical Data  
224  
MC68HC908MR8 Rev 4.0  
Timer Interface B (TIMB)  
MOTOROLA  
Timer Interface B (TIMB)  
Features  
PRESCALER SELECT  
INTERNAL  
BUS CLOCK  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
ELS0B  
ELS0A  
ELS1A  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
TOV0  
CH0MAX  
PTB5  
PTB5/TCH0B  
LOGIC  
CH0F  
MS0B  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH0IE  
MS0A  
ELS1B  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
TOV1  
CH1MAX  
PTB6  
PTB6/TCH1B  
LOGIC  
CH1F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH1IE  
MS1A  
Figure 12-1. TIMB Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read  
:
TOF  
0
0
TIMB Status/Control Regis-  
TOIE TSTOP  
PS2  
PS1  
PS0  
ter Write  
$0051  
0
0
TRST  
0
R
0
(TBSC)  
See page 238.  
:
Re-  
set:  
0
1
0
0
Bit 9  
R
0
Bit 8  
R
Read  
:
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10  
TIMB Counter Register High  
(TBCNTH)  
Write  
:
$0052  
R
R
0
R
0
R
0
R
0
R
0
See page 240.  
Re-  
set:  
0
0
0
R
= Reserved  
Figure 12-2. TIMB I/O Register Summary  
MC68HC908MR8 Rev 4.0  
TechnicalData  
225  
MOTOROLA  
Timer Interface B (TIMB)  
Timer Interface B (TIMB)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read  
:
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TIMB Counter Register Low  
(TBCNTL)  
Write  
:
$0053  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
See page 240.  
Re-  
set:  
Read  
:
TIMB Counter Modulo Reg-  
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10  
Bit 9  
1
Bit 8  
1
ister High Write  
$0054  
$0055  
$0056  
$0057  
(TBMODH)  
See page 241.  
:
Re-  
set:  
1
1
Bit 6  
1
1
Bit 5  
1
1
Bit 4  
1
1
Bit 3  
1
1
Bit 2  
1
Read  
:
TIMB Counter Modulo Reg-  
Bit 7  
Bit 1  
1
Bit 0  
1
ister Low Write  
(TBMODL)  
See page 241.  
:
Re-  
set:  
1
CH0F  
0
Read  
:
CH0MA  
X
TIMB Channel 0 Sta-  
CH0IE MS0B MS0A ELS0B ELS0A TOV0  
tus/Control Register Write  
(TBSC0)  
:
See page 242.  
Re-  
set:  
0
0
0
0
0
0
0
0
Read  
:
TIMB Channel 0 Register  
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10  
Indeterminate after reset  
Bit 9  
Bit 8  
High Write  
(TBCH0H)  
See page 246.  
:
Re-  
set:  
R
= Reserved  
Figure 12-2. TIMB I/O Register Summary (Continued)  
Technical Data  
226  
MC68HC908MR8 Rev 4.0  
Timer Interface B (TIMB)  
MOTOROLA  
Timer Interface B (TIMB)  
Functional Description  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read  
:
TIMB Channel 0 Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Low Write  
$0058  
(TBCH0L)  
:
See page 246.  
Re-  
set:  
Indeterminate after reset  
Read  
:
CH1F  
0
R
0
CH1MA  
X
TIMB Channel 1 Sta-  
CH1IE  
0
MS1A ELS1B ELS1A TOV1  
tus/Control Register Write  
$0059  
0
0
(TBSC1)  
See page 246.  
:
Re-  
set:  
0
0
0
0
0
Read  
:
TIMB Channel 1 Register  
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10  
Indeterminate after reset  
Bit 9  
Bit 8  
$005  
A
High Write  
(TBCH1H)  
See page 246.  
:
Re-  
set:  
Read  
:
TIMB Channel 1 Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
$005  
B
Low Write  
(TBCH1L)  
See page 246.  
:
Re-  
set:  
Indeterminate after reset  
R
= Reserved  
Figure 12-2. TIMB I/O Register Summary (Continued)  
12.4 Functional Description  
Figure 12-1 shows the TIMB structure. The central component of the  
TIMB is the 16-bit TIMB counter that can operate as a free-running  
counter or a modulo up-counter. The TIMB counter provides the timing  
reference for the input capture and output compare functions. The TIMB  
counter modulo registers, TBMODHTBMODL, control the modulo  
value of the TIMB counter. Software can read the TIMB counter value at  
any time without affecting the counting sequence.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Timer Interface B (TIMB)  
227  
Timer Interface B (TIMB)  
The two TIMB channels are programmable independently as input  
capture or output compare channels.  
12.4.1 TIMB Counter Prescaler  
The TIMB clock source can be one of the seven prescaler outputs. The  
prescaler generates seven clock rates from the internal bus clock. The  
prescaler select bits, PS[2:0], in the TIMB status and control register  
select the TIMB clock source.  
12.4.2 Input Capture  
An input capture function has three basic parts:  
Edge select logic  
Input capture latch  
16-bit counter  
Two 8-bit registers, which make up the 16-bit input capture register, are  
used to latch the value of the free-running counter after the  
corresponding input capture edge detector senses a defined transition.  
The polarity of the active edge is programmable. The level transition  
which triggers the counter transfer is defined by the corresponding input  
edge bits (ELSxB and ELSxA in TBSC0 through TBSC1 control registers  
with x referring to the active channel number). When an active edge  
occurs on the pin of an input capture channel, the TIMB latches the  
contents of the TIMB counter into the TIMB channel registers,  
TCHxHTCHxL. Input captures can generate TIMB CPU interrupt  
requests. Software can determine that an input capture event has  
occurred by enabling input capture interrupts or by polling the status flag  
bit.  
The free-running counter contents are transferred to the TIMB channel  
status and control register, TBCHxHTBCHxL, (see 12.10.5 TIMB  
Channel Registers) on each proper signal transition regardless of  
whether the TIMB channel flag (CH0FCH1F in TBSC0TBSC1  
registers) is set or clear. When the status flag is set, a CPU interrupt is  
generated if enabled. The value of the count latched or capturedis the  
time of the event. Because this value is stored in the input capture  
register two bus cycles after the actual event occurs, user software can  
Technical Data  
228  
MC68HC908MR8 Rev 4.0  
Timer Interface B (TIMB)  
MOTOROLA  
Timer Interface B (TIMB)  
Functional Description  
respond to this event at a later time and determine the actual time of the  
event. However, this must be done prior to another input capture on the  
same pin; otherwise, the previous time value will be lost.  
By recording the times for successive edges on an incoming signal,  
software can determine the period and/or pulse width of the signal. To  
measure a period, two successive edges of the same polarity are  
captured. To measure a pulse width, two alternate polarity edges are  
captured. Software should track the overflows at the 16-bit module  
counter to extend its range.  
Another use for the input capture function is to establish a time  
reference. In this case, an input capture function is used in conjunction  
with an output compare function. For example, to activate an output  
signal a specified number of clock cycles after detecting an input event  
(edge), use the input capture function to record the time at which the  
edge occurred. A number corresponding to the desired delay is added to  
this captured value and stored to an output compare register (see  
12.10.5 TIMB Channel Registers). Because both input captures and  
output compares are referenced to the same 16-bit modulo counter, the  
delay can be controlled to the resolution of the counter independent of  
software latencies.  
NOTE: Reset does not affect the contents of the input capture channel register  
(TBCHxHTBCHxL).  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
229  
Timer Interface B (TIMB)  
Timer Interface B (TIMB)  
12.4.3 Output Compare  
With the output compare function, the TIMB can generate a periodic  
pulse with a programmable polarity, duration, and frequency. When the  
counter reaches the value in the registers of an output compare channel,  
the TIMB can set, clear, or toggle the channel pin. Output compares can  
generate TIMB CPU interrupt requests.  
12.4.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare  
pulses as described in 12.4.3 Output Compare. The pulses are  
unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIMB channel registers.  
An unsynchronized write to the TIMB channel registers to change an  
output compare value could cause incorrect operation for up to two  
counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new  
value prevents any compare during that counter overflow period. Also,  
using a TIMB overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIMB may  
pass the new value before it is written.  
Use these methods to synchronize unbuffered changes in the output  
compare value on channel x:  
When changing to a smaller value, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current output compare pulse. The interrupt routine has until  
the end of the counter overflow period to write the new value.  
When changing to a larger output compare value, enable TIMB  
overflow interrupts and write the new value in the TIMB overflow  
interrupt routine. The TIMB overflow interrupt occurs at the end of  
the current counter overflow period. Writing a larger value in an  
output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same counter  
overflow period.  
Technical Data  
230  
MC68HC908MR8 Rev 4.0  
Timer Interface B (TIMB)  
MOTOROLA  
Timer Interface B (TIMB)  
Functional Description  
12.4.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare  
channel whose output appears on the PTB5/TCH0B pin. The TIMB  
channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIMB channel 0 status and control register  
(TBSC0) links channel 0 and channel 1. The output compare value in the  
TIMB channel 0 registers initially controls the output on the  
PTB5/TCH0B pin. Writing to the TIMB channel 1 registers enables the  
TIMB channel 1 registers to synchronously control the output after the  
TIMB overflows. At each subsequent overflow, the TIMB channel  
registers (0 or 1) that control the output are the ones written to last. TSC0  
controls and monitors the buffered output compare function, and TIMB  
channel 1 status and control register (TBSC1) is unused. While the  
MS0B bit is set, the channel 1 pin, PTB6/TCH1B, is available as a  
general-purpose input/output (I/O) pin.  
NOTE: In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should  
track the currently active channel to prevent writing a new value to the  
active channel. Writing to the active channel registers is the same as  
generating unbuffered output compares.  
12.4.4 Pulse-Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel,  
the TIMB can generate a PWM signal. The value in the TIMB counter  
modulo registers determines the period of the PWM signal. The channel  
pin toggles when the counter reaches the value in the TIMB counter  
modulo registers. The time between overflows is the period of the PWM  
signal.  
As Figure 12-3 shows, the output compare value in the TIMB channel  
registers determines the pulse width of the PWM signal. The time  
between overflow and output compare is the pulse width. Program the  
TIMB to clear the channel pin on output compare if the state of the PWM  
pulse is logic 1. Program the TIMB to set the pin if the state of the PWM  
pulse is logic 0.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Timer Interface B (TIMB)  
231  
Timer Interface B (TIMB)  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
PTBx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 12-3. PWM Period and Pulse Width  
The value in the TIMB counter modulo registers and the selected  
prescaler output determines the frequency of the PWM output. The  
frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIMB counter modulo registers produces a PWM  
period of 256 times the internal bus clock period if the prescaler select  
value is $000 (see 12.10.1 TIMB Status and Control Register).  
The value in the TIMB channel registers determines the pulse width of  
the PWM output. The pulse width of an 8-bit PWM signal is variable in  
256 increments. Writing $0080 (128) to the TIMB channel registers  
produces a duty cycle of 128/256 or 50 percent.  
12.4.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as  
described in 12.4.4 Pulse-Width Modulation (PWM). The pulses are  
unbuffered because changing the pulse width requires writing the new  
pulse width value over the value currently in the TIMB channel registers.  
An unsynchronized write to the TIMB channel registers to change a  
pulse width value could cause incorrect operation for up to two PWM  
periods. For example, writing a new value before the counter reaches  
the old value but after the counter reaches the new value prevents any  
compare during that PWM period. Also, using a TIMB overflow interrupt  
routine to write a new, smaller pulse width value may cause the compare  
to be missed. The TIMB may pass the new value before it is written to  
the TIMB channel registers.  
Technical Data  
232  
MC68HC908MR8 Rev 4.0  
Timer Interface B (TIMB)  
MOTOROLA  
Timer Interface B (TIMB)  
Functional Description  
Use these methods to synchronize unbuffered changes in the PWM  
pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the  
PWM period to write the new value.  
When changing to a longer pulse width, enable TIMB overflow  
interrupts and write the new value in the TIMB overflow interrupt  
routine. The TIMB overflow interrupt occurs at the end of the  
current PWM period. Writing a larger value in an output compare  
interrupt routine (at the end of the current pulse) could cause two  
output compares to occur in the same PWM period.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable  
0 percent duty cycle generation and removes the ability of the channel  
to self-correct in the event of software error or noise. Toggling on output  
compare also can cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
12.4.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose  
output appears on the PTB5/TCH0B pin. The TIMB channel registers of  
the linked pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIMB channel 0 status and control register  
(TBSC0) links channel 0 and channel 1. The TIMB channel 0 registers  
initially control the pulse width on the PTB5/TCH0B pin. Writing to the  
TIMB channel 1 registers enables the TIMB channel 1 registers to  
synchronously control the pulse width at the beginning of the next PWM  
period. At each subsequent overflow, the TIMB channel registers (0 or  
1) that control the pulse width are the ones written to last. TBSC0  
controls and monitors the buffered PWM function, and TIMB channel 1  
status and control register (TBSC1) is unused. While the MS0B bit is set,  
the channel 1 pin, PTB6/TCH1B, is available as a general-purpose I/O  
pin.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Timer Interface B (TIMB)  
233  
Timer Interface B (TIMB)  
NOTE: In buffered PWM signal generation, do not write new pulse width values  
to the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as  
generating unbuffered PWM signals.  
12.4.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered  
PWM signals, use this initialization procedure:  
1. In the TIMB status and control register (TBSC):  
a. Stop the TIMB counter by setting the TIMB stop bit, TSTOP.  
b. Reset the TIMB counter and prescaler by setting the TIMB  
reset bit, TRST.  
2. In the TIMB counter modulo registers (TBMODHTBMODL), write  
the value for the required PWM period.  
3. In the TIMB channel x registers (TBCHxHTBCHxL), write the  
value for the required pulse width.  
4. In TIMB channel x status and control register (TBSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or  
1:0 (for buffered output compare or PWM signals) to the mode  
select bits, MSxBMSxA. See Table 12-2.  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on  
compare) to the edge/level select bits, ELSxBELSxA. The  
output action on compare must force the output to the  
complement of the pulse width level. See Table 12-2.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable  
0 percent duty cycle generation and removes the ability of the channel  
to self-correct in the event of software error or noise. Toggling on output  
compare can also cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
5. In the TIMB status control register (TBSC), clear the TIMB stop bit,  
TSTOP.  
Technical Data  
234  
MC68HC908MR8 Rev 4.0  
Timer Interface B (TIMB)  
MOTOROLA  
Timer Interface B (TIMB)  
Interrupts  
Setting MS0B links channels 0 and 1 and configures them for buffered  
PWM operation. The TIMB channel 0 registers (TBCH0HTBCH0L)  
initially control the buffered PWM output. TIMB status control register 0  
(TBSC0) controls and monitors the PWM signal from the linked  
channels. MS0B takes priority over MS0A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on  
TIMB overflows. Subsequent output compares try to force the output to  
a state it is already in and have no effect. The result is a 0 percent duty  
cycle output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the  
TOVx bit generates a 100 percent duty cycle output. See 12.10.4 TIMB  
Channel Status and Control Registers.  
12.5 Interrupts  
These TIMB sources can generate interrupt requests:  
TIMB overflow flag (TOF) The TOF bit is set when the TIMB  
counter reaches the modulo value programmed in the TIMB  
counter modulo registers. The TIMB overflow interrupt enable bit,  
TOIE, enables TIMB overflow CPU interrupt requests. TOF and  
TOIE are in the TIMB status and control register.  
TIMB channel flags (CH1FCH0F) The CHxF bit is set when an  
input capture or output compare occurs on channel x. Channel x  
TIMB CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE.  
12.6 Wait Mode  
The WAIT instruction puts the MCU in low-power standby mode.  
The TIMB remains active after the execution of a WAIT instruction. In  
wait mode, the TIMB registers are not accessible by the CPU. Any  
enabled CPU interrupt request from the TIMB can bring the MCU out of  
wait mode.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Timer Interface B (TIMB)  
235  
Timer Interface B (TIMB)  
If TIMB functions are not required during wait mode, reduce power  
consumption by stopping the TIMB before executing the WAIT  
instruction.  
12.7 Stop Mode  
TIMB is inactive after execution of a STOP instruction. The STOP  
instruction does not affect register conditions or the state of the TIMB  
counter.  
TIMB operation resumes when the MCU exits stop mode after an  
external interrupt.  
12.8 TIMB During Break Interrupts  
A break interrupt stops the TIMB counter and inhibits input captures.  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. See 7.7.5 SIM Break Flag Control  
Register.  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a 2-step read/write clearing procedure. If software does  
the first step on such a bit before the break, the bit cannot change during  
the break state as long as BCFE is at logic 0. After the break, doing the  
second step clears the status bit.  
Technical Data  
236  
MC68HC908MR8 Rev 4.0  
Timer Interface B (TIMB)  
MOTOROLA  
Timer Interface B (TIMB)  
TIMB Channel I/O Pins (PTB5/TCH0BPTB6/TCH1B)  
12.9 TIMB Channel I/O Pins (PTB5/TCH0BPTB6/TCH1B)  
Port B shares two of its pins with the TIMB. The two TIMB channel I/O  
pins are PTB5/TCH0B and PTB6/TCH1B.  
Each channel I/O pin is programmable independently as an input  
capture pin or an output compare pin. PTB5/TCH0BandPTB6/TCH1B  
can be configured as buffered output compare or buffered PWM pins.  
12.10 I/O Registers  
These I/O registers control and monitor TIMB operation:  
TIMB status and control register (TBSC)  
TIMB control registers (TBCNTHTBCNTL)  
TIMB counter modulo registers (TBMODHTBMODL)  
TIMB channel status and control registers (TBSC0 and TBSC1)  
TIMB channel registers (TBCH0HTBCH0L and  
TBCH1HTBCH1L)  
12.10.1 TIMB Status and Control Register  
The TIMB status and control register:  
Enables TIMB overflow interrupts  
Flags TIMB overflows  
Stops the TIMB counter  
Resets the TIMB counter  
Prescales the TIMB counter clock  
MC68HC908MR8 Rev 4.0  
TechnicalData  
237  
MOTOROLA  
Timer Interface B (TIMB)  
Timer Interface B (TIMB)  
Address $0051  
:
Bit 7  
Read: TOF  
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Write:  
0
0
TRST  
0
R
0
Reset:  
R
= Reserved  
Figure 12-4. TIMB Status and Control Register (TBSC)  
TOF TIMB Overflow Flag Bit  
This read/write flag is set when the TIMB counter reaches the modulo  
value programmed in the TIMB counter modulo registers. Clear TOF  
by reading the TIMB status and control register when TOF is set and  
then writing a logic 0 to TOF. If another TIMB overflow occurs before  
the clearing sequence is complete, then writing logic 0 to TOF has no  
effect. Therefore, a TOF interrupt request cannot be lost due to  
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic  
1 to TOF has no effect.  
1 = TIMB counter has reached modulo value.  
0 = TIMB counter has not reached modulo value.  
TOIE TIMB Overflow Interrupt Enable Bit  
This read/write bit enables TIMB overflow interrupts when the TOF bit  
becomes set. Reset clears the TOIE bit.  
1 = TIMB overflow interrupts enabled  
0 = TIMB overflow interrupts disabled  
TSTOP TIMB Stop Bit  
This read/write bit stops the TIMB counter. Counting resumes when  
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIMB  
counter until software clears the TSTOP bit.  
1 = TIMB counter stopped  
0 = TIMB counter active  
NOTE: Do not set the TSTOP bit before entering wait mode if the TIMB is  
required to exit wait mode. Also, when the TSTOP bit is set and the timer  
is configured for input capture operation, input captures are inhibited  
until TSTOP is cleared.  
Technical Data  
238  
MC68HC908MR8 Rev 4.0  
Timer Interface B (TIMB)  
MOTOROLA  
Timer Interface B (TIMB)  
I/O Registers  
TRST TIMB Reset Bit  
Setting this write-only bit resets the TIMB counter and the TIMB  
prescaler. Setting TRST has no effect on any other registers.  
Counting resumes from $0000. TRST is cleared automatically after  
the TIMB counter is reset and always reads as logic 0. Reset clears  
the TRST bit.  
1 = Prescaler and TIMB counter cleared  
0 = No effect  
NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIMB  
counter at a value of $0000.  
PS[2:0] Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the  
input to the TIMB counter as Table 12-1 shows. Reset clears the  
PS[2:0] bits.  
Table 12-1. Prescaler Selection  
PS[2:0]  
000  
TIMB Clock Source  
Internal Bus Clock ÷ 1  
Internal Bus Clock ÷ 2  
Internal Bus Clock ÷ 4  
Internal Bus Clock ÷ 8  
Internal Bus Clock ÷ 16  
Internal Bus Clock ÷ 32  
Internal Bus Clock ÷ 64  
Invalid: do not use this value  
001  
010  
011  
100  
101  
110  
111  
MC68HC908MR8 Rev 4.0  
TechnicalData  
239  
MOTOROLA  
Timer Interface B (TIMB)  
Timer Interface B (TIMB)  
12.10.2 TIMB Counter Registers  
The two read-only TIMB counter registers contain the high and low bytes  
of the value in the TIMB counter. Reading the high byte (TBCNTH)  
latches the contents of the low byte (TBCNTL) into a buffer. Subsequent  
reads of TBCNTH do not affect the latched TBCNTL value until TBCNTL  
is read. Reset clears the TIMB counter registers. Setting the TIMB reset  
bit (TRST) also clears the TIMB counter registers.  
NOTE: If TBCNTH is read during a break interrupt, be sure to unlatch TBCNTL  
by reading TBCNTL before exiting the break interrupt. Otherwise,  
TBCNTL retains the value latched during the break.  
Register Name and Ad-  
dress:  
TBCNTH $0052  
Bit 7  
6
5
Bit 13  
R
4
Bit 12  
R
3
Bit 11  
R
2
Bit 10  
R
1
Bit 9  
R
Bit 0  
Bit 8  
R
Read: Bit 15  
Bit 14  
Write:  
R
0
R
0
Reset:  
0
0
0
0
0
0
Register Name and Ad-  
dress:  
TBCNTL $0053  
Bit 7  
6
5
Bit 5  
R
4
Bit 4  
R
3
Bit 3  
R
2
Bit 2  
R
1
Bit 1  
R
Bit 0  
Bit 0  
R
Read: Bit 7  
Bit 6  
R
Write:  
R
0
Reset:  
0
0
0
0
0
0
0
R
= Reserved  
Figure 12-5. TIMB Counter Registers (TBCNTH and TBCNTL)  
Technical Data  
240  
MC68HC908MR8 Rev 4.0  
Timer Interface B (TIMB)  
MOTOROLA  
Timer Interface B (TIMB)  
I/O Registers  
12.10.3 TIMB Counter Modulo Registers  
The read/write TIMB modulo registers contain the modulo value for the  
TIMB counter. When the TIMB counter reaches the modulo value, the  
overflow flag (TOF) becomes set, and the TIMB counter resumes  
counting from $0000 at the next timer clock. Writing to the high byte  
(TMODH) inhibits the TOF bit and overflow interrupts until the low byte  
(TMODL) is written. Reset sets the TIMB counter modulo registers.  
Register Name and Ad-  
dress:  
TBMODH $0054  
Bit 7  
Bit 15  
1
6
5
Bit 13  
1
4
Bit 12  
1
3
Bit 11  
1
2
Bit 10  
1
1
Bit 9  
1
Bit 0  
Bit 8  
1
Read:  
Write:  
Reset:  
Bit 14  
1
Register Name and Ad-  
dress:  
TBMODL $0055  
Bit 7  
Bit 7  
1
6
5
Bit 5  
1
4
Bit 4  
1
3
Bit 3  
1
2
Bit 2  
1
1
Bit 1  
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Bit 6  
1
Figure 12-6. TIMB Counter Modulo Registers (TMODH and TMODL)  
NOTE: Reset the TIMB counter before writing to the TIMB counter modulo  
registers.  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
241  
Timer Interface B (TIMB)  
Timer Interface B (TIMB)  
12.10.4 TIMB Channel Status and Control Registers  
Each of the TIMB channel status and control registers:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input  
capture trigger  
Selects output toggling on TIMB overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Register Name and Ad-  
dress:  
TBSC0 $0056  
Bit 7  
6
5
MS0B  
0
4
3
2
1
Bit 0  
Read: CH0F  
CH0MA  
X
CH0IE  
0
MS0A ELS0B ELS0A TOV0  
Write:  
0
0
Reset:  
0
0
3
0
2
0
1
0
Register Name and Ad-  
dress:  
TBSC1 $0059  
Bit 7  
6
5
0
4
Bit 0  
Read: CH1F  
CH1MA  
X
CH1IE  
MS1A ELS1B ELS1A TOV1  
Write:  
0
0
R
0
Reset:  
0
0
0
0
0
0
R
= Reserved  
Figure 12-7. TIMB Channel Status and Control Registers  
(TBSC0TBSC1)  
CHxF Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set  
when an active edge occurs on the channel x pin. When channel x is  
an output compare channel, CHxF is set when the value in the TIMB  
counter registers matches the value in the TIMB channel x registers.  
Technical Data  
242  
MC68HC908MR8 Rev 4.0  
Timer Interface B (TIMB)  
MOTOROLA  
Timer Interface B (TIMB)  
I/O Registers  
When CHxIE = 1, clear CHxF by reading TIMB channel x status and  
control register with CHxF set, and then writing a logic 0 to CHxF. If  
another interrupt request occurs before the clearing sequence is  
complete, then writing logic 0 to CHxF has no effect. Therefore, an  
interrupt request cannot be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE Channel x Interrupt Enable Bit  
This read/write bit enables TIMB CPU interrupts on channel x. Reset  
clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation.  
MSxB exists only in the TIMB channel 0. Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture  
operation or unbuffered output compare/PWM operation. See  
Table 12-2.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level  
of the TCHx pin once PWM, input capture, or output compare  
operation is enabled. Reset clears the MSxA bit. See Table 12-2.  
1 = Initial output level low  
0 = Initial output level high  
NOTE: Before changing a channel function by writing to the MSxB or MSxA bit,  
set the TSTOP and TRST bits in the TIMB status and control register  
(TBSC).  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
243  
Timer Interface B (TIMB)  
Timer Interface B (TIMB)  
ELSxB and ELSxA Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits  
control the active edge-sensing logic on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA  
control the channel x output behavior when an output compare  
occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected  
to port B, and pin PTBx/TCHxB is available as a general-purpose I/O  
pin. However, channel x is at a state determined by these bits and  
becomes transparent to the respective pin when PWM, input capture,  
or output compare mode is enabled. Table 12-2 shows how ELSxA  
and ELSxA work. Reset clears the ELSxB and ELSxA bits.  
Table 12-2. Mode, Edge, and Level Selection  
MSxB:MSxA ELSxB:ELSxA  
Mode  
Configuration  
X0  
00  
Pin under port control;  
Initialize timer  
Output level high  
Output  
preset  
X1  
00  
Pin under port control;  
Initialize timer  
Output level low  
00  
00  
00  
01  
01  
01  
1X  
1X  
01  
10  
11  
01  
10  
11  
01  
10  
Capture on rising edge only  
Capture on falling edge only  
Capture on rising or falling edge  
Toggle output on compare  
Input  
capture  
Output  
compare Clear output on compare  
or PWM  
Set output on compare  
Buffered Toggle output on compare  
output  
Clear output on compare  
compare  
or  
1X  
11  
buffered Set output on compare  
PWM  
NOTE: Before enabling a TIMB channel register for input capture operation,  
make sure that the PTBx/TBCHx pin is stable for at least two bus clocks.  
Technical Data  
244  
MC68HC908MR8 Rev 4.0  
Timer Interface B (TIMB)  
MOTOROLA  
Timer Interface B (TIMB)  
I/O Registers  
TOVx Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit  
controls the behavior of the channel x output when the TIMB counter  
overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIMB counter overflow.  
0 = Channel x pin does not toggle on TIMB counter overflow.  
NOTE: When TOVx is set, a TIMB counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic 1, setting the CHxMAX bit forces the  
duty cycle of buffered and unbuffered PWM signals to 100 percent. As  
Figure 12-8 shows, the CHxMAX bit takes effect in the cycle after it  
is set or cleared. The output stays at the 100 percent duty cycle level  
until the cycle after CHxMAX is cleared.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PTBx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
TOVx  
Figure 12-8. CHxMAX Latency  
12.10.5 TIMB Channel Registers  
These read/write registers contain the captured TIMB counter value of  
the input capture function or the output compare value of the output  
compare function. The state of the TIMB channel registers after reset is  
unknown.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Timer Interface B (TIMB)  
245  
Timer Interface B (TIMB)  
In input capture mode (MSxBMSxA = 0:0), reading the high byte of the  
TIMB channel x registers (TBCHxH) inhibits input captures until the low  
byte (TBCHxL) is read.  
In output compare mode (MSxBMSxA 0:0), writing to the high byte of  
the TIMB channel x registers (TBCHxH) inhibits output compares until  
the low byte (TBCHxL) is written.  
Register Name and Address:  
TBCH0H $0057  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Indeterminate after reset  
Register Name and Address:  
Bit 7  
TBCH0L $0058  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Indeterminate after reset  
TBCH1H $005A  
Bit 3  
Bit 2  
Bit 1  
Register Name and Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Indeterminate after reset  
Register Name and Address:  
TBCH1L $005B  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Indeterminate after reset  
Figure 12-9. TIMB Channel Registers (TBCH0H/LTBCH1H/L)  
Technical Data  
246  
MC68HC908MR8 Rev 4.0  
Timer Interface B (TIMB)  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 13. Serial Communications Interface (SCI)  
13.1 Contents  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248  
13.3 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248  
13.4 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
13.4.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
13.4.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
13.4.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256  
13.5 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
13.6 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
13.7 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . .262  
13.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263  
13.8.1 PTE2/TxD (Transmit Data) . . . . . . . . . . . . . . . . . . . . . . . .263  
13.8.2 PTB0/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . .263  
13.9 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263  
13.9.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
13.9.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
13.9.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
13.9.4 SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
13.9.5 SCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . .275  
13.9.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276  
13.9.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . .276  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
Serial Communications Interface (SCI)  
247  
Serial Communications Interface (SCI)  
13.2 Introduction  
This section describes the serial communications interface (SCI) module  
which allows high-speed asynchronous communications with peripheral  
devices and other microcontroller units (MCUs).  
13.3 Features  
Features of the SCI module include:  
Full duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
32 programmable baud rates  
Programmable 8-bit or 9-bit character length  
Separately enabled transmitter and receiver  
Separate receiver and transmitter cpu interrupt requests  
Separate receiver and transmitter  
Programmable transmitter output polarity  
Two receiver wakeup methods:  
Idle line wakeup  
Address mark wakeup  
Technical Data  
248  
MC68HC908MR8 Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
Serial Communications Interface (SCI)  
Functional Description  
Interrupt-driven operation with eight interrupt flags:  
Transmitter empty  
Transmission complete  
Receiver full  
Idle receiver input  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
13.4 Functional Description  
The SCI allows full-duplex, asynchronous, NRZ serial communication  
among the MCU and remote devices, including other MCUs. The  
transmitter and receiver of the SCI operate independently, although they  
use the same baud rate generator. During normal operation, the CPU  
monitors the status of the SCI, writes the data to be transmitted, and  
processes received data.  
Figure 13-1 shows the structure of the SCI module. Figure 13-2  
provides a summary of the input/output (I/O) registers.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Serial Communications Interface (SCI)  
249  
Serial Communications Interface (SCI)  
INTERNAL BUS  
SCI DATA  
REGISTER  
SCI DATA  
REGISTER  
RECEIVE  
SHIFT REGISTER  
TRANSMIT  
SHIFT REGISTER  
PTB0/RxD  
PTB1/TxD  
TXINV  
SCTIE  
R8  
T8  
TCIE  
SCRIE  
ILIE  
TE  
SCTE  
TC  
RE  
RWU  
SBK  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
ENSCI  
LOOPS  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
M
BKF  
RPF  
ENSCI  
WAKE  
ILTY  
PEN  
PTY  
PRE-  
BAUD RATE  
÷ 4  
= F bus frequency  
f
OP  
SCALER GENERATOR  
f
OP  
DATA SELECTION  
CONTROL  
÷ 16  
Figure 13-1. SCI Module Block Diagram  
Technical Data  
250  
MC68HC908MR8 Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
Serial Communications Interface (SCI)  
Functional Description  
Addr.  
Register Name  
Bit 7  
6
5
4
M
0
3
2
1
PEN  
0
Bit 0  
PTY  
0
Read:  
LOOP  
S
SCI Control Register 1  
ENSCI TXINV  
WAKE ILTY  
$0038  
(SCC1) Write:  
See page 264.  
Reset:  
Read:  
0
0
0
0
TE  
0
0
RE  
0
SCI Control Register 2  
SCTIE TCIE SCRIE ILIE  
RWU  
0
SBK  
0
$0039  
$003A  
$003B  
$003C  
$003D  
$003E  
(SCC2) Write:  
See page 267.  
Reset:  
0
0
0
0
0
0
Read: R8  
SCI Control Register 3  
T8  
ORIE NEIE  
FEIE  
PEIE  
(SCC3) Write:  
See page 270.  
R
U
R
0
R
0
Reset:  
U
TC  
R
0
OR  
R
0
NF  
R
0
FE  
R
0
PE  
R
Read: SCTE  
SCRF IDLE  
SCI Status Register 1  
(SCS1) Write:  
See page 271.  
R
1
R
0
R
0
Reset:  
Read:  
1
0
0
0
0
0
0
0
0
0
0
BKF  
R
RPF  
R
SCI Status Register 2  
(SCS2) Write:  
See page 275.  
R
0
R
R
R
R
R
Reset:  
0
0
0
0
0
0
0
Read: R7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR) Write:  
See page 276.  
T7  
Reset:  
Read:  
Unaffected by reset  
0
0
R
0
0
R
0
SCI Baud Rate Register  
SCP1 SCP0  
SCR2 SCR1 SCR0  
(SCBR) Write:  
See page 276.  
R
0
Reset:  
0
0
0
0
0
R
= Reserved  
U = Unaffected  
Figure 13-2. SCI I/O Register Summary  
13.4.1 Data Format  
The SCI uses the standard non-return-to-zero mark/space data format  
illustrated in Figure 13-3.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Serial Communications Interface (SCI)  
251  
Serial Communications Interface (SCI)  
8-BIT DATA FORMAT  
BIT M IN SCC1 CLEAR  
POSSIBLE  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 0  
BIT 1  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 6  
BIT 7  
9-BIT DATA FORMAT  
BIT M IN SCC1 SET  
POSSIBLE  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 7  
BIT 8  
STOP  
BIT  
Figure 13-3. SCI Data Formats  
13.4.2 Transmitter  
Figure 13-4 shows the structure of the SCI transmitter.  
13.4.2.1 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of  
the M bit in SCI control register 1 (SCC1) determines character length.  
When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is  
the ninth bit (bit 8).  
13.4.2.2 Character Transmission  
During an SCI transmission, the transmit shift register shifts a character  
out to the PTB1/TxD pin. The SCI data register (SCDR) is the write-only  
buffer between the internal data bus and the transmit shift register.  
To initiate an SCI transmission:  
1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI)  
in SCI control register 1 (SCC1).  
2. Enable the transmitter by writing a logic 1 to the transmitter enable  
bit (TE) in SCI control register 2 (SCC2).  
3. Clear the SCI transmitter empty bit by first reading SCI status  
register 1 (SCS1) and then writing to the SCDR.  
4. Repeat step 3 for each subsequent transmission.  
Technical Data  
252  
MC68HC908MR8 Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
Serial Communications Interface (SCI)  
Functional Description  
At the start of a transmission, transmitter control logic automatically  
loads the transmit shift register with a preamble of logic 1s. After the  
preamble shifts out, control logic transfers the SCDR data into the  
transmit shift register. A logic 0 start bit automatically goes into the least  
significant bit (LSB) position of the transmit shift register. A logic 1 stop  
bit goes into the most significant bit (MSB) position.  
The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the  
SCDR transfers a byte to the transmit shift register. The SCTE bit  
indicates that the SCDR can accept new data from the internal data bus.  
If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the  
SCTE bit generates a transmitter CPU interrupt request.  
When the transmit shift register is not transmitting a character, the  
PTB1/TxD pin goes to the idle condition, logic 1. If at any time software  
clears the ENSCI bit in SCI control register 1 (SCC1), the transmitter and  
receiver relinquish control of the port B pins.  
13.4.2.3 Break Characters  
Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit  
shift register with a break character. A break character contains all logic  
0s and has no start, stop, or parity bit. Break character length depends  
on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic  
continuously loads break characters into the transmit shift register. After  
software clears the SBK bit, the shift register finishes transmitting the  
last break character and then transmits at least one logic 1. The  
automatic logic 1 at the end of a break character guarantees the  
recognition of the start bit of the next character.  
The SCI recognizes a break character when a start bit is followed by  
eight or nine logic 0 data bits and a logic 0 where the stop bit should be.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Serial Communications Interface (SCI)  
253  
Serial Communications Interface (SCI)  
INTERNAL BUS  
PRE-  
SCALER DIVIDER  
BAUD  
÷ 16  
÷ 4  
SCI DATA REGISTER  
SCP1  
SCP0  
SCR1  
SCR2  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
H
8
7
6
5
4
3
2
1
0
L
PTB1/TxD  
TXINV  
M
PEN  
PTY  
PARITY  
GENERATION  
T8  
TRANSMITTER  
CONTROL LOGIC  
TRANSMITTER CPU  
INTERRUPT REQUEST  
SCTE  
SBK  
SCTE  
LOOPS  
ENSCI  
TE  
SCTIE  
SCTIE  
TC  
TC  
TCIE  
TCIE  
Figure 13-4. SCI Transmitter  
Receiving a break character has these effects on SCI registers:  
Sets the framing error bit (FE) in SCS1  
Sets the SCI receiver full bit (SCRF) in SCS1  
Clears the SCI data register (SCDR)  
Clears the R8 bit in SCC3  
Sets the break flag bit (BKF) in SCS2  
May set the overrun (OR), noise flag (NF), parity error (PE), or  
reception-in-progress flag (RPF) bits  
Technical Data  
254  
MC68HC908MR8 Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
Serial Communications Interface (SCI)  
Functional Description  
13.4.2.4 Idle Characters  
An idle character contains all logic 1s and has no start, stop, or parity bit.  
Idle character length depends on the M bit in SCC1. The preamble is a  
synchronizing idle character that begins every transmission.  
If the TE bit is cleared during a transmission, the PTB1/TxD pin becomes  
idle after completion of the transmission in progress. Clearing and then  
setting the TE bit during a transmission queues an idle character to be  
sent after the character currently being transmitted.  
NOTE: When queueing an idle character, return the TE bit to logic 1 before the  
stop bit of the current character shifts out to the PTB1/TxD pin. Setting  
TE after the stop bit appears on PTB1/TxD causes data previously  
written to the SCDR to be lost.  
A good time to toggle the TE bit is when the SCTE bit becomes set and  
just before writing the next byte to the SCDR.  
13.4.2.5 Inversion of Transmitted Output  
The transmit inversion bit (TXINV) in SCI control register 1 (SCC1)  
reverses the polarity of transmitted data. All transmitted values, including  
idle, break, start, and stop bits, are inverted when TXINV is at logic 1.  
See 13.9.1 SCI Control Register 1.  
13.4.2.6 Transmitter Interrupts  
These conditions can generate CPU interrupt requests from the SCI  
transmitter:  
SCI transmitter empty (SCTE) The SCTE bit in SCS1 indicates  
that the SCDR has transferred a character to the transmit shift  
register. SCTE can generate a transmitter CPU interrupt request.  
Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2  
enables the SCTE bit to generate transmitter CPU interrupt  
requests.  
Transmission complete (TC) The TC bit in SCS1 indicates that  
the transmit shift register and the SCDR are empty and that no  
break or idle character has been generated. The transmission  
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to  
generate transmitter CPU interrupt requests.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Serial Communications Interface (SCI)  
255  
Serial Communications Interface (SCI)  
13.4.3 Receiver  
Figure 13-5 shows the structure of the SCI receiver.  
INTERNAL BUS  
SCR1  
SCR2  
SCR0  
SCP1  
SCP0  
SCI DATA REGISTER  
PRE-  
SCALER DIVIDER  
BAUD  
÷ 4  
÷ 16  
11-BIT  
RECEIVE SHIFT REGISTER  
f
OP  
DATA  
RECOVERY  
H
8
7
6
5
4
3
2
1
0
L
PTB0/Rx  
ALL 0s  
BKF  
RPF  
M
RWU  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
IDLE  
ILIE  
ILIE  
SCRF  
SCRIE  
SCRIE  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 13-5. SCI Receiver Block Diagram  
Technical Data  
256  
MC68HC908MR8 Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
Serial Communications Interface (SCI)  
Functional Description  
13.4.3.1 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the  
M bit in SCI control register 1 (SCC1) determines character length.  
When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the  
ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth  
bit (bit 7).  
13.4.3.2 Character Reception  
During an SCI reception, the receive shift register shifts characters in  
from the PTB0/RxD pin. The SCI data register (SCDR) is the read-only  
buffer between the internal data bus and the receive shift register.  
After a complete character shifts into the receive shift register, the data  
portion of the character transfers to the SCDR. The SCI receiver full bit,  
SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the  
received byte can be read. If the SCI receive interrupt enable bit, SCRIE,  
in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt  
request.  
13.4.3.3 Data Sampling  
The receiver samples the PTB0/RxD pin at the RT clock rate. The RT  
clock is an internal signal with a frequency 16 times the baud rate. To  
adjust for baud rate mismatch, the RT clock is resynchronized at these  
times (see Figure 13-6):  
After every start bit  
After the receiver detects a data bit change from logic 1 to logic 0  
(after the majority of data bit samples at RT8, RT9, and RT10  
return a valid logic 1 and the majority of the next RT8, RT9, and  
RT10 samples return a valid logic 0)  
To locate the start bit, data recovery logic does an asynchronous search  
for a logic 0 preceded by three logic 1s. When the falling edge of a  
possible start bit occurs, the RT clock begins to count to 16.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Serial Communications Interface (SCI)  
257  
Serial Communications Interface (SCI)  
START BIT  
LSB  
PTB0/RxD  
START BIT  
QUALIFICATION  
START BIT  
VERIFICATION  
DATA  
SAMPLING  
SAMPLES  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 13-6. Receiver Data Sampling  
To verify the start bit and to detect noise, data recovery logic takes  
samples at RT3, RT5, and RT7. Table 13-1 summarizes the results of  
the start bit verification samples.  
Table 13-1. Start Bit Verification  
RT3, RT5, and RT7  
Samples  
Start Bit  
Verification  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
Yes  
Yes  
Yes  
No  
0
1
1
0
1
0
0
0
Yes  
No  
No  
No  
If start bit verification is not successful, the RT clock is reset and a new  
search for a start bit begins.  
Technical Data  
258  
MC68HC908MR8 Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
Serial Communications Interface (SCI)  
Functional Description  
To determine the value of a data bit and to detect noise, recovery logic  
takes samples at RT8, RT9, and RT10. Table 13-2 summarizes the  
results of the data bit samples.  
Table 13-2. Data Bit Recovery  
RT8, RT9, and RT10  
Samples  
Data Bit  
Determination  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
NOTE: The RT8, RT9, and RT10 samples do not affect start bit verification. If  
any or all of the RT8, RT9, and RT10 start bit samples are logic 1s  
following a successful start bit verification, the noise flag (NF) is set and  
the receiver assumes that the bit is a start bit.  
To verify a stop bit and to detect noise, recovery logic takes samples at  
RT8, RT9, and RT10. Table 13-3 summarizes the results of the stop bit  
samples.  
Table 13-3. Stop Bit Recovery  
RT8, RT9, and RT10  
Samples  
Framing  
Error Flag  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
0
1
0
0
0
0
1
1
1
1
1
1
0
MC68HC908MR8 Rev 4.0  
TechnicalData  
259  
MOTOROLA  
Serial Communications Interface (SCI)  
Serial Communications Interface (SCI)  
13.4.3.4 Framing Errors  
If the data recovery logic does not detect a logic 1 where the stop bit  
should be in an incoming character, it sets the framing error bit, FE, in  
SCS1. The FE flag is set at the same time that the SCRF bit is set. A  
break character that has no stop bit also sets the FE bit.  
13.4.3.5 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other  
receivers in multiple-receiver systems, the receiver can be put into a  
standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the  
receiver into a standby state during which receiver interrupts are  
disabled.  
Depending on the state of the WAKE bit in SCC1, either of two  
conditions on the PTB0/RxD pin can bring the receiver out of the standby  
state:  
Address mark An address mark is a logic 1 in the most  
significant bit position of a received character. When the WAKE bit  
is set, an address mark wakes the receiver from the standby state  
by clearing the RWU bit. The address mark also sets the SCI  
receiver full bit, SCRF. Software can then compare the character  
containing the address mark to the user-defined address of the  
receiver. If they are the same, the receiver remains awake and  
processes the characters that follow. If they are not the same,  
software can set the RWU bit and put the receiver back into the  
standby state.  
Idle input line condition When the WAKE bit is clear, an idle  
character on the PTB0/RxD pin wakes the receiver from the  
standby state by clearing the RWU bit. The idle character that  
wakes the receiver does not set the receiver idle bit, IDLE, or the  
SCI receiver full bit, SCRF. The idle line type bit, ILTY, determines  
whether the receiver begins counting logic 1s as idle character bits  
after the start bit or after the stop bit.  
NOTE: Clearing the WAKE bit after the PTB0/RxD pin has been idle can cause  
the receiver to wake up immediately.  
Technical Data  
260  
MC68HC908MR8 Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
Serial Communications Interface (SCI)  
Functional Description  
13.4.3.6 Receiver Interrupts  
These sources can generate CPU interrupt requests from the SCI  
receiver:  
SCI receiver full (SCRF) The SCRF bit in SCS1 indicates that  
the receive shift register has transferred a character to the SCDR.  
SCRF can generate a receiver CPU interrupt request. Setting the  
SCI receive interrupt enable bit, SCRIE, in SCC2 enables the  
SCRF bit to generate receiver CPU interrupts.  
Idle input (IDLE) The IDLE bit in SCS1 indicates that 10 or 11  
consecutive logic 1s shifted in from the PTB0/RxD pin. The idle  
line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to  
generate CPU interrupt requests.  
13.4.3.7 Error Interrupts  
These receiver error flags in SCS1 can generate CPU interrupt requests:  
Receiver overrun (OR) The OR bit indicates that the receive  
shift register shifted in a new character before the previous  
character was read from the SCDR. The previous character  
remains in the SCDR, and the new character is lost. The overrun  
interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI  
error CPU interrupt requests.  
Noise flag (NF) The NF bit is set when the SCI detects noise on  
incoming data or break characters, including start, data, and stop  
bits. The noise error interrupt enable bit, NEIE, in SCC3 enables  
NF to generate SCI error CPU interrupt requests.  
Framing error (FE) The FE bit in SCS1 is set when a logic 0  
occurs where the receiver expects a stop bit. The framing error  
interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI  
error CPU interrupt requests.  
Parity error (PE) The PE bit in SCS1 is set when the SCI  
detects a parity error in incoming data. The parity error interrupt  
enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU  
interrupt requests.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Serial Communications Interface (SCI)  
261  
Serial Communications Interface (SCI)  
13.5 Wait Mode  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
The SCI module remains active after the execution of a WAIT  
instruction. In wait mode the SCI module registers are not accessible by  
the CPU. Any enabled CPU interrupt request from the SCI module can  
bring the MCU out of wait mode.  
If SCI module functions are not required during wait mode, reduce power  
consumption by disabling the module before executing the WAIT  
instruction.  
13.6 Stop Mode  
The SCI module is inactive after execution of a STOP instruction. The  
STOP instruction does not affect register conditions of the SCI. SCI  
operation resumes when the MCU exits stop mode after an external  
interrupt.  
13.7 SCI During Break Module Interrupts  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during interrupts generated by the break  
module. The BCFE bit in the SIM break flag control register (SBFCR)  
enables software to clear status bits during the break state.  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a 2-step read/write clearing procedure. If software does  
the first step on such a bit before the break, the bit cannot change during  
the break state as long as BCFE is at logic 0. After the break, doing the  
second step clears the status bit.  
Technical Data  
262  
MC68HC908MR8 Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
Serial Communications Interface (SCI)  
I/O Signals  
13.8 I/O Signals  
Port B shares two of its pins with the SCI module. The two SCI I/O pins  
are:  
PTB1/TxD Transmit data  
PTB0/RxD Receive data  
13.8.1 PTE2/TxD (Transmit Data)  
The PTB1/TxD pin is the serial data output from the SCI transmitter. The  
SCI shares the PTB1/TxD pin with port B. When the SCI is enabled, the  
PTB1/TxD pin is an output regardless of the state of the DDRF1 bit in  
data direction register B (DDRB).  
13.8.2 PTB0/RxD (Receive Data)  
The PTB0/RxD pin is the serial data input to the SCI receiver. The SCI  
shares the PTB0/RxD pin with port B. When the SCI is enabled, the  
PTB0/RxD pin is an input regardless of the state of the DDRB0 bit in data  
direction register B (DDRB).  
13.9 I/O Registers  
These I/O registers control and monitor SCI operation:  
SCI control register 1 (SCC1)  
SCI control register 2 (SCC2)  
SCI control register 3 (SCC3)  
SCI status register 1 (SCS1)  
SCI status register 2 (SCS2)  
SCI data register (SCDR)  
SCI baud rate register (SCBR)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Serial Communications Interface (SCI)  
263  
Serial Communications Interface (SCI)  
13.9.1 SCI Control Register 1  
SCI control register 1 (SCC1):  
Enables loop mode operation  
Enables the SCI  
Controls output polarity  
Controls character length  
Controls SCI wake-up method  
Controls idle character detection  
Enables parity function  
Controls parity type  
Ad-  
$0038  
dress:  
Bit 7  
6
5
4
M
0
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
LOOPS ENSCI TXINV  
0
0
0
Figure 13-7. SCI Control Register 1 (SCC1)  
LOOPS Loop Mode Select Bit  
This read/write bit enables loop mode operation. In loop mode the  
PTB0/RxD pin is disconnected from the SCI, and the transmitter  
output goes into the receiver input. Both the transmitter and the  
receiver must be enabled to use loop mode. Reset clears the LOOPS  
bit.  
1 = Loop mode enabled  
0 = Normal operation enabled  
ENSCI Enable SCI Bit  
This read/write bit enables the SCI and the SCI baud rate generator.  
Clearing ENSCI sets the SCTE and TC bits in SCI status register 1  
and disables transmitter interrupts. Reset clears the ENSCI bit.  
1 = SCI enabled  
0 = SCI disabled  
Technical Data  
264  
MC68HC908MR8 Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
Serial Communications Interface (SCI)  
I/O Registers  
TXINV Transmit Inversion Bit  
This read/write bit reverses the polarity of transmitted data. Reset  
clears the TXINV bit.  
1 = Transmitter output inverted  
0 = Transmitter output not inverted  
NOTE: Setting the TXINV bit inverts all transmitted values, including idle, break,  
start, and stop bits.  
M Mode (Character Length) Bit  
This read/write bit determines whether SCI characters are eight or  
nine bits long. (See Table 13-4.) The ninth bit can serve as an extra  
stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears  
the M bit.  
1 = 9-bit SCI characters  
0 = 8-bit SCI characters  
WAKE Wakeup Condition Bit  
This read/write bit determines which condition wakes up the SCI: a  
logic 1 (address mark) in the most significant bit (MSB) position of a  
received character or an idle condition on the PTB0/RxD pin. Reset  
clears the WAKE bit.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY Idle Line Type Bit  
This read/write bit determines when the SCI starts counting logic 1s  
as idle character bits. The counting begins either after the start bit or  
after the stop bit. If the count begins after the start bit, then a string of  
logic 1s preceding the stop bit may cause false recognition of an idle  
character. Beginning the count after the stop bit avoids false idle  
character recognition, but requires properly synchronized  
transmissions. Reset clears the ILTY bit.  
1 = Idle character bit count begins after stop bit.  
0 = Idle character bit count begins after start bit.  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
265  
Serial Communications Interface (SCI)  
Serial Communications Interface (SCI)  
PEN Parity Enable Bit  
This read/write bit enables the SCI parity function (see Table 13-4).  
When enabled, the parity function inserts a parity bit in the most  
significant bit position (see Figure 13-3). Reset clears the PEN bit.  
1 = Parity function enabled  
0 = Parity function disabled  
PTY Parity Bit  
This read/write bit determines whether the SCI generates and checks  
for odd parity or even parity (see Table 13-4). Reset clears the PTY  
bit.  
1 = Odd parity  
0 = Even parity  
NOTE: Changing the PTY bit in the middle of a transmission or reception can  
generate a parity error.  
Table 13-4. Character Format Selection  
Control Bits  
Character Format  
Character  
Length  
(Bits)  
Start  
Bits  
Data  
Bits  
Stop  
Parity  
M
PEN:PTY  
Bits  
0
1
0
0
1
1
0X  
0X  
10  
11  
10  
11  
1
1
1
1
1
1
8
9
7
7
8
8
None  
None  
Even  
Odd  
1
1
1
1
1
1
10  
11  
10  
10  
11  
11  
Even  
Odd  
Technical Data  
266  
MC68HC908MR8 Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
Serial Communications Interface (SCI)  
I/O Registers  
13.9.2 SCI Control Register 2  
SCI control register 2 (SCC2):  
Enables these CPU interrupt requests:  
Enables the SCTE bit to generate transmitter CPU interrupt  
requests  
Enables the TC bit to generate transmitter CPU interrupt  
requests  
Enables the SCRF bit to generate receiver CPU interrupt  
requests  
Enables the IDLE bit to generate receiver CPU interrupt  
requests  
Enables the transmitter  
Enables the receiver  
Enables SCI wake up  
Transmits SCI break characters  
Ad-  
dress:  
$0039  
Bit 7  
SCTIE  
0
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
Figure 13-8. SCI Control Register 2 (SCC2)  
SCTIE SCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate SCI transmitter  
CPU interrupt requests. Setting the SCTIE bit in SCC3 enables SCTE  
CPU interrupt requests. Reset clears the SCTIE bit.  
1 = SCTE enabled to generate CPU interrupt  
0 = SCTE not enabled to generate CPU interrupt  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Serial Communications Interface (SCI)  
267  
Serial Communications Interface (SCI)  
TCIE Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate SCI transmitter CPU  
interrupt requests. Reset clears the TCIE bit.  
1 = TC enabled to generate CPU interrupt requests  
0 = TC not enabled to generate CPU interrupt requests  
SCRIE SCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate SCI receiver  
CPU interrupt requests. Setting the SCRIE bit in SCC3 enables the  
SCRF bit to generate CPU interrupt requests. Reset clears the SCRIE  
bit.  
1 = SCRF enabled to generate CPU interrupt  
0 = SCRF not enabled to generate CPU interrupt  
ILIE Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate SCI receiver CPU  
interrupt requests. Reset clears the ILIE bit.  
1 = IDLE enabled to generate CPU interrupt requests  
0 = IDLE not enabled to generate CPU interrupt requests  
TE Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a  
preamble of 10 or 11 logic 1s from the transmit shift register to the  
PTB1/TxD pin. If software clears the TE bit, the transmitter completes  
any transmission in progress before the PTB1/TxD returns to the idle  
condition (logic 1). Clearing and then setting TE during a transmission  
queues an idle character to be sent after the character currently being  
transmitted. Reset clears the TE bit.  
1 = Transmitter enabled  
0 = Transmitter disabled  
NOTE: Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is  
clear. ENSCI is in SCI control register 1.  
RE Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit  
disables the receiver but does not affect receiver interrupt flag bits.  
Reset clears the RE bit.  
1 = Receiver enabled  
0 = Receiver disabled  
Technical Data  
268  
MC68HC908MR8 Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
Serial Communications Interface (SCI)  
I/O Registers  
NOTE: Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is  
clear. ENSCI is in SCI control register 1.  
RWU Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which  
receiver interrupts are disabled. The WAKE bit in SCC1 determines  
whether an idle input or an address mark brings the receiver out of the  
standby state and clears the RWU bit. Reset clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
SBK Send Break Bit  
Setting and then clearing this read/write bit transmits a break  
character followed by a logic 1. The logic 1 after the break character  
guarantees recognition of a valid start bit. If SBK remains set, the  
transmitter continuously transmits break characters with no logic 1s  
between them. Reset clears the SBK bit.  
1 = Transmit break characters  
0 = No break characters being transmitted  
NOTE: Do not toggle the SBK bit immediately after setting the SCTE bit.  
Toggling SBK too early causes the SCI to send a break character  
instead of a preamble.  
13.9.3 SCI Control Register 3  
SCI control register 3 (SCC3):  
Stores the ninth SCI data bit received and the ninth SCI data bit to  
be transmitted  
Enables SCI receiver full (SCRF)  
Enables SCI transmitter empty (SCTE)  
Enables the following interrupts:  
Receiver overrun interrupts  
Noise error interrupts  
Framing error interrupts  
Parity error interrupts  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Serial Communications Interface (SCI)  
269  
Serial Communications Interface (SCI)  
Ad-  
$003A  
dress:  
Bit 7  
R8  
R
6
5
0
4
0
3
ORIE  
0
2
NEIE  
0
1
FEIE  
0
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
T8  
R
0
R
0
U
U
R
= Reserved  
U = Unaffected  
Figure 13-9. SCI Control Register 3 (SCC3)  
R8 Received Bit 8  
When the SCI is receiving 9-bit characters, R8 is the read-only ninth  
bit (bit 8) of the received character. R8 is received at the same time  
that the SCDR receives the other 8 bits.  
When the SCI is receiving 8-bit characters, R8 is a copy of the eighth  
bit (bit 7). Reset has no effect on the R8 bit.  
T8 Transmitted Bit 8  
When the SCI is transmitting 9-bit characters, T8 is the read/write  
ninth bit (bit 8) of the transmitted character. T8 is loaded into the  
transmit shift register at the same time that the SCDR is loaded into  
the transmit shift register. Reset has no effect on the T8 bit.  
ORIE Receiver Overrun Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests  
generated by the receiver overrun bit, OR.  
1 = SCI error CPU interrupt requests from OR bit enabled  
0 = SCI error CPU interrupt requests from OR bit disabled  
NEIE Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests  
generated by the noise error bit, NE. Reset clears NEIE.  
1 = SCI error CPU interrupt requests from NE bit enabled  
0 = SCI error CPU interrupt requests from NE bit disabled  
Technical Data  
270  
MC68HC908MR8 Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
Serial Communications Interface (SCI)  
I/O Registers  
FEIE Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests  
generated by the framing error bit, FE. Reset clears FEIE.  
1 = SCI error CPU interrupt requests from FE bit enabled  
0 = SCI error CPU interrupt requests from FE bit disabled  
PEIE Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables SCI receiver CPU interrupt requests  
generated by the parity error bit, PE. Reset clears PEIE. See 13.9.4  
SCI Status Register 1  
1 = SCI error CPU interrupt requests from PE bit enabled  
0 = SCI error CPU interrupt requests from PE bit disabled  
13.9.4 SCI Status Register 1  
SCI status register 1 (SCS1) contains flags to signal these conditions:  
Transfer of SCDR data to transmit shift register complete  
Transmission complete  
Transfer of receive shift register data to SCDR complete  
Receiver input idle  
Receiver overrun  
Noisy data  
Framing error  
Parity error  
Ad- $003B  
dress:  
Bit 7  
6
TC  
R
5
SCRF  
R
4
IDLE  
R
3
OR  
R
2
NF  
R
1
FE  
R
Bit 0  
PE  
R
Read: SCTE  
Write:  
R
1
Reset:  
1
0
0
0
0
0
0
R
= Reserved  
Figure 13-10. SCI Status Register 1 (SCS1)  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
271  
Serial Communications Interface (SCI)  
Serial Communications Interface (SCI)  
SCTE SCI Transmitter Empty Bit  
This clearable, read-only bit is set when the SCDR transfers a  
character to the transmit shift register. SCTE can generate an SCI  
transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set,  
SCTE generates an SCI transmitter CPU interrupt request. In normal  
operation, clear the SCTE bit by reading SCS1 with SCTE set and  
then writing to SCDR. Reset sets the SCTE bit.  
1 = SCDR data transferred to transmit shift register  
0 = SCDR data not transferred to transmit shift register  
TC Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set, and no data,  
preamble, or break character is being transmitted. TC generates an  
SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also  
set. TC is cleared automatically when data, preamble, or break is  
queued and ready to be sent. There may be up to 1.5 transmitter  
clocks of latency between queueing data, preamble, and break and  
the transmission actually starting. Reset sets the TC bit.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF SCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift  
register transfers to the SCI data register. SCRF can generate an SCI  
receiver CPU interrupt request. When the SCRIE bit in SCC2 is set,  
SCRF generates a CPU interrupt request. In normal operation, clear  
the SCRF bit by reading SCS1 with SCRF set and then reading the  
SCDR. Reset clears SCRF.  
1 = Received data available in SCDR  
0 = Data not available in SCDR  
IDLE Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive logic 1s  
appear on the receiver input. IDLE generates an SCI error CPU  
interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit  
by reading SCS1 with IDLE set and then reading the SCDR. After the  
receiver is enabled, it must receive a valid character that sets the  
SCRF bit before an idle condition can set the IDLE bit. Also, after the  
Technical Data  
272  
MC68HC908MR8 Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
Serial Communications Interface (SCI)  
I/O Registers  
IDLE bit has been cleared, a valid character must again set the SCRF  
bit before an idle condition can set the IDLE bit. Reset clears the IDLE  
bit.  
1 = Receiver input idle  
0 = Receiver input active or idle since the IDLE bit was cleared  
OR Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the  
SCDR before the receive shift register receives the next character.  
The OR bit generates an SCI error CPU interrupt request if the ORIE  
bit in SCC3 is also set. The data in the shift register is lost, but the data  
already in the SCDR is not affected. Clear the OR bit by reading SCS1  
with OR set and then reading the SCDR. Reset clears the OR bit.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of  
SCS1 and SCDR in the flag-clearing sequence. Figure 13-11 shows  
the normal flag-clearing sequence and an example of an overrun  
caused by a delayed flag-clearing sequence. The delayed read of  
SCDR does not clear the OR bit because OR was not set when SCS1  
was read. Byte 2 caused the overrun and is lost. The next  
flag-clearing sequence reads byte 3 in the SCDR instead of byte 2.  
In applications that are subject to software latency or in which it is  
important to know which byte is lost due to an overrun, the  
flag-clearing routine can check the OR bit in a second read of SCS1  
after reading the data register.  
NF Receiver Noise Flag Bit  
This clearable, read-only bit is set when the SCI detects noise on the  
PTB0/RxD pin. NF generates an NF CPU interrupt request if the NEIE  
bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then  
reading the SCDR. Reset clears the NF bit.  
1 = Noise detected  
0 = No noise detected  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Serial Communications Interface (SCI)  
273  
Serial Communications Interface (SCI)  
FE Receiver Framing Error Bit  
This clearable, read-only bit is set when a logic 0 is accepted as the  
stop bit. FE generates an SCI error CPU interrupt request if the FEIE  
bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set  
and then reading the SCDR. Reset clears the FE bit.  
1 = Framing error detected  
0 = No framing error detected  
PE Receiver Parity Error Bit  
This clearable, read-only bit is set when the SCI detects a parity error  
in incoming data. PE generates a PE CPU interrupt request if the  
PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with  
PE set and then reading the SCDR. Reset clears the PE bit.  
1 = Parity error detected  
0 = No parity error detected  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 2  
READ SCDR  
BYTE 3  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 1  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
Figure 13-11. Flag Clearing Sequence  
Technical Data  
274  
MC68HC908MR8 Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
Serial Communications Interface (SCI)  
I/O Registers  
13.9.5 SCI Status Register 2  
SCI status register 2 (SCS2) contains flags to signal these conditions:  
Break character detected  
Incoming data  
Ad-  
$003C  
dress:  
Bit 7  
0
6
5
0
4
0
3
0
2
0
1
BKF  
R
Bit 0  
RPF  
R
Read:  
Write:  
Reset:  
0
R
R
R
0
R
0
R
0
R
0
0
0
0
0
R
= Reserved  
Figure 13-12. SCI Status Register 2 (SCS2)  
BKF Break Flag Bit  
This clearable, read-only bit is set when the SCI detects a break  
character on the PTB0/RxD pin. In SCS1, the FE and SCRF bits are  
also set. In 9-bit character transmissions, the R8 bit in SCC3 is  
cleared. BKF does not generate a CPU interrupt request. Clear BKF  
by reading SCS2 with BKF set and then reading the SCDR. Once  
cleared, BKF can become set again only after logic 1s again appear  
on the PTB0/RxD pin followed by another break character. Reset  
clears the BKF bit.  
1 = Break character detected  
0 = No break character detected  
RPF Reception-in-Progress Flag Bit  
This read-only bit is set when the receiver detects a logic 0 during the  
RT1 time period of the start bit search. RPF does not generate an  
interrupt request. RPF is reset after the receiver detects false start bits  
(usually from noise or a baud rate mismatch, or when the receiver  
detects an idle character. Polling RPF before disabling the SCI  
module or entering stop mode can show whether a reception is in  
progress.  
1 = Reception in progress  
0 = No reception in progress  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Serial Communications Interface (SCI)  
275  
Serial Communications Interface (SCI)  
13.9.6 SCI Data Register  
The SCI data register (SCDR) is the buffer between the internal data bus  
and the receive and transmit shift registers. Reset has no effect on data  
in the SCI data register.  
Ad-  
$003D  
dress:  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 13-13. SCI Data Register (SCDR)  
R7/T7:R0/T0 Receive/Transmit Data Bits  
Reading address $003D accesses the read-only received data bits,  
R7:R0. Writing to address $003D writes the data to be transmitted,  
T7:T0. Reset has no effect on the SCI data register.  
13.9.7 SCI Baud Rate Register  
The SCI baud rate register (SCBR) selects the baud rate for both the  
receiver and the transmitter.  
Ad-  
$003E  
dress:  
Bit 7  
0
6
0
5
SCP1  
0
4
SCP0  
0
3
0
2
SCR2  
0
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
Write:  
Reset:  
R
R
0
R
0
0
R
= Reserved  
Figure 13-14. SCI Baud Rate Register (SCBR)  
Technical Data  
276  
MC68HC908MR8 Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
Serial Communications Interface (SCI)  
I/O Registers  
SCP1 and SCP0 SCI Baud Rate Prescaler Bits  
These read/write bits select the baud rate prescaler divisor as shown  
in Table 13-5. Reset clears SCP1 and SCP0.  
Table 13-5. SCI Baud Rate Prescaling  
SCP1:SCP0  
Prescaler Divisor (PD)  
00  
01  
10  
11  
1
3
4
13  
SCR2SCR0 SCI Baud Rate Select Bits  
These read/write bits select the SCI baud rate divisor as shown in  
Table 13-6. Reset clears SCR2SCR0.  
Table 13-6. SCI Baud Rate Selection  
SCR2:SCR1:SCR0  
Baud Rate Divisor (BD)  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
8
16  
32  
64  
128  
Use this formula to calculate the SCI baud rate:  
Baud rate = f / 64 x PD x BD  
OP  
where:  
fOP = clock source (f  
)
Bus  
PD = prescaler divisor  
BD = baud rate divisor  
Table 13-7 shows the SCI baud rates that can be generated with a  
4.00-MHz crystal and the CGM set for an f of 8.00 MHz and with a  
OP  
4.9152-MHz crystal with the CGM set for an an f of 7.3728 MHz.  
OP  
MC68HC908MR8 Rev 4.0  
TechnicalData  
277  
MOTOROLA  
Serial Communications Interface (SCI)  
Serial Communications Interface (SCI)  
Table 13-7. SCI Baud Rate Selection Examples  
Prescaler  
Divisor  
(PD)  
Baud Rate  
(fOP = 7.3728 MHz)  
Baud Rate  
(fOP = 8.00 MHz)  
SCR2:SCR1:  
SCR0  
Baud Rate  
Divisor (BD)  
SCP1:SCP0  
00  
00  
00  
00  
00  
00  
00  
00  
01  
01  
01  
01  
01  
01  
01  
01  
10  
10  
10  
10  
10  
10  
10  
10  
11  
11  
11  
11  
11  
11  
11  
11  
1
1
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
115,200.00  
57,600.00  
28,800.00  
14,400.00  
7200.00  
3600.00  
1800.00  
900.00  
125,000.00  
62,500.00  
31,250.00  
15,625.00  
7812.50  
3906.25  
1953.13  
976.56  
1
4
1
8
1
16  
32  
64  
128  
1
1
1
1
3
38,400.00  
19,200.00  
9600.00  
4800.00  
2400.00  
1200.00  
600.00  
41,666.67  
20,833.33  
10,416.67  
5208.33  
2604.17  
1302.08  
651.04  
3
2
3
4
3
8
3
16  
32  
64  
128  
1
3
3
3
300.00  
325.52  
4
28,800.00  
14,400.00  
7200.00  
3600.00  
1800.00  
900.00  
31,250.00  
15,625.50  
7812.50  
3906.25  
1953.13  
976.56  
4
2
4
4
4
8
4
16  
32  
64  
128  
1
4
4
450.00  
488.28  
4
225.00  
244.14  
13  
13  
13  
13  
13  
13  
13  
13  
8861.54  
4430.77  
2215.38  
1107.69  
553.85  
9615.38  
4807.69  
2403.85  
1201.92  
600.96  
2
4
8
16  
32  
64  
128  
276.92  
300.48  
138.46  
150.24  
69.23  
75.12  
Technical Data  
278  
MC68HC908MR8 Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 14. Input/Output (I/O) Ports  
14.1 Contents  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279  
14.3 Port A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281  
14.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .281  
14.3.2 Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . .282  
14.4 Port B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284  
14.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .284  
14.4.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . .285  
14.5 Port C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286  
14.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .287  
14.5.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . .288  
14.2 Introduction  
Fourteen bidirectional input-output (I/O) pins, two input pins, and six  
output pins form three parallel ports.  
When using the 28-pin package versions of the MC68HC908MR8, set  
the data direction register bits in DDRA such that bits 6, 5, and 4 are  
written to a logic 1 (along with any other output bits on PORTA). Setting  
PORTAs data direction register bits 6, 5, and 4 will terminate the input  
buffers on that port.  
NOTE: Connect any unused I/O pins to an appropriate logic level, either V or  
DD  
V . (PWM6PWM1 pins require no termination). Although the I/O ports  
SS  
do not require termination for proper operation, termination reduces  
excess current consumption and the possibility of electrostatic damage.  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
Input/Output (I/O) Ports  
279  
Input/Output (I/O) Ports  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Port A Data Register  
PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0  
Unaffected by reset  
$0000  
(PTA) Write:  
See page 281.  
Reset:  
Read:  
Port B Data Register  
PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0  
Unaffected by reset  
$0001  
(PTB) Write:  
See page 284.  
Reset:  
Read:  
Port C Data Register  
PTC1 PTC0  
$0002  
$0003  
(PTC) Write:  
See page 287.  
Reset:  
Unaffected by reset  
Unimplemented  
Read:  
DDRA DDRA DDRA DDRA DDRA DDRA DDRA  
Data Direction Register A  
6
5
4
3
2
1
0
$0004  
$0005  
$0006  
(DDRA) Write:  
See page 282.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
DDRB DDRB DDRB DDRB DDRB DDRB DDRB  
Data Direction Register B  
6
5
4
3
2
1
0
(DDRB) Write:  
See page 284.  
Reset:  
Read:  
0
0
0
0
0
0
0
DDRC DDRC  
Data Direction Register C  
1
0
(DDRC) Write:  
See page 287.  
Reset:  
U
U
U
R
U
U
U
U
0
0
= Unimple-  
mented  
= Reserved  
= Unaffected  
Figure 14-1. I/O Port Register Summary  
Technical Data  
280  
MC68HC908MR8 Rev 4.0  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port A  
14.3 Port A  
Port A is a 7-bit, general-purpose, bidirectional I/O port.  
14.3.1 Port A Data Register  
The port A data register (PTA) contains a data latch for each of the eight  
port A pins.  
Ad-  
$0000  
dress:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Unaffected by reset  
= Unimplemented  
Figure 14-2. Port A Data Register (PTA)  
PTA[6:0] Port A Data Bits  
These read/write bits are software programmable. Data direction of  
each port A pin is under the control of the corresponding bit in data  
direction register A. Reset has no effect on port A data.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Input/Output (I/O) Ports  
281  
Input/Output (I/O) Ports  
14.3.2 Data Direction Register A  
Data direction register A (DDRA) determines whether each port A pin is  
an input or an output. Writing a logic 1 to a DDRA bit enables the output  
buffer for the corresponding port A pin; a logic 0 disables the output  
buffer.  
Ad-  
$0004  
dress:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-3. Data Direction Register A (DDRA)  
DDRA[6:0] Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears  
DDRA[6:0], configuring all port A pins as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE: Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
Figure 14-4 shows the port A I/O logic.  
Technical Data  
282  
MC68HC908MR8 Rev 4.0  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port A  
READ DDRA ($0004)  
WRITE DDRA ($0004)  
DDRAx  
PTAx  
RESET  
WRITE PTA ($0000)  
READ PTA ($0000)  
PTAx  
Figure 14-4. Port A I/O Circuit  
When bit DDRAx is a logic 1, reading address $0000 reads the PTAx  
data latch. When bit DDRAx is a logic 0, reading address $0000 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 14-1 summarizes  
the operation of the port A pins.  
Table 14-1. Port A Pin Functions  
Accesses  
Accesses to PTA  
DDRA  
Bit  
PTA  
Bit  
I/O Pin  
Mode  
to DDRA  
Read/Write  
DDRA[6:0]  
DDRA[6:0]  
Read  
Pin  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTA[6:0](3)  
PTA[6:0]  
0
1
PTA[6:0]  
1. X = dont care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect input.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
283  
MOTOROLA  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
14.4 Port B  
Port B is a 7-bit general-purpose bidirectional I/O port that shares its pins  
with the serial communications interface (SCI) module.  
14.4.1 Port B Data Register  
The port B data register (PTB) contains a data latch for each of the eight  
port B pins.  
Ad-  
$0001  
dress:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Unaffected by reset  
= Unimplemented  
Figure 14-5. Port B Data Register (PTB)  
PTB[6:0] Port B Data Bits  
These read/write bits are software-programmable. Data direction of  
each port B pin is under the control of the corresponding bit in data  
direction register B. Reset has no effect on port B data.  
Technical Data  
284  
MC68HC908MR8 Rev 4.0  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port B  
14.4.2 Data Direction Register B  
Data direction register B (DDRB) determines whether each port B pin is  
an input or an output. Writing a logic 1 to a DDRB bit enables the output  
buffer for the corresponding port B pin; a logic 0 disables the output  
buffer.  
Ad-  
$0005  
dress:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-6. Data Direction Register B (DDRB)  
DDRB[6:0] Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears  
DDRB[6:0], configuring all port B pins as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE: Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1.  
Figure 14-7 shows the port B I/O logic.  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
285  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
PTBx  
RESET  
WRITE PTB ($0001)  
READ PTB ($0001)  
PTBx  
Figure 14-7. Port B I/O Circuit  
When bit DDRBx is a logic 1, reading address $0001 reads the PTBx  
data latch. When bit DDRBx is a logic 0, reading address $0001 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 14-2 summarizes  
the operation of the port B pins.  
Table 14-2. Port B Pin Functions  
Accesses  
Accesses to PTB  
DDRB  
Bit  
PTB  
Bit  
to DDRB  
Read/Write  
DDRB[6:0]  
DDRB[6:0]  
I/O Pin Mode  
Read  
Pin  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTB[6:0](3)  
PTB[6:0]  
0
1
PTB[6:0]  
1. X = dont care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect input.  
14.5 Port C  
Port C is a 2-bit special-purpose I/O port sharing its pins with the pulse  
width modulator for motor control module (PMC) FAULT input pins.  
These two pins mirror the state of FAULT1 and FAULT4 pins. Level  
changes on these input pins will be interpreted as fault conditions.  
The port C data register contains a data latch for each of the two port  
pins.  
Technical Data  
286  
MC68HC908MR8 Rev 4.0  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port C  
Port C bit 1 is not used on the 28-pin packages. For that reason, a  
pull-down resistor is connected to V to prevent a false fault input on  
SS  
FAULT4.  
NOTE: PORTC has the capability of being used as an output port. When either  
pin of PORTC is set as an output, by setting its respective PORTC data  
direction register bit, the respective fault pin logic is disconnected from  
that pin and the fault input will be defaulted to normal non-fault condition  
to facilitate the use of PORTC as an output pin and not interfere with the  
PWM generator. To regain the fault capability for the respective fault  
input pin, clear the PORTC data direction register bit for that pin.  
14.5.1 Port C Data Register  
The port C data register (PTC) contains a data latch for each of the two  
port C pins.  
Ad-  
$0002  
dress:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTC1  
PTC0  
Unaffected by reset  
= Unimplemented  
Figure 14-8. Port C Data Register (PTC)  
PTC[1:0] Port C Data Bits  
These read/write bits are software programmable. Data direction of  
each port C pin is under the control of the corresponding bit in data  
direction register C. Reset has no effect on port C data.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Input/Output (I/O) Ports  
287  
Input/Output (I/O) Ports  
14.5.2 Data Direction Register C  
Data direction register C (DDRC) determines whether each port C pin is  
an input or an output. Writing a logic 1 to a DDRC bit enables the output  
buffer for the corresponding port C pin; a logic 0 disables the output  
buffer.  
Ad-  
$0006  
dress:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
DDRC1 DDRC0  
U
U
U
U
U
U
0
0
= Unimplemented U = Unaffected  
Figure 14-9. Data Direction Register C (DDRC)  
DDRC[1:0] Data Direction Register C Bits  
These read/write bits control port C data direction. Reset clears  
DDRC[1:0], configuring all port C pins as inputs.  
1 = Corresponding port C pin configured as output  
0 = Corresponding port C pin configured as input  
NOTE: Avoid glitches on port C pins by writing to the port C data register before  
changing data direction register C bits from 0 to 1.  
Figure 14-10 shows the port C I/O logic.  
Technical Data  
288  
MC68HC908MR8 Rev 4.0  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port C  
READ DDRC ($0006)  
WRITE DDRC ($0006)  
DDRCx  
PTCx  
RESET  
WRITE PTC ($0002)  
READ PTC ($0002)  
PTCx  
Figure 14-10. Port C I/O Circuit  
When bit DDRCx is a logic 1, reading address $0002 reads the PTCx  
data latch. When bit DDRCx is a logic 0, reading address $0002 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 14-3 summarizes  
the operation of the port C pins.  
Table 14-3. Port C Pin Functions  
Accesses to DDRC  
Read/Write  
Accesses to PTC  
DDRC PTC  
I/O Pin Mode  
Bit  
Bit  
Read  
Pin  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTC[1:0](3)  
PTC[1:0]  
0
1
DDRC[1:0]  
DDRC[1:0]  
PTC[1:0]  
1. X = dont care  
2. Hi-Z = high impedance on PTC0 and a pull-down RPD on PTC1  
3. Writing affects data register, but does not affect input.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
289  
MOTOROLA  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
Technical Data  
290  
MC68HC908MR8 Rev 4.0  
Input/Output (I/O) Ports  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 15. Computer Operating Properly (COP)  
15.1 Contents  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
15.3 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
15.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
15.4.1 CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
15.4.2 COPCTL Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
15.4.3 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
15.4.4 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294  
15.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294  
15.4.6 COP Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294  
15.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294  
15.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294  
15.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
15.8 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
15.9 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
15.10 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . .295  
15.2 Introduction  
This section describes the computer operating properly module (COP,  
version B), a free-running counter that generates a reset if allowed to  
overflow. The COP module helps software recover from runaway code.  
Prevent a COP reset by periodically clearing the COP counter.  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
Computer Operating Properly (COP)  
291  
Computer Operating Properly (COP)  
15.3 Functional Description  
Figure 15-1 shows the structure of the COP module.  
SIM  
CGMXCLK  
SIM RESET CIRCUIT  
13-BIT SIM COUNTER  
SIM RESET STATUS REGISTER  
INTERNAL RESET SOURCES(1)  
RESET VECTOR FETCH  
COPCTL WRITE  
COP MODULE  
6-BIT COP COUNTER  
COPD (FROM CONFIG)  
RESET  
CLEAR  
COP COUNTER  
COPCTL WRITE  
Note: See 7.4.2 Active Resets from Internal Sources.  
Figure 15-1. COP Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read  
:
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
COP Control Register  
(COPCTL)  
Write:  
$FFFF  
See page 294.  
Reset  
:
Figure 15-2. COP I/O Register Summary  
Technical Data  
292  
MC68HC908MR8 Rev 4.0  
Computer Operating Properly (COP)  
MOTOROLA  
Computer Operating Properly (COP)  
I/O Signals  
The COP counter is a free-running, 6-bit counter preceded by the 13-bit  
system integration module (SIM) counter. If not cleared by software, the  
COP counter overflows and generates an asynchronous reset after  
18  
4
2 2 CGMXCLK cycles. With a 4.9152-MHz crystal, the COP timeout  
period is 53.3 ms. Writing any value to location $FFFF before overflow  
occurs clears the COP counter and prevents reset.  
A COP reset pulls the RST pin low for 32 CGMXCLK cycles and sets the  
COP bit in the SIM reset status register (SRSR) (see 7.7.4 SIM Reset  
Status Register).  
NOTE: Place COP clearing instructions in the main program and not in an  
interrupt subroutine. Such an interrupt subroutine could keep the COP  
from generating a reset even while the main program is not working  
properly.  
15.4 I/O Signals  
This subsection describes the signals shown in Figure 15-1.  
15.4.1 CGMXCLK  
CGMXCLK is the crystal oscillator output signal. CGMXCLK frequency  
is equal to the crystal frequency.  
15.4.2 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 15.5 COP  
Control Register) clears the COP counter and clears bits 124 of the  
SIM counter. Reading the COP control register returns the reset vector.  
15.4.3 Power-On Reset  
The power-on reset (POR) circuit in the SIM clears the SIM counter 4096  
CGMXCLK cycles after power-up.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Computer Operating Properly (COP)  
293  
Computer Operating Properly (COP)  
15.4.4 Internal Reset  
An internal reset clears the SIM counter and the COP counter.  
15.4.5 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data  
bus. A reset vector fetch clears the SIM counter.  
15.4.6 COP Disable  
The COP disable (COPD) signal reflects the state of the COP disable bit  
(COPD) in the configuration register (CONFIG). See 5.4 CONFIG Bits.  
15.5 COP Control Register  
The COP control register (COPCTL) is located at address $FFFF and  
overlaps the reset vector. Writing any value to $FFFF clears the COP  
counter and starts a new timeout period. Reading location $FFFF  
returns the low byte of the reset vector.  
Ad-  
$FFFF  
dress:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 15-3. COP Control Register (COPCTL)  
15.6 Interrupts  
The COP does not generate CPU interrupt requests.  
Technical Data  
294  
MC68HC908MR8 Rev 4.0  
Computer Operating Properly (COP)  
MOTOROLA  
Computer Operating Properly (COP)  
Monitor Mode  
15.7 Monitor Mode  
15.8 Wait Mode  
The COP is disabled in monitor mode when V + V is present on the  
IRQ pin or on the RST pin.  
DD  
HI  
The WAIT instruction puts the MCU in low power-consumption standby  
mode.  
The COP continues to operate during wait mode.  
15.9 Stop Mode  
Stop mode turns off the COP prescaler clock. Service the COP  
immediately before entering or after exiting stop mode to ensure a full  
COP timeout period after entering or exiting stop mode.  
15.10 COP Module During Break Mode  
The COP is disabled during a break interrupt when V + V is present  
DD  
HI  
on the RST pin.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
295  
MOTOROLA  
Computer Operating Properly (COP)  
Computer Operating Properly (COP)  
Technical Data  
MC68HC908MR8 Rev 4.0  
296  
Computer Operating Properly (COP)  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 16. External Interrupt (IRQ)  
16.1 Contents  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297  
16.3 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297  
16.4 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .298  
16.5 IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301  
16.6 IRQ Module During Wait Mode . . . . . . . . . . . . . . . . . . . . . .302  
16.7 IRQ Module During Stop Mode . . . . . . . . . . . . . . . . . . . . . .302  
16.8 IRQ Module During Break Mode . . . . . . . . . . . . . . . . . . . . .302  
16.9 IRQ Status and Control Register. . . . . . . . . . . . . . . . . . . . .303  
16.2 Introduction  
16.3 Features  
This section describes the external interrupt module, which supports  
external interrupt functions.  
Features of the IRQ module include:  
A dedicated external interrupt pin, IRQ  
Hysteresis buffers  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
External Interrupt (IRQ)  
297  
External Interrupt (IRQ)  
16.4 Functional Description  
A logic 0 applied to any of the external interrupt pins can latch a CPU  
interrupt request. Figure 16-1 shows the structure of the IRQ module.  
Interrupt signals on the IRQ pin are latched into the IRQ latch. An  
interrupt latch remains set until one of the following actions occurs:  
Vector fetch A vector fetch automatically generates an interrupt  
acknowledge signal that clears the latch that caused the vector  
fetch.  
Software clear Software can clear an interrupt latch by writing  
to the appropriate acknowledge bit in the interrupt status and  
control register (ISCR). Writing a logic 1 to the ACK1 bit clears the  
IRQ latch.  
Reset A reset automatically clears both interrupt latches.  
ACK1  
V
DD  
CLR  
D
Q
SYNCHRO-  
NIZER  
IRQ  
INTERRUPT  
REQUEST  
CK  
IRQ  
IRQ  
LATCH  
IMASK1  
MODE1  
TO MODE  
SELECT  
LOGIC  
HIGH-  
VOLTAGE  
DETECT  
Figure 16-1. IRQ Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
0
5
0
4
0
3
IRQF  
0
2
0
1
Bit 0  
Read:  
0
R
0
IMASK MODE  
IRQ Status/Control Register  
1
1
$003F  
(ISCR) Write:  
See page 303.  
R
0
R
0
R
0
ACK1  
0
Reset:  
0
0
R
= Reserved  
Figure 16-2. IRQ I/O Register Summary  
Technical Data  
298  
MC68HC908MR8 Rev 4.0  
External Interrupt (IRQ)  
MOTOROLA  
External Interrupt (IRQ)  
Functional Description  
The external interrupt pins are falling-edge-triggered and are  
software-configurable to be both falling-edge and low-level-triggered.  
The MODE1 bit in the ISCR controls the triggering sensitivity of the IRQ  
pin.  
When the interrupt pin is edge-triggered only, the interrupt latch remains  
set until a vector fetch, software clear, or reset occurs.  
When the interrupt pin is both falling-edge and low-level-triggered, the  
interrupt latch remains set until both of these occur:  
Vector fetch, software clear, or reset  
Return of the interrupt pin to logic 1  
The vector fetch or software clear can occur before or after the interrupt  
pin returns to logic 1. As long as the pin is low, the interrupt request  
remains pending.  
When set, the IMASK1 bit in the ISCR mask all external interrupt  
requests. A latched interrupt request is not presented to the interrupt  
priority logic unless the IMASK bit is clear.  
NOTE: The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including external interrupt requests.  
See Figure 16-3.  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
299  
External Interrupt (IRQ)  
External Interrupt (IRQ)  
FROM RESET  
YES  
I BIT SET?  
NO  
YES  
INTERRUPT?  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
FETCH NEXT  
INSTRUCTION  
YES  
YES  
SWI  
INSTRUCTION?  
NO  
RTI  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
INSTRUCTION?  
NO  
Figure 16-3. IRQ Interrupt Flowchart  
Technical Data  
300  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
External Interrupt (IRQ)  
External Interrupt (IRQ)  
IRQ Pin  
16.5 IRQ Pin  
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch.  
A vector fetch, software clear, or reset clears the IRQ latch.  
If the MODE1 bit is set, the IRQ pin is both falling-edge-sensitive and  
low-level-sensitive. With MODE1 set, both of these actions must occur  
to clear the IRQ latch:  
Vector fetch, software clear, or reset A vector fetch generates  
an interrupt acknowledge signal to clear the latch. Software can  
generate the interrupt acknowledge signal by writing a logic 1 to  
the ACK1 bit in the interrupt status and control register (ISCR).  
The ACK1 bit is useful in applications that poll the IRQ pin and  
require software to clear the IRQ latch. Writing to the ACK1 bit can  
also prevent spurious interrupts due to noise. Setting ACK1 does  
not affect subsequent transitions on the IRQ pin. A falling edge  
that occurs after writing to the ACK1 bit latches another interrupt  
request. If the IRQ mask bit, IMASK1, is clear, the CPU loads the  
program counter with the vector address at locations $FFFA and  
$FFFB.  
Return of the IRQ pin to logic 1 As long as the IRQ pin is at logic  
0, the IRQ latch remains set.  
The vector fetch or software clear and the return of the IRQ pin to logic  
1 can occur in any order. The interrupt request remains pending as long  
as the IRQ pin is at logic 0.  
If the MODE1 bit is clear, the IRQ pin is falling-edge-sensitive only. With  
MODE1 clear, a vector fetch or software clear immediately clears the  
IRQ latch.  
Use the branch if IRQ pin high (BIH) or branch if IRQ pin low (BIL)  
instruction to read the logic level on the IRQ pin.  
NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine.  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
301  
External Interrupt (IRQ)  
External Interrupt (IRQ)  
16.6 IRQ Module During Wait Mode  
The IRQ module remains active in wait mode. Clearing the IMASK1 bit  
in the IRQ status and control register (ISCR) enables IRQ central  
processor unit (CPU) interrupt requests to bring the microcontroller unit  
(MCU) out of wait mode.  
16.7 IRQ Module During Stop Mode  
The IRQ module remains active in stop mode. Clearing the IMASK1 bit  
in the IRQ status and control register (ISCR) enables IRQ CPU interrupt  
requests to bring the MCU out of stop mode.  
16.8 IRQ Module During Break Mode  
The system integration (SIM) module controls whether the IRQ interrupt  
latch can be cleared during the break state. The BCFE bit in the SIM  
break flag control register (SBFCR) enables software to clear the latches  
during the break state. See 7.7.5 SIM Break Flag Control Register.  
To allow software to clear the IRQ latch during a break interrupt, write a  
logic 1 to the BCFE bit. If a latch is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect the latches during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), writing to the ACK1 bit in the  
IRQ status and control register during the break state has no effect on  
the IRQ latches. See 16.9 IRQ Status and Control Register.  
Technical Data  
302  
MC68HC908MR8 Rev 4.0  
External Interrupt (IRQ)  
MOTOROLA  
External Interrupt (IRQ)  
IRQ Status and Control Register  
16.9 IRQ Status and Control Register  
The IRQ status and control register (ISCR) has these functions:  
Clears the IRQ interrupt latch  
Masks IRQ interrupt requests  
Controls triggering sensitivity of the IRQ interrupt pin  
Ad-  
dress:  
$003F  
Bit 7  
0
6
5
0
4
0
3
IRQF  
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
0
IMASK1 MODE1  
R
R
R
0
R
0
ACK1  
0
0
0
0
0
R
= Reserved  
Figure 16-4. IRQ Status and Control Register (ISCR)  
ACK1 IRQ Interrupt Request Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the IRQ latch. ACK1  
always reads as logic 0. Reset clears ACK1.  
IMASK1 IRQ Interrupt Mask Bit  
Writing a logic 1 to this read/write bit disables IRQ interrupt requests.  
Reset clears IMASK1.  
1 = IRQ interrupt requests disabled  
0 = IRQ interrupt requests enabled  
MODE1 IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin.  
Reset clears MODE1.  
1 = IRQ interrupt requests on falling edges and low levels  
0 = IRQ interrupt requests on falling edges only  
IRQF IRQ Flag  
This read-only bit acts as a status flag, indicating an IRQ event  
occurred.  
1 = External IRQ event occurred.  
0 = External IRQ event did not occur.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
External Interrupt (IRQ)  
303  
External Interrupt (IRQ)  
Technical Data  
304  
MC68HC908MR8 Rev 4.0  
External Interrupt (IRQ)  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 17. Low-Voltage Inhibit (LVI)  
17.1 Contents  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305  
17.3 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305  
17.4 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .306  
17.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . .307  
17.4.2 Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . .307  
17.4.3 False Reset Protection. . . . . . . . . . . . . . . . . . . . . . . . . . .307  
17.4.4 LVI Trip Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308  
17.5 LVI Status and Control Register . . . . . . . . . . . . . . . . . . . . .308  
17.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
17.7 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
17.8 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
17.2 Introduction  
17.3 Features  
This section describes the low-voltage inhibit (LVI) module, which  
monitors the voltage on the V pin and can force a reset when the V  
DD  
DD  
voltage falls to the LVI trip voltage.  
Features of the LVI module include:  
Programmable LVI reset  
Programmable power consumption  
Digital filtering of V pin level  
DD  
Selectable LVI trip voltage  
MC68HC908MR8 Rev 4.0  
Technical Data  
305  
MOTOROLA  
Low-Voltage Inhibit (LVI)  
Low-Voltage Inhibit (LVI)  
17.4 Functional Description  
Figure 17-1 shows the structure of the LVI module. The LVI is enabled  
out of reset. The LVI module contains a bandgap reference circuit and  
comparator.  
The LVI power bit, LVIPWR, enables the LVI to monitor V voltage. The  
DD  
LVI reset bit, LVIRST, enables the LVI module to generate a reset when  
V
falls below a voltage, V  
, and remains at or below that level for  
DD  
LVRX  
nine or more consecutive CGMXCLK.  
V and V are determined by the TRPSEL bit in the LVI  
LVRX  
LVHX  
status and control register (LVISCR). See Figure 17-2.  
LVIPWR and LVIRST are in the configuration (CONFIG) register.  
See 5.4 CONFIG Bits.  
Once an LVI reset occurs, the MCU remains in reset until V rises  
DD  
above a voltage, V  
+ V  
. V must be above V  
+ V  
for  
LVRX  
LVHX DD  
LVRX  
LVHX  
only one central processor unit (CPU) cycle to bring the microcontroller  
unit (MCU) out of reset. See 7.4.2.5 Low-Voltage Inhibit (LVI) Reset.  
The output of the comparator controls the state of the LVIOUT flag in the  
LVISCR.  
NOTE: An LVI reset also drives the RST pin low to provide low-voltage  
protection to external peripheral devices.  
V
DD  
LVIPWR  
FROM CONFIG  
FROM CONFIG  
LVIRST  
CPU CLOCK  
> LVITRIP = 0  
V
LVI RESET  
DD  
V
DD  
LOW V  
DD  
DETECTOR  
DIGITAL FILTER  
V
< LVITRIP = 1  
DD  
TRPSEL  
LVIOUT  
ANLGTRIP  
FROM LVISCR  
Figure 17-1. LVI Module Block Diagram  
Technical Data  
306  
MC68HC908MR8 Rev 4.0  
Low-Voltage Inhibit (LVI)  
MOTOROLA  
Low-Voltage Inhibit (LVI)  
Functional Description  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read LVI-  
0
0
0
0
0
0
:
OUT  
TRPS-  
EL  
LVI Status and Control Regis-  
ter Write  
$FE0F  
R
R
0
R
0
R
0
R
0
R
0
R
0
(LVISCR)  
See page 308.  
:
Re-  
set:  
0
0
R
= Reserved  
Figure 17-2. LVI I/O Register Summary  
17.4.1 Polled LVI Operation  
In applications that can operate at V levels below V  
, software can  
DD  
LVRX  
monitor V by polling the LVIOUT bit. In the configuration register, the  
DD  
LVIPWR bit must be at logic 1 to enable the LVI module, and the LVIRST  
bit must be at logic 0 to disable LVI resets. TRPSEL in the LVISCR  
selects V  
. See 5.4 CONFIG Bits.  
LVRX  
17.4.2 Forced Reset Operation  
In applications that require V to remain above V  
, enabling LVI  
LVRX  
DD  
resets allows the LVI module to reset the MCU when V falls to the  
DD  
V
level and remains at or below that level for nine or more  
LVRX  
consecutive CPU cycles. In the CONFIG register, the LVIPWR and  
LVIRST bits must be at logic 1 to enable the LVI module and to enable  
LVI resets. TRPSEL in the LVISCR selects V  
.
LVRX  
17.4.3 False Reset Protection  
The V pin level is digitally filtered to reduce false resets due to power  
DD  
supply noise. In order for the LVI module to reset the MCU, V must  
DD  
remain at or below V  
for nine or more consecutive CPU cycles. V  
LVRX  
DD  
must be above V  
+ V  
for only one CPU cycle to bring the MCU  
LVRX  
LVHX  
out of reset. TRPSEL in the LVISCR selects V  
+ V  
.
LVHX  
LVRX  
MC68HC908MR8 Rev 4.0  
TechnicalData  
307  
MOTOROLA  
Low-Voltage Inhibit (LVI)  
Low-Voltage Inhibit (LVI)  
17.4.4 LVI Trip Selection  
The TRPSEL bit allows the user to choose between 5 percent and  
10 percent tolerance when monitoring the supply voltage. The  
10 percent option is enabled out of reset. Writing a logic 1 to TRPSEL  
will enable the 5 percent option.  
NOTE: The MCU is guaranteed to operate at a minimum supply voltage. The trip  
point (V  
or V  
) may be lower than this.  
LVR1  
LVR2  
17.5 LVI Status and Control Register  
The LVI status register flags V voltages below the V  
level.  
LVRX  
DD  
Ad-  
$FE0F  
dress:  
Bit 7  
6
0
5
4
0
3
0
2
0
1
Bit 0  
0
Read: LVIOUT  
0
R
0
TRPS-  
EL  
Write:  
R
0
R
0
R
0
R
0
R
0
R
Reset:  
0
0
R
= Reserved  
Figure 17-3. LVI Status and Control Register (LVISCR)  
LVIOUT LVI Output Bit  
This read-only flag becomes set when the V voltage falls below the  
DD  
V
voltage for 32 to 40 CGMXCLK cycles. See Table 17-1. Reset  
LVRX  
clears the LVIOUT bit.  
Table 17-1. LVIOUT Bit Indication  
VDD  
LVIOUT  
At level:  
For number of CGMXCLK cycles:  
Any  
V
DD > VLVRX + VLVHX  
0
0
VDD < VLVRX  
VDD < VLVRX  
VDD < VLVRX  
< 32 CGMXCLK CYCLES  
Between 32 and 40 CGMXCLK cycles  
> 40 CGMXCLK cycles  
0 or 1  
1
Technical Data  
308  
MC68HC908MR8 Rev 4.0  
Low-Voltage Inhibit (LVI)  
MOTOROLA  
Low-Voltage Inhibit (LVI)  
LVI Interrupts  
Table 17-1. LVIOUT Bit Indication  
VDD  
LVIOUT  
At level:  
For number of CGMXCLK cycles:  
V
LVRX < VDD < VLVRX + VLVHX  
Any  
Previous value  
TRPSEL LVI Trip Select Bit  
This bit selects the LVI trip point. Reset clears this bit.  
1 = 5 percent tolerance. The trip point and recovery point are  
determined by V  
and V  
respectively.  
LVH1  
LVR1  
0 = 10 percent tolerance. The trip point and recovery point are  
determined by V and V respectively.  
LVR2  
LVH2  
NOTE: If LVIPWR and LVIRST are at logic 1, note that when changing the  
tolerance, LVI reset will be generated if the supply voltage is below the  
trip point.  
17.6 LVI Interrupts  
17.7 Wait Mode  
The LVI module does not generate interrupt requests.  
The WAIT instruction puts the microcontroller unit (MCU) in low  
power-consumption standby mode.  
With the LVIPWR bit in the configuration register programmed to logic 1,  
the LVI module is active after a WAIT instruction.  
With the LVIRST bit in the configuration register programmed to logic 1,  
the LVI module can generate a reset and bring the MCU out of wait  
mode.  
17.8 Stop Mode  
The STOP instruction puts the MCU in low power-consumption standby  
mode.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Low-Voltage Inhibit (LVI)  
309  
Low-Voltage Inhibit (LVI)  
With the LVIPWR bit in the configuration register programmed to logic 1,  
the LVI module is active after a STOP instruction.  
With the LVIRST bit in the configuration register programmed to logic 1,  
the LVI module can generate a reset and bring the MCU out of stop  
mode.  
Technical Data  
310  
MC68HC908MR8 Rev 4.0  
Low-Voltage Inhibit (LVI)  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 18. Analog-to-Digital Converter (ADC)  
18.1 Contents  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312  
18.3 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312  
18.4 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .312  
18.4.1 ADC Port I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
18.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
18.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
18.4.4 Continuous Conversion. . . . . . . . . . . . . . . . . . . . . . . . . .315  
18.4.5 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
18.4.6 Monotonicity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316  
18.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316  
18.6 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
18.7 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
18.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
18.8.1 ADC Voltage Reference Pin (V  
). . . . . . . . . . . . . . . .317  
REFH  
18.8.2 ADC Voltage In (ADVIN). . . . . . . . . . . . . . . . . . . . . . . . . .318  
18.8.3 ADC External Connection . . . . . . . . . . . . . . . . . . . . . . . .318  
18.9 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319  
18.9.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . .319  
18.9.2 ADC Data Register High . . . . . . . . . . . . . . . . . . . . . . . . .322  
18.9.3 ADC Data Register Low . . . . . . . . . . . . . . . . . . . . . . . . . .323  
18.9.4 ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
311  
Analog-to-Digital Converter (ADC)  
18.2 Introduction  
This section describes the 10-bit analog-to-digital converter (ADC).  
For further information regarding analog-to-digital converters on  
Motorola microcontrollers, please consult the HC08 ADC Reference  
Manual, ADCRM/AD.  
18.3 Features  
Features of the ADC module include:  
Four to seven channels with multiplexed input  
Linear successive approximation  
10-bit resolution, 8-bit accuracy  
Single or continuous conversion  
Conversion complete flag or conversion complete interrupt  
Selectable ADC clock  
Left or right justified result.  
Left justified sign data mode  
High impedance buffered ADC input  
18.4 Functional Description  
Depending on the package option, up to seven ADC channels are  
available for sampling external sources at pins PTA6/ATD6:PT00/ATD0.  
To achieve the best possible accuracy, these pins are implemented as  
input-only pins when the analog-to-digital (A/D) feature is enabled. An  
analog multiplexer allows the single ADC to select one of the seven ADC  
channels as ADC voltage IN (ADCVIN). ADCVIN is converted by the  
successive approximation algorithm. When the conversion is completed,  
the ADC places the result in the ADC data register (ADRH and ADRL)  
and sets a flag or generates an interrupt. See Figure 18-1.  
Technical Data  
312  
MC68HC908MR8 Rev 4.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Functional Description  
INTERNAL  
DATA BUS  
PTAx  
ADC CHANNEL X  
READ PTA  
DISABLE  
ADC DATA REGISTERS  
CONVERSION  
COMPLETE  
ADC VOLTAGE IN  
ADVIN  
ADC  
INTERRUPT  
CHANNEL  
SELECT  
INTERRUPT  
LOGIC  
ADC  
ADCH6:ADCH0  
AIEN  
ADC CLOCK  
CGMXCLK  
CLOCK  
GENERATOR  
f
OP  
ADIV[2:0] ADICLK  
Figure 18-1. ADC Block Diagram  
18.4.1 ADC Port I/O Pins  
PTA6/ATD6:PTA0/ATD6 are general-purpose input/output (I/O) pins  
that are shared with the ADC channels.  
The channel select bits define which ADC channel/port pin will be used  
as the input signal. The ADC overrides the port logic when that port is  
selected by the ADC multiplexer. The remaining ADC channels/port pins  
are controlled by the port logic and can be used as general-purpose  
input/output (I/O) pins. Writes to the port register or data direction  
register (DDR) will not have any effect on the port pin that is selected by  
the ADC. Read of a port pin which is in use by the ADC will return a  
logic 0.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
313  
Analog-to-Digital Converter (ADC)  
18.4.2 Voltage Conversion  
When the input voltage to the ADC equals V  
, the ADC converts the  
REFH  
signal to $3FF (full scale). If the input voltage equals V  
the ADC  
SS,  
converts it to $000. Input voltages between V  
and V  
are  
REFH  
REFL  
straight-line linear conversions. All other input voltages will result in  
$3FF if greater than V and $000 if less than V .  
REFH  
SS  
NOTE: Input voltage should not exceed the analog supply voltages.  
18.4.3 Conversion Time  
Conversion starts after a write to the ADC status and control register  
(ADSCR). A conversion is between 16 and 17 ADC clock cycles,  
therefore:  
16 to 17 ADC cycles  
Conversion time =  
ADC frequency  
Number of bus cycles = conversion time x bus frequency  
The ADC conversion time is determined by the clock source chosen and  
the divide ratio selected. The clock source is either the bus clock or  
CGMXCLK and is selectable by ADICLK located in the ADC clock  
register. For example, if CGMXCLK is 4 MHz and is selected as the ADC  
input clock source, the ADC input clock /4 prescale is selected:  
16 to 17 ADC cycles  
Conversion time =  
= 16 to 17 µs  
4 MHz/4  
NOTE: The ADC frequency must be between f  
minimum and f  
ADIC  
ADIC  
maximum to meet A/D specifications.  
Since an ADC cycle may be comprised of several bus cycles (four in the  
prior example) and the start of a conversion is initiated by a bus cycle  
write to the ADSCR, from zero to four additional bus cycles may occur  
before the start of the initial ADC cycle. This results in a fractional ADC  
cycle and is represented as the 17th cycle.  
Technical Data  
314  
MC68HC908MR8 Rev 4.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Functional Description  
18.4.4 Continuous Conversion  
In the continuous conversion mode, the ADC data registers (ADRH and  
ADRL) will be filled with new data after each conversion. Data from the  
previous conversion will be overwritten whether that data has been read  
or not. Conversions will continue until the ADCO bit is cleared. The  
COCO bit is set after the first conversion and will stay set for the next  
several conversions until the next write of the ADC status and control  
register or the next read of the ADC data register.  
18.4.5 Result Justification  
The conversion result may be formatted in four different ways:  
1. Left justified  
2. Right justified  
3. Left justified sign data mode  
4. 8-bit truncation mode  
All four of these modes are controlled using MODE0 and MODE1 bits  
located in the ADC clock register (ADCLK).  
Left justification will place the eight most significant bits (MSB) in the  
corresponding ADC data register high, ADRH. This may be useful if the  
result is to be treated as an 8-bit result where the two least significant  
bits (LSB), located in the ADC data register low, ADRL, can be ignored.  
However, ADRL must be read after ADRH or else the interlocking will  
prevent all new conversions from being stored.  
Right justification will place only the two MSBs in the corresponding ADC  
data register high, ADRH, and the eight LSBs in ADC data register low,  
ADRL. This mode of operation is typically used when a 10-bit unsigned  
result is desired.  
Left justified sign data mode is similar to left justified mode with one  
exception. The MSB of the 10-bit result, AD9 located in ADRH, is  
complemented. This mode of operation is useful when a result,  
represented as a signed magnitude from mid-scale, is needed.  
Finally, 8-bit truncation mode will place the eight MSBs in ADC data  
register low, ADRL. The two LSBs are dropped. This mode of operation  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
315  
Analog-to-Digital Converter (ADC)  
is used when compatibility with 8-bit ADC designs are required. No  
interlocking between ADRH and ADRL is present.  
NOTE: Quantization error is affected when only the most significant eight bits  
are used as a result. See Figure 18-2.  
8-BIT 10-BIT  
RESULT RESULT  
IDEAL8-BIT CHARACTERISTIC  
WITH QUANTIZATION = ±1/2  
10-BIT TRUNCATED  
TO 8-BIT RESULT  
003  
00B  
00A  
009  
IDEAL 10-BIT CHARACTERISTIC  
WITH QUANTIZATION = ±1/2  
002  
001  
000  
008  
007  
006  
005  
004  
003  
002  
001  
000  
WHEN TRUNCATION IS USED,  
ERROR FROM IDEAL 8 BIT = 3/8 LSB  
DUE TO NON-IDEAL QUANTIZATION.  
INPUT VOLTAGE  
1/2  
2 1/2  
4 1/2  
6 1/2  
8 1/2  
REPRESENTED AS 10-BIT  
1 1/2  
3 1/2  
5 1/2  
7 1/2  
9 1/2  
INPUT VOLTAGE  
REPRESENTED AS 8-BIT  
1/2  
1 1/2  
2 1/2  
Figure 18-2. 8-Bit Truncation Mode Error  
18.4.6 Monotonicity  
The conversion process is monotonic and has no missing codes.  
18.5 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating a  
CPU interrupt after each ADC conversion. A CPU interrupt is generated  
if the COCO bit is at logic 0. The COCO bit is not used as a conversion  
complete flag when interrupts are enabled.  
Technical Data  
316  
MC68HC908MR8 Rev 4.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Wait Mode  
18.6 Wait Mode  
18.7 Stop Mode  
18.8 I/O Signals  
The WAIT instruction can put the MCU in low power-consumption  
standby mode.  
The ADC continues normal operation during wait mode. Any enabled  
CPU interrupt request from the ADC can bring the MCU out of wait  
mode. If the ADC is not required to bring the MCU out of wait mode,  
power down the ADC by setting ADCH[4:0] in the ADC status and control  
register before executing the WAIT instruction.  
The STOP instruction can put the MCU in low power-consumption  
standby mode.  
The ADC module becomes inactive after the execution of a STOP  
instruction. Any pending conversion is aborted. ADC conversions  
resume when the MCU exits stop mode after an external interrupt. Allow  
one conversion cycle to stabilize the analog circuitry after exiting stop  
mode.  
The ADC module has seven input signals that are shared with port A.  
18.8.1 ADC Voltage Reference Pin (V  
)
REFH  
V
V
is the power supply for setting the reference voltage. Connect the  
REFH  
REFH  
pin to the same voltage potential as V  
. There will be a finite  
DDA  
current associated with V  
.
REFH  
NOTE: Route V  
carefully for maximum noise immunity and place bypass  
REFH  
capacitors as close as possible to the package.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
317  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
18.8.2 ADC Voltage In (ADVIN)  
ADVIN is the input voltage signal from one of the seven ADC channels  
to the ADC module.  
18.8.3 ADC External Connection  
18.8.3.1 V  
REFH  
Both ac and dc current are drawn through V  
. The ac current is in the  
REFH  
form of current spikes required to supply charge to the capacitor array at  
each successive approximation step. The dc current flows through the  
internal resistor string. The best external component to meet both these  
current demands is a capacitor in the 0.01 µF to 1 µF range with good  
high-frequency characteristics. This capacitor is connected between  
V
and V and must be placed as close as possible to the package  
REFH  
SS  
pins. Resistance in the path is not recommended because the dc current  
will cause a voltage drop which could result in conversion errors.  
18.8.3.2 ANx  
Empirical data shows that capacitors from the analog inputs to V  
RL  
improve ADC performance. 0.01 µF and 0.1 µF capacitors with good  
high-frequency characteristics are sufficient. These capacitors must be  
placed as close as possible to the package pins.  
18.8.3.3 Grounding  
In cases where separate power supplies are used for analog and digital  
power, the ground connection between these supplies should be at the  
V
pin. This should be the only ground connection between these  
SS  
supplies if possible. The V pin makes a good single-point ground  
SS  
location.  
Technical Data  
318  
MC68HC908MR8 Rev 4.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
I/O Registers  
18.9 I/O Registers  
These I/O registers control and monitor operation of the ADC:  
ADC status and control register (ADSCR)  
ADC data registers (ADRH and ARDL)  
ADC control register (ADCR)  
ADC clock register (ADCLK)  
18.9.1 ADC Status and Control Register  
These paragraphs describe the function of the ADC status and control  
register (ADSCR). Writing ADSCR aborts the current conversion and  
initiates a new conversion.  
Ad-  
$0040  
dress:  
Bit 7  
COCO  
0
6
AIEN  
0
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0  
0
1
1
1
1
1
Figure 18-3. ADC Status and Control Register (ADSCR)  
COCO Conversions Complete Bit  
When AIEN bit is a logic 0, the COCO is a read-only bit which is set  
each time a conversion is completed except in the continuous  
conversion mode where it is set after the first conversion. This bit is  
cleared whenever the ADC status and control register is written or  
whenever the ADC data register is read.  
If AIEN bit is a logic 1, the COCO is a read/write bit which selects the  
CPU to service the ADC interrupt request. Reset clears this bit.  
1 = Conversion completed (AIEN = 0) interrupt (AIEN = 1)  
0 = Conversion not completed (AIEN = 0)/CPU interrupt (AIEN = 1)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
319  
Analog-to-Digital Converter (ADC)  
AIEN ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC  
conversion. The interrupt signal is cleared when the data register is  
read or the status/control register is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
ADCO ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the  
ADR register at the end of each conversion. Only one conversion is  
allowed when this bit is cleared. Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
ADCH[4:0] ADC Channel Select Bits  
ADCH4, ADCH3, ADCH2, ADCH1, and ADCH0 form a 5-bit field  
which is used to select one of the ADC channels detailed in Table  
18-1. Take care to prevent switching noise from corrupting the analog  
signal when simultaneously using a port pin as both an analog and  
digital input.  
The ADC subsystem is turned off when the channel select bits are all  
set to 1. This feature allows for reduced power consumption for the  
MCU when the ADC is not used.  
NOTE: Recovery from the disabled state requires one conversion cycle to  
stabilize.  
The voltage levels supplied from internal reference nodes as specified in  
Table 18-1 are used to verify the operation of the ADC converter both in  
production test and for user applications.  
Technical Data  
320  
MC68HC908MR8 Rev 4.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
I/O Registers  
Table 18-1. Mux Channel Select  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
Input select  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
PTA5  
PTA6  
Unused*  
Unused*  
Unused*  
Unused*  
Ø
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
0
1
Ø
Ø
Ø
Ø
Ø
Unused*  
Reserved**  
Unused*  
VREFH  
VSS  
1
1
1
1
1
1
1
1
0
1
ADC power off  
* If any unused channels are selected, the resulting ADC conversion will be unknown.  
** Used for factory testing.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
321  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
18.9.2 ADC Data Register High  
In left justified mode, this 8-bit result register holds the eight MSBs of the  
10-bit result. This register is updated each time an ADC single channel  
conversion completes. Reading ADRH latches the contents of ADRL  
until ADRL is read. Until ADRL is read, all subsequent ADC results will  
be lost.  
Ad-  
$0041  
dress:  
Bit 7  
6
AD8  
R
5
AD7  
R
4
AD6  
R
3
AD5  
R
2
AD4  
R
1
AD3  
R
Bit 0  
AD2  
R
Read: AD9  
Write:  
R
Reset:  
Unaffected by Reset  
R
= Reserved  
Figure 18-4. ADC Data Register High (ADRH)  
Left Justified Mode  
In right justified mode, this 8-bit result register holds the two MSBs of the  
10-bit result. All other bits read as 0. This register is updated each time  
a single channel ADC conversion completes. Reading ADRH latches the  
contents of ADRL until ADRL is read. Until ADRL is read, all subsequent  
ADC results will be lost.  
Ad-  
$0041  
dress:  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
AD9  
R
Bit 0  
AD8  
R
Read:  
Write:  
Reset:  
R
R
R
R
R
R
Unaffected by Reset  
R
= Reserved  
Figure 18-5. ADC Data Register High (ADRH)  
Right Justified Mode  
Technical Data  
322  
MC68HC908MR8 Rev 4.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
I/O Registers  
18.9.3 ADC Data Register Low  
In left justified mode, this 8-bit result register holds the two LSBs of the  
10-bit result. All other bits read as 0. This register is updated each time  
a single channel ADC conversion completes. Reading ADRH latches the  
contents of ADRL until ADRL is read. Until ADRL is read all subsequent  
ADC results will be lost.  
Ad-  
$0042  
dress:  
Bit 7  
6
AD0  
R
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read: AD1  
Write:  
R
R
R
R
R
R
R
Reset:  
Unaffected by Reset  
R
= Reserved  
Figure 18-6. ADC Data Register Low (ADRL)  
Left Justified Mode  
In right justified mode, this 8-bit result register holds the eight LSBs of  
the 10-bit result. This register is updated each time an ADC conversion  
completes. Reading ADRH latches the contents of ADRL until ADRL is  
read. Until ADRL is read all subsequent ADC results will be lost.  
Ad-  
$0042  
dress:  
Bit 7  
6
AD6  
R
5
AD5  
R
4
AD4  
R
3
AD3  
R
2
AD2  
R
1
AD1  
R
Bit 0  
AD0  
R
Read: AD7  
Write:  
R
Reset:  
Unaffected by Reset  
R
= Reserved  
Figure 18-7. ADC Data Register Low (ADRL)  
Right Justified Mode  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
323  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
In 8-bit mode, this 8-bit result register holds the eight MSBs of the 10-bit  
result. This register is updated each time an ADC conversion completes.  
In 8-bit mode, this register contains no interlocking with ADRH.  
Ad-  
$0042  
dress:  
Bit 7  
6
AD8  
R
5
AD7  
R
4
AD6  
R
3
AD5  
R
2
AD4  
R
1
AD3  
R
Bit 0  
AD2  
R
Read: AD9  
Write:  
R
R
Reset:  
Unaffected by Reset  
= Reserved  
Figure 18-8. ADC Data Register Low (ADRL)  
8-Bit Mode  
18.9.4 ADC Clock Register  
This register selects the clock frequency for the ADC, selecting between  
modes of operation.  
Ad-  
$0043  
dress:  
Bit 7  
6
5
4
3
2
1
0
0
Bit 0  
0
Read:  
Write:  
Reset:  
ADIV2 ADIV1 ADIV0 ADICLK MODE1 MODE0  
R
0
0
0
0
0
1
0
R
= Reserved  
Figure 18-9. ADC Clock Register (ADCLK)  
ADIV2:ADIV0 ADC Clock Prescaler Bits  
ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide  
ratio used by the ADC to generate the internal ADC clock. Table 18-2  
shows the available clock configurations. The ADC clock should be  
set to between 500 kHz and 1 MHz.  
Technical Data  
324  
MC68HC908MR8 Rev 4.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
I/O Registers  
Table 18-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
ADC input clock /1  
ADC input clock /2  
ADC input clock /4  
ADC input clock /8  
ADC input clock /16  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
X = dont care  
ADICLK ADC Input Clock Select Bit  
ADICLK selects either bus clock or CGMXCLK as the input clock  
source to generate the internal ADC clock. Reset selects CGMXCLK  
as the ADC clock source.  
If the external clock (CGMXCLK) is equal or greater than 1 MHz,  
CGMXCLK can be used as the clock source for the ADC. If  
CGMXCLK is less than 1 MHz, use the PLL-generated bus clock as  
the clock source. As long as the internal ADC clock is at f  
, correct  
ADIC  
operation can be guaranteed.  
1 = Internal bus clock  
0 = External clock, CGMXCLK  
CGMXCLK or bus frequency  
fADIC  
=
ADIV[2:0]  
MODE1:MODE0 Modes of Result Justification Bits  
MODE1:MODE0 selects among four modes of operation. The  
manner in which the ADC conversion results will be placed in the ADC  
data registers is controlled by these modes of operation. Reset  
returns right-justified mode.  
00 = 8-bit truncation mode  
01 = Right justified mode  
10 = Left justified mode  
11 = Left justified sign data mode  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
325  
Analog-to-Digital Converter (ADC)  
Technical Data  
MC68HC908MR8 Rev 4.0  
326  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 19. Power-On Reset (POR)  
19.1 Contents  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
19.3 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
19.2 Introduction  
This section describes the power-on reset (POR) module.  
19.3 Functional Description  
The POR module provides a known, stable signal to the MCU at  
power-on. This signal tracks V until the MCU generates a feedback  
DD  
signal to indicate that it is properly initialized. At this time, the POR drives  
its output low. The POR is not a brown-out detector, low-voltage  
detector, or glitch detector. V at the POR must go completely to 0 to  
DD  
reset the MCU. To detect power-loss conditions, use a low-voltage  
inhibit module (LVI) or other suitable circuit.  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
Power-On Reset (POR)  
327  
Power-On Reset (POR)  
Technical Data  
328  
MC68HC908MR8 Rev 4.0  
Power-On Reset (POR)  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 20. Break (BRK)  
20.1 Contents  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
20.3 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330  
20.4 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .330  
20.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . .330  
20.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . .332  
20.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . .332  
20.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . .332  
20.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
20.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
20.5.2 Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
20.6 Break Module Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
20.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . .333  
20.6.2 Break Address Registers. . . . . . . . . . . . . . . . . . . . . . . . .334  
20.6.3 SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . .336  
20.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . .337  
20.2 Introduction  
This section describes the break (BRK) module. The break module can  
generate a break interrupt that stops normal program flow at a defined  
address to enter a background program.  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
Break (BRK)  
329  
Break (BRK)  
20.3 Features  
Features of the break module include:  
Accessible input/output (I/O) registers during the break interrupt  
Central processor unit (CPU) generated break interrupts  
Software-generated break interrupts  
Computer operating properly (COP) disabling during break  
interrupts  
20.4 Functional Description  
When the internal address bus matches the value written in the break  
address registers, the break module issues a breakpoint signal to the  
CPU. The CPU then loads the instruction register with a software  
interrupt instruction (SWI) after completion of the current CPU  
instruction. The program counter vectors to $FFFC and $FFFD ($FEFC  
and $FEFD in monitor mode).  
These events can cause a break interrupt to occur:  
A CPU-generated address (the address in the program counter)  
matches the contents of the break address registers.  
Software writes a logic 1 to the BRKA bit in the break status and  
control register.  
When a CPU-generated address matches the contents of the break  
address registers, the break interrupt begins after the CPU completes its  
current instruction. A return-from-interrupt instruction (RTI) in the break  
routine ends the break interrupt and returns the microcontroller unit  
(MCU) to normal operation. Figure 20-1 shows the structure of the break  
module.  
20.4.1 Flag Protection During Break Interrupts  
The BCFE bit in the system integration module (SIM) break flag control  
register (SBFCR) enables software to clear status bits during the break  
state.  
Technical Data  
330  
MC68HC908MR8 Rev 4.0  
Break (BRK)  
MOTOROLA  
Break (BRK)  
Functional Description  
IAB15IAB8  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
IAB15IAB0  
CONTROL  
BREAK  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
IAB7IAB0  
Figure 20-1. Break Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read  
:
0
0
0
1
0
0
R
0
BW  
0
SIM Break Status  
Register (SBSR)  
See page 336.  
$FE0  
0
Write  
:
R
0
R
0
R
0
R
1
R
0
NOTE  
0
R
0
Re-  
set:  
Read  
:
BCFE  
R
R
R
R
R
R
R
SIM Break Flag Con-  
trol Register (SBFCR)  
See page 337.  
$FE0  
3
Write  
:
Re-  
set:  
0
Bit 15  
0
Read  
:
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
Bit 8  
0
Break Address Regis-  
ter High (BRKH)  
See page 334.  
$FE0  
C
Write  
:
Re-  
set:  
Figure 20-2. I/O Register Summary  
MC68HC908MR8 Rev 4.0  
TechnicalData  
331  
MOTOROLA  
Break (BRK)  
Break (BRK)  
Read  
:
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Break Address Regis-  
$FE0  
D
Write  
:
ter Low (BRKL)  
See page 334.  
Re-  
set:  
0
BRKA  
0
0
0
0
0
0
0
0
0
0
0
0
0
Read  
:
Break Status and  
BRKE  
0
$FE0  
E
Control Register Write  
(BRKSCR)  
See page 333.  
:
Re-  
set:  
0
0
0
0
0
0
Note: Writing a logic 0 clears  
BW.  
= Unimplemented  
= Reserved  
R
Figure 20-2. I/O Register Summary  
20.4.2 CPU During Break Interrupts  
The CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC and $FFFD ($FEFC and  
$FEFD in monitor mode)  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
20.4.3 TIM During Break Interrupts  
A break interrupt stops the timer counters.  
20.4.4 COP During Break Interrupts  
The COP is disabled during a break interrupt when V  
the RST pin.  
is present on  
TST  
Technical Data  
332  
MC68HC908MR8 Rev 4.0  
Break (BRK)  
MOTOROLA  
Break (BRK)  
Low-Power Modes  
20.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
20.5.1 Wait Mode  
20.5.2 Stop Mode  
If enabled, the break module is active in wait mode. In the break routine,  
the user can subtract one from the return address on the stack if SBSW  
is set. Clear the BW bit by writing logic 0 to it.  
A break interrupt causes exit from stop mode and sets the SBSW bit in  
the break status register.  
20.6 Break Module Registers  
These registers control and monitor operation of the break module:  
Break status and control register (BRKSCR)  
Break address register high (BRKH)  
Break address register low (BRKL)  
SIM break status register (SBSR)  
SIM break flag control register (SBFCR)  
20.6.1 Break Status and Control Register  
The break status and control register (BRKSCR) contains break module  
enable and status bits.  
Ad-  
$FE0E  
dress:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Figure 20-3. Break Status and Control Register (BRKSCR)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
333  
MOTOROLA  
Break (BRK)  
Break (BRK)  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
BRKE  
0
BRKA  
0
= Unimplement-  
ed  
Figure 20-3. Break Status and Control Register (BRKSCR)  
BRKE Break Enable Bit  
This read/write bit enables breaks on break address register matches.  
Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled on 16-bit address match  
BRKA Break Active Bit  
This read/write status and control bit is set when a break address  
match occurs. Writing a logic 1 to BRKA generates a break interrupt.  
Clear BRKA by writing a logic 0 to it before exiting the break routine.  
Reset clears the BRKA bit.  
1 = When read, break address match  
0 = When read, no break address match  
20.6.2 Break Address Registers  
The break address registers (BRKH and BRKL) contain the high and low  
bytes of the desired breakpoint address. Reset clears the break address  
registers.  
Ad-  
$FE0C  
dress:  
Bit 7  
Bit 15  
0
6
14  
0
5
13  
0
4
12  
0
3
11  
0
2
10  
0
1
9
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Figure 20-4. Break Address Register High (BRKH)  
Technical Data  
334  
MC68HC908MR8 Rev 4.0  
Break (BRK)  
MOTOROLA  
Break (BRK)  
Break Module Registers  
Ad-  
dress:  
$FE0D  
Bit 7  
6
6
0
5
5
0
4
4
0
3
3
0
2
2
0
1
1
0
Bit 0  
Bit 0  
0
Read:  
Write:  
Reset:  
Bit 7  
0
Figure 20-5. Break Address Register Low (BRKL)  
MC68HC908MR8 Rev 4.0  
MOTOROLA  
TechnicalData  
335  
Break (BRK)  
Break (BRK)  
20.6.3 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a  
break caused an exit from wait mode. The flag is useful in applications  
requiring a return to wait mode after exiting from a break interrupt.  
Ad-  
$FE00  
dress:  
Bit 7  
0
6
0
5
0
4
3
0
2
0
1
BW  
Note  
0
Bit 0  
0
Read:  
Write:  
Reset:  
1
R
R
0
R
0
R
R
0
R
0
R
0
1
0
Note: Writing a logic 0  
clears BW.  
= Reserved  
R
Figure 20-6. SIM Break Status Register (SBSR)  
BW Break Wait Bit  
This read/write bit is set when a break interrupt causes an exit from  
wait mode. Clear BW by writing a logic 0 to it. Reset clears BW.  
1 = Break interrupt during wait mode  
0 = No break interrupt during wait mode  
BW can be read within the break interrupt routine. The user can modify  
the return address on the stack by subtracting 1 from it. The example  
code shown in Figure 20-7 works if the H register was stacked in the  
break interrupt routine. Execute this code at the end of the break  
interrupt routine.  
Technical Data  
336  
MC68HC908MR8 Rev 4.0  
Break (BRK)  
MOTOROLA  
Break (BRK)  
Break Module Registers  
HIBYTE EQU  
LOBYTE EQU  
5
6
; If not BW, do RTI  
BRCLR BW,BSR, RETURN ; See if wait mode or stop  
; mode was exited by break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
; If RETURNLO is not 0,  
; then just decrement low byte.  
; Else deal with high byte also.  
; Point to WAIT/STOP opcode.  
; Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN PULH  
RTI  
Figure 20-7. Example Code  
20.6.4 SIM Break Flag Control Register  
The SIM break flag control register (SBFCR) contains a bit that enables  
software to clear status bits while the MCU is in a break state.  
Ad-  
$FE03  
dress:  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 20-8. SIM Break Flag Control Register (SBFCR)  
BCFE Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908MR8 Rev 4.0  
TechnicalData  
MOTOROLA  
Break (BRK)  
337  
Break (BRK)  
Technical Data  
338  
MC68HC908MR8 Rev 4.0  
Break (BRK)  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 21. Electrical Specifications  
21.1 Contents  
21.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339  
21.3 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . .340  
21.4 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . . .341  
21.5 Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . .342  
21.6 DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . .343  
21.7 Memory Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . .345  
21.8 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346  
21.9 TImer Interface Module Characteristics . . . . . . . . . . . . . . .346  
21.10 Clock Generation Module Component Specifications . . .347  
21.11 CGM Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . .347  
21.12 CGM Acquisition/Lock Time Specifications. . . . . . . . . . . .348  
21.13 Analog-to-Digital Converter (ADC) Characteristics. . . . . .349  
21.2 Introduction  
This section contains electrical and timing specifications. These values  
are design targets and have not yet been fully characterized.  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
Electrical Specifications  
339  
Electrical Specifications  
21.3 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the MCU can be  
exposed without permanently damaging it.  
NOTE: This device is not guaranteed to operate properly at the maximum  
ratings. Refer to 21.6 DC Electrical Characteristics for guaranteed  
operating conditions.  
Characteristic(1)  
Supply voltage  
Symbol  
Value  
Unit  
VDD  
0.3 to +6.0  
V
VSS 0.3  
to VDD + 0.3  
VIn  
VHI  
I
Input voltage  
V
V
VDD + 4  
Input high voltage  
Maximum current per pin  
excluding VDD and VSS  
± 25  
mA  
tSTG  
IMVSS  
IMVDD  
Storage temperature  
55 to +150  
100  
°C  
Maximum current out of VSS  
Maximum current Into VDD  
1. Voltages are referenced to VSS  
mA  
mA  
100  
.
NOTE: This device contains circuitry to protect the inputs against damage due  
to high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that V and V  
be constrained to the  
In  
Out  
range V (V or V ) V . Reliability of operation is enhanced if  
SS  
In  
Out  
DD  
unused inputs are connected to an appropriate logic voltage level (for  
example, either V or V ).  
SS  
DD  
Technical Data  
340  
MC68HC908MR8 Rev 4.0  
Electrical Specifications  
MOTOROLA  
Electrical Specifications  
Functional Operating Range  
21.4 Functional Operating Range  
Characteristic  
Symbol  
Value  
Unit  
°C  
Operating temperature range(1)  
MC68HC908MR8CP  
MC68HC908MR8CFA  
MC68HC908MR8CDW  
MC68HC908MR8VFA  
MC68HC908MR8VP  
MC68HC908MR8VDW  
MC68HC908MR8MFA  
MC68HC908MR8MP  
MC68HC908MR8MDW  
40 to +85  
40 to +85  
40 to +85  
40 to +105  
40 to +105  
40 to +105  
40 to +125  
40 to +125  
40 to +125  
TA  
VDD  
Operating voltage range  
5.0 ± 10%  
V
1. Contact a Motorola representative for temperature availability.  
C = Extended temperature range (40 to +85°C)  
V = Industrial temperature range (40 to +105°C)  
M = Automotive temperature range (40 to +125°C)  
MC68HC908MR8 Rev 4.0  
TechnicalData  
341  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
21.5 Thermal Characteristics  
Characteristic  
Thermal resistance  
32-pin LQFP  
28-pin PDIP  
28-pin SOIC  
Symbol  
Value  
Unit  
68.9(1)  
θJA  
°C/W  
PI/O  
PD  
I/O pin power dissipation  
Power dissipation(2)  
User determined  
W
W
PD = (IDD x VDD  
)
+ PI/O = K/(TJ + 273°C)  
PD x (TA + 273°C)  
+ PD2 x θJA  
Constant(3)  
K
W/°C  
TJ  
TA + (PD x θJA)  
Average junction temperature  
Maximum junction temperature  
°C  
°C  
TJM  
125  
1. 32-pin LQFP resistance measured at 200 ft/min.  
2. Power dissipation is a function of temperature.  
3. K is a constant unique to the device. K can be determined for a known TA and measured  
PD. With this value of K, PD and TJ can be determined for any value of TA.  
Technical Data  
342  
MC68HC908MR8 Rev 4.0  
Electrical Specifications  
MOTOROLA  
Electrical Specifications  
DC Electrical Characteristics  
21.6 DC Electrical Characteristics  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
Output high voltage  
ILoad = 2.0 mA for all I/O pins except:  
VDD 0.8  
Port A bits 0 and 1  
Port B bits 5 and 6  
Load = 7.0 mA for:  
VOH  
V
I
VDD 1.0  
Port A bits 0 and 1 and port B bits 56,  
a maximum of four 15-mA outputs may be active  
at any time  
Output low voltage  
I
Load = 1.6 mA for all I/O pins except:  
0.4  
1.5  
Port A bits 0 and 1  
Port B bits 5 and 6  
Load = 15 mA for:  
VOL  
V
I
Port A bits 0 and 1 and Port B bits 56,  
a maximum of four 15-mA outputs may be active  
at any time  
Input high voltage  
All ports, IRQs, RESET, OSC1  
VIH  
VIL  
0.7 x VDD  
VDD  
V
V
Input low voltage  
All ports, IRQs, RESET, OSC1  
VSS  
0.3 x VDD  
V
DD supply current  
Run(3)  
40  
12  
mA  
mA  
Wait(4)  
Stop(5)  
IDD  
Up to 85°C  
Above 85°C  
25°C with LVI enabled  
Quiescent(5)  
5
15  
350  
100  
µA  
µA  
µA  
µA  
IIL  
IIn  
IIn  
I/O ports high-impedance leakage current  
Input current except PTC1/FAULT4  
Input current PTC1/FAULT4  
80  
±10  
±1  
µA  
µA  
µA  
208  
COut  
CIn  
Capacitance  
Ports (as input or output)  
12  
8
pF  
VLVRF1  
VLVH1  
Low-voltage inhibit falling  
4.0  
20  
4.4  
50  
V
mV  
V
Low-voltage reset/recover hysteresis  
Low-voltage recover rising  
VLVRR1  
4.5  
4.75  
MC68HC908MR8 Rev 4.0  
TechnicalData  
343  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
Continued  
VLVRF2  
VLVH2  
VLVRR2  
VPOR  
Low-voltage inhibit falling  
3.8  
50  
4.1  
100  
4.2  
V
mV  
V
Low-voltage reset/recover hysteresis  
Low-voltage recover rising  
4.6  
100  
POR re-arm voltage(6)  
0
mV  
V/ms  
POR rise time ramp rate(7)  
RPOR  
0.035  
1. VDD = 5.0 Vdc ±10%, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted  
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.  
3. Run (operating) IDD measured using external square wave clock source (fOSC = 8.2 MHz); all inputs 0.2 V from rail; no dc  
loads; less than 100 pF on all outputs; CL = 20 pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly  
affects run IDD; measured with all modules enabled  
4. Wait IDD measured using external square wave clock source (fOSC = 8.2 MHz); all inputs 0.2 V from rail; no dc loads; less  
than 100 pF on all outputs; CL = 20 pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly affects wait IDD  
;
measured with PLL and LVI enabled  
5. Quiescent IDD measured with PLL and LVI disengaged; OCS1 grounded; no port pins sourcing current. It is measured  
through combination of VDD and VDDA  
.
6. Maximum is highest guaranteed voltage for POR.  
7. Maximum is the highest possible voltage for POR. If minimum VDD is not reached before the internal POR reset is released,  
RST must be driven low externally until minimum VDD is reached.  
Technical Data  
344  
MC68HC908MR8 Rev 4.0  
Electrical Specifications  
MOTOROLA  
Electrical Specifications  
Memory Characteristics  
21.7 Memory Characteristics  
Characteristic  
RAM data retention voltage  
Symbol  
Min  
1.3  
1
Typ  
Max  
Unit  
V
VRDR  
FLASH program bus clock frequency  
FLASH read bus clock frequency  
MHz  
Hz  
(1)  
32k  
8.4M  
fRead  
(2)  
FLASH page erase time  
1
ms  
tErase  
(3)  
FLASH mass erase time  
4
10  
5
40  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
tMErase  
tnvs  
tnvh  
FLASH PGM/ERASE to HVEN set up time  
FLASH high-voltage hold time  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
tnvhl  
100  
5
tpgs  
tPROG  
FLASH program time  
30  
1
(4)  
FLASH return to read time  
trcv  
(5)  
FLASH cumulative program HV period  
10k  
10k  
10  
4
ms  
tHV  
FLASH row erase endurance(6)  
FLASH row program endurance(8)  
100k(7)  
100k(7)  
100(10)  
Cycles  
Cycles  
Years  
FLASH data retention time(9)  
Notes:  
1. fRead is defined as the frequency range for which the FLASH memory can be read.  
2. If the page erase time is longer than tErase (Min), there is no erase-disturb, but it reduces the endurance of the FLASH  
memory.  
3. If the mass erase time is longer than tMErase (Min), there is no erase-disturb, but it reduces the endurance of the FLASH  
memory.  
4. trcv is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing  
HVEN to logic 0.  
5. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
tHV must satisfy this condition: tnvs + tnvh + tpgs + (tPROG × 64) tHV max.  
6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at  
least this many erase / program cycles.  
7. FLASH endurance is a function of the temperature at which erasure occurs. Typical endurance degrades when the tem-  
perature while erasing is less than 25°C.  
8. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at  
least this many erase / program cycles.  
9. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum  
time specified.  
10. Motorola performs reliability testing for data retention. These tests are based on samples tested at elevated temperatures.  
Due to the higher activation energy of the elevated test temperature, calculated life tests correspond to more than 100  
years of operation/storage at 55°C  
MC68HC908MR8 Rev 4.0  
TechnicalData  
345  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
21.8 Control Timing  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Frequency of operation(2)  
Crystal option  
External clock option(3)  
1
dc(4)  
fOSC  
8
32.8  
MHz  
fOP  
tIRL  
Internal operating frequency  
8.2  
MHz  
ns  
RESET input pulse width low(5)  
50  
1. VDD = 5.0 Vdc ± 10%; VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted  
2. See 21.8 Control Timing for more information.  
3. No more than 10 percent duty cycle deviation from 50 percent.  
4. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this infor-  
mation.  
5. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause reset.  
21.9 TImer Interface Module Characteristics  
Characteristic  
Input capture pulse width  
Symbol  
Min  
Max  
Unit  
tTIH  
tTIL  
125  
ns  
tTCH  
tTCL  
(1/fOP) + 5  
Input clock pulse width  
ns  
Technical Data  
346  
MC68HC908MR8 Rev 4.0  
Electrical Specifications  
MOTOROLA  
Electrical Specifications  
Clock Generation Module Component Specifications  
21.10 Clock Generation Module Component Specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
Notes  
Consult crystal  
CL  
Crystal load capacitance  
manufacturing data  
Consult crystal  
manufacturing data  
C1  
C2  
2 * CL  
2 * CL  
Crystal fixed capacitance  
Crystal tuning capacitance  
Consult crystal  
manufacturing data  
RB  
RS  
Feedback bias resistor  
Series resistor  
22 MΩ  
330 kΩ  
0
1 MΩ  
Not required  
CFACT  
*
CF  
Filter capacitor  
(VDDA/fXCLK  
)
C
BYP must provide low ac  
impedance from  
f = fXCLK/100 to  
100 * fVCLK, so series  
CBYP  
Bypass capacitor  
0.1 µF  
resistance must be  
considered.  
21.11 CGM Operating Conditions  
Characteristic  
Crystal reference frequency  
Range nominal multiplier  
Symbol  
Min  
1 MHz  
Typ  
Max  
fXCLK  
8 MHz  
fNOM  
fVRS  
4.9152 MHz  
VCO center-of-range frequency  
VCO frequency multiplier  
4.9152 MHz  
32.8 MHz  
15  
N
L
1
1
VCO center of range multiplier  
VCO operating frequency  
15  
fVCLK  
fVRSMIN  
fVRSMAX  
MC68HC908MR8 Rev 4.0  
TechnicalData  
347  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
21.12 CGM Acquisition/Lock Time Specifications  
Description  
Symbol  
Min  
Typ  
Max  
Notes  
F/sV  
V
CFACT  
Filter capacitor multiply factor  
Acquisition mode time factor  
Tracking mode time factor  
0.0154  
0.1135  
0.0174  
KACQ  
KTRK  
V
(8 * VDDA)/  
(fXCLK * KACQ)  
If CF chosen  
correctly  
tACQ  
Manual mode time to stable  
(4 * VDDA)/  
If CF chosen  
correctly  
tAL  
Manual stable to lock time  
Manual acquisition time  
(fXCLK * KTRK  
)
tLock  
tACQ + tAL  
Tracking mode entry frequency  
tolerance  
0
±3.6%  
TRK  
Acquisition mode entry frequency  
tolerance  
±6.3%  
±7.2%  
ACQ  
Lock entry frequency tolerance  
Lock exit frequency tolerance  
0
±0.9%  
±1.8%  
Lock  
±0.9%  
UNL  
Reference cycles per acquisition  
mode measurement  
nACQ  
32  
Reference cycles per tracking mode  
measurement  
nTRK  
128  
(8 * VDDA)/  
(fXCLK * KACQ)  
If CF chosen  
correctly  
tACQ  
nACQ/fXCLK  
Automatic mode time to stable  
(4 * VDDA)/  
(fXCLK * KTRK  
If CF chosen  
correctly  
tAL  
nTRK/fXCLK  
Automatic stable to lock time  
Automatic lock time  
)
tLock  
tACQ + tAL  
± (fCRYS  
* (0.025 %)  
* (N/4)  
)
N = VCO  
freq. mult.  
(GBNT)  
PLL jitter (deviation of average bus  
frequency over 2 ms)  
fJ  
0
Technical Data  
348  
MC68HC908MR8 Rev 4.0  
Electrical Specifications  
MOTOROLA  
Electrical Specifications  
Analog-to-Digital Converter (ADC) Characteristics  
21.13 Analog-to-Digital Converter (ADC) Characteristics  
Characteristic  
A/D reference voltage  
Input voltages  
Symbol  
Min  
4.5  
0
Typ  
Max  
5.5  
Unit  
V
Notes  
VREFH  
VADIN  
BAD  
VREFH  
V
ADIN <= VREFH  
V
Resolution  
10  
10  
4
Bits  
Includes  
quantization  
AAD  
Absolute accuracy  
Counts  
fADIC  
RAD  
tAIC = 1/fADIC  
ADC internal clock  
Conversion range  
Power-up time  
500 k  
VSSA  
1 M  
Hz  
VREFH  
V
tADPU  
tADC  
tADS  
MAD  
ZADI  
FADI  
tAIC cycles  
tAIC cycles  
tAIC cycles  
16  
16  
5
Conversion time  
Sample time  
17  
Monotonicity  
Guaranteed  
VADIN = VSSA  
Zero input reading  
Full-scale reading  
000  
003  
3FF  
Hex  
Hex  
V
ADIN = VREFH  
3FD  
Not  
characterized  
CADI  
AAD  
Input capacitance  
30  
pF  
Absolute accuracy  
(8-bit truncation mode)  
Includes  
quantization  
±1  
Counts  
LSB  
Quantization error  
(8-bit truncation mode)  
+7/8  
1/8  
MC68HC908MR8 Rev 4.0  
TechnicalData  
349  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
Technical Data  
350  
MC68HC908MR8 Rev 4.0  
Electrical Specifications  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 22. Mechanical Specifications  
22.1 Contents  
22.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
22.3 32-Pin LQFP (Case #873A). . . . . . . . . . . . . . . . . . . . . . . . . .352  
22.4 28-Pin PDIP (Case #710). . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
22.5 28-Pin SOIC (Case #751F) . . . . . . . . . . . . . . . . . . . . . . . . . .353  
22.2 Introduction  
The MC68HC908MR8 is available in these packages:  
32-pin low-profile quad flat pack (LQFP)  
28-pin dual in-line package (PDIP)  
28-pin small outline package (SOIC)  
The package information contained in this section is the latest available  
at the time of this publication. To make sure that you have the latest  
package specifications, contact one of the following:  
Local Motorola Sales Office  
World Wide Web at http://www.motorola.com/semiconductors/  
Follow World Wide Web on-line instructions to retrieve the current  
mechanical specifications.  
MC68HC908MR8 Rev 4.0  
Technical Data  
MOTOROLA  
Mechanical Specifications  
351  
Mechanical Specifications  
22.3 32-Pin LQFP (Case #873A)  
4X  
A
A1  
0.20 (0.008) AB TU  
Z
32  
25  
1
U–  
T–  
B
V
AE  
AE  
P
B1  
DETAIL Y  
V1  
17  
8
DETAIL Y  
9
4X  
Z–  
0.20 (0.008) AC TU  
Z
9
NOTES:  
S1  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
S
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE ABIS LOCATED AT BOTTOM  
OF LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS T, U, AND ZTO BE DETERMINED  
AT DATUM PLANE AB.  
DETAIL AD  
G
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE AC.  
AB–  
AC–  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 (0.010) PER SIDE. DIMENSIONS A AND B  
DO INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE AB.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.520 (0.020).  
SEATING  
PLANE  
0.10 (0.004) AC  
BASE  
METAL  
N
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE  
0.0076 (0.0003).  
9. EXACT SHAPE OF EACH CORNER MAY VARY  
FROM DEPICTION.  
F
D
8X M  
MILLIMETERS  
DIM MIN MAX  
7.000 BSC  
INCHES  
MIN MAX  
0.276 BSC  
0.138 BSC  
0.276 BSC  
0.138 BSC  
R
J
A
A1  
B
3.500 BSC  
7.000 BSC  
3.500 BSC  
SECTION AEAE  
E
C
B1  
C
1.400  
1.600 0.055  
0.063  
0.018  
0.057  
0.016  
D
E
F
0.300  
1.350  
0.300  
0.450 0.012  
1.450 0.053  
0.400 0.012  
W
G
H
J
K
M
N
P
0.800 BSC  
0.031 BSC  
Q
H
K
X
0.050  
0.090  
0.500  
0.150 0.002  
0.200 0.004  
0.700 0.020  
0.006  
0.008  
0.028  
12 REF  
12 REF  
0.006  
0.016 BSC  
DETAIL AD  
0.090  
0.160 0.004  
0.400 BSC  
Q
R
1
5
1
5
0.150  
0.250 0.006  
0.010  
S
9.000 BSC  
0.354 BSC  
S1  
V
V1  
W
X
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
0.177 BSC  
0.354 BSC  
0.177 BSC  
0.008 REF  
0.039 REF  
Technical Data  
352  
MC68HC908MR8 Rev 4.0  
Mechanical Specifications  
MOTOROLA  
Mechanical Specifications  
28-Pin PDIP (Case #710)  
22.4 28-Pin PDIP (Case #710)  
NOTES:  
1. POSITIONAL TOLERANCE OF LEADS (D),  
SHALL BE WITHIN 0.25mm (0.010) AT  
MAXIMUM MATERIAL CONDITION, IN  
RELATION TO SEATING PLANE AND  
EACH OTHER.  
2. DIMENSION L TO CENTER OF LEADS  
WHEN FORMED PARALLEL.  
3. DIMENSION B DOES NOT INCLUDE  
MOLD FLASH.  
28  
1
15  
14  
B
MILLIMETERS  
MIN MAX  
INCHES  
MIN MAX  
DIM  
A
B
C
D
F
36.45 37.21  
13.72 14.22  
1.435 1.465  
0.540 0.560  
0.155 0.200  
0.014 0.022  
0.040 0.060  
L
A
C
3.94  
0.36  
1.02  
5.08  
0.56  
1.52  
N
G
H
J
2.54 BSC  
0.100 BSC  
1.65  
0.20  
2.92  
2.16  
0.38  
3.43  
0.065 0.085  
0.008 0.015  
0.115 0.135  
J
H
G
K
L
M
K
SEATING  
PLANE  
15.24 BSC  
0.600 BSC  
F
D
0°  
0.51  
15°  
1.02  
0°  
0.020 0.040  
15°  
M
N
22.5 28-Pin SOIC (Case #751F)  
-A-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
28  
1
15  
14X P  
M
M
-B-  
0.010 (0.25)  
B
4. MAXIMUM MOLD PROTRUSION 0.15  
(0.006) PER SIDE.  
14  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
28X D  
M
M
S
S
B
0.010 (0.25)  
T
A
R X 45°  
MILLIMETERS  
MIN MAX  
17.80 18.05  
INCHES  
MIN MAX  
C
DIM  
A
-T-  
0.701 0.711  
0.292 0.299  
0.093 0.104  
0.014 0.019  
0.016 0.035  
0.050 BSC  
-T-  
SEATING  
PLANE  
B
7.40  
2.35  
0.35  
0.41  
7.60  
2.65  
0.49  
0.90  
26X G  
C
D
K
F
F
G
J
1.27 BSC  
0.23  
0.13  
0°  
0.32  
0.29  
8°  
0.009 0.013  
0.005 0.011  
J
K
M
P
0° 8°  
0.395 0.415  
10.05 10.55  
0.25 0.75  
R
0.010 0.029  
MC68HC908MR8 Rev 4.0  
TechnicalData  
353  
MOTOROLA  
Mechanical Specifications  
Mechanical Specifications  
Technical Data  
354  
MC68HC908MR8 Rev 4.0  
Mechanical Specifications  
MOTOROLA  
Technical Data MC68HC908MR8  
Section 23. Ordering Information  
23.1 Contents  
23.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
23.3 MC Order Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
23.2 Introduction  
This section contains instructions for ordering the MC68HC908MR8.  
23.3 MC Order Numbers  
Table 23-1. MC Order Numbers  
Operating  
Temperature Range  
MC Order Number(1)  
(°C)  
MC68HC908MR8CFA  
40 to + 85  
40 to + 85  
40 to + 85  
40 to + 105  
40 to + 105  
40 to + 105  
40 to + 125  
40 to + 125  
40 to + 125  
MC68HC908MR8CP  
MC68HC908MR8CDW  
MC68HC908MR8VFA  
MC68HC908MR8VP  
MC68HC908MR8VDW  
MC68HC908MR8MFA  
MC68HC908MR8MP  
MC68HC908MR8MDW  
1. FA = quad flat pack  
P = plastic dual in line package  
DW = Small outline integrated circuit (SOIC) package  
MC68HC908MR8 Rev 4.0  
Technical Data  
355  
MOTOROLA  
Ordering Information  
Ordering Information  
Technical Data  
356  
MC68HC908MR8 Rev 4.0  
Ordering Information  
MOTOROLA  
Technical Data MC68HC908MR8  
Revision History  
Contents  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
Changes from Rev 3.0 published in April 2002 to Rev 4.0 published in  
July 2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
Introduction  
This section contains the revision history for the MC68HC908MR8  
advance information data book.  
Changes from Rev 3.0 published in April 2002 to Rev 4.0 published in July  
2002  
Section  
Page (in Rev 0.4)  
Description of change  
VOL max updated for ILoad = 15 mA  
Electrical  
Specifications  
343  
Stop IDD limits updated for different temperature specs  
MC68HC908MR8 Rev 4.0  
Technical Data  
357  
MOTOROLA  
Revision History  
Revision History  
Technical Data  
358  
MC68HC908MR8 Rev 4.0  
Revision History  
MOTOROLA  
Technical Data MC68HC908MR8  
Glossary  
A See accumulator (A).  
accumulator (A) An 8-bit general-purpose register in the CPU08. The CPU08 uses the  
accumulator to hold operands and results of arithmetic and logic operations.  
acquisition mode A mode of PLL operation during startup before the PLL locks on a  
frequency. Also see tracking mode.  
address bus The set of wires that the CPU or DMA uses to read and write memory locations.  
addressing mode The way that the CPU determines the operand address for an instruction.  
The M68HC08 CPU has 16 addressing modes.  
ALU See arithmetic logic unit (ALU).  
arithmetic logic unit (ALU) The portion of the CPU that contains the logic circuitry to perform  
arithmetic, logic, and manipulation operations on operands.  
asynchronous Refers to logic circuits and operations that are not synchronized by a common  
reference signal  
baud rate The total number of bits transmitted per unit of time.  
BCD See binary-coded decimal (BCD)  
binary Relating to the base 2 number system  
binary number system The base 2 number system, having two digits, 0 and 1. Binary  
arithmetic is convenient in digital circuit design because digital circuits have two permissible  
voltage levels, low and high. The binary digits 0 and 1 can be interpreted to correspond to the  
two digital voltage levels.  
binary-coded decimal (BCD) A notation that uses 4-bit binary numbers to represent the 10  
decimal digits and that retains the same positional structure of a decimal number. For  
example,  
234 (decimal) = 0010 0011 0100 (BCD)  
MC68HC908MR8 Rev 4.0  
Technical Data  
359  
MOTOROLA  
Glossary  
Glossary  
bit A binary digit. A bit has a value of either logic 0 or logic 1.  
branch instruction An instruction that causes the CPU to continue processing at a memory  
location other than the next sequential address.  
break module A module in the M68HC08 Family. The break module allows software to halt  
program execution at a programmable point to enter a background routine.  
breakpoint A number written into the break address registers of the break module. When a  
number appears on the internal address bus that is the same as the number in the break  
address registers, the CPU executes the software interrupt instruction (SWI).  
break interrupt A software interrupt caused by the appearance on the internal address bus  
of the same value that is written in the break address registers.  
bus A set of wires that transfers logic signals.  
bus clocks There are two bus clocks, IT12 and IT23. These clocks are generated by the CGM  
and distributed throughout the MCU by the SIM. The frequency of the bus clocks, or operating  
frequency, is fOP. While the frequency of these two clocks is the same, the phase is different.  
byte A set of eight bits.  
C The carry/borrow bit in the condition code register. The CPU08 sets the carry/borrow bit  
when an addition operation produces a carry out of bit 7 of the accumulator or when a  
subtraction operation requires a borrow. Some logical operations and data manipulation  
instructions also clear or set the carry/borrow bit (as in bit test and branch instructions and  
shifts and rotates).  
CCR See condition code register.  
central processor unit (CPU) The primary functioning unit of any computer system. The  
CPU controls the execution of instructions.  
CGM See clock generator module (CGM).  
clear To change a bit from logic 1 to logic 0; the opposite of set.  
clock A square wave signal used to synchronize events in a computer.  
clock generator module (CGM) A module in the M68HC08 Family. The CGM generates a  
base clock signal from which the system clocks are derived. The CGM may include a crystal  
oscillator circuit and/or phase-locked loop (PLL) circuit.  
Technical Data  
360  
MC68HC908MR8 Rev 4.0  
Glossary  
MOTOROLA  
Glossary  
comparator A device that compares the magnitude of two inputs. A digital comparator defines  
the equality or relative differences between two binary numbers.  
computer operating properly module (COP) A counter module in the M68HC08 Family that  
resets the MCU if allowed to overflow.  
condition code register (CCR) An 8-bit register in the CPU08 that contains the interrupt  
mask bit and five bits that indicate the results of the instruction just executed.  
control bit One bit of a register manipulated by software to control the operation of the  
module.  
control unit One of two major units of the CPU. The control unit contains logic functions that  
synchronize the machine and direct various operations. The control unit decodes instructions  
and generates the internal control signals that perform the requested operations. The outputs  
of the control unit drive the execution unit, which contains the arithmetic logic unit (ALU), CPU  
registers, and bus interface.  
COP See computer operating properly module (COP).  
counter clock The input clock to the TIM counter. This clock is an output of the prescaler  
sub-module. The frequency of the counter clock is fTCNT, and the period is tTCNT  
.
CPU See central processor unit (CPU).  
CPU08 The central processor unit of the M68HC08 Family.  
CPU cycles A CPU clock cycle is one period of the internal bus-rate clock, fOP, normally  
derived by dividing a crystal oscillator source by two or more so the high and low times will  
be equal. The length of time required to execute an instruction is measured in CPU clock  
cycles.  
CPU registers Memory locations that are wired directly into the CPU logic instead of being  
part of the addressable memory map. The CPU always has direct access to the information  
in these registers. The CPU registers in an M68HC08 are:  
A, 8-bit accumulator  
H:X, 16-bit index register  
SP, 16-bit stack pointer  
PC, 16-bit program counter  
CCR, condition code register containing the V, H, I, N, Z, and C bits  
MC68HC908MR8 Rev 4.0  
TechnicalData  
361  
MOTOROLA  
Glossary  
Glossary  
CSIC customer-specified integrated circuit  
cycle time The period of the operating frequency: tCYC = 1/fOP.  
decimal number system Base 10 numbering system that uses the digits zero through nine.  
direct memory access module (DMA) A M68HC08 Family module that can perform data  
transfers between any two CPU-addressable locations without CPU intervention. For  
transmitting or receiving blocks of data to or from peripherals, DMA transfers are faster and  
more code-efficient than CPU interrupts.  
DMA See direct memory access module (DMA).  
DMA service request A signal from a peripheral to the DMA module that enables the DMA  
module to transfer data.  
duty cycle A ratio of the amount of time the signal is on versus the time it is off. Duty cycle is  
usually represented by a percentage.  
EEPROM Electrically erasable, programmable, read-only memory. A non-volatile type of  
memory that can be electrically reprogrammed.  
EPROM Erasable, programmable, read-only memory. A non-volatile type of memory that can  
be erased by exposure to an ultraviolet light source and then reprogrammed.  
exception An event such as an interrupt or a reset that stops the sequential execution of the  
instructions in the main program.  
external interrupt module (IRQ) A module in the M68HC08 Family with both dedicated  
external interrupt pins and port pins that can be enabled as interrupt pins.  
fetch To copy data from a memory location into the accumulator.  
firmware Instructions and data programmed into non-volatile memory.  
free-running counter A device that counts from zero to a predetermined number, then rolls  
over to zero and begins counting again.  
full-duplex transmission Communication on a channel in which data can be sent and  
received simultaneously.  
H The upper byte of the 16-bit index register (H:X) in the CPU08.  
Technical Data  
362  
MC68HC908MR8 Rev 4.0  
Glossary  
MOTOROLA  
Glossary  
H The half-carry bit in the condition code register of the CPU08. This bit indicates a carry from  
the low-order four bits of the accumulator value to the high-order four bits. The half-carry bit  
is required for binary-coded decimal arithmetic operations. The decimal adjust accumulator  
(DAA) instruction uses the state of the H and C bits to determine the appropriate correction  
factor.  
hexadecimal Base 16 numbering system that uses the digits 0 through 9 and the letters A  
through F.  
high byte The most significant eight bits of a word.  
illegal address An address not within the memory map.  
illegal opcode A non-existent opcode.  
I The interrupt mask bit in the condition code register of the CPU08. When I is set, all interrupts  
are disabled.  
index register (H:X) A 16-bit register in the CPU08. The upper byte of H:X is called H. The  
lower byte is called X. In the indexed addressing modes, the CPU uses the contents of H:X  
to determine the effective address of the operand. H:X can also serve as a temporary data  
storage location.  
input/output (I/O) Input/output interfaces between a computer system and the external world.  
A CPU reads an input to sense the level of an external signal and writes to an output to  
change the level on an external signal.  
instructions Operations that a CPU can perform. Instructions are expressed by programmers  
as assembly language mnemonics. A CPU interprets an opcode and its associated  
operand(s) and instruction.  
interrupt A temporary break in the sequential execution of a program to respond to signals  
from peripheral devices by executing a subroutine.  
interrupt request A signal from a peripheral to the CPU intended to cause the CPU to  
execute a subroutine.  
I/O See input/output (I/0).  
IRQ See external interrupt module (IRQ).  
jitter Short-term signal instability.  
latch A circuit that retains the voltage level (logic 1 or logic 0) written to it for as long as power  
is applied to the circuit.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
363  
MOTOROLA  
Glossary  
Glossary  
latency The time lag between instruction completion and data movement.  
least significant bit (LSB) The rightmost digit of a binary number.  
logic 1 A voltage level approximately equal to the input power voltage (VDD).  
logic 0 A voltage level approximately equal to the ground voltage (VSS).  
low byte The least significant eight bits of a word.  
low voltage inhibit module (LVI) A module in the M68HC08 Family that monitors power  
supply voltage.  
LVI See low-voltage inhibit module (LVI).  
M68HC08 A Motorola family of 8-bit MCUs.  
mark/space The logic 1/logic 0 convention used in formatting data in serial communication.  
mask 1. A logic circuit that forces a bit or group of bits to a desired state. 2. A photomask used  
in integrated circuit fabrication to transfer an image onto silicon.  
mask option An optional microcontroller feature that the customer chooses to enable or  
disable.  
MCU Microcontroller unit. See microcontroller.  
memory location Each M68HC08 memory location holds one byte of data and has a unique  
address. To store information in a memory location, the CPU places the address of the  
location on the address bus, the data information on the data bus, and asserts the write  
signal. To read information from a memory location, the CPU places the address of the  
location on the address bus and asserts the read signal. In response to the read signal, the  
selected memory location places its data onto the data bus.  
memory map A pictorial representation of all memory locations in a computer system.  
microcontroller Microcontroller unit (MCU). A complete computer system, including a CPU,  
memory, a clock oscillator, and input/output (I/O) on a single integrated circuit.  
modulo counter A counter that can be programmed to count to any number from zero to its  
maximum possible modulus.  
monitor ROM A section of ROM that can execute commands from a host computer for testing  
purposes.  
most significant bit (MSB) The leftmost digit of a binary number.  
Technical Data  
364  
MC68HC908MR8 Rev 4.0  
Glossary  
MOTOROLA  
Glossary  
multiplexer A device that can select one of a number of inputs and pass the logic level of that  
input on to the output.  
N The negative bit in the condition code register of the CPU08. The CPU sets the negative bit  
when an arithmetic operation, logical operation, or data manipulation produces a negative  
result.  
nibble A set of four bits (half of a byte).  
object code The output from an assembler or compiler that is itself executable machine code  
or is suitable for processing to produce executable machine code.  
opcode A binary code that instructs the CPU to perform an operation.  
open-drain An output that has no pullup transistor. An external pullup device can be  
connected to the power supply to provide the logic 1 output voltage.  
operand Data on which an operation is performed. Usually, a statement consists of an  
operator and an operand. For example, the operator may be an add instruction, and the  
operand may be the quantity to be added.  
oscillator A circuit that produces a constant frequency square wave that is used by the  
computer as a timing and sequencing reference.  
overflow A quantity that is too large to be contained in one byte or one word.  
page zero The first 256 bytes of memory (addresses $0000$00FF).  
parity An error-checking scheme that counts the number of logic 1s in each byte transmitted.  
In a system that uses odd parity, every byte is expected to have an odd number of logic 1s.  
In an even parity system, every byte should have an even number of logic 1s. In the  
transmitter, a parity generator appends an extra bit to each byte to make the number of logic  
1s odd for odd parity or even for even parity. A parity checker in the receiver counts the  
number of logic 1s in each byte. The parity checker generates an error signal if it finds a byte  
with an incorrect number of logic 1s.  
PC See program counter (PC).  
peripheral A circuit not under direct CPU control.  
phase-locked loop (PLL) An oscillator circuit in which the frequency of the oscillator is  
synchronized to a reference signal.  
PLL See phase-locked loop (PLL).  
MC68HC908MR8 Rev 4.0  
TechnicalData  
365  
MOTOROLA  
Glossary  
Glossary  
pointer Pointer register. An index register is sometimes called a pointer register because its  
contents are used in the calculation of the address of an operand and, therefore, points to the  
operand.  
polarity The two opposite logic levels, logic 1 and logic 0, which correspond to two different  
voltage levels, VDD and VSS.  
polling Periodically reading a status bit to monitor the condition of a peripheral device.  
port A set of wires for communicating with off-chip devices.  
prescaler A circuit that generates an output signal related to the input signal by a fractional  
scale factor such as 1/2, 1/8, 1/10, etc.  
program A set of computer instructions that causes a computer to perform a desired  
operation or operations.  
program counter (PC) A 16-bit register in the CPU08. The PC register holds the address of  
the next instruction or operand that the CPU will use.  
pull An instruction that copies into the accumulator the contents of a stack RAM location. The  
stack RAM address is in the stack pointer.  
pullup A transistor in the output of a logic gate that connects the output to the logic 1 voltage  
of the power supply.  
pulse-width The amount of time a signal is on as opposed to being in its off state.  
pulse-width modulation (PWM) Controlled variation (modulation) of the pulse width of a  
signal with a constant frequency.  
push An instruction that copies the contents of the accumulator to the stack RAM. The stack  
RAM address is in the stack pointer.  
PWM period The time required for one complete cycle of a PWM waveform.  
PMC Pulse width modulated motor control module  
RAM Random access memory. All RAM locations can be read or written by the CPU. The  
contents of a RAM memory location remain valid until the CPU writes a different value or until  
power is turned off.  
RC circuit A circuit consisting of capacitors and resistors having a defined time constant.  
read To copy the contents of a memory location to the accumulator.  
Technical Data  
366  
MC68HC908MR8 Rev 4.0  
Glossary  
MOTOROLA  
Glossary  
register A circuit that stores a group of bits.  
reserved memory location A memory location that is used only in special factory test modes.  
Writing to a reserved location has no effect. Reading a reserved location returns an  
unpredictable value.  
reset To force a device to a known condition.  
ROM Read-only memory. A type of memory that can be read but cannot be changed (written).  
The contents of ROM must be specified before manufacturing the MCU.  
SCI See serial communication interface module (SCI).  
serial Pertaining to sequential transmission over a single line.  
serial communication interface module (SCI) A module in the M68HC08 Family that  
supports asynchronous communication.  
serial peripheral interface module (SPI) A module in the M68HC08 Family that supports  
synchronous communication.  
set To change a bit from logic 0 to logic 1; opposite of clear.  
shift register A chain of circuits that can retain the logic levels (logic 1 or logic 0) written to  
them and that can shift the logic levels to the right or left through adjacent circuits in the chain.  
signed A binary number notation that accommodates both positive and negative numbers.  
The most significant bit is used to indicate whether the number is positive or negative,  
normally logic 0 for positive and logic 1 for negative. The other seven bits indicate the  
magnitude of the number.  
SIM See system integration module (SIM).  
software Instructions and data that control the operation of a microcontroller.  
software interrupt (SWI) An instruction that causes an interrupt and its associated vector  
fetch.  
SPI See serial peripheral interface module (SPI).  
stack A portion of RAM reserved for storage of CPU register contents and subroutine return  
addresses.  
stack pointer (SP) A 16-bit register in the CPU08 containing the address of the next available  
storage location on the stack.  
start bit A bit that signals the beginning of an asynchronous serial transmission.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
367  
MOTOROLA  
Glossary  
Glossary  
status bit A register bit that indicates the condition of a device.  
stop bit A bit that signals the end of an asynchronous serial transmission.  
subroutine A sequence of instructions to be used more than once in the course of a program.  
The last instruction in a subroutine is a return from subroutine (RTS) instruction. At each  
place in the main program where the subroutine instructions are needed, a jump or branch to  
subroutine (JSR or BSR) instruction is used to call the subroutine. The CPU leaves the flow  
of the main program to execute the instructions in the subroutine. When the RTS instruction  
is executed, the CPU returns to the main program where it left off.  
synchronous Refers to logic circuits and operations that are synchronized by a common  
reference signal.  
system integration module (SIM) One of a number of modules that handle a variety of  
control functions in the modular M68HC08 Family. The SIM controls mode of operation,  
resets and interrupts, and system clock distribution.  
TIM See timer interface module (TIM).  
timer interface module (TIM) A module used to relate events in a system to a point in time.  
timer A module used to relate events in a system to a point in time.  
toggle To change the state of an output from a logic 0 to a logic 1 or from a logic 1 to a logic 0.  
tracking mode Mode of low-jitter PLL operation during which the PLL is locked on a  
frequency. Also see acquisition mode.  
twos complement A means of performing binary subtraction using addition techniques. The  
most significant bit of a twos complement number indicates the sign of the number (1  
indicates negative). The twos complement negative of a number is obtained by inverting  
each bit in the number and then adding 1 to the result.  
unbuffered Utilizes only one register for data; new data overwrites current data.  
unimplemented memory location A memory location that is not used. Writing to an  
unimplemented location has no effect. Reading an unimplemented location returns an  
unpredictable value. Executing an opcode at an unimplemented location causes an illegal  
address reset.  
V The overflow bit in the condition code register of the CPU08. The CPU08 sets the V bit when  
a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and  
BLT use the overflow bit.  
Technical Data  
368  
MC68HC908MR8 Rev 4.0  
Glossary  
MOTOROLA  
Glossary  
variable A value that changes during the course of program execution.  
VCO See voltage-controlled oscillator.  
vector A memory location that contains the address of the beginning of a subroutine written  
to service an interrupt or reset.  
voltage-controlled oscillator (VCO) A circuit that produces an oscillating output signal of a  
frequency that is controlled by a dc voltage applied to a control input.  
waveform A graphical representation in which the amplitude of a wave is plotted against time.  
wired-OR Connection of circuit outputs so that if any output is high, the connection point is  
high.  
word A set of two bytes (16 bits).  
write The transfer of a byte of data from the CPU to a memory location.  
X The lower byte of the index register (H:X) in the CPU08.  
Z The zero bit in the condition code register of the CPU08. The CPU08 sets the zero bit when  
an arithmetic operation, logical operation, or data manipulation produces a result of $00.  
MC68HC908MR8 Rev 4.0  
TechnicalData  
369  
MOTOROLA  
Glossary  
Glossary  
Technical Data  
370  
MC68HC908MR8 Rev 4.0  
Glossary  
MOTOROLA  
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217  
1-303-675-2140 or 1-800-441-2447  
JAPAN:  
Motorola Japan Ltd.; SPS, Technical Information Center,  
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan  
81-3-3440-3569  
ASIA/PACIFIC:  
Information in this document is provided solely to enable system and software  
implementers to use Motorola products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits or  
integrated circuits based on the information in this document.  
Motorola Semiconductors H.K. Ltd.;  
Silicon Harbour Centre, 2 Dai King Street,  
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong  
852-26668334  
TECHNICAL INFORMATION CENTER:  
1-800-521-6274  
Motorola reserves the right to make changes without further notice to any products  
herein. Motorola makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Motorola assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. Typicalparameters which may be provided in Motorola data sheets  
and/or specifications can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including Typicals”  
must be validated for each customer application by customers technical experts.  
Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as  
components in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other application in which  
the failure of the Motorola product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use Motorola products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold Motorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated  
with such unintended or unauthorized use, even if such claim alleges that Motorola  
was negligent regarding the design or manufacture of the part.  
HOME PAGE:  
http://www.motorola.com/semiconductors  
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark  
Office. digital dna is a trademark of Motorola, Inc. All other product or service  
names are the property of their respective owners. Motorola, Inc. is an Equal  
Opportunity/Affirmative Action Employer.  
© Motorola, Inc. 2002  
MC68HC908MR8/D  
Search  
Advanced | Parametric | Part Number | FAQ  
Select Country  
Motorola Home | Semiconductors Home | Contact Us  
Products | Design Support | Register | Login  
Semiconductors  
Motorola > Semiconductors >  
68HC908MR8 : Microcontroller  
Page Contents:  
A member of the 68HC08MR family, the 68HC908MR8 incorporates the fault tolerant and flexible 6-  
channel, 12-bit Pulse Width Modulator (PWMMC) designed to support center and edge-aligned modes  
with automatic dead-time insertion and patented dead-time compensation capability. Write-once protection  
of key configuration parameters further enhances motor and consumer safety. With 8K of FLASH memory,  
a 10-bit Analog to Digital Converter (ADC) and an asynchronous Serial Communications Interface (SCI) in  
low-pin count, small outline packages, the 68HC908MR8 is appropriate for cost- and space-conscious  
applications including smart appliances, blowers, fans, refrigeration compressors, office automation  
products and electric lawn equipment.  
Features  
Documentation  
Tools  
Rich Media  
Orderable Parts  
Related Links  
Other Info:  
FAQs  
Block Diagram  
3rd Party Design Help  
Training  
68HC908MR8 Features  
3rd Party Tool  
Vendors  
High-performance M68HC08 architecture  
Integrated Second Generation FLASH Memory  
12-bit Pulse Width Modulation for Motor Control  
Analog to Digital Converter  
Rate this Page  
Dual Programmable 16-bit Timers  
--  
-
0
+
++  
Asynchronous Serial Communications Interface  
Computer Operating Properly Watchdog Timer  
Selectable Trip Point Low Voltage Inhibit  
System Protection Features:  
Submit  
Care to Comment?  
Optional computer operating properly (COP) reset  
Low-voltage detection with optional reset  
Illegal opcode detection with optional reset  
Illegal address detection with optional reset  
Fault detection with optional PWM disabling  
Return to Top  
68HC908MR8 Documentation  
Documentation  
Application Note  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
Designing for Electromagnetic Compatibility (EMC) with  
HCMOS Microcontrollers  
MOTOROLA  
pdf  
AN1050_D  
AN1120/D  
AN1213/D  
AN1215/D  
AN1218/D  
AN1219/D  
AN1219SW  
AN1221/D  
AN1221SW  
AN1222/D  
AN1222SW  
AN1249/D  
AN1259/D  
AN1263/D  
AN1310/D  
AN1516/D  
AN1590/D  
AN1627/D  
AN1662/D  
AN1663/D  
AN1664/D  
AN1664SW  
AN1705/D  
AN1712/D  
AN1728/D  
AN1744/D  
AN1752/D  
82  
0
1/01/2000  
-
Basic Servo Loop Motor Control Using the MC68HC05B6 MOTOROLA  
MCU  
11/06/2001  
pdf  
pdf  
pdf  
pdf  
pdf  
zip  
pdf  
zip  
pdf  
zip  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
zip  
pdf  
pdf  
pdf  
pdf  
pdf  
613  
210  
261  
347  
177  
77  
1
0
0
2
1
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
1
0
1
MOTOROLA  
16-Bit DSP Servo Control w/ the MC68HC16Z1  
1/01/1996  
1/01/1996  
1/01/1993  
1/01/1997  
1/01/1995  
1/01/1993  
1/01/1995  
1/01/1993  
1/01/1995  
1/01/1996  
1/01/1995  
1/01/1995  
1/01/2000  
1/24/2003  
1/01/1997  
1/01/1999  
3/13/2001  
1/01/1998  
1/01/1996  
8/19/1998  
1/01/1999  
1/01/1997  
1/01/1997  
1/01/1998  
5/07/2001  
PID Routines for MC68HC11K4 and MC68HC11N4  
Microcontrollers  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
HC05 to HC08 Optimization  
M68HC08 Integer Math Routines  
Software Files for AN1219 zipped  
-
-
-
Hamming Error Control Coding Techniques with the HC08 MOTOROLA  
MCU  
63  
MOTOROLA  
Software Files for AN1221 zipped  
55  
MOTOROLA  
Arithmetic Waveform Synthesis with the HC05/08 MCUs  
24  
MOTOROLA  
Software Files for AN1222 zipped  
20  
MOTOROLA  
Brushed DC Motor Control Using the MC68HC16Z1  
219  
78  
System Design and Layout Techniques for Noise  
Reduction in MCU-Based Systems  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
Designing for Electromagnetic Compatibility with Single-  
Chip Microcontrollers  
104  
423  
AN1310/D Using the MC68332 Microcontroller of AC  
Induction Motor Control  
-
-
Liquid Level Control Using a Motorola Pressure Sensor  
77  
High Voltage Medium Power Board for Three Phase  
Motors  
1088  
Low Cost High Efficiency Sensorless Drive for Brushless MOTOROLA  
dc Motor Using MC68HC(7)05MC4  
626  
MOTOROLA  
Low Cost Universal Motor Phase Angle Drive System  
584  
Low Cost Universal Motor Sensorless Phase Angle Drive MOTOROLA  
System  
1178  
-
-
Low Cost 3-Phase ac Motor Control System Based on  
MC68HC908MR24  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
540  
537  
67  
Software files for AN1664 zipped  
Noise Reduction Techniques for Microcontroller-Based  
Systems  
Get Your Motor Running with the MC68HC708MP16  
249  
150  
80  
Making Low-Distortion Motor Waveforms with the  
MC68HC708MP16  
Resetting Microcontrollers During Power Transitions  
Data Structures for 8-Bit Microcontrollers  
213  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
AN1771/D  
AN1775/D  
AN1783/D  
AN1818/D  
AN1820/D  
AN1820SW  
AN1837/D  
AN1844/D  
AN1853/D  
AN1857/D  
AN1857SW  
Precision Sine-Wave Tone Synthesis Using 8-Bit MCUs  
Expanding Digital Input with an A/D Converter  
Determining MCU Oscillator Start-Up Parameters  
Software SCI Routines with the 16-Bit Timer Module  
Software I2C Communications  
pdf  
pdf  
pdf  
pdf  
pdf  
zip  
pdf  
pdf  
pdf  
pdf  
zip  
250  
86  
0
1
1
0
0
0
0
0
0
0
1/01/1998  
1/01/1998  
1/01/1999  
1/01/1999  
1/01/1999  
1/01/1998  
3/27/2000  
6/22/2000  
6/22/2000  
6/22/2000  
48  
84  
55  
Software files for AN1820 zipped  
2
-
Non-Volatile Memory Technology Overview  
Using a 68HC908MR32 in Place of a 68HC908MR24  
116  
214  
221  
278  
Embedding Microcontrollers in Domestic Refrigeration  
Appliances  
A 3-Phase ac Induction Motor Control System Based on  
the MC68HC908MR32  
Software for AN1857, zip format  
113 1.0 7/25/2002  
-
-
Sensorless Brushless dc Motor Using the  
MC68HC908MR32 Embedded Motion Control  
Development System  
MOTOROLA  
MOTOROLA  
AN1858/D  
pdf  
194  
444  
0
0
6/22/2000  
1/01/1995  
AN1858SW  
AN1910/D  
AN1911/D  
AN1913/D  
AN1916/D  
AN1919/D  
AN2093/D  
AN2103/D  
Software Files for AN1858 zipped  
zip  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
3-Phase AC Motor Control with V/Hz Speed Closed Loop MOTOROLA  
Using the DSP56F80X  
343 1.0 4/01/2001  
347 4/01/2001  
3-Phase AC Motor Control with V/Hz Speed Open Loop  
Using DSP56F80X  
MOTOROLA  
0
3-phase BLDC Motor Control with Sensorless Back-EMF MOTOROLA  
ADC Zero Crossing Detection using DSP 56F80x  
779 2.0 6/01/2001  
1004  
3-Phase BLDC Motor Control with Hall Sensors Using  
DSP56F80x  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
1
9/11/2002  
Design of Indirect Power Factor Correction Using  
DSP56F80X  
186 1.0 4/04/2001  
Creating Efficient C Code for the MC68HC08  
Local Interconnect Network (LIN) Demonstration  
36  
0
0
1/01/2000  
12/01/2000  
953  
Connecting an M68HC08 Family Microcontroller to an  
Internet Service Provider (ISP) Using the Point-to-Point  
Protocol (PPP)  
MOTOROLA  
MOTOROLA  
AN2120/D  
pdf  
741  
0
5/20/2001  
AN2120SW  
AN2149/D  
AN2154/D  
AN2159/D  
AN2159SW  
AN2295  
Software for AN2120, zip format  
zip  
pdf  
pdf  
pdf  
zip  
pdf  
zip  
31 1.0 7/31/2002  
-
Compressor Induction Motor Stall and Rotation Detection MOTOROLA  
using Microcontrollers  
127  
170  
129  
182  
738  
0
0
0
1
4
5/30/2001  
Low-Cost, 3-Phase, AC Motor Control System with Power MOTOROLA  
Factor Correction Based on MC68HC908MR32  
7/23/2001  
Digital Direct Current Ignition System Using HC08  
Microcontrollers  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
11/20/2001  
AN2159SW  
3/08/2002  
-
-
10/29/2003  
Developer's Serial Bootloader for M68HC08  
Software for AN2295  
10/21/2003  
AN2295SW  
725 4.0  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
1628  
AN2321/D  
AN2342  
Designing for Board Level Electromagnetic Compatibility  
pdf  
pdf  
pdf  
zip  
pdf  
pdf  
zip  
pdf  
pdf  
pdf  
pdf  
0
0
0
0
0
0
0
0
0
0
1
8/15/2002  
Opto Isolation Circuits For In Circuit Debugging of  
68HC9(S)12 and 68HC908 Microcontrollers  
155  
909  
305  
592  
411  
130  
297  
530  
224  
251  
9/25/2002  
Sensorless BLDC Motor Control on MC68HC908MR32  
Software Description  
11/07/2002  
AN2355/D  
AN2355SW  
AN2356/D  
AN2357/D  
AN2357SW  
AN2438/D  
AN2504  
11/07/2002  
11/13/2002  
11/06/2002  
11/06/2002  
Software files to accompany AN2355 and AN2356  
-
-
Sensorless BLDC Motor Control on MC68HC908MR32  
Software Porting to Customer Motor  
Sine Voltage Powered 3-Phase Permanent Magnet Motor MOTOROLA  
with Hall Sensor  
MOTOROLA  
Software files for AN2357  
MOTOROLA  
ADC Definitions and Specifications  
2/21/2003  
MOTOROLA  
10/15/2003  
On-Chip FLASH Programming API for CodeWarrior  
MOTOROLA  
AN477/D  
AN991/D  
Simple A/D for MCUs without Built-In A/D Converters  
1/01/1993  
1/28/2002  
Using the Serial Peripheral Interface to Communicate  
Between Multiple Microcomputers  
MOTOROLA  
Brochure  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
5/21/2003  
BR68HC08FAMAM/D  
FLYREMBEDFLASH/D  
68HC08 Family: High Performance and Flexibility  
57  
2
Embedded Flash: Changing the Technology World for MOTOROLA  
the Better  
5/21/2003  
pdf  
68  
2
Data Sheets  
ID  
Date Last  
Modified  
Order  
Availability  
Name  
Vendor ID Format Size K Rev #  
MOTOROLA pdf 2299  
MC68HC908MR8/D  
MC68HC908MR8 Technical Data  
4
8/01/2002  
Engineering Bulletin  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
RAM Data Retention Considerations for Motorola  
Microcontrollers  
MOTOROLA  
pdf  
6/22/2000  
EB349/D  
EB389/D  
EB390/D  
EB396/D  
EB398  
45  
1
TOF Consideration when Measuring a Long Input Capture MOTOROLA  
Event  
4/15/2002  
5/09/2002  
6/19/2002  
8/13/2002  
8/14/2002  
pdf  
pdf  
pdf  
pdf  
pdf  
55  
1
0
0
0
0
Porting the AN2120/D UDP/IP Code to the Avnet  
Evaluation Board  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
1501  
Use of OSC2/XTAL as a Clock Output on Motorola  
Microcontrollers  
49  
0
Techniques to Protect MCU Applications Against  
Malfunction Due to Code Run-Away  
Interrupt Handling Considerations When Modifying  
EEPROM on HC08 Microcontrollers  
EB608/D  
96  
Fact Sheets  
ID  
Date Last  
Modified  
Name  
Vendor ID  
Format Size K Rev #  
Order Availability  
68HC908MR8-4PB/D  
8-bit Microcontroller  
Development Studio  
MOTOROLA  
MOTOROLA  
pdf  
pdf  
58  
48  
1
2
4/03/2002  
5/13/2002  
CWDEVSTUDFACTHC08  
-
Product Change Notices  
Size Rev Date Last  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
16  
14  
5
#
Modified  
7/09/2002  
7/01/2002  
12/19/2002  
3/31/2003  
PCN7701  
PCN7703  
PCN8382  
PCN8698  
QFP 10X10 ASSY MOVE FROM SHC TO BAT3  
LQFP 7X7 ASSY MOVE FROM SHC TO BAT3  
MOTOROLA htm  
MOTOROLA htm  
-
-
-
-
-
-
FINAL MFG CONTRACT TEST QUALIFICATION MOTOROLA htm  
CARBON FIBER ITW QFP TRAY CONVERSION MOTOROLA htm  
0
0
100  
Reference Manual  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
ADCRM/AD  
Analog-to-Digital Reference Manual  
MOTOROLA  
pdf  
pdf  
pdf  
231  
2666  
0
1/01/1996  
CPU08RM/AD  
TIM08RM/AD  
CPU08RM Central Processor Unit Reference Manual MOTOROLA  
3
4/03/2002  
TIM08 Timer Interface Module Reference Manual  
MOTOROLA  
771 1.0 1/10/1996  
Selector Guide  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
579  
10/24/2003  
10/24/2003  
10/24/2003  
10/24/2003  
11/11/2003  
SG1002  
SG1006  
SG1010  
SG1011  
SG2000CR  
Analog Selector Guide - Quarter 4, 2003  
Microcontrollers Selector Guide - Quarter 4, 2003  
Sensors Selector Guide - Quarter 4, 2003  
0
MOTOROLA  
pdf  
826  
219  
287  
0
0
0
3
MOTOROLA  
pdf  
Software and Development Tools Selector Guide - Quarter MOTOROLA  
4, 2003  
pdf  
pdf  
MOTOROLA  
Application Selector Guide Index and Cross-Reference.  
95  
0
Application Summary Home Appliances - Cooking  
Products. Microcontrollers provide intelligent management MOTOROLA  
programs delivering high precision control over the cooking  
process.  
12/16/2002  
SG2036  
SG2037  
SG2038  
pdf  
pdf  
pdf  
1
2
1
Application Selector Guide - Home Appliances  
DISHWASHERS  
MOTOROLA  
MOTOROLA  
MOTOROLA  
0
6/17/2003  
Application Summary - Home Appliances - Refrigerators  
and Freezers. Microcontrollers maximize appliance  
efficiency while supporting a variety of features in  
refrigerators and freezers.  
12/16/2002  
0
Application Selector Guide - Vacuum Cleaners Vacuum  
Cleaners  
SG2039  
SG2040  
pdf  
pdf  
0
0
0
2
6/17/2003  
6/17/2003  
Application Selector Guide - Home Applicances WASHING MOTOROLA  
MACHINES  
Application Summary - Home Appliances. Dryers. New  
dryer features make this application more energy efficient MOTOROLA  
and better able to meet consumer demands for improved  
control.  
12/16/2002  
SG2044  
pdf  
0
1
Training Reference Material  
ID  
Name  
Vendor ID  
Format Size K Rev # Date Last Modified Order Availability  
html 6/20/2000  
MOTORTUT  
Motor Control Tutorial  
MOTOROLA  
1
1
-
Users Guide  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
CodeWarrior™ Development Studio for 68HC08 Quick  
Start Guide  
MOTOROLA  
pdf  
2847  
9/20/2002  
-
CDSWHC08QS  
2.1  
Return to Top  
68HC908MR8 Tools  
Order Availability  
Hardware Tools  
Adapters  
ID  
Name  
Vendor ID  
Format Size K Rev #  
SCDA08MAT  
Device Socket Adapter  
MOTOROLA  
-
-
-
Emulators/Probes/Wigglers  
ID  
Name  
Vendor ID  
HITEX  
ISYS  
Format  
Size K Rev #  
Order Availability  
AX-6811  
IC10000  
IC20000  
IC40000  
AX-6811  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
iC1000 PowerEmulator  
iC2000 PowerEmulator  
iC4000 ActiveEmulator  
ISYS  
ISYS  
Evaluation/Development Boards and Systems  
ID  
Name  
Vendor ID  
Format Size K Rev # Order Availability  
KITMMDS08MR32  
Modular Development System (MMDS) Kits  
Modular Evaluation System (MMEVS)  
Low-noise Flex Cable  
MOTOROLA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
KITMMEVS08MR32  
M68CBL05C  
MOTOROLA  
MOTOROLA  
M68EM08MR8  
M68ICS08MR  
Emulation Module  
MOTOROLA  
M68ICS08MR Development Tool Kit  
MON08 Cyclone  
MOTOROLA  
M68CYCLONE08  
M68MULTILINK08  
METROWERKS  
METROWERKS  
MON08 Multilink  
Programmers  
ID  
Name  
Vendor ID Format Size K Rev # Order Availability  
AP520  
SYSGEN  
SYSGEN  
SYSGEN  
Automated Programming System  
Universal Programmer  
-
-
-
-
-
-
-
-
-
-
-
-
POWERLAB  
T9600  
High-speed universal gang programmer  
Software  
Application Software  
Application Development Framework  
Size  
K
Order  
Availability  
ID  
Name  
Vendor ID Format  
Rev #  
68HC908MRQS  
68HC908MR Quick Start Software Development Kit MOTOROLA  
-
-
-
-
Code Examples  
ID  
Size Rev  
Order  
Availability  
Name  
Vendor ID Format  
K
#
HC08 Software Example: Subroutine that delays for a whole  
number of milliseconds  
MOTOROLA  
zip  
HC08DELAYSW  
HC08EXSW  
2
-
-
-
HC08 Software Example: Library containing software  
examples in assembly for 68HC08  
MOTOROLA  
zip  
14  
-
Operating Systems  
ID  
Name  
Vendor ID  
Format  
Size K  
Rev #  
Order Availability  
CMX-TINY+  
CMX  
CMX-Tiny+  
-
-
-
-
Software Tools  
Assemblers  
Size Rev  
Order  
Availability  
ID  
Name  
ADX-08 Macro Assembler-Linker and IDE  
Vendor ID Format  
K
#
ADX-08  
AX6808  
AVOCET  
COSMIC  
-
-
-
-
-
AX6808 relocatable and absolute macro assembler for HC08 and  
HCS08  
-
-
-
Compilers  
ID  
Name  
Vendor ID Format Size K Rev # Order Availability  
CX6808S  
COSMIC  
IMAGE  
CX6808 C Cross Compiler for HC08 and HCS08  
ICC08 V6 STD  
-
-
-
-
-
-
-
-
ICC08  
Debuggers  
ID  
Size Rev  
Order  
Availability  
Name  
ZAP 6808 MON08 Debugger and Flash Programmer  
Vendor ID Format  
K
#
ZAP 6808 MON08 debugger uses the 68HC08’s on-chip monitor  
interface to provide a real-time ANSI C and assembly source level  
debugger including FLASH programming, FLASH security and  
hardware breakpoint support.  
ZAP 6808 MON08  
MOTOROLA  
-
-
-
-
ZAP 6808 MMDS  
COSMIC  
ZAP 6808 MMDS Debugger  
-
-
-
-
ZAP 6808 SIM  
AX-6811  
COSMIC  
HITEX  
ZAP 6808 Simulator Debugger  
AX-6811  
-
-
-
-
-
-
-
-
-
-
-
-
NOICE08  
IMAGE  
NoICE08  
IDE (Integrated Development Environment)  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID  
Format  
K
#
CDCWSEHC08  
CWHC08PRO  
METROWERKS  
METROWERKS  
CodeWarrior Development Studio™ for HC(S)08 Special Edition  
-
-
-
-
-
CodeWarrior Development Studio for Motorola HC08  
Microcontrollers Professional Edition  
-
-
CodeWarrior Development Studio for Motorola HC08  
Microcontrollers Standard Edition  
CWHC08STD  
CX6808LT4  
IDEA08  
METROWERKS  
COSMIC  
COSMIC  
ISYS  
-
-
-
-
-
-
-
-
-
-
-
-
HC08 Development Tool Suite 4K Lite (FREE)  
-
-
-
IDEA08 integrated development environment for HC08 and HCS08  
IC-SW-OPR  
winIDEA  
Performance and Testing  
ID  
Name  
Vendor ID  
Format  
Size K  
Rev #  
Order Availability  
AX-6811  
HITEX  
AX-6811  
-
-
-
-
Return to Top  
Rich Media  
Rich Media  
Webcast  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
CodeWarrior Development Tools for 68HC08 and HCS12  
Microcontrollers.  
Listen to our webcast for an overview of some of the challenges  
that developers face and an explanation of the CodeWarrior  
tools that help to address these challenges.  
RMWC_CODEWARRIOR  
MOTOROLA  
html  
4
0.0  
-
-
8-bit Microcontroller Overview and Q-Family of Flash  
Microcontrollers  
Listen to our companion webcasts to learn about Motorola's  
recent 8-bit products and services-especially the HC08 Q-  
Family-that offer maximum design flexibility while helping you  
get to market fast.  
MOTOROLA  
htm  
RMWC_QFAMILY  
5
1.1  
Return to Top  
Orderable Parts Information  
Budgetary  
Tape  
and  
Reel  
Price  
QTY 1000+  
($US)  
Additional  
Info  
Order  
Availability  
Life Cycle Description (code)  
PartNumber  
Package Info  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 28W  
more  
more  
more  
KMC908MR8VDW  
KMC908MR8VFA  
KMC908MR8VP  
No  
No  
No  
-
-
-
-
-
-
LQFP 32  
7*7*1.4P0.8  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PDIP 28  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 28W  
more  
more  
MC68HC908MR8CDW  
MC68HC908MR8CFA  
No  
No  
$3.60  
$3.60  
LQFP 32  
7*7*1.4P0.8  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PDIP 28  
more  
more  
MC68HC908MR8CP  
No  
No  
$3.60  
$3.95  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 28W  
MC68HC908MR8MDW  
LQFP 32  
7*7*1.4P0.8  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
more  
MC68HC908MR8MFA  
No  
$3.95  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PDIP 28  
more  
more  
MC68HC908MR8MP  
MC68HC908MR8VDW  
No  
No  
$3.96  
$3.78  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 28W  
LQFP 32  
7*7*1.4P0.8  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
more  
MC68HC908MR8VFA  
No  
$3.78  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PDIP 28  
more  
more  
MC68HC908MR8VP  
MC908MR8CDWR2  
No  
$3.78  
-
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 28W  
Yes  
-
-
-
-
-
-
LQFP 32  
7*7*1.4P0.8  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
more  
more  
more  
more  
more  
MC908MR8CFAR2  
MC908MR8MDWR2  
MC908MR8MFAR2  
MC908MR8VDWR2  
MC908MR8VFAR2  
Yes  
Yes  
Yes  
Yes  
Yes  
-
-
-
-
-
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 28W  
LQFP 32  
7*7*1.4P0.8  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
SOIC 28W  
LQFP 32  
7*7*1.4P0.8  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
NOTE: Are you looking for an obsolete orderable part? Click HERE to check our distributors' inventory.  
Return to Top  
Related Links  
Automotive  
Digital Signal Processors  
Microcontrollers  
Motor Control  
Sensors  
Motor Control Information  
Return to Top  
http://www.motorola.com/ | Site Map | Contact Motorola | Terms of Use | Privacy Practices  
© Copyright 1994-2003 Motorola, Inc. All Rights Reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY